UNIT REPAIR MANUAL

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SEC.</th>
<th>SECTION NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>0A</td>
<td>GENERAL INFORMATION</td>
</tr>
<tr>
<td>1</td>
<td>AIR CONDITIONING</td>
</tr>
<tr>
<td>1B1</td>
<td>A6 Air Conditioning Compressor</td>
</tr>
<tr>
<td>1B2</td>
<td>DA-6 Air Conditioning Compressor</td>
</tr>
<tr>
<td>1B3</td>
<td>R-4 Air Conditioning Compressor</td>
</tr>
<tr>
<td>1B4</td>
<td>DA-V5 Air Conditioning Compressor</td>
</tr>
<tr>
<td>3</td>
<td>STEERING</td>
</tr>
<tr>
<td>3B2</td>
<td>Manual Steering Gear</td>
</tr>
<tr>
<td>3B3</td>
<td>Power Steering</td>
</tr>
<tr>
<td>4</td>
<td>AXLES</td>
</tr>
<tr>
<td>4B</td>
<td>Rear Axle</td>
</tr>
<tr>
<td>4C</td>
<td>Front Axle</td>
</tr>
<tr>
<td>5</td>
<td>BRAKES</td>
</tr>
<tr>
<td>6</td>
<td>ENGINE</td>
</tr>
<tr>
<td>6A</td>
<td>General Engine</td>
</tr>
<tr>
<td>6A1</td>
<td>2.5 Liter (L4)</td>
</tr>
<tr>
<td>6A2</td>
<td>2.8 Liter (V6)</td>
</tr>
<tr>
<td>6A3</td>
<td>4.3 Liter (V6)</td>
</tr>
<tr>
<td>6A4</td>
<td>4.8 Liter (L6)</td>
</tr>
<tr>
<td>6A5</td>
<td>V8 Engine</td>
</tr>
<tr>
<td>6A7</td>
<td>6.2 Liter (V8)</td>
</tr>
<tr>
<td>6C1</td>
<td>Carburetor</td>
</tr>
<tr>
<td>6D</td>
<td>Engine Electrical</td>
</tr>
<tr>
<td>7</td>
<td>TRANSMISSION</td>
</tr>
<tr>
<td>7A</td>
<td>Automatic Transmission</td>
</tr>
<tr>
<td>7B</td>
<td>Manual Transmission</td>
</tr>
<tr>
<td>7D</td>
<td>Transfer Case</td>
</tr>
</tbody>
</table>

The Table of Contents on this page indicates the sections covered in this manual. At the beginning of each individual section is a Table of Contents which gives the page number on which each major subject begins.

When reference is made in this manual to a brand name, number, or specific tool, an equivalent product may be used in place of the recommended item.

All information, illustrations, and specifications contained in this Manual are based on the latest product information available at the time of publication approval. The right is reserved to make changes at any time without notice.
FOREWORD

This manual includes procedures involved in disassembly and assembly of components listed in the "Table of Contents." This manual should be kept in a handy place for ready reference. If properly used, it will meet the needs of technicians and vehicle owners.

CAUTION:

These vehicles contain some parts dimensioned in the metric system as well as in the customary system. Some fasteners are metric and are very close in dimension to familiar customary fasteners in the inch system. It is important to note that, during any vehicle maintenance procedures, replacement fasteners must have the same measurements and strength as those removed, whether metric or customary. (Numbers on the heads of metric bolts and on surfaces of metric nuts indicate their strength. Customary bolts use radial lines for this purpose, while most customary nuts do not have strength markings.) Mismatched or incorrect fasteners can result in vehicle damage or malfunction, or possibly personal injury. Therefore, fasteners removed from the vehicle should be saved for re-use in the same location whenever possible. Where the fasteners are not satisfactory for re-use, care should be taken to select a replacement that matches the original. For information and assistance, see your authorized dealer.

CHEVROLET MOTOR DIVISION
General Motors Corporation
Detroit, Michigan
CAUTION

To reduce the chance of personal injury and/or property damage, the following instructions must be carefully observed.

Proper service and repair are important to the safety of the service technician and the safe, reliable operation of all motor vehicles. If part replacement is necessary, the part must be replaced with one of the same part number or with an equivalent part. Do not use a replacement part of lesser quality.

The service procedures recommended and described in this service manual are effective methods of performing service and repair. Some of these procedures require the use of tools specially designed for the purpose.

Accordingly, anyone who intends to use a replacement part, service procedure or tool, which is not recommended by the vehicle manufacturer, must first determine that neither his safety nor the safe operation of the vehicle will be jeopardized by the replacement part, service procedure or tool selected.

It is important to note that this manual contains various Cautions and Notices that must be carefully observed in order to reduce the risk of personal injury during service or repair, or the possibility that improper service or repair may damage the vehicle or render it unsafe. It is also important to understand that these 'Cautions' and 'Notices' are not exhaustive, because it is impossible to warn of all the possible hazardous consequences that might result from failure to follow these instructions.
SECTION 0A

GENERAL INFORMATION

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Parts Identification Label</td>
<td>.0A-1</td>
</tr>
<tr>
<td>Vehicle Identification Plate</td>
<td>.0A-1</td>
</tr>
<tr>
<td>Certification Label</td>
<td>.0A-1</td>
</tr>
<tr>
<td>Engine Identification Number</td>
<td>.0A-2</td>
</tr>
<tr>
<td>Model Reference</td>
<td>.0A-2</td>
</tr>
<tr>
<td>Metric Fasteners</td>
<td>.0A-8</td>
</tr>
<tr>
<td>Fastener Strength Identification</td>
<td>.0A-8</td>
</tr>
<tr>
<td>Six Loded Socket Head Fasteners</td>
<td>.0A-9</td>
</tr>
<tr>
<td>Prevailing Torque Fasteners</td>
<td>.0A-9</td>
</tr>
<tr>
<td>Conversion Table</td>
<td>.0A-11</td>
</tr>
<tr>
<td>Decimal and Metric Equivalents</td>
<td>.0A-12</td>
</tr>
<tr>
<td>RPO Listing (Regular Production Option)</td>
<td>.0A-13</td>
</tr>
</tbody>
</table>

SERVICE PARTS IDENTIFICATION LABEL

The Truck Service Parts Identification Label is provided on all models (figure 1). It is located on the inside of the glove box door (or on an inner body panel for Forward Control models). The Label lists the VIN (Vehicle Identification Number), wheelbase, paint information and all Production options or Special Equipment on the vehicle when it was shipped from the factory. ALWAYS REFER TO THIS INFORMATION WHEN ORDERING PARTS.

VEHICLE IDENTIFICATION NUMBER

The VIN is the legal identifier of the vehicle. On all models except Forward Control, it is located on a plate which is attached to the left top of the instrument panel and can be seen through the windshield from the outside of the vehicle (figure 2). On Forward Control models, the plate is on the dash and toe panel. To find out the manufacturer, model and chassis type, engine type, GVW range, model year, plant code, and sequential number, refer to figure 3.

CERTIFICATION LABEL

The Certification Label shows the GVWR, and the front and rear GAWRs, and the Payload Rating for your vehicle (figure 4).

Gross Vehicle Weight (GVW) is the weight of the originally equipped vehicle and all items added to it after it has left the factory. This would include bodies, winches, booms, etc.; the driver and all occupants; and the load the vehicle is carrying. The GVW must not exceed the GVWR. Also, the front and rear gross axle weights must not exceed the front and rear GAWRs.

The Payload Rating shown on the label is the maximum allowable cargo load (including the weight of the driver and all occupants) that the vehicle can carry based on all...
0A-2 GENERAL INFORMATION

Figure 3—Vehicle Identification Number

factory installed equipment on the vehicle. The Payload Rating is reduced if any accessories or other equipment is added to the vehicle after final date of manufacture. The weight of these items should be determined and deducted from the Payload Rating.

The vehicle may also have a GCWR (Gross Combination Weight Rating). The GCW (Gross Combination Weight) is the total weight of the loaded tow vehicle (including passengers) and a loaded trailer.

The tires on the vehicle must be the proper size and properly inflated for the load which you are carrying. The vehicle Certification Label shows the originally equipped tire size and recommended inflation pressures.

ENGINE IDENTIFICATION NUMBER

Refer to figures 5, 6 and 7 to determine the location of the engine I.D. number.

MODEL REFERENCE

Refer to figures 8 through 12 for determining vehicle model. C, R, and S models are two wheel drive. K, V, and T models are four wheel drive.

Figure 4—Certification Label
Figure 6—2.5L Engine I.D. Location

1. Engine I.D.
2. Engine I.D. (Optional Location)

Figure 5—4.3L V6 and all V8 Engine I.D. Locations

1. Engine I.D.
2. Distributor Pad
3. Engine I.D. (Optional Location)
4. Engine I.D. (Optional Location)
5. Engine Case Pad
6. Engine I.D.
7. Engine I.D.
8. Engine Case Pad
9. Engine I.D.

V6 ENGINE

V8 ENGINES-GAS

V8 ENGINES-DIESEL
Figure 7—2.8L Engine I.D. Location
Figure 8—RV Models
G VAN MODELS

- Rally (Sportvan)
- Vandura (Chevy Van)
- Cutaway Van
- Magnavan (Hi-Cube Van)

P MODELS

- Value Van (Step Van) (Aluminum)
- Motor Home Chassis
- Value Van (Step Van) (Steel)
- Forward Control Chassis

Figure 9—G and P Models
Figure 10—CK Models

Figure 11—ST Models
METRIC FASTENERS

Models are primarily dimensioned in the metric system. Many fasteners are metric and are very close in dimension to well-known customary fasteners in the inch system. It is most important that replacement fasteners be of the correct nominal diameter, thread pitch and strength.

Original equipment metric fasteners (except "beauty" bolts, such as exposed bumper bolts, and cross recess head screws) are identified by a number marking indicating the strength of the material in the fastener as outlined later. Metric cross recess screws are identified by a Posi-driv or Type 1A shown in figure 13. Either a Phillips head or Type 1A cross recess screwdriver can be used in Posi-driv recess screw heads, but Type 1A cross recess screwdrivers will perform better.

NOTICE: Most metric fasteners have a blue color coating. However, this should not be used as positive identification as some fasteners are not color coated.

General Motors Engineering Standards, along with other North American Industries, have adopted a portion of the standard metric fastener sizes defined by ISO (International Standards Organization). This was done to reduce the number of fastener sizes used and yet retain the best strength qualities in each thread size. For example, the customary 1/4-20 and 1/4-28 screws are replaced by the metric M6.0 x 1 screw which has nearly the same diameter and has 25.4 threads per inch. The thread pitch is in between the customary coarse and fine thread pitches.

Metric and customary thread notation differ slightly. The difference is shown in figure 14.

FASTENER STRENGTH IDENTIFICATION

Most commonly used metric fastener strength properly classes are 9.8 and 10.9 with the class identification embossed on the head of each bolt. Customary (inch) strength classes range from grade 2 to 8 with radial line identification embossed on each bolt head. Markings correspond to two lines less than the actual grade (i.e. grade 7 bolt will exhibit 5 embossed radial lines on the bolt head). Some metric nuts will be marked with single digit strength identification numbers on the nut face. Figure 6 shows the different strength markings.

When replacing metric fasteners, be careful to use bolts and nuts of the same strength or greater than the original fasteners (the same number marking or higher). It is likewise important to select replacement fasteners of the correct size. Correct replacement bolts metric fasteners available in the aftermarket parts channels were designed to metric standards of countries other than the United States, and may be of a lower strength, may not have the
1. Grade 2 (GM 200-M)
2. Grade 5 (GM 280-M)
3. Grade 7 (GM 290-M)
4. Grade 8 (GM 300-M)
5. Manufacturer's Identification
6. Nut Strength Identification
7. Identification Marks (Posidriv Screw Head)

Figure 13—Bolt and Nut Identification

Figure 14—Thread Notation

numbered head marking system, and may be of a different thread pitch. The metric fasteners used on GM products are designed to new, international standards that may not yet be manufactured by some non-domestic bolt and nut suppliers. In general, except for special applications, the common sizes and pitches are:

- M6.0 x 1
- M8 x 1.25
- M10 x 1.5
- M12 x 1.75

SIX LOBED SOCKET HEAD FASTENERS

Six lobed socket head (Torx) fasteners are used in some applications on vehicles covered in this manual (figure 15). The door striker bolt is of this design.

Tools designed for these fasteners are available commercially. However, in some cases, if the correct tool is not available, a hex socket head wrench may be used.

PREVAILING TORQUE FASTENERS

A prevailing torque nut is designed to develop an interference between the nut and bolt threads. This is most often accomplished by distortion of the top of an all-metal nut by using a nylon patch on the threads in the middle of the hex flat. A nylon insert may also be used as a method of interference between nut and bolt threads (figure 16).
A prevailing torque bolt is designed to develop an interference between bolt and nut threads, or the threads of a tapped hole. This is accomplished by distorting some of the threads or by using a nylon patch or adhesive (figure 16).

RECOMMENDATIONS FOR REUSE:

1. Clean, unrusted prevailing torque nuts and bolts may be reused as follows:

 a. Clean dirt and other foreign material off the nut or bolt.

 b. Inspect the nut or bolt to insure there are no cracks, elongation, or other signs of abuse of overtightening. (If there is any doubt, replace with a new prevailing torque fastener of equal or greater strength.)

 c. Assemble the parts and hand start the nut or bolt.

 d. Observe that, before fastener seats, it develops torque per the chart in figure 13 (if there is any doubt, replace with a new prevailing torque fastener of equal or greater strength).

 e. Tighten the fastener to the torque specified in the appropriate section of this manual.

2. Bolts and nuts which are rusty or damaged should be replaced with new parts or equal or greater strength.

Figure 16—Torque Nuts and Bolt Chart

<table>
<thead>
<tr>
<th></th>
<th>6 & 6.3</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4, 5</td>
<td>N·m</td>
<td>0.4</td>
<td>0.8</td>
<td>1.4</td>
<td>2.2</td>
<td>3.0</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>In. Lbs.</td>
<td>4.0</td>
<td>7.0</td>
<td>12</td>
<td>18</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>4, 5</td>
<td>N·m</td>
<td>0.4</td>
<td>0.6</td>
<td>1.2</td>
<td>1.6</td>
<td>2.4</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>In. Lbs.</td>
<td>4.0</td>
<td>5.0</td>
<td>10</td>
<td>14</td>
<td>20</td>
<td>28</td>
</tr>
<tr>
<td>B</td>
<td>.250</td>
<td>.312</td>
<td>.375</td>
<td>.437</td>
<td>.500</td>
<td>.562</td>
<td>.625</td>
</tr>
<tr>
<td>4, 5</td>
<td>N·m</td>
<td>0.4</td>
<td>0.6</td>
<td>1.4</td>
<td>1.8</td>
<td>2.4</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>In. Lbs.</td>
<td>4.0</td>
<td>5.0</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>27</td>
</tr>
<tr>
<td>1, 2, 3, 6, 8, 9</td>
<td>N·m</td>
<td>0.4</td>
<td>0.6</td>
<td>1.0</td>
<td>1.4</td>
<td>1.8</td>
<td>2.6</td>
</tr>
<tr>
<td>1, 2, 3, 6, 8, 9</td>
<td>In. Lbs.</td>
<td>4.0</td>
<td>5.0</td>
<td>9.0</td>
<td>12</td>
<td>15</td>
<td>22</td>
</tr>
</tbody>
</table>

A. Metric Sizes
B. Inch Sizes

1. Top Lock Type
2. Center Lock
3. Dry Adhesive Coating
4. Out Of Round Thread
5. Deformed Thread Profile

6. Nylon Strip Or Patch
7. Nylon Washer Insert
8. Nylon Patch
9. Nylon Insert
CONVERSION TABLE

LENGTH

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to get equivalent number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inch</td>
<td>25.4</td>
<td>millimeters (mm)</td>
</tr>
<tr>
<td>Foot</td>
<td>0.304 8</td>
<td>meters (m)</td>
</tr>
<tr>
<td>Yard</td>
<td>0.914 4</td>
<td>meters</td>
</tr>
<tr>
<td>Mile</td>
<td>1.609</td>
<td>kilometers (km)</td>
</tr>
</tbody>
</table>

AREA

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to get equivalent number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inch²</td>
<td>645.2</td>
<td>millimeters² (mm²)</td>
</tr>
<tr>
<td></td>
<td>6.45</td>
<td>centimeters² (cm²)</td>
</tr>
<tr>
<td>Foot²</td>
<td>0.092 9</td>
<td>meters² (m²)</td>
</tr>
<tr>
<td>Yard²</td>
<td>0.836 1</td>
<td>meters²</td>
</tr>
</tbody>
</table>

VOLUME

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to get equivalent number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inch³</td>
<td>16.387</td>
<td>mm³</td>
</tr>
<tr>
<td></td>
<td>16.387</td>
<td>cm³</td>
</tr>
<tr>
<td></td>
<td>0.016 4</td>
<td>liters (l)</td>
</tr>
<tr>
<td>Quart</td>
<td>0.946 4</td>
<td>liters</td>
</tr>
<tr>
<td>Gallon</td>
<td>3.785 4</td>
<td>liters</td>
</tr>
<tr>
<td>Yard³</td>
<td>0.764 6</td>
<td>meters³ (m³)</td>
</tr>
</tbody>
</table>

MASS

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to get equivalent number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pound</td>
<td>0.453 6</td>
<td>kilograms (kg)</td>
</tr>
<tr>
<td>Ton</td>
<td>907.18</td>
<td>kilograms (kg)</td>
</tr>
<tr>
<td>Ton</td>
<td>0.907</td>
<td>tonne (t)</td>
</tr>
</tbody>
</table>

FORCE

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to get equivalent number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kilogram</td>
<td>9.807</td>
<td>newtons (N)</td>
</tr>
<tr>
<td>Ounce</td>
<td>0.278 0</td>
<td>newtons</td>
</tr>
<tr>
<td>Pound</td>
<td>4.448</td>
<td>newtons</td>
</tr>
</tbody>
</table>

TEMPERATURE

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to get equivalent number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree</td>
<td>(°F-32)</td>
<td>1.8</td>
</tr>
</tbody>
</table>

ACCELERATION

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to get equivalent number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foot/sec²</td>
<td>0.304 8</td>
<td>meter/sec² (m/s²)</td>
</tr>
<tr>
<td>Inch/sec²</td>
<td>0.025 4</td>
<td>meter/sec²</td>
</tr>
</tbody>
</table>

TORQUE

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to get equivalent number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pound-inch</td>
<td>0.112 98</td>
<td>newton-meters (N·m)</td>
</tr>
<tr>
<td>Pound-foot</td>
<td>1.355 8</td>
<td>newton-meters</td>
</tr>
</tbody>
</table>

POWER

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to get equivalent number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horsepower</td>
<td>0.746</td>
<td>kilowatts (kW)</td>
</tr>
</tbody>
</table>

PRESSURE OR STRESS

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to get equivalent number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inches of water</td>
<td>0.249 1</td>
<td>kilopascals (kPa)</td>
</tr>
<tr>
<td>Pounds/sq. in.</td>
<td>6.895</td>
<td>kilopascals</td>
</tr>
</tbody>
</table>

ENERGY OR WORK

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to get equivalent number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTU</td>
<td>1 055</td>
<td>joules</td>
</tr>
<tr>
<td>Foot-pound</td>
<td>1.355 8</td>
<td>joules</td>
</tr>
<tr>
<td>Kilowatt-hour</td>
<td>3 600 000</td>
<td>joules (J * one W)</td>
</tr>
<tr>
<td></td>
<td>or 3.6 x 10⁶</td>
<td></td>
</tr>
</tbody>
</table>

LIGHT

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to get equivalent number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foot candle</td>
<td>1.076 4</td>
<td>lumens/meter² (lm/m²)</td>
</tr>
</tbody>
</table>

FUEL PERFORMANCE

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to get equivalent number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miles/gal</td>
<td>0.425 1</td>
<td>kilometers/liter (km/l)</td>
</tr>
<tr>
<td>Gal/mile</td>
<td>2.352 7</td>
<td>liter/kilometer (l/km)</td>
</tr>
</tbody>
</table>

VELOCITY

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to get equivalent number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miles/hour</td>
<td>1.609 3</td>
<td>kilometers/hr. (km/h)</td>
</tr>
<tr>
<td>Fractions</td>
<td>Decimal In.</td>
<td>Metric mm</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>1/64</td>
<td>0.015625</td>
<td>0.39688</td>
</tr>
<tr>
<td>1/32</td>
<td>0.03125</td>
<td>0.79375</td>
</tr>
<tr>
<td>3/64</td>
<td>0.046875</td>
<td>1.19062</td>
</tr>
<tr>
<td>1/16</td>
<td>0.0625</td>
<td>1.58750</td>
</tr>
<tr>
<td>5/64</td>
<td>0.078125</td>
<td>1.98437</td>
</tr>
<tr>
<td>3/32</td>
<td>0.09375</td>
<td>2.38125</td>
</tr>
<tr>
<td>7/64</td>
<td>0.109375</td>
<td>2.77812</td>
</tr>
<tr>
<td>1/8</td>
<td>0.125</td>
<td>3.1750</td>
</tr>
<tr>
<td>9/64</td>
<td>0.140625</td>
<td>3.57187</td>
</tr>
<tr>
<td>5/32</td>
<td>0.15625</td>
<td>3.96875</td>
</tr>
<tr>
<td>11/64</td>
<td>0.171875</td>
<td>4.36562</td>
</tr>
<tr>
<td>3/16</td>
<td>0.1875</td>
<td>4.76250</td>
</tr>
<tr>
<td>13/64</td>
<td>0.203125</td>
<td>5.15937</td>
</tr>
<tr>
<td>7/32</td>
<td>0.21875</td>
<td>5.55625</td>
</tr>
<tr>
<td>15/64</td>
<td>0.234375</td>
<td>5.95312</td>
</tr>
<tr>
<td>1/4</td>
<td>0.250</td>
<td>6.3500</td>
</tr>
<tr>
<td>17/64</td>
<td>0.265625</td>
<td>6.74687</td>
</tr>
<tr>
<td>9/32</td>
<td>0.28125</td>
<td>7.14375</td>
</tr>
<tr>
<td>19/64</td>
<td>0.296875</td>
<td>7.54062</td>
</tr>
<tr>
<td>5/16</td>
<td>0.3125</td>
<td>7.93750</td>
</tr>
<tr>
<td>21/64</td>
<td>0.328125</td>
<td>8.33437</td>
</tr>
<tr>
<td>11/32</td>
<td>0.34375</td>
<td>8.73125</td>
</tr>
<tr>
<td>23/64</td>
<td>0.359375</td>
<td>9.12812</td>
</tr>
<tr>
<td>3/8</td>
<td>0.375</td>
<td>9.52500</td>
</tr>
<tr>
<td>25/64</td>
<td>0.390625</td>
<td>9.92187</td>
</tr>
<tr>
<td>13/32</td>
<td>0.40625</td>
<td>10.31875</td>
</tr>
<tr>
<td>27/64</td>
<td>0.421875</td>
<td>10.71562</td>
</tr>
<tr>
<td>7/16</td>
<td>0.4375</td>
<td>11.11250</td>
</tr>
<tr>
<td>29/64</td>
<td>0.453125</td>
<td>11.50937</td>
</tr>
<tr>
<td>15/32</td>
<td>0.46875</td>
<td>11.90625</td>
</tr>
<tr>
<td>31/64</td>
<td>0.484375</td>
<td>12.30312</td>
</tr>
<tr>
<td>1/2</td>
<td>0.500</td>
<td>12.7000</td>
</tr>
</tbody>
</table>

Figure 18—Decimal and Metric Equivalents
The RPO list contains RPOs used on all light duty trucks. Refer to the Service Parts Identification Label for a list of the RPOs used on each specific vehicle.

AA3 Windows - Deep Tint, Side Windows Only
AB2 Fixed Glass - Left Side
AC2 Window - Sliding, Right Front Door
AD5 Window - Right Rear, Side, Sliding
AD8 Door Check
AJ1 Window - Deep Tint, Except Windshield and Doors
AL1 Mid-Ship High Back Bucket Seats
AM7 Seat - Right Rear Folding
ANL Air Dam w/Fog Lamps
AP1 Cargo Restraints
AP7 Partition - Sliding Plywood
AQ3 Seat - Rear Center
AQ4 Seat - Rear
AS1 Seat - Front Bucket, High Back, Driver
AS2 Seat - Front Bucket, High Back, Passenger
AS3 Seat - Right Rear, Suburban
AT5 Seat - Center Folding, Suburban
AU2 Lock - Cargo Door
AU3 Power Lock - Side Door
AU6 Power Lock - Tailgate Remote Control
AV5 Seat - High Back, Bucket
AW4 Door - Sliding Side Extension
AX5 Partition - Expanded Metal, Left Side
AX6 Partition - Expanded Metal w/Sliding Door
AX7 Partition - Expanded Metal w/Center Sliding Door
AX8 Seat - Front Bucket, Pedestal, Driver
AX9 Latch - Rear Cargo Door
A01 Window - Tinted, All Shaded Windshield
A02 Window - Tinted, Shaded Upper
A07 Window - Body
A08 Window - Body, Right Side
A12 Window - Stationary, Back Door
A13 Window - Stationary, Side Rear Door
A17 Window - Left Side Swing-Out
A18 Window - Rear Door, Swing-Out
A19 Glass - Side Rear Door, Swing-Out
A28 Window - Right Rear, Full Width, Sliding
A31 Window - Side, Power
A33 Window - Tailgate, Power
A51 Seat - Front Bucket
A52 Seat - Front Bench
A57 Seat - Auxiliary, One Passenger, Folding
A78 Seat Back Adjuster
A82 Head Restraints
A95 Seat - Front Bucket, High Back, Reclining
BA8 Compartment - Front Seat Storage
BB5 Ornamentation
BF3 Floor Covering - Step Well Mat
BW2 Ornamentation - Deluxe Body Side Molding
B3D School Bus Equipment
B3J Diesel Equipment
B3M School Bus Equipment - Deluxe
B3O Floor Carpet
B32 Floor Mats - Front
B33 Floor Mats - Rear
B37 Front and Rear Floor Mats
B74 Wheel Opening Molding - Black
B84 Extra Molding - Body Side
B85 Extra Molding - Belt Reveal
B93 Extra Molding - Door Edge Guard
B96 Extra Molding - Wheel Opening
CD4 Wiper System - Pulse
C3A Payload - 1500 lbs.
C3B Payload - 1000 lbs.
C3C Payload - 1625 lbs.
C36 Heater - Auxiliary
C41 Heater - Base
C42 Heater - Deluxe Outside Air
C49 Defogger - Rear Window, Electric
C51 Rear Window Air Deflector
C55 Vent - Roof
C56 Vent - Forced Air, Right Side
C60 Air Conditioning - Front Manual Controls
C69 Air Conditioner - Roof Mounted
C91 Lamp - Interior Courtesy
DF1 Mirror - Camper Type, Painted
DF2 Mirror - Camper Type, SST
DG5 Mirror - West Coast Type
DK6 Roof Console
DW1 Side Body Stripe
D20 Sunshade - Windshield, Passenger Side
D31 Mirror - Tilt
D33 Mirror - Visor Vanity
D44 Mirror - Outside, Painted
D45 Mirror - Outside, SST
D46 Mirror - West Coast Type with Clearance Lights
D49 Mirror - Chrome
D55 Endgate - Suburban
D64 Vanity Mirror
D73 Pickup Box Side Rails
D92 Stripe - Lower Decpor
E24 Door - Cargo Side, Hinged
E31 Body - Steel, 10 ft.
E34 Body - Steel, 10 ft. Standard Width
E36 Body - Aluminum, 10 ft.
E38 Body - Steel, 12 ft. x 8 ft.
E39 Body - Aluminum, 12 ft. x 8 ft.
E46 Door - 66 in., Overhead Sliding w/Window
E53 Door - 87 in., Wrap-Around
E55 End Gate, Suburban
E62 Pickup Box - Stepside (Fenderside)
E63 Pickup Box - Fleetside (Wideside)
E76 Door - 60 in., Rear
E79 Door - 74 in., Rear, Strap Hinges
E94 Rally (Beauville) Equipment
F42 Suspension - Front Heavy Duty
F51 Shock Absorbers - Front and Rear, Heavy Duty
F58 Stabilizer Shaft - Front, Heavy Duty
F59 Stabilizer Shaft - Front
F60 Spring - Front, Heavy Duty
GM8 Rear Axle - 2.56 Ratio
GQ1 Rear Axle - Base Ratio
GT4 Rear Axle - 3.73 Ratio
GT5 Rear Axle - 4.10 Ratio
GU4 Rear Axle - 3.08 Ratio
OA-14 GENERAL INFORMATION

GU6 Rear Axle - 3.42 Ratio
G50 Spring - Rear, Heavy Duty
G51 Spring - Rear, Special Heavy
G52 Spring - Rear 15000 lbs.
G60 Spring - Rear Auxiliary
G80 Axle - Rear, Limited Slip
KC4 Engine Oil Cooler System
K05 Engine Block Heater
K09 Generator - 120 Amp
K19 Air Injection Reactor System
K22 Generator - 94 Amp
K34 Cruise Control
K46 Air Cleaner - Heavy Duty, Pre-Cleaner
LB4 Engine - 4.3L V6 TBI
LH6 Engine - 6.2L V8, Diesel
LL2 Engine - 2.8L V6
LL4 Engine - 6.2L V8, Diesel H.D.
LN8 Engine - 2.5L L4
L03 Engine - 5.0L V8 TBI
L05 Engine - 5.7L V8 TBI
L19 Engine - 7.4L V8 TBI
LT9 Engine - 5.7L 4BBL
MC9 Transmission - BW 4-Speed
MD2 Transmission - THM 180C - Auto 3 Speed
MD8 Transmission - THM 700, Automatic 4-Speed
MH3 Transmission - 5 Speed
ML2 Transmission - Borg-Warner, Manual 5-Speed
ML3 5 Speed Manual Transmission. Available as MM5. Used with LN8 L4
MM4 4 Speed Manual Transmission. Requires MF2
MM5 4 Speed Manual Transmission. Available as MM4. Used with LN8 L4 only
MXO 4 Speed Auto. Trans. with OD. Requires MD8
MY6 Transmission - Manual 4-Speed w/Overdrive
M20 Transmission - Manual 4 Speed, 6.55 1st.
M40 Transmission - Auto, 3 Speed, Torque Conv. Var. 1
M62 Transmission - Manual 3 Speed, 2.85 Ratio
M64 Transmission - Manual 3 Speed, 3.50 Ratio
M73 Transmission - Isuzu, Manual 4-Speed
NA1 Emission System - Light Duty
NA4 Emission System - Heavy Duty
NA6 Emission System - Federal Requirements
NB2 Emission System - California Requirements
NE2 Fuel Tank - 40 gal.
NK7 Fuel Tank - 31 gal.
NL2 Fuel Tank - Auxiliary
NL7 Fuel Tank - 33 gal.
NKZ Fuel Tank - 20 gal.
NL9 Fuel Tank - 27 gal.
NM5 Emission System - Canadian Requirement
NM8 Emission System - Leaded Fuel
NY1 Fuel Tank Shield
NY7 Transfer Case Shield
N05 Fuel Filler Cap Lock
N31 Steering Wheel - Custom
N33 Steering Column - Tilt
N40 Steering - Non-Variable
N41 Steering - Power
N51 Steering - Manual
N67 Wheel - Rally Type
N90 Wheel - Aluminum Cast
PA1 Wheel - Trim Discs, Var. 5
PA6 Wheel - Styled, Painted
P01 Wheel - Trim Discs, Var. 1
P06 Wheel - Trim Discs
P10 Carrier - Spare Tire
P11 Carrier - Spare Tire, Glide Out
P13 Carrier - Spare Tire, Side-Mounted
P14 Carrier - Inside Mounted Spare Tire, Left Side
P15 Carrier - Inside Mounted Spare Tire, Right Side
P16 Carrier - Rear Mount
P17 Cover - Spare Wheel/Tire
P18 Carrier - Spare Tire w/Hoist
QE6 Wheel - 16.5 x 6
R05 Wheel Conversion - Dual Rear
TCA "Woody" Trim Package
TL1 Grille, Special
TL6 Grille, Black
TPS Tire Puncture Sealant
TP2 Battery - Auxiliary Camper
TR9 Lamp Group
TT4 Headlights - Halogen, Pencil Beam
TT5 Headlights - Halogen
TFR Lamp - Rear Dome and Reading
T63 Headlights - Warning System
T84 Headlights - Right Rule
T85 Headlights - Left Rule
UA1 Battery - High Capacity
UB4 Lamps - Rear Side Marker
UD4 Alarm - Vehicle Speed
UF2 Lamp - Cargo
UJ1 Indicator System, Brake Warning
UL2 European Frequency
UM6 Radio - AM/FM Stereo, Seek/Scan, Cassette, Clock
UM7 Radio - AM/FM Stereo, Seek/Scan, Clock ETR
UN3 Radio - AM/FM Stereo, Cassette
UU9 Radio - AM/FM Stereo ETR
UX1 Radio - AM/FM Stereo, Seek and Scan, Auto Reverse Search Repeat Cassette Equalizer, Clock, ETR
UY1 Wiring Harness - Camper
UY7 Wiring Harness - Truck Trailer, Heavy Duty
U01 Lamp - Roof Marker
U18 Speedometer - Kilometer
U35 Electric Clock
U37 Cigarette Lighter
U58 Radio - AM/FM Stereo
U63 Radio - AM
U66 Speaker System - Dual Front, Dual Rear
U69 Radio - AM/FM
U73 Fixed Mast Antenna
U76 Antenna - Windshield
U89 Wiring Harness - Trailer
VB2 Bumper, Rear Step Painted
VB3 Bumper, Rear Step Chrome
VE5 Bumper - Front and Rear Impact Strip
VE6 Bumper, Front Impact Painted
VF1 Bumper - Rear Chrome
VG3 Front Bumper Impact Strip
VG5 Rear Bumper Impact Strip
VR2 Trailer Hitch
VR4 Trailer Hitch - Weight Distributing
V01 Radiator - Heavy Duty
V02 Radiator - Heavy Duty w/Trans. Oil Cooler
V05 Increased Cooling
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V10</td>
<td>Cold Climate Provisions</td>
</tr>
<tr>
<td>V22</td>
<td>Radiator Grille - Chrome</td>
</tr>
<tr>
<td>V28</td>
<td>Bumper Guards, Front Painted</td>
</tr>
<tr>
<td>V31</td>
<td>Bumper Guards - Front, Chrome</td>
</tr>
<tr>
<td>V35</td>
<td>Bumper, Rear w/Recessed Lighting</td>
</tr>
<tr>
<td>V37</td>
<td>Bumper - Front and Rear Chrome</td>
</tr>
<tr>
<td>V42</td>
<td>Bumper - Rear Step, Chrome</td>
</tr>
<tr>
<td>V43</td>
<td>Bumper - Rear Step, Painted</td>
</tr>
<tr>
<td>V46</td>
<td>Bumper - Front, Chrome</td>
</tr>
<tr>
<td>V54</td>
<td>Roof Luggage Carrier</td>
</tr>
<tr>
<td>V55</td>
<td>Roof Luggage Carrier, Chrome</td>
</tr>
<tr>
<td>V76</td>
<td>Front Hook Towing Device</td>
</tr>
<tr>
<td>X6W</td>
<td>Hub - Locking</td>
</tr>
<tr>
<td>X6Z</td>
<td>Hub - Automatic Locking</td>
</tr>
<tr>
<td>YC1</td>
<td>High Sierra Equipment</td>
</tr>
<tr>
<td>YC2</td>
<td>Sierra Classic Equipment</td>
</tr>
<tr>
<td>YC3</td>
<td>Gypsy Equipment</td>
</tr>
<tr>
<td>YC6</td>
<td>Comfort and Conv. Decor Package #2, Luxury</td>
</tr>
<tr>
<td>YC7</td>
<td>Touring Package</td>
</tr>
<tr>
<td>YE9</td>
<td>Equipment Package, Level 3</td>
</tr>
<tr>
<td>YG1</td>
<td>Molding, Body Side and Wheel Opening</td>
</tr>
<tr>
<td>YJ6</td>
<td>Decor Package - Econo</td>
</tr>
<tr>
<td>ZM2</td>
<td>Trim Package, Bonaventure</td>
</tr>
<tr>
<td>ZQ2</td>
<td>Power Door Locks (AU3) and Power Windows (A31)</td>
</tr>
<tr>
<td>ZW2</td>
<td>Glass - Rear Doors</td>
</tr>
<tr>
<td>ZW3</td>
<td>Glass - Side Rear Door and Rear Doors</td>
</tr>
<tr>
<td>ZW4</td>
<td>Glass - Right Side Door and Rear Doors</td>
</tr>
<tr>
<td>ZW6</td>
<td>Glass - Complete Body</td>
</tr>
<tr>
<td>ZW9</td>
<td>Base Body or Chassis</td>
</tr>
<tr>
<td>ZX2</td>
<td>Seats - Driver and Passenger High Back</td>
</tr>
<tr>
<td>ZX4</td>
<td>Glass - Left Side, Side Sliding Door, and Rear Door</td>
</tr>
<tr>
<td>ZY1</td>
<td>Color Combination - Solid</td>
</tr>
<tr>
<td>ZY2</td>
<td>Color Combination - Two Tone</td>
</tr>
<tr>
<td>ZY4</td>
<td>Color Combination - Deluxe Two Tone</td>
</tr>
<tr>
<td>ZY5</td>
<td>Guage Package - Voltmeter, Oil Press. and Temp.</td>
</tr>
<tr>
<td>Z62</td>
<td>Equipment Package - Level 1</td>
</tr>
<tr>
<td>Z72</td>
<td>Trailering Package - L.D. Ball-Type Hitch</td>
</tr>
<tr>
<td>Z73</td>
<td>Trim - Special Interior</td>
</tr>
<tr>
<td>Z75</td>
<td>Shock Absorbers - Four Front</td>
</tr>
<tr>
<td>Z76</td>
<td>Special Chassis - Camper Package</td>
</tr>
<tr>
<td>Z80</td>
<td>Trim - Special Exterior</td>
</tr>
<tr>
<td>Z81</td>
<td>Camper - Special</td>
</tr>
<tr>
<td>Z82</td>
<td>Trailer Hitch - Special Reese Type</td>
</tr>
<tr>
<td>Z88</td>
<td>Conversion - GMC</td>
</tr>
<tr>
<td>Z6Z</td>
<td>Covering-Floor, Full Length, Black Rubber</td>
</tr>
</tbody>
</table>
SECTION 1B1
A-6 AIR CONDITIONING COMPRESSOR

DESCRIPTION

When servicing the AC-Delco A-6 compressor, prevent dirt or foreign material from getting on or into the compressor parts and system during disassembly or reassembly.

Keep tools and work area clean. Clean the compressor exterior before disassembly. Clean parts with trichloroethylene, naptha or Stoddard solvent, kerosene or equivalent. Dry with air.

Use a non-lint producing type cloth to clean each part. Although certain service operations can be performed without removing the compressor from the vehicle, the operations described here are based on bench repair with the compressor removed from the vehicle. They have been prepared in sequence in order of accessibility of the components (figure 1).

For compressor removal and installation, refer to the proper truck service manual.

Do not kink or place excessive tension on lines or hoses.

After removing the compressor from the vehicle, drain and measure the refrigerant oil. Add new 525 viscosity refrigerant oil after repair. Refer to “Specifications.”

IDENTIFICATION

An identification label attached to the compressor provides the name of the manufacturer, model number and build code. If the label is removed or becomes dislodged during service operation, reattach it using an adhesive sealant such as Loctite 312 or equivalent.
1B1-2 A-6 AIR CONDITIONING COMPRESSOR

Figure 1—Compressor Component View
MINOR REPAIR TO THE COMPRESSOR

Operations to the clutch plate and hub, pulley and bearing, and coil and housing are covered as "Minor" because they may be performed without purging the system. Servicing the shaft seal and pressure relief valve are covered in "Major Repair Procedures" because the system must be purged of Refrigerant-12.

Illustrations used in describing these operations show the compressor removed from the vehicle to illustrate the various operations.

When servicing the compressor, remove the components that preliminary diagnosis indicates need servicing. Refer to figure 1 for part name and location.

Keep the work area, tools and parts clean. Use Piston Tray J-9402 (refer to "Special Tools") for parts removed and for replacement parts.

When a compressor is removed from the vehicle for servicing, drain and measure the amount of oil remaining in the compressor. After servicing, add new 525 viscosity refrigerant oil to the compressor.

CLUTCH PLATE AND HUB ASSEMBLY REPLACEMENT

Remove or Disconnect (Figures 1, 2 and 3)

Tools Required:
J-9396 Compressor Holding Fixture
J-9399 Compressor Shaft Nut Socket

Install or Connect (Figures 1, 4 and 5)

Tools Required:
J-9399 Compressor Shaft Nut Socket
J-9480-B Hub and Drive Plate Assembly Installer
J-25030 Clutch Hub Holding Tool
1. Shaft key (36).
Allow the shaft key (36) to extend 4.5 mm (3/16-inch) out of the bottom of the hub keyway (figure 4).

The shaft key (36) is curved to give an interference fit in the groove.

Important

- Do not drive or pound on the clutch hub or the shaft (39). Internal damage to the compressor may result.

2. Clutch plate and hub assembly (2) (figure 4).
- Install the clutch plate and hub assembly (2) over the compressor shaft lining up the key slot on the hub with the keyway slot in the shaft.
- Install J-9480-B on the threaded end of the shaft (figure 5).
- Back off J-9480-B body to allow the center screw to be threaded against the end of the compressor shaft (39).
- Hold the center screw with a wrench and tighten the hex portion of J-9480-B body while pressing the hub onto the shaft (39). After tightening the body several turns, remove J-9480-B and check that the shaft key (36) is properly in place in the keyway.
- Air gap between contact surfaces of the clutch plate and hub assembly (2) and the pulley (6) should be 0.56–1.34 mm (0.022–0.057-inch).
- Remove J-9480-B.

3. Shaft nut (1).
- Use J-9396 to hold the clutch plate and hub assembly (2).
- Tighten Shaft nut (1) to 27 N·m (20 ft. lbs.) with J-9399.
- Hand spin the pulley (6) to check for free rotation.

PULLEY AND BEARING ASSEMBLY REPLACEMENT

Tools Required:
- J-0435 Snap Ring Pliers
- J-8092 Driver Handle
- J-8433 Heavy Duty Pulley Puller
- J-9395 Pulley Puller Adapter
- J-9398-A Pulley Bearing Remover
- J-9481-A Pulley Bearing and Pulley Installer
- J-24092 Pulley Hub Adapter Set

1. Clutch plate and hub assembly (2).
2. Pulley bearing retainer (2) with J-6435 (figure 6).
3. Pulley (6).
Figure 6—Removing the Pulley Retainer Ring

- Install J-9395 over the end of the compressor shaft (38) (figure 7).

Important

- Use J-9395 puller pilot to prevent internal damage to the compressor when removing the pulley. Do not use the pulley directly against the end of the shaft.
- Place J-8433 over J-9395 for the regular V-groove pulley.

Figure 7—Removing the Pulley and Bearing

- Place J-8433 over J-9395 for the multi-groove pulley.
- Turn the screw on J-8433 to remove the pulley.

Important

- When using J-24092, the puller arms must extend around to the rear side of the pulley. Do not attempt to pull the pulley off by engaging the puller arms in a multi-groove pulley.

4. Bearing (5) from the pulley (6) (figure 8).

- Remove the retaining ring (3).
- Pulley (6) to J-21352 (figure 9).
- Drive the bearing (5) from the pulley (6) with J-9398 and J-8092.

Install or Connect (Figures 1 and 10)

Tools Required:
- J-6435 Snap Ring Pliers
- J-8092 Driver Handle

Figure 8—Removing the Pulley and Bearing Retainer Ring

- Place J-24092 over J-9395 for the multi-groove pulley.
- Turn the screw on J-8433 to remove the pulley.

Important

- When using J-24092, the puller arms must extend around to the rear side of the pulley. Do not attempt to pull the pulley off by engaging the puller arms in a multi-groove pulley.

Figure 9—Removing the Bearing from the Pulley
1. Bearing (5) to the pulley (6) with J-8092 and J-9481-A (figure 10).
2. Retainer ring (4) to the pulley (6).
3. Pulley (6) and bearing (5) to shaft (38) with J-8092 and J-9481-A.
4. Retainer ring (4) to pulley (6) and bearing (5).
5. Pulley retainer ring (3) with J-0435.
6. Clutch plate and hub assembly (2).
 - Refer to "Clutch Rotor and Hub Assembly Replacement."

CLUTCH COIL AND HOUSING ASSEMBLY REPLACEMENT

Remove or Disconnect (Figure 1)

Tool Required:
J-6435 Snap Ring Pliers
1. Clutch plate and hub assembly (2).
2. Pulley (6).
 - Mark or scribe the location of the clutch coil (8) to terminal on the compressor front head (16).
3. Clutch coil assembly (8).
 - Coil housing retaining ring (7) with J-6435.
 - Using a large screwdriver or small pry bar, pry the clutch coil away from the front head. If necessary, hand impact a blow to the screwdriver handle or pry bar to break the adhesive bond of the clutch coil to the front head.

Clean
- Adhesive from the coil by scraping with a putty knife.
- Remove any adhesive around the three locator hole areas of the front head and around the three clutch coil locator protrusions at the rear of the clutch coil housing.
- Use a suitable solvent to clean the coil.

Install or Connect (Figures 11 and 12)

Tool Required:
J-6435 Snap Ring Pliers
1. Adhesive to the clutch coil (8) (figure 11).
• Place the clutch coil “face down” and apply the adhesive in a circular bead around the three coil locator protrusions.

2. Clutch coil (8) to the front head (16) (figure 12).
• Align the coil locator projections on the coil housing with the holes in the front head (16) so that the electrical terminals line up the marks scribed on the compressor.
• Align the coil and housing assembly on the compressor front head (16) so that the electrical terminals line up the marks scribed on the compressor.

3. Coil and housing retainer ring (7) with J-6435.

4. Pulley and bearing assembly (5 and 6).
5. Clutch plate and hub assembly (2).

MAJOR REPAIR TO THE COMPRESSOR

Service repair procedures to the compressor shaft seal and pressure relief valve or disassembly of the internal compressor mechanism are considered “Major” since the refrigeration system must be purged of refrigerant before proceeding.

If servicing or replacing the internal cylinder and shaft assembly chain, measure and replace the oil with new 525 viscosity refrigerant oil.
Disassemble the compressor in a clean work area. Use clean tools. Disassembly procedures require proper service tools. Using inadequate equipment may damage the compressor.

Replacement parts are packaged and can be used without cleaning.
Piston shoe discs and shaft thrust races are "numbered." To determine size and dimension, refer to the chart in this section.

SHAFT SEAL REPLACEMENT

SEAL LEAK DETECTION
Do not change the shaft seal because of an oil leak. The seal is designed to seep oil for lubrication.

When replacing system components, remove the compressor from the vehicle and drain the oil if there is excessive leakage because of shaft seal failure.

Replace the shaft seal, unless replaced during rebuilding, on the amount of leakage as determined with Leak Detector J-23400.

Discharge the system when replacing the shaft seal even if the compressor remains on the vehicle.

Remove or Disconnect (Figures 1, 13, 14 and 15)

Tools Required:
J-5403 Snap Ring Pliers
J-9392-01 Shaft Seal Remover and Installer
J-9553 Seal Remover
J-22974-A Compressor Shaft Oil Seal Protector
J-23128-A Compressor Shaft Seal Seat Remover and Installer

1. Clutch plate and hub assembly.(2).

Clean
• The inside of the compressor around the shaft (38). Prevent dust and dirt from entering the compressor.

2. Sleeve retainer (10).

3. Absorbent felt sleeve (11).

4. Shaft seat retaining ring (12) with J-5403 (figure 13).

5. Shaft seat (13) (figure 14).
• Place J-22974-A over the end of the shaft (38) to prevent chipping the ceramic seat (13).
• Engage J-23128 into the recessed portion of the seat by turning J-23128 to the right (clockwise).
• Lift the seat (13) from the compressor with a rotary motion.

6. Shaft seal (14) (figure 15).
• Insert J-9392-01 over the compressor shaft (39).
• Engage the tabs on the seal (14) by twisting the J-9392-01 downward to the right.
• Engage the tabs and left the seal (14) out of the shaft (39) cavity.

7. Seal (O-ring) (15) with J-9553-01.
Tools Required:
- J-5403 Snap Ring Pliers
- J-9392-01 Shaft Seal Remover and Installer
- J-9393-A Seal Seat Remover and Installer
- J-9366 Compressor Shaft Nut Socket
- J-9625-A Pressure Test Set with Schrader Valves

Figure 16—Shaft and Seal Position and Correct Position Gaging Guide

1. Seal (O-ring) (15) with J-33011 (figure 15).
 - Dip the seal (15) into clean 525 viscosity refrigerant oil.
 - Insert J-33011 down into the compressor neck until the tool "bottoms."
 - Lower the movable slide of J-33011 into the lower groove.
 - Rotate J-33011 to seat the seal (15).
 - Remove J-33011.

2. Seal seat (14) (figure 15).
 - Coat the seal (14) with clean 525 viscosity refrigerant oil.
 - Mount the seal (14) to J-9392-01 by engaging the tabs of the seal with the tangs of J-9392-01.
 - Place J-22974 over the end of the compressor shaft (39).
• Slide the seal (14) and J-22974 down onto the compressor shaft (38).
• Twist J-9392-01 to the right (clockwise) while pushing the seal assembly down the shaft (38) until the seal assembly (14) engages the flats on the shaft and seat in place.
• Disengage J-9392-01 by pressing downward and twisting to the left (counterclockwise).

3. Ceramic seal seat (13) (figure 14).
• Seal (13) to J-23128.
• Dip the seal (13) into clean 525 viscosity refrigerant oil.
• Install J-23128 and the seal (13) over the compressor shaft (39).
• Push the seal (13) into place with a rotary motion.

Important
• Do not dislodge the seal (O-ring) (15).

4. Seal shaft retainer ring (12) with J-5403 (figure 13).
• Place the flat side against the seal seat.
• Use the sleeve of J-9393-B to press the ring into its groove.

5. J-9625 to the rear head of the compressor:
• Gage charging lines or pressurize the suction side (low pressure side) of the compressor with refrigerant to equalize the pressure to the drum pressure.

6. Shaft nut (1) with J-9399.
• Place the compressor in a horizontal position with the oil sump down.
• Rotate the compressor shaft by hand.
• Leak test with J-23400.
• Replace shaft nut (1) with a new one.

7. New absorbent sleeve (11).
• Roll the material into a cylinder, overlapping the ends.
• Slip the sleeve into the compressor neck with the overlap toward the top of the compressor.
• With a screwdriver spread the sleeve ends of the sleeve butt at the top vertical centerline.

8. Sleeve retainer (10) with J-9393.
• Place the flange face against the front end of the sleeve.
• Press and tap with a mallet to set the retainer and sleeve into place. Place the retainer 0.7937 mm (0.03125-inch) from the face of the compressor neck (figure 16).

9. Clutch plate and hub assembly (2).
• Refer to “Clutch Plate and Hub Assembly Replacement.”

Important
• Using improper procedures, pounding or collisions can damage the shaft seal and the axial plate. If the axial plate is out of position, the carbon face of the shaft seal may not contact the seal seat.
• To check the position of the axial plate on the shaft, remove the clutch driven plate and measure the distance between the front head extension and the flat shoulder on the shaft with a wire gage. The clearance should be 0.66–1.9 mm (0.026–0.075-inch) (figure 16).
• If the shaft has been pushed back in the axial plate (measurement greater than 1.9 mm (0.075-inch), disassemble the compressor and replace the shaft and axial plate assembly, thrust races and thrust bearings.
• If there is too much or not enough air gap between the drive and driven plates, check for shaft dislocation. It will not be possible to service the compressor if the carbon seat is not seating against the seal seat.

PRESSURE RELIEF VALVE REPLACEMENT

The pressure relief valve is located at the rear of the compressor.

Remove or Disconnect (Figure 1)

1. Valve (56).
2. Seal (57).

Clean

- The valve cavity to remove any dust or dirt before installing a new seal.

Install or Connect (Figure 1)

1. Seal (57) to the compressor.
 • Dip the seal (57) in 525 viscosity refrigerant oil.
2. Valve (56) to the compressor.

Tighten

- Valve (56) to 19 N·m (14 ft. lbs.).
Remove or Disconnect (Figures 1, 17 through 26)

Tools Required:
- J-9396 Compressor Holding Fixture
- J-5139 Oil Pickup Tube Remover
- J-9397 Compressing Fixture
- J-9402 Piston Assembly Tray
- J-21352-A Compressor Support Block

1. Nuts (42) from the threaded studs.
2. Rear head (43) (figure 18).
 - Tap around the edge to remove the rear head (43).
4. Gears (50 and 51).
 - Mark the face of the gears before removing.
5. Seal (52).
6. Rear discharge valve plate assembly (49) (figure 19).
 - Use two small screwdrivers under the reed retainers to remove the assembly.
 - Do not position the screwdrivers between the reeds and the reed seats.
7. Rear suction reed plate (48) (figure 20).
 - Do not pry up on the horse-shoe shaped reed valves.
8. Oil pick-up tube (37) with J-5139 (figure 21).
10. Compressor to J-21352.

Figure 17—Compressor to J-9396

Figure 18—Removing the Rear Head
- Loosen the compressor from J-9396.
- Place J-21352 over the oil pump end of the shaft.
- Holding the support block in position with one hand, lift the compressor from the holding fixture with the other hand.

Figure 19—Removing the Rear Discharge Valve Plate and Seal
Invert the compressor and place the shaft end up on the bench with the internal assembly support block resting on the bench.

Important
- To prevent damaging the shaft, do not tap on the end of the compressor shaft to remove the internal mechanism. If the mechanism will not slide out of the compressor shell, tap on the front head with a plastic hammer.

11. Front head assembly (16) from the shell (9).
 - Rest the compressor shell (9) on its side and push the fronthead assembly (16) through the shell (9).

12. Front seal (17).
 - Tap on the outside of the front head (16) with a plastic hammer to overcome the friction of the seal (17) between the fronthead (16) and the shell (9).

13. Front discharge valve plate (18).

15. Suction cross-over plate (46) (figure 22).
 - Pry with a screwdriver between the casting (29) and the cover.

 - Number the piston and the piston bores with the same numbers so the pistons can be installed in their bores (figure 23).
 - Separate the cylinders (29 and 42) with a block of wood and a mallet (figure 24).
 - Do not let the discharge cross-over tube (26) touch the axial plate (39).
 - Do not strike the shaft at either end to separate the upper and lower cylinder halves because the shaft (39) can be damaged.

17. Rear half (42) of the compressor from the pistons (30).

18. Front cylinder half (29) with the piston (38), shaft and axial plate (38) to J-9397.

19. Pistons (30), balls (31) and seats (33) in the order in which the pistons are marked.
 - Place parts in J-9402.
 - Place the pistons (32) in J-9402 with the notch in the casting web at the front end of the piston into the dimpled groove of the J-9402 (figure 25).

20. Rear thrust races (40) and thrust bearing (41) from the shaft (39) (figure 26).

21. Shaft (39) from the front cylinder half (29).
 - If necessary, bend the discharge cross-over tube (26) to remove the shaft (39).

22. Front thrust races (27) and thrust bearing (28).
23. Discharge crossover tube (26) from the cylinder half (29) with locking jaw pliers.

- This is necessary on original factory equipment because the tube ends are swedged into the cylinder halves.

- If previously serviced, the discharge crossover tubes (26) will have a seal and bushing at the end of the tube. Remove these tubes by hand.

Figure 23—Numbering the Pistons and Cylinders

Figure 24—Separating the Cylinder Halves

Figure 25—Identifying the Notch at the Front of the Piston

GAGING OPERATION

Install or Connect (Figures 27 through 31)

Tools Required:
- J-9396 Compressor Holding Fixture
- J-9397 Compressing Fixture
- J-9432 Needle Bearing Installer
- J-21352-A Compressor Support Block

Figure 26—Removing the Front Thrust Races and Bearing
1. Needle bearing (21) to the front cylinder (29) with J-9432 (figure 27).
 - Support the cylinder half (29) on J-21352-A.
 - Insert needle bearing (21).
 - Insert J-9432 into the hub end (inner side) of the cylinder head (29) and drive the needle bearing into the cylinder.
 - Production compressors use 1/2- and 5/8-inch needle bearings. The bearings are interchangeable.
 - Remove cylinder half (29) from J-21352-A.

3. The front cylinder half (29) in J-9397 flat side down.
 - The front cylinder half (29) has a long slot extending out from the shaft hole. The "legs" of the front cylinder half (29) will point upward.

4. "Zero" thrust race (27), thrust bearing (28) and "zero" thrust race (27) to the front end of the shaft (38) (figure 28).
 - Lubricate the races (27) and the bearing (28) with petroleum jelly.

5. Threaded end of the shaft (39) through the needle bearing (21) in the front cylinder half (29) and allow the thrust race (27) and bearing (28) to rest on the hub of the cylinder.

6. Insert a thrust race on the rear end of the shaft (38) so that it rests on the hub of the axial plate.
 - Lubricate the races and bearing with petroleum jelly.

7. Place the balls (32) into the sockets of number one piston (figure 29).

8. Place the shoe discs (33) over the ball (32) in the front end of the piston.
 - Lubricate the cavity of the shoe disc with 525 refrigerant oil.
 - The front end of the piston (32) has an identifying notch in the casting web.
G. Piston drive ball and a "zero" shoe disc at the front.

29. Front cylinder half.

Figure 30—Installing the Piston during the Gaging Operation

Important
- Do not install the shoe discs (34) on the rear of the piston (32).

9. Rotate the shaft and axial plate (39) until the high point of the axial plate is over the No. 1 piston cylinder bore.

10. Lift the axial shaft assembly (39) up a little out of front cylinder half (29).
- Hold the front thrust races and bearing ("zero" race, race bearing, "zero" race) against the axial plate hub.

11. Position the No. 1 piston (32) over the No. 1 cylinder bore (notched end of the piston being on the bottom and the piston straddling the axial plate) and lower the shaft to allow No. 1 piston to drop into its bore (figure 30).

12. Repeat step 11 for pistons Nos. 2 and 3.

13. Install the rear cylinder half (42) on the pistons, aligning the cylinder with the discharge cross-over tube hole in the front cylinder.
- Tap the piston into place using a plastic mallet or piece of clean wood and a hammer (figure 31).

14. Position the discharge cross-over tube opening between a pair of compressing fixture bolts to permit access for the feeler gage.

15. Install the top plate to J-9397.

Tighten
- Nuts to 20 N·m (15 ft. lbs.).

Figure 31—Assembling the Cylinder Halves

GAGING PROCEDURE

Tools Required:
- J-8001 Dial Indicator Set
- J-9397 Compressing Fixture
- J-9402 Piston Assembly Tray
- J-9661-01 Feeler Tension Gage Set

Two gaging procedures provide the running tolerances. The first procedure determines the size shoe discs to provide at each piston a 0.041-0.061 mm (0.0016-0.0024-inch) total preload between the seats and the axial plate at the tightest place through the 360 degree rotation of the axial plate. The bronze shoe discs are available in 0.013 mm (0.0005-inch) variations.

The second procedure, performed at the rear shaft thrust bearing and race pack, provides a 0.064-0.077 mm (0.0025-0.0030-inch) preload between the hub surfaces of the axial plate, and the front and rear hubs of the cylinder. Fourteen steel thrust races, including a basic "zero" race, are available in 0.013 mm (0.0005-inch) increments. Use J-9661-01 for gaging the shoe disc size. Use J-8001 to determine the thrust race size.

1. Measure the clearance between the rear ball of the No. 1 piston and axial plate in the following manner:
 a. Select a combination of oiled feeler gage leaves to fit snugly between the ball and axial plate.
 b. Attach J-9661-01 to the feeler gage. A distributor point checking scale may be used.
 c. Pull on the spring scale to slide the feeler gage stock out from between the ball and axial plate. Note the reading on spring scale as the
feeler gage is sliding out (figure 32). The reading should be between 1.1 and 2.2 N (4 and 8 ounces).

d. If the reading in step c above is under 1.1 N (4 ounces) or over 2.2 N (8 ounces), reduce or increase the thickness of the feeler gage leaves and repeat steps a through c to obtain a reading of 1.1 N to 2.2 N (4 to 8 ounces). Record the clearance between the ball and axial plate that results in the 1.1 N to 2.2 N (4 to 8 ounces) pull on the spring scale.

2. Rotate the shaft 120 degrees and repeat for the No. 2 cylinder.
 - If the shaft is hard to rotate, install the shaft nut onto the shaft and turn the shaft with a wrench.

3. Rotate the shaft another 120 degrees and repeat for cylinder No. 3.

4. Select a numbered shoe disc corresponding to the minimum feeler gage reading recorded in the three checks:

<table>
<thead>
<tr>
<th>POSITION</th>
<th>POSITION</th>
<th>SELECT AND USE SHOE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>PISTON NO. 1</td>
<td>.019"</td>
<td>.0195"</td>
</tr>
<tr>
<td>PISTON NO. 2</td>
<td>.020"</td>
<td>.020"</td>
</tr>
<tr>
<td>PISTON NO. 3</td>
<td>.021"</td>
<td>.021"</td>
</tr>
</tbody>
</table>

Figure 32—Gaging the Rear Piston Ball

Figure 33—Service Shoes and Thrust Washers

- Place the shoe discs in J-9402 compartment with the discs corresponding to piston No. 1 and the rear ball pocket position.
- Shoe discs are available in 0.013 mm (0.0005-inch) variations. Eleven sizes are available for field servicing. Shoe discs are marked with the shoe size which corresponds to the last three digits of the part number (figure 33).
- After selecting the shoe size, the matched combination of the shoe disc to the rear ball spherical cavity in the piston must be kept in the proper relationship during disassembly after performing the gaging operation and the final assembly of the internal mechanism.

5. Repeat the gaging procedure for pistons Nos. 2 and 3.

7. Position the dial indicator on the rear of the shaft (39) and adjust to zero (figure 34).
Figure 34—Gaging the Rear Thrust Plate

- From the bottom, apply full hand force at the end of the shaft a few times before reading the clearance. This will squeeze the oil out from between the mating parts. Now push upward and record the measurement. Dial indicator increments are 0.03 mm (0.001-inch); estimate the reading to the nearest 0.013 (0.0005-inch).
- An alternate method is to use J-9661-01 in selecting a suitable feeler gage leaf until the result is a 1.1 N to 2.2 N (4 to 8 ounces) pull on the scale between the rear thrust bearing and upper (or outer rear) thrust race (figure 35).
 - If the pull is just less than 1.1 N (4 ounces), add 0.013 mm (0.0005-inch) to the thickness of the feeler stock used to measure the clearance. If the pull on the scale reads just over 2.2 N (8 ounces), then subtract 0.013 mm (0.0005-inch) from the thickness of the feeler stock.

7. For either method used, select a thrust race with a “number” corresponding to TWO (2) FULL SIZES LARGER than the dial indicator or feeler gage measurement of the amount of end play shown. (If measurement is 0.18 mm (0.007-inch), select a No. 9 or 090 race).
 - Fifteen thrust races are provided in increments of 0.013 mm (0.0005-inch) thickness and one ZERO gage thickness providing a total of 16 sizes. The thrust race “number” corresponds to the last three digits of the part number. Refer to figure 33.

8. Remove the nuts from the top plate of the J-9397.
9. Remove the top plate.

Figure 35—Checking the Piston and Shaft End Play

10. Separate the cylinder halves while the unit is in the fixture.
 - If necessary, use a wood block and a mallet.
11. Remove the rear cylinder half; remove one piston at a time from the axial plate and front cylinder half.
 - Do not lose the relationship of the front ball and shoe disc and rear ball.
 - Transfer each of the piston, ball and shoe disc sets to J-9402.
12. Remove the rear outer “zero” thrust race (it will be on top) from the shaft and install the thrust race just selected in Steps 6 and 7 that is in J-9402.
 - The “zero” thrust race may be put aside for reuse in additional gaging or rebuilding operations.

PISTON RING REPLACEMENT

Remove or Disconnect (Figures 1, 36 through 39)

Tool Required:
J-24608 Teflon Piston Ring Installer
- Piston rings (31).
 - Slice through the ring with a knife while holding the blade flat with the piston surface.
 - Do not damage the aluminum piston (32) or piston groove.

Clean

Clean the piston and piston ring grooves with a recommended cleaning solvent (trichloroethane, naphtha, Stoddard solvent, kerosene, or equivalent) and blow the piston dry with dry air.

Install or Connect (Figures 1, 36 through 39)

1. Piston (32) to J-24608-2 (figure 36).
 - Set the piston on a clean, flat surface.
2. Piston ring (33) to J-24608-2.
 - Place the dished or dull side down and the glossy side up.
3. Piston ring (33) to piston (32) (figure 37).
Figure 36—Piston Ring Position and installer Guide

- If the piston ring is off-positive in the groove, reposition by moving with a fingernail or a blunt-edge tool.
- J-24608-5 (installer) will keep the J-24608-2 (guide) inside when the piston ring is installed on the piston (32).
- Remove the guide from the installer and do not store the guide in the installer because the seal will be stretched and weakened during storage. This can cause the seal not to hold the ring installer segments tight enough to the J-24608-2 (guide) when installing the piston ring (33) to the piston (32).

4. Piston (32) to J-24608-6 (figure 38).
- Lubricate the piston ring (33) area with 525 viscosity refrigerant oil.
- Rotate the piston (32) and ring (33) into J-24608-6 at a slight angle until the piston is inserted against the center stop of J-23608-6.

Figure 37—Installing the Piston Ring

Figure 38—Sizing the Piston Ring

- If the piston ring is off-positive in the groove, reposition by moving with a fingernail or a blunt-edge tool.
- J-24608-5 (installer) will keep the J-24608-2 (guide) inside when the piston ring is installed on the piston (32).
- Remove the guide from the installer and do not store the guide in the installer because the seal will be stretched and weakened during storage. This can cause the seal not to hold the ring installer segments tight enough to the J-24608-2 (guide) when installing the piston ring (33) to the piston (32).

4. Piston (32) to J-24608-6 (figure 38).
- Lubricate the piston ring (33) area with 525 viscosity refrigerant oil.
- Rotate the piston (32) and ring (33) into J-24608-6 at a slight angle until the piston is inserted against the center stop of J-23608-6.

Figure 39—Gaging the Piston Ring Size
NOTICE: Do not push the piston and ring assembly into J-24608-6 without positioning and rotating because the needle bearings of the ring sizer may damage the end of the piston.

- Rotate the piston and ring assembly in J-24608-6 several turns until the assembly rotates relatively free in the ring sizer.

5. Piston (32) to J-24608-1 (figure 39).
 - The piston (32) should pass through the ring gage with a two to eight pound force.
6. Repeat for the opposite end of the piston (32).
7. Lubricate both ends of the piston (32) with 525 viscosity refrigerant oil before installing the piston into the cylinder bore.

COMPRRESSOR ASSEMBLY

Figure 40—installing No. 1 Piston

Assemble the cylinder assembly after performing the “Gaging Procedure,” choosing the correct shoe discs and thrust races and installing any piston rings. Install new seals supplied in the service kit.

1. Shaft and axial plate (38).
 - Place the shaft, threaded-end down, with the front bearing race pack (race and bearing) into the cylinder if this was not done at the end of the “Gaging Procedure.”
2. Balls (32) and shoe discs (33) to the pistons (30).
 - Apply a coat of petroleum jelly to the “numbered” shoe discs.
3. Piston assembly (30) into the front cylinder half (29) (figure 40).
 - Rotate the axial plate (39) to place the high point above cylinder bore No. 1.
4. Discharge the cross-over tube (26) (figure 41).
 - Face the flattened portion of the tube to the inside of the compressor to allow for axial plate clearance.
5. Rear cylinder half (42) over the shaft (39).
 - Rotate the shaft (39) to position the pistons in a stair-step arrangement.
 - Start the pistons into the cylinder bores.
6. Discharge cross-over tubes (26) into the rear half of the cylinder (29).
7. Rear cylinder half (42) over the locating dowel pins (45).
 - After aligning, tap the rear half of the cylinder with a mallet and wood block.
 - If necessary, clamp the cylinder in J-9397 to draw the halves together.
Lubricate all the moving parts with clean 525 viscosity refrigerant oil.
Check for free rotation.

8. Suction cross-over cover (46) (figure 42).
 - Remove J-9397.
 - Compress the cover (46) to start it into the slot.
 - Press or top the cover (46) until the ends are flush.

9. Seal 925) and bushing (24) to the front end of the discharge cross-over tube (26) (figure 43).
 - Place the internal assembly on J-21352.

10. Dowel pins (20) to the front head (figure 44).
11. Front suction reed plate (19) to the front cylinder half (29) (figure 44).
 - Align the dowel pins (20), suction ports, oil return slot and discharge cross-over tube (26).

12. Front discharge valve plate (18) (figure 45).
 - Align the holes with the dowel pins (20) and the openings in the front suction reed plate (18). The front discharge plate (18) has a large hole in the center.

13. Front head (16) (figure 46).
 - Coat the sealing surfaces on the webs of the compressor front head casting with clean 525 viscosity refrigerant oil.
 - Determine the position of the front head (16) in relation to the dowel pins (20).
 - Mark the position of the dowel pins (20) on the sides of the front head (16) and on the sides of the internal assembly with a grease pencil.
 - Lower the front head (16).
14. Seal (17) to the front head (16) (figure 47).
 - Lubricate the seal (17) and groove with clean 525 viscosity refrigerant oil.

15. Shell (9) to the internal assembly (figure 48).
 - Coat the inside of the shell (9) with clean 525 viscosity refrigerant oil.
 - Position the shell (9) on the internal assembly. Rest the shell (9) on the seal.
 - With the flat side of a small screwdriver, position the seal (17) in a round, circle shape to the inside of the shell (9).
 - Slide the shell (9) down. Line up the oil sump with the oil intake tube hole.

16. New dowel pins (20) to the rear cylinder half.
 - Remove J-21352.
 - Install the compressor into J-9396.

17. Seal (43) to oil pick-up tube (44).

18. Oil pick-up tube (44) to the compressor (figure 49).
 - Lubricate the oil pick-up tube (44) with clean 525 viscosity refrigerant oil.
 - Place the oil pick-up tube (44) in the cavity.
 - Rotate the compressor assembly to align the tube (44) with the hole in the shell baffle.
Figure 48—Installing the Compressor Shell

19. Seal (31) and bushing (30) to the rear of the discharge cross-over tube (26).
20. Rear suction reed (48) over the dowel pins (45).
 • Place the slot toward the sump.
21. Rear discharge valve plate (49) over the dowel pins (45).
 • Place the reed retainer up.
22. Inner oil pump gear (50) over the shaft (39).
 • Line up the identification marks.
23. Outer oil pump gear (51) over the inner gear (figure 50).
 • Line up the identification marks.
 • Face the compressor oil sump and position the outer gear (51) so that it meshes with the inner gear (50) at the 9 o'clock position. The cavity between the gear teeth will be at the 3 o'clock position.
24. Seal (52) to the discharge valve plate (49).
 • Lubricate the seal (52), shell (9), discharge plate (49) and gears (50 and 51) with 525 viscosity refrigerant oil.
25. Suction screen (58) to the rear head (54).
• Lubricate the surface of the rear head (54) with 525 viscosity refrigerant oil.

26. Rear head (54) to the shell (9) (figure 51).
• Align the two lower threaded compressor mounting holes with the compressor sump.
• Do not let the suction screen (58) fall out of the rear head (54).
• If the rear head (54) will not slide down over the dowel pins (45), twist the front head (16) back and front by hand until the rear head (54) drops over the dowel pins (45).

\[\text{Tighten}\]
• Nuts (53) to 35 N·m (25 ft. lbs.).

27. Shaft seal (14).
• Invert the compressor in J-9396.

28. Clutch coil (8).
29. Pulley (6).
30. Clutch (2).
31. Add the required amount of 525 viscosity refrigerant oil to the compressor.
32. Leak Test.
 Refer to “Leak Testing.”

\section*{LEAK TESTING}

Tools Required:
- J-5420 Straight Adapter
- J-9396 Compressor Holding Fixture
- J-9459 90 Degree Adapter
- J-9625-A Pressure Test Set with Schrader Valves

1. Install J-9625 on the rear head of the compressor.
2. Attach a center hose of manifold gage set on to a charging station with a refrigerant drum standing in an upright position and open the valve on the drum.
3. Connect the charging station “high” and “low” pressure lines to the correct fittings on J-9625-A, using J-5420 (7/8-inch) gage adapters. Adapters are not necessary if the hoses are equipped with Schrader core depressors.
• Suction port of the compressor has a large internal opening. The discharge port has a small internal opening into the compressor.
4. Open the “low” pressure control, “high” pressure control and refrigerant control on charging station to allow refrigerant vapor to flow into the compressor.
5. With J-29547, check for leaks at the pressure relief valve, compressor shell to cylinder, compressor front head seal, rear head seal, oil charge port, and the compressor shaft seal. After checking, shut off the “low” pressure control and the “high” pressure control on the charging station.
6. If an external leak is present, repair and recheck.
7. Loosen the manifold gage hose connections to the gage adapters connected to the “low” and “high” sides and allow the vapor pressure to release slowly from the compressor.
8. Disconnect both of the gage adapters or hoses from J-9625-A.
9. Rotate the complete compressor assembly (not the crankshaft or drive plate hub) end to end several turns to distribute the oil to the cylinder and piston areas.
10. Install the shaft nut on the compressor crankshaft if the drive plate and clutch assembly are not installed.
11. Using a box-end wrench or socket and handle, rotate the compressor crankshaft several turns to ensure the piston assembly lubrication.
12. Connect the charging station “high” pressure line or a “high” pressure gage and J-5420 or J-9459 to the J-9625 high side connector.
13. Attach J-5420 or J-9459 to the suction or “low” pressure port on J-9625-A to open the Schrader-type valve to atmosphere.
• Gage adapters are not required to connect to the test plate if the hoses have built-in Schrader depressors.
• Oil will drain out of the compressor suction port adapter if the compressor is positioned with the suction port down.
14. Attach the compressor to J-9396 and clamp the fixture in a vise so that the compressor can be manually turned with a wrench.

15. Using a wrench, rotate the compressor crankshaft about 10 complete revolutions at a speed of about one revolution per second.

NOTICE: Turning the compressor at less than one revolution per second can result in a lower pump up pressure and disqualify a good pumping compressor.

16. Observe the reading on the "high" pressure gage at the completion of the tenth revolution of the compressor.
 - The pressure reading for a good pumping compressor should be 430 kPa (60 psi) or above.
 - A pressure reading of less than 342 kPa (50 psi) would indicate one or more suction and/or discharge valves are leaking, an internal leak, or an inoperative valve.
 - Disassemble the compressor and repair the leak. Assemble and repeat the test. Externally leak test.

17. After testing, release the air pressure from the "high" side and remove J-5420 or J-9459 and J-9625-A.

18. Remove the oil charge screw and drain the oil sump.

19. Allow the compressor to drain for 10 minutes, then charge with the proper amount of oil. The new oil may be poured into the suction port. Torque the charge screw to 20 N·m (15 ft. lbs.).

20. If more processing is required, install the shipping plate or J-9625 to keep air, dirt and moisture out of the compressor until installed.

SPECIFICATIONS

COMPRESSOR
- Type — AC-Delco A-6
- Displacement — 12.6 Cu. In.
- Rotation — Clockwise
- Belt Tension — (Refer to applicable service manual)
- Oil Capacity — 0.284 Kg (10 oz.)

COMPRESSOR CLUTCH COIL
- Ohms (at 26°C [80°F]) — 3.85
- Amps (at 26°C [80°F]) — 3.2 (max.) @ 12 volts
- Clutch — 0.022" to 0.057"

TORQUE SPECIFICATIONS
- Rear Head to Shell Stud Nuts — 0.34 N·m (25 ft. lbs.)
- Shaft Mounting Nut — 0.27 N·m (20 ft. lbs.)
- Pressure Relief Valve — 0.19 N·m (14 ft. lbs.)
- Oil Drain Screw — 0.20 N·m (15 ft. lbs.)
SPECIAL TOOLS

<table>
<thead>
<tr>
<th>No.</th>
<th>Tool</th>
<th>No.</th>
<th>Tool</th>
</tr>
</thead>
</table>
1. Oil Pickup Tube Remover
2. Snap Ring Pliers
3. Goggles
4. Snap Ring Pliers
5. R-12 Dispensing Valve
6. Shaft Seal Remover & Installer
7. Seal Seat Remover and Installer
8. Compressor Holding Fixture
9. Compressing Fixture
10. Pulley Bearing Remover
11. 9/16-Inch Nut Socket (Thin Walled)
12. Hub and Clutch Drive Plate Assembly Remover
13. Piston Tray
14. Needle Bearing Installer
15. 90° Elbow Adapter
16. Hub and Drive Plate Installer
17. O-ring Remover
18. Feeler Gage Set
19. Compressor Test Set
20. Compressor Support Block
21. Oil Seal Protector
22. Compressor Shaft Seal Installer and Remover
23. Portable Charging Station
24. Belt Tension Gage
25. Pocket Thermometer
26. Pulley Hub Puller Set
27. Oil Injector Line
28. Clutch Hub Holding Tool
29. Straight Adapter
30. Orifice Tube Extractor
31. A/C Powered Leak Detector
32. Battery Powered Leak Detector
33. Compressor Pulley Puller Kit
34. Driver Handle
35. O-ring Installer
1B1-26 A-6 AIR CONDITIONING COMPRESSOR
Description

The AC-Delco DA-6 compressor is a fixed displacement axial piston pump, with three double-ended pistons actuated by an axial (swash) plate shaft assembly (figure 1). The main parts are the front and rear cylinder, the shaft and axial swash plate, piston group, and valve mechanisms. The cylinders and heads provide an integral external shell.

The piston group of the compressor will not be serviced. If piston, bearing, ball shoe, shaft and axial plate, or cylinder repair is needed, replace the internal cylinder assembly. All clutch parts, valve mechanisms, and head assemblies are serviced, plus seals and gaskets.

Refrigerant oil, dispersed in the refrigerant vapor, lubricates the system.

The front head is shown with three integral mounting flange ears (figure 2). These ears have 19 mm flats cast to provide for a wrench to be used as a prying means when tensioning the compressor drive belt.
MINOR REPAIR TO THE COMPRESSOR

Illustrations show the compressor removed from the vehicle for easier viewing.
Remove only the parts that need servicing. Refer to figure 3 for part names and location.

CLUTCH PLATE AND HUB ASSEMBLY REPLACEMENT

Clean
- The compressor assembly with solvent and blow dry with dry air.

Remove or Disconnect (Figures 3, 4 and 5)
Tools Required:
- J-33026 Compressor Holding Fixture
- J-33027 Clutch Hub Holding Tool
- J-33022 6-Point 13 mm Socket
- J-33013 Hub and Drive Plate Remover and Installer.

1. Clamp J-33026 in a vise and attach the compressor to the holding fixture with thumb screws (figure 4).
2. Thread J-33013-A into the clutch plate and hub assembly (2) steady using J-33027.

Inspect
- All parts and replace as necessary.

Install or Connect (Figures 3, 6 and 7)
Tools Required:
- J-33026 Compressor Holding Fixture
- J-33027 Clutch Hub Holding Tool
- J-33022 6-Point 13 mm Socket
- J-33013-B Hub and Drive Plate Remover and Installer

1. Shaft nut (1) using J-33022 (figure 4).
- Hold the clutch plate and hub assembly (2) steady using J-33027.
2. Clutch plate and hub assembly (2).
- Hold the body of J-33013-A with a wrench and tighten the center screw into the remover body (figure 5).

Important
- Do not drive or pound on the clutch hub or the shaft (20). Internal damage to the compressor may result.

PULLEY AND BEARING ASSEMBLY REPLACEMENT

Remove or Disconnect (Figures 3, 8, 9, 10 and 11)
Tools Required:
- J-6983 Snap Ring Pliers
- J-8092 Driver Handle
- J-9398-A Pulley Bearing Remover
- J-33020 Pulley Puller
- J-33023-A Puller Pilot

1. Clutch plate and hub assembly (2).
2. Pulley bearing retainer (3) using J-6083 (figure 8).
3. Pulley (5).
- Install J-33023-A to the front head (figure 9).
- Install J-33020 tangs into the inner circle of slots in the pulley (5) contact surface. Rotate J-33020 clockwise so the tangs will lock into the segments between the slots (figure 10).
- Hold J-33020 in place and tighten the pulley screw against J-33023-A puller pilot to remove the pulley (5) (figures 10 and 11).

4. Pulley bearing (4) from the pulley (5) using J-9398-A and J-8092 (figure 11).
1. Shaft Nut
2. Clutch Plate and Hub Assembly
3. Pulley Bearing Retainer
4. Pulley Bearing
5. Pulley
6. Clutch Coil Assembly
7. Through Bolts (6)
8. Shaft Seal Parts
9. Front Head
10. Head Gasket
11. Valve Plate (Discharge)
12. Suction Reed Plate
13. Cylinder Seal
14. Front Cylinder
15. Discharge Crossover Seal
16. Shaft Bearing (2)
17. Thrust Bearing and Races (2)
18. Axial Plate Shaft Assembly
19. Shaft Key
20. Cylinder Seal
21. Rear Cylinder
22. Cylinder Seal
23. Suction Reed Plate
24. Valve Plate (Discharge)
25. Head Gasket
26. Rear Head
27. Switch Seal
28. System Control Switch
29. Retainer Ring-Switch
30. High Pressure Relief Valve
31. Seal (O-ring)
32. A. Important: Shaded parts are not serviceable and must be replaced as a kit.
1B2-4 DA-6 AIR CONDITIONING COMPRESSOR

2. Clutch Plate and Hub Assembly
5. Pulley (Rotor)
21. Key
35. Keyway (Shaft)

Figure 6—Positioning the Shaft Key, Clutch Plate, and Hub Assembly

- Remove the forcing screw from J-33020 and with the puller tangs still in place in the pulley slots, turn the assembly upside down onto a flat surface (figure 11).
- When removing the old pulley bearing (5) allow the staking to remain, then file away the old staked metal for proper fit when installing a new bearing (5) in the pulley bore.

Install or Connect (Figures 3, 12, 13, 14 and 15)

Tools Required:
- J-21352-A Compressor Support Block
- J-9481-A Pulley Bearing Installer
- J-33019 Bearing Staking Tool (with staking pin and retaining band)
- J-33017 Pulley and Bearing Assembly Installer
- J-33023-A Puller Pilot
- J-8433-1 Puller Bar
- J-33026 Compressor Holding Fixture
- J-6083 Snap Ring Pliers

1. Pulley (5) on J-21352-A.

NOTICE: Do not support the rotor by resting the pulley rim on a flat surface during bearing installation or the rotor face will be bent.

2. Pulley bearing (4) into the hub using J-8092, J-9481-A and J-21352-A (figure 12).
- J-33019 in the pulley bore (figure 13).
2. Clutch Plate and Hub Assembly

A. Air Gap 0.38-0.64 mm (.015-.025 inch)

Figure 7—Installing the Clutch Plate and Hub Assembly

Figure 8—Removing the Pulley Rotor and Bearing Retaining Ring

- Seat the pulley and bearing assembly on J-21352-A to support to the hub under the staking pin location.
- Strike the staking pin with a hammer until a metal stake, similar to the original, is formed down to, but not touching the bearing.
 - Position the stake pin after striking.

Figure 9—Installing the Puller Pilot and Pulley Rotor Slot Location

- The staked metal should not contact the outer race of the bearing to prevent the possibility of bending the outer race.
- Stake 3 places 120 degrees apart (figure 14).

3. Pulley (5) on the front head.

- Position J-33017 and J-33023-A over the inner race of the bearing (figure 15).
- Position J-8433-1 on J-33023-A and assemble the through bolts and washers through the puller bar slots and thread them into J-33026 (figure 15).
 - The thread of the through bolts should engage the full thickness of J-33026.
- Tighten the center screw in J-8433-1 to force the pulley and bearing assembly onto the compressor front head (11) (figure 15).
 - Should J-33017 become misaligned with the inner race of the bearing, back off J-8433-1 and relocate center, then continue installation.

Figure 10—Installing J-33020 in the Pulley Rotor Slots
1B2-6 DA-6 AIR CONDITIONING COMPRESSOR

Figure 11—Removing the Pulley Bearing

5. Pulley Rotor "Face Down"

Figure 12—Installing the Pulley Rotor Bearing

5. Pulley (Rotor)

B-06541

B-06543

Figure 13—Staking the Pulley Bearing in the Rotor Bore

4. Pulley bearing retainer (3) using J-6083 (figure 8).
5. Clutch plate and hub assembly (2).

Figure 14—Staking Locations

A. Staking Pin
B. Rubber Band

CLUTCH COIL AND HOUSING ASSEMBLY REPLACEMENT

++ Remove or Disconnect (Figures 3 and 16)

Tools Required:
- J-8433-1 Puller Bar
- J-08433-3 Puller Screw
- J-33023-A Puller Pilot
- J-33025 Clutch Coil Puller Legs

1. Clutch plate and hub assembly (2).
2. Pulley (5).
 - Mark or scribe the location of the clutch coil (6) to terminal on the compressor front head (11).
3. Clutch coil assembly (6).
 - Install J-33023-A on the head (11) of the compressor.
 - Install J-8433-1 with J-33025 (figure 16).
Inspect

- Clutch coil assembly (6). Replace as necessary.

Install or Connect (Figures 3, 17, 18 and 19)

Tools Required:
- J-8433-1 Puller Bar
- J-33024 Clutch Coil Installer Adapter.

Tighten J-8433-1 forcing screw against J-33025-A.

6. Clutch Coil Assembly
A. Mark

Figure 16—Removing the Clutch Coil Assembly

Figure 17—Installing the Clutch Coil Assembly

Figure 18—Staking the Clutch Coil Assembly to the Coil Head
J-33026 Compressor Holding Fixture

1. Compressor assembly on J-33026.
2. Clutch coil assembly (6) onto the front head (11) with the terminals positioned at the “marked” location.
 - J-33024 over the internal opening of the clutch coil assembly (6).
 - J-8433-1 with through bolts, washers and forcing screw over J-33024.
 - Thread through bolts into J-33026 to full fixture thickness (figure 17).
 - Be sure J-8433-1 and the clutch coil assembly (6) stay “in line” during installation.
 - When the clutch coil assembly (6) is seated on the front head (11), use a 3 mm (1/8-inch) diameter drift punch to stake the head (11) at 3 places, 120 degrees apart to assure the clutch coil assembly (6) remains in position (figure 18).
 - Stake size should be one half the area of the punch tip and 0.28-0.35 mm (0.010-0.015-inch) deep (figure 19).
3. Pulley (5).
4. Clutch plate and hub assembly (2).

MAJOR REPAIR TO THE COMPRESSOR

A. Steel Shell
B. Lip Seal

Figure 20—Compressor Shaft Seal

Replacement of the shaft seal assembly or the pressure relief valve will require the discharge of the vehicle’s refrigerating system (figure 20). Other than clutch repair procedures, the same holds true for any disassembly of the compressor. To discharge the refrigerant, refer to the vehicle service manual.

After servicing or repairing the compressor, always add the proper amount of new 525 viscosity refrigerant oil. Refer to “Specifications.”

Keep the workbench and work area clean when servicing the compressor, and use proper, clean service tools.

NOTICE: Any attempt to use makeshift or inadequate service tools or equipment may result in damage and/or improper compressor operation.

All parts used for servicing the compressor internally are protected by a preservative and packaged in a manner which does not require cleaning, washing or flushing. The parts can be used in the internal assembly just as they are removed from the service package.

SHAFT SEAL REPLACEMENT

Remove or Disconnect (Figures 3, 21, 22 and 23)

Tools Required:
- J-5403 Snap Ring Pliers
- J-34614 Shaft Seal Protector
- J-23128-A Seal Remover and Installer
- J-9553-01 O-Ring Seal Remover.

1. Clutch plate and hub assembly (2).
 - Install J-34614 over the threaded end of the shaft (20).
2. Shaft seal retainer ring using J-5403 (figure 21).
 - Clean the compressor neck area around the shaft (20), the exposed part of the shaft seal (8) and the O-ring seal groove.
 - Insert J-23128-A into the shaft lip seal, tighten and remove lip seal.

Inspect
- Make sure the compressor neck area is clean.
- All parts. Replace as necessary.

Install or Connect (Figures 3 and 24)

Tools Required:
- J-33011 O-Ring Seal Installer
- J-23128-A Seal Seat Remover and Installer.
- J-34614 Shaft Seal Protector
 • Insert J-33011 into the compressor neck until the installer "bottoms."
 • Lower the movable slide of J-33011, releasing the O-ring seal into the lower groove.

2. Shaft lip seal using J-23128-A (figure 22).
 • Dip the shaft lip seal in clean 525 viscosity refrigerant oil and install shaft lip seal on J-23128-A.
 • Bottom the shaft lip seal into the compressor neck area using J-23128-A.
 • Release and remove J-23128-A.

3. Shaft seal retainer ring using J-5403 (figure 21).
 • Install flat side of shaft seal retainer ring against the lip seal.
 • Remove J-34614.

 ! Important
 • Leak test the compressor.
 • Refer to "Leak Testing."

 ! Clean
 • Shaft (20) and inside the compressor neck area.

4. Clutch plate and hub assembly (2).
PRESSURE RELIEF VALVE REPLACEMENT

Remove or Disconnect (Figures 3 and 25)
- Be sure the compressor has no charge.
 1. Pressure relief valve (32) (figure 25).
 2. O-ring seal (33).

Install or Connect (Figures 3 and 25)
- Lubricate the threads of the pressure relief valve (32) and new seal with 525 viscosity refrigerant oil.
 1. Pressure relief valve (32) with new seal.

Tighten
- Pressure relief valve (32) to 9 N·m (84 in. lbs.).

Important
- Leak test the compressor.
- Refer to "Leak Testing."

COMPRESSOR DISASSEMBLY —INTERNAL CYLINDER AND SHAFT

Remove or Disconnect (Figures 3, 26, 27, 28 and 29)
- Mark the front head (11) alignment with cylinders (16) (23) and rear head (28) alignment.
 1. Clutch plate and hub assembly (2).
 2. Pulley (5).
 3. Clutch coil assembly (6).
 4. Shaft seal parts (8).
 - Note the compressor alignment marks and use them as a reference for compressor assembly (figure 26).
 5. Through bolts (7) and gaskets (figure 27).
 - Using a wood block, tap around the edge of the rear head (28) to ease removal.
 - Hand-support the compressor from below.
 - Remove compressor assembly from J-33026.
 6. Rear head (28) (figure 28).
Figure 29—Installing the O-Ring Seals on the Cylinder Seal Races

7. Head gasket (27).
8. Valve plate (26).
11. Cylinder (23).

Important
- Shaded parts shown in figure 3 are not serviceable. A replacement kit (gut pack) is available.
- Cylinders (23) (16), cylinder seal (22), discharge crossover seal (17), piston group, axial plate shaft assembly (20) and bearings replace as a kit.

15. Suction reed plate (14).
16. Valve plate (13).
17. Head gasket (12).
18. Front head (11).

Clean
- All parts.

Inspect
- All parts and replace as necessary.

COMPRESSOR ASSEMBLY—INTERNAL CYLINDER AND SHAFT

Install or Connect (Figures 3, 30 through 38)

Tools Required:
- J-21352-A Support Block
- J-33016 Cylinder Alignment Rods
- J-33026 Compressor Holding Fixture
- Use new seals and gaskets.

Figure 30—Positioning the J-33016 Guide Pins

- Place J-21352-A on the workbench or suitable flat work surface.
- 1. Rear head (28) onto J-21352-A.
 - Install J-33016 guide pins small diameter ends into the through bolt holes (figure 30).
- 2. Head gasket (27).
 - Over guide pins into head (28) (figure 31).

Important
- Locate the head gasket (27) to prevent the discharge valve reed retainer on the rear valve plate (26) from hitting the internal segment of the head gasket (27) (figure 31).

3. Valve plate (26).
 - Over the guide pins into position (figure 32).
4. Suction reed plate (25).
 - Over the guide pins into proper position (figure 33).
 - Be sure all three suction reed tips cover the suction ports in the rear valve plate (26).
5. Cylinder seal (24).
 - Lubricate a new cylinder seal (24) with clean 525 viscosity refrigerant oil and position the seal on the rear cylinder (23) (figure 29). Roll the cylinder seal into the groove. Cylinder (23) surface must be clean at the rear.
 - Apply refrigerant oil to the seal surface of the rear head to easy assembly.
6. Cylinder and shaft assembly (gut pack).
 - Shaded parts shown in figure 3 are not serviceable. A replacement kit (gut pack) is available for replacement.
Figure 31—Installing the Rear Head Gasket

- Assemble cylinder and shaft assembly over the guide pins onto the rear head (28) (figure 34).
- Using both hands, press the cylinder and shaft assembly down into the rear head (28).

¡Important
- Center cylinder seal (22) is not serviceable.

7. Cylinder seal (15).

Figure 32—Installing the Rear Valve Plate

A. Suction Crossover Openings
B. Through Bolt Hole (6)
C. Suction Port (3) in Valve Plate
D. Discharge Crossover Port
E. Discharge Ports (In Valve Plate)

Figure 33—Installing the Reed Plate

- A. 12 o'clock Reference Position
- B. Suction Reed Tips (3) Must Cover Valve Plate Ports (3)

Figure 34—Installing the Front Head

- A. 12 o'clock Reference Position
- B. Discharge Crossover Cavity (Front)
- 15. Cylinder to Head Seal Installed
- 28. Rear Head
A. 12 o’clock Reference Position
B. Tips of Suction Reeds Must Locate Above Recess in Cylinder at Top
C. Discharge Crossover Opening

15. Cylinder Seal (Front)

A. 12 o’clock Reference Position
B. Suction Crossover Openings
C. Through Bolt Hole (6)
D. Discharge Crossover Opening
E. Discharge Valve Reed Retainers
F. Suction Intake Openings

Figure 35—installing the Front Suction Reed Plate

• Lubricate a new cylinder to front head seal with clean 525 viscosity refrigerant oil and install in the front seal groove (figure 34).

8. Suction reed plate (14).
 • Over J-33016 guide pins (figure 35).
 • Check the alignment.

9. Valve plate (13).
 • Over J-33016 guide pins (figure 36).

10. Head gasket (12).
 • Over J-33016 guide pins (figure 37).

11. Front head (11).
 • Line up mark on front head (11) with the alignment marks on the compressor cylinders and assemble head over J-33016 guide pins (figure 26).

⚠️ Important

• Front head (11) is now assembled in the “standard” position and may differ 120 degrees either direction. Assemble front head (11) according to location marked before removal.
• Using both hands, press down on front head (11) for installation over the seal (15) at the front of the cylinder (16).

12. Through bolts (7) with new gaskets.
 • Thread four of the through bolts (7) into the rear head (28) before removing J-33016 guide pins. Install two remaining through bolts (7) finger tight.
 • Mount the compressor on J-33026 (figure 38).

Figure 36—Installing the Front Valve Plate

A. 12 o’clock Reference Position
B. Head Gasket

Figure 37—Installing the Seal to the Front Head

A. 12 o’clock Reference Position
B. Head Gasket
Tighten

- Six through bolts (7) alternately to 9 N·m (84 in. lbs).

13. Shaft seal parts (8).

Important

- Add new 525 viscosity refrigerant oil.
- Refer to vehicle service manual for fill quantity.
- Place shaft nut (1) on the shaft (20) and rotate the compressor shaft (20) several times and remove nut (1).
- Leak test the compressor.
- Refer to "Leak Testing."

15. Pulley (5).
16. Clutch plate and hub assembly (2).

LEAK TESTING

Tools Required:
- J-9625-A Pressure Test Plate
- J-23500-01 Portable Charging Station
- J-33026 Compressor Holding Fixture

- Be sure the compressor has no oil internally.

1. Install J-9625-A on the rear head of compressor (figure 3).
2. Install the center hose of the manifold gage set on J-23500-01 to a refrigerant drum standing in an upright position and open the valve on the drum.
3. Install the charging station high and low pressure lines to corresponding fittings on J-9625-A using gage adapters or hoses equipped with valve depressors. Suction port (low side) of the compressor has large internal opening. Discharge port (high side) has a smaller internal opening into the compressor.
- Open the low pressure control, high pressure control and the refrigerant control on the charging station to allow refrigerant vapor to flow into the compressor.

Important

- Check for leaks at pressure relief valve (32), compressor front and rear head seals (15) (24), center cylinder seal (22), through bolt head gaskets and compressor shaft seal.

- After leak check, shut off the low pressure control and the high pressure control on charging station.
- If an external leak is present, perform the necessary correction and recheck to assure the correction.
- If an external leak is present, perform the necessary correction and recheck to assure the correction.
- Loosen the manifold gage hose connections to the gage adapters connected to the low and high sides and allow the vapor pressure to release from the compressor. If valve depressor type hoses are used, loosen the hose connections at gage manifold to release the vapor pressure from the compressor.
- Disconnect both gage adapters or hoses from J-9625-A.
- Add 0.085 kg (3 oz.) new 525 viscosity refrigerant oil to the compressor assembly. Rotate the complete compressor assembly (not the shaft or drive plate hub) slowly several turns to distribute oil to all cylinder and piston areas.
- Install the shaft nut (1) on the compressor shaft (20) if the pulley assembly and clutch plate and hub assembly are not installed.
- Using a box-end wrench, or a socket and handle, rotate the compressor shaft (20) or clutch plate on the shaft (20) several turns to lubricate the pistons and cylinder walls.
- Connect the charging station high-pressure line, or a high-pressure gage and gage adapter to J-9625-A high-side connector.
- Attach an adapter or depressor-type hose to the suction or low-pressure port of J-9625-A to open the Schrader-type valve. Oil will drain out of the compressor suction port adapter if the compressor is positioned with the suction port downward.
- Attach the compressor to J-33026 fixture and mount the compressor in a vise so that the compressor will be in a horizontal position and the shaft (20) can be turned with a wrench.
- Rotate the compressor shaft (20) or drive plate hub six to eight complete revolutions at a speed of approximately one revolution per second. A slower rotation can result in a lower pump-up pressure and disqualify a good pumping compressor.
- Observe the reading on the high-pressure gage at the completion of the tenth revolution of the compressor shaft (20). The pressure reading for a good pumping compressor should be 690 kPa (100 psi) or above. A pressure reading of less than 620 kPa (90 psi) would indicate one or more suction and/or discharge valves leaking, an internal leak, or an inoperative valve. Disassemble the compressor and repair as necessary. Reassemble and repeat the pump-up test.
- Following the pressure pump-up test, release the air pressure from the high side and remove the gage adapters and J-9625-A test plate.
- Tilt the compressor to place the suction and discharge ports downward to allow the oil to drain from the compressor.
- Allow a 10-minute drain period and then charge the compressor with the proper amount of oil. Pour the new 525 viscosity refrigerant oil into the suction port.
- If further assembly or processing is required, install a shipping plate or test plate J-9625-A to protect the compressor from contamination.

SPECIFICATIONS

DA-6 COMPRESSOR

<table>
<thead>
<tr>
<th>Type — AC-Delco DA-6</th>
<th>.6 Cylinder Axial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement</td>
<td>.10.0 Cu. In.</td>
</tr>
<tr>
<td>Rotation</td>
<td>.Clockwise</td>
</tr>
<tr>
<td>Clutch Plate Air Gap</td>
<td>.0.38-0.64 mm (0.015-0.025 inch)</td>
</tr>
<tr>
<td>Oil Capacity</td>
<td>.0.227 Kg. (8 oz.)</td>
</tr>
</tbody>
</table>

CLUTCH COIL

<table>
<thead>
<tr>
<th>Ohms (at 27°C-80°F)</th>
<th>.3.56-3.89</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amps (at 27°C-80°F)</td>
<td>.3.2 @ 12 Volts</td>
</tr>
</tbody>
</table>

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Compressor Suction and Discharge Connector Bolt</th>
<th>.24 N·m (18 Ft. Lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Through Bolts</td>
<td>.9 N·m (84 In. Lbs.)</td>
</tr>
<tr>
<td>Shaft Nut</td>
<td>.16 N·m (12 Ft. Lbs.)</td>
</tr>
<tr>
<td>Pressure Relief Valve</td>
<td>.9 N·m (84 In. Lbs.)</td>
</tr>
</tbody>
</table>
Special Tools

<table>
<thead>
<tr>
<th>No.</th>
<th>Tool Name</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Snap Ring Pliers</td>
<td>J-5403</td>
</tr>
<tr>
<td>2</td>
<td>Snap Ring Pliers</td>
<td>J-6083</td>
</tr>
<tr>
<td>3</td>
<td>Driver Handle</td>
<td>J-8092</td>
</tr>
<tr>
<td>4</td>
<td>Puller Bar</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Forcing Screw</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Pulley Bearing Remover</td>
<td>J-9398</td>
</tr>
<tr>
<td>7</td>
<td>Pulley Bearing Installer</td>
<td>J-9481-A</td>
</tr>
<tr>
<td>8</td>
<td>O-ring Seal Remover</td>
<td>J-9553-01</td>
</tr>
<tr>
<td>9</td>
<td>Pressure Test Plate</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Seal Remover and Installer</td>
<td>J-9625-A</td>
</tr>
<tr>
<td>11</td>
<td>Support Block</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>O-ring Seal Installer</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Hub and Drive Plate Remover and Installer</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Cylinder Alignment Rods</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Pulley and Bearing Assembly Installer</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Bearing Staking Tool</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Pulley Puller</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Shaft Seal Protector</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>6 Point 13 mm Socket</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Puller Pilot</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Clutch Coil Installer Adapter</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Clutch Coil Puller Legs</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Compressor Holding Fixture</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Clutch Hub Holding Tool</td>
<td></td>
</tr>
</tbody>
</table>

- J-5403-1
- J-9398
- J-9481-A
- J-9553-01
- J-9625-A
- J-9398
- J-33019
- J-33020
- J-33022
- J-33023-A
- J-33024
- J-33025
- J-33026
- J-33027
- J-33017
- J-33019
- J-33020
- J-33022
- J-33023-A
- J-33024
- J-33025
- J-33026
- J-33027
- J-33017
- J-33019
- J-33020
- J-33022
- J-33023-A
- J-33024
- J-33025
- J-33026
- J-33027
- J-33017
- J-33019
- J-33020
- J-33022
- J-33023-A
- J-33024
- J-33025
- J-33026
- J-33027
- J-33017
- J-33019
- J-33020
- J-33022
- J-33023-A
- J-33024
- J-33025
- J-33026
- J-33027
- J-33017
- J-33019
- J-33020
- J-33022
- J-33023-A
- J-33024
- J-33025
- J-33026
- J-33027
- J-33017
- J-33019
- J-33020
- J-33022
- J-33023-A
- J-33024
- J-33025
- J-33026
- J-33027
- J-33017
- J-33019
- J-33020
- J-33022
- J-33023-A
- J-33024
- J-33025
- J-33026
- J-33027
- J-33017
- J-33019
- J-33020
- J-33022
- J-33023-A
- J-33024
- J-33025
- J-33026
- J-33027
R-4 AIR CONDITIONING COMPRESSOR

DESCRIPTION

The AC-Delco R-4 compressor is a four cylinder, radial opposed with 10.0 cubic-inch displacement.

Two belt-driven systems are available: V-groove and multi-rib. The drive system affects minor repair procedures.

Clean the compressor before servicing. Clean replacement parts with trichloroethane, naphtha, Stoddard solvent, kerosene or equivalent. Blow dry with dry air. Use a non-lint producing cloth.

After removing the compressor from the vehicle, drain and measure the refrigerant oil. Add new 525 viscosity refrigerant oil after repair. Refer to "Specifications."

IDENTIFICATION

An identification label attached to the compressor provides the name of the manufacturer, model number and build code. If the label is removed or becomes dislodged during service operation, reattach it using an adhesive sealant such as Loctite 312 or equivalent.
MINOR REPAIR TO THE COMPRESSOR

Illustrations show the compressor removed from the vehicle for easier viewing. Refer to figure 1 for part names and location.

CLUTCH DRIVE HUB REPLACEMENT

Clean
- The compressor with solvent and blow dry with air.

Remove or Disconnect (Figures 1, 2, 3 and 4)

Tools Required:
- J-9399 Thin Wall Socket
- J-9401-A Clutch Plate and Hub Assembly Remover
- J-9408-A Holding Fixture
- J-25030 Clutch Hub Holding Tool

1. Shaft Nut
2. Clutch Hub Key
3. Clutch Drive Hub
4. Retainer Ring
5. Rotor
6. Bearing
7. Coil
8. Pulley
9. Washer
10. Screw
11. Retainer Ring
12. Shaft Seal
13. Seal
14. Bolt
15. Front Head
16. Bearing
17. Seal
18. Shell
19. Seals
20. Thrust Washer
21. Belleville Washer
22. Cylinder Body and Shaft
23. Seal
24. Pressure Relief Valve
25. Seal
26. High Pressure Switch
27. Retainer
28. Cap
29. Seals
30. Retainer
31. Valve Plate
32. Retaining Strap
33. Piston and Reed Assembly

Figure 1—Compressor Component View

Figure 2—Compressor in J-25008-A Holding Fixture

- Clamp J-25008-A to the compressor (figure 2).
- Mount J-25008-A and the compressor in a vise.
1. Shaft nut (1) with J-9399 (figure 3).
Hold the clutch plate and hub assembly (3) with J-25030.

2. Clutch drive hub (3) (figure 4).
 • Thread J-9401-A into the clutch plate and hub assembly (2).

 Important
 - Do not drive or pound on the clutch hub or the shaft. This may cause internal damage.
 - Make sure the contact surfaces of the clutch plate and the pulley are clean.
 - Align the shaft key with the shaft key way and place the clutch plate and hub assembly onto the compressor shaft.
 - Hold the body of J-9401-A with a wrench and turn the center screw into the remover body (figure 3).

3. Shaft key (2).
 • Retain the shaft key (2) if usable.

Inspect
- All parts and replace if necessary.

Hold the clutch plate and hub assembly (3) with J-25030.

2. Clutch drive hub (3) (figure 4).
 • Thread J-9401-A into the clutch plate and hub assembly (2).

 Important
 - Do not drive or pound on the clutch hub or the shaft. This may cause internal damage.
 - Make sure the contact surfaces of the clutch plate and the pulley are clean.
 - Align the shaft key with the shaft key way and place the clutch plate and hub assembly onto the compressor shaft.
 - Hold the body of J-9401-A with a wrench and turn the center screw into the remover body (figure 3).

3. Shaft key (2).
 • Retain the shaft key (2) if usable.

Inspect
- All parts and replace if necessary.
Tighten
- Shaft nut (1) to 17 N m (13 ft. lbs.).
- Hand spin the pulley (11) to check for free rotation.

CLUTCH ROTOR AND/OR BEARING REPLACEMENT — V-GROOVE TYPE

Remove or Disconnect (Figures 1, 7, 8, 9 and 10)

Tools Required:
- J-6083 Snap Rings Pliers
- J-9398 Rotor Bearing Remover
- J-25031 Rotor and Bearing
- J-8092 Driver Handle

1. Clutch drive hub (3).
2. Snap ring (4) with J-6083 (figure 7).
 - Mark the location of the clutch coil terminals.
3. Rotor (6) and bearing (5) assembly.

Important
- If the clutch rotor and/or rotor bearing are to be replaced, bend the washers (9) away from the pulley rim mounting screws (10). Remove the six mounting screws (10) and washers (9).
- Install J-25031 guide over the compressor shaft (22) (figure 8).
- Place J-25031 down into the rotor until the puller legs engage the recessed edge of the rotor hub (figure 9).
- Tighten the puller screw against the puller guide and remove the clutch rotor and bearing.

Important
- If the pulley rim mounting screws (10) and washers (9) were removed, only the
clutch rotor and bearing assembly will be removed for replacement. The clutch coil and housing assembly is pressed into the compressor and will not be removed unless the pulley rim mounting screws are left in place and the pulley rim pulls the coil and housing assembly off with the clutch rotor and pulley rim assembly.

3. Bearing (6) from the clutch rotor (5) with J-8092 and J-9398-A (figure 10).
 - Place the clutch assembly face on wood blocks to remove the bearing.
 - It is not necessary to remove the staking at the rear of the rotor hub to remove the bearing. However, file away the old staked metal to provide a clearance for the new bearing.

Install or Connect (Figures 11, 12 and 13)

Tools Required:
- J-6083 External Snap Ring Pliers
- J-8092 Drive Handle
- J-9481-A Pulley Bearing and Pulley Installer

1. Bearing (6) to the rotor hub with J-8092 and J-9481-A (figure 11).
 - Place the rotor and hub assembly face down on a clean, flat surface.
 - Align the bearing with the hub bore.
 - Drive the bearing with J-8092 and J-9481-A.
 - Using a center punch with a 45 degree angle point, stake 1.1-1.4 mm (0.045-0.055-inch) deep the bearing in three places 120 degrees apart (figure 12).
2. Rotor (6) and bearing (5) assembly to the compressor with J-8092 (figure 13).
3. Retainer ring (4) with J-6083.
4. Pulley rim mounting screws (10) and washers (9).
 - Apply Loctite 601 or equivalent to the threads.
 - Hand spin the pulley to check for free rotation.

Figure 12—Staking the Rotor Bearing

- Tighten
 - Screws to 11 N·m (100 in. lbs.).
 - Bend the washers to lock the rim in place.

5. Rotor (5) and hub (3) assembly.

CLUTCH ROTOR AND/OR BEARING REPLACEMENT — MULTI-RIB TYPE

Remove or Disconnect (Figures 1, 7, 8, and 10)

Tools Required:
- J-6083 Snap Ring Pliers
- J-8092 Driver Handle
- J-9398 Rotor Bearing Remover
- J-9481-A Pulley Bearing and Pulley Installer

1. Rotor (5) and hub (3) assembly (figure 1).
2. Retaining ring (4) with J-6083 (figure 7).
3. Rotor (5) and bearing (6) assembly with J-25031 (figure 8).
 - Install the J-25031 guide over the shaft (39) end.
 - Install the J-25031 puller over the guide.
 - Engage the arms of J-25031 down into the recessed edge of the rotor hub (5).
 - Hold the arms of J-25031 and tighten the screw against the guide.
4. Bearing (6) from the rotor hub (5) with J-9398 and J-8092 (figure 10).
 - Place the rotor hub clutch face up on wooden blocks on a flat surface.
 - Drive the bearing out with J-9398 and J-8092.

Install or Connect (Figure 11)

Tools Required:
- J-6083 Snap Ring Pliers
- J-8092 Universal Handle
- J-9481-A Pulley and Bearing Installer

1. Bearing to the rotor and hub assembly with J-8029 and J-9481-A (figure 11).
 - Place the pulley rotor and hub assembly face down on a flat surface.
 - Align the bearing to the pulley rotor and hub bore.
Figure 13—Installing the Rotor and Bearing Assembly — V-Groove Type

- Using a center punch with a 45 degree angle point, stake 1.1-1.4 mm (0.45-0.55 inch) deep in the places 120 degrees apart (figure 11).

2. Rotor (5) and bearing (6) assembly to the compressor with J-26271-A and J-8092 (figure 14).
 - Position the pulley rotor and bearing assembly to the compressor.
 - Drive with J-26271-A and J-8092.

3. Retainer ring (4) with J-6083.

4. Clutch drive hub (3).

CLUTCH COIL AND/OR PULLEY RIM REPLACEMENT — V-GROOVE DRIVE

Remove or Disconnect (Figure 1)

Tool Required:
- J-25031 Rotor and Bearing Puller
 1. Clutch drive hub (3).
 2. Rotor (5) and bearing (6) assembly.
 3. Pulley rim mounting screws (9) and washers (10).
 4. Pulley rim (11).

Install or Connect (Figures 1, 14 and 15)

Tool Required:
- J-26271-A Rotor and Bearing Installer
 - Clutch (7), pulley rim (8), clutch rotor (5) and bearing (6) (figure 15).

Figure 14—Installing the Rotor and Bearing Assembly — Multi-Rib Type

- Use new screws (10) and washers (9). Apply Loctite 601 or equivalent to the screw threads, but do not tighten.
- Before seating the assembly, place the clutch coil terminals in relation to the compressor. Align the three protrusions on the rear of the clutch coil with the locator holes in the front head.

1. Clutch coil pulley rim (8) and the clutch rotor (5) and bearing (6) to the compressor with J-26271-A and J-8092.

2. Retainer ring (4).
3. Clutch drive hub (3).

Measure
- Clutch plate to clutch rotor gap is 0.5 to 1.0 mm (0.020 to 0.040-inches).
- Important
 - Hand spin the pulley to check for free rotation.

Tighten
- Pulley rim mounting screws (10) to 11 N·m (100 in. lbs.).
- Bend the washers (9) to secure the screws (10).

CLUTCH COIL AND/OR PULLEY RIM REPLACEMENT — MULTI-RIB TYPE

Remove or Disconnect (Figures 1 and 16)

Tools Required:
- J-8433 Heavy Duty Pulley Puller
- J-24092 Clutch Coil Puller Legs
- J-25031 Rotor and Bearing Assembly Remover

1. Clutch drive hub (3).
2. Rotor (5) and bearing (6) assembly.
 - Mark the location of the clutch coil terminals on the compressor.
3. Clutch coil (7) from the front head (15) (figure 16).
 - Install J-25031 guide to the shaft (34).
 - Install J-24092 with J-8433.
 - Turn the screw in J-8433 to remove the clutch coil.

Install or Connect (Figures 1 and 16)

1. Clutch coil (7) to the front head (15).
 - Position the coil terminals as marked during removed.
2. Rotor (5) and bearing (6) to the compressor with J-26271.
 - Important
 - Before seating the assembly, position the clutch coil terminals in the proper location to the compressor.
 - Align the three protrusions on the rear of the clutch coil housing with the locator holes in the front head.
3. Retainer ring (4).

Measure
- Clutch plate to clutch rotor air gap is 0.5-1.0 mm (0.020-0.040-inch).
MAJOR REPAIR TO THE COMPRESSOR

SHFT SEAL REPLACEMENT

The shaft seal is designed to seep oil for lubrication. Replace the seal if a large leak is detected. Use J-29547 to determine refrigerant oil leakage.

If the seal needs replacing, remove the accumulator. Drain, measure and replace the refrigerant oil with new 525 viscosity refrigerant oil.

Remove or Disconnect (Figures 1, 17 and 18)

Tools Required:
- J-5403-A Internal Snap Ring Pliers
- J-22974-A Compressor Shaft Oil Seal Protector
- J-23128-A Ceramic Seal Remover and Installer
- J-34614 Shaft Seal Protector

1. Clutch drive hub (3).
2. Retainer ring (11).

Clean

- The inside of the compressor neck area.
 - Engage J-231238-A into the recessed portion of the seal by turning with a hand motion (figure 17).
 - Lift the seal with a rotary-pulling motion.
4. Seal (o-ring) (13) with J-9553-01 (figure 18).

Install or Connect (Figures 1 and 19)

Tool Required:
- J-21508-A

1. Seal (o-ring) (14) to the shaft (22) (figure 19).
 - Dip the seal in clean 525 viscosity refrigerant oil.
 - Seal (o-ring) to J-21508-A.
 - Insert J-21508-A over the shaft and down until it reaches the bottom of the shaft.
 - Tower the slide on J-21508 to release the seal (o-ring) into its groove.

PRESSURE RELIEF VALVE REPLACEMENT

Remove or Disconnect (Figure 1)

1. Valve (24).
2. Seal (23).
Install or Connect (Figure 1)

1. Seal (23).
 - Dip the seal in clean 525 viscosity refrigerant oil before inserting it into the valve cavity.
2. Valve (24).
 - Tighten
 - Valve (24) to 17 N·m (13 ft. lbs.).

HIGH-SIDE-HIGH PRESSURE CUT OFF SWITCH REPLACEMENT

Remove or Disconnect (Figure 1)

Tools Required:
- J-5403 Snap Ring Pliers
- J-9553 O Ring Remover

1. Protective cap (28).
2. Retainer ring (27) with J-5403.
3. Valve (26).
 - Clean
 - Remove any dirt from the valve cavity.

Install or Connect (Figure 1)

1. New seal (o-ring) (25) to the cavity.
 - Dip the new seal in clean 525 viscosity refrigerant oil.
2. Pressure relief valve (26).
3. Retainer ring (27) with J-5403-A.

FRONT HEAD AND/OR SEAL REPLACEMENT

Remove or Disconnect (Figure 1)

1. Rotor (5) and hub (3) assembly.
2. Shaft seal (12).
3. Front head bolts (14).
4. Front head (15).
 - Clean
 - Remove any dirt from the front head.
 - Inspect
 - The front head for cracks or damage. Replace, if necessary.

Install or Connect (Figure 1)

1. New seal (17).
 - Dip the seal into clean 525 viscosity refrigerant oil before installing.
 - Position the seal into the groove in the front head.
2. Front head (15).
 - Place the oil hole in the “UP” position when assembled to the compressor to correspond with the “UP” position of the compressor.

MAIN BEARING REPLACEMENT

Remove or Disconnect (Figures 1 and 20)

Tools Required:
- J-24895 Bearing Installer
- J-24896 Bearing Remover

1. Rotor (5) and bearing (6) assembly.
2. Front head (15) and seal (17).
3. Bearing (16) from the front head (15) (figure 20).
 - Place the front head on two blocks.
 - Drive the bearing out of the front head with J-24896.

Install or Connect (Figures 1 and 21)

Tool Required:
- J-24895 Bearing Installer

1. Bearing (16) to the front head (15) (figure 21).
 - Place the bearing with the neck down on a flat surface (figure 21).
 - Drive the bearing into the front head with J-24896.
2. Front head (15) and seal (17) to the compressor.
3. Rotor (5) and bearing (6) assembly.
THRUST AND BELLEVILLE WASHERS REPLACEMENT

Remove or Disconnect (Figures 1 and 22)
1. Rotor (5) and bearing (6) assembly.
2. Front head (15) and seal (17).
3. Two thrust washers (20) (figure 22).
4. Belleville washer (21).
 — Note the position of the washers.

Install or Connect (Figures 1 and 22)
1. One new thrust washer (20).
 • Place the washer over the shaft with the washer tang pointing UP.
2. New Belleville washer (21).
 • Place the high center of the washer UP.
3. One new thrust washer (20).
 • Place the washer over the shaft with the washer tang pointing down.

 Important
 • Lubricate the washers with clean 525 viscosity refrigerant oil.
4. Front head (15) and seal (17).

SHELL AND/OR SEAL REPLACEMENT

Remove or Disconnect (Figures 1, 23 and 24)
1. Clutch drive hub (3).
2. Rotor (5) and bearing (6) assembly.
 • Do not loosen or remove the pulley rim mounting screws to remove the clutch rotor and bearing, clutch coil and pulley rim.
 • Pry the strap away from the cylinder and position it high enough to clear the cylinder when removing the shell.
4. Shell (18) (figure 24).
 • Remove J-25008-A from the compressor.
 • Reverse J-25008-A with the step block protrusions engaging the shell.
 • Install the medium length metric threaded mounting bolts through J-25008-A.
 • Thread the bolts finger tight on both sides into the compressor cylinder until the step of the J-25008-A protrusions contact the shell.
 • Alternately tighten each bolt 1/4-turn to push the shell free of the seals (19) on the cylinder.
 • If one screw requires more force to turn than the other, immediately turn the other screw to bring the screw threading sequence in-step or the shell will be cocked and be difficult to remove. Normal removal does not require much force on the wrench if the screws are kept in-step while turning. The shell can be removed by hand as soon as the shell is free
Figure 24—Removing the Shell

- Alternately tighten the screws ¼ turn.
- Tool Step Contacts the Compressor Shell.

19. Seal

J-25008-A

Figure 24

Figure 25—Installing the Shell

DISCHARGE VALVE PLATE AND/OR RETAINER REPLACEMENT

1. Clutch drive hub (3).
2. Rotor (5) and bearing (6) assembly.
3. Compressor shell (18).
4. Retainer ring (30) with J-4245 (figure 26).
5. Valve plate (31) (figure 27).

Figure 26—Replacing the Valve Plate Retainer

Tools Required:
- J-4245 Snap Ring Pliers
- J-25008-A Compressor Shell Remover, Installer and Holding Fixture

Install or Connect (Figures 1, 23 and 25)

1. Seals (19) to the front and rear of the shell (18).
 - Dip the seals (o-rings) in clean 525 viscosity refrigerant oil before installing.
 - Coat the seal grooves with clean 525 viscosity refrigerant oil.
2. Shell (18) to the cylinder (22) with J-25008-A (figure 25).
 - Rotate the retaining strap to its original location.
 - Alternately tighten each bolt ¼-turn to push the shell over the seals.
 - If one screw requires more force to turn than the other, immediately turn the other screw to bring the screw threading sequence in-step or the shell will be cocked and made more difficult to install. Normal installation does not require much force on the wrench if the screws are kept in-step while turning.
3. Retaining strap (32).
 - After seating the shell against the stop, bend the strap into place.
4. Rotor (5) and bearing (6) assembly, clutch coil (7) and pulley rim with J-26271-A.
5. Clutch drive hub (3).

Clean
- Remove dirt and lint from the shell.

Inspect
- The shell for cracks or burrs that may damage the seals.

Install or Connect (Figures 1, 26 and 27)

1. Valve (31).
2. Retainer ring (30) with J-4245.
4. Rotor (5) and bearing (6).
5. Clutch drive hub (3).

CYLINDER AND SHAFT ASSEMBLY REPLACEMENT

[Remove or Disconnect (Figure 1)]

1. Clutch drive hub (3).
2. Rotor (5) and bearing (6).
4. Front head (15).
5. Thrust (20) and Belleville (21) washers.
7. Discharge plate (31).
8. High pressure cut-off switch (26).

[Install or Connect (Figure 1)]

1. Pressure relief valve (24).
2. High pressure cut-off switch (26).
3. Discharge reed (33) and plate (31).
4. Shell (18).
5. Thrust (20) and Belleville (21) washers.
6. Front head (15).
7. Shaft seal (12).
8. Rotor (5) and bearing (6) assembly.
9. Clutch drive hub (3).

LEAK TESTING

Tools Required:
- J-5420 Straight Fitting
- J-9625-A Pressure Test Set with Schrader Valve
- J-23500-01 Portable Charging Station

1. Install J-9625-A on the rear head of the compressor.
2. Install the center hose of the manifold gage set on the charging station to a refrigerant drum standing in an upright position and an open valve on the drum.
3. Install the charging station high and low pressure lines to the corresponding fittings on J-9526-A using J-5420 gage adapters or hoses equipped with valve depressors.
 - The suction port (low side) of the compressor has a large internal opening. The discharge port (high side) has a smaller internal opening into the compressor.
 - Open the low-pressure control, the high-pressure control and the refrigerant control on the charging station to allow refrigerant vapor to flow into the compressor.

Important
- Check for leaks at the pressure relief valve, compressor front and rear head seals, center cylinder seal, through bolt head gaskets and the compressor shaft seal. After checking, shut off the low pressure control and the high pressure control on the charging station.
- Loosen the manifold gage hose connections to the gage adapters connected to the low and high sides and allow the vapor pressure to release from the compressor.
- If valve depressor-type hoses are used, loosen the hose connections at the gage manifold to release the vapor from the compressor.

4. Disconnect J-5420 from J-9625-A.
5. Rotate the compressor (not the crank shaft or drive plate hub) to distribute oil to the cylinder and pistons.
6. Install a shaft nut on the compressor crankshaft if the drive plate and clutch assembly are not installed.
7. With a box-end wrench, or a socket and handle, rotate the compressor crankshaft or clutch drive plate on the crankshaft to lubricate the piston assembly and cylinder wall.
8. Connect the J-23500-01 Portable Charging Station high pressure line or a high pressure gage and J-5420 gage adapter to the J-9625 test plate high-side connector.
Important

— Oil will drain out of the compressor suction port adapter if the compressor is placed with the suction port downward.

9. Attach the compressor to the J-25008-A holding fixture with metric mounting screws. Clamp the compressor holding fixture in a vise so that the compressor can be turned with a wrench.

10. With a wrench, rotate the compressor crankshaft or drive plate hub ten revolutions at a speed of one revolution per second.
 • Turning the compressor at less than one revolution per second can cause a lower pump-up pressure and disqualify a good pumping compressor.

11. Watch the reading on the high-pressure gage at the completion of the tenth revolution.
 — The reading for a good pumping compressor should be 344.75 kPa (50 psi).
 — A reading of less than 310.275 kPa (45 psi) would indicate one or more suction and/or discharge valves are leaking, an internal leak and/or discharge valves leaking, an internal leak or an inoperative valve. Disassemble and check the compressor.

12. After completing the pressure pump-up test, release the air pressure from the high side and remove J-5420 gage adapter and J-9625 test plate.

13. Tilt the compressor to place the suction and discharge ports downward.

14. Drain oil from the compressor. After 10 minutes, charge with the proper amount of oil. Pour the oil into the suction port.
 • If further assembly or processing is required, install a shipping plate or J-9625 to keep air, dirt and moisture out of the compressor unit it is installed.

SPECIFICATIONS

Type — AC-Delco R-4 ... 4 Cylinder Radial
Displacement ... 10.0 Cu. In.
Rotation ... Clockwise
Oil Capacity0312 kg (11 oz.)

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Component</th>
<th>Torque Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil Drain Screw</td>
<td>17 N m (13 ft. lbs.)</td>
</tr>
<tr>
<td>Cycling Pressure Switch</td>
<td>10 N m (7.5 ft. lbs.)</td>
</tr>
<tr>
<td>Shaft Nut</td>
<td>17 N m (13 ft. lbs.)</td>
</tr>
<tr>
<td>Pressure Relief Valve</td>
<td>17 N m (13 ft. lbs.)</td>
</tr>
<tr>
<td>Front Head Bolts.</td>
<td>27 N m (20 ft. lbs.)</td>
</tr>
<tr>
<td>Rim Mounting Screws</td>
<td>11 N m (100 in. lbs.)</td>
</tr>
<tr>
<td>Clutch Plate to Rotor Air Gap</td>
<td>0.5-1.0 mm (0.020-0.040 inch)</td>
</tr>
</tbody>
</table>
SPECIAL TOOLS

J-9394 J-9480-B J-9401-A J-8092 J-5403-A
J-8092 J-24092 J-6083 J-34614

J-9398-A J-25008-A J-24092 J-8433 J-9393-A

J-25031

J-9399 9/16-Inch Thin Wall Socket
J-9480-B Hub and Drive Plate Assembly Installer
J-9401-A Hub and Drive Plate Assembly Remover
J-8092 Driver Handle
J-5403-A Snap Ring Pliers (#21 Internal)
J-1245 Snap Ring Pliers (#23 Internal)
J-6083 Snap Ring Pliers (#24 Internal)
J-34614 Shaft Seal Protector (Face Seal and Lip Seal)
J-23128-A Seal Seat Remover and Installer
J-33011 Seal Seat O-ring Installer
J-9625-A Pressure Test Connector
J-25030 Clutch Hub Holding Tool
J-9553-01 O-ring Remover
J-9398-A Rotor Bearing Remover

J-25008-A Compressor Shell Remover, Installer and Holding Fixture
J-24092 Pulley Hub Adapter Set (Used with J-8433)
J-8433 Compressor Pulley Puller
J-9393-A Seal Seat Remover and Installer
J-25287 Clutch Coil Puller
J-24896 Bearing Remover (Front Head)
J-9481-A Pulley Bearing and Pulley Installer
J-26271-A Rotor and Bearing Installer (Without Handle)
J-24895 Bearing Installer (Front End)
J-25031 Rotor and Bearing Puller with Guide
SECTION 1B4

DA-V5 AIR CONDITIONING COMPRESSOR

DESCRIPTION

When servicing the AC-Delco DA-V5 compressor, keep dirt and foreign material from getting on or into the compressor parts and system. Clean tools and a clean work area are important for proper service. The compressor connections and the outside of the compressor should be cleaned before any "on vehicle" repairs, or before removal of the compressor. The parts must be kept clean at all times and any parts to be reassembled should be cleaned with Trichloroethane, naphtha, stoddard solvent, kerosene or equivalent solvent and dried with dry air. Use only lint free cloths to wipe parts.

Drain the compressor and measure the amount of oil. Replace with new 525 viscosity refrigerant oil. Refer to "Specifications" (figures 1, 2, 3 and 4).

NOTICE: Remove the oil drain plug to make sure the compressor is drained completely of oil (figure 1).

THEORY OF OPERATION

The DA-V5 is a variable displacement compressor that can match the automotive air conditioning demand under all conditions without cycling. The basic compressor mechanism is a variable angle wobble-plate with five axially oriented cylinders. The center of control of the compressor displacement is a bellows actuated control valve located in the rear head of the compressor that senses compressor suction pressure. The wobble-plate angle and compressor displacement are controlled by the crankcase-suction pressure differential. When the AC capacity demand is high, the suction pressure will be above the control point; the valve will maintain a bleed from crankcase to suction; no crankcase-suction pressure differential; and the compressor will have maximum displacement. When the AC capacity demand is lower and the suction pressure reaches the control point, the valve will bleed discharge gas into the crankcase and close off a passage from the crankcase to the suction plenum. The angle of the wobble-plate is controlled by a
force balance on the five pistons. A slight elevation of the crankcase-suction pressure differential creates a total force on the pistons resulting in a movement about the wobble-plate pivot pin that reduces the plate angle.

The crankcase-suction bleed is routed through the rotating wobble-plate for lubrication of the wobble-plate bearing. The rotation acts as an oil separator, which removes some of the oil from the crankcase-suction bleed, rerouting it to the crankcase where it can lubricate the compressor mechanism.

Up to 0.113 kg (4 oz.) of oil can collect in the crankcase. Therefore, it is important when replacing a compressor that the oil in the old compressor crankcase be drained through the drain plug and measured (discard after recording amount).

All replacement compressors will be shipped from Harrison with 0.2268 kg (8 oz.) of oil in the crankcase. The oil must be drained and retained. Then replace the oil in the same amount as previously recorded from the old compressor. Refer to “Specifications.”

IDENTIFICATION

An identification label attached to the compressor provides the name of the manufacturer, model number and build code. If the label is removed or becomes dislodged during service operation, reattach it using an adhesive sealant such as Loctite 312 or equivalent.
DA-V5 AIR CONDITIONING COMPRESSOR 1B4-3

2. High Pressure Relief Valve
3. High Side Low Pressure Valve
4. High Side Cut-Off Switch
5. Control Valve
21. Shaft Nut
22. Clutch Plate and Hub Assembly
23. Key
24. Pulley Bearing Retainer
25. Pulley Bearing
26. Pulley
27. Clutch Coil Assembly
28. Retainer
29. Seal
30. O-ring
31. Bolt
32. Gasket
33. Front Head
34. Shim
35. Washer
36. Belleville Washer
37. Seal
38. Shaft and Cylinder Body
39. Seal
40. Suction Reed
41. Valve Plate
42. Gasket
43. Rear Head
44. Seal
45. Retainer
46. Seal

Figure 4—Compressor Component View
MINOR REPAIR TO THE COMPRESSOR

CLUTCH PLATE AND HUB ASSEMBLY REPLACEMENT

Clean

- The compressor assembly with solvent and blow dry with dry air.

Remove or Disconnect (Figures 1, 5, and 6)

Tools Required:
- J-33013-B Hub and Drive Plate Remover and Installer
- J-33022 6-Point 13 mm Socket
- J-33027 Clutch Hub Holding Tool
- J-34992 Compressor Holding Fixture

1. Shaft nut (21) using J-33022 (figure 5).
2. Clutch plate and hub assembly (22).
3. Shaft key (21).

Inspect

- All parts and replace as necessary.

Install or Connect (Figures 1, 7 and 8)

Tools Required:
- J-33013-B Hub and Drive Plate Remover and Installer
- J-33022 6-Point 13 mm Socket
- J-33027 Clutch Hub Holding Tool
- J-34992 Compressor Holding Fixture

1. Shaft key (21).

- Allow the shaft key (21) to extend 3.2 mm (% inch) out of the bottom of the hub keyway (figure 7).
- The shaft key (21) is curved slightly to give an interference fit in the groove.

Important

- Do not drive or pound on the clutch hub or the shaft (38). Internal damage to the compressor may result.

2. Clutch plate and hub assembly (2) (figure 8).

- Make sure the contact surfaces of the clutch plate (22) and the pulley (26) are clean.
- Remove the forcing screw tip from J-33013-B and reverse the body direction on the center screw.
- Install J-33013-B with bearing (B) (figure 8).
- Back off J-33013-B body enough to allow the center screw to be threaded against the end of the compressor shaft (38).
- Hold the center screw with a wrench and tighten the hex portion of J-33013-B body while pressing the hub onto the shaft (38). After tightening the body several turns, remove J-33013-B and check that the shaft key (21) is
Figure 7—Removing the Clutch Plate and Hub and Shaft Key

- Properly in place in the keyway, then install the clutch plate and hub assembly (22) to its final position.
- Measure the air gap between contact surfaces of the clutch plate and hub assembly (22) and the pulley (26). The gap should be 0.38-0.64 mm (0.015-0.025-inch).
- Remove J-33013-B.

Figure 8—Installing the Clutch Plate and Hub Assembly

- Shaft nut (21) to 17 N·m (12 ft. lbs.) with J-33022.
- Hand spin the pulley (26) to check for free rotation.
- Remove the compressor from J-34992.

Figure 9—Removing the Pulley Rotor and Bearing Assembly Retaining Ring

- Inspect
 - Position of the shaft (38) (even with or slightly above the clutch hub).
 - Use J-33027 to hold the clutch plate and hub assembly (22).
- Tighten
 - Shaft nut (21) to 17 N·m (12 ft. lbs.) with J-33022.
 - Hand spin the pulley (26) to check for free rotation.
 - Remove the compressor from J-34992.

PULLEY AND BEARING ASSEMBLY REPLACEMENT

- Remove or Disconnect (Figures 4, 9, 10, 11 and 12)

Tools Required:
- J-6083 Snap Ring Pliers
- J-8092 Driver Handle
- J-9398-A Pulley Bearing Remover
- J-33020 Pulley Puller
- J-33023-A Puller Pilot

1. Clutch plate and hub assembly (22).
2. Pulley bearing retainer (24) using J-6083 (figure 9).
3. Pulley (26).
 - Install J-33023-A to the front head (figure 10).
 - Install J-33020 tangs into the inner circle of slots in the pulley (26) contact surface. Rotate J-33020 clockwise so the tangs will lock into the segments between the slots (figure 11).
 - Hold J-33020 in place and tighten the puller screw against J-33023-A puller pilot to remove the pulley (26) (figure 11).
 - Remove the forcing screw from J-33020 and with the puller tangs still in place in the pulley slots, turn the assembly upside down onto a flat surface (figure 12).
Figure 10—Installing the Pulley Rotor and Bearing Puller Guide

- When removing the old pulley bearing (25) allow the staking to remain, then file away the old staked metal for proper fit when installing a new bearing (25) in the pulley bore.

Install or Connect (Figures 4, 13, 14, 15 and 16)

Tools Required:
- J-6083 Snap Ring Pliers
- J-8433-1 Puller Bar
- J-9481 Pulley Bearing Installer
- J-29886 Threaded Driver Handle
- J-33017 Pulley and Bearing Assembly Installer
- J-33019 Bearing Staking Tool (with staking pin and retaining band)
- J-33023-A Puller Pilot
- J-33026 Compressor Holding Fixture
- J-35372 Compressor Support Block

1. Pulley (26) on J-35372 (figure 13).

Figure 11—Removing the Pulley Rotor and Bearing Assembly

Figure 12—Removing the Bearing from the Pulley Rotor Assembly

Figure 13—Installing the Pulley Rotor Bearing
NOTICE: Do not support the rotor by resting the pulley rim on a flat surface during bearing installation or the rotor face will be bent.

 - J-33019 in the pulley bore (figure 13).
 - Seat the pulley and bearing assembly on J-35372 to support to the hub under the staking pin location (figure 14).
 - Strike the staking pin with a hammer until a metal stake, similar to the original, is formed down to, but not touching the bearing.
 - Position the stake pin after striking.
 - The staked metal should not contact the outer race of the bearing to prevent the possibility of bending the outer race.
 - Stake 3 places 120 degrees apart (figure 15).

3. Pulley (26) on the front head.
 - Position J-33017 and J-33023 over the inner race of the bearing (figure 16).
 - Position J-8433-1 on J-33023 and assemble the through bolts and washers through the puller bar slots and thread them into J-33026 (figure 16).
 - The thread of the through bolts should engage the full thickness of the compressor holding fixture.
 - Should J-33017 become misaligned with the inner race of the bearing, back off J-8433-1 and relocate center, then continue installation.

4. Pulley bearing retainer (24) using J-6083 (figure 9).

5. Clutch plate and hub assembly (22).

CLUTCH COIL ASSEMBLY REPLACEMENT

1. Clutch plate and hub assembly (22).
2. Pulley (26).
 - Mark or scribe the location of the clutch coil (27) to terminal on the compressor front head (33).
3. Clutch coil assembly (27).
 - Install J-33023-A on the head (33) of the compressor.
Install J-8433-1 with J-33025 (figure 17).

- Tighten J-8433-3 forcing screw against J-33025.

Inspect

- Clutch coil assembly (27). Replace as necessary.

Install or Connect (Figures 4 and 18)

Tools Required:
- J-8433-1 Puller Bar
- J-33024 Clutch Coil Installer Adapter

1. Clutch coil assembly (27) onto the front head (33) with the terminals positioned at the "marked" location.
 - J-33024 over the internal opening of the clutch coil assembly (27) (figure 18).
 - J-8433-1 with through bolts, washers and forcing screw over J-33024.
 - Be sure J-8433-1 and the clutch coil assembly (27) stay "in line" during installation.
 - When the clutch coil assembly (27) is seated on the front head (33), use a 3 mm (1/8-inch) diameter drift punch to stake the head (33) at 3 places, 120 degrees apart to assure the clutch coil assembly (27) remains in position (figure 19).
 - Stake size should be one half the area of the punch tip and 0.28-0.35 mm (0.010-0.015-inch) deep (figure 20).

2. Pulley (24).
3. Clutch plate and hub assembly (22).

Pressure Relief Valve Replacement

- Be sure the compressor has no charge.

1. Pressure relief valve (2).
2. O-ring seal (46).
1. Retainers (44) from switches (3) and (4).
2. Switches (3) and (4).
3. O-ring seals (44) from the switch cavities with J-9553-01.

Clean
- Switch cavity and O-ring seal groove.

Install or Connect (Figures 3 and 4)

Tools Required:
- J-5403 Snap Ring Pliers
- J-33011 O-ring Seal Installer

1. O-ring seals (44) to the switch cavity with J-33011.
2. Dip the O-ring seals into clean 525 refrigerant oil.
3. Switches (3) and (4).
4. Retainers (45).

CONTROL VALVE REPLACEMENT

Remove or Disconnect (Figures 3 and 4)

Tools Required:
- J-5403 Snap Ring Pliers
- J-9553-01 O-ring Seal Remover

1. Pressure relief valve (2) with new O-ring seal.
2. Lubricate the threads of the pressure relief valve (2) and new O-ring seal with 525 viscosity refrigerant oil.
3. Tighten
 - Pressure relief valve (2) to 9 N·m (84 in. lbs.).
4. Important
 - Leak test the compressor.
 - Refer to "Leak Testing."

HIGH-SIDE PRESSURE AND HIGH-SIDE LOW-PRESSURE CUTOFF SWITCHES REPLACEMENT

Remove or Disconnect (Figures 3 and 4)

Tool Required:
- J-9553-01 O-ring Remover

1. Retainer ring with J-5403.
2. O-ring seal (44) with J-9553-01.
3. Valve (5).

Install or Connect (Figures 3 and 4)

Tools Required:
- J-5403 Snap Ring Pliers
- J-33011 O-ring Seal Installer

1. Valve (5).
2. O-ring seal (44) with J-33011.
 - Dip the seals into new clean 525 refrigerant oil.
3. Retainer (45) with J-5403.

MAJOR REPAIR TO THE COMPRESSOR

Replacement of the shaft seal assembly or the pressure relief valve will require the discharge of the vehicle's refrigeration system (figure 21). Other than clutch repair procedures, the same holds true for any disassembly of the compressor. To discharge the refrigerant, refer to the vehicle service manual.

After servicing, add fresh 525 viscosity refrigerant oil equal to the amount drained from the compressor.

Keep the workbench and work area clean when servicing the compressor, and use proper, clean service tools.

NOTICE: Any attempt to use makeshift or inadequate service tools or equipment may result in damage and/or improper compressor operation.
1B4-10 DA-V5 AIR CONDITIONING COMPRESSOR

Figure 21—Compressor Shaft Seal Details

- J-23128-A Seal Remover and Installer
- J-34614 Shaft Seal Protector
1. Clutch plate and hub assembly (22).
 - Install J-34614 over the threaded end of the shaft (38).
2. Shaft seal retainer ring using J-5403 (figure 22).
 - Clean the compressor neck area around the shaft (38), the exposed part of the shaft seal (29) and the O-ring seal groove.
 - Insert J-23128-A into the shaft lip seal, tighten and remove lip seal.

Inspect
- Make sure the compressor neck area is clean.
- All parts. Replace as necessary.

Install or Connect (Figures 4 and 25)

Tools Required:
- J-5403 Snap Ring Pliers
- J-23128-A Seal Seat Remover and Installer
- J-33011 O-Ring Seal Installer
- J-34614 Shaft Seal Protector

- Dip the new O-ring seal in clean 525 viscosity refrigerant oil.
1. J-34614 onto the shaft (38).
 - Insert J-33011 into the compressor neck until the installer "bottoms."
 - Lower the movable slide of J-33011, releasing the O-ring seal into the lower groove.
 - Rotate J-33011 to seat the O-ring seal and remove J-33011.

Figure 22—Removing or Installing the Shaft Seal Seat Retainer

Figure 23—Removing or Installing the Shaft Seal

Figure 24—Removing the Shaft Seal Seat O-Ring
Dip the shaft lip seal in clean 525 viscosity refrigerant oil and install the shaft lip seal on J-23128-A.
Bottom the shaft lip seal into the compressor neck area using J-23128-A.

4. Shaft seal retainer ring using J-5403 (figure 21).
- Install the flat side of the shaft seal retainer ring against the lip seal.
- Remove J-34614.

Important
- Leak test the compressor.
- Refer to "Leak Testing."

Clean
- Shaft (38) and inside the compressor neck area.

5. Clutch plate and hub assembly (22).

FRONT HEAD SEAL, REAR HEAD GASKET, REAR VALVE PLATE, SUCTION REED PLATE AND REAR HEAD SEAL REPLACEMENT

Remove or Disconnect (Figures 4 and 26)
1. Clutch drive and hub assembly (22).
2. Pulley (26) and bearing (25).
3. Clutch coil assembly (27).
4. Shaft seal (29).
5. Through bolts (31).
6. Front head (33) from the shaft and cylinder body (38).
- Using a wood block, tap around the edge of the front head (33) to remove.
7. Rear head (43), head gasket (42), rear valve plate (41), suction reed plate and cylinder-to-rear head seal (39).
- Using a wood block, tap around the edge of the rear head to remove (figure 26).

Install or Connect (Figures 4, 27 and 28)

Tools Required:
- J-9625-A Pressure Test Set with Schrader Valve
- J-33016 Cylinder Alignment Rods
- J-35372 Support Block

- Use new seals and gaskets.
- Place the rear head on J-35372 with the control valve (5) facing the technician.
1. Cylinder Alignment Rods J-33016 in the mounting hole facing the technician and at the upper left position (figure 27).
2. Gasket (42) (figure 28).
- Place the elongated hole in the gasket over the rod at the upper left position.
3. Rear valve plate (41).
- Place the elongated hole in the valve plate over the rod at the upper left position.
4. Suction reed plate (40).
- Place the elongated hole in the plate over the rod at the upper left position.
- Remove J-33016 Cylinder Alignment Rod from the hole facing the technician.
5. Seals (39 and 37) to the shaft and cylinder body grooves (38).
- Dip the seals into 525 viscosity refrigerant oil.
6. Shaft and cylinder body (38) to the rear head (43).
- Locate the relief boss at the pin in the hole at the upper left position.
7. Belleville washer (35) and washers (36).
8. Shim (34).
9. Front head (33).
- Locate the relief boss at the pin in the hole at the upper left position.
- Remove J-33016 Cylinder Alignment Rod from the hole at the upper left position.
10. Through bolts (31) and gaskets (32).

Tighten
- Bolts (31) alternately to 9 N·m (80 in. lbs.).
11. Refrigerant oil to the compressor.
Figure 27—Positioning the J-33016 Guide Pins

12. Test plate J-9625-A.
 • Leak test. Refer to "Leak Testing."

LEAK TESTING

Tools Required:
J-9625-A Pressure Test Plate
J-23500-01 Portable Charging Station
J-34492 Compressor Holding Fixture

• Be sure the compressor has no oil internally.
1. Install J-9625-A on the rear head of the compressor.
2. Install the center hose of the manifold gage set on J-23500-01 to a refrigerant drum standing in an upright position and open the valve on the drum.
3. Install the charging station high and low pressure lines to the corresponding fittings on J-9625-A using gage adapters or hoses equipped with valve depressors. The suction port (low side) of the compressor has a large internal opening. The discharge port (high side) has a smaller internal opening into the compressor.
• Open the low pressure control, high pressure control and the refrigerant control on the charging station to allow the refrigerant vapor to flow into the compressor.

Important
• Check for leaks at the pressure relief valve (2), compressor front and rear head seals (37) (39), through bolt head gaskets (32) and compressor shaft seal (29).
• After the leak check, shut off the low pressure control and the high pressure control on charging station.
• If an external leak is present, perform the necessary correction and recheck for leaks.
• Loosen the manifold gage hose connections to the gage adapters connected to the low and high sides and allow the vapor pressure to release from the compressor. If valve depressor type hoses are used, loosen the hose connections at the gage manifold to release the vapor pressure from the compressor.
• Disconnect both gage adapters or hoses from J-9625-A.
• Add 0.085 kg (3 oz.) new 525 viscosity refrigerant oil to the compressor assembly. Rotate the complete compressor assembly (not the shaft or drive plate hub) slowly several turns to distribute oil to all cylinder and piston areas.
• Install the shaft nut (21) on the compressor shaft (38) if the pulley assembly and clutch plate and hub assembly are not installed.
• Using a box-end wrench, or a socket and handle, rotate the compressor shaft (38) several turns to lubricate the pistons and cylinder walls.
• Connect the charging station high-pressure line, or a high-pressure gage and gage adapter to J-9625-A high-side connector.
• Attach an adapter or depressor-type hose to the suction or low-pressure port of J-9625-A to open the Schrader-type valve. Oil will drain out of the compressor suction port adapter if the compressor is positioned with the suction port downward.
• Attach the compressor to J-34992 fixture and mount the compressor in a vise so that the compressor will be in a horizontal position and the shaft (38) can be turned with a wrench.
• Rotate the compressor shaft (38) or drive plate hub six to eight complete revolutions at a speed of approximately one revolution per second. A slower rotation can result in a lower pump-up pressure and disqualify a good pumping compressor.
• Observe the reading on the high-pressure gage at the completion of the tenth revolution of the compressor shaft (38). The pressure reading for a good pumping compressor should be 690 kPa (100 psi) or above. A pressure reading of less than 620 kPa (90 psi) would indicate one or more suction and/or discharge valves leaking, an internal leak, or an inoperative valve. Disassemble the compressor and repair as necessary. Reassemble and repeat the pump-up test.
• Following the pressure pump-up test, release the air pressure from the high side and remove the gage adapters and J-9625-A test plate.
• Tilt the compressor to place the suction and discharge ports downward to allow oil to drain from the compressor.
• Allow a 10-minute drain period and then charge the compressor with the proper amount of oil. Pour the new 525 viscosity refrigerant oil into the suction port.
• If further assembly or processing is required, install a shipping plate or test plate J-9625-A to protect the compressor from contamination.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Type — AC-Delco DA-V5</th>
<th>Cylinder Axial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement</td>
<td>9.2 Cu. In.</td>
</tr>
<tr>
<td>Rotation</td>
<td>Clockwise</td>
</tr>
<tr>
<td>525 Viscosity Compressor Oil (Full Charge)</td>
<td>0.226 lbf (8 oz.)</td>
</tr>
</tbody>
</table>

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Torque Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressor Suction and Discharge Connector Bolt</td>
<td>34 N·m (25 ft. lbs.)</td>
</tr>
<tr>
<td>Shaft Nut</td>
<td>17 N·m (12 ft. lbs.)</td>
</tr>
<tr>
<td>Pressure Relief Valve</td>
<td>9 N·m (80 in. lbs.)</td>
</tr>
<tr>
<td>Through Bolts</td>
<td>9 N·m (80 in. lbs.)</td>
</tr>
<tr>
<td>Oil Drain Plug</td>
<td>16 N·m (12 ft. lbs.)</td>
</tr>
</tbody>
</table>
SPECIAL TOOLS

<table>
<thead>
<tr>
<th>Number</th>
<th>Tool Description</th>
<th>Number</th>
<th>Tool Description</th>
<th>Number</th>
<th>Tool Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>J-5403 Snap Ring Pliers</td>
<td>10</td>
<td>J-23128-A</td>
<td>19</td>
<td>J-33022</td>
</tr>
<tr>
<td>2</td>
<td>J-6083 Snap Ring Pliers</td>
<td>11</td>
<td>J-29886</td>
<td>20</td>
<td>J-33023-A</td>
</tr>
<tr>
<td>3</td>
<td>J-8092 Driver Handle</td>
<td>12</td>
<td>J-33011</td>
<td>21</td>
<td>J-33024</td>
</tr>
<tr>
<td>4</td>
<td>J-8433-1 Puller Bar</td>
<td>13</td>
<td>J-33013-A</td>
<td>22</td>
<td>J-33025</td>
</tr>
<tr>
<td>5</td>
<td>J-8433-3 Forcing Screw</td>
<td>14</td>
<td>J-33016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>J-9398-A Pulley Bearing Remover</td>
<td>15</td>
<td>J-33017</td>
<td>23</td>
<td>J-34492</td>
</tr>
<tr>
<td>7</td>
<td>J-9481-A Pulley Bearing Installer</td>
<td>16</td>
<td>J-33019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>J-9553-01 O-ring Seal Remover</td>
<td>17</td>
<td>J-33020</td>
<td>24</td>
<td>J-35372</td>
</tr>
<tr>
<td>9</td>
<td>J-9625-A</td>
<td>18</td>
<td>J-34614</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>J-23128-A</td>
<td>19</td>
<td>J-33022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>J-29886</td>
<td>20</td>
<td>J-33023-A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>J-33011 O-ring Seal Installer</td>
<td>21</td>
<td>J-33024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>J-33013-A Hub and Drive Plate Remover and Installer</td>
<td>22</td>
<td>J-33025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>J-33016 Cylinder Alignment Rod</td>
<td>23</td>
<td>J-34492</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>J-33017 Pulley and Bearing Assembly Installer</td>
<td>24</td>
<td>J-35372</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>J-33019 Bearing Staking Tool</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>J-33020 Pulley Puller</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>J-34614 Shaft Seal Protector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>J-33022 6 Point 13 mm Socket</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>J-33023-A Puller Pilot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>J-33024 Clutch Coil Installer Adapter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>J-33025 Clutch Coil Puller Legs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>J-34992 Compressor Holding Fixture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>J-35372 Clutch Hub Holding Tool</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F-04579
SECTION 3B2

MANUAL STEERING GEAR

NOTICE: These fasteners are important attaching parts in that they could affect the performance of vital components and systems, and/or could result in major repair expense. They must be replaced with one of the same part number or with an equivalent part if replacement becomes necessary. Do not use a replacement part of lesser quality or substitute design. Torque values must be used as specified during reassembly to assure proper retention of these parts.

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>3B2-1</td>
</tr>
<tr>
<td>Saginaw Model 525</td>
<td>3B2-2</td>
</tr>
<tr>
<td>Saginaw Model 535</td>
<td>3B2-6</td>
</tr>
<tr>
<td>Specifications</td>
<td>3B2-10</td>
</tr>
<tr>
<td>Adjustment</td>
<td>3B2-10</td>
</tr>
<tr>
<td>Fastener Torque</td>
<td>3B2-10</td>
</tr>
<tr>
<td>Special Tools</td>
<td>3B2-10</td>
</tr>
</tbody>
</table>

DESCRIPTION

The Saginaw steering gear is the recirculating ball nut and worm type. The worm is located on the lower end of the steering shaft. The ball nut is mounted on the worm and the steel balls act as a rolling thread between the worm and nut to provide a low friction drive between them.

Teeth on the ball nut engage teeth on the pitman shaft sector. The teeth on the ball nut are made so that a tighter fit exists between the ball nut and pitman shaft sector teeth when the front wheels are in the straight ahead position. The sector teeth are slightly tapered so that a proper preload may be obtained by moving the pitman shaft endways by means of a preload adjuster screw which extends through the gear housing side cover. The head of the preload adjuster and a selectively fitted shim fit snugly into a T-slot in the end of the pitman shaft, so that the screw also controls the end play of the shaft.

- The model 525 steering gear is used on C, G and P model vehicles, (figure 1).
- The model 535 steering gear is used on the S, T and M model vehicles, (figure 5).

For visual identification the 535 gear has a four bolt side cover and the 525 gear has three bolts. The larger (535) gear has a 28.8 mm (1.137-in.) diameter wormshaft measured on the O.D. of the worm thread and a 31.7 mm (1.25-in.) diameter pitman shaft. The smaller (525) gear has a 26.2 mm (1.034-in.) diameter wormshaft and a 28.5 mm (1.125-in.) diameter pitman shaft.
1 - NUT, WORM BRG. ADJUSTER LOCK
2 - ADJUSTER, WORM THRUST BRG.
3 - RACE, THRUST BEARING
4 - BEARING ASSY. WORM THRUST
5 - RETAINER, LOWER BEARING
6 - NUT, BALL
7 - WORM, STEERING
8 - BEARING ASSY, WORM THRUST
9 - RACE, THRUST BEARING
10 - SEAL, PITMAN SHAFT GREASE
11 - HOUSING, STEERING GEAR
12 - SEAL, STEERING SHAFT
13 - GASKET, HOUSING
14 - BUSHING OR NEEDLE BRG. PITMAN SHAFT
15 - GEAR, PITMAN SHAFT
16 - ADJUSTER, PRELOAD
17 - SHIM, PRELOAD ADJUSTER
18 - COVER ASSY, HOUSING
19 - NUT, PRELOAD ADJUSTER
20 - BOLT, FLG. HEX HD
21 - SCREW ASSY., BALL GUIDE CLAMP
22 - CLAMP, BALL RETURN GUIDE
23 - GUIDE, BALL RETURN (4)
24 - BALL
25 - WASHER, PITMAN SHAFT
26 - NUT, PITMAN SHAFT
1. **REMOVE AND INSTALL WORM SHAFT SEAL GEAR ASSEMBLED**

REMOVE
1. Wrap 0.1 mm to 0.2 mm (.005" to .008") shim stock around shaft and insert between shaft and seal. Pry seal out.

INSTALL
1. Install parts as shown.

NOTICE: Do not turn steering wheel hard against "stops" when linkage is disconnected.

2. **REMOVE AND INSTALL PITMAN SHAFT AND SIDE COVER**

REMOVE
1. Center steering gear.
2. Remove parts as shown.

INSTALL
1. Before installing turn preload adjuster screw counter-clockwise until it bottoms, then back screw off one half turn.
2. Install parts as shown

Checking end clearance

If clearance is greater than .05 mm (.002") a steering gear lash adjuster kit is available.

LUBRICATION

The steering gear requires .312 kg (11 oz) of lubricant GM4673M or equivalent.

Figure 2—Model 525 — Chart A
3. REMOVE AND INSTALL WORMSHAFT AND BALL NUT

REMOVE

1. Loosen lock nut. Use punch against edge of slot.
2. Remove parts as shown.

NOTICE: Use care that the ball nut does not run down to either end of the worm. Damage may be done to the ends of the ball guides if the ball nut is allowed to rotate until stopped at the end of the worm.

INSTALL

1. Install parts as shown.

4. DISASSEMBLE AND ASSEMBLE WORM BEARING ADJUSTER

DISASSEMBLE

1. Pry lower bearing retainer out with screwdriver using J-5755.
2. Remove cup using J-5822 puller and slide hammer.

ASSEMBLE

1. Press cup into adjuster using J-5755.
2. Install parts as shown.

5. DISASSEMBLE AND ASSEMBLE WORMSHAFT AND BALL NUT

DISASSEMBLE

1. Disassemble parts as shown.
2. Clean and inspect all parts for excessive wear.

ASSEMBLE

1. Assemble parts as shown.
2. Refer to Fig A for number of balls used.

Figure 3—Model 525 — Chart B
6. ADJUST WORM BEARING PRELOAD

1. Tighten worm bearing adjuster until it bottoms then loosen one-quarter turn.
2. Carefully turn the wormshaft all the way to end of travel then turn back one-half turn.
3. Tighten adjuster plug until torque wrench reads 0.6 to 1.0 N·m (5 to 8 in lbs)
4. Tighten locknut using punch against edge of slot.

7. ADJUST "OVER CENTER" PRELOAD

A. Back off preload adjuster until it stops, then turn it in one full turn.
B. Turn adjuster in until torque to turn stub shaft is 0.5 to 1.2 N·m (4 to 10 in lbs) more than reading #1.

With gear at center of travel check torque to turn stub shaft (reading #1)

Torque adjuster lock nut to 34 N·m (25 ft lbs)
Prevent adjuster screw from turning while torquing lock nut.

Figure 4—Model 525 — Chart C — Adjustment
1. Worm Bearing Adjuster Locknut
2. Worm Bearing Adjuster
3. Lower Worm Bearing Cup
4. Lower Worm Bearing
5. Lower Bearing Retainer
6. Ball Nut
7. Worm Shaft
8. Upper Worm Bearing
9. Upper Worm Bearing Cup
10. Pitman Shaft Seal
11. Housing
12. Worm Shaft Seal
13. Side Cover Gasket
14. Pitman Shaft Needle Bearing
15. Pitman Shaft
16. Preload Adjuster
17. Preload Adjuster Shim
18. Side Cover
19. Preload Adjuster Nut
20. Side Cover Bolts
21. Ball Guide Clamp Screw
22. Ball Guide Clamp
23. Ball Guide
24. Balls
25. Lockwasher
26. Pitman Arm Nut
30. Top Studed Side Cover Bolt (Used on some models)
1. REMOVE AND INSTALL WORM SHAFT SEAL GEAR ASSEMBLED

REMOVE
1. Wrap 0.1 mm to 0.2 mm (.005" to .008") shim stock around shaft and insert between shaft and seal. Pry seal out.

INSTALL
1. Install parts as shown.

NOTICE: Do not turn steering wheel hard against "stops" when linkage is disconnected.

2. REMOVE AND INSTALL PITMAN SHAFT AND SIDE COVER

REMOVE
1. Center steering gear.
2. Remove parts as shown.

INSTALL
1. Before installing turn preload adjuster screw counterclockwise until it bottoms, then back screw off one half turn.
2. Install parts as shown.

Checking end clearance

If clearance is greater than .05 mm (.002") a steering gear lash adjuster kit is available

PRELOAD ADJUSTER NUT
(If replacing gasket only, do not remove.)

SIDE COVER

SIDE COVER BOLTS

SHIM

FEELER GAUGE
(Select to get proper clearance)

PITMAN SHAFT

LUBRICATION

The steering gear requires .315 kg (11 oz) of lubricant GM4673M or equivalent.
3B2-8 MANUAL STEERING GEAR

3. REMOVE AND INSTALL WORMSHAFT AND BALL NUT

REMOVE
1. Loosen lock nut. Use punch against edge of slot.
2. Remove parts as shown.

INSTALL
1. Install parts as shown.

NOTICE: Use care that the ball nut does not run down to either end of the worm. Damage may be done to the ends of the ball guides if the ball nut is allowed to rotate until stopped at the end of the worm.

4. DISASSEMBLE AND ASSEMBLE WORM BEARING ADJUSTER

DISASSEMBLE
1. Pry lower bearing retainer out with screwdriver.
2. Remove cup using J-5822 puller and slide hammer.

ASSEMBLE
1. Press cup into adjust using J-5755.
2. Install parts as shown.

5. DISASSEMBLE AND ASSEMBLE WORMSHAFT AND BALL NUT

DISASSEMBLE
1. Disassemble parts as shown.
2. Clean and inspect all parts for excessive wear.

ASSEMBLE
1. Assemble parts as shown.
2. Refer to figure 3 (fig. A) for number of balls used.

Figure 7—Model 535 — Chart B
6. REMOVE AND INSTALL PITMAN SHAFT SEALS AND BEARING

REMOVE
1. Clean end of housing thoroughly to prevent dirt from entering and be extremely careful not to score the housing bore.
2. Use a screwdriver, pry seal from bore.

INSTALL
1. Install parts as shown.

- **HOUSING ASSEMBLY**
 Inspect for burrs.

- **PITMAN SHAFT SEAL**

- **NEEDLE BEARING**
 Remove only if it needs replacing.

7. ADJUST WORM BEARING PRELOAD
1. Tighten worm bearing adjuster until it bottoms then loosen one-quarter turn.
2. Carefully turn the wormshaft all the way to end of travel then turn back one-half turn.
3. Tighten adjuster plug until torque wrench reads 0.6 to 1.0 N·m (5 to 8 in-lbs).
4. Tighten locknut using punch against edge of slot.

8. ADJUST "OVER CENTER" PRELOAD

A. Back off preload adjuster until it stops, then turn it in one full turn.

B. Turn adjuster in until torque to turn stub shaft is 0.5 to 1.2 N·m (4 to 10 in-lbs) more than reading #1.

With gear at center of travel, check torque to turn stub shaft (reading #1)

Torque adjuster lock nut to 34 N·m (25 ft-lbs). Prevent adjuster screw from turning while torquing lock nut.

Figure 8—Model 535 — Chart C — Adjustment
SPECIFICATIONS

ADJUSTMENT

<table>
<thead>
<tr>
<th>Item</th>
<th>Torque to Turn Worm Shaft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worm Bearing</td>
<td>0.6-1.0 N·m 5-8 In. Lbs.</td>
</tr>
<tr>
<td>Over Center Preload</td>
<td>0.5-1.2 N·m 4-10 In. Lbs.</td>
</tr>
<tr>
<td>Total Steering Gear Preload</td>
<td>1.8 N·m 16 In. Lbs.</td>
</tr>
</tbody>
</table>

In excess of Worm Bearing Preload

FASTENER TORQUE

SAGINAW MODEL 525

<table>
<thead>
<tr>
<th>Component</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear to Frame Bolts</td>
<td>95</td>
<td>70</td>
</tr>
<tr>
<td>Pitman Shaft Nut</td>
<td>251</td>
<td>185</td>
</tr>
<tr>
<td>Side Cover Bolts</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Pitman Shaft Adjusting Screw Locknut</td>
<td>34</td>
<td>25</td>
</tr>
<tr>
<td>Coupling Flange To Gear Pinch Bolt</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Coupling Clamp Nut (Starfire)</td>
<td>70</td>
<td>50</td>
</tr>
<tr>
<td>Clamp To Ball Nut Screw</td>
<td>5.5</td>
<td>4</td>
</tr>
</tbody>
</table>

SAGINAW MODEL 535

<table>
<thead>
<tr>
<th>Component</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear to Frame Bolts</td>
<td>95</td>
<td>70</td>
</tr>
<tr>
<td>Side Cover Bolts</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td>Pitman Shaft Adjusting Screw Locknut</td>
<td>30</td>
<td>22</td>
</tr>
<tr>
<td>Clamp to Ball Nut Screw</td>
<td>5.5</td>
<td>4</td>
</tr>
</tbody>
</table>

SPECIAL TOOLS

1. J-5822: Worm Bearing Adjuster Cup Puller (Use with J-2619-01)
2. J-6278: Pitman Shaft Bearing Remover
3. J-35469: Pitman Shaft Bearing Installer
4. J-35365: Worm Bearing Cup Installer
5. J-8092: Treaded Universal Driver Handle (\(\frac{3}{4}\)" - 10 Thread)
SECTION 3B3

POWER STEERING

The following notice applies to one or more steps in the assembly procedure of components in this portion of the manual as indicated at appropriate locations by the terminology "NOTICE: See Notice on page 3B3-1 of this Section."

NOTICE: All steering fasteners are important attaching part in that it could affect the performance of vital components and systems, and/or could result in major repair expense. They must be replaced with one of the same part number or with an equivalent part if replacement becomes necessary. Do not use a replacement part of lesser quality or substitute design. Torque values must be used as specified during reassembly to assure proper retention of this part.

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>3B3-1</td>
</tr>
<tr>
<td>Saginaw Integral Power Steering Gear—RV, G, P, ST, M</td>
<td>3B3-3</td>
</tr>
<tr>
<td>Disassembly</td>
<td>3B3-3</td>
</tr>
<tr>
<td>Cleaning and Inspection</td>
<td>3B3-5</td>
</tr>
<tr>
<td>Assembly</td>
<td>3B3-6</td>
</tr>
<tr>
<td>Saginaw Integral Power Steering Gear—CK (GMT 400)</td>
<td>3B3-9</td>
</tr>
<tr>
<td>Saginaw Power Steering Pump—Model TC</td>
<td>3B3-15</td>
</tr>
<tr>
<td>Disassembly</td>
<td>3B3-15</td>
</tr>
<tr>
<td>Cleaning and Inspection</td>
<td>3B3-15</td>
</tr>
<tr>
<td>Assembly</td>
<td>3B3-15</td>
</tr>
<tr>
<td>Saginaw Power Steering Pump Model P</td>
<td>3B3-19</td>
</tr>
<tr>
<td>Disassembly</td>
<td>3B3-19</td>
</tr>
<tr>
<td>Cleaning and Inspection</td>
<td>3B3-19</td>
</tr>
<tr>
<td>Assembly</td>
<td>3B3-20</td>
</tr>
<tr>
<td>Saginaw Power Steering Pump Model CB</td>
<td>3B3-20</td>
</tr>
<tr>
<td>Component Repair</td>
<td>3B3-20</td>
</tr>
<tr>
<td>Hydraulic Pump Assembly</td>
<td>3B3-22</td>
</tr>
<tr>
<td>Specifications</td>
<td>3B3-23</td>
</tr>
<tr>
<td>Special Tools</td>
<td>3B3-24</td>
</tr>
</tbody>
</table>

DESCRIPTION

The hydraulic power steering system consists of a pump, an oil reservoir, a steering gear, a pressure hose, and a return hose.

The steering gear is made by Saginaw Division, General Motors. The steering gear is identified by a large S cast into the side of the housing. A building date is stamped in the cover. The building date is a four digit number. The first three digits are the Julian day of the year. The remaining digit is the last digit of the year.

The power steering pump is made by Saginaw Division, General Motors.

The power steering gear (figure 1) has a recirculating ball system which acts as a rolling thread between the wormshaft and the rack piston. The wormshaft is supported by a thrust bearing preload and two conical thrust races at the lower end, and a bearing assembly in the adjuster plug at the upper end. When the wormshaft is turned right, the rack piston moves up in gear. Turning the wormshaft left moves the rack piston down in gear. The rack piston teeth mesh with the sector, which is part of the pitman shaft. Turning the wormshaft turns the pitman shaft, which turns the wheels through the steering linkage.

The control valve in the steering gear directs the power steering fluid to either side of the rack piston. The rack piston converts the hydraulic pressure into a mechanical force. If the steering system becomes damaged and loses hydraulic pressure, the vehicle can be controlled manually.

The hydraulic pump is a vane-type design. There are two types, submerged and nonsubmerged. Submerged pump (P models) have a housing and internal parts that are inside the reservoir and operate submerged in oil. The nonsubmerged pump (TC models with or without reservoir) function the same as the submerged pump except that the reservoir is separate from the housing and internal parts.

There are two bore openings at the rear of the pump housing. The larger opening contains the cam ring, pressure plate, thrust plate, rotor and vane assembly, and end plate. The smaller opening contains the pressure line...
Figure 1—Integral Steering Gear Components — RV, G, P, ST and M Vehicles
union, flow control valve, and spring. The flow control orifice is part of the pressure line union. The pressure relief valve inside the flow control valve limits the pump pressure.

SAGINAW INTEGRAL POWER STEERING GEAR—RV, G, P, ST, M

NOTICE: Repair the steering gear in a clean, dust-free location, using clean tools and equipment. Dirt or grit will damage the machined surfaces and result in leakage or damage to the steering gear assembly.

If broken components or foreign materials are found during disassembly of the gear the hydraulic system should be disassembled, inspected, cleaned and flushed before servicing is complete.

The ball nut and control rings (seals) generally need not be replaced unless cut or damaged. If cut or damaged, inspect all mating parts for burrs, cracks, scratches, or damage. Replace or repair as needed.

In some instances, “power steering fluid” will be specified to lubricate parts upon assembly. In these cases, GM Power Steering Fluid, part no. 1050017 or equivalent should be used. DO NOT use brake fluid, automatic transmission fluid, or other non-approved fluids.

DISASSEMBLY

Remove or Disconnect (Figures 2 through 12)

Tools Required:
J-4245 Internal Snap Ring Pliers
J-21552 Ball Retainer Tool
J-8524-1 Bearing Remover
J-7624 Spanner Wrench
J-7079-2 Driver
J-6278 Pitman Shaft Bearing Puller
J-21552 Rack Piston Arbor

1. Retaining Ring (220) (figure 2).
 - Pry retaining ring out of the housing groove with a screwdriver (figure 3).

2. Plug (219). Turn stud shaft (251) to the left only until the plug is forced out of the cylinder.

3. Seal (218).

4. Plug (215) from the rack piston (214) (figure 4).

5. Nut (227), bolt (226), side cover (225) and gasket (224). Turn adjuster screw (222) to the right until the side cover separates from the pitman shaft (221).

6. Pitman shaft (221). Turn the stub shaft (251) to the left until the pitman shaft teeth (221) and rack piston (214) disengage.

7. Retaining ring (205) with J-4245.

8. Washers (207) and seals (208) using a screwdriver.

10. Rack piston (214) and balls (213).
 - Insert tool J-21552 into the rack piston bore with the pilot of the tool seated into the end of the worm (248).

11. Adjuster nut (245).

 - Retaining ring (244) using J-4245.
 - Washer (243), seal (242) and bearing (241).
 - Bearing retainer (234). Pry the retainer with a screwdriver at the raised area (figure 7).
 - Seal (239) and needle bearing (241). Use J-8524-1 and J-7079-2 (figure 8).
13. Valve (250) and wormshaft (248) as an assembly, with both races (246) and bearing (247).
 - Wormshaft (248) from valve assembly (figure 9).
 - Races (246) and bearing (247) from the wormshaft (248).
 - Seal (249).

14. Stub shaft (251) from valve body (250) (figure 10).
 - Hold the assembly and lightly tap the stub shaft against the bench until the shaft cap is free from the valve body.
 - Pull the shaft assembly until the shaft cap clears the valve body by about 6 mm (1/4-inch).
 - Valve spool (252) and seals (230) and (231) (figure 11).

15. Screws (210), clamp (211) and ball guide (212).
 - Balls (213).

Important
- The following procedure should not be performed with the valve assembly in the gear housing.

CLEANING AND INSPECTION

--- **Clean**

- All parts with solvent and blow dry.

--- **Inspect (Figure 1)**

1. Pitman shaft and side cover.
 - Bearing. Needles should rotate freely using finger pressure. Replace the bearing and side cover (225) if necessary.
 - Bearing surfaces in the side cover (225) for scoring. Replace the side cover assembly if necessary.
 - Sealing and bearing surfaces of the pitman shaft (221) for roughness, nicks, or other damage. Replace the pitman shaft assembly if necessary.
 - Pitman shaft (221) for excessive wear or scoring. Check the sector gear teeth for wear. Replace the pitman shaft assembly if necessary.
 - Adjuster screw (222) threads for wear. The adjuster screw must be free to turn with no end play.

2. Rack piston.
 - Worm (248) and rack piston (214) grooves and all balls (213) for scoring. BOTH MUST BE REPLACED as a matched assembly.
 - Seal (216) and ring (217) for wear.
 - Ball return guide halves (212) for cracks and damaged.
 - Bearing (247) and races (246) for scoring and excessive wear.
 - Rack piston (214) teeth and external ground surfaces for scoring or excessive wear. If either condition exists, replace the rack piston (214) and worm (248).

3. Adjuster plug.
3B3-6 POWER STEERING

1. Connectors (229), using J-6217 (figure 12).
2. Balls (213), alternating by color, in the rack piston (214) (figure 13). Use J-21552 in the rack piston.
 • Lubricate the 24 balls with power steering fluid.
3. Balls (213), alternating by color, in the ball guide (212) (figure 14).
 • Retain the balls in the guide with petroleum jelly.
4. Ball guide (212), clamp (211) and screws (210) to the rack piston (214).
5. Stub shaft (251) into the valve body (250) (figure 10).
 • Lubricate the stub shaft (251) with power steering fluid.
6. Valve spool (252) and seals (230, 231) into the valve body (250).
 • Lubricate the valve spool (252) and seals (230, 231) with power steering fluid before assembling.
7. Valve body (250), seal (249), wormshaft (248), bearing races (246) and roller bearing (247).
8. Seal (239) on the adjuster plug (240).
10. Seal (242), washer (243), and retaining ring (244) in the adjuster plug (240).

Important
- The retainer projections must not extend beyond the
Figure 15—Installing the Needle Bearing

washer (243) when the retainer ring (244) is seated. The washer must be free to rotate.

11. Wormshaft, valve assembly into the steering gear housing.

Adjust (Figures 16 through 23)

Tools Required:
J-7624 Spanner Wrench
J-7754-01 Torque Wrench

1. Bearing preload:
 - Use tool J-7624. Turn the adjuster plug (240) to the left until the plug and bearing (237) are firmly bottomed - about 27 N·m (20 ft. lbs.) (figure 16).
 - Mark the housing in line with one of the holes in the adjuster plug (figure 17).
 - Measure back (to the left) 13 mm (1/2-inch) and re-mark the housing (figure 18).

Figure 16—Bottoming the Adjuster Plug

Figure 17—Marking the Housing

Figure 18—Remarking the Housing

Figure 19—Aligning the Adjuster Hole with the Second Mark
Figure 20—Pitman Shaft “Over-Center” Sector Adjustment

- Rotate the adjuster to the left until the hole in the adjuster is in line with the second mark (figure 19).

NOTICE: See “Notice” on page 3B-1 of this manual.

- Install the adjuster nut (245) and torque the

Figure 21—Installing the Pitman Shaft Bearing and Seals

A. Install Pitman Shaft Bearing

B. Install Pitman Shaft Seals

Figure 22—Aligning the Over-Center Preload

- Adjusting Screw

- Stub Shaft (251)

Figure 23—Installing the Retaining Ring

- Nut to 108 N·m (80 ft. lbs.). Hold the adjuster plug to maintain alignment of the hole with the mark.

- Check the turning torque of the stub shaft, using J-7754-01 and a 12-point socket. The reading should be taken with the beam of the wrench near vertical while turning the wrench to the left at an even rate (figure 20). If the reading is less than 0.45 N·m (4 in. lbs.) or more than 1.15 N·m (10 in. lbs.), repeat the adjustment procedure.

- Lubricate the stub shaft (251) area outside the dust seal (206) with chassis lubricant or an all purpose grease.

2. Rack piston (214) using J-21552 (figure 4).

4. Washers (207) and seals (208) using J-6219 (figure 21).

5. Retaining ring (205).

6. Pitman shaft (221), gasket (224) and side cover (225).

7. Bolt (226) and nut (227).

Adjust (Figure 22)

Tool Required:

- J-7754-01 Torque Wrench

- Pitman shaft preload (figure 22).

1. Attach tool J-7754-01 and a 12-point socket on the stub shaft splines.

2. Center the steering gear by turning the stub shaft (251) from right to left and counting the number of turns. Turn the shaft back halfway to the center position.

3. Check the combined ball and bearing preload by turning the torque wrench through the center of travel. Note the highest reading.

4. Tighten the adjusting screw (222) until the torque wrench reads 0.6 – 1.2 N·m (6–10 in. lbs.) higher than the reading noted in step “3.”

- The total reading should not exceed 2.25 N·m (20 in. lbs.) torque.
5. Re-check the preload after tightening the nut (227).
8. Plug (215), seal (216), ring (217), and seal (218).
9. Plug (219) and retaining ring (220) (figure 23).

SAGINAW INTEGRAL POWER STEERING GEAR—CK (GMT 400)

NOTICE: Repair the steering gear in a clean, dust-free location, using clean tools and equipment. Dirt or grit will damage the machined surfaces and result in leakage or damage to the steering gear assembly.

If broken components or foreign materials are found during disassembly of the gear the hydraulic system should be disassembled, inspected, cleaned and flushed before servicing is complete.

Service information is shown in figures 24, 25, 26, 27 and 28.

The ball nut and control rings (seals) generally need not be replaced unless cut or damaged. If cut or damaged, inspect all mating parts for burrs, cracks, scratches, or damage. Replace or repair as needed.

In some instances, “power steering fluid” will be specified to lubricate parts upon assembly. In these cases, GM Power Steering Fluid, part no. 1050017 or equivalent should be used. DO NOT use brake fluid, automatic transmission fluid, or other non-approved fluids.
Figure 24—Integral Steering Gear Components — CK (GMT 400)

Key No.	Part Name
1 | HOUSING, STEERING GEAR
2 | RACE, THRUST BEARING (WORM)
3 | BEARING ASM, ROLLER THRUST (WORM)
4 | RACE, THRUST BEARING (WORM)
5 | WORM, STEERING
6 | SEAL, "O" RING (STUB SHAFT)
7 | SHAFT, STUB
8 | SPOOL, VALVE
9 | SEAL, "O" RING (SPOOL)
10 | BODY, VALVE
11 | RING, VALVE BODY (3)
12 | SEAL, "O" RING (VALVE BODY) (3)
13 | RETAINER, BEARING (ADJUSTER)
14 | SPACER, THRUST BEARING
15 | RACE, UPPER THRUST BEARING (SMALL)
16 | BEARING, ROLLER THRUST
17 | RACE, UPPER THRUST BEARING (LARGE)
18 | SEAL, "O" RING (ADJUSTER)

Key No.	Part Name
19 | PLUG, ADJUSTER
20 | BEARING, NEEDLE
21 | SEAL, STUB SHAFT
22 | SEAL, STUB SHAFT DUST
23 | RING, RETAINING
24 | NUT, ADJUSTER PLUG LOCK
25 | BEARING ASM, NEEDLE (PITMAN SHAFT)
26 | SEAL, PITMAN SHAFT
27 | WASHER, SEAL BACK-UP (PITMAN SHAFT)
28 | RING, RETAINING (PITMAN SHAFT SEAL)
29 | WASHER, PITMAN SHAFT LOCK
30 | NUT, PITMAN SHAFT
31 | BALL
32 | GUIDE, BALL RETURN (2)
33 | CLAMP, BALL RETURN GUIDE

Key No.	Part Name
34 | HOUSING, STEERING GEAR
35 | SEAL, "O" RING (ADJUSTER) | USED ON SOME MODELS
36 | RING, VALVE BODY (3)
37 | WASHER, PITMAN SHAFT LOCK
38 | REAR, STEERING SHAFT
39 | SEAL, "O" RING (RACK PISTON)
40 | RING, RACK PISTON
41 | SEAL, "O" RING (HOUSING END PLUG)
42 | PLUG, RACK PISTON
43 | RING, RETAINING (HOUSING END PLUG)
44 | GEAR ASM, PITMAN SHAFT
45 | SEAL ASM, GASKET
46 | COVER ASM, HOUSING SIDE
47 | BOLT, HEX. HEAD (SIDE COVER) (4)
48 | NUT, LASH ADJUSTER
49 | SEAL, PITMAN SHAFT DUST
50 | BOOT, PITMAN SHAFT
51 | BOLT, COUPLING PINCH
52 | COUPLING, STEERING SHAFT
53 | VALVE ASM, CHECK

F-04808

3B3-10 POWER STEERING
1. **REMOVE AND INSTALL PITMAN SHAFT SEALS**
 - **REMOVE**
 1. Clean exposed end of pitman shaft and end of housing after removing pitman arm
 2. Remove retaining ring with snap ring pliers J-4245
 3. Start engine and turn wheels fully to the left to force seals and washer out.
 4. Turn off engine.
 5. Inspect housing and shaft.
 - **INSTALL**
 1. Install parts as shown.
 - **Components**
 - HOUSING ASSEMBLY
 - PITMAN SHAFT SEAL
 - SEAL BACK-UP WASHER
 - PITMAN SHAFT SEAL
 - SEAL BACK-UP WASHER
 - RETAINING RING
 - PITMAN ARM
 - LOCK WASHER
 - NUT-Torque to 250 Newton Metres (180 Ft. Lbs.)
 - **Tools**
 - Puller J-29107
 - Formerly J-6632
 - Installer J-6219
 - **Procedure**
 - Remove Pitman Arm
 - Install Seals
 - If removed, install gasket seal by bending tabs around cover edges.

2. **REMOVE AND INSTALL PITMAN SHAFT AND SIDE COVER**
 - **REMOVE**
 1. If pitman shaft and side cover are to be separated, remove preload adjuster nut
 2. Rotate stub shaft to center gear, then remove parts as shown.
 - **INSTALL**
 1. If removed, install gasket seal by bending tabs around cover edges
 2. Install parts as shown.
 - **Components**
 - SIDE COVER BOLTS
 - Torque to 60 Newton Metres (40 Ft. Lbs.)
 - PRELOAD ADJUSTER NUT
 - SIDE COVER
 - GASKET SEAL
 - PITMAN SHAFT GEAR
 - STUB SHAFT
 - HOUSING ASSEMBLY
 - PITMAN SHAFT BOOT
 - **Procedure**
 - Separate pitman shaft and gasket seal from side cover if required.

3. **REMOVE AND INSTALL HOUSING END PLUG**
 - **REMOVE**
 1. Remove parts as shown.
 - **INSTALL**
 1. Install parts as shown.
 - **Components**
 - Retaining ring
 - Access hole (Use Punch)
 - **Procedure**
 - Open end of retaining ring to be approx. 25 mm (1 inch) from access hole.

4. **REMOVE AND INSTALL RACK PISTON**
 - **REMOVE**
 1. Remove parts as shown.
 - **INSTALL**
 1. Install parts as shown.
 - **Procedure**
 - When installing rack, care should be taken not to cut teflon seal, rack piston seal compressor J-7576 or J-8947 may be used to compress seal.

Figure 25—Removing and Installing the Pitman Shaft
5. REMOVE AND INSTALL ADJUSTER PLUG ASSEMBLY

REMOVE
1. Loosen lock nut. Use punch against edge of slots.
2. Remove adjuster plug using spanner wrench J-7624.

INSTALL
1. Install parts as shown.

NOTICE: When installing adjuster plug care should be taken not to cut seals.

6. DISASSEMBLE AND ASSEMBLE ADJUSTER PLUG ASSEMBLY

DISASSEMBLE
1. Disassemble parts as shown.

ASSEMBLE
1. Assemble parts as shown.

NOTICE: When reassembling gear make sure angle of thrust races are as shown.

7. REMOVE AND INSTALL BEARING, WORM, AND VALVE ASSEMBLY

REMOVE
1. Grasp stub shaft and remove valve and worm assembly as a unit.

INSTALL
1. Install parts as shown.

Separate the valve from the worm. Note how the pin in the worm fits the slot in the valve.

NOTICE: When reassembling gear make sure angle of thrust races are as shown.

8. DISASSEMBLE AND ASSEMBLE VALVE ASSEMBLY

DISASSEMBLE
1. Disassemble parts as shown.

ASSEMBLE
1. Assemble parts as shown.

NOTICE: When reassembling gear make sure angle of thrust races are as shown.

Figure 26—Removing and Installing the Adjuster Plug Assembly
9. DISASSEMBLE AND ASSEMBLE RACK PISTON

DISASSEMBLE

1. Disassemble parts as shown.
2. Clean and inspect all parts for excessive wear.

ASSEMBLE

1. Assemble parts as shown.

NOTICE: The black balls are smaller than the silver balls. The black and silver balls must be installed alternately into the rack-piston and return guide to maintain rack piston to worm gear preload.

- **TEFLON SEAL AND "O" RING** — If replaced lubricate new seal and "O" ring with power steering fluid.
- **GUIDE** — Alternately install remainder of balls and retain with grease at each end of guide.
- **CLAMP** — Screw tighten to 5 Newton Metres (4 Ft Lbs).

Before assembling rack in housing, ball retainer J-21552 must be inserted into rack to allow removal of worm.

Turn worm until worm groove is aligned with the lower ball return guide hole.

Lubricate balls with power steering fluid, install balls, through ball return guide hole, while rotating worm counterclockwise.

WORM — Slide all the way into the rack-piston.

10. REMOVE AND INSTALL PITMAN SHAFT SEALS AND BEARING

REMOVE

1. Clean end of housing thoroughly to prevent dirt from entering and be extremely careful not to score the housing bore.
2. Use screw driver to remove pitman shaft dust seal.
3. Remove retaining ring with snap ring pliers J-4245.
4. Using screw driver, pry seals and washers from bore.

INSTALL

- **HOUSING ASSEMBLY**
 - Inspect for burrs
- **SEAL BACK-UP WASHER**
- **PITMAN SHAFT DUST SEAL**

1. Coat seal lip and washer face with anhydrous calcium grease.
2. Install parts as shown.

NEEDLE BEARING
- Remove only if it needs replacing

INSTALL

- **Housing Assembly**
- **Seal back-up washer**
- **Pitman shaft dust seal**
- **Needle bearing**
- **Install pitman shaft seals**
- **Install pitman shaft bearing**
- **Install Pitman shaft bearing**

Removes bearing

When tool bottoms on housing bearing is fully installed.

Install Pitman shaft bearing.

Figure 27—Removing and Installing the Rack Piston and Pitman Shaft Seals and Bearing
11. REMOVE AND INSTALL CHECK VALVE

REMOVE
1. Remove parts as shown.
 - With small screwdriver, pry check valve from housing.
 - Care should be taken not to damage threads when prying on edge of housing.

INSTALL
1. Install parts as shown.
 - Using a piece of ¼ tubing, 4 inches long, carefully drive the check valve into the housing.

12. ADJUST THRUST BEARING PRELOAD

A. Before adjusting bearing preload, rotate the stub shaft back and forth to drain all oil from gear.

B. Using spanner wrench J-7624, tighten adjuster plug until thrust bearing is firmly bottomed, 27 Newton Metres (22 Ft. Lbs.).

C. Turn adjuster in until torque to turn stub shaft is 0.6 to 1.2 Newton Metres (6 to 10 in. Lbs.) more than reading #1.

D. Back off preload adjuster until it stops, then turn it in one full turn.

E. Measure back counterclockwise 13mm (½") and place a second mark on housing.

F. Turn adjuster counterclockwise until mark on face of adjuster lines up with second mark on housing.

G. Using punch in notch tighten lock nut securely. Hold adjuster plug to maintain alignment of the marks.

13. PITMAN SHAFT "OVER-CENTER" SECTOR ADJUSTMENT

A. When gear is on center flat on stub shaft is normally on same side as, and parallel with, side cover.

B. The block tooth on the Pitman shaft is in line with the over-center preload adjuster.

C. With gear at center of travel, check torque to turn stub shaft (reading #1).

D. Torque adjuster lock nut to 27 Newton Metres (20 Ft. Lbs.)

E. Prevent adjuster screw from turning while torquing lock nut.

Figure 28—Removing and Installing the Check Valve and Adjusting the Thrust Bearing Preload and Pitman Shaft "Over-Center" Sector
SAGINAW POWER STEERING PUMP—MODEL TC

NOTICE: Repair the pump only in a clean, dust-free location, using clean tools and equipment. Dirt or grit will damage the machined surfaces and result in leakage or damage to the pump.

If broken components or foreign materials are found during disassembly of the pump, the hydraulic system should be disassembled, inspected, cleaned and flushed before servicing is complete.

Before beginning disassembly of the pump, remove the reservoir filler cap (when used) and drain the oil from the reservoir by filler cap (when used). Drain the oil from the reservoir by inverting the pump so oil may drain out the filler hole. After the oil is drained from the reservoir, replace the cap.

DISASSEMBLY

Clean
- Exterior of the pump with solvent.

Remove or Disconnect (Figures 29 through 40)
- Clamp the front hub of the pump in a soft jawed vise.
 1. Clips (26), if equipped.
 - Pry the tab and slide the retaining clip off (figure 30).
 2. Reservoir (24) (figure 31) or return tube (15) (figure 40) depending on model.
 3. O-ring (25).
 4. Fitting (23) (figure 32).
 5. O-ring seal (22).
 6. Flow control valve (21).
 7. Flow control spring (20).
 8. Retaining ring (19) (figure 33).
 - Use suitable snap ring pliers.
 9. Driveshaft (17).
 10. Bearing (18) (figure 34).
 11. Driveshaft seal (16).
 - Pry the seal loose with a flat head screwdriver (figure 35).
 12. Retaining ring (14).
 - Insert a punch into the access hole and pry the ring loose (figure 36).
 13. Thrust plate (13) (figure 37).
 - Use a 16 mm (%/s-inch) piece of bar stock or suitable brass drift.
 15. Pump ring (11) (figure 38).
 16. Rotor (10).
 17. Vanes (9).
 18. Dowel pins (8).
 19. Pressure plate (7).
 20. O-ring (6).
 21. Pressure plate spring (5).
 22. O-ring seal (4).
 23. Dowel pin (3).
 24. Sleeve (2) (figure 39).

CLEANING AND INSPECTION

Clean
- All parts with solvent and blow dry.

Inspect (Figure 39)
1. Rotating group components
 - Vane (9) tips for scoring or wear.
 - Fit of vanes (9) in the rotor (10). The vanes must fit properly in the rotor slots, without sticking or excessive play.
 - Rotor slots for burrs and excessive wear at the thrust faces.
 - Inner surface of the pump ring (11) for scoring or wear.
 - Thrust plate (13) and pressure plate (7) for wear on the plate surfaces.
 - If heavy wear is present, or parts are faulty, replace the entire rotating group.
2. Bearing (18). If the bearing is rough or loose, replace it.
 - Seal (16) for leakage, cracking, or swelling. If so replace.
3. Driveshaft (17) for excessive burning or scoring.
 - Bearing bore for excessive scoring or burning.
4. Control valve (15). It must move smoothly in the valve bore.

ASSEMBLY

Install or Connect (Figures 29, 40 through 46)
1. Return tube (15) (figure 40) or reservoir (24) (figure 29) depending on model.
2. Sleeve (2) (figure 41).
3. Dowel pin (3) (figure 42).
4. O-ring seal (4).
5. Pressure plate spring (5).
6. O-ring seal (6) (figure 43).
7. Pressure plate (7). Mark top of pressure plate directly over the pin hole in the plate.
8. Dowel pin (8).

Important
- Lubricate the O-ring (12), pump ring (11), rotor (10), and vanes (9) with power steering fluid.
9. Vane (9). The rounded edge of the vanes face away from the rotor.
10. Rotor (10). Make sure the counterbore faces the driveshaft end of the housing (figure 44).
11. Pump ring (11). Make sure the identification marks face up (figure 45).
13. Thrust plate (13).
 - The dimples in the thrust plate should line up with the bolt holes in the housing and that the thrust plate engages the pump ring dowel pins.
A. Used On Some Models
1. Housing
2. Sleeve
3. Dowel Pin
4. O-Ring Seal
5. Pressure Plate Spring
6. O-Ring Seal
7. Pressure Plate
8. Dowel Pin
9. Vane
10. Rotor
11. Pump Ring
12. O-Ring Seal
13. Thrust Plate
14. Thrust Plate Retaining Ring
15. Return Tube
16. Drive Shaft Seal
17. Drive Shaft
18. Bearing
19. Retaining Ring
20. Flow Control Spring
21. Control Valve
22. O-Ring Seal
23. Fitting
24. Reservoir
25. O-Ring Seal
26. Clips
27. Capstick

Figure 29—Power Steering Pump Components — Model TC

- Use a press to compress the thrust plate (figure 46).
- Opening of ring (14) centered with bolt hole nearest to access hole.

15. Driveshaft seal (16).

Figure 30—Removing the Reservoir Clips

Figure 31—Removing the Reservoir

D. Flat Head Screw Driver

26. Clips
Figure 32—Removing the Fitting, Control Valve, Spring and Seal

19. Drive Shaft

E. Note the position of the large lug.

17. Drive Shaft

19. Retaining Ring

Figure 33—Remove and Install Retaining Ring

• Use a suitable socket to press seal into housing until it bottoms (figure 35).

16. Bearing (18) onto the driveshaft (17) (figure 34).

Figure 34—Remove and Install Driveshaft Bearing

F. Press

G. Support Ring

17. Drive Shaft

18. Bearing

F. Press

K. Bar Stock

13. Thrust Plate

14. Thrust Plate Retaining Ring

Figure 37—Removing the Thrust Plate

Figure 35—Remove and Install Driveshaft Seal

I. Punch

J. Access Hole

16. Drive Shaft Seal

H. Suitable Socket and a Press

Figure 36—Removing the Retaining Ring

• Slide the assembly into the housing while rotating the driveshaft so that the shaft serrations engage with the rotor.

17. Retaining ring (19). Use a suitable pair of snap ring pliers (figure 33).
4. O-Ring Seal 12. O-Ring Seal
5. Pressure Plate Spring
6. O-Ring Seal
7. Pressure Plate
8. Dowel Pin

Figure 38—Pump Housing Components

A. Punch
2. Sleeve Assembly

Figure 39—Removing the Sleeve Assembly

- Make sure the beveled side of ring (19) is properly located.

18. Flow control spring (20).
19. Flow control valve (21).
20. O-ring seal (22).
22. Reservoir (24) (figure 31).
23. Clips (26) (figure 30).

Figure 40—Remove and Install Return Tube

Figure 41—Install Sleeve Assembly

2. Press
C. Socket
2. Sleeve Assembly

Figure 42—Installation of the Pin, Seal and Pressure Plate Spring

5. Pressure Plate Spring

POWER STEERING 3B3-19

SAGINAW POWER STEERING PUMP—MODEL P

DISASSEMBLY

- Remove or Disconnect (Figure 47)
 1. Bolt (71) and fitting (73).
 2. Reservoir (70) and seals (69).
 3. End plate retaining ring (68) using a screwdriver and punch.
 - End plate (67) and pressure plate spring (66).
 4. Control valve (58), control valve spring (59) and O-ring (60).
 5. Pressure plate (65). Tap lightly on the driveshaft with a rubber mallet.
 6. Pump ring (64) and vanes (63).
 - Shaft retaining ring (62), pump rotor (61) and thrust plate (56).
 7. Driveshaft (50).
 8. Seal (51) from the housing (53).
 - Dowel pins (55) and O-rings (54).
 - Seal (52).

CLEANING AND INSPECTION

- Clean
 - All parts with solvent and blow dry.

- Inspect (Figure 47)
 1. Rotating group components.
 - Vane (63) tips for scoring or wear.
 - Fit of vanes (63) in rotor (61) for sticking or excessive play.
 - Rotor slots for burrs and excessive wear at the thrust faces.
 - Inner surface of the pump ring (64) for scoring or wear.
 - Thrust plate (56) and pressure plate (65) for wear on plate surfaces.
 - If heavy wear is present, or parts are faulty, replace the entire rotating group.
 2. Seal (51) for leakage, cracking or swelling. If so, replace seal.
 3. Driveshaft (50) for excessive burning or scoring.
 4. Control valve (58). It must move smoothly in the valve bore.
ASSEMBLY

Install or Connect (Figure 47)

Tool Required:
- J-7728 Seal Installer

Important
- Lubricate the O-rings (54), pump ring (64), rotor (61) and vanes (63) with power steering fluid.
 1. Dowel pins (55) and O-rings (54).
 2. Seal (51) using J-7728.
 - O-ring (52).

SAGINAW POWER STEERING PUMP—MODEL CB

NOTICE: Repair the pump only in a clean, dust-free location, using clean tools and equipment. Dirt or grit will damage the machined surfaces and result in leakage or damage to the pump.

If broken components or foreign materials are found during disassembly of the pump, the hydraulic system should be disassembled, inspected, cleaned and flushed before servicing is complete.

Before beginning disassembly of the pump, remove the reservoir filler cap (when used) and drain the oil from the reservoir by filler cap (when used). Drain the oil from the reservoir by inverting the pump so oil may drain out the filler hole. After the oil is drained from the reservoir, replace the cap.

COMPONENT REPAIR

Clean
- Exterior of the pump with solvent.

CONTROL VALVE

Remove or Disconnect (Figure 48)

1. Pump from vehicle if necessary for access.
2. Fitting (7) and O-ring (6).
3. Control valve assembly (5).
4. Flow control spring (4).

Install or Connect
1. Flow control spring (4).
2. Control valve assembly (5).
3. O-ring (6) on fitting (7).
4. Fitting into the hydraulic pump housing assembly (2).

Tighten
- Fitting to 75 N·m (55 ft. lbs.).

DRIVE SHAFT SEAL
(Without Disassembly of Pump)

Remove or Disconnect (Figure 49)
Tool Required:
- J-7728 Seal Installation Tool
1. Pump from the vehicle if necessary for access.
 - Protect the drive shaft (8) with shim stock.
 - Use a small chisel to cut the drive shaft seal (3) and discard the seal.

Install or Connect (Figure 50)
- Lubricate the new drive seal (3) with power steering fluid.
1. Drive shaft seal (3) into housing (2) with J-7728.
3B3-22 POWER STEERING

RETURN TUBE

Important
- Plug the return tube (1) to prevent chips from entering the pump.

Remove or Disconnect (Figure 51)
1. Pump from the vehicle if necessary for access.
2. Damaged return tube (1) using, tap, nut, and washers.

Important
- Remove the plug and any chips before installing the return tube.

Install or Connect (Figure 52)
- Coat the end of the new return tube (1) using Locite solvent 75559 and Locite 290 adhesive, or equivalent.
1. Press the return tube (1) into the housing (2) until bottomed.

HYDRAULIC PUMP ASSEMBLY

DISASSEMBLE

Remove or Disconnect (Figures 48 and 53)
1. Retaining ring (20) using a punch in the access hole.
- Gently push on the drive shaft (8) to assist in removing end cover (19), O-ring (18), pressure plate spring (17), pump ring (11), pump vane (12), and drive shaft sub assembly consisting of:
 - Pump rotor (13).
 - Thrust plate (10).
 - Drive shaft (8).
 - Shaft retaining ring (14).
2. O-ring (16) from housing (2).
3. Dowel pins (9).
4. Drive shaft seal (3).
5. Pressure plate (5), pressure plate spring (17), and O-ring (18) from the end cover (19).
6. Shaft retaining ring (14) from the drive shaft (8).
7. Pump rotor (13) and thrust plate (10) from the drive shaft (8).

CLEANING AND INSPECTION

Clean
- All parts in power steering fluid.
- Dry parts.

Inspect
- Pump ring (11), vanes (12), thrust plate (10), and drive shaft (8) for scoring, pitting or chatter marks.
- If noted, replace the appropriate parts.

ASSEMBLY

Install or Connect (Figures 48 and 54 through 57)

Tool Required:
J-7728 Seal Installation Tool

Figure 51—Return Tube Removal

Figure 52—Return Tube Removal

Figure 53—Retaining Ring Removal

Figure 54—Seal Installation

Figure 55—Return Tube Removal
• Lubricate the new drive shaft seal (3) with power steering fluid.

1. Drive shaft seal (3) into the pump housing (2) with tool J-7728.

2. Pump ring dowel pins (9) into the housing (2).
3. Thrust plate (10), the pump rotor (13) to the drive shaft (8).
4. New shaft retaining ring (14) onto the drive shaft (8).
5. Drive shaft sub assembly into the housing (2).
6. Vanes (12) into the pump rotor (13).
7. Pump ring (11) with holes positioned correctly onto the dowel pins (9) in the housing (2).
8. Lubricate new O-ring (16) with power steering fluid.
9. O-ring (16) into the groove in the housing (2).
10. Pressure plate (15).
11. Pressure plate spring (17).
12. Retaining ring (20) into the groove in the housing (2) with the ring opening near the access hole in the housing.

SPECIFICATIONS

FASTENER TORQUE

Integral Power Steering Gear
- Pitman Shaft Over Center Preload ... 0.6–1.2 N·m (6–10 in. lbs.)
- Pitman Shaft Preload Adjuster Screw Jam Nut 27 N·m (20 in. lbs.)
- Side Cover Bolts .. .60 N·m (40 ft. lbs.)
- Pitman Shaft Nut244 N·m (180 ft. lbs.)
- Ball Return Guide Screws5 N·m (4 ft. lbs.)

Integral Power Steering Gear—CK (GMT 400)
- Pitman Shaft Nut250 N·m (180 ft. lbs.)
- Side Cover Bolts .. .60 N·m (40 ft. lbs.)
- Ball Return Guide Screws5 N·m (4 ft. lbs.)
- Pitman Shaft Preload Adjuster Screw Jam Nut 27 N·m (20 ft. lbs.)

Power Steering Pump Model TC and P
- Fitting .. .55 N·m (75 ft. lbs.)

Power Steering Pump Model CB
- Fitting .. .55 N·m (75 ft. lbs.)
SPECIAL TOOLS

1. Snap Ring Pliers
2. Valve Connector Installer
3. Ball Retainer
4. Adjuster Plug Bearing Remover
5. Driver
6. Spanner Wrench
7. Driver
8. Pitman Shaft Bearing Puller
9. Puller (Formerly J-6632)
10. Seal Installer
11. Rack Piston Seal Compressor
12. Bearing Installer
13. Seal Installer
SECTION 4B
REAR AXLE
CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checking the Axle Before Disassembly</td>
<td>4B-2</td>
</tr>
<tr>
<td>7 1/2-Inch Ring Gear</td>
<td>4B-2</td>
</tr>
<tr>
<td>Description</td>
<td>4B-2</td>
</tr>
<tr>
<td>Disassembly of the Rear Axle</td>
<td>4B-5</td>
</tr>
<tr>
<td>Cleaning</td>
<td>4B-5</td>
</tr>
<tr>
<td>Inspection</td>
<td>4B-5</td>
</tr>
<tr>
<td>Assembly of the Rear Axle</td>
<td>4B-5</td>
</tr>
<tr>
<td>8 1/2-Inch Ring Gear</td>
<td>4B-10</td>
</tr>
<tr>
<td>Description</td>
<td>4B-10</td>
</tr>
<tr>
<td>Disassembly of the Rear Axle</td>
<td>4B-13</td>
</tr>
<tr>
<td>Cleaning</td>
<td>4B-13</td>
</tr>
<tr>
<td>Inspection</td>
<td>4B-14</td>
</tr>
<tr>
<td>Assembly of the Rear Axle</td>
<td>4B-20</td>
</tr>
<tr>
<td>9 1/2-Inch Ring Gear</td>
<td>4B-20</td>
</tr>
<tr>
<td>Description</td>
<td>4B-20</td>
</tr>
<tr>
<td>Disassembly of the Rear Axle</td>
<td>4B-22</td>
</tr>
<tr>
<td>Cleaning</td>
<td>4B-23</td>
</tr>
<tr>
<td>Inspection</td>
<td>4B-23</td>
</tr>
<tr>
<td>Assembly of the Rear Axle</td>
<td>4B-23</td>
</tr>
<tr>
<td>10 1/2-Inch Ring Gear</td>
<td>4B-28</td>
</tr>
<tr>
<td>Description</td>
<td>4B-28</td>
</tr>
<tr>
<td>Disassembly of the Rear Axle</td>
<td>4B-28</td>
</tr>
<tr>
<td>Cleaning</td>
<td>4B-31</td>
</tr>
<tr>
<td>Inspection</td>
<td>4B-32</td>
</tr>
<tr>
<td>Assembly of the Rear Axle</td>
<td>4B-32</td>
</tr>
<tr>
<td>9 3/4-Inch Ring Gear</td>
<td>4B-36</td>
</tr>
<tr>
<td>Description</td>
<td>4B-36</td>
</tr>
<tr>
<td>Disassembly of the Rear Axle</td>
<td>4B-40</td>
</tr>
<tr>
<td>Cleaning</td>
<td>4B-40</td>
</tr>
<tr>
<td>Inspection</td>
<td>4B-40</td>
</tr>
<tr>
<td>Assembly of the Rear Axle</td>
<td>4B-41</td>
</tr>
<tr>
<td>10 1/2-Inch Ring Gear (Dana)</td>
<td>4B-48</td>
</tr>
<tr>
<td>Description</td>
<td>4B-48</td>
</tr>
<tr>
<td>Disassembly of the Rear Axle</td>
<td>4B-48</td>
</tr>
<tr>
<td>Cleaning</td>
<td>4B-52</td>
</tr>
<tr>
<td>Inspection</td>
<td>4B-52</td>
</tr>
<tr>
<td>Assembly of the Rear Axle</td>
<td>4B-53</td>
</tr>
<tr>
<td>12-Inch Ring Gear (Rockwell)</td>
<td>4B-61</td>
</tr>
<tr>
<td>Description</td>
<td>4B-61</td>
</tr>
<tr>
<td>Disassembly of the Rear Axle</td>
<td>4B-61</td>
</tr>
<tr>
<td>Cleaning</td>
<td>4B-61</td>
</tr>
<tr>
<td>Inspection</td>
<td>4B-63</td>
</tr>
<tr>
<td>Assembly of the Rear Axle</td>
<td>4B-66</td>
</tr>
<tr>
<td>Locking Differentials</td>
<td>4B-70</td>
</tr>
<tr>
<td>7 1/2-8 1/2 and 9 1/2-Inch Ring Gear</td>
<td>4B-70</td>
</tr>
<tr>
<td>10 1/2-Inch Ring Gear</td>
<td>4B-74</td>
</tr>
<tr>
<td>Specifications</td>
<td>4B-78</td>
</tr>
<tr>
<td>Special Tools</td>
<td>4B-83</td>
</tr>
</tbody>
</table>
CHECKING THE AXLE BEFORE DISASSEMBLY

Inspect

- Remove the axle cover from the rear axle and drain the axle lubricant into a suitable container.

1. The ring gear backlash. Refer to "Backlash Adjustment" under the specific axle heading. This information can be used to determine the cause of the axle problem. It will also help when setting up the shim packs for locating and preloading the differential case.
2. The case for metal chips. Determine where the metal chips come from, such as a broken gear or bearing cage.
- Determine the cause of the axle problem before disassembly if possible.

71/2-INCH RING GEAR

DESCRIPTION

The corporate 71/2-inch ring gear rear axle uses a conventional ring and pinion gear set to transmit the driving force of the engine to the rear wheels. This gear set transfers this driving force at a 90 degree angle from the propeller shaft to the drive shafts.

This axle is semi-floating. The axle shafts are supported at the wheel end of the shaft by a roller bearing that is pressed into the housing. The shafts are retained into the housing by retaining clips within the differential. The pinion gear is supported by two tapered roller bearings. The pinion depth is set by a shim pack located between the gear end of the pinion and the roller bearing that is pressed onto the pinion. The pinion bearing preload is set by crushing a collapsible spacer between the bearings in the axle housing.

The ring gear is bolted onto the differential case with 10 left-hand thread bolts.

The differential case is supported in the axle housing by two tapered roller bearings. The differential and ring gear are located in relationship to the pinion by using selective shims and spacers between the bearing and the axle housing. To move the ring gear, shims are deleted from one side and an equal amount are added to the other side. These shims are also used to preload the bearings which are pressed onto the differential case. Two bearing caps are used to hold the differential into the rear axle housing.

The differential is used to allow the wheels to turn at different rates of speed while the rear axle continues to transmit the driving force. This prevents tire scuffing when going around corners and prevents premature wear on internal axle parts.

The rear axle is sealed with a pinion seal, a seal at each axle shaft end, and by a gasket between the rear cover and the axle housing.

All corporate rear axles are identified by the part number on the right axle tube near the carrier. The carrier cover does not have a drain plug.

DISASSEMBLY OF THE REAR AXLE

Remove or Disconnect (Figure 1)

Tools Required:
- J-8107-2 Differential Side Bearing Remover Plug
- J-22888 Side Bearing Remover
- J-25320 Rear Pinion Bearing Remover
- J-8614-01 Pinion Flange Remover

- Place the rear axle in a suitable support.

1. The differential cover bolts (35) and the differential cover (34).
- Drain the gear lubricant into a proper container.
2. Axle shafts (2). Refer to the proper service manual.
3. Outer wheel bearings and seals. Refer to the proper service manual.
4. Pinion shaft lock screw (30).
5. Pinion shaft (29).
6. Differential pinion and side gears (26).
 - Roll the pinion gears out of the case with the pinion thrust washers (27).
 - Remove the side gears and the side gear thrust washers (28). Mark the gears and the differential case as left and right.
 - Mark the caps and the housing as left and right.

NOTICE: Be careful when prying the differential case out of the axle housing so as not to damage the cover gasket surface. The differential case must be supported when it is being removed to prevent the case from falling and damaging the case.

 - Pry the case from the axle housing at the differential "window" (figure 2).
10. Bearing outer races (22), shims (21), and spacers (23).
 - Mark the races and the shims as left and right, and place them with the bearing caps.
 - The jaws of J-22888 must pull from beneath the bearing cone and not the cage.
12. Ring gear bolts (25).
 - Ring gear bolts use left-handed threads.

NOTICE: Do not pry the ring gear from the case. This will damage the ring gear and the differential case.

13. Ring gear (20) from the differential.
1. Brake Drum
2. Axle Shaft
3. "C" Lock
4. Wheel Stud
5. Backing Plate Bolt
6. Brake Assembly
7. Axle Shaft Oil Seal
8. Axle Shaft Bearing
9. Axle Housing
10. Axle Air Vent
11. Pinion Nut
12. Washer
13. Pinion Flange
14. Pinion Oil Seal
15. Pinion Outer Bearing
16. Plug
17. Collapsible Spacer
18. Pinion Inner Bearing
19. Shim
20. Pinion and Ring Gear Set
21. Shim
22. Differential Side Bearing
23. Spacer
24. Differential Case
25. Ring Gear Bolt
26. Differential Gears
27. Pinion Thrust Washers
28. Side Gear Thrust Washers
29. Pinion Shaft
30. Pinion Shaft Lock Bolt
31. Bearing Cap
32. Bolt
33. Gasket
34. Cover
35. Bolt

Figure 1—Rear Axle Components
4B-4 REAR AXLE

Drive the ring gear off with a brass drift if necessary.

Inspect
- Drive pinion bearing preload (figure 4).
- The pinion assembly for looseness by moving it back and forth. (Looseness indicates excessive bearing wear).

14. Pinion flange nut (11) and washer (12) using J-8614-01 to hold the pinion flange.

16. Pinion (20) from the axle housing.
 - Thread the pinion nut halfway onto the pinion.
 - Replace the differential cover (34) with two bolts (35) to keep the pinion from falling to the floor.
 - Drive the pinion out of the housing with a hammer and a soft drift.
 - Remove the cover (34) and the pinion (20).
17. Collapsible spacer (17) from the pinion (figure 5).
18. Outer seal (14) and outer pinion bearing (15).
19. Inner bearing (18) and shim (19) from the pinion.
 - Press the bearing off the pinion using J-25320 (figure 6).
 - Remove the shim.
20. Bearing cups (15) and (18) from the axle housing using a hammer and a punch in the slots provided for this purpose.
 - Work the cups out of the housing evenly, moving the punch back and forth between one side of the cup and the other.

Figure 2—Removing the Differential Case

Figure 3—Removing Differential Side Bearings
- Drive the ring gear off with a brass drift if necessary.

Figure 4—Checking Pinion Preload

Figure 5—Pinion Collapsible Spacer

Figure 6—Removing the Pinion Rear Bearing
CLEANING

Do not steam clean drive parts having ground and polished surfaces such as gears, bearings, and shafts. These parts should be cleaned in a suitable solvent. All parts should be disassembled before cleaning. Parts should be thoroughly dried immediately after cleaning. Use soft, clean, lintless rags. Parts may be dried with compressed air. Do not allow the bearings to spin while drying them with compressed air.

INSPECTION

It is very important to carefully and thoroughly inspect all drive unit parts before reassembly. Thorough inspection of the drive parts for wear or stress and subsequent replacement of worn parts will eliminate costly drive component repair after reassembly.

AXLE HOUSING

Inspect

- The carrier bore for nicks or burrs that would prevent the outer diameter of the pinion seal from sealing. Remove any burrs that are found.
- The bearing cup bores for nicks or burrs. Remove any burrs that are found.
- The housing for cracks. Replace the housing if any cracks are found.
- The housing for foreign material such as metal chips, dirt, or rust. Refer to “Cleaning” in this section.

DIFFERENTIAL

Inspect

- Pinion gear shaft for unusual wear.
- Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
- Thrust washers for wear.
- The fit of the differential side gears in the differential case.
- The fit of the side gears on the axle shafts.
- Differential case for cracks and scoring.
- Replace all worn parts.

PINION AND RING GEAR

Inspect

- Pinion and ring gear teeth for cracking, chipping, scoring, or excessive wear.
- Pinion splines for wear.
- Pinion flange splines for wear.
- The fit of the pinion on the pinion flange.
- The sealing surface of the pinion flange for nicks, burrs, or rough tool marks which would cause damage to the seals' inside diameter and result in an oil leak.
- Replace all worn or broken parts.
- Ring and pinion gears are matched sets and are both replaced any time a replacement of either is necessary.

BEARINGS

Inspect

- Bearings visually and by feel.
- The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.
- The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.
- Bearing cups for wear, cracks, brinelling and scoring.
- Bearings and cups are only replaced as sets.
- If the rear axle was operated for an extended period of time with very loose bearings, the ring gear and drive pinion will also require replacement.
- Low mileage bearings may have minute scratches and pits on the rollers and the bearing cups from the initial pre-load. Do not replace a bearing for this reason.
- Bearing cups for cracks or chips.

SHIMS

Inspect

- Shims for cracks and chips. Damaged shims should be replaced with an equally sized service shim.

ASSEMBLY OF THE REAR AXLE

++ Install or Connect (Figures 1, 7 and 8)

Tools Required:
J-7817 Front Pinion Bearing Cup Installer
J-7818 Rear Pinion Bearing Cup Installer
J-8092 Driver Handle

- Pinion bearing cups (15) and (18) using J-7817, J-7818 and J-8092.

PINION DEPTH ADJUSTMENT (Figure 9)

Tools Required:
J-21777-40 Rear Pilot Washer
J-21777-42 Front Pilot Washer
J-21777-43 Stud Assembly — Bolt
J-21777-45 Side Bearing Discs
J-23597-1 Arbor
J-23597-11 Gage Plate
J-8001 Dial Indicator
4B-6 REAR AXLE

1. Clean all the gage parts.
2. Lubricate the front and rear pinion bearings with axle lubricant.
3. Place the bearings (15) and (18) into the pinion bearing cups.
5. Hold the stud stationary at the flats of the stud.

Figure 8—Rear Pinion Bearing Cup Installation

6. Rotate the gage plate and bearings several complete revolutions to seat the bearings.
7. Tighten the stud nut until a torque of 1.6 to 2.2 N m (15 to 25 in. lbs.) is obtained to keep the gage plate in rotation.
8. Assembly J-21777-45, J-23597-11, and J-8001 to the differential bearing bores as shown in figure 9.
 - The bearing bores must be clean and burr free.
9. Install the side bearing caps and tighten the bolts finger tight.
10. Rotate the gage plate until the gaging areas are parallel with the disks.

Figure 9—Pinion Depth Tools

11. Position the gage shaft assembly in the carrier so that the dial indicator rod is centered on the gage area of the gage block.
12. Set the dial indicator at zero. Push the indicator down on the indicator shaft until the needle rotates approximately 3/4 of a turn to the right. Tighten the dial indicator in this position.
13. Rotate the gage shaft slowly back and forth until the dial indicator reads the greatest deflection (when the indicator needle is centered between moving to the left and to the right).
14. At the point of greatest deflection, set the dial indicator to zero. Repeat the rocking action of the gage shaft to verify the zero setting.
15. Rotate the gage shaft until the dial indicator rod does not touch the gage block.
16. Record the actual number on the dial indicator and not the number which represents how far the needle travels. This is the nominal pinion setting.
 EXAMPLE: If the indicator needle moved to the left 1.70 mm (0.067-inch) to a dial reading of 0.84 mm (0.033-inch) as shown in figure 10, record the dial reading of 0.84 mm (0.033-inch) not 1.70 mm (0.067-inch).
 The dial indicator should be in the 0.50 to the 1.27 mm (0.020 to 0.050-inch) range.
17. Check the pinion face for a pinion adjustment mark. This mark indicates the best running position for the pinion from the nominal setting.
 - If the pinion is stamped with a plus number, add that many thousandths to the nominal setting. If the nominal setting is 0.033-inch and the pinion is marked +2, the correct shim depth would be 0.033-inch + 0.002-inch = 0.035-inch.
 - If the pinion is stamped with a minus number, subtract that many thousandths from the nominal setting. If the nominal setting is 0.033-inch and the pinion is marked -2, the correct shim depth would be 0.033-inch - 0.002-inch = 0.031-inch.
 - If the pinion has no plus or minus marked on the pinion, use the nominal pinion setting to select a shim.
18. Remove bearing caps (31) and depth gaging tools.
19. Install the correct pinion shim (19) according to this procedure to the pinion.

DIFFERENTIAL CASE ASSEMBLY

Install or Connect (Figure 1)

Tools Required:
- J-25299 Differential Side Bearing Installer
- J-8092 Driver Handle
- J-8107-2 Differential Side Bearing Remover Plug

- Lubricate all parts with rear axle lubricant.
1. Side gear thrust washers (28) to the side gears (26).
2. Side gears (28) to the differential case (24).
 - Place the side gears in place on the same side as removed.
3. Pinion gears (28) to the differential without the thrust washers (27).
A. Dial indicator and arbor positioned on the gage block.
B. Measurement after the arbor is moved off of the gage block.

Figure 10—Checking Pinion Depth

- Place one pinion gear onto the side gears and rotate the gears until the pinion is exactly opposite from the differential opening.
- Place the second pinion gear onto the side gears so that the pinion gear holes line up.
- Rotate the pinion gears into place, and verify that the pinion gears line up with the pinion shaft holes.

4. Pinion thrust washers (27).
 - Rotate the pinion gears toward the differential opening just enough to slide in the pinion thrust washers.

5. Pinion shaft.
6. Pinion shaft screw.
 - Check that the mating surfaces of the differential case and the ring gear are clean and burr free.

7. Ring gear (20) to the differential case (24) (figure 11).
 - Thread two left-hand threaded studs into the ring gear on opposite sides.
 - Place the ring gear onto the case, and align the studs with the holes in the case.

 - Tighten the ring gear bolts alternately in stages gradually pulling the ring gear onto the differential case.

Tighten
- The ring gear bolts in sequence to 120 N·m (90 ft. lbs.).

- Place J-8107-2 into the differential on the side opposite of bearing installation to protect the differential case.
- Drive the bearing onto the case using J-25299 and J-8092.

10. Differential case (24) to the axle housing. Refer to “Side Bearing Pre-Load Adjustment” in this section.
SIDE BEARING PRE-LOAD ADJUSTMENT

- The side bearing pre-load adjustment must be made before installing the pinion.
- The case side bearing pre-load is adjusted by changing the thickness of both the left and right shims equally. This will maintain the original backlash.
- Production shims are cast iron and are not to be reused. Measure the production shims and spacers one at a time, and add the measurements together to obtain the sizes of the left and right shim packs.
- Service spacers are 4.32 to 4.37 mm (0.170 to 0.172-inch) thick.
- Service shims are available from 1.0 to 2.54 mm (0.040 to 0.100-inch) in increments of 0.101 mm (0.004-inch).
- Be sure that the side bearing surfaces are clean and free of burrs.

1. Place the case with the bearing cups installed into the axle housing (figure 1).
 - Lubricate the axle bearings with axle lubricant.
2. Insert the service spacer between the bearing cup and the axle housing. Place the chamfered edge against the housing.
3. Install the left bearing cap and bearing cap bolts. Do not tighten the bolts.
4. Select one or two shims totaling the amount needed as shown in figure 13.
5. Install the shim(s) between the right bearing cup and the service shim.
 - The right bearing race and spacer must be against the left side of the housing.
6. Determine bearing pre-load by inserting progressively larger feeler gage sizes between the right service spacer and shim.
 - Push the feeler gage downward so that it contacts the shim at the top and bottom, and then contacts the axle housing.
 - Rotate the case while using the feeler gage. This will assure an accurate reading.
 - The weight of the case will cause a light drag. Do not mistake this drag for bearing preload.
7. Remove the left bearing cap and shim(s) from the axle housing. Measure the shims using a micrometer. The shim pack needed is the total of the shim(s) and the feeler gage. An additional pre-load of 0.10 mm (0.004-inch) will be added to each side of the differential case after the backlash adjustment is made.
9. Install the pinion. Refer to "Pinion Installation" in this section.

PINION INSTALLATION

Install or Connect

Tools Required:
- J-5590 Rear Pinion Bearing Cone Installer
- J-23911 Pinion Oil Seal Installer
- J-8614-01 Pinion Flange Remover
- The bearing cups should have been installed in "Pinion Depth Adjustment," in this section.
1. The pinion inner bearing (18) using J-5590 (figure 14).
 - Drive the bearing until the bearing cone seats on the pinion shims.
3. Pinion (20) to the axle housing.
4. Outer pinion bearing (15) onto the pinion using J-5590.
 - Hold the pinion forward from inside the case while driving the bearing onto the pinion.
5. Pinion oil seal (14) using J-23911.
6. The pinion flange (13) to the pinion by tapping it with a rawhide hammer until a few threads show through the pinion flange.
7. The pinion washer (12) and a new nut (11) while holding the pinion flange with J-8614-01.

Tighten

- The nut until the pinion end play is just taken up. Rotate the pinion while tightening the nut to seat the bearings. Once there is no end play in the pinion, the preload torque should be checked.

- Remove J-8614-01. Using an inch-pound torque wrench, check the pinion preload by rotating the pinion with the wrench (figure 15). Preload should be at or below 2.7 to 3.6 N·m (24 to 32 in. lbs.) on new bearings, or 1.0 to 1.4 N·m (8 to 12 in. lbs.) for used bearings.

- If the preload torque is below the preloads given above, continue torquing the nut in small increments. Check the preload after each tightening. Each tightening increases the bearing preload by several pounds. If the bearing preload is exceeded, the pinion will have to be removed, and a new collapsible spacer installed.

BACKLASH ADJUSTMENT

1. Install the differential case, bearing cups, spacers, and shims as determined from the “Side Bearing Preload Adjustment” earlier in this section.
2. Rotate the case several times to seat the bearings.
3. Install a dial indicator to the case using a magnetic base.
4. Place the indicator stem at the heel end of a tooth (figure 16).
 - Set the dial indicator so that the stem is in line with the gear rotation and perpendicular to the tooth angle.
5. Install the differential bearing caps (31) and bolts (32).

Tighten

- The bolts to 75 N·m (55 ft. lbs.).
6. Check and record the backlash at three or four points around the ring gear.
 - The pinion must be held stationary when checking backlash.
 - The backlash should be the same at each point within 0.05 mm (0.002-inch). If the backlash varies more than 0.05 mm (0.002-inch), check for burrs, a distorted case flange, or uneven bolting conditions.
7. Backlash at the minimum lash point measured should be between 0.13 and 0.23 mm (0.005 and 0.009-inch) for all new gear sets.
8. If the backlash is not within specifications, move the ring gear in or out from the pinion by increasing the thickness of one shim, and decreasing the thickness of the other shim by the same amount. This will maintain the correct rear axle side bearing preload.
 - Moving 0.05 mm (0.002-inch) worth of shim from one side of the differential to the other will change the backlash adjustment by 0.03 mm (0.001-inch).
9. When the backlash is correctly adjusted, remove the bearing caps and the shim packs.
10. Select a shim 0.10 mm (0.004-inch) thicker than the one removed from the left side. Insert this shim between the spacer and the left bearing race (figure 17).

11. Install the left bearing cap and bolts.
 • Do not tighten.
12. Select a shim 0.10 mm (0.004-inch) thicker than the one removed from the right side. Insert the shim between the spacer and the right bearing race, and drive the shim into place (figure 17).
13. Install the right side bearing cap, and bolts.
 • Tighten
 • All bearing cap bolts to 75 N·m (55 ft. lbs.).
14. Recheck the backlash and correct as necessary.

FINAL ASSEMBLY
1. Drive axles. Refer to the proper service manual.
2. A new cover gasket and the cover (34).
 • Tighten
 • The cover bolts (35) to 27 N·m (20 ft. lbs.).
3. Axle housing to the vehicle. Refer to the proper service manual.
4. Lubricant to the rear axle.

8 1/2-INCH RING GEAR

DESCRIPTION

The corporate 8 1/2-inch ring gear rear axle uses a conventional ring gear and pinion gear set to transmit the driving force of the engine to the rear wheels. This gear set transfers this driving force at a 90 degree angle from the propeller shaft to the drive shafts.

This axle is semi-floating. The axle shafts are supported at the wheel end of the shaft by a roller bearing that is pressed into the housing. The shafts are retained into the housing by retaining clips within the differential. The pinion gear is supported by two tapered roller bearings. The pinion depth is set by a shim pack located between the gear end of the pinion and the roller bearing that is pressed onto the pinion. The pinion bearing preload is set by crushing a collapsable spacer between the bearings in the axle housing.

The ring gear is bolted onto the differential case with left-hand thread bolts.

The differential case is supported in the axle housing by two tapered roller bearings. The differential and ring gear are located in relationship to the pinion by using selective shims between the bearing and the axle housing. To move the pinion gear, shims are deleted from one side and an equal amount are added to the other side. These shims are also used to preload the bearings which are pressed onto the differential case. Two bearing caps are used to hold the differential into the rear axle housing.

The differential is used to allow the wheels to turn at different rates of speed while the rear axle continues to transmit the driving force. This prevents tire scuffing when going around corners and prevents premature wear on internal axle parts.

The rear axle is sealed with a pinion seal, a seal at each axle shaft end, and by a gasket between the rear cover and the axle housing.

All corporate rear axles are identified by the part number on the right axle tube near the carrier. The carrier cover does not have a drain plug.

DISASSEMBLY OF THE REAR AXLE

Tools Required:
- J-8107-4 Differential Side Bearing Remover Plug
- J-22888 Side Bearing Remover
- J-8614-01 Pinion Flange Remover
- J-8612-B Rear Pinion Bearing Cone Remover

• Place the rear axle in a suitable support.
1. The differential cover bolts (14) and the differential cover (12).
 • Drain the gear lubricant into a proper container.
2. Axle shafts (33). Refer to the proper service manual.
3. Rear axle seal (28) and bearing (27). Refer to the proper service manual.
 • Refer to "Checking the Axle Before Disassembly" in this section.
4. Pinion shaft lock screw (15).
5. Pinion shaft (17).
6. Differential pinion (21) and side gears (22).
 • Roll the pinion gears out of the case with the pinion thrust washers (20).
1. Axle Housing
2. Air Vent
3. Plug
4. Collapsible Spacer
5. Inner Pinion Bearing
6. Shim
7. Ring and Pinion Gear Set
8. Differential Side Bearing
9. Shim Pack (including spacer)
10. Bearing Cap
11. Gasket
12. Cover
13. Brake Line Clip
14. Bolt
15. Pinion Shaft Lock Screw
16. Washer
17. Pinion Shaft
18. Bolt
19. Side Gear Thrust Washer
20. Pinion Thrust Washer
21. Pinion Gear
22. Side Gear
23. Ring Gear Bolt
24. Differential Case
25. Nut
26. Washer
27. Axle Shaft Bearing
28. Axle Shaft Seal
29. Brake Backing Plate
30. Bolt
31. Brake Drum
32. Wheel Stud
33. Axle Shaft
34. "C" Clip
35. Pinion Nut
36. Washer
37. Pinion Flange
38. Pinion Seal
39. Outer Pinion Bearing

Figure 18—Rear Axle Components
Figure 19—Prying the Differential Case from the Axle Housing

- Remove the side gears and the side gear thrust washers (19). Mark the gears and the differential case as left and right.

7. Differential bearing cap bolts (18).
8. Differential bearing caps (10).
- Mark the caps and the housing as left and right.

NOTICE: Be careful when prying the differential case out of the axle housing so as not to damage the cover gasket surface. The differential case must be supported when it is being removed to prevent the case from falling and damaging the case.

- Pry the case from the axle housing at the differential “window” (figure 19).

10. Bearing outer races (8) and shims (9).
- Mark the races and the shims as left and right, and place them with the bearing caps.

- The jaws of J-22888 must pull from beneath the bearing cone and not the cage. Use the slots provided for the puller.

12. Ring gear bolts (23).
- Ring gear bolts use left-handed threads.

NOTICE: Do not pry the ring gear from the case. This will damage the ring gear and the differential case.

13. Ring gear (7) from the differential case.
- Drive the ring gear off with a brass drift if necessary.

Inspect
- Drive pinion bearing preload (figure 21).
- For looseness of pinion assembly by moving it back and forth. (This indicates excessive bearing wear).

Figure 20—Differential Side Bearing Removal

14. Pinion flange nut (35) and washer (36) using J-8614-01 to hold the pinion flange (figure 22).
15. Pinion flange using J-8614-01 (figure 23).
16. Pinion (7) from the axle housing.
- Thread the pinion nut halfway onto the pinion.
- Replace the differential cover (12) with two bolts (14) to keep the pinion from falling to the floor.
- Drive the pinion out of the housing with a hammer and a soft drift (figure 24).
17. Collapsible spacer (4) from the pinion.
18. Outer pinion seal (38) and bearing (39).
19. Inner bearing (5) and shim (6) from the pinion.
- Press the bearing off the pinion using J-8612-B (figure 25).
- Remove the shim.
20. Bearing cups (5) and (39) from the axle housing using a hammer and a punch.
- Work the cups out of the housing evenly, moving the punch back and forth between one side of the cup and the other. Use the slots provided for this purpose.

Figure 21—Checking Pinion Bearing Preload
CLEANING

Do not steam clean drive parts having ground and polished surfaces such as gears, bearings, and shafts. These parts should be cleaned in a suitable solvent. All parts should be disassembled before cleaning.

INSPECTION

It is very important to carefully and thoroughly inspect all drive unit parts before reassembly.

Thorough inspection of the drive parts for wear or stress and subsequent replacement of worn parts will eliminate costly drive component repair after reassembly.

AXLE HOUSING

Inspect
- The carrier bore for nicks or burrs that would prevent the outer diameter of the pinion seal from sealing. Remove any burrs that are found.
- The bearing cup bores for nicks or burrs. Remove any burrs that are found.
- The housing for cracks. Replace the housing if any cracks are found.
- The housing for foreign material such as metal chips, dirt, or rust. Refer to “Cleaning” in this section.

DIFFERENTIAL

Inspect
- Pinion gear shaft for unusual wear.
- Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
- Thrust washers for wear.
- The fit of the differential side gears in the differential case.
- The fit of the side gears on the axle shafts.
- Differential case for cracks and scoring.
- Replace all worn parts.
4B-14 REAR AXLE

PINION AND RING GEAR

Inspect
- Pinion and ring gear teeth for cracking, chipping, scoring, or excessive wear.
- Pinion splines for wear.
- Pinion flange splines for wear.
- The fit of the pinion on the pinion flange.
- The sealing surface of the pinion flange for nicks, burrs, or rough tool marks which would cause damage to the seals' inside diameter and result in an oil leak.
- Replace all worn or broken parts.
- Ring and pinion gears are matched sets and are both replaced any time a replacement of either is necessary.

BEARINGS

Inspect
- Bearings visually and by feel.
- The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.
- The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.
- Bearing cups for wear, cracks, brinelling and scoring.
- Bearings and cups are only replaced as sets.
- If the rear axle was operated for an extended period of time with very loose bearings, the ring gear and drive pinion will also require replacement.
- Low mileage bearings may have minute scratches and pits on the rollers and the bearing cups from the initial preload. Do not replace a bearing for this reason.
- Bearing caps for cracks or chips.

SHIMS

Inspect
- Shims for cracks and chips. Damaged shims should be replaced with an equally sized service shim.

ASSEMBLY OF THE REAR AXLE

Install or Connect
Tools Required:
J-8608 Rear Pinion Bearing Cup Installer
J-8611-01 Front Pinion Bearing Cup Installer
J-8092 Driver Handle
1. Front pinion bearing cup (39) using J-8611-01 and J-8092 (figure 26).
2. Rear pinion bearing cup (5) using J-8608 and J-8092 (figure 27).

PINION DEPTH ADJUSTMENT
Tools Required:
J-8001 Dial Indicator Gage Set
J-21777-1 Arbor
J-21777-29 Gage Plate
J-21777-35 Rear Pilot Washer
J-21777-42 Front Pilot Washer

1. Clean all the gage parts.
2. Lubricate the front and rear pinion bearings with axle lubricant.
3. Place the bearings (39) and (5) into the pinion bearing cups.
5. Hold the stud stationary at the flats of the stud.

Tighten
- Stud nut to 2.2 N·m (20 in. lbs.).
6. Rotate the gage plate and bearings several complete revolutions to seat the bearings.
7. Tighten the stud nut until a torque of 1.6 to 2.2 N·m (15 to 25 in. lbs.) is obtained to keep the gage plate in rotation.
8. Assemble J-21777-45, J-21777-1 Arbor, and J-8001 to the differential bearing bore as shown in figure 29.
- The bearing bores must be clean and burr free.

Figure 26—Front Pinion Bearing Cup Installation
J-21777-43 Stud Assembly — Bolt
J-21777-45 Side Bearing Disc
1. Clean all the gage parts.
2. Lubricate the front and rear pinion bearings with axle lubricant.
3. Place the bearings (39) and (5) into the pinion bearing cups.
5. Hold the stud stationary at the flats of the stud.

Figure 27—Rear Pinion Bearing Cup Installation
9. Install the side bearing caps, and tighten the bolts finger tight.

10. Rotate the gage plate until the proper gaging area is parallel with the disks.

11. Position the gage shaft assembly in the carrier so that the dial indicator rod is centered on the gage area of the gage block.

12. Set the dial indicator at zero. Push the indicator down on the indicator shaft until the needle rotates approximately ¾ of a turn to the right. Tighten the dial indicator in this position.

13. Rotate the gage shaft slowly back and forth until the dial indicator reads the greatest deflection (when the indicator needle is centered between movement to the left and to the right).

14. At the point of greatest deflection, set the dial indicator to zero. Repeat the rocking action of the gage shaft to verify the zero setting.

15. Rotate the gage shaft until the dial indicator rod does not touch the gage block.

16. Record the actual number on the dial indicator and not the number which represents how far the needle travels. This is the nominal pinion setting.

 EXAMPLE: If the indicator needle moved to the left 1.70 mm (0.067-inch) to a dial reading of 0.84 mm (0.033-inch) as shown in figure 30, record the dial reading of 0.84 mm (0.033-inch) not 1.70 mm (0.067-inch).

17. Check the pinion face for a pinion adjustment mark. This mark indicates the best running position for the pinion from the nominal setting.

 • If the pinion is stamped with a plus number, add that many thousandths to the nominal setting. If the nominal setting is 0.033-inch and the pinion is marked +2, the correct shim depth would be 0.033-inch + 0.002-inch = 0.035-inch.
 • If the pinion is stamped with a minus number, subtract that many thousandths from the nominal setting. If the nominal setting is 0.033-inch and the pinion is marked -2, the correct shim depth would be 0.033-inch – 0.002-inch = 0.031-inch.
 • If the pinion has no plus or minus marked on the pinion, use the nominal pinion setting to select a shim.

18. Remove bearing caps (10) and depth gaging tools.

19. Install the correct pinion shim (6) to the pinion according to this procedure.

PINION INSTALLATION

Install or Connect

Tools Required:
- J-8809-01 Rear Pinion Bearing Cone Installer
- J-22388 Pinion Oil Seal Installer
- J-8614-01 Pinion Flange Remover
- J-5590 Rear Pinion Bearing Cone Installer

 • The bearing cups should have been installed in “Pinion Depth Adjustment” in this section.

1. The pinion inner bearing (5) using J-8609-01.
 • Press the bearing onto the pinion until the bearing cone seats on the pinion shims.

 • Lubricate the pinion bearings with axle lubricant.

3. Pinion (7) to the axle housing.

4. Outer pinion bearing (39) onto the pinion using J-5590.
 • Hold the pinion forward from inside the case while driving the bearing onto the pinion.

5. Pinion oil seal (38) using J-22388 (figure 31).

6. Pinion flange (37) to the pinion by tapping it with a rawhide hammer until a few threads show through the pinion flange.

7. Pinion washer (36) and a new nut (35) while holding the pinion flange with J-8614-01 (figure 32).

Tighten

 • The nut until the pinion end play is just taken up. Rotate the pinion while tightening the nut to seat the bearings. Once there is no end play in the pinion, the preload torque should be rechecked.
Figure 30—Checking Pinion Depth

- Remove J-8614-01. Using an inch-pound torque wrench, check the pinion preload by rotating the pinion with the wrench. Preload should be at or below 2.3 to 2.8 N·m (20 to 25 in. lbs.) on new bearings, or 1.1 to 1.7 N·m (10 to 15 in. lbs.) for used bearings (figure 33).
- If the preload torque is below the preloads given above, continue torquing the nut in small increments. Check the preload after each tightening. Each tightening increases the bearing preload by several pounds. If the bearing preload is exceeded, the pinion will have to be removed, and a new collapsible spacer installed.
- Once the preload has been obtained, rotate the pinion several times to assure that the bearings have seated. Recheck the preload, and adjust if necessary.

DIFFERENTIAL CASE ASSEMBLY

Install or Connect (Figure 18)

Tools Required:
- J-8107-4 Differential Side Bearing Remover Plug

Figure 31—Installing the Pinion Oil Seal

Figure 32—Installing the Pinion Flange
Figure 33—Checking Pinion Bearing Preload

J-8092 Driver Handle
J-22761 Differential Side Bearing Installer

1. Side gear thrust washers (19) to the side gears (22).
2. Side gears (22) to the differential case (24).
 • Place the side gears in place on the same side as removed.
3. Pinion gears (21) to the differential without the thrust washers (20).
 • Place one pinion gear onto the side gears so that the holes in the pinion gears are 180 degrees apart.
 • Rotate the pinion gears into place, and verify that the pinion gears line up with the pinion shaft holes.
4. Pinion thrust washers (20).
 • Rotate the pinion gears toward the differential opening just enough to slide in the pinion thrust washers.
 • Check that the mating surfaces of the differential case and the ring gear are clean and burr free.
5. Ring gear (7) to the differential case (24).
 • Thread two left-hand threaded studs into the ring gear on opposite sides (figure 34).
 • Place the ring gear onto the case, and align the holes in the case with the studs.
 • Press the ring gear onto the case far enough to start the bolts using J-8107-4 to protect the differential from the press ram (figure 35).
6. New ring gear bolts (23).
 • Tighten the ring gear bolts alternately in stages gradually pulling the ring gear onto the differential case.

 Tighten
 • The ring gear bolts in sequence to 80 N·m (60 ft. lbs.).
 • Place J-8107-4 into the differential on the side opposite of bearing installation to protect the differential case.
Side Bearing Pre-Load Adjustment

- The differential side bearing preload is adjusted by changing the thickness of both the left and right shims equally. This will maintain the original backlash.
- Production shims are cast iron and are not to be reused.
- Service spacers are 0.170 to 0.172-inch thick.
- Service shims are available from 0.040 to 0.100-inch.
- Be sure that the side bearing surfaces are clean and free of burrs.

Tool Required:
J-22779 Side Bearing Backlash Gage

1. Place the differential case and the bearing cups into the axle housing.
 - Lubricate the axle bearings with axle lubricant.
 - Support the case to keep it from falling into the axle housing.

2. Install the strap from J-22779 on the left bearing with the cap bolts. Tighten the bolts snugly.
3. Push the ring gear towards the pinion.
 - Engage the ring gear with the pinion tightly, to a backlash of 0.000 to 0.001-inch.
4. Insert J-22779 between the axle housing and the left bearing cup (figure 37).
5. Move the tool back and forth in the bore while turning the adjusting nut to the right until a noticeable drag is produced (figure 38).
 - Tighten the lock bolt on the side of the tool.
 - Leave the tool in place.
6. Install a service spacer (9) and a service shim (9) between the right bearing cup and the axle housing.
7. Determine bearing preload by inserting progressively larger feeler gage sizes between the carrier and the service shim.
8. Remove the strap, J-22779, the service spacer, service shim, feeler gage, and differential case from the axle housing.
9. Measure J-22779 in three places using a micrometer. Average the readings (figure 39).
10. Add the dimensions of the right side service spacer, service shim, and the feeler gage.
11. For an initial backlash setting, move the ring gear away from the pinion by subtracting 0.010-inch from the ring gear side shim pack and adding 0.010-inch to the shim pack on the opposite side.
12. To obtain the proper preload on the side bearings add 0.10 mm (0.004-inch) to the measurement of each shim pack.
13. Install the differential. Refer to "Backlash Adjustment" in this section.

BACKLASH ADJUSTMENT

1. Install the differential case, bearing cups, spacers, and shims as determined from the "Side Bearing Preload Adjustment" earlier in this section. (figure 40).
 - Tap the final shim into position, using a soft faced hammer.

2. Rotate the case several times to seat the bearings.

3. Install a dial indicator to the case using a magnetic base.

4. Place the indicator stem at the heel end of a tooth.
 - Set the dial indicator so that the stem is in line with the gear rotation and perpendicular to the tooth angle (figure 41).

5. Install the differential caps (10) and bolts (18).

6. Check and record the backlash at three or four points around the ring gear.
 - The pinion must be held stationary when checking backlash.
 - The backlash should be the same at each point within 0.05 mm (0.002-inch). If the backlash varies more than 0.05 mm (0.002-inch), check for burrs, a distorted case flange, uneven bolting conditions, or foreign matter between the case and the ring gear.

7. Backlash at the minimum lash point measured should be between 0.13 and 0.23 mm (0.005 and 0.009-inch) for all new gear sets.

8. If the backlash is not within specifications, move the ring gear in or out from the pinion by increasing the thickness of one shim, and decreasing the thickness of the other shim by the same amount. This will maintain the correct rear axle side bearing preload.
 - Moving 0.003-inch worth of shim from one side of the differential to the other will change the backlash adjustment by 0.002-inch.

9. Recheck the backlash and correct as necessary.

FINAL ASSEMBLY

Install or Connect (Figure 18)

1. Drive axles. Refer to the proper service manual.

2. A new cover gasket and the cover (12).

3. Axle housing to the vehicle. Refer to the proper service manual.

4. Lubricant to the rear axle.
9 1/2-INCH RING GEAR

DESCRIPTION

The corporate 9 1/2-inch ring gear rear axle uses a conventional ring and pinion gear set to transmit the driving force of the engine to the rear wheels. This gear set transfers this driving force at a 90 degree angle from the propeller shaft to the drive shafts.

This axle is semi-floating. The axle shafts are supported at the wheel end of the shaft by a roller bearing that is pressed into the housing. The shafts are retained into the housing by retaining clips within the differential. The pinion gear is supported by two tapered roller bearings. The pinion depth is set by a shim pack located between the gear end of the pinion and the roller bearing that is pressed onto the pinion. The pinion bearing preload is set by crushing a collapsable spacer between the bearings in the axle housing.

The ring gear is bolted onto the differential case with left-hand thread bolts.

The differential case is supported in the case by two tapered roller bearings. The differential and ring gear are located in relationship to the pinion by using selective shims between the bearing and the axle housing. To move the ring gear, shims are deleted from one side and an equal amount are added to the other side. The differential bearing preload is set by a threaded differential bearing adjusting nut located between the axle housing and the differential bearing cap. Two bearing caps are used to hold the differential into the rear axle housing.

The differential is used to allow the wheels to turn at different rates of speed while the rear axle continues to transmit the driving force. This prevents tire scuffing when going around corners and prevents premature wear on internal axle parts.

The rear axle is sealed with a pinion seal, a seal at each axle shaft end, and by RTV sealant between the rear cover and the axle housing.

All corporate rear axles are identified by the part number on the right axle tube near the carrier. The carrier cover does not have a drain plug.

DISASSEMBLY OF THE REAR AXLE

Remove or Disconnect (Figure 42)

Tools Required:
- J-8107-3 Differential Side Bearing Remover Plug
- J-22888 Differential Side Bearing Remover
- J-8614-01 Pinion Flange Remover
- J-22910-01 Rear Pinion Bearing Cone Remover

- Place the rear axle in a suitable support.
1. The differential cover bolts (24) and the differential cover (25).
 - Drain the gear lubricant into a proper container.
2. Axle shafts (3). Refer to the proper service manual.
3. Outer wheel bearings (5) and seals (14). Refer to the proper service manual.
4. Pinion shaft lock screw (29).
5. Pinion shaft (28).
6. Differential pinion (31) and side gears (33).
 - Roll the pinion gears out of the case with the pinion thrust washer (30).
 - Remove the side gears and the side gear thrust washers (32). Mark the gears and the differential case as left and right.
7. Adjusting nut lock bolt (18).
8. Adjusting nut lock (16).
 - Loosen the adjusting nut (17).
 - Mark the caps and the housing as left and right.

NOTICE: Be careful when prying the differential case out of the axle housing so not to damage the cover gasket surface. The differential case must be supported when it is being removed to prevent the case from falling and damaging the case.

 - Pry the case from the axle housing at the differential "window" (figure 43).
12. Bearing outer races (21), shims (21) and bearing adjusting nut (17).
 - Mark the races and the shims as left and right, and place them with the bearing caps.
 - The jaws of J-22888 must pull from beneath the bearing cone and not the cage. Use the slots provided for this purpose.
14. Ring gear bolts (26).
 - Ring gear bolts use left-handed threads.

NOTICE: Do not pry the ring gear from the case. This will damage the ring gear and the differential case.

15. Ring gear (15) from the differential.
 - Drive the ring gear off with a brass drift if necessary.

Inspect

- Drive pinion bearing preload (figure 45).
- Pinion assembly for looseness by moving it back and forth. (Looseness indicates excessive bearing wear).
16. Pinion flange nut (6) and washer (7) using J-8614-01 to hold the pinion flange (figure 46).
17. Pinion flange using J-8614-01 (figure 47).
18. Pinion (15) from the axle housing.
 - Thread the pinion nut halfway onto the pinion.
 - Replace the differential cover (34) with two bolts (35) to keep the pinion from falling to the floor.
1. Brake Drum
2. Wheel Stud
3. Axle Shaft
4. Rear Axle Seal
5. Axle Shaft Bearing
6. Pinion Nut
7. Washer
8. Pinion Flange
9. Pinion Oil Seal
10. Pinion Front Bearing
11. Collapsible Spacer
12. Axle Housing
13. Pinion Rear Bearing
14. Shim
15. Ring and Pinion Gear Set
16. Adjusting Nut Lock
17. Bearing Adjusting Nut
18. Lock Bolt
19. Bearing Cap
20. Bolt
21. Shim Pack (including spacer)
22. Differential Side Bearing
23. Brake Line Clip
24. Bolt
25. Cover
26. Ring Gear Bolt
27. Differential Case
28. Pinion Shaft
29. Pinion Shaft Lock Screw
30. Pinion Thrust Washer
31. Pinion Gear
32. Side Gear Thrust Washer
33. Side Gear
34. Brake Backing Plate
35. Split Washer
36. Bolt
37. "C" Clip

Figure 42—Rear Axle Components

Figure 43—Prying the Differential Case from the Axle Housing

Figure 44—Differential Side Bearing Removal
A. Soft Drift

Figure 48—Removing the Drive Pinion

1. Drive the pinion out of the housing with a hammer and a soft drift (figure 48).
2. Remove the cover (25) and the pinion (15).
3. Collapsible spacer (11) from the pinion.
4. Outer seal (9) and outer pinion bearing (10).
5. Inner bearing (13) and shim (14) from the pinion.
 - Press the bearing off the pinion using J-22912-01 (figure 49).
 - Remove the shim.
6. Bearing cups (10) and (13) from the axle housing using a hammer and a punch.
 - Work the cups out of the housing evenly, moving the punch back and forth between one side of the cup and the other.

CLEANING

Do not steam clean drive parts having ground and polished surfaces such as gears, bearings, and shafts. These parts should be cleaned in a suitable solvent. All parts should be disassembled before cleaning.

Parts should be thoroughly dried immediately after cleaning. Use soft, clean, lintless rags. Parts may be dried with compressed air. Do not allow the bearings to spin while drying them with compressed air.
INSPECTION

It is very important to carefully and thoroughly inspect all drive unit parts before reassembly. Thorough inspection of the drive parts for wear or stress and subsequent replacement of worn parts will eliminate costly drive component repair after reassembly.

AXLE HOUSING

Inspect

• The carrier bore for nicks or burrs that would prevent the outer diameter of the pinion seal from sealing. Remove any burrs that are found.
• The bearing cup bores for nicks or burrs. Remove any burrs that are found.
• The housing for cracks. Replace the housing if any cracks are found.
• The housing for foreign material such as metal chips, dirt, or rust. Refer to "Cleaning" in this section.

DIFFERENTIAL

Inspect

• Pinion gear shaft for unusual wear.
• Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
• Thrust washers for wear.
• The fit of the differential side gears in the differential case.
• The fit of the side gears on the axle shafts.
• Differential case for cracks and scoring.
• Replace all worn parts.

PINION AND RING GEAR

Inspect

• Pinion and ring gear teeth for cracking, chipping, scoring, or excessive wear.
• Pinion splines for wear.
• Pinion flange splines for wear.
• The fit of the pinion on the pinion flange.
• The sealing surface of the pinion flange for nicks, burrs, or rough tool marks which would cause damage to the seals' inside diameter and result in an oil leak.
• Replace all worn or broken parts.
• Ring and pinion gears are matched sets and are both replaced any time a replacement of either is necessary.

BEARINGS

Inspect

• Bearings visually and by feel.
• The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.
• The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.
• Bearing cups for wear, cracks, brinelling and scoring.
• Bearings and cups are only replaced as sets.

ASSEMBLY OF THE REAR AXLE

Install or Connect (Figures 50 and 51)

Tools Required:
J-7817 Front Pinion Bearing Cup Installer
J-22306 Rear Pinion Bearing Cup Installer

Figure 50—Front Pinion Bearing Cup Installation

• If the rear axle was operated for an extended period of time with very loose bearings, the ring gear and drive pinion will also require replacement.
• Low mileage bearings may have minute scratches and pits on the rollers and the bearing cups from the initial preload. Do not replace a bearing for this reason.
• Bearing caps for cracks or chips.

SHIMS

Inspect

• Shims for cracks and chips. Damaged shims should be replaced with an equally sized service shim.

Figure 51—Rear Pinion Bearing Cup Installation
1. Front pinion bearing cup (10) using J-7817 and J-8092.
2. Rear pinion bearing cup (13) using J-22306 and J-8092.

PINION DEPTH ADJUSTMENT

Tools Required:
- J-8001 Dial Indicator Gage Set
- J-21777-1 Arbor
- J-21777-8 Rear Pilot Washer
- J-21777-42 Front Pilot Washer
- J-21777-43 Stud Assembly — Bolt
- J-21777-85 Gage Plate
- J-21777-6 Side Bearing Disc

1. Clean all the gage parts.
2. Lubricate the front and rear pinion bearings with axle lubricant.
3. Place the bearings (10) and (13) into the pinion bearing cups.
4. Install J-21777-8, J-21777-42, J-21777-85 and J-21777-43 to the pinion bore (figure 52).
5. Hold the stud stationary at the flats of the stud.

Tighten
- Stud nut to 2.2 N·m (20 in. lbs.).
6. Rotate the gage plate and bearings several complete revolutions to seat the bearings.
7. Tighten the stud nut until a torque of 1.6 to 2.2 N·m (15 to 25 in. lbs.) is obtained to keep the gage plate in rotation.
8. Assemble J-21777-86, J-21777-1 Arbor, and J-8001 to the differential bearing bore as shown in figure 53.
 - The bearing bores must be clean and burr free.
9. Install the side bearing caps, and tighten the bolts finger tight.
10. Rotate the gage plate until the proper gaging area is parallel with the disks.
11. Position the gage shaft assembly in the carrier so that the dial indicator rod is centered on the gaging area of the gage block.

12. Set the dial indicator at zero. Push the indicator down on the indicator shaft until the needle rotates approximately ثلث of a turn to the right. Tighten the dial indicator in this position (figure 54).
13. Rotate the gage shaft slowly back and forth until the dial indicator reads the greatest deflection (when the indicator needle is centered between movement to the left and to the right).
14. At the point of greatest deflection, set the dial indicator to zero. Repeat the rocking action of the gage shaft to verify the zero setting.
15. Rotate the gage shaft until the dial indicator rod does not touch the gage block.
16. Record the actual number on the dial indicator and not the number which represents how far the needle travels. This is the nominal pinion setting.

EXAMPLE: If the indicator needle moved to the left 1.70 mm (0.067-inch) to a dial reading of 0.84 mm (0.033-inch) as shown in figure 30, record the dial reading of 0.84 mm (0.033-inch) not 1.70 mm (0.067-inch).
17. Check the pinion face for a pinion adjustment mark. This mark indicates the best running position for the pinion from the nominal setting.
 - If the pinion is stamped with a plus number, add that many thousandths to the nominal setting. If the nominal setting is 0.033-inch and the pinion is marked +2, the correct shim depth would be 0.033-inch + 0.002-inch = 0.035-inch.
 - If the pinion is stamped with a minus number, subtract that many thousandths from the nominal setting. If the nominal setting is 0.033-inch and the pinion is marked -2, the correct shim depth would be 0.033-inch - 0.002-inch = 0.031-inch.
 - If the pinion has no plus or minus marked on the pinion, use the nominal pinion setting to select a shim.
18. Remove bearing caps (10) and depth gaging tools.
19. Install the correct pinion shim (6) to the pinion according to this procedure.
PINION INSTALLATION

Install or Connect

Tools Required:
- J-22388 Pinion Oil Seal Installer
- J-22804-01 Pinion Oil Seal Spacer
- J-5590 Rear Pinion Bearing Cone Installer

- The bearing cups should have been installed in "Pinion Depth Adjustment" in this section.

1. The pinion inner bearing (13) to the pinion.
 - Press the bearing onto the pinion until the bearing cone seats on the pinion shim(s) (figure 55).

3. Lubricate the pinion bearings with axle lubricant.
4. Outer pinion bearing (10) onto the pinion using J-5590.
 - Hold the pinion forward from inside the case while driving the bearing onto the pinion.
5. Pinion oil seal (9) using J-22388 and J-22804-01 (figure 56).
6. The pinion flange (8) to the pinion by tapping it with a rawhide hammer until a few threads show through the pinion flange.
7. The pinion washer (7) and a new nut (6) while holding the pinion flange with J-8614-01 (figure 57).

Tighten
- The nut until the pinion end play is just taken up. Rotate the pinion while tightening the nut to seat the bearings. Once there is no end play in the pinion, the preload torque should be rechecked.
- Remove J-8614-01. Using an inch-pound torque wrench, check the pinion preload by rotating the pinion with the wrench. Preload should be at or below 2.3 to 2.8 N·m (20 to 25 in. lbs.) on new bearings, or 1.1 to 1.7 N·m (10 to 15 in. lbs.) for used bearings (figure 58).
- If the preload torque is below the preloads given above, continue torquing the nut in small
increments. Check the preload after each tightening. Each tightening increases the bearing preload by several pounds. If the bearing preload is exceeded, the pinion will have to be removed, and a new collapsible spacer installed.

- Once the preload has been obtained, rotate the pinion several times to assure that the bearings have seated. Recheck the preload, and adjust if necessary.

8. Differential case. Refer to "Backlash Adjustment" in this section.

DIFFERENTIAL CASE ASSEMBLY

Install or Connect (Figure 42)

Tools Required:
- J-8107-3 Differential Side Bearing Removal Plug
- J-8092 Driver Handle
- J-29710 Differential Side Bearing Installer

- Lubricate all parts with rear axle lubricant.

1. Side gear thrust washers (32) to the side gears (33).
2. Side gears (33) to the differential case (27).
 - Place the side gears in place on the same side as removed.
3. Pinion gears (31) to the differential without the thrust washers (30).
 - Place the pinion gears onto the side gears so that the holes in the pinion gears are 180 degrees apart.
 - Rotate the pinion gears into place, and verify that the pinion gears line up with the pinion shaft holes.
4. Pinion thrust washers (30).
 - Rotate the pinion gears toward the differential opening just enough to slide in the pinion thrust washers.
 - Check that the mating surfaces of the differential case and the ring gear are clean and burr free.
5. Ring gear (15) to the differential case (27).
 - Thread two left-hand threaded studs into the ring gear on opposite sides.
 - Place the ring gear onto the case, and align the holes in the case with the studs (figure 59).
 - Press the ring gear onto the case far enough to start the bolts using J-8107-3 to protect the differential from the press ram (figure 60).
6. New ring gear bolts (26).
 - Tighten the ring gear bolts alternately in stages gradually pulling the ring gear onto the differential case.

Tighten
- The ring gear bolts in sequence to 145 N·m (105 ft. lbs.).
7. Differential side bearings (22) using J-29710, J-8107-3 and J-8092 (figure 61).
 - Place J-8107-3 into the differential on the side opposite of bearing installation to protect the differential case.
 - Drive the bearing onto the case using J-29710 and J-8092.
SIDE BEARING PRELOAD ADJUSTMENT

- The differential side bearing preload is adjusted by an adjusting nut in the differential bearing bore. The bore and the bearing cap provide the mating threads for the bearing nut.
- The differential must be initially preloaded in order to determine the backlash of the gear set. After the backlash has been set, the final bearing preload is set.

Install or Connect

Tool Required:
J-24429 Side Bearing Backlash Spanner Wrench

1. The bearing cups (22) to the differential bearings in their original locations.
2. Differential assembly to the axle housing.
3. Bearing shims (21).
 - Push the case away from the pinion towards the axle housing.
4. Adjusting nut (17).
 - Tighten the adjusting nut using J-24429.
 - Turn the pinion to seat the bearings.
 - Back off the adjusting nut.
5. Bearing caps (19) and bolts (20) in their original positions.
 - Assemble the caps loosely.
 - Turn the adjusting nut until the nut contacts the shim. Then tighten the nut three additional slots (figure 62).

Tighten

- The bearing cap bolts to 80 N·m (60 ft. lbs.).
6. Adjusting nut lock (16) and lock bolt (18).
 - Measure the ring gear to pinion backlash. Refer to "Backlash Adjustment" in this section.

Tighten

- The lock bolt to 30 N·m (22 ft. lbs.) after setting the backlash.
BACKLASH ADJUSTMENT
1. Install a dial indicator to the case using a magnetic base.
2. Place the indicator stem at the heel end of a tooth.
 • Set the dial indicator so that the stem is in line with the gear rotation and perpendicular to the tooth angle.
3. Check and record the backlash at three or four points around the ring gear (figure 63).
 • The pinion must be held stationary when checking backlash.
4. Backlash at the minimum lash point measured should be between 0.125-0.200 mm ± 0.050 mm (0.005-0.008-inch ± 0.002-inch).
5. If the reading is too high, increase the shim pack between the differential flange side of the case and the axle housing (opposite the adjusting nut side).
6. If the reading is too low, decrease the shim pack between the differential flange side of the case and the axle housing (opposite the adjusting nut side).
7. Adjust the side bearing preload. Refer to “Side Bearing Preload Adjustment” earlier in this section.

FINAL ASSEMBLY

Install or Connect (Figure 42)
1. Drive axles. Refer to the proper service manual.
2. RTV to the axle housing cover.
3. Cover (25) and bolts (24) to the axle housing.
 • The cover bolts (24) to 27 N·m (20 ft. lbs.).
4. Axle housing to the vehicle. Refer to the proper service manual.
5. Lubricant to the rear axle.

DISASSEMBLY OF THE REAR AXLE

Remove or Disconnect (Figure 64)
Tools Required:
J-8107 Side Bearing Remover Plug
J-22888 Differential Side Bearing Remover

10½-INCH RING GEAR (CORPORATE)

DESCRIPTION
The corporate 10½-inch ring gear rear axle uses a conventional ring and pinion gear set to transmit the driving force of the engine to the rear wheels. This gear set transfers this driving force at a 90-degree angle from the propeller shaft to the drive shafts.

This axle is full-floating. The axle shaft is supported at the wheel ends by the wheel hubs. The bolts that attach the shaft to the hub, support the axle at the hub. The splined end of the shaft is supported by the differential.

The pinion gear is supported in a pinion cage by three bearings: a pinion front bearing, a pinion inner bearing, and a pinion rear or pilot bearing. The pinion cage is separate from the axle housing. Selective shims are used between the pinion cage and the axle housing to set the pinion depth. The pinion bearing preload is set by crushing a collapsible spacer between the front and inner bearings in the pinion cage.

The ring gear is bolted onto the differential case with left-hand thread bolts.

The differential case is supported in the case by two tapered roller bearings. The differential and ring gear are located in relationship to the pinion by using two different bearing adjusting nuts. These allow the differential to be moved from side to side by adjusting the nuts in or out.

The differential side bearing preload is accomplished by tightening the differential bearing adjusting nuts after the ring gear backlash has been set. Two bearing caps are used to hold the differential into the rear axle housing as well as to supply half of the threads for the bearing adjusting nuts.

The differential is used to allow the wheels to turn at different rates of speed while the rear axle continues to transmit the driving force. This prevents tire scuffing when going around corners and prevents premature wear on internal axle parts.

The rear axle is sealed with a pinion seal, a gasket at each axle shaft end, and by a gasket between the rear cover and the axle housing.

All corporate rear axles are identified by the part number on the right axle tube near the carrier. The carrier cover does not have a drain plug.
1. Pinion Nut
2. Washer
3. Pinion Flange
4. Slinger
5. Pinion Oil Seal
6. Pinion Front Bearing
7. Bolt
8. Washer
9. Brake Line Clip
10. Pinion Cage
11. Shim
12. Collapsible Spacer
13. Pinion Rear Bearing
14. Pinion and Ring Gear Set
15. Pinion Pilot Bearing
16. Axle Vent Tube
17. Axle Housing
18. Differential Side Bearing
20. Bearing Cap
21. Adjusting Nut Lock
22. Bolt
23. Gasket
24. Cover
25. Bolt
26. Brake Line Clip
27. Washer
28. Bolt
29. Side Gear
30. Side Gear Thrust Washer
31. Pinion Gear Thrust Washer
32. Pinion Gear Set
33. Pinion Cross Shaft
34. Differential Case
35. Washer
36. Ring Gear Bolt
37. Brake Backing Plate
38. Bolt
39. Axle Shaft Seal
40. Bearing
41. Retaining Ring
42. Bearing
43. Lock Nut
44. Lock Tab
45. Retaining Ring
46. Bolt
47. Axle Shaft
48. Gasket
49. Wheel Stud
50. Wheel Hub
51. Brake Drum

Figure 64—Rear Axle Components
Figure 65—Removing the Differential Side Bearings

J-8614-01 Pinion Flange Remover
J-22912-01 Rear Pinion Cone Remover

• Place the rear axle in a suitable support.
1. The differential cover bolts (25) and the differential cover (24).
 • Drain the gear lubricant into a proper container.
2. Axle shafts (47). Refer to the proper service manual.
3. Adjusting nut lock bolts (22).
4. Adjusting nut lock (21).
 • Loosen the adjusting nuts (19).
5. Differential bearing cap bolts (28) and washers (27).
 • Mark the caps and the housing as left and right.
7. Adjusting nuts (19) and bearing cups (18).
 • Mark the nuts and cups as left and right.
 • The jaws of J-22888 must pull from beneath the bearing cone and not the cage.
 • Scribe a mark across the differential case.
10. Ring gear bolts (36) and washers (35).

NOTICE: Do not pry the ring gear from the case. This will damage the ring gear and the differential case.

11. Ring gear (14) from the differential.
 • Drive the ring gear off with a brass drift if necessary.
12. The case halves.
13. Differential side gears (29) and thrust washers (30).
 • Mark the gears and the case halves as left and right.
15. Differential pinion gears (32) and thrust washers (31) from the spider (33).

Figure 66—Checking Pinion Preload

Inspect
• Drive pinion bearing preload (figure 66).
• For looseness of the pinion assembly by moving it back and forth. (Looseness indicates excessive bearing wear).
16. Pinion assembly cage bolts (7) and washers (8) (figure 67).
17. Pinion assembly cage (10).
 • Tap on the pilot end of the pinion with a hammer and a brass drift if necessary.
18. Pinion cage shims (11).
 • Keep the shims together for measurement later in the procedure.
• Place the pinion cage in a soft-jawed vice.
19. Pinion flange nut (1) and washer (2) using J-8614-01 to hold the flange (figure 68).
20. Pinion flange using J-8614-01 (figure 69).
21. Pinion (14) from the pinion cage (10).
 • Place the cage into an arbor press as shown in figure 70 and press the pinion from the cage. Do not let the pinion fall to the floor.
22. Collapsible spacer (12) from the pinion.
23. Inner bearing (13) from the pinion (14).
 • Press the bearing from the pinion using J-22912-01 (figure 71).
24. Pinion seal (5) from the pinion cage.
 • Drive the seal from the cage with a hammer and punch.
25. Front bearing (6) from the cage.
26. Bearing cups from the pinion cage.
27. Pilot bearing (15) from the axle housing using a hammer and brass drift (figure 72).

CLEANING

Do not steam clean drive parts having ground and polished surfaces such as gears, bearings, and shafts. These parts should be cleaned in a suitable solvent. All parts should be disassembled before cleaning.

Parts should be thoroughly dried immediately after cleaning. Use soft, clean, lintless rags. Parts may be dried with compressed air. Do not allow the bearings to spin while drying them with compressed air.
INSPECTION

It is very important to carefully and thoroughly inspect all drive unit parts before reassembly.

Thorough inspection of the drive parts for wear or stress and subsequent replacement of worn parts will eliminate costly drive component repair after reassembly.

AXLE HOUSING

Inspect

- The carrier bore for nicks or burrs that would prevent the outer diameter of the pinion seal from sealing. Remove any burrs that are found.
- The bearing cup bores for nicks or burrs. Remove any burrs that are found.
- The housing for cracks. Replace the housing if any cracks are found.
- The housing for foreign material such as metal chips, dirt, or rust. Refer to “Cleaning” in this section.

Differential

Inspect

- Pinion gear shaft for unusual wear.
- Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
- Thrust washers for wear.
- The fit of the differential side gears in the differential case.
- The fit of the side gears on the axle shafts.
- Differential case for cracks and scoring.
- Replace all worn parts.

Pinion and Ring Gear

Inspect

- Pinion and ring gear teeth for cracking, chipping, scoring, or excessive wear.
- Pinion splines for wear.
- Pinion flange splines for wear.
- The fit of the pinion on the pinion flange.
- The sealing surface of the pinion flange for nicks, burrs, or rough tool marks which would cause damage to the seals' inside diameter and result in an oil leak.
- Replace all worn or broken parts.
- Ring and pinion gears are matched sets and are both replaced any time a replacement of either is necessary.

Bearings

Inspect

- Bearings visually and by feel.
- The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.
- The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.
- Bearing cups for wear, cracks, brinelling and scoring.
- Bearings and cups are only replaced as sets.

Figure 73—Installing the Inner Pinion Bearing

- If the rear axle was operated for an extended period of time with very loose bearings, the ring gear and drive pinion will also require replacement.
- Low mileage bearings may have minute scratches and pits on the rollers and the bearing cups from the initial preload. Do not replace a bearing for this reason.
- Bearing caps for cracks or chips.

Shims

Inspect

- Shims for cracks and chips. Damaged shims should be replaced with an equally sized service shim.

Assembly of the Rear Axle

Pinion Assembly

Install or Connect (Figure 64)

Tools Required:
- J-24433 Rear Pinion Bearing Cone Installer
- J-8092 Driver Handle
- J-8608 Outer Pinion Bearing Cup Installer
- J-8614-01 Pinion Flange Holder
- Lubricate all parts with axle lubricant.
1. Pinion rear bearing (13) onto the pinion.
 - Press the bearing onto the pinion using J-24433 (figure 73).
2. Outer pinion bearing cup (6) using J-8608 and J-8092.
4. A new collapsible spacer (12) to the pinion.
5. Pinion (14) into the pinion gage (10).
6. Pinion outer bearing (6) onto the pinion.
 - Press the bearing onto the pinion.
8. Pinion flange oil deflector (4) and pinion flange (3) to the pinion splines.
9. Washer (2) and a new pinion nut (1).
 - Place the pinion cage assembly into the vice.
10. Flange holder J-8614-01 to the pinion flange.

Tighten (Figure 74)

- The nut until the pinion end play is just taken up. Rotate the pinion while tightening in order to seat the bearings. Once there is no end play in the pinion, the preload torque should be checked.
- Remove J-8614-01. Using an inch-pound torque wrench, check the pinion preload by rotating the pinion with the wrench. Preload should be at or below 2.8 to 4.0 N·m (25 to 35 in. lbs.) for new bearings, or 0.56 to 1.7 N·m (5-15 in. lbs.) for used bearings (figure 75).
- If the preload torque is below the preloads given above, continue torquing the nut in small increments. Check the preload after each tightening. Each tightening increases the bearing preload by several pounds. If the bearing preload is exceeded, the pinion will have to be removed, and a new collapsible spacer installed.

11. Pinion cage (10) to the axle housing. Refer to "Pinion Installation" in this section.

PINION INSTALLATION

Install or Connect

Tools Required:
- J-34943 Pinion Pilot Bearing Installer
- J-8092 Driver Handle

1. Pinion pilot bearing (15) using J-34943 and J-8092 (figure 76).
 - Bolt the guide plate to the axle housing.
 - Place the bearing (15) onto the guide.
 - Drive the bearing into the housing. The part number of the bearing must face the pinion flange.
2. Pinion bearing shims (11) to the pinion cage.
 - The shims, housing, and cage must be clean.
3. The pinion cage (10) to the axle housing (figure 78).
4. Cage bolts (7).

Tighten

- The bolts to 88 N·m (65 ft. lbs.).
DIFFERENTIAL CASE ASSEMBLY

Install or Connect (Figure 64)

Tools Required:
- J-24429 Side Bearing Adjustment Spanner
- J-8092 Driver Handle
- J-8107 Side Bearing Puller Plug

1. Differential pinion gears (32) and thrust washers (31) to the spider (33).
2. Differential side gears (29) and thrust washers (30) to the differential case halves in their original locations.
3. Differential spider (33) to the differential.
4. The case halves.
 - Align the scribe marks on the case halves.
 - Check that the mating surfaces of the differential case and the ring gear are clean and burr free.
5. Ring gear (14) to the differential (figure 79).
 - Thread two left-hand threaded studs into the ring gear on opposite sides.
 - Tighten the ring gear bolts alternately in stages gradually pulling the ring gear onto the differential case.

Tighten
- The ring gear bolts in sequence to 163 N\(\text{m}\) (120 ft. lbs.).
 - Place J-8107 into the differential on the side opposite of bearing installation to protect the differential case.
 - Drive the bearing onto the case using J-24429 and J-8092.
8. Differential case (34) to the axle housing. Refer to "Side Bearing Preload Adjustment" in this section.
SIDE BEARING PRELOAD ADJUSTMENT

- The differential side bearing preload is adjusted by two adjusting nuts in the differential bearing bore. The bore and the bearing cap provide the mating threads for the bearing nut.
- The differential must be initially preloaded in order to determine the backlash of the gear set. After the backlash has been set, the final bearing preload is set.

Install or Connect (Figure 81)

Tool Required:
- J-24429 Side Bearing Backlash Spanner Wrench
1. The bearing cups (20) to the differential bearings in their original locations.
2. Differential assembly to the axle housing.
3. Adjusting nuts (19).
4. Bearing caps (20) and bolts (28) in their original positions.
 - Assembly the caps loosely.
 - Loosen the right side adjusting nut, and tighten the left side nut using J-24429 until the ring gear contacts the drive pinion. Do not force the gears into contact. This is the zero lash point.
 - Back off the left adjusting nut approximately two slots to obtain the initial backlash adjustment.
5. Adjusting nut lock (21) and lock bolt (22) to the left nut.
 - Do not tighten.
 - Tighten the right adjusting nut firmly to force the case into solid contact with the left adjusting nut. Rotate the pinion several times to seat the bearings.
 - Loosen the right adjusting nut until it is free from its bearing.
 - Tighten the right adjusting nut until it just contacts the bearing. Additionally tighten the nut two slots for used bearings, or three slots if new bearings are installed.
6. Adjusting nut lock (21) and lock bolt (22) to the left nut.
 - Do not tighten.

BACKLASH ADJUSTMENT

1. Install a dial indicator to the case using a magnetic base (figure 82).
2. Place the indicator stem at the heel end of a tooth.
 - Set the dial indicator so that the stem is in line with the gear rotation and perpendicular to the tooth angle.
3. Check and record the backlash at three or four points around the ring gear.
 - The pinion must be held stationary when checking backlash.
 - The backlash should be the same at each point within 0.05 mm (0.002-inch). If the backlash varies more than 0.05 (0.002-inch), check for burrs, a distorted case flange, uneven bolting conditions, or foreign matter between the case and the ring gear.
4. The backlash at the minimum lash point measured should be between 0.125-0.200 mm (0.005-0.008-inch). The maximum acceptable reading is 0.076-0.203 mm (0.003-0.008-inch).
5. If the reading is too high, remove the adjusting nut locks, and loosen the right nut one slot, and tighten the left nut one slot (figure 81).
6. If the reading is too low, remove the adjusting nut locks, and loosen the right nut one slot, and tighten the right nut one slot.
 - The side bearing preload will remain set, as long as the adjusting nut is tightened an equal amount to the nut which was loosened.
FINAL ASSEMBLY

Install or Connect (Figure 64)

1. Drive axles. Refer to the proper service manual.
2. Cover gasket (23) and cover (24) to the housing.
3. Cover bolts (25).

Tighten

- The cover bolts (25) to 27 N·m (20 ft. lbs.).
4. Axle housing to the vehicle. Refer to the proper service manual.
5. Lubricant to the rear axle.

9 3/4-INCH RING GEAR (DANA)

DESCRIPTION

The Dana 9 3/4-inch ring gear rear axle uses a conventional ring and pinion gear set to transmit the driving force of the engine to the rear wheels. This gear set transfers this driving force at a 90 degree angle from the propeller shaft to the drive shafts.

This axle is full-floating. The axle shaft is supported at the wheel ends by the wheel hubs. The bolts that attach the shaft to the hub, support the axle at the hub. The splined end of the shaft is supported by the differential.

The pinion gear is supported by two tapered roller bearings. The pinion depth is set by a shim pack between the inner pinion bearing cup and the rear axle housing. The pinion bearing preload is set by a shim pack at the front of the axle housing between the yoke and the pinion gear.

The ring gear is bolted onto the differential case with right-hand thread bolts.

The differential case is supported in the case by two tapered roller bearings. The differential and ring gear are located in relationship to the pinion by using selective shims between the bearings and the differential case. To move the ring gear, shims are deleted from one side and an equal amount are added to the other side. Differential side bearing preload is set by the axle housing. (The axle housing is spread to remove the differential from the housing). When the spreader is removed, the housing sets the bearing preload.

Two bearing caps are used to hold the differential into the rear axle housing.

The differential is used to allow the wheels to turn at different rates of speed while the rear axle continues to transmit the driving force. This prevents tire scuffing when going around corners and prevents premature wear on internal axle parts.

The rear axle is sealed with a pinion seal, a hub seal, and a gasket between the differential cover and the rear axle housing.

All Dana axles are identified by the part number on the right axle tube next to the manufacturing date which is next to the carrier. The model number is stamped on the ear of the carrier. The carrier cover does have a drain plug.

DISASSEMBLY OF THE REAR AXLE

Remove or Disconnect (Figure 83)

Tools Required:
- J-24385-01 Differential Housing Spreader
- J-29721 Differential Side Bearing Remover
- J-29721-70 Side Bearing Adapters
- J-8107-3 Side Bearing Puller Plug
- J-8614-01 Pinion Flange Holder

1. Place the rear axle in a suitable support.
2. The differential cover bolts (17) and the differential cover (14) (figure 84).
3. Drain the gear lubricant into a proper container.
4. Axle shafts (38). Refer to the proper service manual.
5. Bearing cap bolts (19) (figure 85).
 - The mating letters are stamped on the caps and the axle housing. The caps are to be reassembled exactly as removed.
7. Spread the carrier while examining the dial indicator. Do not spread the carrier more than 0.38 mm (0.015-inch). Over-spreading the carrier can damage or distort the carrier.
8. Spreading the carrier while examining the dial indicator. Do not spread the carrier more than 0.38 mm (0.015-inch).
9. Differential case (22) from the carrier (1) using two pry bars (figure 87).
10. The spreader J-24385-01 from the carrier (1).
13. Ring gear bolts (23).
 - Place shop towels over the vice jaws. Put the differential case in the vice (figure 89).
<table>
<thead>
<tr>
<th>Part</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axle Housing</td>
<td>1</td>
</tr>
<tr>
<td>Ring Gear and Pinion Set</td>
<td>2</td>
</tr>
<tr>
<td>Inner Pinion Bearing</td>
<td>3</td>
</tr>
<tr>
<td>Shims</td>
<td>4</td>
</tr>
<tr>
<td>Baffle</td>
<td>5</td>
</tr>
<tr>
<td>Preload Shims</td>
<td>6</td>
</tr>
<tr>
<td>Bearing</td>
<td>7</td>
</tr>
<tr>
<td>Slinger</td>
<td>8</td>
</tr>
<tr>
<td>Pinion Oil Seal</td>
<td>9</td>
</tr>
<tr>
<td>Pinion Flange</td>
<td>10</td>
</tr>
<tr>
<td>Washer</td>
<td>11</td>
</tr>
<tr>
<td>Pinion Nut</td>
<td>12</td>
</tr>
<tr>
<td>Cover</td>
<td>14</td>
</tr>
<tr>
<td>Gasket</td>
<td>15</td>
</tr>
<tr>
<td>Plug</td>
<td>16</td>
</tr>
<tr>
<td>Bolt</td>
<td>17</td>
</tr>
<tr>
<td>Bearing Cap</td>
<td>18</td>
</tr>
<tr>
<td>Bolt</td>
<td>19</td>
</tr>
<tr>
<td>Bearing</td>
<td>20</td>
</tr>
<tr>
<td>Shim</td>
<td>21</td>
</tr>
<tr>
<td>Differential Case</td>
<td>22</td>
</tr>
<tr>
<td>Ring Gear Bolt</td>
<td>23</td>
</tr>
<tr>
<td>Pinion Gear</td>
<td>24</td>
</tr>
<tr>
<td>Side Gear</td>
<td>25</td>
</tr>
<tr>
<td>Pinion Thrust Washer</td>
<td>26</td>
</tr>
<tr>
<td>Side Gear Thrust Washer</td>
<td>27</td>
</tr>
<tr>
<td>Pinion Shaft</td>
<td>28</td>
</tr>
<tr>
<td>Roll Pin</td>
<td>29</td>
</tr>
<tr>
<td>Bolt</td>
<td>30</td>
</tr>
<tr>
<td>Nut</td>
<td>31</td>
</tr>
<tr>
<td>Axle Shaft</td>
<td>32</td>
</tr>
<tr>
<td>Shaft Oil Seal</td>
<td>33</td>
</tr>
<tr>
<td>Retaining Ring</td>
<td>34</td>
</tr>
<tr>
<td>Bearing</td>
<td>35</td>
</tr>
<tr>
<td>Shaft Oil Seal</td>
<td>36</td>
</tr>
<tr>
<td>Oil Seal Retainer</td>
<td>37</td>
</tr>
</tbody>
</table>

Figure 83—Rear Axle Components

Figure 84—Removing the Axle Cover

Figure 85—Removing the Bearing Cap
Figure 86—Spreading the Differential Case

NOTICE: Do not pry the ring gear from the case, this will damage the ring gear and the differential case.

11. Ring gear (2) from the differential case using a rawhide hammer.
 - Ring gear (2) from the vise.
 - Put the differential case in the vise.
12. Lock pin (29) from the differential using a hammer and a punch (figure 90).
13. Pinion shaft (28) using a hammer and a brass drift (figure 91).
14. Differential pinion gears (24) and thrust washers (26).
 - Rotate the side gears until the pinion gears are in the opening of the differential (figure 92).
15. Differential side gears (25) and thrust washers (27).
 - Mark the gears and washers as left and right.
 - Replace the carrier cover (14) using two bolts (17) to keep the pinion from falling to the floor.
Figure 91—Removing the Pinion Shaft

Inspect
- Drive pinion bearing preload (figure 93).
- For looseness of the pinion assembly by moving it back and forth. (Looseness indicates excessive bearing wear).
16. Pinion nut (12) and washer (11) using J-8614-01 to hold the pinion (figure 94).
17. Pinion flange (10) using J-8614-01 (figure 95).
18. Pinion (2) from the carrier using a rawhide hammer to tap the pinion (figure 96).
19. Carrier cover (14) and the pinion (2).
20. Pinion preload shims (6).
- Keep the shims together on the bench.
21. Pinion seal (9).
22. Pinion outer bearing (7) and oil slinger (8).
23. Bearing cups (3) and (7) from the axle housing using a hammer and a punch (figure 97).
- Work the cups out of the housing evenly, moving the punch back and forth between one side of the cup and the other.
24. Pinion adjusting shims (4) and baffle (5).

Figure 92—Removing the Pinion Gears

Figure 93—Checking the Pinion Preload

Figure 94—Drive Pinion Nut Removal

Figure 95—Pinion Flange Removal
CLEANING

Do not steam clean drive parts having ground and polished surfaces such as gears, bearings, and shafts. These parts should be cleaned in a suitable solvent. All parts should be disassembled before cleaning. Parts should be thoroughly dried immediately after cleaning. Use soft, clean, lintless rags. Parts may be dried with compressed air. Do not allow the bearings to spin while drying them with compressed air.

INSPECTION

It is very important to carefully and thoroughly inspect all drive unit parts before reassembly. Thorough inspection of the drive parts for wear or stress and subsequent replacement of worn parts will eliminate costly drive component repair after reassembly.
Bearing Inspection
- Inspect bearings visually and by feel.
- The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.
- The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.
- Bearing cups for wear, cracks, brinelling and scoring.
- Bearings and cups are only replaced as sets.
- If the rear axle was operated for an extended period of time with very loose bearings, the ring gear and drive pinion will also require replacement.
- Low mileage bearings may have minute scratches and pits on the rollers and the bearing cups from the initial preload. Do not replace a bearing for this reason.
- Bearing caps for cracks or chips.

Shim Inspection
- Inspect shims for cracks and chips. Damaged shims should be replaced with an equally sized service shim.

Assembly of the Rear Axle

Pinion Assembly

Differential Case Assembly
- Lubricate all parts with rear axle lubricant.
- New side gear thrust washers (27) to the side gears (25).
- Side gears (25) to the differential case.
 - Place the side gears in place on the same side as removed (figure 99).
- Pinion gears (24) to the differential without the thrust washers (26).

Determining Total Differential Shim Pack Size
- Assemble the differential case (22) to the axle housing. The pinion must not be installed.
- Mount a dial indicator having a minimum travel of 0.200-inch with a magnetic base on the ring gear bolt side of the housing (figure 103).
3. Force the differential assembly as far as possible in the direction towards the indicator.
4. Preload the dial indicator one half of its travel. Place the tip of the indicator on a flat surface on the differential, just next to a ring gear bolt. Mark this location with a piece of chalk.
5. Zero the dial indicator.
6. Force the differential assembly in the opposite direction as far as it will go. Repeat this step until the same reading is obtained. Record the number of thousandths that the dial indicator traveled, not the reading on the dial. This will be the measurement of the shim pack without the bearing preload (which will be added later).
7. Remove the dial indicator from the axle.
8. Remove the differential case from the axle housing.
 • Do not remove the master bearings from the differential.

PINION DEPTH ADJUSTMENT

Tools Required:
- D-120 Master Pinion Block (Miller)
- D-116-1 Pinion Height Block (Miller)
- D-116-2 Master Discs (Miller)
- D-115-3 Arbor (Miller)
- D-115 Scooter Gage (Miller)

1. Clean the carrier bores and all the tools. The pinion bore must be free of nicks and dirt.
2. Install D-120 to the pinion bore (figure 104).
4. Install the arbor and discs into the axle housing (figure 105).
5. Install D-116-1 onto D-120 and against the arbor (figure 106).
6. Place D-115 onto the height block (figure 107).
 • Place the gage on the lower step of the height block. Push the gage down on the height block. While applying pressure, set the dial indicator at zero.
7. Slide the gage over the arbor (figure 108).
8. Record the reading at the point of greatest deflection (when the dial indicator needle is centered between movement to the left and to the right).

- This reading indicates the amount of shims needed for a nominal pinion setting. The pinion marking may change the pinion depth by adding or deleting shims from the nominal pinion setting.

- A positive (+) pinion marking indicates that the distance between the ring gear centerline and the pinion head must increase by the number of thousandths marked on the pinion. This means that the shim pack will decrease by the same number of thousandths.

- A negative (-) pinion marking indicates that the distance between the ring gear centerline and the pinion head must decrease by the number of thousandths marked on the pinion. This means that the shim pack will increase by the same number of thousandths.

- A pinion etched zero (0) will use the nominal setting as determined in this procedure.

9. Measure each shim separately with a micrometer and add them together to obtain the total shim pack thickness. If a baffle (5) or slinger is used, these must also be measured and included in the shim pack (figure 109).

PINION INSTALLATION

Install or Connect

Tools Required:

- J-7818 Front Pinion Bearing Cup Installer
- J-5590 Rear Pinion Bearing Cone Installer
- D-111 Cup Installer (Miller)
- C-4171 Handle (Miller)
- J-8092 Handle
- J-8614-01 Pinion Flange Remover

1. Place the required amount of shims (and baffle if used) in the inner bearing bore.
2. Drive the inner bearing cup into the axle assembly using D-111 and C-4171. The cup must be seated on the shims (figure 110).
3. Drive the outer bearing cup into the axle assembly using J-7818 and J-8092 (figure 111).
4. Inner bearing cone (and slinger if used) on pinion. Drive the bearing onto the pinion shaft using J-5590 (figure 112).
5. Pinion into the axle housing.
6. Outer pinion bearing (7) (and slinger if used).
 - Do not assemble the preload shims or pinion oil seal at this time.
7. Pinion flange (10).
8. Washer (11) and pinion nut (12).

Tighten
 - The nut (12) while holding the pinion with J-8614-01. Tighten the nut until it requires a torque of 1.13 N·m (10 in. lbs.) to rotate the pinion (figure 113). Rotate the pinion several times to seat the bearings and assure a more accurate reading pinion depth setting.
 • Place the discs and arbor into the differential bearing bore.
 • Place the pinion height block on top of the pinion.
 • Set the dial indicator at zero (0) and slide the scooter gage across the arbor (figure 114).
 • The indicator will turn to the right or to the left at the point of greatest deflection, depending on the pinion marking.
 • The needle will move to the left if the pinion is marked (+).
 • The needle will move to the right if the pinion is marked (-).
 • If the indicator reading is within 0.05 mm (0.002-inch) of the pinion marking, the pinion is correctly set. If the pinion depth does not meet specifications, change the shim pack by the amount the indicator needle is from the pinion marking.
 • Remove the pinion nut (12), washer (11), pinion flange (10), slinger (8) and bearing cone (7).

10. Preload shims (6).
 • Install the shims that were removed, or measure the old shims and replace them with new shims if necessary.

11. Outer bearing (7) and slinger (8).
 • Apply a light coat of axle lubricant to the pinion seal lip.

12. Outer pinion oil seal (9) using D-163 (National) sealer installer (figure 115).

13. Pinion flange (10).

14. Washer (11) and a new pinion nut (12).

Tighten (Figures 116 and 117)
 • The nut (12) while holding the pinion with J-8614-01. Tighten the nut until it requires a torque of 2.26-4.53 N·m (20-40 in. lbs.) to rotate the pinion.
 • Remove shims to increase the preload.
 • Add shims to decrease the preload.
ASSEMBLING THE DIFFERENTIAL TO THE AXLE HOUSING

Tools Required:
- J-23690 Differential Side Bearing Installer
- J-8092 Driver Handle
- J-24385-01 Differential Carrier Spreader

1. Assemble the differential case (22) with master bearings installed to the axle housing. The pinion must be installed.
2. Mount a dial indicator having a minimum travel of 0.200-inch with a magnetic base on the ring gear bolt side of the housing (figure 118).
3. Place the indicator tip on the chalk mark made earlier.
4. Force the ring gear into mesh with the pinion. Rock the ring gear to allow the teeth of the gears to mesh.
5. While the force is still applied to the differential case, set the dial indicator to zero.
6. Force the differential case away from the pinion gear to obtain an indicator reading. Repeat this action until a consistent reading is obtained. This will be the size of the left shim pack.
7. Remove the indicator and the differential case from the carrier.
8. Remove the master bearings from the differential case.
9. Using the total shim pack size determined earlier, (Refer to "Determining Total Differential Shim Pack Size" in this section) subtract the reading found in step 6 from the total reading. The reading found in step 6 will be the shim size on the ring gear side. The remaining portion of the shim pack will be used on the side opposite the ring gear. Add an additional 0.38 mm (0.015-inch) of shims to the side opposite the ring gear to preload the bearings.
10. Place the proper shims on the differential side bearing hub (ring gear side) and drive the differential bearing onto the hub using J-23690 and J-8092 (figure 119).
11. Place the proper shims on the differential side bearing hub (opposite the ring gear) and drive the differential bearing onto the hub using J-23690 and J-8092.

NOTICE: Do not spread the differential carrier more than 0.38 mm (0.015-inch). Over-sprading the carrier can damage or distort the carrier.

12. Assemble J-24385-01 to the axle housing as shown in figure 120.
13. Assemble the dial indicator as shown in figure 120. Preset the gage at least 0.020-inch, and then rotate the indicator housing to zero the dial.

14. Spread the carrier while examining the dial indicator.
15. Remove the dial indicator.
16. Place the bearing cups (20) onto the bearings.
17. Install the differential assembly into the carrier.
 - Use a rawhide hammer to seat the differential assembly in the axle housing (figure 121).
18. Remove the spreader.
19. Install the bearing caps (18) in their original positions.
20. Install the bearing cap bolts (19).
Tighten
- The bearing cap bolts (19) to 115 N·m (85 ft. lbs.).

CHECKING BACKLASH
1. Mount a dial indicator with a magnetic base to the axle housing as shown in figure 122.
2. Place the indicator tip at the heel end of the tooth.
3. Check the backlash at three equally spaced points. The backlash should be 0.10-0.20 mm (0.004-0.009-inch). The measurement must not vary more than 0.05 mm (0.002-inch) between the points checked.
4. High backlash is corrected by moving the ring gear closer to the pinion.
5. Low backlash is corrected by moving the ring gear away from the pinion.
6. To adjust the backlash, the differential case must be removed from the housing, then the differential bearings removed, and the proper number of shims moved from one side to the other.

FINAL ASSEMBLY
Install or Connect
1. Drive axles. Refer to the proper service manual.
2. Gasket (15) to the axle cover.
3. Axle cover (14) to the housing (figure 123).

Tighten
- The cover bolts (17) to 47 N·m (35 ft. lbs.).
4. Axle housing to the vehicle. Refer to the proper service manual.
5. Lubricant to the rear axle.
DESCRIPTION

The Dana 101/2-inch ring gear rear axle uses a conventional ring and pinion gear set to transmit the driving force of the engine to the rear wheels. The gear set transfers this driving force at a 90 degree angle from the propeller shaft to the drive shafts.

This axle is full-floating. The axle shaft is supported at the wheel ends by the wheel hubs. The bolts that attach the shaft to the hub, support the axle at the hub. The splined end of the shaft is supported by the differential.

The pinion gear is supported by two tapered roller bearings. The pinion depth is set by a shim pack between the inner pinion bearing cup and the rear axle housing. The pinion bearing preload is set by a shim pack at the front of the axle housing between the yoke and the pinion gear.

The ring gear is bolted onto the differential case with right-hand thread bolts.

The differential case is supported in the case by two tapered roller bearings. The differential and ring gear are located in relationship to the pinion by using selective shims between the bearings and the differential case. To move the ring gear, shims are deleted from one side and an equal amount are added to the other side. Differential side bearing preload is set by the differential shim packs on the Band U model or by using differential bearing spacers between the bearing cup and the differential case on the Heavy Duty model.

Two bearing caps are used to hold the differential into the rear axle housing.

The differential is used to allow the wheels to turn at different rates of speed while the rear axle continues to transmit the driving force. This prevents tire scuffing when going around corners and prevents premature wear on internal axle parts.

The rear axle is sealed with a pinion seal, a hub seal, and a gasket between the differential cover and the rear axle housing.

Two models of the Dana 101/2-inch are covered here: the B or U Model, and the Heavy Duty Model.

All Dana axles are identified by the part number on the right axle tube next to the carrier. The model number is stamped on the ear of the carrier. The carrier cover does have a drain plug.

DISASSEMBLY OF THE REAR AXLE

Remove or Disconnect (Figure 124)

Tools Required:

- J-24385-01 Differential Housing Spreader
- J-29721 Differential Side Bearing Remover
- J-29721-70 Side Bearing Adapters
- J-8107-3 Side Bearing Puller Plug
- D-166 Differential Case Holding Fixture
- J-8614-01 Pinion Flange Holder

Notice: Do not spread the differential carrier more than 0.38 mm (0.015-inch). Over-spreading the carrier can damage or distort the carrier.

1. The differential cover bolts (17) and the differential cover (14) (figure 125).
 - Drain the gear lubricant into a proper container.
2. Axle shafts (40). Refer to the proper service manual.
 - The mating letters are stamped on the caps and the axle housing. The caps are to be reassembled exactly as removed.
 - Assemble J-24385-01 to the differential housing as shown in figure 127.
 - Assemble the dial indicator as shown in figure 86. Preset the gage at least 0.020-inch, and then rotate the gage housing to zero the dial.

NOTICE: Do not spread the differential carrier more than 0.38 mm (0.015-inch). Over-spreading the carrier can damage or distort the carrier.

- Spread the carrier while examining the dial indicator. Do not spread the carrier more than 0.38 mm (0.015-inch).
5. Differential case (22) from the carrier (1) using two pry bars (figure 128).
6. The spreader J-24385-01 from the carrier (1).
7. Bearing cups (20).
 - Mark the cups as left and right, and place them with the proper bearing caps.
8. Outboard spacers (Heavy Duty axles only).
 - Mark the bearings as left and right, and place them with the proper bearing caps and cups.
10. Differential shims (21).
 - Mark the shims as left or right.
11. Ring gear bolts (23).
 - Mark the shims as left or right.
12. Ring gear (2) from the differential case using a rawhide hammer.
 - Ring gear (2) from the vise.
13. Pinion shaft (28) using a hammer and a brass drift (figure 132).
14. Pinion shaft (28) using a hammer and a brass drift (figure 132).
15. Differential pinion gears (24) and thrust washers (26).
 - Rotate the side gears until the pinion gears are in the opening of the differential (figure 133).
16. Differential side gears (25) and thrust washers (27).
 - Mark the gears and washers as left and right.
1. Axle Housing
2. Ring and Pinion Gear Set
3. Bearing
4. Shims
5. Baffle
6. Preload Shims
7. Bearing
8. Slinger
9. Pinion Oil Seal
10. Pinion Flange
11. Washer
12. Pinion Nut
13. Cover
14. Gasket
15. Plug
16. Bolt
17. Bearing Cap
18. Bolt
19. Bearing
20. Shims
21. Differential Case
22. Bolt
23. Pinion Gear
24. Side Gear
25. Pinion Thrust Washer
26. Side Gear Thrust Washer
27. Pinion Shaft
28. Roll Pin
29. Bolt
30. Nut
31. Hub Seal
32. Bearing
33. Bearing
34. Bearing
35. Wheel Hub
36. Inner Lock Nut
37. Lock Washer
38. Outer Lock Nut
39. Axle Shaft
40. Differential Bearing Preload Shim

Figure 124—Rear Axle Components
Replace the carrier cover (14) using two bolts (17) to keep the pinion from falling to the floor.

Inspect
- Drive pinion bearing preload (figure 134).
- Pinion assembly for looseness by moving it back and forth. (Looseness indicates excessive bearing wear).

17. Pinion nut (12) and washer (11) using J-8614-01 to hold the pinion (figure 135).
18. Pinion flange (10) using J-8614-01 (figure 136).
19. Pinion (2) from the carrier using a rawhide hammer to tap the pinion (figure 137).
20. Carrier cover (14) and the pinion (2).
 - Keep the shims together on the bench.
22. Pinion seal (9).
23. Pinion outer bearing (7) and oil slinger (8).
24. Bearing cups (3) and (7) from the axle housing using a hammer and a punch (figure 138).
Work the cups out of the housing evenly, moving the punch back and forth between one side of the cup and the other.

25. Pinion adjusting shims (4) and baffle (5).
 - Keep the shims together on the bench.

26. Pinion inner bearing (3) using J-29721 and J-29721-70 (figure 139).

CLEANING

Do not steam clean drive parts having ground and polished surfaces such as gears, bearings, and shafts. These parts should be cleaned in a suitable solvent. All parts should be disassembled before cleaning.

Parts should be thoroughly dried immediately after cleaning. Use soft, clean, lintless rags. Parts may be dried with compressed air. Do not allow the bearings to spin while drying them with compressed air.

INSPECTION

It is very important to carefully and thoroughly inspect all drive unit parts before reassembly.

Thorough inspection of the drive parts for wear or stress and subsequent replacement of worn parts will eliminate costly drive component repair after reassembly.

AXLE HOUSING

Inspect

- The carrier bore for nicks or burrs that would prevent the outer diameter of the pinion seal from sealing. Remove any burrs that are found.
- The bearing cup bores for nicks or burrs. Remove any burrs that are found.
- The housing for cracks. Replace the housing if any cracks are found.
- The housing for foreign material such as metal chips, dirt, or rust. Refer to “Cleaning” in this section.
Differential

Inspect

- Pinion gear shaft for unusual wear.
- Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
- Thrust washers for wear.
- The fit of the differential side gears in the differential case.
- The fit of the side gears on the axle shafts.
- Differential case for cracks and scoring.
- Replace all worn parts.

Pinion and Ring Gear

Inspect

- Pinion and ring gear teeth for cracking, chipping, scoring, or excessive wear.
- Pinion splines for wear.
- Pinion flange splines for wear.
- The fit of the pinion on the pinion flange.
- The sealing surface of the pinion flange for nicks, burrs, or rough tool marks which would cause damage to the seals’ inside diameter and result in an oil leak.
- Replace all worn or broken parts.
- Ring and pinion gears are matched sets and are both replaced any time a replacement of either is necessary.

Bearings

Inspect

- Bearings visually and by feel.
- The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.
- The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.
- Bearing cups for wear, cracks, brinelling and scoring.
- Bearings and cups are only replaced as sets.
- If the rear axle was operated for an extended period of time with very loose bearings, the ring gear and drive pinion will also require replacement.
- Low mileage bearings may have minute scratches and pits on the rollers and the bearing cups from the initial preload. Do not replace a bearing for this reason.
- Bearing caps for cracks or chips.

Shims

Inspect

- Shims for cracks and chips. Damaged shims should be replaced with an equally sized service shim.

Assembly of the Rear Axle

Differential Case Assembly

Install or Connect (Figure 124)

Tools Required:
- D-136 Master Differential Bearings (Miller)
- D-117 Master Differential Bearings — H.D. Model (Miller)
- Lubricate all parts with rear axle lubricant.
1. New side gear thrust washers (27) to the side gears (25).
2. Side gears (25) to the differential case.
 - Place the side gears in place on the same side as removed (figure 140).
3. Pinion gears (24) to the differential without the thrust washers (26).
 - Place the pinion gears onto the side gears so that the holes in the pinion gears are 180 degrees apart.
 - Rotate the pinion gears into place, and verify that the pinion gears line up with the pinion shaft holes.
4. New pinion thrust washers (26).
 - Rotate the pinion gears toward the differential opening just enough to slide in the pinion thrust washers.
5. Pinion shaft (28).
 - Align the lock pin holes in the case and the shaft.
 - Peen metal from the case over the lock pin.
 - Check that the mating surfaces of the differential case and the ring gear are clean and burr free.
7. Ring gear (2) to the differential case (22).
 - Thread two studs into the ring gear on opposite sides.
 - Press the ring gear onto the case, and align the holes in the case with the studs.
8. New ring gear bolts (23) (figure 142).
Tighten the ring gear bolts alternately in stages gradually pulling the ring gear onto the differential case.

• Refer to "Determining Total Shim Pack Size" in this section.

DETERMINING TOTAL DIFFERENTIAL SHIM PACK SIZE — B OR U MODEL

1. Assemble the differential case (22) to the axle housing. The pinion must not be installed.
2. Mount a dial indicator having a minimum travel of 0.200-inch with a magnetic base on the ring gear bolt side of the housing (figure 144).
3. Force the differential assembly as far as possible in the direction towards the indicator.
4. Preload the dial indicator one half of its travel. Place the tip of the indicator on a flat surface on the differential, just next to a ring gear bolt. Mark this location with a piece of chalk.
5. Zero the dial indicator, while still forcing the differential towards the dial indicator.
6. Force the differential assembly in the opposite direction as far as it will go. Repeat this step until the same reading is obtained. Record the number of thousandths that the dial indicator traveled, not the reading on the dial. This will be the measurement of the shim pack without the bearing preload (which will be added later).
7. Remove the dial indicator from the axle.
8. Remove the differential case from the axle housing.
• Do not remove the master bearings from the differential.

Figure 141—Installing the Lock Pin

Figure 142—Installing the Ring Gear Bolts

Figure 143—Differential with the Master Bearings

Figure 144—Determining Differential Shim Pack
DETERMINING TOTAL DIFFERENTIAL SHIM
PACK SIZE — HEAVY DUTY MODEL

1. Assemble the differential case (22) to the axle housing. The pinion must not be installed.
2. Mount a dial indicator having a minimum travel of 0.200-inch with a magnetic base on the ring gear bolt side of the housing (figure 144).
3. Measure the outboard spacer (43) with a micrometer. Record the reading.
4. Install the outboard spacer between the master bearing and the axle housing on the ring gear side.
5. Force the differential assembly as far as possible in the direction towards the indicator.
6. Preload the dial indicator one half of its travel. Place the tip of the indicator on a flat surface of the differential, just next to a ring gear bolt. Mark this location with a piece of chalk.
7. Zero the dial indicator, while still forcing the differential towards the indicator.
8. Force the differential assembly in the opposite direction as far as it will go. Repeat this step until the same reading is obtained. Record the number of thousandths that the dial indicator traveled, not the reading on the dial. This reading plus the spacer measurement will be the thickness of the spacer and shims required.
9. Remove the dial indicator from the axle.
10. Remove the differential case from the axle housing.
11. Remove the spacer (43) from the housing.
 • Do not remove the master bearings from the differential.

PINION DEPTH ADJUSTMENT

Tools Required:
- D-120 Master Pinion Block (Miller)
- D-116-1 Pinion Height Block (Miller)
- D-116-2 Master Discs (Miller)
- D-115-3 Arbor (Miller)
- D-115 Scooter Gage (Miller)

1. Clean the carrier bores and all the tools. The pinion bore must be free of nicks and dirt.
2. Install D-120 to the pinion bore (figure 145).
3. Place D-116-2 onto D-115-3 (figure 146).
4. Install the arbor and discs into the axle housing.
5. Install D-116-1 onto D-120 and against the arbor (figure 147).
6. Place D-115 onto the height block (figure 148).
 • Place the gage on the upper step of the height block. Push the gage down on the height block. While applying pressure, set the dial indicator at zero.
7. Slide the gage over the arbor (figure 149).
8. Record the reading at the point of greatest deflection (when the dial indicator needle is centered between movement to the left and to the right).
 • This reading indicates the amount of shims needed for a nominal pinion setting. The pinion marking may change the pinion depth by adding or deleting shims from the nominal pinion setting.
 • A positive (+) pinion marking indicates that the distance between the ring gear centerline and the pinion head must increase by the number of
thousandths marked on the pinion. This means that the shim pack will decrease by the same number of thousandths.

- A negative (-) pinion marking indicates that the distance between the ring gear centerline and the pinion head must decrease by the number of thousandths marked on the pinion. This means that the shim pack will increase by the same number of thousandths.
- A pinion etched zero (0) will use the nominal setting as determined in this procedure.

9. Measure each shim separately with a micrometer and add them together to obtain the total shim pack thickness. If a baffle (5) or slinger is used, these must also be measured and included in the shim pack (figure 150).

PINION INSTALLATION

Install or Connect

Tools Required:
J-7818 Front Pinion Bearing Cup Installer
C-4204 Cup Installer (Miller)
C-4171 Handle (Miller)
J-8092 Handle
J-8614-01 Pinion Flange Remover
D-116-1 Pinion Height Block
D-116-2 Arbor Discs
D-115-3 Arbor
D-115-2 Scooter Gage Block

1. Place the required amount of shims (and baffle if used) in the inner bearing bore.
2. Drive the inner bearing cup into the axle assembly using C-4204 and C-4171. The cup must be seated on the shims (figure 151).
3. Drive the outer bearing cup into the axle assembly using J-7818 and J-8092 (figure 152).
4. Inner bearing cone (and slinger if used) on pinion. Drive the bearing onto the pinion shaft using J-5590 (figure 153).
 - If installing a new bearing, be certain that it is the same width as the old bearing.
5. Pinion into the axle housing.
6. Outer pinion bearing (7) (and slinger if used).
- Do not assemble the preload shims or pinion oil seal at this time.
7. Pinion flange (10).
8. Washer (11) and pinion nut (12).

Tighten
- The nut (12) while holding the pinion with J-8614-01. Tighten the nut until it requires a torque of 1.13 N·m (10 in. lbs.) to rotate the pinion (figure 154). Rotate the pinion several times to seat the bearings and assure a more accurate reading pinion depth setting.
 - Place the discs and arbor into the differential bearing bore.
 - Place the pinion height block on top of the pinion.
 - Set the dial indicator at zero (0) and slide the scooter gage across the arbor (figure 155).

10. Preload shims (6).
 - Install the shims that were removed, or measure the old shims and replace them with new shims if necessary.
11. Outer bearing (7) and slinger (8).
 - Apply a light coat of axle lubricant to the pinion seal lip.

Figure 152—Installing the Pinion Front Cup

Figure 154—Checking the Pinion Preload
- The indicator will turn to the right or to the left at the point of greatest deflection, depending on the pinion marking.
- The needle will move to the left if the pinion is marked (+).
- The needle will move to the right if the pinion is marked (−).
- If the indicator reading is within 0.05 mm (0.002-inch) of the pinion marking, the pinion is correctly set. If the pinion depth does not meet specifications, change the shim pack by the amount the indicator needle is from the pinion marking.
- Remove the pinion nut (12), washer (11), pinion flange (10), slinger (8) and bearing cone (7).

Figure 153—Installing the Inner Bearing

Figure 155—Checking the Pinion Depth Setting
12. Outer pinion oil seal (9) using D-163 (National) sealer installer (figure 156).
13. Pinion flange (10).
14. Washer (11) and a new pinion nut (12).

Tighten (Figures 157 and 158)
- The nut (12) while holding the pinion with J-8614-01. Tighten the nut until it requires a torque of 2.26-4.53 N·m (20-40 in. lbs.) to rotate the pinion.
- Remove shims to increase the preload.
- Add shims to decrease the preload.

ASSEMBLING THE DIFFERENTIAL TO THE AXLE HOUSING — B OR U MODEL

Tools Required:
- J-23690 Differential Side Bearing Installer
- J-8092 Driver Handle
- J-24385-01 Differential Carrier Spreader

1. Assemble the differential case (22) with master bearings installed to the axle housing. The pinion must be installed.
2. Mount a dial indicator having a minimum travel of 0.200-inch with a magnetic base on the ring gear bolt side of the housing (figure 159).
3. Place the indicator tip on the chalk mark made earlier.
4. Force the ring gear into mesh with the pinion. Rock the ring gear to allow the teeth of the gears to mesh.
5. With the force still applied to the differential case, set the dial indicator to zero.
6. Force the differential case away from the pinion gear to obtain an indicator reading. Repeat this action until a consistent reading is obtained.
7. Remove the indicator and the differential case from the carrier.
8. Remove the master bearings from the differential case.
9. Using the total shim pack size determined earlier, (Refer to "Determining Total Differential Shim Pack Size" in this section) subtract the reading found in step 6 from the total reading. The reading found in step 6 will be the shim size on the ring gear side. The remaining portion of the shim pack will be used on the side opposite the ring gear. Add an additional 0.38 mm (0.015-inch) of shims to the side opposite the ring gear to preload the bearings.
10. Place the proper shims on the differential side bearing hub (ring gear side) and drive the differential bearing onto the hub using J-23690 and J-8092 (figure 160).
 • If installing a new bearing, be certain that it is the same width as the old bearing.

11. Place the proper shims on the differential side bearing hub (opposite the ring gear) and drive the differential bearing onto the hub using J-23690 and J-8092.
 • If installing a new bearing, be certain that it is the same width as the old bearing.

12. Assemble J-24385-01 to the axle housing as shown in figure 161.

13. Assemble the dial indicator as shown in figure 101. Preset the gage at least 0.020-inch, and then rotate the indicator housing to zero the dial.

14. Spread the carrier while examining the dial indicator.

 NOTICE: Do not spread the differential carrier more than 0.38 mm (0.015-inch). Over-spreading the carrier can damage or distort the carrier.

15. Remove the dial indicator.

16. Place the bearing cups (20) onto the bearings.

17. Install the differential assembly into the carrier.
 • Use a rawhide hammer to seat the differential assembly in the axle housing (figure 162).

18. Remove the spreader.

19. Install the bearing caps (18) in their original positions.

20. Install the bearing cap bolts (19).

 Tighten
 • The bearing cap bolts (19) to 115 N-m (85 ft.lbs.).

ASSEMBLING THE DIFFERENTIAL TO THE AXLE HOUSING — HEAVY DUTY MODELS

Tools Required:
- J-23690 Differential Side Bearing Installer
- J-8092 Driver Handle
- J-24385-01 Differential Carrier Spreader
- C-4205 Preload Shim Installer
- C-4171 Universal Handle
1. Assemble the differential case (22) with master bearings installed to the axle housing. The pinion must be installed.
2. Install the spacer (used before) between the master bearing and the axle housing.
3. Mount a dial indicator having a minimum travel of 0.200-inch with a magnetic base on the ring gear bolt side of the housing (figure 159).
4. Place the indicator tip on the chalk mark made earlier.
5. Force the ring gear into mesh with the pinion. Rock the ring gear to allow the teeth of the gears to mesh.
6. With the force still applied to the differential case, set the dial indicator to zero.
7. Force the differential case away from the pinion gear to obtain an indicator reading. Repeat this action until a consistent reading is obtained.
8. Remove the indicator and the differential case from the carrier.
9. Remove the master bearings from the differential case.
10. Using the total shim pack size determined earlier, (refer to “Determining Total Differential Shim Pack Size” in this section) subtract the reading found in step 7 from the total reading. The reading found in step 7 will be the shim size on the ring gear side. The remaining portion of the shim pack will be used on the side opposite the ring gear. Add an additional 0.003-Inch worth of shim for differential bearing preload and backlash.
11. Place the proper shims on the differential side bearing hub (ring gear side) and drive the differential bearing onto the hub using J-23690 and J-8092 (figure 160).
 - If installing a new bearing, be certain that it is the same width as the old bearing.
 - The shim pack on the side opposite the ring gear will also require an outboard spacer. The inboard shims (including the 0.003-Inch preload) must not exceed 0.050-Inch. Outboard spacers are available in 0.120-Inch and 0.150-Inch sizes.
12. Determine the proper size of the shim pack by subtracting the spacer size from the remaining amount of shims necessary (determined in step 10).
13. Place the proper shims on the differential side bearing hub (ring gear side) and drive the differential bearing onto the hub using J-23690 and J-8092.
 - If installing a new bearing, be certain that it is the same width as the old bearing.
14. Assemble J-24385-01 to the axle housing as shown in figure 161.
15. Assemble the dial indicator as shown in figure 161. Preset the gage at least 0.020-inch, and then rotate the indicator housing to zero the dial.
 - NOTICE: Do not spread the differential carrier more than 0.38 mm (0.015-inch). Over-spreading the carrier can damage or distort the carrier.
16. Spread the carrier while examining the dial indicator.
17. Remove the dial indicator.
18. Place the bearing cups (20) onto the bearings.
19. Install the differential assembly into the carrier (figure 162).
20. Drive the outboard spacers (43) into the proper sides using C-4205 and C-4171.
21. Remove the spreader.
22. Install the bearing caps (18) in their original position.
23. Install the bearing cap bolts (19).
24. Assemble J-24385-01 to the axle housing as shown in figure 161.
25. Assemble the dial indicator as shown in figure 161. Preset the gage at least 0.020-inch, and then rotate the indicator housing to zero the dial.
 - NOTICE: Do not spread the differential carrier more than 0.38 mm (0.015-inch). Over-spreading the carrier can damage or distort the carrier.
26. Spread the carrier while examining the dial indicator.
27. Remove the dial indicator.
28. Place the bearing cups (20) onto the bearings.
29. Install the differential assembly into the carrier (figure 162).
30. Drive the outboard spacers (43) into the proper sides using C-4205 and C-4171.
31. Remove the spreader.
32. Install the bearing caps (18) in their original position.
33. Install the bearing cap bolts (19).
34. Assemble J-24385-01 to the axle housing as shown in figure 161.
35. Assemble the dial indicator as shown in figure 161. Preset the gage at least 0.020-inch, and then rotate the indicator housing to zero the dial.
 - NOTICE: Do not spread the differential carrier more than 0.38 mm (0.015-inch). Over-spreading the carrier can damage or distort the carrier.
36. Spread the carrier while examining the dial indicator.
37. Remove the dial indicator.
38. Place the bearing cups (20) onto the bearings.
39. Install the differential assembly into the carrier (figure 162).
40. Drive the outboard spacers (43) into the proper sides using C-4205 and C-4171.
41. Remove the spreader.
42. Install the bearing caps (18) in their original position.
43. Install the bearing cap bolts (19).

FINAL ASSEMBLY

1. Drive axles. Refer to the proper service manual.
2. Gasket (15) to the axle cover.
3. Axle cover (14) to the housing (figure 164).
4. Axle housing to the vehicle. Refer to the proper service manual.
5. Lubricant to the rear axle.
12-INCH RING GEAR (ROCKWELL)

DESCRIPTION

The Rockwell 12-inch ring gear rear axle uses a conventional ring and pinion gear set to transmit the driving force of the engine to the rear wheels. This gear set transfers this driving force at a 90 degree angle from the propeller shaft to the drive shafts.

This axle is full-floating. The axle shaft is supported at the wheel ends by the wheel hubs. The rear axle shaft is held into the rear axle by an axle cap bolted to the hub. The splined end of the shaft is supported by the differential.

This axle uses a differential carrier, separate from the axle housing. This differential carrier holds the entire drive gear set, the differential bearings and adjusting nuts, and the differential bearing caps. The pinion cage is bolted to the differential cage.

The pinion gear is supported in a pinion cage by three bearings: a pinion front bearing, a pinion inner bearing, and a pinion rear or pilot bearing. The pinion cage is separate from the axle housing. Selective shims are used between the pinion cage and the axle housing to set the pinion depth.

The ring gear is bolted onto the differential case with right-hand thread bolts.

The differential case is supported in the case by two tapered roller bearings. The differential and ring gear are located in relationship to the pinion by using two differential bearing adjusting nuts. These allow the differential to be moved from side to side by adjusting the nuts in or out. The differential side bearing preload is accomplished by tightening the differential bearing adjusting nuts after the ring gear backlash has been set. Two bearing caps are used to hold the differential into the differential carrier as well as to supply half of the threads for the bearing adjusting nuts.

The differential is used to allow the wheels to turn at different rates of speed while the rear axle continues to transmit the driving force. This prevents tire scuffing when going around corners and prevents premature wear on internal axle parts.

The rear axle is sealed with a pinion seal, a gasket at each axle shaft end, and by a gasket between the rear axle housing and the differential carrier.

The Rockwell axle is identified by the model number on the carrier. This axle has a separate carrier, an overhung pinion, and incorporates disk brakes.

DISASSEMBLY OF THE REAR AXLE

Tools Required:
- J-22912 Split Type Puller Plate
- J-7804-01 Pinion Flange Puller
- J-22912 Rear Pinion Bearing Remover
- J-3453 Pinion Flange Holding Bar
- Drain the axle lubricant from the housing.
- Axle shafts. Refer to the proper service manual.

CLEANING

Do not steam clean drive parts having ground and polished surfaces such as gears, bearings, and shafts. These parts should be cleaned in a suitable solvent. All parts should be disassembled before cleaning.

Parts should be thoroughly dried immediately after cleaning. Use soft, clean, lintless rags. Parts may be dried with compressed air. Do not allow the bearings to spin while drying them with compressed air.
4B-62 REAR AXLE

Figure 165—Rear Axle Components

F-04734
Rear Axle Components

INSPECTION

It is very important to carefully and thoroughly inspect all drive unit parts before reassembly.

Through inspection of the drive parts for wear or stress ans subsequent replacement of worn parts will eliminate costly drive component repair after reassembly.
Figure 168—Punching the Carrier Leg

Figure 171—Differential Case Halves

Figure 169—Removing the Bearing Cap

Figure 172—Differential Components

Figure 170—Removing the Differential

Figure 173—Removing the Differential Side Bearing
REAR AXLE 4B-65

Figure 176—Removing the Pinion Cage

Figure 177—Removing the Pinion Inner Bearing

- The housing for foreign material such as metal chips, dirt, or rust. Refer to "Cleaning" in this section.

DIFFERENTIAL

Inspect

- Pinion gear shaft for unusual wear.
- Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
- Thrust washers for wear.
- The fit of the differential side gears in the differential case.
- The fit of the side gears on the axle shafts.
- Differential case for cracks and scoring.
- Replace all worn parts.

PINION AND RING GEAR

Inspect

- Pinion and ring gear teeth for cracking, chipping, scarring, or excessive wear.
- Pinion splines for wear.
- Pinion flange splines for wear.
- The fit of the pinion on the pinion flange.
- The sealing surface of the pinion flange for nicks, burrs, or rough tool marks which would cause damage to the seals' inside diameter and result in an oil leak.
- Pinion cages for cracks, imperfections, corrosion, pits and grooves.
- Replace all worn or broken parts.
- Ring and pinion gears are matched sets and are both replaced any time a replacement of either is necessary.

BEARINGS

Inspect

- Bearings visually and by feel. The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.

Figure 174—Removing the Pinion Nut

Figure 175—Removing the Pinion Flange
The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.
- Bearing cups for wear, cracks, brinelling and scoring.
- Bearings and cups are only replaced as sets.
- If the rear axle was operated for an extended period of time with very loose bearings, the ring gear and drive pinion will also require replacement.
- Low mileage bearings may have minutes scratches and pits on the rollers and the bearing cups from the initial preload. Do not replace a bearing for this reason.
- Bearing caps for cracks or chips.

SHIMS

Inspect

Shims for cracks and chips. Damaged shims should be replaced with an equally sized service shim.

ASSEMBLY OF THE REAR AXLE

PINION ASSEMBLY

Install or Connect (Figure 105)

Tools Required:
- J-23723 Bearing Installer
- J-3453 Flange Holding Bar
- J-3154-04 Seal Installer
- Lubricate all parts with axle lubricant.

1. Pinion rear bearing (57) onto the pinion.
 - Press the bearing onto the pinion using J-23723.
2. Pinion pilot bearing (52) onto the pinion.
 - Press the bearing onto the pinion.
3. Bearing lock ring (51).
 - The ring must seat in the pinion ring land.
4. Pinion (37) into the cage (54).
5. Spacer over the pinion shaft.
6. Pinion front bearing (57).
 - Press the bearing onto the pinion using J-23723.
 - Rotate the cage several times to initially seat the bearings.
 - Place the pinion assembly in a press, and apply a load of 11 tons.
 - Wrap a soft wire around the cage and pull on the line with a pound scale. Measure the rotating torque, not the starting torque (figure 178).
 - The rotating torque should be 5 to 15 in. lbs. To determine the inch pounds:
 - Determine the diameter of the pinion cage in inches.
 - Divide the diameter by 2 to find the radius in inches.
 - Multiply the radius by the number of pounds on the scale.
 - Use a thinner spacer to increase bearing preload, and a thicker spacer to decrease bearing preload.
7. Pinion flange (60) to the pinion (figure 179).
 - Press the flange onto the pinion.
8. Pinion washer (61) and nut (62) using J-3453 to hold the pinion (figure 180).
Tighten

- Nut (62) to 325 N·m (240 ft. lbs.).

- Remove J-3453, and recheck the rotation torque at the pinion nut. The torque should be 5 to 15 in. lbs. Adjust the preload if necessary.

- Remove the pinion nut (62), washer (61), and flange (60) (figure 181).

11. Pinion flange (60) to the pinion (figure 179).

- Press the flange onto the pinion.

12. Pinion washer (61) and a new nut (62) using J-3453 to hold the pinion (figure 180).

Tighten

- Nut (62) to 325 N·m (240 ft. lbs.).

PINION INSTALLATION

Install or Connect

- Measure the pinion bearing shims (50). If a new pinion and ring gear set is installed, the pinion bearing shim pack must be adjusted.

- Examine the heads of the new and old drive pinions. Compare these codes, and adjust the pinion bearing shim pack accordingly. The chart in figure 183, shows the proper adjustment to be made to the shim pack.

- If the original pinion is being used, the original pinion shims should also be used.

1. Pinion bearing shims (50) to the pinion cage.

- The shims, housing, and cage must be clean.

2. The pinion cage (54) to the axle housing.

3. Cage bolts (56).

Tighten

- Bolts to 48 N·m (35 ft. lbs.).

DIFFERENTIAL CASE ASSEMBLY

Install or Connect

- Lubricate all parts with rear axle lubricant.

1. Differential pinion gears (41) and thrust washers (42) to the spider (40) (figure 184).

2. Differential side gears (43) and thrust washers (38) to the differential case halves in their original locations.

3. Differential spider (40) to the differential.

4. The case halves (figure 185).

- Align the scribe marks on the case halves.

5. Case bolts (44).

Tighten

- Bolts (44) to 61 N·m (45 ft. lbs.).

- Check that the mating surfaces of the differential case and the ring gear are clean and burr free.

- The ring gear must be heated before assembly to the differential case. Heat the ring gear in water to 160° — 180° F for 10 minutes before assembly.

6. Ring gear (37) to the differential.
7. New ring gear bolts (44).
 - Tighten the ring gear bolts alternately in stages gradually pulling the ring gear onto the differential case.

Tighten
- The ring gear bolts in sequence to 136 N m (100 ft. lbs.).

8. Differential side bearings (33).
 - Press the bearings on using a suitable tool.

Differential Installation

Install or Connect
1. Bearing cups (33) to the carrier (36).
4. Cap bolts (23).

Tighten
- Bolts to 176 N m (130 ft. lbs.).
- The bearing cups must have a hand fit in the bearing bores: If the fit is too tight, rework the bore with emery cloth, until a hand fit is obtained (figure 186).

Remove or Disconnect
1. Cap bolts (23).
2. Bearing caps (25).
3. Adjusting nuts (32).
4. Bearing cups (33).

Install or Connect
- Lubricate all parts with axle lubricant.
1. Bearing cups (33) onto the bearings.
2. Differential assembly (36) to the carrier.
4B-69

REAR AXLE

• Turn the nuts hand-tight against the bearing cups.

 • Tap lightly into position.

5. Cap bolts (23).

[Image: Figure 188—Adjusting Side Bearing Preload]

CHECKING RING GEAR RUN OUT

[Image: Figure 187—Adjusting Side Bearing Preload]

• Mount a dial indicator to the carrier. The dial indicator stem should rest on the back face of the ring gear.

• Loosen the adjusting nut opposite the ring gear enough to notice end play on the indicator.

• Tighten the same adjusting nut just enough to have 0.000-inch end play on the indicator.

• Rotate the gear, and check for run out. If the run out exceeds 0.008-inch, remove the differential, and determine the cause.

BACKLASH ADJUSTMENT

• The differential side bearing preload is adjusted by two adjusting nuts in the differential bearing bore. The bore and the bearing cap provide the mating threads for the bearing nut.

• The differential must be initially preloaded in order to determine the backlash of the gear set. After the backlash has been set, the final bearing preload is set.

Adjust

1. The bearing preload by tightening the adjusting nuts (32) one notch each from 0.000 end play. Refer to "Checking Ring Gear Run Out" (figure 188).

• Mount a dial indicator to the carrier (46). Place the stem of the indicator onto the toe end of a tooth (figure 189).

FINAL ASSEMBLY

Install or Connect

1. Carrier (46) to the axle housing. Refer to the proper service manual.

2. Drive axles. Refer to the proper service manual.

3. The axle housing to the vehicle. Refer to the proper service manual.

4. Lubricant to the rear axle.
LOCKING DIFFERENTIALS

A. 7½-Inch Ring Gear
B. 8½-Inch Ring Gear
C. 9½-Inch Ring Gear
1. Differential Case
2. Pin
3. Lock Screw
4. Governor Bushing
5. Latching Bracket Bushing

1. Stop pin (2). (9½-inch only.)
2. Governor bushing (4) using J-26252 (figure 191).
3. The C-clips that hold the latching bracket in place on the bracket shaft.
4. Latching bracket bushing (5) using J-26252.
5. Latching bracket (11), shaft, and spring from the case.
6. Governor assembly (11) from the case.
7. Lock screw (9).
8. Pinion shaft (18).
9. Differential pinion gears (7) and pinion thrust washers (6).
 - Roll the gears out of the case by rotating one of the side gears.
10. Thrust block (17).
11. Right side gear (10).
12. Right disc pack (9) and side thrust washer.
13. Left side gear (21), cam plate (16), and disc pack (12) as an assembly.

Figure 190—Differential Components

7½ - 8½ AND 9½-INCH RING GEAR

DISASSEMBLY OF THE DIFFERENTIAL

Remove or Disconnect (Figure 190)

Tools Required:
- J-26252 Governor Remover
 1. Stop pin (2). (9½-inch only.)
 2. Governor bushing (4) using J-26252 (figure 191).
 3. The C-clips that hold the latching bracket in place on the bracket shaft.
 - Move the bracket down the shaft.
 4. Latching bracket bushing (5) using J-26252.
 5. Latching bracket (11), shaft, and spring from the case.
 6. Governor assembly (11) from the case.
 7. Lock screw (9).

8. Pinion shaft (18).
9. Differential pinion gears (7) and pinion thrust washers (6).
 - Roll the gears out of the case by rotating one of the side gears.
10. Thrust block (17).
11. Right side gear (10).
12. Right disc pack (9) and side thrust washer.
13. Left side gear (21), cam plate (16), and disc pack (12) as an assembly.

CAM-UNIT DISASSEMBLY - 7½ AND 8½-INCH

Remove or Disconnect (Figures 190 and 192)

1. Snap ring (22).
2. Lock plates.
4. Wave spring.
5. Cam plate (16).
6. Cam side gear (21).

CAM-UNIT DISASSEMBLY - 9½-INCH

Remove or Disconnect

Tools Required:

- J-22912-01 Bearing Remover
- Measure and record the overall length of the gear assembly from the front of the gear to the back of the thrust sleeve (14) including the side gear washer (13).

1. Thrust sleeve (14) using J-22910-01.
 - Press the sleeve from the side gear (figure 193).

2. Lock plates.
4. Wave spring.
5. Cam plate (16).
6. Cam side gear (21).

CLEANING AND INSPECTION

Clean

- All parts with solvent.

Inspect

- All parts for excessive wear and breakage.
- Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
- Thrust washer for wear.
- The fit of the side gears on the axle shafts.
- Differential case for cracks and scoring.
- Thrust sleeve for excessive wear. Do not replace the thrust sleeve unless necessary. Inspect the side gear bore for scoring. If scoring is present, replace the entire differential.
- Replace parts as necessary.

CAM-UNIT ASSEMBLY - 7½ AND 8 ½-INCH

Install or Connect

1. Cam plate (16) to the Cam side gear (21).
2. Wave spring.
3. Lock plates.
 - Alternate the plates as shown in figure 190.
4. Guide clips (20) to the plates.
 - Use grease in the clips to hold them in place on the plates.
5. Snap ring.

CAM-UNIT ASSEMBLY - 9½-INCH

Install or Connect

1. Cam plate (16) to the cam side gear (21).
2. Wave spring.
3. Lock plates.
 - Alternate the plates as shown in figure 190.
4. Guide clips (20) to the plates.
 - Use grease in the clips to hold them in place on the plates.
5. Thrust sleeve (14).
 - Press the thrust sleeve flush with the side gear back-face.
• If the side gear or thrust sleeve has been replaced, measure and record the overall length of the gear assembly from the front of the gear to the back of the thrust sleeve (14) including the side gear washer (13).

• Compare this reading with the reading obtained earlier in this section.

• If the new reading is more than 0.003-inch higher or lower than the original, select a thrust washer that will return the reading closest to the original reading.

ADJUSTMENT OF THE DIFFERENTIAL

• If it is necessary to replace the cam gear, the right hand side gear, or the thrust block, the entire differential must be adjusted. The differential is adjusted by using selective thickness thrust washers behind each side gear, and a selective thickness thrust block between the side gears.

• It is important to build up the differential properly, as the proper clearances between parts is necessary for the proper operation of the units.

• There are three adjustments to be made:
 1. Left side gear backlash.
 2. Right side gear backlash.
 3. Thrust block clearance.

Left Side Gear Backlash Adjustment

1. Install the cam-unit and thrust washer (13) to the flange end of the case.
2. Place the pinion gears (7) and thrust washers into the differential.
 • Align them with the pinion shaft hole.
3. Press down the side gear, and install the pinion shaft (18) and lock screw (3).
 • If the side gear cannot be pressed down far enough to install the pinion shaft, replace the thrust washer with a thinner washer.
4. Rotate the pinion gear closest to the lock screw so that one of the teeth is pointing downward (perpendicular to the ring gear flange).
5. Insert a large tapered tool such as a screwdriver firmly between the side gear and the pinion shaft.
6. Mount a dial indicator to the ring gear flange, and place the stem of the indicator on one of the teeth on the pinion gear closest to the lock screw (figure 194).
7. Pull the pinion gear firmly into its seat, and rotate the gear back and forth while reading the dial indicator. Record the reading.
8. Repeat steps 4 - 7 on the opposite pinion gear.
9. The backlash should be between 0.254 and 0.457 mm (0.010 and 0.018-inch).
10. If the backlash is too high, use a thicker thrust washer.
11. If the backlash is too low, use a thinner thrust washer.

Right Side Gear Backlash Adjustment

1. Assemble the lock plates.
 • Alternate the plates as shown in figure 190.
2. Assemble the guide clips (19) to the plates.
 • Use grease in the clips to hold them in place on the plates.

3. Install the thrust washer (8), lock plate assembly (9), and right side gear to the differential.
4. Place the pinion gears (7) and thrust washers (6) into the differential.
 • Align them with the pinion shaft hole.
5. Press down the side gear, and install the pinion shaft (18) and lock screw (3).
 • If the side gear cannot be pressed down far enough to install the pinion shaft, replace the thrust washer with a thinner washer.
6. Rotate the pinion gear closest to the lock screw so that one of the teeth is pointing downward (perpendicular to the ring gear flange).
7. Insert a large tapered tool such as a screwdriver firmly between the side gear and the pinion shaft.
8. Mount a dial indicator to the ring gear flange, and place the stem of the indicator on one of the teeth on the pinion gear closest to the lock screw (figure 194).
9. Pull the pinion gear firmly into its seat, and rotate the gear back and forth while reading the dial indicator. Record the reading.
10. Repeat steps 6 through 9 on the opposite pinion gear.
11. The backlash should be between 0.051 and 0.243 mm (0.002 - 0.010-inch).
12. If the backlash is too high, use a thicker thrust washer.
13. If the backlash is too low, use a thinner thrust washer.

Thrust Block Clearance Adjustment

1. Left thrust washer (13) to the differential.
2. Cam unit to the differential.
3. Right thrust washer (8) to the differential.
4. Lock plates with guide clips to the differential.
 • Assemble alternatively as shown in figure 190.
5. Right side gear (10) to the differential.
6. Pinion shaft (18) and lock screw (3). Insert a large tapered tool such as a screwdriver firmly between each side gear and the pinion shaft.
7. A 1 to 2-inch telescoping gage between the side gear faces, not the gear teeth.
 - Measure the side gear spread (figure 195).

Measure

- Remove the telescoping gage.
- Measure the telescoping gage with a micrometer.
- Measure the original thrust block at the outer corner with a micrometer (figure 196).
- If the thrust block thickness is not 0.000 to 0.006-inch less than the side gear spread, adjust the clearance by:
 - Selecting a new thrust block the correct size to obtain 0.000 to 0.006-inch clearance.
 - Reshiming the right clutch disk pack. The backlash must remain 0.002 - 0.010-inch.

Install or Connect (Figure 190)

1. Left thrust washer (13).
2. Cam unit. Refer to “Cam-Unit Assembly” in this section.
3. Right thrust washer (8).
4. Right lock plates with guide clips (19).
 - Assembly alternatively as shown in figure 190.
5. Right side gear (10).
6. Pinion gears (7), thrust washers (6), and thrust block (17).
 - Place the gears into the differential 180 degrees apart.
 - Rotate the gears and thrust block into position.
 - The open side of the thrust block must face toward the small window opening.
7. Pinion shaft (18).
8. A new lockscrew (3).

Tighten

- Lockscrew to:
 - 36 N·m (27 ft. lbs.) (7½ and 8½-inch)
 - 50 N·m (37 ft. lbs.) (9½-inch)
9. Governor assembly (11) and latching bracket (11).
 - The straight end of the latching bracket spring must be over and outside the governor assembly shaft (figure 197).
10. Stop pin (2) (9½-inch)
 - Press the pin flush with the case.
11. Governor bushing (4).
 - Use the bushing with a straight hole, not a tapered hole.
 - Press the bushing in far enough to give 0.004 to 0.020-inch shaft end play.
12. Latching bracket bushing (5).
 - Press in far enough to eliminate all end play.
4B-74 REAR AXLE

Figure 198—Differential Components

10½-INCH RING GEAR

DISASSEMBLY OF THE DIFFERENTIAL

Remove or Disconnect (Figure 198)

Tools Required:

J-22912-01

1. The ring gear and differential side bearings. Refer to "Disassembly of the Rear Axle" under the "10½-Inch Ring Gear" heading.

 - Set the unit on the right side case half.

3. Case halves (Figure 199).
 - Pry the halves apart at the yoke hole location.
 - Hold the side gear in the left side case half.

4. Governor assembly (43).

5. Latching bracket assembly (43).

7. Left side pack and guide clips (47).

8. Left thrust washer (45).

9. Reaction blocks (41), pinion yoke (42), pinion gears (39), and pinion thrust washers (38).

10. Right cam unit from the differential.

11. Right thrust washer (36).
 - Measure and record the overall length of the gear assembly from the front of the gear to the back of the thrust sleeve (35) including the side gear washer (36).

 - Press the sleeve from the side gear (Figure 200).

13. Lock plates.

15. Wave spring.

16. Cam plate (33).

17. Cam side gear (40).
CLEANING AND INSPECTION

Clean
• All parts with solvent.

Inspect
• All parts for excessive wear and breakage.
• Pinion gear and side gear teeth for wear, cracks, scarring, and spalling.
• Thrust washers for wear.
• The fit of the side gears on the axle shafts.
• Differential case for cracks and scarring.
• Thrust sleeve for excessive wear. Do not replace the thrust sleeve unless necessary. Inspect the side gear bore for scarring. If scarring is present, replace the entire differential.
• If any damage to the differential case is found, the entire differential must be replaced.
• Replace parts as necessary.

CAM-UNIT ASSEMBLY

Install or Connect (Figure 198)
1. Cam plate (33) to the cam side gear (40).
2. Wave spring.
3. Lock plates.
• Alternate the plates as shown in figure 201.
4. Guide clips (34) to the plates.
 • Use grease in the clips to hold them in place on the plates.
5. Thrust sleeve (35).
 • Press the thrust sleeve flush with the side gear back-face.
 • If the side gear or thrust sleeve has been replaced, measure and record the overall length of the gear to the back of the thrust sleeve (35) including the side gear washer (36).
 • Compare this reading with the reading obtained earlier in this section.
 • If the new reading is more than 0.003-inch higher or lower than the original, select a thrust washer that will return the reading closest to the original reading.

ADJUSTMENT OF THE DIFFERENTIAL
• If it is necessary to replace the cam gear, the right hand side gear, or the reaction blocks, the entire differential must be adjusted. The differential is adjusted by using selective thickness thrust washers behind each side gear, and selective thickness reaction blocks between the side gears.
4B-76 REAR AXLE

Figure 202—Clamping the Cam-Unit In Place

- It is important to build up the differential properly. The proper clearance between parts is necessary for the proper operation of the unit.
- There are three adjustments to be made:
 1. Left side gear backlash.
 2. Right side gear backlash.
 3. Thrust block clearance.

Right Side Gear Backlash Adjustment
1. Install the cam-unit and thrust washer (36) to the right case half.
2. Clamp the cam-unit in place using a set of washers, nut, and a bolt long enough to hold the cam-unit in place (figure 202).
3. Place the pinion gears and thrust washers on the pinion yoke.
4. Install the yoke firmly to the differential case half (figure 203).
5. Loosen the nut, and index one pinion gear tooth to point downward (perpendicular to the case half face). Tighten the nut.

Right Side Gear Backlash Adjustment

6. Mount a dial indicator on the case half face using a magnetic base (figure 204).
7. Place the stem of the dial indicator on the pinion gear tooth.
8. Pull the pinion gear firmly into its seat, and rotate the gear back and forth while reading the dial indicator. Record the reading.
- Do not unseat the pinion yoke. This will make the backlash reading inaccurate.
9. Repeat steps 5 - 8 on the other 2 pinions. Record the readings.
10. The backlash should be between 0.254 and 0.457 mm (0.010 and 0.018-inch).
11. If the backlash is too high, use a thicker thrust washer.
12. If the backlash is too low, use a thinner thrust washer.

Left Side Gear Backlash Adjustment
1. Assemble the lock plates.
 - Alternate the plates as shown in figure 201.
2. Assemble the guide clips (47) to the plates.
 - Use grease in the clips to hold them in place on the plates.
3. Install the thrust washer (45), lock plate assembly (44), and left side gear to the differential.
4. Clamp the side gear in place using a set of washers, a nut, and a bolt long enough to hold the side gear in place (figure 202).
5. Place the pinion gears and thrust washers on the pinion yoke.
6. Install the yoke firmly to the differential case half.
7. Loosen the nut, and index one pinion gear tooth to point downward (perpendicular to the case half face). Tighten the nut.
8. Mount a dial indicator on the case half face using a magnetic base (figure 204).
9. Place the stem of the dial indicator on the pinion gear tooth.
10. Pull the pinion gear firmly into its seat, and rotate the gear back and forth while reading the dial indicator. Record the reading.
• Do not unseat the pinion yoke. This will make the backlash reading inaccurate.
11. Repeat steps 7 - 10 on the other 2 pinions. Record the readings.
12. The backlash should be between 0.051 and 0.254 mm (0.002 and 0.010-inch).
13. If the backlash is too high, use a thicker thrust washer.
14. If the backlash is too low, use a thinner washer.

Reaction Block Clearance Adjustment

Install or Connect

1. Left thrust washer, plates and side gear. Bolt them into position. Refer to “Left Side Gear Backlash Adjustment”.
2. Right thrust washer and cam assembly. Bolt them into position. Refer to “Right Side Gear Backlash Adjustment”.
• Measure the distance from the side gear face to the case half face (figure 205).
• The thickness of the straight edge must be subtracted from the reading.
• Add the measurement of both sides together. This is the side gear spread.
• Measure the thickness of the original reaction blocks together (figure 206).
• If the reaction block thickness is not 0.000 to 0.006-inch less than the side gear spread, adjust the clearance by:
 — Selecting new reaction blocks of the correct thickness to obtain 0.000 to 0.006-inch clearance.
 — Reshiming the left clutch disk pack. The backlash must remain 0.002 - .010-inch.

ASSEMBLY OF THE DIFFERENTIAL

Install or Connect (Figure 198)

1. Right thrust washer.
2. Right cam unit. Refer to “Cam-Unit Assembly”.
3. Reaction blocks (41), pinion yoke (42), pinion gears (39), and pinion thrust washers.
SPECIFICATIONS

7 1/2-INCH RING GEAR AXLE

<table>
<thead>
<tr>
<th>FASTENER</th>
<th>N·m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Gear Bolts</td>
<td>120</td>
<td>90</td>
</tr>
<tr>
<td>Bearing Cap Bolts</td>
<td>75</td>
<td>55</td>
</tr>
<tr>
<td>Axle Cover Bolts</td>
<td>27</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPACER AND SHIM SIZES</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Side Bearing Spacer</td>
<td>0.170-inch</td>
</tr>
<tr>
<td></td>
<td>0.172-inch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Differential Side Bearing Shim Kits</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.040-0.044-inch</td>
</tr>
<tr>
<td></td>
<td>0.046-0.050-inch</td>
</tr>
<tr>
<td></td>
<td>0.052-0.056-inch</td>
</tr>
<tr>
<td></td>
<td>0.058-0.062-inch</td>
</tr>
<tr>
<td></td>
<td>0.064-0.070-inch</td>
</tr>
<tr>
<td></td>
<td>0.072-0.078-inch</td>
</tr>
<tr>
<td></td>
<td>0.080-0.086-inch</td>
</tr>
<tr>
<td></td>
<td>0.088-0.094-inch</td>
</tr>
<tr>
<td></td>
<td>0.096-0.100-inch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pinion Bearing Shim Kits</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.025-0.029-inch</td>
</tr>
<tr>
<td></td>
<td>0.030-0.034-inch</td>
</tr>
<tr>
<td></td>
<td>0.035-0.039-inch</td>
</tr>
<tr>
<td></td>
<td>0.040-0.045-inch</td>
</tr>
</tbody>
</table>

| Lubricant | SAE 80W-90 GL-5 |

8 1/2-INCH RING GEAR AXLE

<table>
<thead>
<tr>
<th>FASTENER</th>
<th>N·m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Gear Bolts</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>Bearing Cap Bolts</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>Axle Cover Bolts</td>
<td>27</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPACER AND SHIM SIZES</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Side Bearing Spacer</td>
<td>0.170-inch</td>
</tr>
<tr>
<td></td>
<td>0.172-inch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Differential Side Bearing Shim Kits</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.064-0.070-inch</td>
</tr>
<tr>
<td></td>
<td>0.072-0.078-inch</td>
</tr>
<tr>
<td></td>
<td>0.080-0.086-inch</td>
</tr>
<tr>
<td></td>
<td>0.088-0.094-inch</td>
</tr>
<tr>
<td></td>
<td>0.096-0.100-inch</td>
</tr>
<tr>
<td></td>
<td>0.052-0.056-inch</td>
</tr>
<tr>
<td></td>
<td>0.058-0.063-inch</td>
</tr>
<tr>
<td></td>
<td>0.040-0.044-inch</td>
</tr>
<tr>
<td></td>
<td>0.046-0.050-inch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pinion Bearing Shim Kits</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.020-0.024-inch</td>
</tr>
<tr>
<td></td>
<td>0.025-0.029-inch</td>
</tr>
<tr>
<td></td>
<td>0.030-0.034-inch</td>
</tr>
<tr>
<td></td>
<td>0.035-0.039-inch</td>
</tr>
</tbody>
</table>

| Lubricant | SAE 80W-90 GL-5 |

SPECIFICATIONS (CONT.)

9 1/2-INCH RING GEAR AXLE

<table>
<thead>
<tr>
<th>FASTENER</th>
<th>N-m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Gear Bolts</td>
<td>145</td>
<td>105</td>
</tr>
<tr>
<td>Bearing Cap Bolts</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>Axle Cover Bolts</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Adjusting Nut Lock Bolt</td>
<td>30</td>
<td>22</td>
</tr>
</tbody>
</table>

SPACER AND SHIM SIZES

<table>
<thead>
<tr>
<th>SIZE</th>
<th>DIFFERENTIAL SIDE BEARING SPACER</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIZE</td>
<td>0.170-inch</td>
</tr>
<tr>
<td>SIZE</td>
<td>0.172-inch</td>
</tr>
<tr>
<td>SIZE</td>
<td>0.040-0.044-inch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIZE</th>
<th>DIFFERENTIAL SIDE BEARING SHIM KITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIZE</td>
<td>0.200-0.023-inch</td>
</tr>
<tr>
<td>SIZE</td>
<td>0.240-0.028-inch</td>
</tr>
<tr>
<td>SIZE</td>
<td>0.290-0.033-inch</td>
</tr>
<tr>
<td>SIZE</td>
<td>0.340-0.037-inch</td>
</tr>
<tr>
<td>SIZE</td>
<td>0.500-0.020-inch</td>
</tr>
<tr>
<td>SIZE</td>
<td>0.600-0.024-inch</td>
</tr>
<tr>
<td>SIZE</td>
<td>0.710-0.028-inch</td>
</tr>
<tr>
<td>SIZE</td>
<td>0.840-0.034-inch</td>
</tr>
<tr>
<td>SIZE</td>
<td>0.939-0.037-inch</td>
</tr>
<tr>
<td>SIZE</td>
<td>0.80W-90 GL-5</td>
</tr>
</tbody>
</table>

Lubricant

- 80W-90 GL-5
SPECIFICATIONS (CONT.)

10 1/2-INCH RING GEAR AXLE (CORPORATE)

<table>
<thead>
<tr>
<th>FASTENER</th>
<th>N·m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Gear Bolts</td>
<td>163</td>
<td>120</td>
</tr>
<tr>
<td>Bearing Cap Bolts</td>
<td>183</td>
<td>135</td>
</tr>
<tr>
<td>Axle Cover Bolts</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Adjusting Nut Lock Bolts</td>
<td>30</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPACER AND SHIM SIZES</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinion Bearing Shims</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.006-inch</td>
</tr>
<tr>
<td></td>
<td>0.007-inch</td>
</tr>
<tr>
<td></td>
<td>0.008-inch</td>
</tr>
<tr>
<td></td>
<td>0.009-inch</td>
</tr>
<tr>
<td></td>
<td>0.010-inch</td>
</tr>
<tr>
<td></td>
<td>0.011-inch</td>
</tr>
<tr>
<td></td>
<td>0.012-inch</td>
</tr>
<tr>
<td></td>
<td>0.013-inch</td>
</tr>
<tr>
<td></td>
<td>0.014-inch</td>
</tr>
<tr>
<td></td>
<td>0.015-inch</td>
</tr>
<tr>
<td></td>
<td>0.016-inch</td>
</tr>
<tr>
<td></td>
<td>0.017-inch</td>
</tr>
<tr>
<td></td>
<td>0.018-inch</td>
</tr>
<tr>
<td></td>
<td>0.019-inch</td>
</tr>
<tr>
<td></td>
<td>0.020-inch</td>
</tr>
<tr>
<td></td>
<td>0.021-inch</td>
</tr>
<tr>
<td></td>
<td>0.022-inch</td>
</tr>
<tr>
<td></td>
<td>0.023-inch</td>
</tr>
<tr>
<td></td>
<td>0.024-inch</td>
</tr>
</tbody>
</table>

Lubricant ... 80W-90 GL-5

9 3/4-INCH RING GEAR AXLE (DANA)

<table>
<thead>
<tr>
<th>FASTENER</th>
<th>N·m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Gear Bolts</td>
<td>150</td>
<td>110</td>
</tr>
<tr>
<td>Bearing Cap Bolts</td>
<td>115</td>
<td>85</td>
</tr>
<tr>
<td>Axle Cover Bolts</td>
<td>47</td>
<td>35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FASTENER</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Bearing Adjusting Shim</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.003-inch</td>
</tr>
<tr>
<td></td>
<td>0.005-inch</td>
</tr>
<tr>
<td></td>
<td>0.010-inch</td>
</tr>
<tr>
<td></td>
<td>0.030-inch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outer Pinion Bearing Shim</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.003-inch</td>
</tr>
<tr>
<td></td>
<td>0.005-inch</td>
</tr>
<tr>
<td></td>
<td>0.010-inch</td>
</tr>
<tr>
<td></td>
<td>0.030-inch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inner Pinion Bearing Shim</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.003-inch</td>
</tr>
<tr>
<td></td>
<td>0.005-inch</td>
</tr>
<tr>
<td></td>
<td>0.010-inch</td>
</tr>
</tbody>
</table>

Lubricant ... 80W-90 GL-5
REAR AXLE 4B-81

SPECIFICATIONS (CONT.)

10 1/2-INCH RING GEAR AXLE (DANA)

<table>
<thead>
<tr>
<th>FASTENER</th>
<th>N·m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Gear Bolts</td>
<td>142</td>
<td>105</td>
</tr>
<tr>
<td>Bearing Cap Bolts</td>
<td>115</td>
<td>85</td>
</tr>
<tr>
<td>Axle Cover Bolts</td>
<td>47</td>
<td>35</td>
</tr>
<tr>
<td>Lubricant</td>
<td></td>
<td>80W-90 GL-5</td>
</tr>
</tbody>
</table>

SHIM SIZES

- **Differential Bearing Adjusting Shim**
 - 0.003-inch
 - 0.005-inch
 - 0.010-inch
 - 0.030-inch

- **Outer Pinion Bearing Shim**
 - 0.003-inch
 - 0.005-inch
 - 0.010-inch
 - 0.030-inch

- **Inner Pinion Bearing Shim**
 - 0.003-inch
 - 0.005-inch
 - 0.010-inch

- **Inner Pinion Bearing Cup and Cone**
 - **B and H.D. Models**: 1.4375-inch wide
 - **U Model**: 1.1875-inch wide

- **Differential Bearing Cup and Cone**
 - **B and U Models**: 1.0000-inch wide
 - **H.D. Model**: 1.1875-inch wide

12-INCH RING GEAR AXLE (ROCKWELL)

<table>
<thead>
<tr>
<th>FASTENER</th>
<th>N·m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piston Nut</td>
<td>325</td>
<td>240</td>
</tr>
<tr>
<td>Pinion Cage Bolts</td>
<td>48</td>
<td>35</td>
</tr>
<tr>
<td>Case Half Bolts</td>
<td>61</td>
<td>45</td>
</tr>
<tr>
<td>Ring Gear Bolts</td>
<td>136</td>
<td>100</td>
</tr>
<tr>
<td>Bearing Cap Bolts</td>
<td>176</td>
<td>130</td>
</tr>
</tbody>
</table>

SHIM SIZES

- **Drive Pinion Bearing Retainer Shim**
 - 0.003-inch
 - 0.005-inch

- **Outer Pinion Bearing Shim**
 - 0.003-inch
 - 0.005-inch
 - 0.010-inch
 - 0.030-inch

- **Inner Pinion Bearing Shim**
 - 0.003-inch
 - 0.005-inch
 - 0.010-inch

- **Drive Pinion Bearing Spacer**
 - 0.172-inch
 - 0.173-inch
 - 0.174-inch
 - 0.175-inch
 - 0.176-inch
 - 0.177-inch
 - 0.183-inch
 - 0.189-inch
 - 0.195-inch
 - 0.201-inch

| Lubricant | | 80W-90 GL-5 |
SPECIFICATIONS (CONT.)

LOCKING DIFFERENTIAL

<table>
<thead>
<tr>
<th>FASTENER</th>
<th>N·m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Lockscrew</td>
<td>71/2 and 8 1/2-inch</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>9 1/2-inch</td>
<td>50</td>
</tr>
</tbody>
</table>

THRUET BLOCK SIZES

<table>
<thead>
<tr>
<th>Color Code</th>
<th>7 1/2-Inch</th>
<th>8 1/2-Inch</th>
<th>9 1/2-Inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purple</td>
<td>1.260-inch</td>
<td>1.322-inch</td>
<td>1.598-inch</td>
</tr>
<tr>
<td>White</td>
<td>1.264-inch</td>
<td>1.326-inch</td>
<td>1.602-inch</td>
</tr>
<tr>
<td>Brown</td>
<td>1.268-inch</td>
<td>1.330-inch</td>
<td>1.606-inch</td>
</tr>
<tr>
<td>Yellow</td>
<td>1.272-inch</td>
<td>1.334-inch</td>
<td>1.610-inch</td>
</tr>
<tr>
<td>Orange</td>
<td>1.276-inch</td>
<td>1.338-inch</td>
<td>1.614-inch</td>
</tr>
<tr>
<td>Pink</td>
<td>1.280-inch</td>
<td>1.342-inch</td>
<td>1.618-inch</td>
</tr>
<tr>
<td>Green</td>
<td>1.284-inch</td>
<td>1.346-inch</td>
<td>1.622-inch</td>
</tr>
<tr>
<td>Blue</td>
<td>1.288-inch</td>
<td>1.350-inch</td>
<td>1.626-inch</td>
</tr>
<tr>
<td>Black</td>
<td>—</td>
<td>—</td>
<td>1.630-inch</td>
</tr>
</tbody>
</table>

REACTION BLOCK SIZES — 10 1/2-INCH

- 0.675-inch
- 0.672-inch
- 0.669-inch
- 0.666-inch

RIGHT HAND SIDE GEAR THRUST WASHER

<table>
<thead>
<tr>
<th>7 1/2, 8 1/2 and 9 1/2 Inch Axles</th>
<th>10 1/2 Inch Axles</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10-inch</td>
<td>0.027-inch</td>
</tr>
<tr>
<td>0.15-inch</td>
<td>0.032-inch</td>
</tr>
<tr>
<td>0.20-inch</td>
<td>0.037-inch</td>
</tr>
<tr>
<td>0.25-inch</td>
<td>0.040-inch</td>
</tr>
<tr>
<td>0.30-inch</td>
<td>0.042-inch</td>
</tr>
<tr>
<td>0.35-inch</td>
<td>0.044-inch</td>
</tr>
<tr>
<td>0.40-inch</td>
<td>0.048-inch</td>
</tr>
<tr>
<td>0.45-inch</td>
<td>—</td>
</tr>
</tbody>
</table>

LEFT HAND SIDE GEAR THRUST WASHER

<table>
<thead>
<tr>
<th>7 1/2-Inch</th>
<th>8 1/2-Inch</th>
<th>9 1/2-Inch</th>
<th>10 1/2-Inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.022-inch</td>
<td>0.022-inch</td>
<td>0.022-inch</td>
<td>0.022-inch</td>
</tr>
<tr>
<td>0.027-inch</td>
<td>0.027-inch</td>
<td>0.027-inch</td>
<td>0.027-inch</td>
</tr>
<tr>
<td>0.032-inch</td>
<td>0.032-inch</td>
<td>0.032-inch</td>
<td>0.032-inch</td>
</tr>
<tr>
<td>0.036-inch</td>
<td>0.036-inch</td>
<td>0.036-inch</td>
<td>0.036-inch</td>
</tr>
<tr>
<td>0.040-inch</td>
<td>0.040-inch</td>
<td>0.040-inch</td>
<td>0.040-inch</td>
</tr>
<tr>
<td>0.044-inch</td>
<td>0.044-inch</td>
<td>0.044-inch</td>
<td>0.044-inch</td>
</tr>
<tr>
<td>0.048-inch</td>
<td>0.048-inch</td>
<td>0.048-inch</td>
<td>0.048-inch</td>
</tr>
<tr>
<td>0.052-inch</td>
<td>0.052-inch</td>
<td>0.052-inch</td>
<td>0.052-inch</td>
</tr>
</tbody>
</table>
1. Front Pinion Bearing Cup Installer
2. Rear Pinion Bearing Cup Installer
3. Differential Side Bearing Remover Plug
4. Pinion Flange Remover
5. Side Bearing Remover
6. Rear Pinion Bearing Cone Installer
7. Pinion Oil Seal Installer
8. Differential Side Bearing Installer
9. Rear Pinion Bearing Remover
10. Driver Handle
11. Dial Indicator

Refer to Figure 9 for these tools:
- J-21777-40 Rear Pilot Washer
- J-21777-42 Front Pilot Washer
- J-21777-43 Stud Assembly—Bolt
- J-21777-45 Side Bearing Discs
- J-23597-1 Arbor
- J-23597-11 Gauge Plate

Special Tools — 7½-Inch Ring Gear
4B-84 REAR AXLE

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Front Pinion Bearing Cup Installer</td>
<td>J-8611-01</td>
</tr>
<tr>
<td>2.</td>
<td>Rear Pinion Bearing Cone Remover</td>
<td>J-8612-B</td>
</tr>
<tr>
<td>3.</td>
<td>Driver Handle</td>
<td>J-8092</td>
</tr>
<tr>
<td>4.</td>
<td>Dial Indicator Set</td>
<td>J-8001</td>
</tr>
<tr>
<td>5.</td>
<td>Rear Pinion Bearing Cone Installer</td>
<td>J-8609-01</td>
</tr>
<tr>
<td>6.</td>
<td>Pinion Flange Remover</td>
<td>J-8614-01</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>J-8107-4</td>
</tr>
<tr>
<td>8.</td>
<td>Rear Pinion Bearing Remover Plug</td>
<td>J-8608</td>
</tr>
<tr>
<td>9.</td>
<td>Rear Pinion Bearing Cone Installer</td>
<td>J-22888</td>
</tr>
<tr>
<td>10.</td>
<td>Pinion Oil Seal Installer</td>
<td>J-22399</td>
</tr>
<tr>
<td>11.</td>
<td>Pinion Oil Seal Installer</td>
<td>J-22761</td>
</tr>
<tr>
<td>12.</td>
<td>Differential Side Bearing Installer</td>
<td>J-22779</td>
</tr>
<tr>
<td>13.</td>
<td>Rear Pinion Bearing Cone Installer</td>
<td>J-5590</td>
</tr>
</tbody>
</table>

Special Tools — 8½-Inch Ring Gear

1. Arbor: J-21777-1
2. Gauge Plate: J-21777-29
3. Rear Pilot Washer: J-21777-35
4. Front Pilot Washer: J-21777-42
5. Stud Assembly—Bolt: J-21777-43
6. Side Bearing Disc: J-21777-45
1. Differential Side Bearing Plug
2. Pinion Oil Seal Spacer
3. Side Bearing Adjustment Spanner
4. Rear Pinion Bearing Cone Remover
5. Rear Pinion Bearing Cone Installer
6. Front Pinion Bearing Cup Installer
7. Driver Handle
8. Dial Indicator
9. Differential Side Bearing Installer
10. Side Bearing Remover
11. Rear Pinion Bearing Cone Installer
12. Pinion Oil Seal Installer
13. Pinion Flange Remover
14. J-22306 Rear Pinion Bearing Cup Installer (Not Illustrated)

Refer to Figure 53 for these tools:
- J-21777-1 Arbor
- J-21777-8 Rear Pilot Washer
- J-21777-42 Front Pilot Washer
- J-21777-43 Stud Assembly — Bolt
- J-21777-85 Gauge Plate
- J-21777-86 Side Bearing Disc

Special Tools — 9½-Inch Ring Gear
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Special Tools — 10½-Inch Ring Gear (Corporate)
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Master Discs (Miller)</td>
<td>9. Differential Side Bearing Removal Plug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Arbor (Miller)</td>
<td>10. Rear Pinion Bearing Cup Installer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pinion Height Block (Miller)</td>
<td>11. Driver Handle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Scooter Gage (Miller)</td>
<td>12. Rear Pinion Bearing Cone Installer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Master Pinion Bearings (Miller)</td>
<td>13. Pinion Flange Remover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Master Pinion Block (Miller)</td>
<td>14. Differential side Bearing Installer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Cup Installer (Miller)</td>
<td>15. Differential Side Bearing Remover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Handle (Miller)</td>
<td>16. Differential Carrier Spreader</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>J-8107-03</td>
<td>17. Side Bearing Adapters</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Special Tools — 9 3/4-Inch Ring Gear (Dana)
4B-88 Rear Axle

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Master Discs (Miller)</td>
<td>10.</td>
</tr>
<tr>
<td>2.</td>
<td>Arbor (Miller)</td>
<td>11.</td>
</tr>
<tr>
<td>3.</td>
<td>Pinion Height Block (Miller)</td>
<td>12.</td>
</tr>
<tr>
<td>4.</td>
<td>Scooter Gage (Miller)</td>
<td>13.</td>
</tr>
<tr>
<td>5.</td>
<td>Master Pinion Bearings (Miller)</td>
<td>14.</td>
</tr>
<tr>
<td>6.</td>
<td>Master Pinion Block (Miller)</td>
<td>15.</td>
</tr>
<tr>
<td>7.</td>
<td>Cup Installer (Miller)</td>
<td>16.</td>
</tr>
<tr>
<td>8.</td>
<td>Handle (Miller)</td>
<td>17.</td>
</tr>
</tbody>
</table>

Special Tools — 10 1/2-Inch Ring Gear (Dana)

F-04664
1. Seal Installer Set
2. Flange Holding Bar
3. Differential Side Bearing Installer
4. Yoke Remover
5. Rear Pinion Bearing Cone Remover

Special Tools — 12-Inch Ring Gear (Rockwell)

1. Rear Pinion Bearing Cone Remover
2. Locking Differential Governor Remover

Special Tools — Locking Differentials
SECTION 4C
FRONT AXLE

The following notice applies to one or more steps in the assembly procedure of components in this portion of the manual as indicated at appropriate locations by the terminology “See Notice on page 4C-1 of this Section.”

NOTICE: This fastener is an important attaching part in that it could affect the performance of vital components and systems, and/or could result in major repair expense. It must be replaced with one of the same part number or with an equivalent part if replacement becomes necessary. Do not use a replacement part of lesser quality or substitute design. Torque values must be used as specified during reassembly to assure proper retention of this part.

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checking the Axle Before Disassembly</td>
<td>4C- 1</td>
</tr>
<tr>
<td>Inspection</td>
<td>4C- 1</td>
</tr>
<tr>
<td>8(\frac{1}{2}) - Inch Ring Gear</td>
<td>4C- 2</td>
</tr>
<tr>
<td>Description</td>
<td>4C- 2</td>
</tr>
<tr>
<td>Disassembly of the Front Axle</td>
<td>4C- 2</td>
</tr>
<tr>
<td>Cleaning</td>
<td>4C- 5</td>
</tr>
<tr>
<td>Inspection</td>
<td>4C- 5</td>
</tr>
<tr>
<td>Assembly of the Front Axle</td>
<td>4C- 5</td>
</tr>
<tr>
<td>9(\frac{3}{4}) - Inch Ring Gear (Dana)</td>
<td>4C-11</td>
</tr>
<tr>
<td>Description</td>
<td>4C-11</td>
</tr>
<tr>
<td>Disassembly of the Front Axle</td>
<td>4C-11</td>
</tr>
<tr>
<td>Cleaning and Inspection</td>
<td>4C-15</td>
</tr>
<tr>
<td>Assembly of the Front Axle</td>
<td>4C-16</td>
</tr>
<tr>
<td>T Truck Front Axle</td>
<td>4C-23</td>
</tr>
<tr>
<td>Disassembly and Assembly of Components</td>
<td>4C-25</td>
</tr>
<tr>
<td>K Truck Front Axle 8(\frac{1}{4}) and 9(\frac{1}{4}) Ring Gear</td>
<td>4C-31</td>
</tr>
<tr>
<td>Disassembly</td>
<td>4C-31</td>
</tr>
<tr>
<td>Assembly</td>
<td>4C-33</td>
</tr>
<tr>
<td>Specifications</td>
<td>4C-37</td>
</tr>
<tr>
<td>Special Tools</td>
<td>4C-39</td>
</tr>
</tbody>
</table>

CHECKING THE AXLE BEFORE DISASSEMBLY

INSPECTION

1. Remove the axle cover from the rear axle and drain the axle lubricant into a suitable container.
2. Check the ring gear backlash. Refer to “Backlash Adjustment” under the specific axle heading. This information can be used to determine the cause of the axle problem. It will also help when setting up the shim packs for locating and preloading the differential case.
3. Inspect the case for metal chips. Determine where the metal chips come from, such as a broken gear or bearing cage.
4. Determine the cause of the axle problem before disassembly if possible.
4C-2 FRONT AXLE

8½-INCH RING GEAR

DESCRIPTION
The Corporate 8½-inch ring gear front axle uses a conventional ring gear and pinion gear set to transmit the driving force of the engine to the rear wheel. This gear set transfers this driving force at a 90 degree angle from the propeller shaft to the drive shafts.

This axle is full-floating. The shafts are retained in the housing by retaining clips in the hubs.

The pinion gear is supported by two tapered roller bearings. The pinion depth is set by a shim pack located between the gear end of the pinion and the roller bearing that is pressed onto the pinion. The pinion bearing preload is set by crushing a collapsible spacer between the bearings in the axle housing.

The ring gear is bolted onto the differential case with left-hand thread bolts.

The differential case is supported in the axle housing by two tapered roller bearings. The differential and ring gear are located in relationship to the pinion by using selective shims between the bearing and the axle housing. To move the ring gear, shims are deleted from one side and an equal amount area added to the other side. These shims are also used to preload the bearings, which are pressed onto the differential case. Two bearing caps are used to hold the differential into the front axle housing.

The differential is used to allow the wheels to turn at different rates of speed while the front axle continues to transmit the driving force. This prevents tire scuffing when going around corners and prevents premature wear on internal axle parts.

The front axle is sealed with a pinion seal, a seal at each axle shaft, and by a gasket between the front cover and the axle housing.

All Corporate front axles are identified by the part number on the right axle tube near the carrier. The carrier cover does not have a drain plug.

DISASSEMBLY OF THE FRONT AXLE

Remove or Disconnect (Figure 1)
Tools Required:
J-8107-4 Differential Side Bearing Remover Plug
J-22888 Differential Side Bearing Remover
J-8614-01 Pinion Flange Remover
J-8612-B Rear Pinion Bearing Cone Remover

1. The differential cover bolts (14) and the differential cover (12).
 • Drain the gear lubricant into a proper container.
2. Axle shafts (33). Refer to the proper service manual.
 • Refer to “Checking the Axle Before Disassembly” in this section.
3. Pinion shaft lock screw (15).
4. Pinion shaft (17).
5. Differential pinion (21) and side gears (22).
 • Roll the pinion gears out of the case with the pinion thrust washers (20).
 • Remove the side gears and the side gear thrust washers (19). Mark the gears and the differential case as left and right.
7. Differential bearing caps (10).
 • Mark the caps and the housing as left and right.

NOTICE: Be careful when prying the differential case out of the axle housing so as not to damage the cover gasket surface. The differential case must be supported when it is being removed to prevent the case from falling and damaging the case.

8. Differential carrier (24)
 • Pry the case from the axle housing at the differential “window” (figure 2).
9. Bearing outer races (8) and shims (9).
 • Mark the races and the shims as left and right, and place them with the bearing caps.
10. Differential side bearings (8) using J-8107-4 and J-22888 (figure 3).
 • The jaws of J-22888 must pull from beneath the bearing cone and not the cage.
11. Ring gear bolts (23).
12. Ring gear (7) from the differential case.
13. Pinion flange nut (35) and washer (36) using J-8614-01 to hold the pinion flange (figure 5).
15. Pinion (7) from the axle housing.
 • Thread the pinion nut halfway onto the pinion.
 • Replace the differential cover (12) with two bolts (14) to keep the pinion from falling to the floor.
 • Drive the pinion out of the housing with a hammer and a soft drift (figure 7).
16. Collapsible spacer (4) from the pinion.
17. Outer pinion seal (38) and bearing (39).
18. Inner bearing (5) and shim (6) from the pinion.
 • Press the bearing off the pinion using J-8612-B (figure 8).
 • Remove the shim.
19. Bearing cups (5) and (39) from the axle housing using a hammer and a punch.
Figure 1—Front Axle Components
Work the cups out of the housing evenly, moving the punch back and forth between one side of the cup and the other.

20. Axle seals.

Figure 5—Drive Pinion Nut Removal

Figure 6—Pinion Flange Removal

Figure 7—Removing the Drive Pinion
Do not steam clean drive parts having ground and polished surfaces such as gears, bearings, and shafts. These parts should be cleaned in a suitable solvent. All parts should be disassembled before cleaning.

Parts should be thoroughly dried immediately after cleaning. Use soft, clean, lintless rags. Parts may be dried with compressed air. Do not allow the bearings to spin while drying them with compressed air.

It is very important to carefully and thoroughly inspect all drive unit parts before assembly. Through inspection of the drive parts for wear or stress and subsequent replacement of worn parts will eliminate costly drive component repair after reassembly.

The carrier bore for nicks or burrs that would prevent the outer diameter of the pinion seal from sealing. Remove any burrs that are found.

The bearing cup surfaces for nicks or burrs. Remove any burrs that are found.

The housing for cracks. Replace the housing if any cracks are found.

The housing for foreign material such as metal chips, dirt, or rust. Refer to “Cleaning” in this section.

Pinion gear shaft for unusual wear.

Pinion gear and side gear teeth for wear, cracks, scarring, and spalling.

Thrust washers for wear.

The fit of the differential side gears in the differential case.

- The fit of the side gears on the axle shafts.
- Differential case for cracks and scarring.
- Replace all worn parts.

- Pinion and ring gear teeth for cracking, chipping, scarring, or excessive wear.
- Pinion splines for wear.
- Pinion flange splines for wear.
- The fit of the pinion on the pinion flange.
- The sealing surface of the pinion flange for nicks, burrs, or rough tool marks which would cause damage to the seals’ inside diameter and result in an oil leak.
- Replace all worn or broken parts.
- Ring and pinion gears are matched sets and are both replaced any time a replacement of either is necessary.

Bearing visually and by feel. The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.

The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.

Bearing cups for wear, cracks, brinelling and scarring.

Bearing caps for cracks or chips.

Shims for cracks and chips. Damaged shims should be replaced with an equally sized service shim.

Install or Connect

Tools Required:

J-8608 Rear Pinion Bearing Cup Installer
J-8611-01 Front Pinion Bearing Cup Installer
J-8092 Driven Handle

1. Front pinion bearing cup using J-8611-01 and J-8092 (figure 9).
2. Rear pinion bearing cup using J-8608 and J-8092 (figure 10).
4C-6 FRONT AXLE

PINION DEPTH ADJUSTMENT

Tools Required:
- J-8001 Dial Indicator Set
- J-21777-1 Arbor
- J-21777-29 Plate
- J-21777-35 Rear Pilot Washer
- J-21777-42 Front Pilot Washer
- J-21777-43 Stud Assembly - Bolt
- J-21777-45 Side Bearing Disc

1. Clean all the gage parts.
2. Lubricate the front and rear pinion bearings with axle lubricant.
3. Place the bearings (5) and (39) into the pinion bearing cups.
5. Hold the stud stationary at the flats of the stud. Tighten the stud nut to 2.2 N·m (20 in. lbs.).
6. Rotate the gage plate and bearings several complete revolutions to seat the bearings.
7. Tighten the stud nut until a torque of 1.6 to 2.8 N·m (15 to 25 in lbs.) is obtained to keep the gage plate in rotation.
8. Assemble J-21777-45, J-21777-1 Arbor, and J-8001 to the differential bearing bore as shown in figure 12.
 • The bearing bores must be clean and burr free.
9. Install the side bearing caps, and tighten the bolts finger tight.
10. Rotate the gage plate until the proper gaging area is parallel with the disks.
11. Position the gage shaft assembly in the carrier so that the dial indicator rod is centered on the gaging area of the gage block.
12. Set the dial indicator at zero. Push the indicator down on the indicator shaft until the needle rotates ¾ of a turn to the right. Tighten the dial indicator in this position.
13. Rotate the gage shaft slowly back and forth until the dial indicator reads the greatest deflection (when the indicator needle is centered between movement to the left and to the right).
14. At the point of greatest deflection, set the dial indicator to zero. Repeat the rocking action of the gage shaft to verify the zero setting.
15. Rotate the gage shaft until the dial indicator rod does not touch the gage block.
16. Record the actual number on the dial indicator and not the number which represents how far the needle travels. This is the nominal pinion setting.
Example: If the indicator needle moved to the left 1.70 mm (0.067-inch) to a dial reading of 0.84 mm (0.033-inch) as shown in figure 13, record the dial reading of 0.84 mm (0.033-inch) not 1.70 mm (0.067-inch).
17. Check the pinion face for a pinion adjustment mark. This mark indicates the best running position for the pinion from the nominal setting.
 - If the pinion is stamped with a plus number, add that many thousandths to the nominal setting. If the nominal setting is 0.033-inch and the pinion is marked +2, the correct shim depth would be 0.033-inch + 0.002-inch = 0.035-inch.
 - If the pinion is stamped with a minus number, subtract that many thousandths from the nominal setting. If the nominal setting is 0.033-inch and the pinion is marked -2, the correct shim depth would be 0.033-inch - 0.002-inch = 0.031-inch.
 • If the pinion has no plus or minus marked on the pinion, use the nominal pinion setting to select a shim.
18. Remove bearing caps and depth gaging tools.
19. Install the correct pinion shim to the pinion according to this procedure.

PINION INSTALLATION

Install or Connect

Tools Required:
- J-8609-01 Rear Pinion Bearing Cone Installer
- J-22388 Pinion Oil Seal Installer
- J-8614-01 Pinion Flange Remover
- J-5590 Rear Pinion Bearing Cone Installer

- The bearing cups should have been installed in "Pinion Depth Adjustment" in this section.
1. The pinion inner bearing (5) using J-8609-01.
 • Press the bearing onto the pinion until the bearing cone seats on the pinion shims.
 • Lubricate the pinion bearings with axle lubricant.
3. Pinion (7) to the axle housing.
4. Outer pinion bearing (39) onto the pinion using J-5590.
 • Hold the pinion forward from inside the case while driving the bearing onto the pinion.
5. Pinion oil seal (38) using J-22388 (figure 14).
6. The pinion flange (37) to the pinion by tapping it with a rawhide hammer until a few threads show through the pinion flange.
7. The pinion washer (36) and a new nut (35) while holding the pinion flange with J-8614-01 (figure 15).
Tighten

- The nut until the pinion end-play is just taken up. Rotate the pinion while tightening the nut to seat the bearings. Once there is no end-play in the pinion, the preload torque should be checked.
- Remove J-8614-01. Using an inch-pound torque wrench, check the pinion preload by rotating the pinion with the wrench. Preload should be at or below 2.2 to 2.8 N·m (20 to 25 in. lbs.) on new bearings, or 1.1 to 1.6 N·m (10 to 15 in. lbs.) for used bearings (figure 16).
- If the preload torque is below the preloads given above, continue torquing the nut in small increments. Check the preload after each tightening. Each tightening increases the bearing preload by several pounds. If the bearing preload is exceeded, the pinion will have to be removed, and a new collapsible spacer installed.
- Once the preload has been obtained, rotate the pinion several times to make sure that the bearings have seated. Recheck the preload, and adjust if necessary.

8. Differential case. Refer to "Backlash Adjustment" in this section.

DIFFERENTIAL CASE ASSEMBLY

Tools Required:
- J-8107-4 Differential Side Bearing Remover Plug
- J-8092 Driver Handle
- J-22761 Differential Side Bearing Installer
- Lubricate all parts with rear axle lubricant.

1. Axle seals.
2. Side gear thrust washers (19) to the side gears (22).
3. Side gears (22) to the differential case (24).
 - Place the side gears in place on the same side as removed.
4. Pinion gears (21) to the differential without the thrust washers (20).
 - Place the pinion gears onto the side gears so that the holes in the pinion gears are 180 degrees apart.
 - Rotate the pinion gears into place, and verify that the pinion gears line up with the pinion shaft holes.
5. Pinion thrust washers (20).
 - Rotate the pinion gears toward the differential opening just enough to slide in the pinion thrust washers.
 - Check that the mating surfaces of the differential case and the ring gear are clean and burr free.
6. Ring gear (7) to the differential case (24).
 - Thread two left-hand threaded studs into the ring gear on opposite sides (figure 17).
 - Place the ring gear onto the case, and align the holes in the case with the studs.
 - Press the ring gear onto the case far enough to start the bolts using J-8107-4 to protect the differential from the press ram (figure 18).
7. New ring gear bolts (23).
 - Tighten the ring gear bolts alternately in stages gradually pulling the ring gear onto the differential case.
Tighten

- The ring gear bolts in sequence to 80 N·m (60 ft. lbs.).

- Place J-8107-4 into the differential on the side opposite of the bearing installation to protect the differential case.
- Drive the bearing onto the case using J-22761 and J-8092.

9. Differential case (24) to the axle housing. Refer to "Side Bearing Preload Adjustment" in this section.

SIDE BEARING PRELOAD ADJUSTMENT
- The differential side bearing preload is adjusted by changing the thickness of both the left and right shims equally. This will maintain the original backlash.
- Production shims are cast iron and are not to be reused.

Tools Required:
- J-22779 Side Bearing Backlash Gauge

1. Place the differential case and the bearing cups into the axle housing.
- Lubricate the axle bearings with axle lubricant.
- Support the case to keep it from falling into the axle housing.

2. Install the strap from J-22779 on the left bearing with the cap bolts. Tighten the bolts snuggly.

3. Push the ring gear towards the pinion.
- Engage the ring gear with the pinion tightly to obtain a backlash of .000 mm to 0.0254 mm (0.000 to 0.001-inch).

4. Insert J-22779 between the axle housing and the left bearing cup (figure 20).

5. Move the tool back and forth in the bore while turning the adjusting nut to the right until a noticeable drag is produced (figure 21).
- Tighten the lock bolts on the side of the tool.
- Leave the tool in place.

6. Install a service spacer (9) and a service shim (9) between the right bearing cup and the axle housing.

7. Determine bearing preload by inserting progressively larger feeler gage sizes between the carrier and the service shim.
- Push the feeler gage downward so that it contacts the shim at the top and bottom, and then contacts the axle housing.
- The point just before additional drag begins is the correct feeler gage thickness. This is the zero setting without preload.

8. Remove the strap, J-22779, the service spacer, service shim, feeler gage, and differential case from the axle housing.

9. Measure J-22779 in three places using a micrometer. Average the readings (figure 22).
10. Add the dimensions of the service spacer, service shim, and the feeler gage.

11. For an initial backlash setting, move the ring gear away from the pinion by subtracting 0.010-inch from the ring gear side shim pack and adding 0.010-inch to the shim pack on the opposite side.

12. To obtain the proper preload on the side bearings add 0.10 mm (0.004-inch) to the measurement of each shim pack.

13. Install the differential. Refer to “Backlash Adjustment” in this section.

BACKLASH ADJUSTMENT

1. Install the differential case, bearing cups, spacers, and shims as determined from the “Side Bearing Preload Adjustment” earlier in this section (figure 23).
 - Tap the final shim into position, using a soft faced hammer.

2. Rotate the case several times to seat the bearings.

3. Install a dial indicator to the case using a magnetic base.

4. Place the indicator stem at the heel end of a tooth.
 - Set the dial indicator so that the stem is in line with the gear rotation and perpendicular to the tooth angle (figure 24).

5. Install the differential caps (10) and bolts (18).

 Tighten
 - The bolts to 80 N m (60 ft. lbs.)

6. Check and record the backlash at three or four points around the ring gear.
 - The pinion must be held stationary when checking backlash.
 - The backlash should be the same at each point within 0.05 mm (0.002-inch). If the backlash varies more than 0.05 mm (0.002-inch), check for burrs, a distorted case flange, uneven bolting conditions, or foreign matter between the case and the ring gear.

7. The backlash at the minimum lash point measured should be between 0.13 and 0.23 mm (0.005 and 0.009) for all new gear sets.
8. If the backlash is not within specifications, move the ring gear in or out from the pinion by increasing the thickness of one shim, and decreasing the thickness of the other shim by the same amount. This will maintain the correct front axle side bearing preload.

- Moving 0.003-inch worth of shims from one side of the differential to the other will change the backlash adjustment by approximately 0.002-inch.

9. Recheck the backlash and correct as necessary.

FINAL ASSEMBLY

Install or Connect (Figure 1)

1. Drive axles. Refer to the proper service manual.
2. A new cover gasket and the cover (12).

Tighten

- The cover bolts (14) to 27 N m (20 ft. lbs.).
3. Axle housing to the vehicle. Refer to the proper service manual.
4. Lubricant to the front axle. Refer to the (specifications) for the lubricant number.

93/4-INCH RING GEAR (DANA)

DESCRIPTION

The Dana 9¾-inch ring gear front axle uses a conventional ring and pinion gear set to transmit the driving force of the engine to the front wheels. This gear set transfers this driving force at a 90 degree angle from the propeller shaft to the drive shafts.

The pinion gear is supported by two tapered roller bearings. The pinion depth is set by a shim pack between the inner pinion bearing cup and the front axle housing. The pinion bearing preload is set by a shim pack at the front of the axle housing between the yoke and the pinion gear.

The ring gear is bolted onto the differential case with left-hand thread bolts.

The differential case is supported in the case by two tapered roller bearings. The differential and ring gear are located in relationship to the pinion by using selective shims between the bearings and the differential case. To move the ring gear, shims are deleted from one side and an equal amount are added to the other side. Differential side bearing preload is set by the axle housing. (The axle housing is spread to remove the differential from the housing.) When the spreader is removed, the housing sets the bearing preload.

Two bearing caps are used to hold the differential into the front axle housing.

The differential is used to allow the wheels to turn at different rates of speed while the front axle continues to transmit the driving force. This prevents tire scuffing when going around corners and prevents premature wear on internal axle parts.

The front axle is sealed with a pinion seal, an axle seal, and a gasket between the differential cover and front axle housing.

All Dana axles are identified by the part number located on the right axle tube next to the manufacturing date which is next to the carrier. The carrier cover does not have a drain plug.

DISASSEMBLY OF THE FRONT AXLE

Remove or Disconnect (Figure 25)

Tools Required:

- J-24385-01 Differential Housing Spreader
- J-29721 Differential Side Bearing Remover
- J-29721-70 Side Bearing Adapters
- J-8107-3 Side Bearing Puller Plug
- J-8614-10 Pinion Flange Holder

- Place the axle in a suitable support.
1. The differential cover bolts (17) and the differential cover (14) (figure 26).
- Drain the gear lubricant into a proper container.
2. Axle shafts (38). Refer to the proper service manual.
 - The mating letters are stamped on the caps and the axle housing. The caps are to be reassembled exactly as removed.
 - Assemble J-24385-01 to the differential housing as shown in figure 28.
1. Axle Housing
2. Ring Gear and Pinion Set
3. Inner Pinion Bearing
4. Shims
5. Baffle
6. Preload Shims
7. Bearing
8. Slinger
9. Pinion Oil Seal
10. Pinion Flange
11. Washer
12. Pinion Nut
13. Cover
14. Cover
15. Gasket
16. Plug
17. Bolt
18. Bearing Cap
19. Bolt
20. Bearing
21. Shim
22. Differential Case
23. Ring Gear Bolt
24. Pinion Gear
25. Side Gear
26. Pinion Thrust Washer
27. Side Gear Thrust Washer
28. Pinion Shaft
29. Roll Pin
44. Slinger
45. Axle Seal

Figure 25—Front Axle Components

Figure 26—Removing the Axle Cover

Figure 27—Removing the Bearing Cap
Assemble the dial indicator as shown in figure 28. Preset the gage at least 0.50 mm (0.020-inch), and then rotate the gage housing to zero the dial.

NOTICE: Do not spread the differential carrier more than 0.38 mm (0.015-inch). Over-spreading the carrier can damage or distort the carrier.

Spread the carrier while examining the dial indicator. Do not spread the carrier more than 0.38 mm (0.015-inch).

5. Differential case (22) from the carrier (1) using two pry bars (figure 29).

6. The spreader J-24385-01 from the carrier (1).

7. Bearing cups (20).
 - Mark the cups as left and right, and place them with the proper bearing caps.

 - Mark the bearings as left and right, and place them with the proper bearing caps and cups.

 - Mark the shims as left or right.

10. Ring gear bolts (23).
 - Place shop towels over the vice jaws. Put the differential case in the vice (figure 31).

NOTICE: Do not pry the ring gear from the case; this will damage the ring gear and the differential case.

11. Ring gear (2) from the differential case using a rawhide hammer.
 - Ring gear (2) from the vice.
 - Put the differential case in the vice.

12. Lock pin (29) from two differential using a hammer and a punch (figure 32).

13. Pinion shaft (28) using a hammer and a brass drift (figure 33).

14. Differential pinion gears (24) and thrust washers (26).

Figure 28—Spreading the Differential Case

Figure 30—Removing the Differential Side Bearings

Figure 29—Removing the Differential

Figure 31—Removing the Ring Gear
Rotate the side gears until the pinion gears are in the opening of the differential (figure 34).

15. Differential side gears (25) and thrust washers (27).
 - Mark the gears and washers as left and right.
 - Replace the carrier cover (14) using two bolts (17) to keep the pinion from falling to the floor.

Inspect

- Drive pinion bearing preload (figure 35).
- Pinion assembly for looseness by moving it back and forth. (Looseness indicates excessive bearing wear.)

16. Pinion nut (12) and washer (11) using J-8614-01 to hold the pinion (figure 36).
17. Pinion flange (10) using J-8614-01 (figure 37).
18. Pinion (2) from the carrier using a rawhide hammer to tap the pinion (figure 38).
19. Carrier cover (14) and the pinion (2).
20. Pinion preload shims (6).
 - Keep the shims together on the bench.
21. Pinion seal (9).
22. Pinion outer bearing (7) and oil slinger (8).
23. Bearing cups (3) and (7) from the axle housing using a hammer or a punch (figure 39).
 • Work the cups out of the housing evenly, moving the punch back and forth between one side of the cup and the other.
24. Pinion adjusting shims (4) and baffle (5).
 • Keep the shims together on the bench.
25. Pinion inner bearing (3) using J-29721 and J-29721-70 (figure 40).

CLEANING AND INSPECTION

Do not steam clean drive parts having ground and polished surfaces such as gears, bearings, and shafts. These parts should be cleaned in a suitable solvent. All parts should be disassembled before cleaning.

Parts should be thoroughly dried immediately after cleaning. Use soft, clean, lintless rags. Parts may be dried with compressed air. Do not allow the bearings to spin while drying them with compressed air.

It is very important to carefully and thoroughly inspect all drive unit parts before reassembly. Thorough inspection of the drive parts for wear or stress and subsequent replacement of worn parts will eliminate costly drive component repair after reassembly.

AXLE HOUSING

Inspect

- The carrier bore for nicks or burrs that would prevent the outer diameter of the pinion seal from sealing. Remove any burrs that are found.
- The bearing cup surfaces for nicks or burrs. Remove any burrs that are found.
- The housing for cracks. Replace the housing if any cracks are found.
- The housing for foreign material such as metal chips, dirt, or rust. Refer to “Cleaning” in this section.
Differential

Inspect

- Pinion gear shaft for unusual wear.
- Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
- Thrust washers for wear.
- The fit of the differential side gears in the differential case.
- The fit of the side gears on the axle shafts.
- Differential case for cracks and scoring.
- Replace all worn parts.

Pinion and Ring Gear

Inspect

- Pinion and ring gear teeth for cracking, chipping, scoring, or excessive wear.
- Pinion splines for wear.
- Pinion flange splines for wear.
- The fit of the pinion on the pinion flange.
- The sealing surface of the pinion flange for nicks, burrs, or rough tool marks which would cause damage to the seals’ inside diameter and result in an oil leak.
- Replace all worn or broken parts.
- Ring and pinion gears are matched sets and are both replaced any time a replacement of either is necessary.

Bearings

Inspect

- Bearings visually and by feel. The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.
- The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.
- Bearing cups for wear, cracks, brinelling and scoring.
- If the rear axle was operated for an extended period of time with very loose bearings, the ring gear and drive pinion will also require replacement.
- Low mileage bearings may have minute scratches and pits on the rollers and the bearing cups from the initial preload. Do not replace a bearing for this reason.
- Bearing caps for cracks or chips.
- Bearings and cups are only replaced as sets.

Shims

Inspect

- Shims for cracks and chips. Worn or damaged shims should be replaced with an equally sized service shim.

Assembly of the Front Axle

Differential Case Assembly

Install or Connect (Figure 25)

Tool Required:
- D-195, Axle Shaft Seal Installer (Miller)
- Lubricate all parts with front axle lubricant.
1. Axle shaft seals, using D-195 (figure 41).
2. New side gear thrust washer (27) to the side gears (25).
3. Side gears (25) to the differential case.
 - Place the side gears in place on the same side as removed (figure 42).
4. Pinion gears (24) to the differential without the thrust washers (26).
 - Place the pinion gears onto the side gears so that the holes in the pinion gears are 180 degrees apart.
5. New pinion thrust washers (26).
 • Rotate the pinion gears toward the differential opening just enough to slide in the pinion thrust washers.
6. Pinion shaft (28).
 • Align the lock pin holes in the case and the shaft.
7. Lock pin (29) (figure 43).
 • Peen metal from the case over the lock pin.
 • Check that the mating surfaces of the differential case and the ring gear are clean and burr free.
8. Ring gear (2) to the differential case (22).
 • Thread two studs into the ring gear on opposite sides.
 • Press the ring gear onto the case, and align the holes in the case with the studs.
9. New ring gear bolts (23) (figure 44).

10. Master differential bearings D-117 (Miller Tools) to the differential (figure 45).

 • Refer to “Determining Total Shim Pack Size” in this section.

DETERMINING TOTAL DIFFERENTIAL SHIM PACK SIZE
1. Assemble the differential case (22) to the axle housing. The pinion must not be installed.
2. Mount a dial indicator having a minimum travel of 5 mm (0.200-inch) with a magnetic base on the ring gear bolt side of the housing (figure 46).
3. Force the differential assembly as far as possible in the direction towards the indicator.

 • Tighten the ring gear bolts alternately in stages gradually pulling the ring gear onto the differential case.
 • Tighten the ring gear bolts in sequence to 136-163 N·m (100 - 120 ft. lbs.).
4C-18 FRONT AXLE

4. Preload the dial indicator one half of its travel. Place the tip of the indicator on a flat surface of the differential, just next to a ring gear bolt. Mark this location with a piece of chalk.

5. Zero the dial indicator.

6. Force the differential assembly in the opposite direction as far as it will go. Repeat this step until the same reading is obtained. Record the number of thousandths that the dial indicator traveled, not the reading on the dial. This will be the measurement of the shim pack without the bearing preload (which will be added later).

7. Remove the dial indicator from the axle.

8. Remove the differential case from the axle housing.
 • Do not remove the master bearings from the differential.

PINION DEPTH ADJUSTMENT

Tools Required:
- D-120 Master Pinion Block (Miller)
- D-166-1 Pinion Height Block (Miller)
- D-116-2 Master Discs (Miller)
- D-115-3 Arbor (Miller)
- D-115 Scooter Gage (Miller)

1. Clean the carrier bores and all the tools. The pinion bore must be free of nicks and dirt.

2. Install D-120 to the pinion bore (figure 47).

4. Install the arbor and discs into the axle housing (figure 48).

5. Install D-116-1 onto D-120 and against the arbor (figure 49).

6. Place D-115 onto the height block (figure 50).
 • Place the gage on the lower step of the height block. Push the gage down on the height block. While applying pressure, set the dial indicator at zero.

7. Slide the gage over the arbor (figure 51).

8. Record the reading at the point of greatest deflection (when the dial indicator needle is centered between movement to the left and to the right).
• This reading indicates the amount of shims needed for a nominal pinion setting. The pinion marking may change the pinion depth by adding or deleting shims from the nominal pinion setting.
• A positive (+) pinion marking indicates that the distance between the ring gear centerline and the pinion head must increase by the number of thousandths marked on the pinion. This means that the shim pack will decrease by the same number of thousandths.
• A negative (-) pinion marking indicates that the distance between the ring gear centerline and the pinion head must decrease by the number of thousandths marked on the pinion. This means that the shim pack will increase by the same number of thousandths.
• A pinion etched zero (0) will use the nominal setting as determined in this procedure.

9. Measure each shim separately with a micrometer and add them together to obtain the total shim pack thickness. If a baffle (5) or slinger is used, these must also be measured and included in the shim pack (figure 52).

PINION INSTALLATION

Install or Connect

Tools Required:
- J-7818 Front Pinion Bearing Cup Installer
- J-5590 Rear Pinion Bearing Cone Installer
- D-111 Cup Installer (Miller)
- C-4171 Handle (Miller)
- J-8092 Handle
- J-8614-01 Pinion Flange Remover

1. Place the required amount of shims (and baffle if used) in the inner bearing bore.
2. Drive the inner bearing cup into the axle assembly using D-111 and C-4171. The cup must be seated on the shims (figure 53).
3. Drive the outer bearing cup into the axle assembly using J-7818 and J-8092 (figure 54).
Figure 55—Installing the Inner Bearing

4. Inner bearing cone (and slinger if used) on the pinion. Drive the bearing onto the pinion shaft using J-5580 (figure 55).
5. Pinion into the axle housing.
6. Outer pinion bearing (7), (and slinger if used).
 - Do not assemble the preload shims or pinion oil seal at this time.
7. Pinion flange (10).
8. Washer (11) and pinion nut (12).

Tighten

- The nut (12) while holding the pinion with J-8614-01. Tighten the nut until it requires a torque of 1.13 N·m (10 in. lbs.) to rotate the pinion (figure 56). Rotate the pinion several times to seat the bearings and assure a more accurate reading pinion depth setting.
 - Place the discs and arbor into the differential bearing bore.

Figure 56—Checking the Pinion Preload

Figure 57—Checking the Pinion Depth Setting

- Place the pinion height block on top of the pinion.
- Set the dial indicator at zero and slide the scooter gage across the arbor (figure 57).
- The indicator will turn to the right or to the left at the point of greatest deflection, depending on the pinion marking.
- The needle will move to the left if the pinion is marked (+).
- The needle will move to the right if the pinion is marked (-).
- If the indicator reading is within 0.05 mm (0.002-inch) of the pinion marking, the pinion is correctly set. If the pinion depth does not meet specifications, change the shim pack by the amount the indicator needle is from the pinion marking.
- Remove the pinion nut (12), washer (11), pinion flange (10), slinger (8) and bearing cone (7).
10. Preload shims (6).
 - Install the shims that were removed, or measure the old shims and replace them with new shims if necessary.
11. Outer bearing (7) and slinger (8).
 - Apply a light coat of axle lubricant to the pinion seal lip.
12. Outer pinion oil seal (9) using D-163 (National) sealer installer (figure 58).
13. Pinion flange (10).
14. Washer (11) and a new pinion nut (12).

Tighten (Figure 59 and 60)

- The nut (12) while holding the pinion with J-8614-01. Tighten the nut until it requires a torque of 2.26 - 4.53 N·m (20 - 40 in. lbs.) to rotate the pinion.
- Remove shims to decrease the preload.
- Add shims to increase the preload.
ASSEMBLING THE DIFFERENTIAL TO THE AXLE HOUSING

Tools Required:
J-23690 Differential Side Bearing Installer
J-8092 Driver Handle
J-24385-01 Differential Carrier Spreader

1. Assemble the differential case (22) with master bearings installed to the axle housing. The pinion must be installed.
2. Mount a dial indicator having a minimum travel of 5 mm (0.200-inch) with a magnetic base on the ring gear bolt side of the housing (figure 61).
3. Place the indicator tip on the chalk mark made earlier.
4. Force the ring gear into mesh with the pinion. Rock the ring gear to allow the teeth of the gears to mesh.
5. With the force still applied to the differential case, set the dial indicator to zero.
6. Force the differential case away from the pinion gear to obtain an indicator reading. Repeat this action until a consistent reading is obtained. This will be the size of the left shim pack.
7. Remove the indicator and the differential case from the carrier.
8. Remove the master bearings from the differential case.
9. Using the total shim pack size determined earlier, (Refer to “Determining Total Differential Shim Pack Size” in this section) subtract the reading found in step 6 from the total reading. The reading found in step 6 will be the shim size on the ring gear side. The remaining portion of the shim pack will be used on the side opposite the ring gear side. Add an additional 0.38 mm (0.015-inch) of shims to the side opposite the ring gear to preload the bearings.
10. Place the proper shims on the differential side bearing hub (ring gear side) and drive the differential bearing onto the hub using J-23690 and J-8092 (figure 62).
11. Place the proper shims on the differential side bearing hub (opposite the ring gear) and drive the differential bearing onto the hub using J-23690 and J-8092.
12. Assemble J-24385-01 to the axle housing as shown in figure 63.

13. Assemble the dial indicator as shown in figure 63. Preset the gage at least 5 mm (0.020-inch), and then rotate the indicator housing to zero the dial.

NOTICE: Do not spread the differential carrier more than 0.38 mm (0.015-inch). Over-spreading the carrier can damage or distort the carrier.

14. Spread the carrier while examining the dial indicator.

15. Remove the dial indicator.

16. Place the bearing cups (20) onto the bearings.

17. Install the differential assembly into the carrier.

 - Use a rawhide hammer to seat the differential assembly in the axle housing (figure 64).

18. Remove the spreader.

19. Install the bearing caps (18) in their original positions.

20. Install the bearing cap bolts (19).

Figure 63—Mounting the Carrier Spreader

Figure 64—Installing the Differential Case

- **Tighten**

 - The bearing cap bolts (19) to 115 N·m (85 ft. lbs.).

CHECKING BACKLASH

1. Mount a dial indicator with a magnetic base to the axle housing as shown in figure 65.

2. Place the indicator tip at the heel end of the tooth.

3. Check the backlash at three equally spaced points. The backlash should be 0.10 - 0.20 mm (0.004 - 0.009-inch). The measurement must not vary more than 0.05 mm (0.002-inch) between the points checked.

4. High backlash is corrected by moving the ring gear closer to the pinion.

5. Low backlash is corrected by moving the ring gear away from the pinion.

6. To adjust the backlash, the differential case must be removed from the housing, then the differential bearings removed, and the proper number of shims moved from one side to the other.

Figure 65—Measuring Backlash
T-TRUCK FRONT AXLE

DESCRIPTION

The front axle on the four wheel drive (4WD) models utilize a central disconnect type front axle/transfer case system which allows shifting into and out of 4WD when the vehicle is in motion under most driving conditions.

The drive axles are completely flexible assemblies, consisting of inner and outer constant velocity (CV) joints connected by an axle shaft. The inner CV joint is a "tri-pot" design, which is completely flexible, and also can move in and out. The outer CV joint is a "Rzeppa" design which is also flexible, but cannot move in and out.

The axle identification number is located on the axle tube housing on the left side.
Figure 67—Axle Components
Disassembly and Assembly of Components

Disassemble (Figures 67 and 68)

Tools Required:
- J-8614-01 Pinion Flange Remover
- J-21551 Bearing Remover
- J-22912-01 Pinion Bearing Cone Remover
- J-29369-2 Bearing Remover
- J-33792 Side Bearing Adjuster Wrench
- J-33837 Pinion Bearing Cup Remover Kit
- J-34011 Output Shaft Pilot Bearing Remover

1. **Bolts (6), shift cable housing (11), and spring (14).**
2. **Tube (5) and thrust washer (7).**
3. **Shaft (1) and deflector (2).**
 - Strike the inside of the axle flange with a soft face hammer while holding the tube.
4. **Carrier connector (9).**
5. **Seal (3) and bearing (4), using J-29369-2.**
6. **Seal (15) from the tube (5).**
7. **Spring (16) and shift shaft and fork (17).**
8. **Thrust washer (20).**
9. **Sleeve (22) and output shaft (23).**
10. **Differential pilot bearing (21) from the output shaft, using J-34011.**
11. **Washer (24).**
12. **Shaft (59), and deflector (2).**
 - Pry with a screwdriver between the shaft flange and carrier head while striking the flange with a soft face hammer (figure 69).
13. **Bolts (58) and cover (57).**
14. **Bolts (28).**
15. **Separate the carrier case (29).**
 - Insert a screwdriver into the slots provided and pry to separate the case (figure 70).
16. **Differential case (35).**
17. **Bolt (18) and lock tab (19) from the side bearing adjuster sleeve (32) (figure 71).**
18. **Bearing cup (33) from the case.**
 - Turn the adjusting sleeve (32) using J-33792 until the cup is pushed out of the case (figure 72).
19. **Bearing (30) from the sleeve (32) (figure 73).**
20. Pinion flange nut (46) and washer (45) using J-8614-01.
21. Flange (44) and deflector (43) using J-33837-1 and J-33837-3 (figure 74).
22. Pinion (37), spacer (40), pinion bearing (39) and shim (38).

- Use J-22912-01 to remove the bearing (39) from the pinion gear (37).
23. Bearing and cup (41) and seal (42), using J-33837-1, J-33837-3, and J-33837-6.
24. Inner bearing cup by pushing it out using J-33837-1, J-33837-3, and J-33837-6 (figure 75).
25. Bolt (36) and shaft (52) from the differential case (35).
26. Differential pinion gears (56) and thrust washers (55).
27. Side gears (54) and thrust washers (53).
 • Mark the side gears and case so they can be installed in their original location.
29. Ring gear (37).
 • Do not pry between the ring gear and the case, drive the gear off with a brass drift and hammer.
30. Side bearings (33), using J-22912-01.

Clean
 — All the components including the bearings and gears in a clean solvent.

Inspect
 — Bearings for a smooth feel when applying as much hand pressure as possible.
 — Sealing surface of the pinion flange for nicks, burrs, or a rough surface which could cause seal damage.
 — Ring gear and pinion gear for excessive wear and scoring. Replace in a set if necessary.

Assemble (Figures 67 and 68)

NOTICE: For steps 6, 28, and 46 see “Notice” on page 4C-1 of this section.

• Lubricate all the seal lips, bearings, gears, and bearing surfaces with axle lubricant prior to assembly.

Tools Required:
- J-8614-01 Pinion Flange Remover
- J-23423-A Bearing Cup Installer
- J-29763 Dial Indicator
- J-33782 Pinion Oil Seal Installer
- J-33785 Pinion Bearing Installer
- J-33788 Output Shaft Bearing Installer
- J-33790 Differential Side Bearing Installer
- J-33792 Side Bearing Adjuster Wrench
- J-33799 Axle Lock Cable Seal Installer

NOTICE: For steps 6, 28, and 46 see “Notice” on page 4C-1 of this section.

• Lubricate all the seal lips, bearings, gears, and bearing surfaces with axle lubricant prior to assembly.

Tools Required:
- J-8614-01 Pinion Flange Remover
- J-23423-A Bearing Cup Installer
- J-29763 Dial Indicator
- J-33782 Pinion Oil Seal Installer
- J-33785 Pinion Bearing Installer
- J-33788 Output Shaft Bearing Installer
- J-33790 Differential Side Bearing Installer
- J-33792 Side Bearing Adjuster Wrench
- J-33799 Axle Lock Cable Seal Installer

Figure 75—Removing the Inner Bearing Cup

Figure 76—Installing the Side Bearings

J-33837 Pinion Bearing Cup Installer
J-33838 Pinion Shim Setting Gage
J-33842 Output Shaft Pilot Bearing Installer
J-33844 Axle Tube Bearing Installer
J-33893 Output Shaft Seal Installer

1. Thrust washers (53) and side gears (54) into the differential case (35).
 • If the same gears and washers are being used, install them on the same side as they were removed from.
2. Position one pinion gear (56) between the side gears and rotate the gears until the pinion gear is directly opposite the opening in the case.
 • Place the other pinion gear (56) between the side gears, making sure the hole in both pinion gears line up.
3. Thrust washers (55).
 • Rotate the pinion gears toward the opening just enough to permit the sliding in of the thrust washers.
4. Shaft (52) and bolt (36).
5. Ring gear (37) onto the differential case (35).

Tighten
- Bolts (34) alternating in progressive steps to 80 N·m (60 ft. lbs.)
7. Side bearings (33), using J-33790 (figure 76).
10. Proper shim (38) onto the pinion gear (37).

Measure
- Pinion depth to determine the proper shim (38).
- Pinion depth is measured with J-33838 and J-29763. The shim thickness will be equal to the dial indicator gage reading.
- Lubricate the inner and outer pinion bearings liberally with axle lubricant.
• Hold the pinion bearings in position and install J-33838 (figure 79).
• Set the dial indicator J-29763 at ZERO, then position it in J-33838. Push the dial indicator downward until the needle rotates approximately three turns to the right.

11. Bearing (39) onto the pinion gear (37) using J-33785 (figure 80).
12. New spacer (40) onto the pinion gear (37).
13. Bearing (41) into the case.
14. Seal (43) into the case using J-33782 (figure 81).
15. Deflector (43), flange (44), washer (45) and nut (46).
 • Tighten nut (46) until no end play is detectable while holding the flange (44) with J-87614-01.
 • No further tightening should be attempted until the bearing preload has been checked.
Figure 82—Installing the Bearing

NOTICE: After the preload has been checked, final tightening should be done very carefully. Additional tightening of the pinion nut can add many additional inch pounds of torque. Therefore, the pinion nut should be further tightened only a little at a time and the preload should be checked after each slight amount of tightening.

- Check the bearing preload by using an inch pound torque wrench.
 - Bearing preload should not exceed 1.7-2.8 N·m (15-25 in. lbs.).
- Rotate the pinion several times to assure that the bearings have been seated. Check the preload again. If the preload has been reduced by rotating the pinion, reset the preload to specifications.

16. Bearings (30) into the sleeve (32) using J-33788 (figure 82).

17. Thread the sleeve (32) into the case.

18. Side bearing cups (33) into the carrier case (29) using J-23423-A.

- Place the differential case assembly (35) into the carrier case half which contains the pinion gear.
- Turn the left hand adjusting sleeve (32) in toward the differential case using J-33792 until backlash is felt between the ring and pinion gear.

19. Carrier case halves (29). Do not use any sealer at this time.

If the carrier halves do not make complete contact, back out the right hand adjusting sleeve (32).

Four bolts (28) (figure 83).

Tighten
- Bolts (28) to 50 N·m (37 ft. lbs.).

Measure
- Ring and pinion gear backlash.
 - Tighten the right hand adjusting sleeve, using J-33792, until no backlash is present, approximately 140 N·m (100 ft. lbs.).

Figure 83—Installing the Four Bolts

- Tighten the left hand adjusting sleeve, using J-33792, to approximately 140 N·m (100 ft. lbs.).
- Mark the location of the adjusting sleeves in relation to the carrier halves (figure 84), so the notches in the adjusting sleeves can be counted when turned.
- Turn the right hand adjusting sleeve OUT two notches using J-33792.
- Turn the left hand adjusting sleeve IN one notch using J-33792.
- Rotate the pinion several times to seat the bearings, then mount the dial indicator.
- Use a small button on the indicator stem so that the contact can be made near the heel end of the tooth for an accurate backlash reading.
- Gear backlash is between 0.08-0.25 mm (0.003-0.010 inch) with a preferred specification of 0.13-0.18 mm (0.005-0.007-inch).
- If unable to obtain the specified backlash, readjust the adjusting sleeves as necessary.

Figure 84—Marking the Adjusting Sleeve Location
Mark the right hand adjusting sleeve so it can be repositioned in the same location.

Remove the bolts (28).

Apply sealer #1052357, Loctite 514 or equivalent on one carrier surface.

20. Carrier halves (29) and bolts (28).

Tighten
- Bolts (28) to 47 N·m (35 ft. lbs.).
- Reposition the right hand sleeve (32) to the previously marked position using J-33792.

21. Lock tab (19) and bolt (18).

Tighten
- Bolt (18) to 8 N·m (71 ft. lbs.).

22. Seal (3) into the cover (57).

23. Cover (57).
- Apply sealer #1052357, Loctite 514 or equivalent to the carrier surface.

24. Bolts (58), torque to 25 N·m (18 ft. lbs.).

25. Deflector (2) and shaft (59).

27. Seal (3) into the tube (5) using (figure 85).

28. Seal (15) into the tube (5) using J-33799 (figure 86).

29. Washer (24).

30. Differential pilot bearing (21) into the output shaft (23) using J-33842.

31. Output shaft (23), sleeve (22) and thrust washer (20).

32. Shift shaft and fork (17) and spring (16).
- Apply sealer #1052357, Loctite 514 or equivalent to the carrier surface.

33. Thrust washer (7) into the tube (5).
- Align the notch and apply gearse to the washer to hold it in place (figure 87).

34. Shaft (1) into the tube (5).
- Carrier connector (9).

35. Tube (5).

36. Two top bolts (6) to hold the tube in place. Leave finger tight.

37. Shift cable housing (11) and bolts (6).
K-TRUCK FRONT AXLE 8\(\frac{1}{4}\) and 9\(\frac{1}{4}\) INCH RING GEAR

DESCRIPTION

The front axle on the four wheel drive (4WD) models utilize a central disconnect type front axle/transfer case system which allows shifting into and out of 4WD when the vehicle is in motion under most driving conditions.

The drive axles are completely flexible assemblies, consisting of inner and outer constant velocity (CV) joints connected by an axle shaft. The inner CV joint is a "tri-pot" design, which is completely flexible, and also can move in and out. The outer CV joint is a "Rzeppa" design which is also flexible, but cannot move in and out.

The axle identification number is located on the axle tube housing on the left side.

The front axles on the four wheel drive (4WD) models utilize an 8\(\frac{1}{4}\)-inch or a 9\(\frac{1}{4}\)-inch ring gear. The 8\(\frac{1}{4}\)-inch ring gear is used on the K-1-2 models, while the 9\(\frac{1}{4}\)-inch ring gear is used on the K-3 model.

DISASSEMBLY

Remove or Disconnect (Figures 88 and 89)

Tools Required:
- J-8814 Pinion Flange Nut Remover
- J-8092 Drive Handle
- J-21551 (K-1-2) Output Shaft Bearing Remover, Left and Right Side
- J-36611 (K-3) Output Shaft Bearing Remover, Left and Right Side
- J-6258 ½ - 13 Adapter
- J-2619-5 Slide Hammer
- J-22888 and J-8107-2 (K-1-2) Inner Pinion Bearing Remover and Adapter
- J-22888 and J-36597 (K-3) Inner Pinion Bearing Remover and Adapter
- J-29369-1, J-6258 and J-2619-5 (K-1-2) Axle Tube Bearing Remover, Adapter and Slide Hammer
- J-29369-2, J-6258 and J-2619-5 (K-3) Axle Tube Bearing Remover, Adapter and Slide Hammer
- J-36599 (K-1-2) Left and Right Differential Side Bearing Adjuster Wrench and for Right Side Bearing of (K-3)
- J-36615 (K-3) Left Differential Side Bearing Adjuster
- J-8612-B (K-1-2) Inner Pinion Bearing Remover
- J-22912-01 or J-36606 (K-3) Inner Pinion Bearing Remover
- J-36598-1 and J-36598-6 Pinion Bearing Cup Remover
- J-34011 Output Shaft Pilot Bearing Remover

1. Shaft plunger assembly (10) and indicator switch (19).
2. Five bolts (6).
3. Tube (5) and shaft (1).
4. Carrier connector gear (9) and thrust washer (7).
5. Seal (3) and bearing (4) from shaft (1) using J-29369-1, J-6258 and J-26195.

6. Shift shaft fork (17) and (18) sleeve (22) and spring (16).
7. Thrust washer (20) and output shaft (23).
8. Differential pilot bearing (21) from the output shaft using J-34011.
9. Shaft (59) and deflectors (2).
 - Pry the shaft flange and the carrier head with screwdriver while striking the flange with a soft face hammer (figure 90).
10. Seal (3) off shaft (59).
11. Ten carrier case bolts (28).
 - Using a brass drift, tap the three carrier case bosses provided to separate the cases (29).
12. Differential case (35) and ring gear (37).
 - Place a small screwdriver between the adjuster sleeve (32) and the lock tab.
13. Side bearing cups (33) from the carrier case halves (29) using J-36599 for the right side bearing on the K-3 series and for both left and right side bearings on the K-1-2 series. Use J-36615 for the left side bearing on the K-3 series.
 - Turn the adjuster sleeves using one of the tools mentioned in step 13 until the cups (33) are pushed from the cases (29) (figure 91).
14. Bearing (30) from the adjuster sleeve (32) using J-21551 for the K-1-2 or J-36611 for K-3 and J-8092 (figure 91).
15. Pinion flange nut (46) and washer (45) using J-8614-01.
16. Flange (44) and deflector (43) using J-8814 (figure 93).
17. Pinion (37), spacer (40), outer pinion bearing (41) using J-36598-1 (figure 94).
18. Inner pinion shaft bearing (39) shim (38) using J-8612-B (K-1-2) or J-22912-01 or J-36606 (K-3).
 - Use a press to force the bearing out.
19. Inner pinion bearing cup (39) by pushing it out using J-36598-6 and J-36598-1 (figure 95).
 - Place J-36598-1 into a vise.
20. Seal (42) and outer pinion bearing cup (41) using J-36598-1 and J-36598-3 (figure 95).
21. The components such as the roll pin (36), shaft (52), pinion gears (56), thrust washers (55), side gears (54) and thrust washers (53) can not be serviced on K-1-2 models.
 - The components mentioned in step 21 can be serviced on the K-3 models (9\(\frac{1}{4}\)-inch ring gear).
22. Bolts (34). There are 10 left hand bolts.
23. Ring gear (37).
 - Do not pry between the ring gear and the case; drive the gear off with a brass drift and a hammer.
Components in the SHADEd area are not serviceable, except K-3 models. They must be replaced as a complete assembly.

Figure 88—Axle Components
Front Axle 4C-33

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13. Indicator Switch</td>
<td>29. Carrier Case</td>
<td>45. Washer</td>
<td></td>
</tr>
<tr>
<td>15. Seal</td>
<td>31. Insert</td>
<td>47. Plug</td>
<td></td>
</tr>
</tbody>
</table>

Figure 89—Axle Components (Legend)

INSPECTION

Clean
- All the components including the bearings and gears in a clean solvent.

Inspect
- Bearings for a smooth feel when applying as much hand pressure as possible.
- Sealing surface of the pinion flange for nicks, burrs, or a rough surface which could cause seal damage.
- Ring gear and pinion gear for excessive wear and scoring. Replace in a set if necessary.
ASSEMBLY

Install or Connect (Figures 88 and 89)

Notice: For steps 2 and 24 see "Notice" on page 4C-1 of this section.

- Lubricate all the seal lips, bearings, gears, and bearing surfaces with axle lubricant prior to assembly.

Tools Required:
- J-8614 Pinion Flange Installer
- J-36603 Bearing Cup Installer
- J-36601 Pinion Shim Setting Gage
- J-36366 Pinion Oil Seal Installer
- J-35512 (K-1-2) or J-36614 (K-3) Inner Pinion Bearing Installer
- J-36612 (K-1-2) or J-36613 (K-3) Output Shaft Bearing Installer for the Left and Right Bearing
- J-22761 (K-1-2) or J-29710 (K-3) Differential Side Bearing Installer
- J-36599 Differential Side Bearing Adjuster Right Side
- J-36599 (K-1-2) or J-36615 Differential Side Bearing Adjuster Left Side
- J-36598-3 (K-1-2) or J-36598-4 (K-3) Inner and Outer Pinion Bearing Cup Installer
- J-33842 Output Shaft Pilot Bearing Installer
- J-34047-3 Gear Lash Gage
- J-36609 Axle tube Bearing Installer
- J-36600 (K-1-2) Output Shaft Seal Installer
- J-22833 (K-3) Output Shaft Seal Installer

1. Ring gear (37) onto the differential case (35).
2. Bolts (34). Always use new bolts; never reuse the old bolts.

Tighten
- Bolts (34) alternating in progressive steps to 120 N-m (88 ft. lbs.).
3. Left hand bolts (34).
4. Side bearings (33) using J-22761 (K-1-2) or J-29710 (K-3) (figure 96).
5. Outer pinion bearing cup (41) into the case using J-36598-3 or J-36598-4 (figure 97).
6. Inner pinion bearing cup (39) into the case using J-36598-3 or J-36598-4 (figure 98).
7. Proper shim (38) onto the pinion gear (37).
Measure

- Pinion depth to determine the proper shim (38).
- Pinion depth is measured with J-36601 and J-29763. The shim thickness will be equal to the dial indicator gage reading.

1. Lubricate the inner and outer pinion bearings liberally with axle lubricant.
2. Hold the pinion bearings in position and install J-36601 (figure 99).
3. With J-36601 installed, preload the inner and outer pinion bearings to 2 N·m (20 in lbs.) by tightening the mounting bolt on the tool and holding the end of the tool shaft with a wrench.
4. Set the dial indicator J-29763 at ZERO, then position it in J-36601. Push the dial indicator downward until the needle rotates approximately three turns to the right.
5. Tighten the dial indicator in this position.
6. Set the button of J-33838 on the differential bearing bore (figure 99).
7. Rotate the tool slowly back and forth until the dial indicator reads the lowest point of the bore. Set the dial indicator to zero. Repeat the rocking action of the tool to verify the zero setting.
8. After the zero setting is obtained and verified, move the tool button out of the differential side bearing bore (figure 99).
9. Record the dial pointer reading.
 - A reading of 0.84 mm (0.033 inch) indicates a shim thickness of 0.84 mm (0.033 inch).
 - Remove the dial indicator and tool from the case.
8. Bearing (39) onto the pinion gear (37) using J-35512 (K-1-2) or J-36614 (K-3) (figure 100).
9. New spacer (40) onto the pinion gear (37).
10. Bearing (41) into the case.
11. Seal (43) into the case using J-36366 (figure 101).
12. Deflector (43), flange (44), washer (45) and nut (46).
 - Tighten nut (46) until no end play is detectable while holding the flange (44) with J-8614.
 - No further tightening should be attempted until the bearing preload has been checked.
Notice: After the preload has been checked, final tightening should be done very carefully. Additional tightening should be done very carefully. Additional tightening of the pinion nut can add many additional inch pounds of torque. Therefore, the pinion nut should be further tightened only a little at a time and the preload should be checked after each slight amount of tightening.

- Check the bearing preload by using an inch pound torque wrench.
 - Bearing preload should not exceed 1.7-2.8 N·m (15-25 in. lbs.).
- Rotate the pinion several times to make sure that the bearings have been seated. Check the preload again. If the preload has been reduced by rotating the pinion, reset the preload to specifications.

- Thread the sleeve (32) into the case.

- Place the differential case assembly (35) into the carrier case half which contains the pinion gear.

15. Turn the left hand adjusting sleeve (32) in toward the differential case using J-36599 or J-36615 until backlash is felt between the ring and pinion gear.
15. Carrier case halves (29). Do not use any sealer at this time.
- If carrier halves do not make complete contact, back out the right hand adjusting sleeve (32).

16. Four bolts (28) (figure 102).

- Bolts (28) to 50 N·m (37 ft. lbs.).

- Ring and pinion gear backlash.
 - Tighten the right hand adjusting sleeve, using J-36599 until no backlash is present, approximately 140 N·m (100 ft. lbs.).
 - Tighten the left hand adjusting sleeves in relation to the carrier halves (figure 103), so the notches in the adjusting sleeves can be counted when turned.
17. Turn the right hand adjusting sleeve OUT two notches using J-36599.
18. Turn the left hand adjusting sleeve IN one notch using J-36599 or J-36615.
19. Rotate the pinion several times to seat the bearings, then mount the dial indicator.
20. Use a small button on the indicator stem so that the contact can be made near the heel end of the tooth for an accurate backlash reading.
21. Gear backlash is between 0.08-0.25 mm (0.003-0.010 inch) with a preferred specification of 0.13-0.18 mm (0.005-0.007 inch) using J-34047-3.
22. If unable to obtain the specified backlash, readjust the adjusting sleeves as necessary.
23. Mark the right hand adjusting sleeve so it can be repositioned in the same location.
24. Loosen the right hand sleeve.
25. Remove the bolts (28).
26. Apply sealer #1052942, Loctite 514 or equivalent on one carrier surface.
27. Carrier halves (29) and bolts (28).
28. Tighten

- Bolts (28) to 47 N·m (35 ft. lbs.).
- Reposition the right hand sleeve (32) to the previously marked position using J-36599.
- Shift shaft and fork (17) and spring (16).
- Apply sealer #1052942, Loctite 514 or equivalent to the carrier surface.
- Thrust washer (7) into the tube (5).
- Align the notch and apply grease to the washer to hold it in place (figure 105).
- Shaft (1) into the tube (5).
- Carrier connector (9).
- Tube (5).
- Bolts (6) to the tube (5).

Figure 105—installing the Thrust Washer

SPECIFICATIONS

8 1/2 INCH RING GEAR AXLE

<table>
<thead>
<tr>
<th>Fastener</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Gear Bolts</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>Bearing Cap Bolts</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>Axle Cover Bolts</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spacer and Shim Sizes</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Side Bearing Spacer</td>
<td>0.170-inch</td>
</tr>
<tr>
<td></td>
<td>0.172-inch</td>
</tr>
<tr>
<td>Differential Side Bearing Kit</td>
<td>0.064 - 0.070-inch</td>
</tr>
<tr>
<td></td>
<td>0.972 - 0.078-inch</td>
</tr>
<tr>
<td></td>
<td>0.080 - 0.078-inch</td>
</tr>
<tr>
<td></td>
<td>0.086 - 0.094-inch</td>
</tr>
<tr>
<td></td>
<td>0.096 - 0.100-inch</td>
</tr>
<tr>
<td></td>
<td>0.052 - 0.056-inch</td>
</tr>
<tr>
<td></td>
<td>0.058 - 0.063-inch</td>
</tr>
<tr>
<td></td>
<td>0.040 - 0.044-inch</td>
</tr>
<tr>
<td></td>
<td>0.046 - 0.050-inch</td>
</tr>
<tr>
<td>Pinion Bearing Shim Kits</td>
<td>0.020 - 0.024-inch</td>
</tr>
<tr>
<td></td>
<td>0.025 - 0.024-inch</td>
</tr>
<tr>
<td></td>
<td>0.030 - 0.034-inch</td>
</tr>
<tr>
<td></td>
<td>0.035 - 0.039-inch</td>
</tr>
<tr>
<td>Lubricant</td>
<td>.80W-90GL-5</td>
</tr>
</tbody>
</table>
SPECIFICATIONS (CONT.)

9 3/4 INCH RING GEAR (DANA)

<table>
<thead>
<tr>
<th>Fastener</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Gear Bolts</td>
<td>150</td>
<td>110</td>
</tr>
<tr>
<td>Bearing Cap Bolts</td>
<td>115</td>
<td>85</td>
</tr>
<tr>
<td>Axle Cover Bolts</td>
<td>47</td>
<td>35</td>
</tr>
</tbody>
</table>

Shim Sizes

<table>
<thead>
<tr>
<th>Size</th>
<th>0.003-inch</th>
<th>0.005-inch</th>
<th>0.010-inch</th>
<th>0.030-inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Bearing Adjusting Shim</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outer Pinion Bearing Shim</td>
<td>0.003-inch</td>
<td>0.005-inch</td>
<td>0.010-inch</td>
<td>0.030-inch</td>
</tr>
<tr>
<td>Inner Pinion Bearing Shim</td>
<td>0.003-inch</td>
<td>0.005-inch</td>
<td>0.010-inch</td>
<td></td>
</tr>
</tbody>
</table>

Lubricant

- 80W-90GL-5

T-TRUCK

<table>
<thead>
<tr>
<th>Fastener</th>
<th>N·m</th>
<th>In. Lbs.</th>
<th>Ft. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable Housing and Tube Attaching Bolts</td>
<td>25</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Left Hand Output Shaft Cover Bolts</td>
<td>25</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Carrier Case Bolts</td>
<td>47</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Adjusting Sleeve Lock Bolts</td>
<td>8</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Differential Ring Gear Bolts</td>
<td>80</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

K-TRUCK

<table>
<thead>
<tr>
<th>Fastener</th>
<th>N·m</th>
<th>In. Lbs.</th>
<th>Ft. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Gear Bolts</td>
<td>120</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Bearing Pre-Load</td>
<td>2</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Carrier Case Bolts</td>
<td>47</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Tube Bolts (5)</td>
<td>40</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Shaft Plunger Assembly (Thermal Actuator)</td>
<td>22</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size</th>
<th>0.08 - 0.25</th>
<th>0.003 - 0.010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring and Pinion Gear Backlash</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinion Gear Shim Pack Sizes (8 1/2)</td>
<td>0.508 - 1.27</td>
<td>0.020 - 0.050</td>
</tr>
<tr>
<td>No.</td>
<td>Description</td>
<td>Part No.</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>1.</td>
<td>Front Pinion Bearing Cup Installer</td>
<td>J-8611-01</td>
</tr>
<tr>
<td>2.</td>
<td>Rear Pinion Bearing Cone Remover</td>
<td>J-8612-B</td>
</tr>
<tr>
<td>3.</td>
<td>Driver Handle</td>
<td>J-8092</td>
</tr>
<tr>
<td>4.</td>
<td>Dial Indicator Set</td>
<td>J-8001</td>
</tr>
<tr>
<td>5.</td>
<td>Rear Pinion Bearing Cone Installer</td>
<td>J-8609-01</td>
</tr>
<tr>
<td>6.</td>
<td>Pinion Flange Remover</td>
<td>J-8614-01</td>
</tr>
<tr>
<td>7.</td>
<td>J-8107-4</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Rear Pinion Bearing Remover Plug</td>
<td>J-8608</td>
</tr>
<tr>
<td>9.</td>
<td>J-22888</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>J-22399</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Differential Side Bearing Installer</td>
<td>J-22761</td>
</tr>
<tr>
<td>12.</td>
<td>Side Bearing Backlash Gauge</td>
<td>J-22779</td>
</tr>
<tr>
<td>13.</td>
<td>Rear Pinion Bearing Cone Installer</td>
<td>J-5590</td>
</tr>
</tbody>
</table>

Not Shown:
- J-21777-1 Arbor
- J-21777-29 Gauge Plate
- J-21777-35 Rear Pilot Washer
- J-21777-42 Front Pilot Washer
- J-21777-43 Stud Assembly—Bolt
- J-21777-45 Side Bearing Disc

Special Tools — 8½-Inch Ring Gear
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Master Discs (Miller)</td>
<td>9. Differential Side Bearing Removal Plug</td>
</tr>
<tr>
<td>2</td>
<td>Arbor (Miller)</td>
<td>10. Rear Pinion Bearing Cup Installer</td>
</tr>
<tr>
<td>3</td>
<td>Pinion Height Block (Miller)</td>
<td>11. Driver Handle</td>
</tr>
<tr>
<td>4</td>
<td>Scooter Gage (Miller)</td>
<td>12. Rear Pinion Bearing Cone Installer</td>
</tr>
<tr>
<td>5</td>
<td>Master Pinion Bearings (Miller)</td>
<td>13. Pinion Flange Remover</td>
</tr>
<tr>
<td>6</td>
<td>Master Pinion Block (Miller)</td>
<td>14. Differential side Bearing Installer</td>
</tr>
<tr>
<td>7</td>
<td>Cup Installer (Miller)</td>
<td>15. Differential Side Bearing Remover</td>
</tr>
<tr>
<td>8</td>
<td>Handle (Miller)</td>
<td>16. Differential Carrier Spreader</td>
</tr>
<tr>
<td>10</td>
<td>J-7818</td>
<td>17. Side Bearing Adapters</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

1. Output Shaft Bearing Remover
2. Dial Indicator
3. Pinion Oil Seal Installer
4. Pinion Bearing Installer
5. Output Shaft Bearing Installer
6. Differential Side Bearing Installer
7. Side Bearing Adjuster Wrench
8. Differential Side Bearing Remover
9. Axle Lock Cable Seal Installer
10. Pinion Bearing Cup Remover and Installer
11. Pinion Shim Setting Gage
12. Output Shaft Pilot Bearing Installer
13. Axle Tube Bearing Installer
14. Output Shaft Seal Installer
15. Output Shaft Pilot Bearing Remover
16. Countershaft Roller Bearing Remover
17. Pinion Flange Remover
18. Bearing Cup Installer

Special Tools — T-Truck
4C-42 FRONT AXLE

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>J-2619-5</td>
<td>14</td>
<td>J-35512</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>J-6258</td>
<td>15</td>
<td>J-36366</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>J-8092</td>
<td>16</td>
<td>J-36597</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>J-8107-2</td>
<td>17</td>
<td>J-36598-1</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>J-8612-B</td>
<td>18</td>
<td>J-36598-6</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>J-8614-01</td>
<td>19</td>
<td>J-36599</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>J-21551</td>
<td>20</td>
<td>J-36601</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>J-22761</td>
<td>21</td>
<td>J-36603</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>J-22888</td>
<td>22</td>
<td>J-36606</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>J-22912-01</td>
<td>23</td>
<td>J-36612 or J-36613</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>J-29369-01</td>
<td>24</td>
<td>J-36614</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>J-29710</td>
<td>25</td>
<td>J-36615</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>J-34011</td>
<td>26</td>
<td>J-36615</td>
</tr>
</tbody>
</table>

1. Slide Hammer
2. 1/2-inch - 13 Adapter
3. Driver Handle
4. Side Bearing Remover
5. Inner Pinion Bearing Remover
6. Pinion Flange Nut Remover
7. Output Shaft Bearing Remover
8. Differential Side Bearing Installer
9. Inner Pinion Bearing Remover
10. Inner Pinion Bearing Remover
11. Axle Tube Bearing Remover
12. Differential Side Bearing Installer
13. Output Shaft Pilot Bearing Remover
14. Inner Pinion Bearing Installer
15. Pinion Oil Seal Installer
16. Differential Side Bearing Remover
17. Pinion Remover
18. Outer Pinion Bearing Cup Remover
19. Side Bearing Adjuster
20. Pinion Shim Setting Gage
21. Side Bearing Cup Installer
22. Inner Pinion Bearing Remover
23. Output Shaft Bearing Remover
24. Output Shaft Bearing Installer
25. Inner Pinion Bearing Installer
26. Side Bearing Adjuster

Special Tools — K-Truck
SECTION 5
BRAKES

The following notice applies to one or more steps in the assembly procedure of components in this portion of the manual as indicated at appropriate locations by the terminology NOTICE: See ‘Notice’ on page 5-1 of this section.

NOTICE: This fastener is an important attaching part in that it could affect the performance of vital components and systems, and/or could result in major repair expense, it must be replaced with one of the same part number or with an equivalent part if replacement becomes necessary. Do not use a replacement part of lesser quality or substitute design. Torque values must be used as specified during reassembly to assure proper retention of this part.

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic Booster</td>
<td>5-1</td>
</tr>
<tr>
<td>Bendix Hydro-Boost</td>
<td>5-1</td>
</tr>
<tr>
<td>Master Cylinders</td>
<td>5-4</td>
</tr>
<tr>
<td>Composite Master Cylinder</td>
<td>5-4</td>
</tr>
<tr>
<td>Cast Iron Master Cylinder</td>
<td>5-4</td>
</tr>
<tr>
<td>Bendix Master Cylinder</td>
<td>5-6</td>
</tr>
<tr>
<td>Vacuum Boosters</td>
<td>5-9</td>
</tr>
<tr>
<td>Single Diaphragm</td>
<td>5-9</td>
</tr>
<tr>
<td>Tandem Diaphragm</td>
<td>5-11</td>
</tr>
<tr>
<td>Specifications</td>
<td>5-13</td>
</tr>
<tr>
<td>Special Tools</td>
<td>5-14</td>
</tr>
</tbody>
</table>

HYDRAULIC BOOSTER

BENDIX HYRDO-BOOST

Remove or Disconnect (Figure 1)

Bendix Hydro Boost Model has identifying information stamped into the housing near the inlet line.

CAUTION: The accumulator contains compressed gas. Always use proper tools and follow recommended procedures or personal injury may result. Do not apply heat to accumulator. Do not attempt to repair an inoperative accumulator, always replace with a new accumulator. Dispose of an inoperative accumulator by drilling a 1/16-inch diameter hole through the end of the accumulator can opposite the “O” ring.

Tools Required:
- J-26889 Accumulator Compressor
 - Place J-26889 over the end of the accumulator and install a nut onto the stud (figure 2).
 - Depress the accumulator with a C-clamp.
 - Insert a punch into the hole on the housing.
- Retainer (1).
 - Release the C-clamp.
 - Remove J-26889.
- Accumulator (2) and O-ring (3).
- Retainer (4).
- Plug (5), O-ring (6) and spring (7) (figure 3).
- Retainer (26).
- Output pushrod (28), baffle (27), piston return spring (25) and retainer (24).
 - Saw off the eyelet of the pedal rod (20).
- Boot (19).
- Nut (18) and bracket (17).
- Bolts (9).
 - Separate the cover (16) from the housing (8).
- Seals (14 and 15).
- Piston assembly (22) and seal (23).
- Spool valve (13).
- Accumulator valve (11) (figure 4).
 - Make a wire hook to aid in the removal.
- Return line fitting (12) and seal (10).

Clean
- All the parts with power steering fluid.

Inspect
- Spool valve and spool valve bore for corrosion, nicks and scoring. If found, replace the complete booster. Discoloration of the spool or bore is not harmful and is no cause for replacement.
- Housing and cover sealing surface for corrosion, or nicks.
- Tube seat in the housing for burrs, nicks or corrosion. Replace if needed (figures 5 and 6).
Figure 1—Hydro-Boost Components

Install or Connect (Figure 1)

Tools Required:
- J-26889 Accumulator Compressor
- J-24551-A Seal Protector
- J-25083 Seal Protector

NOTICE: For steps 8 and 9 see "Notice" on page 5-1 of this section.

- Lubricate all the seals and metal friction points with power steering fluid.

1. Seal (10) and return line fitting (12).
2. Accumulator valve (11).
3. Spool valve (13).
4. Seal (23) and piston assembly (22) by using J-24551-A or J-25083 (figure 7).
 - Lubricate the tool with clean power steering fluid.
5. Seal (14) onto the piston assembly (22).
6. Seal (15) onto the housing (8).
7. Cover (16).
8. Bolts (9).

Figure 2—Removing the Accumulator

A. Nut
B. C-clamp

Figure 3—Removing the Plug and Spring

4. Retainer
5. Plug
6. O-Ring
7. Spring
8. Housing B. 3.0 mm (0.125-inch)
11. Accumulator Valve C. 57 mm (2.25-inches)
A. Wire Hook

Figure 4—Removing the Accumulator Valve

B. 3.0 mm (0.125-inch)
A. Wire Hook

Figure 5—Removing the Tube Seat

A. No. 4 Easy-Out
B. Tube Seat

Figure 6—Installing the Tube Seat

A. No. 4 Easy-Out
B. Tube Seat

Figure 7—Installing the Piston Assembly

1. Tighten
- Bolts to 30 N·m (22 ft. lbs.).
9. Bracket (17) and nut (18).

5. Tighten
- Nut to 149 N·m (110 ft. lbs.).

11. Output pushrod (28), baffle (27), piston return spring (25) and retainer (24) by using J-24551-A or J-25083 (figure 8).

12. Retainer (26).

13. Spring (7), O-ring (6) and plug (5) (figure 3).

15. O-ring (3) and accumulator (2) by using J-26889 and a C-clamp (figure 2).
- Depress the accumulator (2).

16. Retainer (1).
- Release the C-clamp.
- Remove J-26889.

17. Jam nut from the repair kit onto the pedal rod.

18. Eyelet onto the pedal rod.

Adjust
- Eyelet to the required length. Refer to BRAKES (SEC. 5) in the 1987 Light Duty Truck Service Manual.

Figure 8—Installing the Output Rod Retainer

8. Housing J-24551 (JB8, JF9)
25. Piston Return Spring J-25083 (JD3, JD5)
26. Retainer F-00767
MASTER CYLINDERS

COMPOSITE MASTER CYLINDER

The Delco-Moraine Composite Master Cylinder has identifying information stamped into the front outlet tube. The first and second digits are the build code. The third digit indicates the year it was built (a 5 means 1985 or a 7 means 1987). The last digits indicate the day it was built (271 means it was the 271st day of the production year).

NOTICE: Do not hone the master cylinder bore. When the brake master cylinder is overhauled, it is recommended that the cylinder body be replaced rather than “cleaned up” by honing the bore. The master cylinder has a hard, highly polished “bearingized” surface, which is produced by diamond boring followed by ball or roller burnishing under heavy pressure. Honing will destroy this surface which will cause rapid wear of rubber cups.

NOTICE: Do not use kerosene, gasoline, or any other unapproved solvents for cleaning or flushing master cylinder and components. The use of these as solvents or any other with a trace of mineral oil will damage rubber parts.

Remove or Disconnect (Figures 9 and 10)

1. Cover (1).
2. Diaphragm (2).
 • Drain all the brake fluid from the reservoir.
3. Reservoir (3) and grommets (4) (figure 11).
 • Clamp the mounting flange of the cylinder in a vise and pry off with a bar.
4. Snap ring (11).
5. Primary piston assembly (12).

CAUTION: In the following step if air pressure is used to remove the secondary piston, place the open end of the cylinder bore approximately 25 mm (1-inch) from a padded workbench or other surface to catch the piston when it comes out of the bore. Apply low air pressure very carefully to ease the piston out of the bore. Never point the open end of the bore at anyone when applying air pressure. The piston may come out of the bore with considerable force and cause personal injury.

6. Secondary piston (9).
 • With the rear port plugged apply a small amount of air pressure to the front port.
7. Seals (8 and 10).
8. Spring retainer (7) and spring (6).

Clean

• All the metal parts in denatured alcohol.
• All the rubber parts in clean brake fluid.
• Stained or discolored cylinder bore with crocus cloth.

CAST IRON MASTER CYLINDER

The Delco-Moraine Composite Master Cylinder has identifying information stamped into the front outlet tube. The first and second digits are the build code. The third digit indicates the year it was built (a 5 means 1985 or a 7 means 1987). The last digits indicate the day it was built (271 means it was the 271st day of the production year).

NOTICE: Do not hone the master cylinder bore. When the brake master cylinder is overhauled, it is recommended that the cylinder body be replaced rather than “cleaned up” by honing the bore. The master cylinder has a hard, highly polished “bearingized” surface, which is produced by diamond boring followed by ball or roller burnishing under heavy pressure. Honing will destroy this surface which will cause rapid wear of rubber cups.

NOTICE: Do not use kerosene, gasoline, or any other unapproved solvents for cleaning or flushing master cylinder and components. The use of these as solvents or any other with a trace of mineral oil, will damage rubber parts.

Remove or Disconnect (Figure 14)

1. Cover (22).
2. Diaphragm (23).
 • Drain all the brake fluid from the reservoir.
3. Snap ring (31).
4. Primary piston assembly (30) (figure 15).
CAUTION: In the following step if air pressure is used to remove the secondary piston, place the open end of the cylinder bore approximately 25 mm (1-inch) from a padded workbench or other surface to catch the piston when it comes out of the bore. Apply low air pressure very carefully to ease the piston out of the bore. Never point the open end of the bore at anyone when applying air pressure. The piston may come out of the bore with considerable force and cause personal injury.

5. Secondary piston (28).
 - With the rear port plugged apply a small amount of air pressure to the front port.
7. Spring retainer (26) and primary seal (27).
8. Spring (25).
9. Tube seats (if necessary) (figure 17).
 - Thread a self-tapping screw into the tube seat and remove with locking jaw pliers.

Clean
- All the metal parts in denatured alcohol.
- All the rubber parts in clean brake fluid.
- Stained or discolored cylinder bore with crocus cloth.

Inspect
- Diaphragm for cuts, cracks, or a swollen condition.
- Cylinder bore for scoring or corrosion. If corrosion is present, replace the cylinder. Do not attempt to hone the bore.

Install or Connect (Figure 14)
- Lubricate all the seals and cylinder bore with clean brake fluid.
1. Spring (25).
2. Primary seal (27) and spring retainer (26) onto the secondary piston (28) (figure 16).
3. Secondary seals (29) onto the secondary piston (28).
5. Primary piston assembly (30).
 • The primary piston must be compressed to install the snap ring.
7. Diaphragm (23) into the cover (22).
8. Cover (22).

BENDIX MASTER CYLINDER

The Bendix Master Cylinder has identifying information stamped into the front surface of the body. The first digit indicates the plant where it was built. The second digit indicates the year it was built (a 5 means 1985 or a 6 means 1986). The last digits indicate the day it was built (271 means the 271st day of the production year).

NOTICE: Do not hone the master cylinder bore. When the brake master cylinder is overhauled, it is recommended that the cylinder body be replaced rather than “cleaned up” by honing the bore. The master cylinder has a hard, highly polished “bearingized” surface, which is produced by diamond boring followed by ball or roller burnishing under heavy pressure. Honing will destroy this surface which will cause rapid wear of rubber cups.

NOTICE: Do not use kerosene, gasoline, or any other unapproved solvents for cleaning or flushing master cylinder and components. The use of these as solvents or any other with a trace of mineral oil will damage rubber parts.
Remove or Disconnect (Figure 19)

1. Cover (41).
2. Diaphragm (42).
 - Drain all the brake fluid from the reservoir.
3. Bolts (54) and reservoir (44).
4. O-ring (55) and compensating valve seals (45).
5. Valve poppets (46) and springs (47).
 - Depress the primary piston with a smooth rounded end tool.
6. Snap ring (52).
7. Primary piston assembly (51) and piston return spring (50).

CAUTION: In the following step if air pressure is used to remove the secondary piston, place the open end of the cylinder bore approximately 25 mm (1-inch) from a padded workbench or other surface to catch the piston when it comes out of the bore. Apply low air pressure very carefully to ease the piston out of the bore. Never point the open end of the bore at anyone when applying air pressure. The piston may come out of the bore with considerable force and cause personal injury.

8. Secondary piston assembly (49).
 - With the front port plugged apply a small amount of air pressure to the front compensating valve port.

Clean
- All the metal parts in denatured alcohol.
- All the rubber parts in clean brake fluid.
Figure 15—Cast Iron Master Cylinder Components

- A stained or discolored cylinder bore with crocus cloth.

Inspect
- Diaphragm for cuts, cracks, or a swollen condition.
- Cylinder bore for scoring or corrosion. If corrosion is present replace the cylinder, do not attempt to hone the bore.

Install or Connect (Figure 19)
- Lubricate all the seals and cylinder bore with clean brake fluid.
 1. Secondary spring (48).
 2. Secondary piston assembly (49).
 3. Piston return spring (50).

Figure 17—Removing Tube Seats

4. Primary piston assembly (51) and snap ring (52).
 - The primary piston must be depressed to install the snap ring.
5. O-ring (55) and springs (47).
6. Valve poppets (46) and compensating valve seals (45).
 - Depress and hold the primary piston assembly with a smooth rounded end tool.
7. Reservoir (44).

NOTICE: See “Notice” on page 5-1 of this section.

8. Bolts (54).

Tighten
- Bolts to 18 N·m (13 ft. lbs.).
9. Diaphragm (42) into the cover (41).
10. Cover (41).
VACUUM BOOSTERS

Delco-Moraine Vacuum Boosters have a build date on a small paper label glued onto the front housing. The first digit indicates the year it was built (a 5 means 1985 or a 6 means 1986). The last digits indicate the day it was built (271 means the 271st day of production year).

SINGLE DIAPHRAGM

Remove or Disconnect (Figure 20)

Tools Required:
J-22805-01 Holding Fixture
J-9504-01 Spanner Wrench
1. Retainer (50) and boot (51).
2. Silencer (52).
3. Vacuum check valve (78) and grommet (79).
4. Front housing seal (77).
 • Scribe a mark across the front and rear housings to aid in assembly.
 • Separate housings (54 and 80) by using J-22805-01 and J-9504-01 (figure 21).
 • Press down on J-9504-01 and turn counterclockwise to unlock the housing.
5. Primary piston bearing (53).
6. Return spring (81).
7. Piston rod (63) and reaction retainer (64).
9. Diaphragm assembly from the power piston (72).
 • Grasp the primary support plate (59) and push down with the air valve pushrod assembly (74) against a hard surface.
10. Diaphragm retainer (61).
11. Primary diaphragm (60) and primary support plate (59).
12. Reaction disc (65) and reaction piston (66).
13. Reaction body retainer (67).
 • Pry up the tangs of the retainer with a screwdriver.
14. Reaction body (68).
15. Air valve spring (69) and reaction bumper (70).
16. Retaining ring (71).
17. Filter (76).
18. Retainer (75) and air valve pushrod assembly (74).
19. O-ring (73) from the air valve pushrod assembly (74).

Install or Connect (Figure 20)

Tools Required:
J-22805-01 Holding Fixture
J-9504-B Spanner Wrench
J-28458 Power Piston Seal Protector
J-22647 Pushrod Height Gage
1. O-ring (73) onto the air valve pushrod assembly (74).
2. Air valve pushrod assembly (74) into the power piston (72).
3. Retainer (75).
4. Filter (76).
5. Retaining ring (71).
6. Reaction bumper (70) and air valve spring (69).
7. Reaction body (68) and reaction body retainer (67).
8. Reaction piston (66) and reaction disc (65).
9. Primary support plate (59) and primary diaphragm (60).
10. Diaphragm retainer (61).
 - Use J-28458 to install the retainer (figure 22).
12. Reaction retainer (64) and piston rod (63).
13. Return spring (81).
 - The colored coil of the spring must face the front housing (80).
14. Primary piston bearing (53) into the rear housing (54).
15. Diaphragm assembly into the rear housing.
16. Front housing (80).
 - Use J-22805-01 and J-9504-B (figure 21).
 - Stake two tabs with a screwdriver (figure 23).
17. Silencer (52).
18. Boot (51) and retainer (50).
19. Front housing seal (77).
20. Grommet (79) and vacuum check valve (78).
BRAKES 5-11

Figure 22—Installing the Diaphragm Retainer

- Gage piston rod (figure 24).
 - Use J-22647. If not within limits obtain a service adjustable piston rod.

TANDEM DIAPHRAGM

Remove or Disconnect (Figure 25)

Tools Required:
- J-22805-01 Holding Fixture
- J-9504-B Spanner Wrench

Install or Connect (Figure 25)

Tools Required:
- J-22805-01 Holding Fixture
- J-9504-B Spanner Wrench
- J-28458 Power Piston Seal Protector
- J-22647 Pushrod Height Gage

1. Boot (51) and silencer (52).
2. Vacuum check valve (78) and grommet (79).
3. Front housing seal (77).
4. Separate housings (54 and 80) by using J-22805-01 and J-9504-B (figure 21).
 - Press down on J-9504-B and turn counterclockwise to unlock the housing.
5. Primary piston bearing (53).
6. Return spring (81).
7. Piston rod (63) and reaction retainer (64).
9. Diaphragm assembly from the power piston (72).
 - Grasp the housing divider (57) and push down with the air valve pushrod assembly (74) against a hard surface.
10. Diaphragm retainer (61).
11. Primary diaphragm (60) and primary support plate (59).
12. Housing divider (57).
13. Secondary diaphragm (56) and secondary support plate (55).
15. Reaction disc (65) and reaction piston (66).
16. Reaction body retainer (67).
 - Pry up the tangs of the retainer with a screwdriver.
17. Reaction body (68).
18. Air valve spring (69) and reaction bumper (70).
20. Filter (76).
21. Retainer (75) and air valve pushrod assembly (74).
22. O-ring (73) from the air valve pushrod assembly (74).
Figure 25—Tandem Vacuum Booster Components
6. Reaction bumper (70) and air valve spring (69).
7. Reaction body (68) and reaction body retainer (67).
 • Bend the tangs of the retainer around the lip of the power piston.
8. Reaction piston (66) and reaction disc (65).
9. Secondary support plate (55) and secondary diaphragm (56) onto the power piston (72).
 • Use J-28458 when installing diaphragms (figure 26).
10. Secondary piston bearing (58) into the housing divider (57).
11. Housing divider (57).
12. Primary support plate (59) and primary diaphragm (60).
 • Remove J-28458.
13. Diaphragm retainer (61).
 • Use J-28458 to install the retainer (figure 22).
15. Reaction retainer (64) and piston rod (63).
16. Return spring (61).
17. Primary piston bearing (53) into the rear housing (54).
18. Diaphragm assembly into the rear housing.
19. Front housing (80).
 • Use J-22805-01 and J-9504-01 (figure 21).
 • Stake two taps with a screwdriver (figure 23).
20. Silencer (52) and boot (51).
21. Front housing seal (77).
22. Grommet (79) and vacuum check valve (78).
 • Gage piston rod (figure 24).
 • Use J-22647. If not within limits obtain a service adjustable piston rod.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Hydro-Boost Housing to Cover Bolts</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
<td>22</td>
</tr>
<tr>
<td>Hydro-Boost Nut</td>
<td>149</td>
<td>110</td>
</tr>
</tbody>
</table>
SPECIAL TOOLS

1. Power Brake Push Rod Height Gage
2. Piston Seal Protector
3. Piston Seal Protector
4. Spanner Wrench
5. Booster Holder
6. Accumulator Piston
7. Valve Conector Seat Installer
8. Power Piston Seal Protector
SECTION 6A
GENERAL ENGINE MECHANICAL

CONTENTS

SUBJECT .. PAGE

General Information .. 6A-1
Statement on Cleanliness and Care 6A-1
Use of RTV Sealer and Anaerobic Gasket Eliminator 6A-2
Replacing Engine Gaskets 6A-2
Cylinder Bores, Pistons, Rings, and Connecting Rods 6A-2
Measuring Cylinder Bore Taper and Out-of-Round (All Models) 6A-2
Cylinder Bore Reconditioning (2.5 L Engines) 6A-3
Cylinder Bore Reconditioning (2.8 L Engines) 6A-3
Cylinder Bore Reconditioning (All Except 2.5 L and 2.8 L Engines) 6A-4
Boring ... 6A-4
Honing ... 6A-4
Piston and Connecting Rod Assemblies 6A-5
Piston Selection (2.5 L and 2.8 L Engines) 6A-7
Piston Selection (All Except 2.5 L and 2.8 L Engines) 6A-7
Camshaft Bearings ... 6A-11
Camshaft Bearing Replacement (2.5 L and 6.2 L Engines) 6A-11
Camshaft Bearing Replacement (All Except 2.5 L and 6.2 L Engines) 6A-11
Hydraulic Lifters .. 6A-13
Inspection Before Disassembly 6A-13
Hydraulic Lifter Overhaul 6A-14
Valve Lifter Leak-Down Rate Test (Flat Type Lifters Only) 6A-15
Cylinder Head .. 6A-16
Disassembly ... 6A-16
Cleaning and Inspection 6A-16
Repair ... 6A-17
Assembly .. 6A-18
Measuring Main Bearing Clearance 6A-19
Measuring Connecting Rod Bearing Clearance 6A-20
Special Tools .. 6A-21

GENERAL INFORMATION

STATEMENT ON CLEANLINESS AND CARE

- An engine is a combination of many machined, honed, polished and lapped surfaces with very fine tolerances.
- Whenever valve train components, cylinder head, cylinder, crankshaft, or connecting rod components are removed for service, they should be retained in order. At the time of installation, they should be installed in the same locations and with the same mating surfaces as when removed.
- Any time air cleaner, carburetor, or TBI unit is removed, the intake opening must be covered. If a diesel engine is being serviced, the recommended cover (J-29664-2) should be used. This will protect against the entrance of foreign material which could follow the intake passage into the cylinder and cause extensive damage when the engine is started.
- When any internal engine parts are serviced, care and cleanliness are important. A liberal coating of engine oil should be applied to friction areas during assembly to protect and lubricate the surfaces on initial operation. Throughout this section, it should be understood that proper cleaning and protection of machined surfaces and friction areas is part of the repair procedure. This is considered standard shop practice even if not specifically stated.
- On diesel engines, whenever the fuel injection pump or lines are removed or disconnected, they must be taken to prevent the entry of dirt into the pump, lines, and injectors. The entry of even small amounts of dirt or other foreign material into the fuel injection system may cause serious damage.
USE OF RTV SEALER AND ANAEROBIC GASKET ELIMINATOR

Two types of sealer are commonly used in engines covered by this manual. These are RTV sealer and anaerobic “gasket eliminator” sealer.

It is important that these sealers be applied properly and in the proper place to prevent oil leaks. THE TWO TYPES OF SEALER ARE NOT INTERCHANGEABLE. Use the sealer recommended in the procedure.

• RTV (room temperature vulcanizing) sealer is used where a non-rigid part is assembled to a rigid part. Common examples are oil pans and rocker arm covers.

• Anaerobic gasket eliminator hardens in the absence of air. This sealer is used where two rigid parts (such as castings) are assembled together. When two rigid parts are disassembled and no sealer or gasket is readily noticeable, the parts were probably assembled using gasket eliminator.

USING RTV SEALER

1. Do not use RTV when extreme temperatures are expected, such as exhaust manifold, head gasket or where gasket eliminator is specified.

2. When separating components sealed with RTV, use a rubber mallet and “bump” the part sideways to shear the RTV sealer. “Bumping” should be done at bends or reinforced areas to prevent distortion of parts. RTV is weaker in shear (lateral) strength than in tensile (vertical) strength.

3. Surfaces to be resealed must be clean and dry. Remove all traces of oil and RTV. Clean with a chlorinated solvent such as carburetor spray cleaner. Do not use petroleum cleaners such as mineral spirits; they leave a film onto which RTV will not stick.

4. Apply RTV to one of the clean surfaces. Use a bead size as specified in the procedure. Run the bead to the inside of any bolt holes. Do not allow the sealer in any blind threaded holes, as it may prevent the bolt from seating properly or cause damage when the bolt is tightened.

5. Assemble while RTV is still wet (within 3 minutes). Do not wait for RTV to skin over.

6. Torque bolts to specifications. Do not over-torque.

USING ANAEROBIC GASKET ELIMINATOR

1. Clean surfaces to be resealed with a chlorinated solvent to remove all oil, grease and old material.

2. Apply a continuous bead of gasket eliminator to one flange.

3. Spread bead evenly with your finger to get a uniform coating on the complete flange.

4. Assemble parts in the normal manner and torque immediately to specifications.

Important

• Anaerobic sealed joints that are partially torqued and allowed to cure more than five minutes may result in incorrect shimming of the joint.

REPLACING ENGINE GASKETS

CAUTION: Composite type gaskets are used in some areas of the engine assembly. These gaskets have a thin metal core. Use caution when removing or handling composite gaskets to help avoid personal injury.

CYLINDER BORES, PISTONS, RINGS, AND CONNECTING RODS

MEASURING CYLINDER BORE TAPER AND OUT-OF-ROUND (ALL MODELS)

Tool Required:
J-8087 Cylinder Bore Gage
(or equivalent)

• If one or more cylinder bores are rough, scored or worn beyond limits, it will be necessary to smooth or true up such bores to fit new pistons.

• No attempt should be made to cut down oversize pistons to fit cylinder bores as this will destroy the surface treatment and affect the weight. The smallest possible oversize service pistons should be used and the cylinder bores should be honed to size for proper clearances.

1. Refer to “Specifications” in the proper section for tolerances.

2. Set the gage so that the thrust pin must be forced in about 7 mm (⅛-inch) to enter the gage in the cylinder bore.

3. Center the gage in the cylinder and turn the dial to "0."

4. Carefully work the gage up and down the cylinder to determine taper and turn it to different points around the cylinder wall to determine the out-of-round condition (figure 1). Measure the bore both parallel to and at right angles to the engine centerline. Measure at the top, middle and bottom of the bore and note the readings.

5. Recondition the cylinder bore as necessary, as outlined later.
1. Measure the cylinder bore for out of round and taper as outlined previously.

2. Refer to figure 2. Measure dimension “A” at 13 mm (1/2-inch) below the head gasket surface. Measure dimension “B” at 100 mm (4-inches) below the head gasket surface.

Cylinder bores can be measured by setting the cylinder gage dial at zero in the cylinder at the point of desired measurement. Lock the dial indicator at zero before removing from the cylinder, and measure across the gage contact points with outside micrometer, with the gage at the same zero setting when removed from the cylinder (figure 3).

3. If dimension “A” is larger than dimension “B” by 0.13 mm (0.005-inch), the cylinder should be bored for oversized piston and rings.

If relatively few bores require correction, it will not be necessary to rebore all cylinders to the same oversize in order to maintain engine balance. All oversize service pistons are held to the same weights as standard size pistons.

4. Fine vertical scratches made by ring ends will not, by themselves, cause excessive oil consumption; therefore, honing to remove them is unnecessary.

5. If the bore is glazed but otherwise serviceable, break the glaze lightly with a hone and replace the piston rings. Refer to “Honing.” Make sure the honing stones are clean, sharp and straight. Move the hone slowly up and down to produce a 45 degree cross-hatch pattern. Clean the bore thoroughly with soap and water. Dry and rub in clean engine oil, then remeasure.

6. If honing is not required, the cylinder bores should be cleaned with a hot water and detergent wash. Apply clean engine oil to the bore after cleaning.

Figure 1—Checking the Cylinder Bore

Figure 2—Typical Wear Pattern

Figure 3—Measuring the Cylinder Bore Gage

CYLINDER BORE RECONDITIONING (2.5 L ENGINES)

1. Measure the cylinder bore for out of round and taper as outlined previously.

2. Refer to figure 2. Measure for wear at the top of the bore (point “A”), and at the bottom (point “B”).

Cylinder bores can be measured by setting the cylinder gage dial at zero in the cylinder at the point of desired measurement. Lock the dial indicator at zero before removing from the cylinder, and measure across the gage contact points with outside micrometer, with the gage at the same zero setting when removed from the cylinder (figure 3).

CYLINDER BORE RECONDITIONING (2.8 L ENGINES)

1. Measure the cylinder bore for out of round and taper as outlined previously.

2. Refer to figure 2. Measure for wear at the top of the bore (point “A”), and at the bottom (point “B”).

Cylinder bores can be measured by setting the cylinder gage dial at zero in the cylinder at the point of desired measurement. Lock the dial indicator at zero before removing from the cylinder, and measure across the gage contact points with outside micrometer, with the gage at the same zero setting when removed from the cylinder (figure 3).
3. If wear at the top of the cylinder does not exceed 0.10 mm (0.004-inch) out-of-round, honing is recommended for truing the bore. If wear or out-of-round exceeds these limits, the bore should be trued up with a boring bar of the fly cutter type, then finish honed.

If relatively few bores require correction, it will not be necessary to rebore all cylinders to the same oversize in order to maintain engine balance. All oversize service pistons are held to the same weights as standard size pistons.

4. Fine vertical scratches made by ring ends will not, by themselves, cause excessive oil consumption; therefore, honing to remove them is unnecessary.

5. If the bore is glazed but otherwise serviceable, break the glaze lightly with a hone and replace the piston rings. Refer to “Honing.” Make sure the honing stones are clean, sharp and straight. Move the hone slowly up and down to produce a 20 to 32 degree cross-hatch pattern. Clean the bore thoroughly with soap and water. Dry and rub in clean engine oil, then re-measure.

6. If honing is not required, the cylinder bores should be cleaned with a hot water and detergent wash. Apply clean engine oil to the bore after cleaning.

CYLINDER BORE RECONDITIONING (ALL EXCEPT 2.5 L AND 2.8 L ENGINES)

1. Measure the cylinder bore for out of round and taper as outlined previously.

2. Refer to figure 2. Measure for wear at the top of the bore (point "A") and at the bottom (point "B"). Cylinder bores can be measured by setting the cylinder gage dial at zero in the cylinder at the point of desired measurement. Lock the dial indicator at zero before removing from the cylinder, and measure across the gage contact points with outside micrometer, with the gage at the same zero setting when removed from the cylinder (figure 3).

3. If the cylinders are found to exceed the specified out-of-round or taper, honing or boring will be necessary. Any cylinders that were found to have less than 0.13 mm (0.005-inch) wear or taper may not entirely clean up when fitted to a high limit piston. If it is desired to entirely clean up the bore in these cases, it will be necessary to rebore for an oversize piston. If more than 0.13 mm (0.005-inch) taper or wear, they should be bored and honed to the smallest oversize that will permit complete resurfacing of all cylinders.

4. Fine vertical scratches made by ring ends will not, by themselves, cause excessive oil consumption; therefore, honing to remove them is unnecessary.

5. If the bore is glazed but otherwise serviceable, break the glaze lightly with a hone and replace the piston rings.

 Make sure the honing stones are clean, sharp and straight. Move the hone slowly up and down to produce a 45 to 65 degree cross-hatch pattern. Clean the bore thoroughly with soap and water. Dry and rub in clean engine oil, then re-measure.

6. If honing is not required, the cylinder bores should be cleaned with a hot water and detergent wash. Apply clean engine oil to the bore after cleaning.

BORING

1. Before the honing or reboring operation is started, measure all new pistons with the micrometer contacting at points exactly 90 degrees from the piston pin centerline. Some pistons must be measured at a specified distance from the piston crown. Refer to the proper section for additional instructions. Then select the smallest piston for the first fitting. The slight variation usually found between pistons in a set may provide for correction in case the first piston is fitted too free.

2. Before using any type of boring bar, the top of the cylinder block should be filed to remove any dirt or burrs. This is very important. If not checked, the boring bar may be tilted which would result in the rebored cylinder wall not being at right angles to the crankshaft.

3. The instructions furnished by the manufacturer of the equipment being used should be carefully followed.

4. When reboring cylinders, all crankshaft bearing caps must be in place and tightened to the proper torque to avoid distortion of bores in the final assembly. Always be sure the crankshaft is out of the way of the boring cutter when boring each cylinder. Crankshaft bearings and other internal parts must be covered or taped to protect them during the boring or honing operation.

5. When taking the final cut with a boring bar, leave 0.03 mm (0.001-inch) on the diameter for finish honing to give the required position to the cylinder clearance specifications. (The honing or boring operation must be done carefully so that the specified clearance between pistons, rings, and cylinder bores is maintained.)

- **Important**
- Refer to the proper section for additional information.

HONING

1. When the cylinders are to be honed, follow the hone manufacturer’s recommendations for the use of the hone and cleaning and lubrication during honing. Use only clean, sharp stones of the proper grade for the amount of material to be removed. Dull, dirty stones cut unevenly and generate excessive heat. When using coarse or medium grade stones use care to leave sufficient metal so that all stone marks may be removed with the fine stones used for finishing to provide proper clearance.

2. Occasionally during the honing operation, the cylinder bore should be thoroughly cleaned and the piston selected for the individual cylinder check for correct fit.
3. When honing to eliminate taper in the cylinder, full strokes of the hone in the cylinder should be made in addition to checking measurement at the top, middle and bottom of the bore repeatedly.

NOTICE: Handle the pistons with care and do not attempt to force them through the cylinder until the cylinder has been honed to the correct size as the piston can be distorted through careless handling.

4. When finish honing a cylinder bore to fit a piston, the hone should be moved up and down at a sufficient speed to obtain very fine uniform surface finish marks in a cross-hatch pattern of the specified angle.
 - 2.5 L: 45 degrees
 - 2.8 L: 20 to 32 degrees
 - All others: 45 to 65 degrees

5. The finish marks should be clean but not sharp, free from imbedded particles and torn or folded metal.

6. By measuring the piston to be installed at the sizing point specified in the proper section, and adding the average of the clearance specification, the finish hone cylinder measurement can be determined. It is important that both the block and piston be measured at normal room temperature.

7. It is of the greatest importance that refinished cylinder bores are trued up to have the less than the specified out-of-round or taper. Each bore must be final honed to remove all stone or cutter marks and provide a smooth surface.

8. Refer to "Specifications" in the proper section for piston to bore clearance tolerances.

9. After final honing and before the piston is checked for fit, clean the bores with hot water and detergent. Scrub with a stiff bristle brush and rinse thoroughly with hot water. It is essential that a good cleaning operation be performed. If any of the abrasive material is allowed to remain in the cylinder bores, it will wear the new rings and cylinder bores in addition to the bearings lubricated by the contaminated oil. After washing, the dry bore should then be brushed clean with a power-driven fiber brush.

10. Permanently mark the piston for the cylinder to which it has been fitted.

11. Apply clean engine oil to each bore to prevent rusting.

PISTON AND CONNECTING ROD ASSEMBLIES

DISASSEMBLY (ALL EXCEPT 6.2 L ENGINES)

Remove or Disconnect (Figures 4, 5 and 6)

Tools Required
- J-25220 Ring Expander (or equivalent)
- J-24086 Piston Pin Remover and Installer

1. Piston rings. Use J-25220 (or equivalent) (figure 5). In most cases the rings should be discarded and replaced with new ones at assembly.
2. Connecting rod bearing inserts. If the inserts are to be reused, place them in a rack so they may be reinstalled in their original connecting rod and cap.
3. Piston pin (figure 6).
 - Place the piston/connecting rod on support fixture J-24086-20. Make sure the connecting rod is fully supported.
 - Place remover J-24086-8 on the support fixture.
 - Press out the piston pin.

DISASSEMBLY (6.2 L ENGINES)

Disassemble (Figures 5 and 7)

Tool Required:
- J-25220 Ring Expander (or equivalent)
1. Piston rings. Use J-25220 (figure 5).
2. Connecting rod bearing inserts. If the inserts are to be reused, place them in a rack so they can be installed in their original connecting rod and cap.
4. Piston pin. Slide the pin from the piston.
5. Piston from the connecting rod.

CLEANING AND INSPECTION

Clean
- Piston.
 - Remove all varnish and carbon deposits. DO NOT USE A WIRE BRUSH.
 - Remove the carbon from the ring grooves. Use a ring groove cleaning tool.

Inspect
- Piston pin bore in the piston and connecting rod. Check for scuffing, burrs, etc.
- Piston for scratches, wear, etc.
- Connecting rod for cranks, nicks, etc. If a suitable jig is available, check the connecting rod for a bent or twisted condition.
- Piston.
 - Ring land for cracking, wear, etc.
 - Ring grooves for burrs, nicks, etc.
 - Skirts and pin bosses for cracking.
 - Skirts for scuffing.
- Connecting rod bearing inserts for scratches or deep pitting.

MEASURING PISTON PIN TO PISTON CLEARANCE (ALL EXCEPT 6.2 L)

Measure (Figures 8 and 9)
1. Piston pin diameter (figure 8). Check against "Specifications."
2. Piston pin to piston clearance.
 - Measure the piston pin hole diameter (figure 9).
• Subtract the piston pin diameter from the piston pin hole diameter to obtain the clearance.
• Replace the piston and piston pin if the clearance exceeds specifications. The piston and piston pin are a matched set and are not available separately.

MEASURING PISTON PIN TO PISTON PIN BUSHING CLEARANCE (6.2 L ENGINES)

Clean
• Piston pin and bushing. The parts must be free of oil and dirt.

Measure (Figures 8 and 10)
1. Piston pin diameter (figure 8). Check against "Specifications.”
2. Piston pin bushing ID. Use an inside micrometer (figure 10).
3. Piston pin to bushing clearance. Subtract the piston pin diameter from the piston pin bushing ID. Compare with "Specifications." If the clearance is excessive, try a new piston pin. If the clearance is excessive with a new piston pin, if the clearance is excessive with a new piston pin, the connecting rod must be replaced. Replacement bushings are not available.

PISTON SELECTION (2.5 L AND 2.8 L ENGINES)

Refer to the proper section.

PISTON SELECTION (ALL EXCEPT 2.5 L AND 2.8 L ENGINES)

1. Check the used piston to cylinder bore clearance.

Measure (Figures 11 and 12)
• Cylinder bore diameter. Use a telescoping bore gage, located 65 mm (2 1/2-inches) below the top of the cylinder bore (figure 11).
• Piston diameter. Measure the piston skirt at a right angle to the piston pin, at the centerline of the piston pin (figure 12).
• Subtract the piston diameter from the cylinder bore diameter to determine piston to bore clearance.
• Refer to "Specifications” in the proper section. Determine if the piston clearance is in the acceptable range.

2. If the used piston is not acceptable, determine if a new piston can fit the cylinder bore.
3. If a new piston does not bring the clearance within tolerances, the cylinder bore must be reconditioned.
ASSEMBLY

Assembling the Piston and Connecting Rod (All except 6.2 L Engines)

Assemble (Figure 13)

Tool Required:
J-24086 Piston Pin Remover and Installer Set

1. Piston and connecting rod.
 • The piston and connecting rod must be installed in the proper position.
 — 2.5 L Engines: The raised notch side of the connecting rod must be opposite the notch in the piston crown.
 — 2.8 L Engines: The bevel on the connecting rod should face the outside of the engine.
 — 4.8 L Engines: The flat side of the piston crown depression and the connecting rod bearing tang slot must be on the same side.
 — All Others: The valve cutouts in the piston crown must be opposite the connecting rod bearing tangs.
 • Lubricate the piston pin holes in the piston and connecting rod with engine oil.
 • Install the pin guide (item E, figure 13) to hold the piston and connecting rod together. Be sure to use the proper pin guide. Refer to the instructions supplied with the tool.

2. Piston pin.
 • Insert the piston pin into the piston pin hole.
 • Place the assembly on the support fixture (figure 13).
 • Adjust the piston pin installer (J-24086-9) to the correct length, using the letter-number scale on the installer adjuster (figure 13). This is necessary to insure that the piston pin is pressed into the piston to the correct depth. Refer to the instructions supplied with the tool for the proper setting.
 • Lock the adjuster in place with the lock ring.

NOTICE: After the installer hub bottoms on the support assembly, do not exceed 35 000 kPa (5,000 psi) pressure, as this could cause damage to the tool.

 • Place the adjuster in the support fixture. Press the piston pin into place (until the adjustable installer bottoms in the support fixture).
 • Remove the piston and connecting rod assembly from the tool and check the piston for freedom of movement on the piston pin.

Assembling the Piston and Connecting Rod (6.2 L Engines)

Assemble (Figures 7, 14, and 15)

Tool Required:
J-29134-A Piston Pin Clip Installer

1. Piston to the connecting rod.
 • The piston must be installed with the piston crown indent on the same side as the connecting rod bearing tang slots (figure 14).
 • Piston pin. Apply engine oil to the pin and push into place.
 • Snap rings. Use J-29134-A (figure 15).

Inspect

 • Snap rings for proper assembly. Rotate the snap rings to make sure that they are seated in their grooves.

Installing the Piston Rings (All Except 6.2 L)

Measure (Figures 4 and 16)

 • Ring end gap as follows:
 1. Select rings comparable in size to the piston being used.
 2. Slip the compressing ring in the cylinder bore: then press the ring down into the cylinder bore about 7 mm (1/4-inch) above ring travel. Be sure the ring is square with the cylinder wall.
 3. Measure the space or gap between the ends of the ring with a feeler gage (figure 16).
 4. Refer to “Specifications” in the proper section for correct gap.
 5. If the gap between the ends of the ring is not as specified, remove the ring and try another for fit.

Inspect (Figures 17)

 • Ring fit as follows:
 1. Fit each compression ring to the piston on which it is going to be used.
 2. Slip the outer surface of the top and second compression ring into the respective piston ring groove (figure 17), to make sure that the ring is free. If binding occurs at any point, the cause should be determined. If binding is caused by the ring groove, correct by
A. Press Ram
B. Adjustable Installer J-24086-9
C. Support Fixture J-24086-20
D. Connecting Rod Support J-24086-11
E. Pin Guide
F. Lock Ring
G. Adjuster
H. Number Scale

Figure 13—Installing the Piston Pin

- Depressing the groove with a fine cut file. If the binding is caused by a distorted ring, check a new ring.

Assembly (Figures 4 and 5)

Tool Required:
J-25220 Ring Expander (or equivalent)

- All compression rings are marked on the upper side of the ring. When installing the compression rings, make sure the MARKED SIDE IS TOWARD THE TOP OF THE PISTON.

Measure (Figure 18)

- Ring clearance. Use a feeler gage as shown in figure 18. Compare with “Specifications” in the proper section.

Installing the Piston Rings
(6.2 L Engines)

- All compression rings are marked on the upper side of the ring. When installing the compression rings, make sure the MARKED SIDE IS TOWARD THE TOP OF THE PISTON.
- The top compression ring is a keystone type.
- The oil ring is a two-piece type, consisting of an expander and a scraper ring.
Figure 15—Installing the Piston Ring Snap Ring (6.2 L Engines)

Figure 16—Measuring Ring End Gap

Figure 17—Checking Ring Fit

Figure 18—Measuring Ring Clearance
Measure (Figures 7 and 16)
- Ring end gap as follows:
 1. Select rings comparable in size to the piston being used.
 2. Slip the compression ring in the cylinder bore; then press the ring down into the cylinder bore about 7 mm (1/4-inch) above ring travel. Be sure the ring is square with the cylinder wall.
 3. Measure the space or gap between the ends of the ring with a feeler gage (figure 16).
 4. Refer to "Specifications" in the proper section.
 5. If the gap between the ends of the ring is not as specified, remove the ring and try another for fit.

Inspect (Figure 17)
- Ring fit as follows:
 1. Fit each compression ring to the piston on which it is going to be used.

Assemble
- Piston rings. Refer to the instructions furnished with the parts package.

Measure (Figure 18)
- Ring clearance. Use a feeler gage as shown in figure 18. Compare with "Specifications" in the proper section.

CAMSHAFT BEARINGS

CAMSHAFT BEARING REPLACEMENT (2.5 L AND 6.2 L ENGINES)
Refer to the proper section.

CAMSHAFT BEARING REPLACEMENT (ALL EXCEPT 2.5 L AND 6.2 L ENGINES)

Inspect
- Camshaft bearings for scratches, pits, or loose fit in their bores. Replace the camshaft bearings if necessary.

Disassemble (Figures 19 and 20)

Tool Required
J-6098-01 Camshaft Bearing Remover and Installer
1. Rear camshaft plug or cap.
2. Inner camshaft bearings. Use J-6098-01 (figure 19).
 - Insert the pilot into the front camshaft bearing bore.
 - Slide the puller screw, with the nut and washer, through the pilot.
 - Insert the bearing tool into the inner camshaft bearing bore, with the shoulder of the tool against the bearing.
 - Hold the puller screw with a wrench. Turn the nut with a second wrench to pull the camshaft bearing from its bore.
 - Repeat this procedure to remove the remaining inner camshaft bearings. Note that the rear inner bearing must be removed with the pilot fitted into the rear camshaft bearing.
3. Outer camshaft bearing. Use J-6098-01 (figure 20).
 - Assemble the bearing tool and driver handle.
 - Drive the outer camshaft bearings out of the block.

Clean
- Camshaft bearing bores in the block.

Assemble (Figures 19, 20, and 21)

Tool Required
J-6098-01 Camshaft Bearing Remover and Installer
- The outer camshaft bearings must be installed first. These bearings serve as guides for the pilot, and help center the inner bearings during the installation process.
Figure 20—Removing or Installing the Outer Camshaft Bearings

- Be sure to fit the correct cam bearing into the bore. The cam bearing bores vary in size.

1. Outer camshaft bearings. Drive the bearings into place using J-6098-01 (figure 20).

Important
- Make sure the camshaft bearing hole (or holes) align with the oil hole (or holes) in the block. If it is difficult to see the alignment, use a piece of 2 mm (3/32-inch) rod as shown in figure 21 to check alignment.

2. Inner camshaft bearing. Use tool J-6098-01 (figure 19).
- Assemble the tool with the pilot engaged in the front bearing and the pilot flange against the front face of the block.
- Slide the puller screw, with nut and washer, through the pilot.

A. Checking oil hole alignment with brass rod. Make rod as shown using 3/32" rod about 762 mm (30") long.

- Place the new bearing on the bearing tool. Hold the bearing tool and bearing against the bearing bore. Align the bearing oil hole with the oil hole in the block.
- Thread the puller screw into the bearing tool enough to hold the tool and bearing in place.
- Holding the puller screw with a wrench, turn the nut with a second wrench to pull the camshaft bearing into place.
- Remove the puller screw, pilot, and bearing tool.

Important
- Make sure the camshaft bearing hole (or holes) align with the oil hole (or holes) in the block. If it is difficult to see the alignment, use a piece of brass rod as described in step 1.

3. Camshaft rear plug or cap.
- All engines except 2.8 L engines:
 - Coat a new camshaft plug with sealer (Loctite #592 or equivalent).
 - Install the plug flush to 0.80 mm (1/32-inch) deep.
- 2.8 L engines:
 - Clean all RTV from the cap and block.
 - Apply a 3 mm (1/8-inch) bead of RTV sealant (GM part no. 1052366 or equivalent) to the machined groove on the block.
 - Install the cap while the RTV is still wet.
 - Install the retaining bolts and tighten.
HYDRAULIC LIFTERS

Figure 22—Flat Type Hydraulic Lifter Assembly

Two types of hydraulic lifters are used in engines covered by this manual – flat type and roller type. Service procedures are similar for both types.

Hydraulic lifters are serviced only as an assembly. No internal parts are available. Service is limited to a disassembly, cleaning and test operation. It is understood that most technicians discard any suspicious valve lifters. This information is offered for those who may wish to overhaul and test valve lifters.

Important
- Whenever the camshaft needs to be replaced, a new set of hydraulic lifters must also be installed (except 2.5 L engines).

INSPECTION BEFORE DISASSEMBLY

Inspect (Figures 22, 23, and 24)
- Lifter body (221) for scuffing and scoring. If the lifter body wall is worn or damaged, the mating hydraulic lifter bore in the cylinder block should also be checked.
- Check the fit of each valve lifter in its mating bore in the block. If the clearance is excessive, try a new lifter.

Figure 23—Flat Type Hydraulic Lifter Components

- Push rod seat. If worn, inspect the pushrod. Replace the pushrod, if worn.
- Lifter foot (flat type lifters). The lifter foot must be smooth and slightly convex. If worn, pitted, or damaged the mating camshaft lobe should also be checked.
- Roller (roller type lifters) for:
 - Freedom of movement. Free-up or replace the lifter.
 - Flat spots. Replace the lifter, if worn.
 - Pitting, replace the lifter if pitted.
 - Missing or broken needle bearings.

Figure 24—Roller Type Hydraulic Lifter Components
HYDRAULIC LIFTER OVERHAUL

Disassemble (Figures 21 through 26)

1. Retainer (figure 25).
 - Push the pushrod seat (228) down, using a pushrod.
 - Pry out the retainer with a screwdriver.
2. Pushrod seat (228).
4. Plunger (226) and plunger spring (222).
 - If the plunger is stuck, turn the lifter body upside down and tap it on a flat surface.
5. Check ball retainer (223), check ball spring (224), and check ball (225). Pry the check ball retainer from the plunger, using a small screwdriver (figure 26).

Clean

- All parts in CLEAN solvent. Remove all gum and varnish deposits.

Inspect (Figures 22, 23, and 24)

- Plunger (226) for scoring and wear.
- Pushrod seat (228). If worn or rough, also check the mating pushrod.

Important

- Do not attempt re-conditioning by taking parts from other unserviceable lifters.

Assemble (Figures 22, 23, 24, 27, and 28)

Important

- Absolute cleanliness is necessary when assembling the hydraulic lifters. Use only clean, lint-free shop rags. Work with clean hands, on a clean work surface.
1. Check ball (225) to the small hole in the bottom of the plunger (226).
2. Check ball spring (225) to the check ball retainer (223).
3. Check ball retainer (223) with check ball spring (224) to the plunger (226). Make sure the spring rests on the ball. Carefully press the retainer into position in the plunger with the blade of a small screwdriver (figure 27). Make sure it seats tightly against the plunger.
4. Plunger spring (222) to the check ball retainer (223).
5. Lifter body (221) to the plunger (226).
A. 3 mm (1/8-inch) drift
B. 1.5 mm (1/16-inch) drift inserted in oil feed hole

Figure 28—Assembling the Hydraulic Lifter (Typical)

- Slide the lifter body over the plunger, being careful to line up the oil feed holes in the lifter body and plunger.
- Invert the assembly (open end up).
- Fill the assembly with SAE 10 oil.
- Insert the end of a 3 mm (1/8-inch) drift into the plunger and press down solidly. Do not attempt to force or pump the plunger. At this point, oil holes in the lifter body and plunger assembly will be aligned.
- Insert a 1.5 mm (1/16-inch) drift through both oil holes to hold the plunger down against the plunger spring tension (figure 28).
- Remove the 3 mm (1/8-inch) drift. Refill the assembly with SAE 10 oil.

6. Metering valve (227) and pushrod seat (228).
7. Retainer.
 - Push down on the pushrod seat (228), using a pushrod. Remove the 1.5 mm (1/16-inch) drift.
 - The lifter is completely assembled, and ready to be installed or tested.

Figure 29—Testing the Hydraulic Lifter — Flat Type Only

measures the amount of valve lifter travel under load. Instructions for use are furnished with the tool, along with a supply of special test oil.

1. Fill tester cup to approximately one inch from top with the special fluid which is available from tester manufacturer.
2. Swing the weight arm out of the way, raise the arm, and position the lifter into the boss in the center of the tester cup.
3. Adjust the ram (with the weight arm clear of the ram) so that the point is positioned on the set line (marked "S"). Tighten the jam nut to maintain the setting.
4. Operate the lifter through full travel of the plunger by pumping the weight arm to fill the lifter with test fluid and force out air.

Important
- Lifter must be completely submerged at all times.
- Continue pumping for several strokes after definite resistance is felt.
5. Raise the weight arm to allow the plunger spring to expand fully; lower the arm onto the ram and commence turning the crank slowly (1 revolution every 2 seconds).
6. Time indicator travel from the lower line (first line above the set line) to the line marked 0.094 or 3/32-inch, while rotating the cup with crank. The lifter is satisfactory if the rate is between 12 and 90 seconds.

VALVE LIFTER LEAK-DOWN RATE TEST (FLAT TYPE LIFTERS ONLY)

Tool Required:
J-5790 Hydraulic Lifter Leakedown Tester
Tool J-5790 (figure 29) is available for very accurately checking the leakdown rate of the overhauled valve lifters. This tool applies a measured load to the valve lifter, and
GENERAL ENGINE MECHANICAL

CYLINDER HEAD

DISASSEMBLY

Disassemble

- Valves and components. Refer to the proper section.

CLEANING AND INSPECTION

Clean (Figures 30 and 31)

Tools Required:
J-8089 Wire Brush
J-8101 Valve Guide Cleaning Tool

Inspect

- Carbon from the combustion chambers. Use J-8089 (figure 30).
- Valve guides. Use J-8101 (figure 31).
- Valve stems and heads on a wire wheel.
- Carbon and old gasket from the cylinder head gasket surface.

Measure (Figures 32, 33, and 34)

Tools Required:
J-8001 Dial Indicator (or equivalent)
J-8056 Valve Spring Tester
- Valve stem to guide bore clearance.
Figure 33—Measuring Valve Spring Tension

- Excessive valve stem to guide bore clearance will cause excessive oil consumption and may cause valve breakage. Insufficient clearance will result in noisy and sticky functioning of the valve and disturb engines smoothness.
- Clamp a Dial Indicator J-8001 (or equivalent) on one side of the cylinder head rocker arm cover gasket rail (figure 32).
- Locate the indicator so that movement of the valve stem from side to side (crosswise to the head) will cause a direct movement of the indicator stem. The indicator stem must contact the side of the valve stem just above the valve guide bore.
- Drop the valve head about 1.6 mm (1/16-inch) off the valve seat.
- Move the stem of the valve from side to side using light pressure to obtain a clearance reading. If clearance exceeds specifications, it will be necessary to ream valve guide bores for oversize valves as outlined later in this manual.

Figure 34—Measuring Valve Spring Length

Figure 35—Valve Head Measurement

- Valve spring tension. Use J-8056 or equivalent (figure 33).
- Compress the springs, with dampers removed, to the specified height and check against the specifications chart. Springs should be replaced if not within 44 N (10 lbs.) of the specified load.
- Valve spring length (figure 34). Replace the spring if the length is not as specified.

REPAIR

VALVE GRINDING

Valves that are pitted must be refaced to the proper angle. Valve stems which show excessive wear, or valves that are warped excessively must be replaced. When a valve head which is warped excessively is refaced, a knife edge will be ground on part or all of the valve head due to the amount of metal that must be removed to completely reface. Knife edges lead to breakage, burning or preignition due to heat localizing on this knife edge. If the edge of the valve head is less than 0.80 mm (1/32-inch) after grinding (figure 35), replace the valve.

Several different types of equipment are available for refacing valves. The recommendation of the manufacturer of the equipment being used should be carefully followed to attain proper results.

Refer to “Specifications” in the proper section for valve face angle specifications.

VALVE SEAT GRINDING

Reconditioning the valve seats is very important, because the seating of the valves must be perfect for the engine to deliver the power and performance built into it.

Another important factor is the cooling of the valve head. Good contact between each valve and its seat will insure that heat will be properly carried away.

Several different types of equipment are available for reseating valve seats. The recommendations of the manufacturer of the equipment being used should be carefully followed to attain proper results.
Regardless of what type of equipment is used, however, it is essential that valve guide bores be free from carbon or dirt to ensure proper centering of the pilot in the guide. Refer to "Specifications" in the proper section for valve seat angle specifications.

NOTICE: Valve seats on 6.2 L engines are induction hardened. Excessive removal of stock may result in damage to the valve seats.

REAMING VALVE GUIDES

The valve guides used in engines covered by this manual are simply holes bores into the cylinder head. The valve guides are therefore not replaceable.

If the valve stem to bore clearance as measured previously in this manual is excessive, the valve guides should be reamed and a valve with an oversize stem installed.

Available oversize valves are as follows. Nominal dimensions are given.

- **2.5 L:**
 - Intake: 0.08 mm (0.003-inch), 0.13 mm (0.005-inch).
 - Exhaust: 0.08 mm (0.003-inch).

- **2.8 L, 4.8 L, 5.0 L, 5.7 L, 7.4 L:**
 - Intake and exhaust: 0.08 mm (0.003-inch), 0.38 mm (0.015-inch), 0.76 mm (0.030-inch).

- **4.3 L:**
 - Intake: 0.08 mm (0.003-inch), 0.38 mm (0.015-inch).
 - Exhaust: 0.08 mm (0.003-inch), 0.38 mm (0.015-inch).

- **6.2 L:**
 - Intake and exhaust: 0.08 mm (0.003-inch), 0.38 mm (0.015-inch).

Select a reamer which will provide a straight, clean bore through the guide's entire length (figure 36).

Reamer availability is as follows. Sizes given are nominal.

- All engines except 6.2 L and 7.4 L:
 - J-5830-1: 0.08 mm (0.003-inch) oversize.
 - J-6621: 0.13 mm (0.005-inch) oversize.
 - J-5830-2: 0.38 mm (0.015-inch) oversize.
 - J-5830-3: 0.76 mm (0.030-inch) oversize.
 - These reamers (except J-6621) also available in Reamer Set J-5830-02.

- 6.2 L and 7.4 L engines:
 - J-7049-1: 0.08 mm (0.003-inch) oversize.
 - J-7049-2: 0.38 mm (0.015-inch) oversize.
 - J-7049-3: 0.76 mm (0.030-inch) oversize.
 - These reamers also available in Reamer Set J-7049.

ASSEMBLY

- Assemble
 - Valves and components. Refer to the proper section.
MEASURING MAIN BEARING CLEARANCE

Main bearings are of the precision insert type and do not use shims for adjustment. If clearances are found to be excessive, new upper and lower inserts will be required.

The simplest, most accurate way to measure main bearing clearance is with the use of gaging plastic. This wax-like material compresses evenly between the bearing and journal surfaces without damaging them. Proceed as follows:

1. **Clean**
 - All oil from the crankshaft journal and main bearing inserts.

2. **Install or Connect (Figure 37)**
 - Refer to the proper section for additional information.
 1. Main bearing inserts and crankshaft, as outlined in the proper section.
 2. Gaging plastic.
 - Begin with the rear main bearing.
 - Wipe the oil from the crankshaft journal and the lower main bearing insert.
 - Place a piece of gaging plastic the full width of the lower bearing insert (parallel to the crankshaft) on the journal (figure 37). Do not rotate the crankshaft while the gaging plastic is between the bearing and journal.
 3. Main bearing cap and bolts.
 - Bolts to "Specifications."

3. **Tighten**

4. **Remove or Disconnect**
 - Main bearing cap.
 - DO NOT REMOVE THE GAGING PLASTIC FROM THE JOURNAL OR LOWER MAIN BEARING INSERT.

Figure 37—Placing the Gaging Plastic on the Bearing Journal

Figure 38—Measuring the Gaging Plastic

Measure (Figure 38)

- Gaging plastic as follows:
 1. The flattened gaging plastic will be found adhering to either the lower bearing insert or journal.
 2. On the edge of the gaging plastic envelope there is a graduated scale. Without removing the gaging plastic, measure its compressed width (at the widest point) with the graduations on the gaging plastic envelope (figure 38).
 3. If the flattened gaging plastic tapers toward the middle or ends, there is a difference in clearance indicating taper, low spot or other irregularity of the bearing or journal. Be sure to measure the journal with a micrometer if the flattened gaging plastic indicates more than 0.001-inch (0.0005-inch on 2.5 L engines) difference.
 4. Normally main bearing journals wear evenly and are not out-of-round. However, if a bearing is being fitted to an out-of-round journal, be sure to fit to the maximum diameter of the journal. If the bearing is fitted to the minimum diameter and the journal is excessively out-of-round, interference between the bearing and the journal will result in rapid bearing failure.
 5. If the bearing clearance is within specifications, the bearing is satisfactory. If the clearance is not within specifications, replace the bearing. Always replace both upper and lower inserts as a unit.
 6. A standard or undersize bearing may produce the proper clearance. Refer to the proper section for bearing availability. If not, it will be necessary to regrind the crankshaft journal for use with the next undersize bearing. Do not grind rolled fillet crankshafts, such as used on 2.5 L, 2.8 L, and 6.2 L engines. After selecting the new bearing, recheck the clearance.
 7. Remove the flattened gaging plastic.
 8. Perform the preceding steps on the remaining main bearings.
MEASURING CONNECTING ROD BEARING CLEARANCE

Connecting rod bearings are of the precision insert type and do not use shims for adjustment. DO NOT FILE RODS OR ROD CAPS. If clearances are found to be excessive, a new bearing (both upper and lower halves) will be required.

The simplest, most accurate way to measure connecting rod bearing clearance is with the use of gaging plastic. This wax-like material compresses evenly between the bearing and journal surfaces with damaging them. Proceed as follows.

Clean
- All oil from the crankshaft journal and the connecting rod bearing inserts.

Install or Connect (Figure 39)
- Refer to the proper section for additional information on connecting rod bearing sizing.
 1. Connecting rod with the upper connecting rod bearing insert to the crankshaft journal.
 2. A piece of gaging plastic the length of the bearing (parallel to the crankshaft) on the journal (figure 39). The plastic gage should be positioned in the middle of the upper and lower bearing insert. (Bearings are eccentric and false readings could occur if placed elsewhere.)

Important
- If a bearing is being fitted to an out-of-round crankpin, be sure to fit the maximum diameter of the crankpin. If the bearing is fitted to the minimum diameter and the crankpin is excessively out-of-round, interference between the bearing and the crankpin will result in rapid bearing failure.
 3. Connecting rod cap with the lower connecting rod bearing insert. DO NOT TURN THE CRANKSHAFT WITH THE GAGING PLASTIC INSTALLED.
 4. Connecting rod cap nuts.

Measure (Figure 40)
- Gaging plastic at its widest point, using the scale at the gaging plastic envelope (figure 40).
- If the clearance exceeds specifications, select a new, correct size, connecting rod bearing and remeasure the clearance.
- A standard or undersize bearing may produce the proper clearance. Refer to the proper section for bearing availability.
- Do not attempt to use shims or file the bearing to obtain the needed clearance.
- If clearance cannot be brought to within specifications, recondition or replace the crankshaft. (Do not recondition a rolled fillet crankshaft, such as used on 2.5 L, 2.8 L, and 6.2 L engines.)

Remove or Disconnect
- Gaging plastic.
SPECIAL TOOLS

<table>
<thead>
<tr>
<th>No.</th>
<th>Tool Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cylinder Bore Gage</td>
<td>J-8087</td>
</tr>
<tr>
<td>2</td>
<td>Ring Expander</td>
<td>J-25220</td>
</tr>
<tr>
<td>3</td>
<td>Piston Pin Replacer Set</td>
<td>J-24086</td>
</tr>
<tr>
<td>4</td>
<td>Piston Pin Clip Installer</td>
<td>J-29134-A</td>
</tr>
<tr>
<td>5</td>
<td>Camshaft Bearing Replacer</td>
<td>J-6098-01</td>
</tr>
<tr>
<td>6</td>
<td>Hydraulic Lifter Leakdown Tester</td>
<td>J-8101</td>
</tr>
<tr>
<td>7</td>
<td>Wire Brush</td>
<td>J-8010</td>
</tr>
<tr>
<td>8</td>
<td>Valve Guide Cleaning Tool</td>
<td>J-8056</td>
</tr>
<tr>
<td>9</td>
<td>Dial Indicator</td>
<td>J-29664</td>
</tr>
<tr>
<td>10</td>
<td>Valve Spring Tester</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Intake Opening Cover</td>
<td>J-6621</td>
</tr>
<tr>
<td>12</td>
<td>0.13 mm (0.005-inch) Oversize Valve Guide Reamer (2.5 L Engines)</td>
<td>J-5830-02</td>
</tr>
<tr>
<td>13</td>
<td>Valve Guide Reamer Set (All Engines Except 6.2 L and 7.4 L). Consists of:</td>
<td>J-7049</td>
</tr>
<tr>
<td></td>
<td>- J-5830-1: 0.08 mm (0.003-inch) oversize</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- J-5830-2: 0.38 mm (0.015-inch) oversize</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- J-5830-3: 0.76 mm (0.030-inch) oversize</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Valve Guide Reamer Set (6.2 L and 7.4 L Engines). Consists of:</td>
<td>J-7049</td>
</tr>
<tr>
<td></td>
<td>- J-7049-1: 0.08 mm (0.003-inch) oversize</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- J-7049-2: 0.38 mm (0.015-inch) oversize</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- J-7049-3: 0.76 mm (0.030-inch) oversize</td>
<td></td>
</tr>
</tbody>
</table>
SECTION 6A1

2.5 LITER L4 ENGINE

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>6A1-2</td>
</tr>
<tr>
<td>Engine Lubrication</td>
<td>6A1-4</td>
</tr>
<tr>
<td>Disassembly of the Engine</td>
<td>6A1-4</td>
</tr>
<tr>
<td>Tools and Shop Equipment</td>
<td>6A1-4</td>
</tr>
<tr>
<td>Accessory Removal</td>
<td>6A1-4</td>
</tr>
<tr>
<td>Cleaning</td>
<td>6A1-4</td>
</tr>
<tr>
<td>Parts Identification</td>
<td>6A1-4</td>
</tr>
<tr>
<td>Draining the Engine</td>
<td>6A1-4</td>
</tr>
<tr>
<td>Intake Manifold Removal</td>
<td>6A1-6</td>
</tr>
<tr>
<td>Exhaust Manifold Removal</td>
<td>6A1-6</td>
</tr>
<tr>
<td>Thermostat Housing Removal</td>
<td>6A1-6</td>
</tr>
<tr>
<td>Water Pump Removal</td>
<td>6A1-6</td>
</tr>
<tr>
<td>Valve Train Component Removal</td>
<td>6A1-9</td>
</tr>
<tr>
<td>Cylinder Head Removal</td>
<td>6A1-10</td>
</tr>
<tr>
<td>Crankshaft Pulley Hub Removal</td>
<td>6A1-10</td>
</tr>
<tr>
<td>Oil Pan Removal</td>
<td>6A1-11</td>
</tr>
<tr>
<td>Oil Pump Driveshaft Removal</td>
<td>6A1-11</td>
</tr>
<tr>
<td>Oil Pump Removal</td>
<td>6A1-11</td>
</tr>
<tr>
<td>Front Cover Removal</td>
<td>6A1-11</td>
</tr>
<tr>
<td>Piston and Connecting Rod Removal</td>
<td>6A1-12</td>
</tr>
<tr>
<td>Flywheel Removal</td>
<td>6A1-12</td>
</tr>
<tr>
<td>Crankshaft Removal</td>
<td>6A1-12</td>
</tr>
<tr>
<td>Crankshaft Rear Oil Seal Removal (Without Removing Crankshaft)</td>
<td>6A1-12</td>
</tr>
<tr>
<td>Main Bearing Removal (Without Removing the Crankshaft)</td>
<td>6A1-13</td>
</tr>
<tr>
<td>Camshaft Removal</td>
<td>6A1-13</td>
</tr>
<tr>
<td>Cleaning, Inspection, and Repair</td>
<td>6A1-14</td>
</tr>
<tr>
<td>Block</td>
<td>6A1-14</td>
</tr>
<tr>
<td>Cylinder Bores</td>
<td>6A1-14</td>
</tr>
<tr>
<td>Piston and Connecting Rod Assemblies</td>
<td>6A1-15</td>
</tr>
<tr>
<td>Piston Selection</td>
<td>6A1-15</td>
</tr>
<tr>
<td>Intake and Exhaust Manifold</td>
<td>6A1-15</td>
</tr>
<tr>
<td>Camshaft</td>
<td>6A1-16</td>
</tr>
<tr>
<td>Camshaft Bearings</td>
<td>6A1-17</td>
</tr>
<tr>
<td>Front Cover</td>
<td>6A1-17</td>
</tr>
<tr>
<td>Water Pump</td>
<td>6A1-18</td>
</tr>
<tr>
<td>Oil Pan and Rocker Arm Covers</td>
<td>6A1-18</td>
</tr>
<tr>
<td>Oil Pump</td>
<td>6A1-18</td>
</tr>
<tr>
<td>Valve Train Components</td>
<td>6A1-19</td>
</tr>
<tr>
<td>Cylinder Head</td>
<td>6A1-19</td>
</tr>
<tr>
<td>Thermostat and Housing</td>
<td>6A1-21</td>
</tr>
<tr>
<td>Crankshaft and Bearings</td>
<td>6A1-21</td>
</tr>
<tr>
<td>Assembly of Engine</td>
<td>6A1-22</td>
</tr>
<tr>
<td>Prior to Assembly</td>
<td>6A1-22</td>
</tr>
<tr>
<td>Crankshaft and Main Bearing Installation</td>
<td>6A1-22</td>
</tr>
<tr>
<td>Crankshaft Rear Oil Seal and Retainer Installation</td>
<td>6A1-23</td>
</tr>
<tr>
<td>Main Bearing Installation (Without Removing the Crankshaft)</td>
<td>6A1-24</td>
</tr>
<tr>
<td>Camshaft Installation</td>
<td>6A1-24</td>
</tr>
<tr>
<td>Front Cover Installation</td>
<td>6A1-24</td>
</tr>
<tr>
<td>Crankshaft Pulley Hub Installation</td>
<td>6A1-25</td>
</tr>
<tr>
<td>Piston and Connecting Rod Installation</td>
<td>6A1-25</td>
</tr>
<tr>
<td>Oil Pump Installation</td>
<td>6A1-26</td>
</tr>
</tbody>
</table>
6A1-2 2.5 LITER L4 ENGINE

CONTENTS (CONT.)

SUBJECT PAGE
Assembly of Engine Cont. .. .6A1-27
Oil Pan Installation6A1-27
Oil Pump Driveshaft Installation .. .6A1-28
Cylinder Head Installation .. .6A1-29
Valve Train Component Installation .. .6A1-30
Water Pump Installation6A1-30
Thermostat Housing Installation6A1-30
Intake Manifold Installation6A1-30
Exhaust Manifold Installation .. .6A1-30
Flywheel Installation .. .6A1-30
Engine Accessory Installation .. .6A1-30
Engine Set-Up and Testing .. .6A1-30
Specifications6A1-32
Special Tools6A1-35

DESCRIPTION

The GM 2.5 L engine is an inline four cylinder, overhead valve, with cast iron block and head.

The crankshaft is supported by five main bearings, with crankshaft thrust taken at the number five (rear) bearing. The camshaft is supported by three bearings and is gear driven.

The valve train consists of roller type hydraulic lifters, pushrods, and ball pivot type rocker arms. The valve guides are integral in the cylinder head.

The connecting rods have precision insert type crankpin bearings. The piston pins are a press fit in the connecting rods.

The pistons are cast aluminum alloy. The piston pins are a floating fit in the pistons.

For engine identification information, refer to GENERAL INFORMATION (SEC. 0A).

ENGINE LUBRICATION

The oil pump is gear driven from the camshaft (figure 1). Oil is drawn from the oil pan through a pickup screen and tube. A bypass valve in the pickup screen insures adequate oil flow if the screen becomes restricted. The gear type oil pump has a pressure regulator valve which controls lubrication system pressure by bypassing excess oil back to the oil pan sump.

Pressurized oil from the oil pump flows to the full flow filter. A bypass valve allows oil to bypass the filter if it becomes clogged or restricted. Oil then flows into an oil passage which runs along the right side of the block and intersects the lifter bosses. Oil from this passage is then routed to the crankshaft main bearings and camshaft bearings through smaller drilled passages. Oil is supplied to the connecting rod bearings by holes drilled in the crankshaft. Oil is supplied to the rocker arms through holes in the hydraulic lifters which feed oil up the pushrods to the rocker arms. The oil is metered by discs under the pushrod seat.

Many internal engine parts have no direct oil feed and are supplied by either gravity or splash from other direct feed components. Timing gears are lubricated by oil which is supplied through a passage from the front of the camshaft to a calibrated nozzle above the crankshaft gear.
A. Oil Pump Drive Gear Oiling
B. Oil Pressure Sending Unit
C. Splash Oiling
D. Full Flow Oil Filter
E. Filter Bypass System

Figure 1—Engine Lubrication Diagram
TOOLS AND SHOP EQUIPMENT

A clean, well lit work area should be available. Other necessary aids include: a suitable parts cleaning tank, compressed air supply, trays to keep parts and fasteners organized, and an adequate set of hand tools.

An approved engine repair stand will aid the work and help prevent personal injury or damage to engine compartments.

Special tool are illustrated throughout this section, and are listed at its end. These tools (or their equivalents) are specially designed to quickly and safely accomplish the operations for which they are intended. The use of these tools will also minimize possible damage to engine components.

Some precision measuring tools are required for inspection of certain critical components. Torque wrenches will be necessary for correct assembly of various parts.

ACCESSORY REMOVAL

This manual assumes that the engine accessories have been removed. These accessories may include one or more of the following:

- Hydraulic Pump
- Generator
- Cooling Fan
- TBI Unit
- Distributor

It is beyond the scope of this section to detail the many different accessory installations. Refer to the proper Truck Service Manual for this information.

Diagrams of emission and vacuum hose routings, wiring harness routings, accessory drive belt layout, etc., should be made before removing accessories.

CLEANING

Remove the engine accessories before cleaning to provide better access to engine exterior surfaces. After removing the TBI unit, distributor, fuel pump, oil filter, etc., cover the openings with tape to prevent the entry of water, solvent, and dirt.

Methods used to clean the engine will depend on the aids which are available. Steam cleaning, pressure washing, or solvent cleaning are some acceptable methods. Allow the engine to dry before beginning the work.

It is important that the engine be as clean as possible to prevent dirt from entering critical areas during disassembly.

PARTS IDENTIFICATION

Refer to figure 2 through 5.

DRAINING THE ENGINE

1. **Remove or Disconnect (Figure 5)**
 - Oil drain plug (73). Allow the oil to drain.
 - Oil filter.

2. **Install or Connect (Figure 5)**
 - Oil drain plug (73).

3. **Tighten**
 - Oil pan drain plug to 34 N·m (25 ft. lbs.).
Figure 3—Cylinder Head, Manifolds, and Components
<table>
<thead>
<tr>
<th>Component</th>
<th>Number</th>
<th>Component</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push Rod Cover</td>
<td>50</td>
<td>Oil Pump</td>
<td>77</td>
</tr>
<tr>
<td>Piston and Pin</td>
<td>51</td>
<td>Nut</td>
<td>78</td>
</tr>
<tr>
<td>Piston Rings</td>
<td>52</td>
<td>Pin</td>
<td>79</td>
</tr>
<tr>
<td>Connecting Rod</td>
<td>53</td>
<td>Spring</td>
<td>80</td>
</tr>
<tr>
<td>Connecting Rod Bolt</td>
<td>54</td>
<td>Bolt</td>
<td>81</td>
</tr>
<tr>
<td>Connecting Rod Bearings</td>
<td>55</td>
<td>Oil Pump Cover</td>
<td>82</td>
</tr>
<tr>
<td>Connecting Rod Nut</td>
<td>56</td>
<td>Oil Pump Cover Gasket</td>
<td>83</td>
</tr>
<tr>
<td>Oil Level Indicator</td>
<td>57</td>
<td>Bolt</td>
<td>84</td>
</tr>
<tr>
<td>Oil Level Indicator Tube</td>
<td>58</td>
<td>Oil Pressure Regulator Valve</td>
<td>85</td>
</tr>
<tr>
<td>Seal</td>
<td>59</td>
<td>Crankshaft Bearings</td>
<td>86</td>
</tr>
<tr>
<td>Guide Retainer Stud</td>
<td>60</td>
<td>Crankshaft Gear</td>
<td>87</td>
</tr>
<tr>
<td>Plug</td>
<td>61</td>
<td>Crankshaft</td>
<td>88</td>
</tr>
<tr>
<td>Plug</td>
<td>62</td>
<td>Key</td>
<td>89</td>
</tr>
<tr>
<td>Pin</td>
<td>63</td>
<td>Timing Indicator</td>
<td>90</td>
</tr>
<tr>
<td>Block Drain Bolt</td>
<td>64</td>
<td>Oil Pump Shaft Lower Bearing</td>
<td>91</td>
</tr>
<tr>
<td>Timing Indicator Stud</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolt</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flywheel</td>
<td>67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spacer</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clutch Pilot Bearing</td>
<td>69</td>
<td>Crankshaft Pulley</td>
<td>95</td>
</tr>
<tr>
<td>Crankshaft Insert</td>
<td>70</td>
<td>Crankshaft</td>
<td>96</td>
</tr>
<tr>
<td>Crankshaft Rear Oil Seal</td>
<td>71</td>
<td>Crankshaft and Power Steering Pulley</td>
<td>97</td>
</tr>
<tr>
<td>Crankshaft Rear Bearing</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil Pan Drain Screw</td>
<td>73</td>
<td>Bolt</td>
<td>98</td>
</tr>
<tr>
<td>Gasket</td>
<td>74</td>
<td>Washer</td>
<td>99</td>
</tr>
<tr>
<td>Bolt</td>
<td>75</td>
<td>Crankshaft Pulley Hub</td>
<td>100</td>
</tr>
<tr>
<td>Oil Pan</td>
<td>76</td>
<td>Front Cover Seal</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4—Block and Components

INTAKE MANIFOLD REMOVAL

Remove or Disconnect (Figure 6)

1. Vacuum lines and electrical connectors, as needed.
2. Intake manifold bolts and washers.
3. Intake manifold.
4. Gasket.

EXHAUST MANIFOLD REMOVAL

Remove or Disconnect (Figure 7)

1. Thermac heat stove pipe at the exhaust manifold.
2. Oxygen sensor wire. Remove the oxygen sensor only if the exhaust manifold is to be replaced.
3. Exhaust manifold bolts and washers.
4. Exhaust manifold and gasket.

THERMOSTAT HOUSING REMOVAL

Remove or Disconnect (Figure 5)

1. Thermostat bypass hose.
2. Thermostat housing bolts.
3. Thermostat housing and gasket.

WATER PUMP REMOVAL

Remove or Disconnect (Figure 8)

1. Fan and fan clutch.
2. Water pump pulley.
4. Water pump.
5. Gasket.
Figure 5—Block and Components
37. Washer
38. Bolt
42. Stud
43. Intake Manifold
44. Gasket

Figure 6—Intake Manifold Components

2. Bolt
3. Stud
5. Exhaust Manifold
7. Gasket

Figure 7—Exhaust Manifold Components
VALVE TRAIN COMPONENT REMOVAL

Tools Required:
- J-34144-A Rocker Arm Cover Remover
- J-3049 Valve Lifter Remover (Plier Type)

Remove or Disconnect (Figures 2, 3, 9, 10, 11, and 12)

1. Rocker arm cover bolts.

2. Rocker arm cover. Use J-34144-A (figure 9).
3. Bolts (31), balls (32), rocker arms (33), pushrods (47) and pushrod guides (45).
 - Every effort should be made to insure that these mating parts are installed in their original locations during assembly. A simple valve train component organizer rack can be made from a piece of wood, as shown in figure 10.
4. Pushrod cover nuts, studs, and the cover (50).
 - Unscrew the four nuts from the cover attaching studs, reverse two of the nuts so the washers face outward and screw them back onto the inner two studs. Assemble the two remaining nuts to the same two inner studs with washers facing inward. Using a small wrench on the inner nut, on each stud, jam the two nuts tightly together. Again, using the small wrench on the inner nut, unscrew the studs until the cover breaks loose.
 - After breaking the cover loose, remove the jammed nuts from each stud. Remove the cover from the studs.
5. Retainers (123).
 - Remove the valve lifters one at a time and place them in the organizer rack. The valve lifters must be installed in the same bore from which they were removed.
 - A stuck valve lifter can be removed using J-3049.
CYLINDER HEAD REMOVAL

 <+> Remove or Disconnect (Figure 13)

1. Bolts (25 and 27).

2. Cylinder head (24). Use care when handling the cylinder head to prevent damage to the gasket surfaces.

3. Gasket (17).

CRANKSHAFT PULLEY HUB REMOVAL

 <+> Remove or Disconnect (Figure 5 and 14)

1. Bolt (98) and washer (99).

2. Pulleys (96 and 97) and hub (100).
89. Key
94. Bolt
95. Crankshaft Pulley
96. Bolt
97. Crankshaft and Power Steering Pulley
98. Bolt
99. Washer
100. Crankshaft Pulley Hub

Figure 14—Timing Gear Cover and Components

OIL PAN REMOVAL

 Remove or Disconnect (Figure 5)

1. Bolts (75).
2. Oil pan (76).

- If the rocker arm cover adheres to the block, try to shear the sealant from the block by bumping the end of the oil pan with a rubber mallet. If the cover will not come loose, carefully pry until loose. **DO NOT DISTORT THE SEALING FLANGE.**

OIL PUMP DRIVESHAFT REMOVAL

 Remove or Disconnect (Figures 5 and 15)

1. Bolts (117).
2. Plate (118).
3. Bearing (113).

4. Shaft and gear assembly (115 and 114).

OIL PUMP REMOVAL

 Remove or Disconnect (Figure 5)

1. Bolts (84) and nut (78).
2. Oil pump (77).

FRONT COVER REMOVAL

 Remove or Disconnect (Figures 5 and 14)

1. Timing gear cover bolts (94).
2. Timing gear cover (102).

- If the timing gear cover adheres to the cylinder head, carefully pry it loose. **DO NOT DISTORT THE SEALING FLANGE.**

PISTON AND CONNECTING ROD REMOVAL

 Remove or Disconnect (Figures 5, 16 and 17)

1. Ridge (or deposits) at the top of the cylinder as follows:
 - Turn the crankshaft until one piston is at the bottom of its stroke. Place a soft cloth on top of the piston.
 - Using the manufacturer's directions, install a ridge reamer into the top of the cylinder. Perform the cutting operation.
 - After the ridge and/or deposits are removed, remove the ridge reamer. Turn the crankshaft until the piston is at the top of its stroke. Remove the cloth and the cuttings.
 - Repeat this procedure for each piston.
2. Connecting rod caps (116) as follows: Take note of the arrangement of the connecting rod (53) markings, to insure proper reassembly. Use a silver pencil to mark the parts if necessary.
Figure 16—Removing the Cylinder Ridge

- To avoid mismatching the connecting rods and connecting rod caps, remove only one connecting rod cap at a time. Place the piston at the bottom of its stroke.
- Remove the nuts (56).
- Remove the connecting rod cap.
- Install two sections of 10 mm (3/8-inch) rubber hose over the connecting rod studs. This will prevent the connecting rod studs from scratching the bore or crankshaft journal during the removal process.

Figure 17—Connecting Rod Thread Protectors

3. Connecting rod (53) and piston (51) from the block.
 - Push the connecting rod and piston from the block being careful not to let the connecting rod contact the cylinder bore.
 - Loosely assemble the connecting rod cap (116) onto the connecting rod.
 - Take note of, or mark the connecting rod and piston assembly and the cylinder bore to assure that each assembly is returned to its original bore.
 - Repeat this procedure on the remaining connecting rod assemblies.

FLYWHEEL REMOVAL

Remove or Disconnect (Figure 5)
1. Flywheel bolts (66).
2. Flywheel (67).
3. Spacer (68).

CRANKSHAFT REMOVAL

The main bearings and rear oil seal can be replaced without removing the crankshaft, as outlined later in this section.

Remove or Disconnect (Figures 5, 18 and 19)
- Check the main bearing caps (124 and 126) location markings. The main bearing caps are numbered 1 through 5 from the front to the rear of the engine. The caps must be returned to their original locations during engine assembly.
1. Crankshaft timing gear (87).
2. Bolts (125).
3. Main bearing caps (124 and 126).
4. Crankshaft (88). Lift the crankshaft straight up, taking care to avoid damage to the crankshaft journals and thrust flange surfaces.
5. Seal (71).
6. Main bearing inserts (figure 19).
 - If the main bearing inserts are to be reused, mark them to insure they are installed in their original positions before removal.

CRANKSHAFT REAR OIL SEAL REMOVAL (WITHOUT REMOVING CRANKSHAFT)

Remove or Disconnect (Figure 5)

NOTICE: Care must be taken not to damage the crankshaft outside diameter surface with the pry tool.
1. Rear crankshaft oil seal.
 - Pry the seal out with a screwdriver. Take care not to scratch the crankshaft.
MAIN BEARING REMOVAL
(WITHOUT REMOVING THE CRANKSHAFT)

Remove or Disconnect
Tool Required:
J-8080 Main Bearing Remover/Installer
1. Main bearing caps (124 and 126).
 • Check the main bearing caps for location markings. Mark the caps if necessary. The caps must be returned to their original locations during assembly.
2. Lower main bearing inserts (86) from the main bearing caps.
3. Upper main bearing inserts (86).
 • Insert J-8080 into the crankshaft oil hole.
 • Rotate the crankshaft to “turn” the bearing out of the block.

CAMSHAFT REMOVAL

Remove or Disconnect (Figures 5, 20 and 21)
• Turn the camshaft (108) until the bolts (103) are visible through the holes in the camshaft gear (104).
1. Bolts (103).
2. Camshaft (108). Pull the camshaft out of the block.
 Support the camshaft carefully when removing to prevent damage to the camshaft bearings.
CLEANING, INSPECTION, AND REPAIR

A solvent tank, large enough to hold the larger engine parts, will be needed along with various bristle brushes and a gasket scraper. A source of compressed air will be helpful in the cleaning operations.

Precision measuring tools will be required for the inspection procedure. These include: micrometers, cylinder bore gage, feeler gages, dial indicator set, etc. The inspection work, performed with the proper method and tools, is most important. The rebuilt engine cannot be expected to perform properly if parts worn beyond acceptable limits are reused.

BLOCK

Clean (Figure 5)
1. Block (119) in solvent.
2. Block gasket surfaces.
3. Cylinder bores.
4. Oil galleries and passages.
5. Scale deposits from the coolant passages.

Inspect
1. All expansion plugs for looseness or leakage.
2. Valve lifter bores for deep scratches and varnish deposits.
3. Block for cracks, especially in the following areas:
 - Cylinder walls.
 - Coolant jackets.
 - Main bearing webs.
 - Engine mount bosses.

4. Main bearing bores and main bearing caps (124 and 126).
 - All main bearing bores should be round and have a uniform inside diameter at all of the bearing supports.
 - The area where the main bearing inserts (86 and 72) contact the main bearing bore should be smooth.

Measure (Figure 22)
- Head gasket surface distortion. Use a straight edge and a feeler gage to check for flatness of the milled surface at the top of the cylinder block. The surface must be flat within 0.10 mm (0.004-inch) to assure that the gasket will provide a tight seal between the cylinder head and the block.

CYLINDER BORES

For information regarding cylinder bore measuring and reconditioning, refer to GENERAL ENGINE MECHANICAL (SEC. 6A).
PISTON AND CONNECTING ROD ASSEMBLIES

For information regarding disassembly, cleaning and inspection and assembly of piston and connecting rod assemblies, refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

For piston selection information, refer to “Piston Selection” in this section.

PISTON SELECTION

In order to select the proper piston for each bore, it is necessary to measure the outside diameter of the piston and the inside diameter of the bore. Once the diameters have been measured, the difference between the bore diameter and the piston diameter will be the piston to bore clearance.

1. Check the used piston to cylinder bore clearance.

- **Measure (Figures 23 and 24)**
 - Cylinder bore diameter using a telescoping bore gage. Measure the bore parallel to the crankshaft at the gaging point which is 57.15 mm (2.25-inch) from the top of the cylinder bore. By measuring at this point, the smallest bore diameter will be obtained.
 - Piston diameter with a micrometer. Measure the piston skirt at a right angle to the piston pin, at the centerline of the piston pin, which is 46.037 mm (1 13/16-inch) from the piston crown. By measuring at this point, the largest piston diameter will be obtained.
 - Subtract the piston diameter from the cylinder bore diameter to determine the piston to bore clearance.
 - Refer to “Specifications” at the end of this section to determine if the piston clearance is in the acceptable range.

2. If the used piston is not acceptable, determine if a new piston can fit the cylinder bore.

INTAKE AND EXHAUST MANIFOLDS

- **Clean**
 - Old pieces of gasket from the gasket surfaces.
- **Inspect**
 - Manifolds for cracks, broken flanges, etc.
 - Gasket surfaces for heavy scratches.
Inspect (Figure 5)
- Camshaft lobes and journals for scratches, pitting, scoring, and wear.
- Timing gear for damaged or missing teeth.

Measure (Figures 25 through 27)

Tool Required:
- J-7872 Dial Indicator (or equivalent)
- Camshaft runout. Mount the camshaft between centers or in V-blocks. Using tool J-7872 (or equivalent), check the intermediate camshaft journals. If runout exceeds 0.020-inch, the camshaft is excessively bent and should be replaced, along with the camshaft bearings.
- Camshaft journal out of round. Use a micrometer. If the journals are more than 0.001-inch out of round, replace the camshaft.
- Camshaft journal diameter. Use a micrometer. The proper diameter is 1.869-inch.
- Thrust plate (105) to camshaft (108) clearance. This clearance governs camshaft end play. Use a feeler gage. The proper clearance is 0.0015-inch to 0.0050-inch. If the clearance is less than 0.0015-inch...
Assemble (Figure 29)
- Support the camshaft on the back of the front journal in an arbor press using press plate adapters.
- Lubricate the thrust plate with engine oil.
 1. Woodruff key (107).
 2. Spacer (106).
 3. Thrust plate (105).
 - Make sure that the timing mark is to the outside.
 - Press the camshaft gear onto the camshaft until it bottoms on the spacer (106).
 - Remove the camshaft from the press.

Measure (Figure 27)
- Camshaft to thrust plate clearance using a feeler gage. The correct clearance is 0.0015-inch to 0.0050-inch.

CAMSHAFT BEARINGS

Remove or Disconnect (Figure 30)
- Drive the bearing in from the rear of the engine.
- Make sure that the oil holes in the bearing are aligned with the oil holes in the block.
- Drive the expansion plug into the block from the rear of the engine.

Install or Connect (Figure 30)
- Drive the bearing into the block, and approximately 3.18 mm (⅛-inch) past the front surface of the block. This uncovers the timing gear oil nozzle hole.

FRONT COVER

Clean
- Old RTV sealant from the sealing flange.

Inspect
- Front cover for cracks, large dents, etc.
- Sealing flange for straightness.

Disassemble (Figure 5)
- Seal (101). Pry the seal out with a screwdriver.

Assemble (Figure 31)
- Support the inside of the front cover around the seal bore area.
- Press the seal into place. The open end of the seal faces inside the front cover.
- Lubricate the seal lips with grease.
6A1-18 2.5 LITER L4 ENGINE

WATER PUMP

Clean
- Old gasket from the gasket surface.

Important
- Do not immerse the pump in solvent. The solvent may enter the pump's permanently lubricated bearings, dissolve the bearings' lubricant supply, and cause premature bearing failure.

Inspect
- Water pump shaft for roughness and end play. If the shaft does not turn smoothly, or if there is excessive end play, replace the water pump.
- Water pump body at the drain hole. If there is evidence of coolant leakage, the water pump shaft seal is leaking, and the water pump should be replaced.

OIL PAN AND ROCKER ARM COVER

Clean
- Parts in solvent. Remove all sludge and varnish.
- Old RTV sealant from the sealing flange.

Inspect
- Gasket flanges for bending or damage.
- Oil pan for rock damage or cracks.
- Drain plug threads for stripping.

OIL PUMP

Disassemble (Figure 32)
1. Cover screws (81).
2. Cover (82).
3. Gasket (83).
 - Mark the gear teeth so the pump gears can be installed with the same gear teeth indexed.
4. Drive gear and shaft (128).
5. Idler gear (127).

Figure 31—Installing the Front Crankshaft Seal

Figure 32—Oil Pump Components

7. Spring (80).
8. Pressure relief valve (85).
 - Do not remove the pick-up screen and pipe unless replacement is required.
 - The pick-up pipe is a press fit in the pump body.
 - Do not try to remove the screen from the pipe. The pick-up screen and pipe is serviced as an assembly only.

Clean
- All parts in clean solvent and blow dry with compressed air.

Inspect
- Pump body (77) and cover (82) for cracks or other damage.
- Gears (127 and 128) for wear.
- Drive gear and shaft (128) for looseness in the pump body (77).
- Inside of the cover (82) for wear that would permit oil to leak past the ends of the gears.
- The pump gears and body are not serviced separately.
- Pressure relief valve (85) for fit. The regulator valve should slide freely in its bore without sticking or binding.
Assemble (Figures 32 and 33)

Tool Required:
J-21882 Oil Suction Pipe Installer

1. Pressure relief valve (85).
2. Spring (80).
3. Spring retaining pin (79).
4. Drive gear and shaft (128).
5. Idler gear (127) in the pump body (77) with the smooth side of the gear toward the pump cover opening. Index the marks made during disassembly.
7. Cover (82) and screws (81).

Tighten
- Screws to 14 N-m (10 ft. lbs.).
- Turn the driveshaft by hand to check for smooth operation.

NOTICE: Be careful of twisting, shearing or collapsing the pipe while installing in the pump.

8. Pick-up screen and pipe (129) (if removed).
 - If the pick-up screen and pipe assembly was removed, it should be replaced with a new part. Loss of press fit condition could result in an air leak and loss of oil pressure.
 - Mount the oil pump in a soft-jawed vise.
 - Apply sealer to the end of the pipe.
 - Tap the pick-up screen and pipe into place, using tool J-21882 and a hammer.
 - The pump screen must be parallel with the bottom of the oil pan when installed.

VALVE TRAIN COMPONENTS

PUSHRODS, PUSHROD GUIDES, ROCKERS ARMS AND BALLS

Clean
- Parts in solvent. Blow dry with compressed air.
- Make sure the oil passages in the pushrods are clear.

Inspect (Figures 3 and 10)
- Rocker arms (33) and balls (32) at their mating surfaces. These surfaces should be smooth and free from scoring or other damage.
- Rocker arm (33) areas which contact the valve stems, and the sockets which contact the pushrods (47). These areas should be smooth and free of damage and wear.
- Pushrods (47) for bending. Roll the pushrod on a flat surface to determine if it is bent. Replace if necessary.
- Ends of the pushrods (47) for scoring or roughness.

VALVE LIFTERS
For information regarding valve lifters refer to GENERAL ENGINE MECHANICAL (SEC. 6A) of this manual.

CYLINDER HEAD
Information regarding cylinder head disassembly and assembly is covered under this procedure. For information regarding cleaning and inspection, and measuring of the cylinder head as well as valve measuring and grinding and valve guide reconditioning, refer to GENERAL ENGINE MECHANICAL (SEC. 6A) in this manual.
6A1-20 2.5 LITER L4 ENGINE

18. Intake Valve
19. Exhaust Valve
28. Valve Spring Cap
29. Valve Stem Oil Seal
30. Valve Keepers
34. Valve Stem Oil Shield
35. Valve Spring (with damper)
36. Valve Stem Seal

Figure 34—Valves and Components

Disassemble (Figures 34 and 35)

Tool Required:
J-8062 Valve Spring Compressor

1. Valve keepers (30).
 • Compress the valve spring using J-8062.
 • Remove the valve keepers.
 • Remove the tool.
2. Cap (28).
3. Valve spring (35) and shield (34).
4. Valve stem oil seals (29).
5. Valves (18 and 19). Place them in a rack so they can be returned to their original position at assembly.
6. Valve stem seal (36).

Assemble (Figures 34, 35 and 36)

Tools Required:
J-8062 Valve Spring Compressor
J-22330 Valve Stem Seal Checker and Tester

1. New valve stem seals (36).
 • Lubricate the seal in order to aid in assembly.
2. Valves (18 and 19).
 • Lubricate the valve stems with engine oil.
 • Insert the valves into the proper ports.
3. Valve spring (35) and shield (34).
5. Valve keepers (30).

Figure 35—Compressing the Valve Springs

• Compress the valve springs using J-8062. Compress the spring enough so the lower valve stem groove can be clearly seen.
• Push a new valve stem oil seal (29) onto the valve stem. The seal is to be installed on the lower groove of the stem. Make sure the seal is flat and not twisted.
• Apply grease to the area of the upper valve stem groove. Assemble the two valve keepers, using the grease to hold the keepers in place.

Figure 36—Measuring Valve Spring Installed Height
Make sure that the keepers seat properly in the groove.

- Repeat the preceding steps on the remaining valves.
- Check each valve seal using J-22330. Wet the suction cup portion of the tool lightly with engine oil. Place the suction cup over the valve stem cover and push the tool down to create a vacuum. If the vacuum remains at the tool, the seal is properly installed. If a vacuum cannot be obtained, or if the seal will not hold a vacuum, it may have been damaged or improperly installed.

Measure

- Valve spring installed height.
 - Use a narrow, thin scale. A cutaway scale may be helpful.
 - Measure from the valve shim or spring seat to the top of the valve cap.
 - If this measurement exceeds the figure given in "Specifications," install valve spring seat shims of sufficient thickness (between the spring and cylinder head) to give the desired measurement. Never shim the spring to give an installed height under the specified figure.

THERMOSTAT AND HOUSING

The thermostat is located in a housing bolted to the front of the cylinder head.

A thermostat consists of a restriction valve controlled by a thermostatic element. The restriction valve cranks or just starts to open at a predetermined temperature and continues to open as the engine coolant temperature increases. To assure proper cooling and engine warm-up it is important that the correct thermostat be used. Refer to the proper Truck Service Manual for the correct thermostat application.

Disassemble (Figure 3)

1. Bolts (8 and 9).
2. Water outlet (10).
3. Thermostat (12).
4. Gasket (11).

Inspect (Figure 3)

- Water outlet (10) and housing (13) for cracks or damage.

Assemble (Figure 3)

1. Thermostat (12).
2. Gasket (11).
3. Water outlet (10).
4. Bolts (8 and 9).

Crankshaft and Bearings

Clean (Figure 5)

- Crankshaft (88) with solvent.
- Do not scratch the bearing journals.
- Blow all sludge from the oil passages with compressed air.
- Main bearing inserts. Wipe free of oil with a soft cloth.

Inspect (Figure 5)

- Crankshaft (88) for cracks. Use the magnaflux method, if available.
- Crankpins, main bearing journals and thrust surfaces for scoring, nicks, or damage caused by lack of lubrication.
- Main bearing inserts (86 and 72) for scoring or other damage.
 - In general, the lower inserts (except the #1 bearing) show a greater wear and the most distress from fatigue. If, upon inspection, the lower insert is suitable for use, it can be assumed that the upper insert is also satisfactory. If the lower insert shows evidence of wear or damage, both upper and lower inserts must be replaced.
- Crankshaft gear (87) for chipped or damaged teeth.

Measure (Figures 37 and 38)

- Main bearing and connecting rod journal diameters. Compare with "Specifications" at the end of this section.
 - Because the 2.5 L engine crankshaft is of the rolled fillet type, the crankshaft cannot be reground. If the measurements do not meet the specifications, replace the crankshaft.
 - Main bearing and connecting rod journals for taper and out of round. If the journals are tapered or out of round more than 0.0005-inch, replace the crankshaft.
- Crankshaft runout.
- Mount the crankshaft in V-blocks or between centers.
- Use a dial indicator as shown.
- If the main bearing journals are misaligned, the crankshaft is bent and must be replaced along with the main bearings.

ASSEMBLY OF ENGINE

PRIOR TO ASSEMBLY

The importance of cleanliness during the assembly procedure cannot be overstressed. Dirt will cause premature wear of the rebuilt engine.

Lubricate all moving parts lightly with engine oil or engine assembly lubricant (unless specified otherwise) during assembly. This will provide initial lubrication when the engine is started.

CRANKSHAFT AND MAIN BEARING INSTALLATION

Service bearing inserts are available in standard size and 0.001-inch undersize.

1. Upper main bearing inserts (86 and 72) to the block.
 - If any previously used or undersized bearings are used, make absolutely certain that they are fitted to the proper journal.
2. Crankshaft (88). Take care not to damage the thrust areas.
3. Lower bearing inserts (86 and 72) to the bearing caps.

Measure

- Main bearing clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) in this manual.
4. Engine oil to the lower main bearing inserts.
5. Main bearing caps (except the rear cap) with the selected lower main bering inserts (86 and 72). Be sure to put the main bearing cap in their original positions, with the arrows facing the front of the engine.

5. Bolts (125). Make sure the special bolt, which retains the oil pump pick-up tube and screen is installed in the proper position. (#4 main bearing cap, camshaft side hole.)

Tighten

- Main bearing cap bolts to 95 N·m (70 ft. lbs.).

6. Rear main bearing cap to the block.

7. Rear main bearing cap bolts. Tighten the bolts temporarily to 14 N·m (10 ft. lbs.).

Measure (Figure 40)

- Crankshaft end play, as follows:
 - Tap the end of the crankshaft first rearward then forward with a lead hammer. This will line up the rear main bearing and crankshaft thrust surfaces.
 - Tighten the rear main bearing cap bolts to 95 N·m (70 ft. lbs.).
 - With the crankshaft forced forward, measure at the front end of the rear main bearing with a feeler gage. The proper clearance is 0.09 - 0.20 mm (0.0035 - 0.0085-inch).

Inspect

- Crankshaft for binding. Try turning the crankshaft to check for binding. If the crankshaft does not turn freely, loosen the main bearing cap bolts, one pair at a time, until the tight bearing is located. Burrs on the bearing cap, foreign matter between the insert and the block or the bearing cap, or a faulty insert could cause a lack of clearance at the bearing.
CRANKSHAFT REAR OIL SEAL INSTALLATION

++ Install or Connect (Figures 5 and 41)

Tool Required:
- J-34924-A Seal Installer
- Crankshaft rear oil seal using J-34924.

1. Lubricate the seal inside diameter with engine oil.

2. Slide the seal over the mandrel of the tool, until the dust lip (back of seal), mates squarely against the collar.

3. Lubricate the seal outside diameter with engine oil.

4. Position the tool with the seal in place against the crankshaft. Align the dowel with the alignment hole in the crankshaft. Tighten the screws firmly.

5. Turn the T-handle of the tool until the collar seats firmly against the crankcase. This will insure that the seal is seated properly.

6. Loosen the T-handle fully. Loosen the screws and remove the tool.
MAIN BEARING INSTALLATION
(WITHOUT REMOVING THE CRANKSHAFT)

Install or Connect (Figures 5 and 42)
Tool Required:
J-8080 Main Bearing Remover/Installer

1. Upper main bearing inserts.
 - Insert tool J-8080 into a crankshaft main bearing hole.
 - Apply engine oil to the proper sized inserts.
 - Insert the plain end of the insert (without the bearing tang) of the insert between the crankshaft and the notched side of the block.
 - Rotate the crankshaft to "roll" the insert into the block.
 - Remove the tool.

2. Lower main bearing inserts to the main bearing caps.
 - Make sure the inserts are of the proper size.
 - Apply engine oil to the inserts.

Measure
- Main bearing clearance and crankshaft end play. Refer to "Crankshaft and Main Bearing Installation" in this section.

CAMSHAFT INSTALLATION

Install or Connect (Figure 3, 43, and 44)
- Coat the camshaft lobes with Engine Oil Supplement (GM part number 1051396) or equivalent. Coat the bearing journals with engine oil.

1. Camshaft (108) into the block (119). Take care not to damage the camshaft bearings (109).

FRONT COVER INSTALLATION

Install or Connect (Figures 5, 45 and 46)
Tool Required:
J-34995 Crankshaft Front Cover Oil Seal Installer

1. Tool J-34995 into the front cover seal.
 - Apply a 10 mm (3/8-inch) wide by 5 mm (3/16-inch) thick bead of RTV sealer to the oil pan at the timing gear cover sealing surface.
 - Apply a 6 mm (1/4-inch) by 3 mm (1/8-inch) thick bead of RTV to the timing gear cover at the block sealing surface. Refer to figure 45.

NOTICE: The correct tool must be used to align the timing gear cover so that the front crankshaft seal is properly centered around the crankshaft. The seal must be centered to prevent damage during hub installation.
CRANKSHAFT PULLEY HUB INSTALLATION

1. Crankshaft pulley and hub. Slide the hub on the crankshaft until it bottoms against the crankshaft gear.
2. Bolt (98) and washer (99).

Tighten
- Hub retaining bolt to 220 N·m (160 ft. lbs.).

PISTON AND CONNECTING ROD INSTALLATION

1. Connecting rod bearing inserts (55).
 - Be certain that the inserts are the proper size.
 - Install the bearing inserts in the connecting rod and connecting rod cap.
 - Lubricate the bearings with engine oil.
2. Piston and connecting rod to the proper bore.
 - With the connecting rod cap removed. Install two sections of 10 mm (3/8-inch) rubber hose over the connecting rod studs.
 - Locate the piston ring end gaps as shown in figure 48. Lubricate the piston and rings with engine oil.
 - Without disturbing the ring end gap location, install J-8037 over the piston.
 - The piston must be installed so that the notch in the piston faces the front of the engine.
 - Place the piston in its matching bore. Using light blows with a hammer handle, tap the piston down into its bore. At the same time, guide the connecting rod into position on the crankpin. Hold the ring compressor against the block until all the rings have entered the cylinder bore.

CONNECTING ROD BEARING SELECTION

Service bearings are available in standard size and 0.001-inch undersize for use with new and used standard sized crankshafts. The 2.5 L engine is designed with a rolled fillet on the crankshaft journal to increase crankshaft strength. Do not grind a crankshaft with a rolled fillet. Undersize bearings other than 0.001-inch undersize are not available.

Measure
- Connecting rod bearing clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).
FINAL ASSEMBLY

Install or Connect (Figure 5)
- Apply engine oil to the connecting rod bearing inserts (55) and crankshaft journal.

1. Connecting rod cap (116) with the lower connecting rod bearing insert (55).

2. Nuts (56).

Tighten
- Nuts (56) to 44 N·m (32 ft. lbs.).

Measure (Figure 50)
- Connecting rod side clearance. Use a feeler gage between the connecting rod and the crankshaft. The correct clearance is 0.15–0.60 mm (0.006–0.022-inch).

OIL PUMP INSTALLATION

Install or Connect (Figure 5)
1. Oil pump.
 - Align the oil pump shaft with the tang on the oil pump driveshaft.
 - Position the oil pump over the oil pump driveshaft lower bushing. No gasket is used. The oil pump should slide easily into place.
2. Oil pump bolts (84) and nut (78).

- **Tighten**
 - Bolts (84) to 30 N·m (22 ft. lbs.).
 - Nut (78) to 50 N·m (38 ft. lbs.).

OIL PAN INSTALLATION

Install or Connect (Figures 5 and 51)

- Apply RTV sealant to the oil pan flange and block. Refer to figure 51.
 1. Oil pan (76).
 2. Bolts (75).

- **Tighten**
 - Oil pan bolts to 10.0 N·m (90 in. lbs.).

OIL PUMP DRIVESHAFT INSTALLATION

Install or Connect (Figures 5 and 52)

1. Shaft and gear assembly (115 and 114). Turn the shaft until it indexes the oil pump shaft pilot properly in the oil pump body.
2. Bearing (113).
3. Plate (118). Apply RTV to the plate as shown in figure 52.

- **Tighten**
 - Bolts to 14 N·m (120 in. lbs.).

CYLINDER HEAD INSTALLATION

Install or Connect (Figures 3 and 53)

- Make sure the block and cylinder head sealing surfaces are clean.
 1. Head gasket to the block. Install over the dowel pins.
 2. Cylinder head. Carefully guide the head into place over the dowel pins. This may require an assistant.
 3. Cylinder head bolts. Refer to figure 53.
3. All head bolts, except number 9, 120 degrees (two flats of the bolt head). Tighten bolt number 9, 90 degrees (1/4 turn). Tighten the bolts in the specified sequence.

VALVE TRAIN COMPONENT INSTALLATION

Install or Connect (Figures 3, 5, 54, 55 and 56)

- Lubricate the hydraulic lifters (121) with Engine Oil Supplement (GM part number 1051386) or equivalent.
 1. Hydraulic lifters (121) into their mating bores in the block.
 2. Hydraulic lifter guides (122).
 3. Retainers (123) and studs (60).
- Tighten
 - Studs (60) to 10.0 N·m (90 in. lbs.).
 - Apply a 5mm (3/16-inch) bead of RTV sealant to the pushrod cover as shown in figure 56.
 - Pushrod cover nuts.
 - Pushrods (47). Seat the pushrods into the sockets of the hydraulic lifters.
- Coat the mating surfaces of the rocker arms (33) and balls (32) with a molybdenum disulfide grease.
31. Bolt
32. Rocker Arm Ball
33. Rocker Arm
45. Push Rod Guide
47. Push Rod

Figure 54—Valve Train Components

7. Rocker arms (33).

Tighten

- Bolts to 32 N·m (24 ft. lbs.). DO NOT OVERTIGHTEN.

- Apply a 5 mm ($\frac{3}{16}$-inch) bead of RTV sealant to the rocker arm cover, inboard of the bolt holes.

10. Rocker arm cover to the cylinder head. Install the cover while the RTV is still wet (within 10 minutes).

11. Rocker arm cover bolts.

Tighten

- Bolts to 5.0 N·m (48 in. lbs.).

WATER PUMP INSTALLATION

$\text{Install or Connect (Figure 57 and 58)}$

1. Gasket.
2. Water pump.
4. Water pump pulley.
5. Fan and fan clutch.

Figure 55—Applying Sealant to the Rocker Arm Cover

Figure 56—Applying RTV to the Pushrod Cover

Figure 57—Water Pump Components
8. Stud
9. Bolt
10. Coolant Fitting
11. Gasket
12. Thermostat
13. Thermostat Housing
14. Bolt
15. Hose Clamp
16. Hose
21. Gasket

Figure 58—Thermostat Housing Components

THERMOSTAT HOUSING INSTALLATION

Install or Connect (Figure 58)
1. Thermostat housing and new gasket.
2. Thermostat housing bolts.
3. Thermostat bypass hose.

INTAKE MANIFOLD INSTALLATION

Install or Connect (Figure 59)
1. Gasket.
 - Apply sealant to the bolts indicated in figure 59.
2. Intake manifold.
3. Intake manifold bolts and washers.

Tighten
- Intake manifold bolts to 34 N·m (25 ft. lbs.).
4. Vacuum lines and electrical connectors, as needed.

EXHAUST MANIFOLD INSTALLATION

Install or Connect (Figure 60)
1. Exhaust manifold and a new gasket.
2. Exhaust manifold bolts and washers.

Tighten
- Exhaust manifold bolts. Use the tightening sequence and the specifications shown in figure 60.
3. Oxygen sensor wire.
4. Thermac heat stove pipe.

FLYWHEEL INSTALLATION

Install or Connect (Figure 5)
1. Spacer (68).
2. Flywheel (67).

Tighten
- Flywheel bolts (66).
 - Automatic transmissions: 75 N·m (55 ft. lbs.).
 - Manual transmissions: 90 N·m (65 ft. lbs.).

ENGINE ACCESSORY INSTALLATION

Install the engine accessories (distributor, TBI unit oil filter, generator, etc.) as directed in the proper Truck Service Manual. Connect all vacuum hoses and electrical equipment the same way as removed.

ENGINE SET-UP AND TESTING

1. After overhaul, the engine should be tested before installing it in the vehicle. If a suitable test stand is not available, the following procedure can be used after the engine is installed in the vehicle.
2. Fill the crankcase with the proper quantity and grade of oil. Refer to the proper Truck Service Manual or Owner's and Driver's Manual for this information. Fill the cooling system with the proper coolant.
3. With the ignition “OFF” or disconnected, crank the engine several times. Listen for any unusual noises or evidence that any parts are binding.
4. Start the engine and listen for unusual noises. Run the engine at about 1000 rpm until the engine is at operating temperature.
5. Listen for improperly adjusted valves or sticking lifters, or other unusual noises.
6. Check for oil and coolant leaks while the engine is running.
7. Using the proper Truck Service Manual or Emission Control Label for specifications, adjust the ignition timing and idle rpm.
Tightening Sequence
Tighten bolts in number sequence as shown. Or, “A” group bolts can be tightened first, then “B” group bolts.

Torque Specifications
“A” Group Bolts: 50 N·m (36 Ft. Lbs.)
“B” Group Bolts: 43 N·m (32 Ft. Lbs.)
SPECIFICATIONS

ENGINE SPECIFICATIONS

All Specifications are in INCHES unless otherwise noted.

<table>
<thead>
<tr>
<th>GENERAL DATA:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>L-4</td>
</tr>
<tr>
<td>Displacement</td>
<td>2.5L</td>
</tr>
<tr>
<td>RPO</td>
<td>LN8</td>
</tr>
<tr>
<td>Bore</td>
<td>4.00</td>
</tr>
<tr>
<td>Stroke</td>
<td>3.00</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>8.3:1</td>
</tr>
<tr>
<td>Firing Order</td>
<td>1-3-4-2</td>
</tr>
<tr>
<td>Oil Pressure</td>
<td>36–41 psi @ 2000 RPM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CYLINDER BORE:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>4.000</td>
</tr>
<tr>
<td>Out Of Round</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Taper—Thrust Side</td>
<td>0.005 (Maximum)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PISTON:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearance</td>
<td>0.0014–0.0022</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PISTON RING:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPRESS</td>
<td></td>
</tr>
<tr>
<td>Groove Clearance</td>
<td></td>
</tr>
<tr>
<td>Top</td>
<td>0.002–0.003</td>
</tr>
<tr>
<td>Second</td>
<td>0.001–0.003</td>
</tr>
<tr>
<td>OIL</td>
<td></td>
</tr>
<tr>
<td>Groove Clearance</td>
<td></td>
</tr>
<tr>
<td>Top</td>
<td>0.010–0.020</td>
</tr>
<tr>
<td>Second</td>
<td>0.010–0.020</td>
</tr>
<tr>
<td>Gap</td>
<td>0.015–0.0.55</td>
</tr>
<tr>
<td>PISTON PIN:</td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td>0.938–0.942</td>
</tr>
<tr>
<td>Clearance in Piston</td>
<td>0.0002–0.0004</td>
</tr>
<tr>
<td>Fit in Rod</td>
<td>Press</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OIL PUMP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear Lash</td>
<td>0.009–0.015</td>
</tr>
<tr>
<td>Gear Pocket Depth</td>
<td>0.995–0.998</td>
</tr>
<tr>
<td>Gear Pocket Diameter</td>
<td>1.503–1.506</td>
</tr>
<tr>
<td>Gear Length</td>
<td>0.999–1.002</td>
</tr>
<tr>
<td>Gear Diameter</td>
<td>1.496–1.500</td>
</tr>
<tr>
<td>Gear Side Clearance</td>
<td>0.004 (Maximum)</td>
</tr>
<tr>
<td>End Clearance</td>
<td>0.002–0.005</td>
</tr>
</tbody>
</table>
SPECIFICATIONS

ENGINE SPECIFICATIONS (CONT.)

All specifications are in INCHES unless otherwise noted.

CRANKSHAFT:

<table>
<thead>
<tr>
<th></th>
<th>Diameter</th>
<th>Taper</th>
<th>Out of Round</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Journal</td>
<td>2.300</td>
<td>0.0005</td>
<td>0.0005</td>
</tr>
<tr>
<td>Main Bearing Clearance</td>
<td>0.0005–0.0022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crankshaft End Play</td>
<td>0.0035–0.0085</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crankpin Diameter</td>
<td>2.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crankpin Taper</td>
<td>0.0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crankpin Out of Round</td>
<td>0.0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rod Bearing Clearance</td>
<td>0.0005–0.0026</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rod Side Clearance</td>
<td>0.006–0.002</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAMSHAFT:

<table>
<thead>
<tr>
<th></th>
<th>Diameter</th>
<th>Taper</th>
<th>Out of Round</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lobe Lift (intake and Exhaust)</td>
<td>0.398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End Play</td>
<td>0.015–0.0050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Journal Diameter</td>
<td>1.869</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Journal Clearance</td>
<td>0.0007–0.0027</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VALVE SYSTEM:

<table>
<thead>
<tr>
<th></th>
<th>Diameter</th>
<th>Taper</th>
<th>Out of Round</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifter Type</td>
<td>Hydraulic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifter Leak — Down Rate</td>
<td>12–90 Seconds with 50 lb. load</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifter Body Diameter</td>
<td>0.8420–0.8427</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifter Bore Diameter</td>
<td>0.8435–0.8445</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifter Clearance in Bore</td>
<td>0.0025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plunger Travel</td>
<td>0.125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pushrod Length</td>
<td>8.299</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve Lash</td>
<td>NOT ADJUSTABLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rocker Arm Ratio</td>
<td>1.75:1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Face Angle (intake & Exhaust)</td>
<td>45°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seat Angle (intake & Exhaust)</td>
<td>46°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seat Runout (intake & Exhaust)</td>
<td>0.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seat Width Intake</td>
<td>0.035–0.075</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seat Width Exhaust</td>
<td>0.058–0.097</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stem Clearance Intake</td>
<td>0.0010–0.0025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stem Clearance Exhaust</td>
<td>0.0013–0.0030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stem Diameter Intake</td>
<td>0.3133–0.3138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stem Diameter Exhaust</td>
<td>0.3128–0.3135</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valve Spring:

<table>
<thead>
<tr>
<th></th>
<th>Free Length</th>
<th>Pressure Closed</th>
<th>71–78 lbs. @ 1.440</th>
<th>Installed Height</th>
<th>1.440</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve Spring N @ mm</td>
<td>Open</td>
<td>158–170 lbs.</td>
<td>1.040</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F-04486
SPECIFICATIONS (CONT.)

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
<th>In. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Bearing Cap Bolts</td>
<td>95</td>
<td>70</td>
<td>—</td>
</tr>
<tr>
<td>Connecting Rod Nuts</td>
<td>44</td>
<td>32</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pan Bolts (All)</td>
<td>10.0</td>
<td>—</td>
<td>90</td>
</tr>
<tr>
<td>Oil Pump to Block Bolts</td>
<td>30</td>
<td>22</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pickup Tube Nut</td>
<td>50</td>
<td>38</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pump Cover Bolts</td>
<td>14.0</td>
<td>—</td>
<td>120</td>
</tr>
<tr>
<td>Pushrod Cover Nuts</td>
<td>10.0</td>
<td>—</td>
<td>90</td>
</tr>
<tr>
<td>Crankshaft Pulley to Hub Bolts</td>
<td>34</td>
<td>25</td>
<td>—</td>
</tr>
<tr>
<td>Crankshaft Pulley Hub to Crankshaft Bolt</td>
<td>220</td>
<td>160</td>
<td>—</td>
</tr>
<tr>
<td>Flywheel Bolts (Automatic)</td>
<td>75</td>
<td>55</td>
<td>—</td>
</tr>
<tr>
<td>Flywheel Bolts (Manual)</td>
<td>90</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Intake Manifold Bolts</td>
<td>34</td>
<td>25</td>
<td>—</td>
</tr>
<tr>
<td>Exhaust Manifold Bolts (Front and Rear Exhaust Tubes)</td>
<td>43</td>
<td>32</td>
<td>—</td>
</tr>
<tr>
<td>(Center Exhaust Tube)</td>
<td>50</td>
<td>36</td>
<td>—</td>
</tr>
<tr>
<td>Distributor Clamp Bolt</td>
<td>17</td>
<td>13</td>
<td>—</td>
</tr>
<tr>
<td>Water Outlet Housing Bolts</td>
<td>27</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Thermostat Housing Bolts</td>
<td>27</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Water Pump</td>
<td>34</td>
<td>25</td>
<td>—</td>
</tr>
<tr>
<td>Timing Gear Cover Bolts</td>
<td>10.0</td>
<td>—</td>
<td>90</td>
</tr>
<tr>
<td>Rocker Arm Bolts</td>
<td>32</td>
<td>24</td>
<td>—</td>
</tr>
<tr>
<td>Cylinder Head Bolts – See Text</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Camshaft Thrust Plate Bolts</td>
<td>10.0</td>
<td>—</td>
<td>90</td>
</tr>
<tr>
<td>Rocker Arm Cover Bolts</td>
<td>5.0</td>
<td>—</td>
<td>48</td>
</tr>
<tr>
<td>Hydraulic Lifter Retainer Stud</td>
<td>10.0</td>
<td>—</td>
<td>90</td>
</tr>
</tbody>
</table>
SPECIAL TOOLS

1. Piston Ring Compressor
2. Front Crankshaft Seal Installer
3. Main Bearing Replacer
4. Valve Spring Compressor
5. Cam Bearing Replacer
6. Oil Pump Pickup Tube Installer
7. Rocker Arm Cover Remover
8. Rear Crankshaft Oil Seal Installer
9. Valve Seal Checker
10. Hydraulic Lifter Remover
11. Dial Indicator
SECTION 6A2

2.8 LITER V-6

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>6A2-2</td>
</tr>
<tr>
<td>Engine Lubrication</td>
<td>6A2-2</td>
</tr>
<tr>
<td>Disassembly</td>
<td>6A2-6</td>
</tr>
<tr>
<td>Tools and Shop Equipment</td>
<td>6A2-6</td>
</tr>
<tr>
<td>Accessory Removal</td>
<td>6A2-6</td>
</tr>
<tr>
<td>Cleaning</td>
<td>6A2-7</td>
</tr>
<tr>
<td>Draining the Engine</td>
<td>6A2-7</td>
</tr>
<tr>
<td>Air Injection Tube Removal</td>
<td>6A2-7</td>
</tr>
<tr>
<td>EGR Valve Removal</td>
<td>6A2-7</td>
</tr>
<tr>
<td>Exhaust Manifold Removal</td>
<td>6A2-7</td>
</tr>
<tr>
<td>Rocker Arm Cover Removal</td>
<td>6A2-7</td>
</tr>
<tr>
<td>Intake Manifold Removal</td>
<td>6A2-7</td>
</tr>
<tr>
<td>Valve Train Component Removal</td>
<td>6A2-8</td>
</tr>
<tr>
<td>Cylinder Head Removal</td>
<td>6A2-8</td>
</tr>
<tr>
<td>Torsional Damper Removal</td>
<td>6A2-8</td>
</tr>
<tr>
<td>Front Cover and Water Pump Removal</td>
<td>6A2-9</td>
</tr>
<tr>
<td>Oil Pan Removal</td>
<td>6A2-9</td>
</tr>
<tr>
<td>Oil Pump Removal</td>
<td>6A2-9</td>
</tr>
<tr>
<td>Timing Chain and Camshaft Sprocket Removal</td>
<td>6A2-9</td>
</tr>
<tr>
<td>Camshaft Removal</td>
<td>6A2-10</td>
</tr>
<tr>
<td>Piston and Connecting Rod Removal</td>
<td>6A2-10</td>
</tr>
<tr>
<td>Flywheel Removal</td>
<td>6A2-11</td>
</tr>
<tr>
<td>Crankshaft Removal</td>
<td>6A2-11</td>
</tr>
<tr>
<td>Main Bearing Removal (Without Removing Crankshaft)</td>
<td>6A2-11</td>
</tr>
<tr>
<td>Cleaning, Inspection, and Repair</td>
<td>6A2-12</td>
</tr>
<tr>
<td>Block</td>
<td>6A2-12</td>
</tr>
<tr>
<td>Piston and Connecting Rod Assemblies</td>
<td>6A2-13</td>
</tr>
<tr>
<td>Intake and Exhaust Manifolds</td>
<td>6A2-13</td>
</tr>
<tr>
<td>Camshaft</td>
<td>6A2-14</td>
</tr>
<tr>
<td>Camshaft Bearings</td>
<td>6A2-14</td>
</tr>
<tr>
<td>Timing Chain and Sprockets</td>
<td>6A2-14</td>
</tr>
<tr>
<td>Front Cover</td>
<td>6A2-14</td>
</tr>
<tr>
<td>Water Pump</td>
<td>6A2-15</td>
</tr>
<tr>
<td>Oil Pan and Rocker Arm Covers</td>
<td>6A2-15</td>
</tr>
<tr>
<td>Oil Pump</td>
<td>6A2-15</td>
</tr>
<tr>
<td>Valve Train Components</td>
<td>6A2-16</td>
</tr>
<tr>
<td>Hydraulic Lifters</td>
<td>6A2-16</td>
</tr>
<tr>
<td>Cylinder Head</td>
<td>6A2-16</td>
</tr>
<tr>
<td>Thermostat and Water Outlet</td>
<td>6A2-18</td>
</tr>
<tr>
<td>Crankshaft and Bearings</td>
<td>6A2-18</td>
</tr>
<tr>
<td>Assembly of Engine</td>
<td>6A2-19</td>
</tr>
<tr>
<td>Prior to Assembly</td>
<td>6A2-19</td>
</tr>
<tr>
<td>Crankshaft and Main Bearing Installation</td>
<td>6A2-19</td>
</tr>
<tr>
<td>Rear Crankshaft Oil Seal Installation</td>
<td>6A2-20</td>
</tr>
<tr>
<td>Camshaft, Timing Chain and Sprocket Installation</td>
<td>6A2-20</td>
</tr>
<tr>
<td>Front Cover and Water Pump Installation</td>
<td>6A2-21</td>
</tr>
</tbody>
</table>
CONTENTS (CONTINUED)

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly of Engine (Continued)</td>
<td></td>
</tr>
<tr>
<td>Torsional Damper Installation</td>
<td>6A2-21</td>
</tr>
<tr>
<td>Piston and Connecting Rod Installation</td>
<td>6A2-22</td>
</tr>
<tr>
<td>Oil Pump Installation</td>
<td>6A2-23</td>
</tr>
<tr>
<td>Oil Pan Installation</td>
<td>6A2-23</td>
</tr>
<tr>
<td>Cylinder Head Installation</td>
<td>6A2-24</td>
</tr>
<tr>
<td>Valve Train Component Installation</td>
<td>6A2-24</td>
</tr>
<tr>
<td>Valve Adjustment</td>
<td>6A2-24</td>
</tr>
<tr>
<td>Intake Manifold Installation</td>
<td>6A2-25</td>
</tr>
<tr>
<td>Rocker Arm Cover Installation</td>
<td>6A2-26</td>
</tr>
<tr>
<td>Exhaust Manifold Installation</td>
<td>6A2-26</td>
</tr>
<tr>
<td>EGR Valve Installation</td>
<td>6A2-26</td>
</tr>
<tr>
<td>Air Injection Tube Installation</td>
<td>6A2-26</td>
</tr>
<tr>
<td>Flywheel Installation</td>
<td>6A2-26</td>
</tr>
<tr>
<td>Engine Accessory Installation</td>
<td>6A2-26</td>
</tr>
<tr>
<td>Engine Set-Up and Testing</td>
<td>6A2-26</td>
</tr>
<tr>
<td>Specifications</td>
<td>6A2-28</td>
</tr>
<tr>
<td>Special Tools</td>
<td>6A2-31</td>
</tr>
</tbody>
</table>

DESCRIPTION

GM 2.8L engines are 60-degree V6 type, overhead valve, water cooled, with cast iron block and heads.

The crankshaft is supported by four precision insert main bearings, with crankshaft thrust taken at the number three bearing.

The camshaft is supported by four plain type bearings and is chain driven. Motion from the camshaft is transmitted to the valves by hydraulic lifters, pushrods, and ball type rocker arms. The valve guides are integral in the cylinder head.

The connecting rods are forged steel, with precision insert type crankpin bearings. The piston pins are a press fit in the connecting rods.

The pistons are cast aluminum alloy. The piston pins are a floating fit in the piston.

For Engine Identification, refer to GENERAL INFORMATION (SEC. 0A) in this manual.

ENGINE LUBRICATION

Lubrication schematics are shown in figures 1 through 4. The gear type oil pump is driven from the distributor shaft, which is gear driven from the camshaft. Oil is drawn into the oil pump through a pickup screen and pipe.

Pressurized oil is routed to the oil filter. In case of excessive oil pressure, a bypass valve is provided. From the filter, oil is routed to the main oil gallery which supplies the left bank valve lifters with oil. From the left gallery, oil is directed to the camshaft bearings and the right oil gallery.

Oil flows from the hydraulic lifters through the hollow pushrods to the rocker arms. Oil from the overhead drains back to the crankcase through oil drain holes.

The timing chain is drip fed from the front camshaft bearing. The pistons and piston pins are lubricated by oil splash.
Figure 1—Engine Lubrication Diagram
A. Typical for front and rear oiling from left bank to right bank

Figure 2—Engine Lubrication Diagram
A. Lubrication Begins
B. 189° Duration Of Lubrication
C. End Of Lubrication
D. Lubrication Ends 154° BTDC
E. Cylinders 2, 4 And 6
F. 190° Duration Of Lubrication
G. Lubrication Ends 134° BTDC
H. For Cylinders 1, 3 And 5
J. Views Showing Intermittent Oiling Of Connecting Rod Bearing Through Groove On Upper Half Of Main Bearings

Figure 3—Engine Lubrication Diagram
A clean, well lit work area should be available. Other necessary equipment includes: A suitable parts cleaning tank, compressed air supply, trays to keep parts and fasteners organized, and an adequate set of hand tools.

An approved engine repair stand will aid the work and help prevent personal injury or damage to engine components.

Special tools are illustrated throughout this section, and are listed at its end. These tools (or their equivalents) are specially designed to quickly and safely accomplish the operations for which they are intended. The use of these tools will also minimize possible damage to engine components.

Some precision measuring tools are required for inspection of certain critical components. Torque wrenches will be necessary for correct assembly of various parts.

ACCESSORY REMOVAL

This manual assumes that the engine accessories have been removed. These accessories may include one or more of the following:

- Hydraulic Pump
- AIR Pump
- Generator
- Air Conditioning Compressor
- Cooling Fan
- Distributor
- TBI Unit

It is beyond the scope of this section to detail the many different accessory installations. Refer to the proper Truck Service Manual for this information.

Diagrams of emission and vacuum hose routings, wiring harness routing, accessory drive belt layout, etc., should be made before removing accessories.
CLEANING

Remove the engine accessories before cleaning, to provide better access to engine exterior surfaces. After removing the TBI unit, distributor, etc., cover the openings with tape to prevent the entry of water, solvent, and dirt.

Methods used to clean the engine will depend on the aids which are available. Steam cleaning, pressure washing, or solvent cleaning are some acceptable methods. Allow the engine to dry before beginning the work.

It is important that the engine be as clean as possible to prevent dirt from entering critical areas during disassembly.

DRAINING THE ENGINE

Remove or Disconnect
1. Oil pan plug and allow the oil pan to drain.
2. Oil filter.
3. Block drains and allow the coolant to drain.

Install or Connect
1. Oil pan drain plug and washer.
2. Block drain plugs.

Tighten
- Block drain plug to 12 N·m (9 ft. lbs.).

AIR INJECTION TUBE REMOVAL

Remove or Disconnect (Figure 5)
1. Nut (75).
2. Air injection tube from the manifold.

EGR VALVE REMOVAL

Remove or Disconnect (Figure 6)
1. Bolts (80).
2. EGR valve (81).
3. Gasket (82).

EXHAUST MANIFOLD REMOVAL

Remove or Disconnect (Figure 7)
1. Oil dipstick tube.
2. Bolts or studs.
3. Exhaust manifold.

ROCKER ARM COVER REMOVAL

Remove or Disconnect (Figure 8)
1. Rocker arm cover nuts (1) and reinforcements (2).
2. Rocker arm cover and gasket.
 - If the cover sticks to the head, bump the end of the cover. If the cover still does not come loose, carefully pry until loose. DO NOT DISTORT THE SEALING FLANGE.

INTAKE MANIFOLD REMOVAL

Remove or Disconnect
1. Intake manifold bolts.
2. Intake manifold.
 - Pull the intake manifold up.
 - Do not attempt to loosen the manifold by prying under the gasket surface with any tool.
VALVE TRAIN COMPONENT REMOVAL

Remove or Disconnect (Figure 9)

Tools Required:
- J-3049, Hydraulic Lifter Remover (Plier Type)
- J-9290-1, Hydraulic Lifter Remover (Slide Hammer Type)

1. Nuts (6), balls (8), rocker arms (7), and pushrods (9).
 - Every effort should be made to ensure that these mating parts are installed in their original locations during assembly. A simple valve train organizer can be made from a piece of wood.

2. Lifters (10).
 - Remove the lifters one at a time and place them in an organizer rack. The lifters must be installed into the same bore from which they were removed.
 - A stuck lifter can be removed using J-3049 (figure 10) or J-9290-01 (figure 11).

CYLINDER HEAD REMOVAL

Remove or Disconnect

1. Bolts.
2. Cylinder heads.
 - Use care when handling the cylinder heads to prevent damage to rocker arm studs or gasket sealing surface.

TORSIONAL DAMPER REMOVAL

NOTICE: The inertial weight section of the torsional damper is assembled to the hub with a rubber sleeve. The removal and installation procedures must be followed (with proper tools) or movement of the inertia weight section of the hub will destroy the tuning of the torsional damper and the engine timing reference.

The torsional damper has three timing notches on the inertia ring. The number one cylinder timing reference mark will be identified by a dab of white paint. If a new damper assembly is installed, mark the new assembly in
6. Nuts
7. Rocker Arms
8. Balls
9. Push Rods
10. Lifters

Figure 9—Valve Train Components

the same place for future reference. Number one cylinder reference is the first clockwise mark from the keyway when viewing the engine from the front.

Figure 9—Valve Train Components

FRONT COVER AND WATER PUMP REMOVAL

Remove or Disconnect

Tool Required:
J-23523-E or J-24420-B, Puller
1. Torsional damper retaining bolt.
2. Drive pulley from the damper.
3. Damper using J-23523-E or J-24420-B.

OIL PAN REMOVAL

Remove or Disconnect

1. Bolts and studs from the oil pan.
2. Oil pan.

OIL PUMP REMOVAL

Remove or Disconnect (Figure 12)

1. Bolt (40).
2. Pump (41).
3. Shaft (42).

TIMING CHAIN AND CAMSHAFT SPROCKET REMOVAL

Remove or Disconnect

1. Sprocket to camshaft bolts.
2. Camshaft sprocket and chain.

• If the sprocket does not come off easily, a light blow on the lower edge of the sprocket (with a plastic mallet only) should dislodge the sprocket.
CAMSHAFT REMOVAL

Remove or Disconnect (Figure 13)
- Camshaft by pulling lightly and turning.

Important
- All camshaft bearing journals are the same diameter and care must be exercised in removing the camshaft to avoid bearing damage.

PISTON AND CONNECTING ROD REMOVAL

Remove or Disconnect
1. Ridge or deposits from the upper end of the cylinder bores.
 - Turn the crankshaft until the piston is at BDC.
 - Place a cloth on top of the piston.
 - Perform the cutting operation with a ridge reamer (figure 14).
 - Turn the crankshaft until the piston is at TDC.
 - Remove the cloth and cuttings.
 - Use a silver pencil or quick drying paint to mark the cylinder number on all pistons, connecting rods, and caps. Starting at the front of the crankcase, the cylinders in the right bank are numbered 1-3-5 and the left bank is numbered 2-4-6.
2. Connecting rod cap and bearing.
3. Connecting rod and piston (figure 15).
 - Install guide hose over the threads of the rod studs to prevent damage to the bearing journal and rod studs.
FLYWHEEL REMOVAL

Remove or Disconnect
1. Bolts.
2. Retainer (automatic transmission only).
3. Flywheel.

CRANKSHAFT REMOVAL

Remove or Disconnect (Figure 16)
- Check the main bearing clearance before removing the crankshaft. Refer to "Crankshaft and Main Bearing Installation" later in this section.
- The main bearings and rear oil seal can be replaced without removing the crankshaft as outlined later in this section.
1. Bolts (85).
2. Main bearing caps (86).
3. Crankshaft from the cylinder block.
 - Lift the crankshaft straight up, taking care to avoid damage to the crankshaft journals and thrust flange surfaces.

MAIN BEARING REMOVAL (WITHOUT REMOVING CRANKSHAFT)

Remove or Disconnect
Tool Required:
J-8080, Main Bearing Remover/Installer
1. Main bearing caps.
 - Check the main bearing caps for location markings. Mark the caps if necessary. The caps must be returned to their original locations during assembly.
2. Lower main bearing inserts from the main bearing caps.
3. Upper main bearing inserts.
 - Insert J-8080 into the crankshaft oil hole (figure 17).
 - Rotate the crankshaft to turn the bearing insert out of the block.
CLEANING, INSPECTION, AND REPAIR

A solvent tank, large enough to hold the larger engine parts, will be needed along with various bristle brushes and a gasket scraper. A source of compressed air will be helpful in the cleaning operations.

Precision measuring tools will be required for the inspection procedure. These include: micrometers, cylinder bore gage, feeler gages, dial indicator set, etc. The inspection work, performed with the proper method and tools, is most important. The rebuilt engine cannot be expected to perform properly if parts worn beyond acceptable limits are reused.

— The area where the main bearing inserts contact the main bearing bore should be smooth.
— If a main bearing cap is damaged and requires replacement, replace it.

5. Deck surface for flatness. Use a straightedge and feeler gage. Minor irregularities may be carefully machined. If more than 0.25 mm (0.010-inch) must be removed, replace the block.

6. Oil pan rail and timing cover attaching area for nicks. Minor irregularities may be cleaned up with a flat file.

7. Transmission case mating surface.

Important
- If the transmission case mounting surface is not flat, a broken flexplate may result.

BLOCK

Clean
1. Block in solvent.
2. Block gasket surfaces.
3. Cylinder bores.
4. Oil galleries and passages.
 - Remove the oil gallery plugs.
5. Scale deposits from the coolant passages.

Inspect
1. All expansion plugs for lack of fit or leakage.
2. Valve lifter bores for deep scratches and varnish deposits.
3. Block for cracks.
 - Cylinder walls.
 - Coolant jackets.
 - Main bearing webs.
 - Engine mount bosses.
4. Main bearing bores and main bearing caps.
 - All main bearing bores should be rounded and uniform in ID at all bearing supports.

CYLINDER BORES

Inspect
- Cylinder bores for scoring or other damage.

Measure
- Cylinder bore taper and out-of-round. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

Cylinder Bore Reconditioning
Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).
PISTON AND CONNECTING ROD ASSEMBLIES

Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) and perform the following:

Disassemble
- Components as required.

Clean
- Components as outlined.

Inspect
- Components as outlined.

Measure
- Piston pin diameter and clearance.
- Piston to bore clearance, and fit the pistons.

1. Remove rings from the pistons to be fitted.
 - It is not necessary to remove the connecting rods from the pistons.
 - If an excessive amount of varnish or carbon appears as a ridge at the top of the cylinder, remove it by scraping or sanding.

2. Wipe the bores and pistons clean. Select a piston and rod assembly for the bore to be fitted and position it down into the bore with the top of the piston down. The piston should slide freely through the bore by its own weight when the piston skirt is 12 to 25 mm from the top of the block. Use care to make sure the piston is not damaged when it slides through the bore. If the piston does not slide through the bore, it is too tight and another piston should be selected. Mark the proper piston and bore for assembly.

3. After a piston has been selected which will slide freely through the bore, determine if it is too loose.
 - Place a feeler gage (0.060 mm for used pistons, 0.050 mm for new pistons) at least 150 mm long and not over 12 mm wide into the bore with the selected piston. Hold the feeler gage to the top of the bore.
 - Position the selected piston into the bore (top down) until the skirt is 12 to 25 mm from the top of the block. The feeler gage must be 90 degrees from the piston pin. If the piston hangs on the feeler gage and does not fall free, the piston is correctly fitted to the bore. If the piston slides freely through the bore, it is too small and a larger piston is required. Mark the proper piston and bore for assembly.

4. When checking more than one bore, it is possible that a piston that does not fit one bore will fit another.

Assemble
- Components as outlined.

INTAKE AND EXHAUST MANIFOLDS

Clean
- Old pieces of gasket from the gasket surfaces.
- Excessive carbon build-up in the exhaust passages of the intake manifold.
- Scale and deposits from the coolant passages of the intake manifold.
- EGR passage of excessive carbon deposits.

Inspect (Figure 18)
- Manifolds for cracks, broken flanges, and gasket surface damage.
- Alignment of manifold flanges. Use a straight edge and feeler gage. If the flanges are out of alignment by more than 0.1 mm (0.005-inch), the manifold is warped and should be replaced.
Important

- Whenever the camshaft needs to be replaced, a new set of lifters must also be installed.

Inspect

- Camshaft lobes and journals for scratches, pitting, scoring, and wear.

Measure

- Camshaft journal diameter (figure 19). The proper diameter is listed in "Specifications."

CAMSHAFT BEARINGS

Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) for replacement procedures.

TIMING CHAIN AND SPROCKETS

Inspect

- Sprockets for chipped teeth and wear.
- Timing chain for damage.
- It should be noted that excessively worn sprockets will rapidly wear a new chain. Likewise, an excessively worn chain will rapidly wear a new set of sprockets.
- Timing chain for wear.
 - If the chain can be pulled out more than 9.5 mm (3/8-inch), from the damper, replace the chain.

CRANKSHAFT SPROCKET REPLACEMENT

Remove or Disconnect (Figure 20)

Tool Required:
 J-5825-A Crankshaft Sprocket Puller
1. Crankshaft sprocket using J-5825-A.
2. Key (if necessary).

FRONT COVER

Clean

- Old gasket from the gasket surfaces.

Inspect

- Timing tab marker for damage.
- Front cover for damage, dents, or cracks.

Remove or Disconnect

- Oil seal from the front cover.
 - Pry the seal out with a large screw driver.
Install or Connect

Tool Required:
J-35468, Seal Installer

- New seal so that the open end of the seal is toward the inside of the cover.
 - Drive the seal into position with J-35468.
 - Support the cover at the seal area.
- Lubricate the seal with engine oil before installing the torsional damper.

WATER PUMP

Clean

- Old gasket from the gasket surface.

Important

- Do not immerse the pump in solvent. The solvent may enter the pump's permanently lubricated bearings, dissolve the bearings' lubricant supply, and cause premature bearing failure.

Inspect

- Water pump shaft for roughness and end play. If the shaft does not turn smoothly, or if there is excessive end play, replace the water pump.
- Water pump body at the drain hole. If there is evidence of coolant leakage, the water pump shaft seal is leaking and the water pump should be replaced.

OIL PAN AND ROCKER ARM COVERS

Clean

- Parts in solvent. Remove all sludge and varnish.
- Old gaskets from the gasket surfaces.

Inspect

- Gasket flanges for bending or damage.
- Rubber grommets and parts on the rocker arm cover for deterioration.
- Oil pan for rock damage or cracks.
- Oil pan baffle for lack of fit.
- Drain plug threads for stripping.

OIL PUMP

Remove or Disconnect (Figure 21)

1. Pump cover attaching bolts (186) and the pump cover (182).
2. Idler gear (188), drive gear (181) and shaft (103) from the pump body.
3. Pressure relief valve retaining pin (185).
4. Pressure relief valve spring (184).
5. Pressure relief valve (183).

Inspect (Figure 21)

- Pump body (180) and cover (182) for cracks or other damage.
- Gears (181 and 188) for wear.
- Drive gear and shaft (181) for lack of fit in the pump body (180).
- Inside of the cover (182) for wear that would permit oil to leak past the ends of the gears. The pump gears, cover, and body are not serviced separately. If the parts are damaged or worn, replace the entire oil pump assembly.
- Pick-up screen and pipe (187) for damage to the screen, pipe or relief grommet.
- Pressure relief valve (183) for fit. The regulator valve should slide freely in its bore without sticking or binding.

Install or Connect (Figure 21)

Tool Required:
J-21882, Pick-Up Tube and Screen Installer

1. Pressure regulator valve.
2. Spring.
3. Spring retaining pin.
4. Drive gear and shaft.
5. Idler gear.
- Index the marks made during disassembly.
6. Cover and screws.
6A2-16 2.8 LITER V-6

Tighten

- Screws to 9.0 N·m (80 in. lbs.).
- Turn the drive shaft by hand to check for smooth operation.

NOTICE: Be careful of twisting, shearing or collapsing the pipe while installing in the pump.

7. Pick-up screen and pipe (if removed) (figure 22).
 - If the pick-up screen and pipe assembly was removed, it should be replaced with a new part. Loss of press fit condition could result in an air leak and loss of oil pressure.
 - Mount the oil pump in a soft jawed vise.
 - Apply sealer to the end of the pipe.
 - Tap the pick-up screen and pipe into place, using J-21882 and a hammer.
 - The pump screen must be parallel with the bottom of the oil pan when installed.

8. Oil pump drive shaft (103) and connector (104).

VALVE TRAIN COMPONENTS

PUSHRODS, ROCKER ARMS, BALLS, AND NUTS

Clean

- Parts in solvent. Blow dry with compressed air.
- Make sure the oil passages in the pushrods are clear.

Inspect

- Rocker arms and balls at their mating surfaces. These surfaces should be smooth and free from scoring or other damage.
- Rocker arm areas which contact the valve stems and the sockets which contact the pushrods. These areas should be smooth and free of damage and wear.
- Rocker arm nuts.

- Pushrods for bending. Roll the pushrod on a flat surface to determine if it is bent. Replace if necessary.
- Pushrod ends for scoring or roughness.

HYDRAULIC LIFTERS

Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

CYLINDER HEAD

DISASSEMBLY

Remove or Disconnect (Figures 23 and 24)

Tool Required:
J-8062, Valve Spring Compressor

1. Valve keepers (22).
 - Compress the springs with J-8062 (figure 24).
 - Remove the keepers.
 - Remove J-8062.
2. Caps (23), oil shedder (24), and springs.
3. O-ring seals (26) and seals (25) (if used).
4. Valves (20 and 21).
 - Place the valves in a rack so they can be returned to their original position at assembly.

CLEANING AND INSPECTION OF COMPONENTS

Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) and perform the following.

Clean

- Components as outlined.

Inspect

- Components as outlined.

Measure

- Valve stem clearance.
- Valve spring tension and free length.
Other information outlined includes:
- Valve and seat grinding.
ROCKER ARM STUD AND PUSHROD GUIDE REPLACEMENT

The rocker arm studs are threaded in place.

Remove or Disconnect (Figure 25)
1. Rocker arm studs (90) using a deep socket.
2. Pushrod guide (91).

Install or Connect
1. Pushrod guide (91).
2. Rocker arm studs (90) using a deep socket.

Tighten
- Rocker arm studs to 65 N·m (48 ft. lbs.).

ASSEMBLY

Install or Connect (Figures 23 and 24)

Tool Required:
- J-8062, Valve Spring Compressor

1. Valves (20 and 21):
 - Lubricate the valve stems with engine oil.
 - Insert the valves into the proper seats.
2. Seals (25) (intake only):
 - Install the seals over the valve stems and seat them against the head.
4. Oil shedder (24).
5. Caps (23).
6. O-ring seals (26) and valve keepers (22).
A. Grind out this portion.

Figure 26—Scale for Checking Valve Spring Installed Height

- Compress the valve spring using J-8062 (figure 24). Compress the spring enough so the lower valve stem groove can be seen clearly.
- Push a new O-ring seal (26) onto the valve stem. The seal is to be installed on the stem's lower groove. Make sure the seal is flat and not twisted.
- Apply a small amount of grease to the area of the upper valve stem groove. Assemble the two valve keepers using the grease to hold the keys in place. Make sure the keepers seat properly in the groove.
- Release the compressor tool. Make sure the valve keepers stay in place.
- Repeat the preceding steps on the remaining valves.

Measure
- Valve spring installed height of each valve spring as follows.
 1. Use a narrow thin scale. A cutaway scale (figure 26) may be helpful.
 2. Measure from the top of the spring damper "feet" to the bottom of the oil shedder on the exhaust valve or to the bottom of the valve cap on the intake valve.
 3. If this measurement exceeds the figure given in "Specifications," install valve spring seat shims approximately 0.75 mm (0.03-inch) thickness (between the spring and cylinder head). NEVER shim the spring so as to give an installed height under the specified figure.

THERMOSTAT AND WATER OUTLET

Remove or Disconnect (Figure 27)
1. Bolts.
2. Water outlet.
4. Thermostat.

Inspect
- Water outlet for cracks.

Install or Connect (Figure 27)
1. Thermostat.
2. New gasket.
3. Water outlet.
4. Bolts.

Tighten
- Bolts for 21 N-m (15 ft. lbs.).

CRANKSHAFT AND BEARINGS

CLEANING AND INSPECTION

Clean
- Crankshaft with solvent.
 — Do not scratch the bearing journals.
 — Blow all sludge from the oil passages with compressed air.
- Main bearing inserts. Wipe free of oil with a soft cloth.

Inspect
- Crankshaft for cracks. Use the magnaflux method, if available.
- Crankpins, main bearing journals and thrust surfaces for scoring, nicks, or damage caused by lack of lubrication.
- Main bearing inserts for scoring or other damage. In general, the lower inserts (except the #1 bearing) show greater wear and the most distress from fatigue. If the lower insert shows evidence of wear or damage, both the upper and lower inserts must be replaced.

Measure
- Main bearing and connecting rod journal diameters (figure 28). Compare with "Specifications." Replace the crankshaft if necessary.
- Main bearing and connecting rod journals for taper and out-of-round (figure 28). If the journals are tapered or out-of-round more than 0.005 mm, grind or replace the crankshaft.
2.8 LITER V-6 6A2-19

ASSEMBLY OF ENGINE

PRIOR TO ASSEMBLY

The importance of cleanliness during the assembly procedure cannot be overstressed. Dirt will cause premature wear of the rebuilt engine.

Lubricate all moving parts lightly with engine oil or engine assembly lubricant (unless specified otherwise) during assembly. This will provide initial lubrication when the engine is started.

CRANKSHAFT AND MAIN BEARING INSTALLATION

Main bearings are of the precision insert type and do not use shims for adjustment. If clearances are excessive, a new bearing plus both upper and lower inserts will be required. Service main bearings are available in standard size, 0.016, and 0.032 mm undersize. Service rod bearings are available in standard size and 0.026 mm undersize.

Selective fitting of both rod and main bearing inserts is necessary in production to obtain close tolerances. For this reason you may find one half of a standard insert with one half of a 0.032 mm undersize insert which will decrease the clearance 0.016 mm from using a full standard bearing.

Install or Connect

1. Upper main bearing inserts to the block.

Important

- If any undersized bearings are used, make sure they are fitted to the proper journals.

2. Crankshaft.

3. Lower main bearing inserts to the main bearing caps.

Measure

- Main bearing clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

- Apply engine oil to the main bearing inserts.

4. New O-ring (if used) into the rear main bearing cap.

5. Thin coat of anaerobic sealant (GM Part No. 1052756 or equivalent) to the rear of the block mating surface or corresponding surface of the rear main bearing cap only (figure 29).

- Do not allow sealer on the crankshaft or the seal.

6. Main bearing caps with arrows pointing toward the front of the engine.

7. Main bearing cap bolts.
Tighten
• All main bearing caps EXCEPT NUMBER THREE CAP to 95 N·m (70 ft. lbs.).
• Number three main bearing cap to 15 N·m (11 ft. lbs.). Then tap the end of the crankshaft rearward and then forward with a lead hammer to line up the rear main bearing and crankshaft thrust surfaces.
• All main bearing caps to 95 N·m (70 ft. lbs.).

Measure (Figure 30)
• Crankshaft end play.
 1. Tap the end the crankshaft first rearward then forward with a lead hammer. This will line up the rear main bearing and crankshaft thrust surfaces.
 2. With the crankshaft forced forward, measure at the front end of the number three main bearing with a feeler gage (figure 30). The proper clearance is 0.054 to 0.084 mm.

Inspect
• Crankshaft for binding. Try turning the crankshaft to check for binding. If the crankshaft does not turn freely, loosen the main bearing cap bolts, one pair at a time, until the tight bearing is located. Burrs on the bearing cap, foreign matter between the insert and the block or the bearing cap, or a faulty insert could cause a lack of clearance at the bearing.

REAR CRANKSHAFT OIL SEAL INSTALLATION

Install or Connect
Tool Required:
J-34686, Seal Installer
1. Light coat of oil to the inside diameter of the new seal.

Figure 30—Measuring Crankshaft End Play

Figure 31—Installing the Crankshaft Oil Seal

CAMSHAFT, TIMING CHAIN AND SPROCKET INSTALLATION

Install or Connect (Figures 32 and 33)
• Coat the camshaft lobes and journals with a high quality engine oil supplement (GM Engine Oil Supplement or equivalent).
• When a new camshaft is installed, install new oil and filter. It is also recommended that all valve lifters be replaced to insure durability of the camshaft lobes and lifter feet.
1. Camshaft.
2.8 LITER V-6 6A2-21

Important
• All camshaft bearing journals are the same diameter and care must be exercised in installing the camshaft to avoid bearing damage.

2. Timing chain onto the sprocket.
• Lubricate the thrust surface with "Molykote" or equivalent.

3. Sprocket onto the camshaft.

4. Bolts.
• Draw the camshaft sprocket onto the camshaft using the mounting bolts.

Tighten
• Bolts to 23 N·m (17 ft. lbs.).

FRONT COVER AND WATER PUMP INSTALLATION

Install or Connect
• Lubricate the lips of the front crankshaft oil seal with engine oil.

1. New gasket.
• Make sure all sealing surfaces are clean.
• Take care not to damage sealing surfaces.
• Lightly coat both sides of the lower 5 mm of the gasket with anaerobic sealant (GM Part No. 1052080 or equivalent).

2. Front cover.
3. Water pump.
4. Bolts and stud.

Tighten
• Bolts and stud to specification.

TORSIONAL DAMPER INSTALLATION

NOTICE: The inertial weight section of the torsional damper is assembled to the hub with a rubber sleeve. The installation procedure must be followed (with proper tools) or movement of the inertia weight section of the hub will destroy the tuning of the torsional damper and the engine timing reference.

The torsional damper has three timing notches on the inertia ring. The number one cylinder timing reference mark will be identified by a dab of white paint. If a new damper assembly is installed, mark the new assembly in the same place for future reference. Number one cylinder reference is the first clockwise mark from the keyway when viewing the engine from the front.

Install or Connect

Tool Required:
J-29113, Torsional Damper Installer

1. Engine oil to the front cover seal contact area on the damper.
2. Sealant (GM Part No. 1052366 or equivalent) on the key and the keyway.
3. Damper over the key on the crankshaft.
4. Pull the damper onto the crankshaft.
6A2-22 2.8 LITER V-6

- **Oil Ring Rail Gaps**
- **2nd Compression Ring Gap**
- **Notch In Piston**
- **Oil Ring Spacer Gap**
 (Tang In Hole Or Slot With Arc)
- **Top Compression Ring Gap**

Figure 34—Piston Ring End Gap Location

- Install J-29113 into the crankshaft so at least 6 mm (1/4-inch) of thread is engaged.
- Pull damper into position and remove J-29113 from the damper.

5. **Torsional damper retaining bolt.**

 - Bolt to 95 N m (75 ft. lbs.).

6. Drive pulley to the damper.

PISTON AND CONNECTING ROD INSTALLATION

CONNECTING ROD BEARING SELECTION

Connecting rod bearings are of the precision insert type and do not use shims for adjustment. **DO NOT FILE RODS OR ROD CAPS.** If clearances are excessive install a new bearing. Service bearings are available in standard size and 0.013 mm and 0.026 mm undersize for use with new and used standard size crankshafts.

Install or Connect

- **Tool Required:** J-8037, Ring Compressor
- Lubricate the cylinder walls lightly with engine oil.
- Make sure the piston is installed in the proper cylinder with the notch forward.

1. **Connecting rod bearing inserts.**
 - Be certain that the inserts are of the proper size.
 - Install the inserts in the connecting rod and connecting rod cap.

2. **Piston and connecting rod to the proper bore.**
 - Install guide hose over the threads of the rod studs to prevent damage to the bearing journal and rod studs.
 - Locate the ring end gaps as shown in figure 34.
 - Lubricate the piston and rings with engine oil.
 - Without disturbing the ring end gap location, install J-8037 over the piston.

3. **Connecting rod cap with bearing insert.**

 - **Measure**
 - Connecting rod bearing clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

 - **Tighten**
 - Connecting rod cap nuts to 53 N m (39 ft. lbs.).
2.8 LITER V-6 6A2-23

Measure
- Connecting rod side clearance (figure 36). The proper clearance is 0.16 to 0.44 mm.

OIL PUMP INSTALLATION

Install or Connect (Figure 37)
1. Pump and shaft with retainer to the rear main bearing cap.
 - Align the top end of the hexagon extension shaft with the hexagon socket on the lower end of the distributor drive gear.
2. Bolt (40).
Tighten
- Bolt to 41 N·m (30 ft. lbs.).

OIL PAN INSTALLATION

Clean
- Sealing surfaces on the engine and oil pan.

Install or Connect (Figure 38)

NOTICE: Before installing the oil pan, check that the sealing surfaces on the pan, cylinder case, and front cover are clean and free of oil. Make sure that all RTV is removed from blind attaching holes.

1. Gasket.
 - Apply sealer (GM Part No. 1052914 or equivalent) to the area shown in figure 38.
2. Oil pan to the cylinder block.
3. Reinforcement (37), nuts, bolts, and studs.
Tighten
- Bolts (36) to 25 N·m (18 ft. lbs.).
- Bolts and studs (35) and nuts (38) to 10 N·m (7 ft. lbs.).
CYLINDER HEAD INSTALLATION

Clean
- Carbon deposits from combustion chambers.
- All traces of old head gasket from the cylinder head and block.
- Cylinder head bolt threads and threads in the block.

Inspect
- Sealing surfaces of the block and cylinder head for nicks, heavy scratches, or other damage.

Install or Connect
1. Gasket in place over the dowel pins with the note “This Side Up” showing.
2. Cylinder head.
 - Gasket must be fully seated on the block before head installation.
3. Sealer (GM Part No. 1052080 or equivalent) to the head bolt threads.
4. Head bolts.
 - Head bolts in the sequence shown in figure 39 to 95 N·m (70 ft. lbs.).

VALVE TRAIN COMPONENT INSTALLATION

Important
- Replace all hydraulic lifters if a new camshaft was installed.

Install or Connect (Figure 40)
- Lubricate the hydraulic lifter bodies and feet with Engine Oil Supplement (GM Part No. 1051396 or equivalent).
1. Hydraulic lifters (10) to the block.
2. Pushrods (9).
 - Seat the pushrods into the socket in the hydraulic lifters.
 - Coat the mating surfaces of the rocker arms (7) and balls (8) with “Molykote” or equivalent.
3. Rocker arms.

VALVE ADJUSTMENT

1. Crank the engine until the mark on the torsional damper lines up with the “O” mark on the timing tab and the engine in the number one firing position. This may be determined by placing fingers on the number one valve as the mark on the damper comes near the “O” mark on the timing tab. If the rocker arms are not moving, the engine is in the number one firing position. If the rocker arms move as the mark comes up to the timing tab, the engine is in the number four firing position and should be turned over one more time to reach the number one position.
2. With the engine in the number one firing position as determined above, the following valves may be adjusted:
 - Exhaust: 1, 2, 3
 - Intake: 1, 5, 6
 (Even numbered cylinders are in the left bank; odd numbered cylinders are in the right bank, when viewed from the rear of the engine).
3. Back out the adjusting nut until lash is felt at the pushrod then turn in the adjusting nut until all lash is removed. This can be determined by rotating the pushrod while turning the adjusting nut (figure 41). When the play has been removed, turn the adjusting nut in one and one-half additional turns (to center the lifter plunger).
4. Crank the engine one revolution until the timing tab "O" mark and vibration damper mark are again in alignment. This is the number four firing position. The following valves may be adjusted:
 - Exhaust: 4, 5, 6
 - Intake: 2, 3, 4

INTAKE MANIFOLD INSTALLATION

Install or Connect (Figure 42)

1. RTV to the front and rear sealing surfaces on the block. Apply a 5 mm (3/16-inch) bead of RTV (part number 1052917 or equivalent) to the front and rear of the block as shown.
 - Make sure that no oil or water is present on the surfaces to be sealed.

2. Gaskets to the cylinder head.
 - Gaskets are marked Right Side or Left Side. Use them only as indicated to maintain design efficiency of the engine.
 - Hold the gaskets in place by extending the bead of RTV 6 mm (1/4-inch) from the block sealing surfaces up onto the gasket ends.
 - The new gaskets will have to be cut where indicated to install behind the pushrods. Cut only the areas where necessary.

3. Intake manifold.
 - Make sure the areas between the case ridges and the intake manifold are completely sealed.

4. Intake manifold bolts and nuts.

Tighten

- Nuts and bolts to 31 N·m (23 ft. lbs.) in the sequence shown in figure 42.
ROCKER ARM COVER INSTALLATION

Clean
- All traces of old gasket from the rocker arm cover and cylinder head.

Inspect
- Rocker arm cover sealing surfaces for distortion. Replace if necessary.

Install or Connect (Figure 43)
1. Rocker arm cover and gasket.
 - Apply a 5 mm (\(\frac{3}{16}\) inch) dab of RTV sealant (GM Part No. 1052917 or equivalent) at the point where the inlet manifold meets the head.
2. Rocker arm cover nuts and reinforcements.
 - Bolts and studs.
 - Bolts to 34 N·m (25 ft. lbs.).

EGR VALVE INSTALLATION

Install or Connect (Figure 6)
1. Gasket (82).
2. EGR valve (81).
3. Bolts (80).

- Bolts to 25 N·m (18 ft. lbs.).

AIR INJECTION TUBE INSTALLATION

Install or Connect (Figure 5)
1. Air injection tube (76).
2. Nut (75).

- Air injection tube to 34 N·m (25 ft. lbs.).
- Nuts (75) to 25 N·m (18 ft. lbs.).

FLYWHEEL INSTALLATION

Install or Connect
1. Flywheel.
2. Retainer (automatic transmission only).

- Bolts to 70 N·m (52 ft. lbs.).

ENGINE ACCESSORY INSTALLATION

Install the engine accessories (distributor, TBI unit, oil filter, generator, etc.) as directed in the proper Truck Service Manual. Connect all vacuum hoses and electrical equipment the same way as removed.

ENGINE SET-UP AND TESTING

1. After overhaul, the engine should be tested before installation in the vehicle. If a suitable test stand is not available, the following procedure can be used after the engine is installed in the vehicle.
2. Fill the crankcase with the proper quantity and grade of oil.

Important
- If a new camshaft or hydraulic lifters were installed, add Engine Oil Supplement (GM Part No. 1051396) or equivalent to the engine oil.
3. Fill the cooling system with the proper coolant.
4. With the ignition "OFF," or disconnected, crank the engine several times. Listen for any unusual noises or evidence that any parts are binding.
5. Start the engine and listen for unusual noises.
6. Run the engine at about 1000 RPM until the engine is at operating temperature.
7. Listen for improperly adjusted valves or sticking lifters, and other unusual noises.
8. Check for oil and coolant leaks while the engine is running.
9. Using the proper Truck Service Manual or Emission Control Label for specifications, adjust the ignition timing and idle speed.
SPECIFICATIONS

ENGINE SPECIFICATIONS

All Specifications are in MILLIMETRES unless otherwise noted.

GENERAL DATA:

<table>
<thead>
<tr>
<th>Type</th>
<th>60° V-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement</td>
<td>2.8L</td>
</tr>
<tr>
<td>RPO</td>
<td>LL2</td>
</tr>
<tr>
<td>Bore</td>
<td>89.0</td>
</tr>
<tr>
<td>Stroke</td>
<td>76.0</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>8.5:1</td>
</tr>
<tr>
<td>Firing Order</td>
<td>1-2-3-4-5-6</td>
</tr>
</tbody>
</table>

Oil Pressure:

- 69 kPa @ 500 RPM; 345–379 kPa @ 2000 RPM
- (10 psi @ 500 RPM; 50–55 psi @ 2000 RPM)

CYLINDER BORE:

<table>
<thead>
<tr>
<th>Diameter</th>
<th>88.992–89.070</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out Of Round</td>
<td>0.02 (Maximum)</td>
</tr>
<tr>
<td>Taper—Thrust Side</td>
<td>0.02 (Maximum)</td>
</tr>
</tbody>
</table>

PISTON:

| Clearance | 0.017–0.043 |

PISTON RING:

**COMPRESSIO

<table>
<thead>
<tr>
<th>Groove Clearance</th>
<th>Top</th>
<th>0.030–0.070</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Second</td>
<td>0.040–0.095</td>
</tr>
</tbody>
</table>

**OIL G

<table>
<thead>
<tr>
<th>Groove Clearance</th>
<th>Top</th>
<th>0.25–0.50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Second</td>
<td>0.25–0.50</td>
</tr>
</tbody>
</table>

**PISTON PIN:

<table>
<thead>
<tr>
<th>Diameter</th>
<th>22.9937–23.0015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearance</td>
<td>0.0065–0.0091</td>
</tr>
<tr>
<td>Fit In Rod</td>
<td>0.0187–0.0515 (Press)</td>
</tr>
</tbody>
</table>
SPECIFICATIONS

ENGINE SPECIFICATIONS (CONT.)

All specifications are in MILLIMETRES unless otherwise noted.

CRANKSHAFT

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Journal</td>
<td>Diameter - 3 Dots</td>
<td>67.241-67.249</td>
</tr>
<tr>
<td></td>
<td>Diameter - 2 Dots</td>
<td>67.249-67.257</td>
</tr>
<tr>
<td></td>
<td>Diameter - 1 Dot</td>
<td>67.257-67.265</td>
</tr>
<tr>
<td></td>
<td>Taper</td>
<td>0.005 (Maximum)</td>
</tr>
<tr>
<td></td>
<td>Out of Round</td>
<td>0.005 (Maximum)</td>
</tr>
<tr>
<td>Main Bearing Clearance</td>
<td></td>
<td>0.041-0.081</td>
</tr>
<tr>
<td>Main Thrust Bearing Clearance</td>
<td></td>
<td>0.054-0.084</td>
</tr>
<tr>
<td>Crankshaft End Play</td>
<td></td>
<td>0.06-0.21</td>
</tr>
<tr>
<td>Crankpin</td>
<td>Diameter</td>
<td>50.784-50.758</td>
</tr>
<tr>
<td></td>
<td>Taper</td>
<td>0.005 (Maximum)</td>
</tr>
<tr>
<td></td>
<td>Out of Round</td>
<td>0.005 (Maximum)</td>
</tr>
<tr>
<td>Rod Bearing Clearance</td>
<td></td>
<td>0.035-0.095</td>
</tr>
<tr>
<td>Rod Side Clearance</td>
<td></td>
<td>0.16-0.44</td>
</tr>
</tbody>
</table>

CAMSHAFT:

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lift</td>
<td>Intake</td>
<td>5.87</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td>6.67</td>
</tr>
<tr>
<td>Journal Diameter</td>
<td></td>
<td>47.44-47.49</td>
</tr>
<tr>
<td>Journal Clearance</td>
<td></td>
<td>0.026-0.101</td>
</tr>
</tbody>
</table>

VALVE SYSTEM:

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifter</td>
<td></td>
<td>Hydraulic</td>
</tr>
<tr>
<td>Rocker Arm Ratio</td>
<td></td>
<td>1.50:1</td>
</tr>
<tr>
<td>Valve Lash</td>
<td>Intake</td>
<td>One And One Half Turns Down From Zero Lash</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td></td>
</tr>
<tr>
<td>Face Angle (Intake & Exhaust)</td>
<td></td>
<td>45°</td>
</tr>
<tr>
<td>Seat Angle (Intake & Exhaust)</td>
<td></td>
<td>46°</td>
</tr>
<tr>
<td>Seat Runout (Intake & Exhaust)</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Seat Width</td>
<td>Intake</td>
<td>1.25-1.50</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td>1.60-1.90</td>
</tr>
<tr>
<td>Stem Clearance</td>
<td></td>
<td>0.026-0.068</td>
</tr>
<tr>
<td>Valve Spring Pressure</td>
<td>Closed</td>
<td>391 @ 40</td>
</tr>
<tr>
<td></td>
<td>Open</td>
<td>667 @ 30</td>
</tr>
<tr>
<td>Installed height</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Valve Spring Damper Free Length</td>
<td></td>
<td>47.2</td>
</tr>
<tr>
<td></td>
<td>Approx. # of Coils</td>
<td>4</td>
</tr>
<tr>
<td>Item</td>
<td>N·m</td>
<td>Ft. Lbs.</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>Rocker Arm Cover Bolts</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Intake Manifold Bolts</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Exhaust Manifold Bolts</td>
<td>34</td>
<td>25</td>
</tr>
<tr>
<td>Cylinder Head Bolts</td>
<td>95</td>
<td>70</td>
</tr>
<tr>
<td>Torsional Damper Bolt</td>
<td>95</td>
<td>70</td>
</tr>
<tr>
<td>Timing Chain Damper</td>
<td>21</td>
<td>15</td>
</tr>
<tr>
<td>Front Cover Bolt</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>Oil Pan Bolts (Rear Two)</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>Oil Pan Bolts, Studs and Nuts</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Oil Pump Bolt</td>
<td>41</td>
<td>30</td>
</tr>
<tr>
<td>Camshaft Sprocket Bolts</td>
<td>23</td>
<td>17</td>
</tr>
<tr>
<td>Connecting Rod Cap Nuts</td>
<td>53</td>
<td>39</td>
</tr>
<tr>
<td>Oil Filter Adapter</td>
<td>85</td>
<td>63</td>
</tr>
<tr>
<td>Main Bearing Cap Bolts</td>
<td>95</td>
<td>70</td>
</tr>
<tr>
<td>Flywheel Bolts</td>
<td>70</td>
<td>52</td>
</tr>
<tr>
<td>Spark Plugs</td>
<td>30</td>
<td>22</td>
</tr>
<tr>
<td>Water Outlet Bolts</td>
<td>21</td>
<td>15</td>
</tr>
<tr>
<td>Water Pump Nut</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Water Pump Bolt (M6 x 1.0)</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Water Pump Bolts (M8 x 1.25)</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>EGR Valve</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>Oil Pump Cover Screws</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Rocker Arm Studs</td>
<td>65</td>
<td>48</td>
</tr>
<tr>
<td>Air Injection Tube</td>
<td>34</td>
<td>25</td>
</tr>
<tr>
<td>Air Injection Tube Nut</td>
<td>25</td>
<td>18</td>
</tr>
</tbody>
</table>
SPECIAL TOOLS

<table>
<thead>
<tr>
<th>No.</th>
<th>Tool Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Hydraulic Lifter Remover (Plier Type)</td>
<td>J-3049</td>
</tr>
<tr>
<td>2.</td>
<td>Crankshaft Sprocket Installer</td>
<td>J-5590</td>
</tr>
<tr>
<td>3.</td>
<td>Crankshaft Sprocket Puller</td>
<td>J-5825-A</td>
</tr>
<tr>
<td>4.</td>
<td>Valve Spring Compressor</td>
<td>J-8062</td>
</tr>
<tr>
<td>5.</td>
<td>Ring Compressor</td>
<td>J-8037</td>
</tr>
<tr>
<td>6.</td>
<td>Main Bearing Remover/Installer</td>
<td>J-8080</td>
</tr>
<tr>
<td>7.</td>
<td>Pick-up Tube and Screen Installer</td>
<td>J-21882</td>
</tr>
<tr>
<td>8.</td>
<td>Hydraulic Lifter Remover (Slide Hammer Type)</td>
<td>J-9290-1</td>
</tr>
<tr>
<td>9.</td>
<td>Puller</td>
<td>J-23523-E</td>
</tr>
<tr>
<td>10.</td>
<td>Puller</td>
<td>J-24420-B</td>
</tr>
<tr>
<td>11.</td>
<td>Torsional Damper Installer</td>
<td>J-29113</td>
</tr>
<tr>
<td>12.</td>
<td>Seal Installer</td>
<td>J-34686</td>
</tr>
<tr>
<td>13.</td>
<td>Seal Installer F-04357</td>
<td>J-35468</td>
</tr>
</tbody>
</table>

1. Hydraulic Lifter Remover (Plier Type)
2. Crankshaft Sprocket Installer
3. Crankshaft Sprocket Puller
4. Valve Spring Compressor
5. Ring Compressor
6. Main Bearing Remover/Installer
7. Pick-up Tube and Screen Installer
8. Hydraulic Lifter Remover (Slide Hammer Type)
9. Puller
10. Puller
11. Torsional Damper Installer
12. Seal Installer
13. Seal Installer
SECTION 6A3

4.3 LITER V-6

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>.6A3- 2</td>
</tr>
<tr>
<td>Engine Lubrication</td>
<td>.6A3- 2</td>
</tr>
<tr>
<td>Disassembly</td>
<td>.6A3- 5</td>
</tr>
<tr>
<td>Tools and Shop Equipment</td>
<td>.6A3- 5</td>
</tr>
<tr>
<td>Accessory Removal</td>
<td>.6A3- 5</td>
</tr>
<tr>
<td>Cleaning</td>
<td>.6A3- 5</td>
</tr>
<tr>
<td>Draining The Engine</td>
<td>.6A3- 5</td>
</tr>
<tr>
<td>EGR Valve Removal</td>
<td>.6A3- 5</td>
</tr>
<tr>
<td>Exhaust Manifold Removal</td>
<td>.6A3- 5</td>
</tr>
<tr>
<td>Rocker Arm Cover Removal</td>
<td>.6A3- 6</td>
</tr>
<tr>
<td>Intake Manifold Removal</td>
<td>.6A3- 6</td>
</tr>
<tr>
<td>Valve Train Component Removal</td>
<td>.6A3- 6</td>
</tr>
<tr>
<td>Cylinder Head Removal</td>
<td>.6A3- 7</td>
</tr>
<tr>
<td>Torsional Damper Removal</td>
<td>.6A3- 7</td>
</tr>
<tr>
<td>Oil Pan Removal</td>
<td>.6A3- 7</td>
</tr>
<tr>
<td>Oil Pump Removal</td>
<td>.6A3- 7</td>
</tr>
<tr>
<td>Front Cover Removal</td>
<td>.6A3- 7</td>
</tr>
<tr>
<td>Camshaft Removal</td>
<td>.6A3- 7</td>
</tr>
<tr>
<td>Piston and Connecting Rod Removal</td>
<td>.6A3- 8</td>
</tr>
<tr>
<td>Flywheel Removal</td>
<td>.6A3- 9</td>
</tr>
<tr>
<td>Rear Crankshaft Oil Seal Removal</td>
<td>.6A3- 9</td>
</tr>
<tr>
<td>Rear Crankshaft Oil Seal Retainer Removal</td>
<td>.6A3- 9</td>
</tr>
<tr>
<td>Crankshaft Removal</td>
<td>.6A3- 9</td>
</tr>
<tr>
<td>Main Bearing Removal (Without Removing Crankshaft)</td>
<td>.6A3-10</td>
</tr>
<tr>
<td>Cleaning, Inspection, and Repair</td>
<td>.6A3-10</td>
</tr>
<tr>
<td>Block</td>
<td>.6A3-10</td>
</tr>
<tr>
<td>Piston and Connecting Rod Assembly</td>
<td>.6A3-10</td>
</tr>
<tr>
<td>Intake and Exhaust Manifolds</td>
<td>.6A3-11</td>
</tr>
<tr>
<td>Camshaft</td>
<td>.6A3-11</td>
</tr>
<tr>
<td>Camshaft Bearings</td>
<td>.6A3-11</td>
</tr>
<tr>
<td>Timing Chain and Sprockets</td>
<td>.6A3-11</td>
</tr>
<tr>
<td>Front Cover</td>
<td>.6A3-12</td>
</tr>
<tr>
<td>Water Pump</td>
<td>.6A3-12</td>
</tr>
<tr>
<td>Oil Pan and Rocker Arm Covers</td>
<td>.6A3-12</td>
</tr>
<tr>
<td>Oil Pump</td>
<td>.6A3-12</td>
</tr>
<tr>
<td>Valve Train Components</td>
<td>.6A3-13</td>
</tr>
<tr>
<td>Hydraulic Lifters</td>
<td>.6A3-13</td>
</tr>
<tr>
<td>Cylinder Head</td>
<td>.6A3-13</td>
</tr>
<tr>
<td>Thermostat and Water Outlet</td>
<td>.6A3-16</td>
</tr>
<tr>
<td>Crankshaft and Bearings</td>
<td>.6A3-16</td>
</tr>
<tr>
<td>Assembly of Engine</td>
<td>.6A3-17</td>
</tr>
<tr>
<td>Prior to Assembly</td>
<td>.6A3-17</td>
</tr>
<tr>
<td>Crankshaft and Main Bearing Installation</td>
<td>.6A3-17</td>
</tr>
<tr>
<td>Rear Crankshaft Oil Seal Retainer Installation</td>
<td>.6A3-17</td>
</tr>
<tr>
<td>Rear Crankshaft Oil Seal Installation</td>
<td>.6A3-18</td>
</tr>
<tr>
<td>Camshaft, Timing Chain and Sprocket Installation</td>
<td>.6A3-18</td>
</tr>
</tbody>
</table>
CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly of Engine (Continued)</td>
<td></td>
</tr>
<tr>
<td>Front Cover Installation</td>
<td>6A3-18</td>
</tr>
<tr>
<td>Torsional Damper Installation</td>
<td>6A3-18</td>
</tr>
<tr>
<td>Piston and Connecting Rod Installation</td>
<td>6A3-20</td>
</tr>
<tr>
<td>Oil Pump Installation</td>
<td>6A3-21</td>
</tr>
<tr>
<td>Oil Pan Installation</td>
<td>6A3-21</td>
</tr>
<tr>
<td>Cylinder Head Installation</td>
<td>6A3-21</td>
</tr>
<tr>
<td>Valve Train Component Installation</td>
<td>6A3-23</td>
</tr>
<tr>
<td>Valve Adjustment</td>
<td>6A3-23</td>
</tr>
<tr>
<td>Intake Manifold Installation</td>
<td>6A3-23</td>
</tr>
<tr>
<td>Rocker Arm Cover Installation</td>
<td>6A3-23</td>
</tr>
<tr>
<td>Exhaust Manifold Installation</td>
<td>6A3-23</td>
</tr>
<tr>
<td>EGR Valve Installation</td>
<td>6A3-24</td>
</tr>
<tr>
<td>Flywheel Installation</td>
<td>6A3-24</td>
</tr>
<tr>
<td>Engine Accessory Installation</td>
<td>6A3-24</td>
</tr>
<tr>
<td>Engine Set-Up and Testing</td>
<td>6A3-25</td>
</tr>
<tr>
<td>Specifications</td>
<td>6A3-27</td>
</tr>
<tr>
<td>Special Tools</td>
<td>6A3-30</td>
</tr>
</tbody>
</table>

DESCRIPTION

GM 4.3L engines are 90-degree V6 type, overhead valve, water cooled, with cast iron block and heads.

The crankshaft is supported by four precision insert main bearings, with crankshaft thrust taken at the number four (rear) bearing.

The camshaft is supported by four plain type bearings and is chain driven. Motion from the camshaft is transmitted to the valves by hydraulic lifters, pushrods, and ball type rocker arms. The valve guides are integral in the cylinder head.

The connecting rods are forged steel, with precision insert type crankpin bearings. The piston pins are a press fit in the connecting rods.

The pistons are cast aluminum alloy. The piston pins are a floating fit in the piston.

For identification, refer to GENERAL INFORMATION (SEC. 0B).

ENGINE LUBRICATION

Lubrication schematics are shown in figures 1 and 2.

The gear type oil pump is driven from the distributor shaft, which is gear driven from the camshaft. Oil is drawn into the oil pump through a pickup screen and pipe.

Pressurized oil is routed to the oil filter. In case of excessive oil pressure, a bypass valve is provided. Filtered oil flows into the main gallery and then to the camshaft and crankshaft bearings. The valve lifter oil gallery supplies oil to the valve lifters. Oil flows from the hydraulic lifters through the hollow pushrods to the rocker arms. Oil from the overhead drains back to the crankcase through oil drain holes.

The timing chain is drip fed from the front camshaft bearing. The pistons and piston pins are lubricated by oil splash.
Figure 2—Engine Lubrication Diagram

A. Regulator Valve (Shown In Open Position)
B. Suction
C. Oil Pressure Switch
D. Valve Lifter Gallery
E. Main Oil Gallery
F. Bypass Valve

Front View
Showing Path Of Oil To Timing Chain.

Rear View
Showing Main Gallery, Oil Filter And Crankshaft Oil Feed.
DISASSEMBLY

TOOLS AND SHOP EQUIPMENT

A clean, well lit work area should be available. Other necessary equipment includes: A suitable parts cleaning tank, compressed air supply, trays to keep parts and fasteners organized, and an adequate set of hand tools.

An approved engine repair stand will aid the work and help prevent personal injury or damage to engine components.

Special tools are illustrated throughout this section, and are listed at its end. These tools (or their equivalents) are specially designed to quickly and safely accomplish the operations for which they are intended. The use of these tools will also minimize possible damage to engine components.

Some precision measuring tools are required for inspection of certain critical components. Torque wrenches will be necessary for correct assembly of various parts.

ACCESSORY REMOVAL

This manual assumes that the engine accessories have been removed. These accessories may include one or more of the following:

- Hydraulic Pump
- AIR Pump
- Generator
- Air Conditioning Compressor

CLEANING

Remove the engine accessories before cleaning, to provide better access to engine exterior surfaces. After removing the carburetor, TBI unit, distributor, fuel pump, etc., cover the openings with tape to prevent the entry of water, solvent and dirt.

Methods used to clean the engine will depend on the aids which are available. Steam cleaning, pressure washing, or solvent cleaning are some acceptable methods. Allow the engine to dry before beginning the work.

It is important that the engine be as clean as possible to prevent dirt from entering critical areas during disassembly.

DRAINING THE ENGINE

1. Oil pan plug and allow the oil pan to drain.
2. Oil filter.
3. Block drain and allow the coolant to drain.

Install or Connect

1. Oil pan plug and washer.
2. Block drain plugs.

Tighten

- Block drain plugs to 14 N·m (10 ft. lbs.).

EGR VALVE REMOVAL

1. Bolts.
2. EGR valve.

EXHAUST MANIFOLD REMOVAL

1. Exhaust manifold bolts, washers, and tab washers.
2. Heat shield (if equipped).
3. Exhaust manifold.
ROCKER ARM COVER REMOVAL

Remove or Disconnect (Figure 3)
1. Rocker arm cover bolts.
2. Rocker arm cover and gaskets.

INTAKE MANIFOLD REMOVAL

Remove or Disconnect
1. Intake manifold bolts.
2. Intake manifold and gaskets.

VALVE TRAIN COMPONENT REMOVAL

Remove or Disconnect (Figure 4)
1. Rocker arm nuts, balls, rocker arms, and pushrods.

Important
- Store used components in order so they can be reassembled in the same location.

2. Bolts (40).
3. Retainer (41) with restrictors (46).

- Remove the lifters one at a time and place them in an organizer rack. The lifters must be installed into the same bore from which they were removed.
4.3 LITER V-6 6A3-7

CYLINDER HEAD REMOVAL

Remove or Disconnect
1. Spark plugs.
2. Cylinder head bolts.
3. Cylinder heads.
4. Head gaskets.

TORSIONAL DAMPER REMOVAL

Remove or Disconnect (Figure 5)

Tool Required:
J-23523-E, Torsional Damper Puller and Installer
1. Torsional damper bolt.
2. Torsional damper using J-23523-E.
3. Crankshaft key (if necessary).

OIL PAN REMOVAL

Remove or Disconnect (Figure 6)
1. Oil pan bolts, nuts, and reinforcements.
2. Oil pan and gasket.

OIL PUMP REMOVAL

Remove or Disconnect
1. Oil pump to main bearing cap bolt.
2. Oil pump.

FRONT COVER REMOVAL

Remove or Disconnect
1. Front cover bolts.
2. Front cover.
3. Front cover to block gasket.

CAMSHAFT REMOVAL

Remove or Disconnect (Figures 7 and 8)
1. Camshaft sprocket bolts.
2. Camshaft sprocket and timing chain. The sprocket is a light interference fit on the camshaft. Tap the sprocket on its lower edge to loosen it.
3. Screws (88) and thrust plate (87).

- Install two or three 9/16-18 inch bolts 100-125 mm (4-5 inches) long into the camshaft threaded holes. Use these bolts to handle the camshaft (figure 8).
- Pull the camshaft from the block. Use care to prevent damage to the camshaft bearings.
PISTON AND CONNECTING ROD REMOVAL

Remove or Disconnect (Figures 9 and 10)

Tool Required:
J-5239, Guide Set.

1. Ridge or deposits from the upper end of the cylinder bores.
 - Turn the crankshaft until the piston is at BDC.

2. Connecting rod cap. Check the connecting rod and cap for identification marks. Mark the parts if required. The connecting rod and cap must be kept together as mating parts.

3. Connecting rod and piston.
 - Attach J-5239 to the connecting rod bolts (figure 10).
 - Use the long guide rod of J-5239 to push the connecting rod and piston out of the bore.

 - Place a cloth on top of the piston.
 - Perform the cutting operation with a ridge reamer (figure 9).
 - Turn the crankshaft until the piston is at TDC.
 - Remove the cloth and cuttings.

 - Mark the cylinder number on all pistons, connecting rods, and caps. Starting at the front, the cylinders on the left bank are numbered 1-3-5 and the right bank is numbered 2-4-6.

 - Connect the rod cap. Check the connecting rod and cap for identification marks. Mark the parts if required. The connecting rod and cap must be kept together as mating parts.

 - Attach J-5239 to the connecting rod bolts (figure 10).
 - Use the long guide rod of J-5239 to push the connecting rod and piston out of the bore.

 - Place a cloth on top of the piston.
 - Perform the cutting operation with a ridge reamer (figure 9).
 - Turn the crankshaft until the piston is at TDC.
 - Remove the cloth and cuttings.
FLYWHEEL REMOVAL

Remove or Disconnect
1. Flywheel bolts.
2. Flywheel.

REAR CRANKSHAFT OIL SEAL REMOVAL

Remove or Disconnect

NOTICE: Care should be taken when removing the rear crankshaft oil seal so as not to nick the crankshaft sealing surface.

- Rear crankshaft oil seal. Insert a screwdriver into the notches provided in the seal retainer and pry the seal out (figure 11).

REAR CRANKSHAFT OIL SEAL RETAINER REMOVAL

Remove or Disconnect (Figure 12)
1. Screws (81).
2. Seal retainer (82).
3. Gasket (84).

CRANKSHAFT REMOVAL

Remove or Disconnect

- Check the main bearing clearance before removing the crankshaft. Refer to "Crankshaft and Main Bearing Installation" later in this section.
- The main bearings and rear oil seal can be replaced without removing the crankshaft as outlined later in this section.

1. Main bearing cap bolts.
2. Main bearing caps.
3. Crankshaft from the cylinder block.

- Lift the crankshaft straight up, taking care to avoid damage to the crankshaft journals and thrust flange surfaces.
MAIN BEARING REMOVAL (WITHOUT REMOVING CRANKSHAFT)

Remove or Disconnect

Tool Required:
J-8080, Main Bearing Remover/Installer

1. Main bearing caps.
 • Check the main bearing caps for location markings. Mark the caps if necessary. The caps must be returned to their original locations during assembly.
2. Lower main bearing inserts from the main bearing caps.
3. Upper main bearing inserts.
 • Insert J-8080 into the crankshaft oil hole (figure 13).
 • Rotate the crankshaft to turn the bearing insert out of the block.

CLEANING, INSPECTION, AND REPAIR

A solvent tank, large enough to hold the larger engine parts, will be needed along with various bristle brushes and a gasket scraper. A source of compressed air will be helpful in the cleaning operations.

Precision measuring tools will be required for the inspection procedure. These include: micrometers, cylinder bore gage, feeler gages, dial indicator set, etc. The inspection work, performed with the proper method and tools, is most important. The rebuilt engine cannot be expected to perform properly if parts worn beyond acceptable limits are reused.

BLOCK

Clean

1. Block in solvent.
2. Block gasket surfaces.
3. Cylinder bores.
4. Oil galleries and passages.
5. Scale deposits from the coolant passages.

Inspect

1. All expansion plugs for lack of fit or leakage.
2. Valve lifter bores for deep scratches and varnish deposits.
3. Block for cracks.
 — Cylinder walls.
 — Coolant jackets.
 — Main bearing webs.
 — Engine mount bosses.
4. Main bearing bores and main bearing caps.
 — All main bearing bores should be rounded and uniform in ID at all bearing supports.
 — The area where the main bearing inserts contact the main bearing bore should be smooth.
5. Head gasket surface for flatness. Use a straightedge and feeler gage. Minor irregularities may be carefully machined. If more than 0.25 mm (0.010-inch) must be removed, replace the block.
6. Oil pan rail and timing cover attaching area for nicks. Minor irregularities may be cleaned up with a flat file.

CYLINDER BORE

Inspect

• Cylinder bores for scoring or other damage.

Measure

• Cylinder bore taper and out-of-round. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

Cylinder Bore Reconditioning
Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

PISTON AND CONNECTING ROD ASSEMBLY

Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) and perform the following:

Disassemble
• Components as required.

Clean
• Components as outlined.

Inspect
• Components as outlined.
4.3 LITER V-6 6A3-11

Measure
- Piston pin diameter and clearance.
- Piston to bore clearance, and fit pistons as outlined.

Assemble
- Components as outlined.

Important
- Each connecting rod and bearing cap should be marked, beginning at the front of the engine. Cylinders 1, 3 and 5 are at the left bank, and 2, 4 and 6 are the right bank. The numbers on the connecting rod and bearing cap must be on the same side when installed in the cylinder bore. If a connecting rod is ever transposed from block or cylinder to another, new connecting rod bearings should be fitted and the connecting rod should be numbered to correspond with the new cylinder number.

Measure
- Ring end gap and ring clearance.

Inspect
- Ring fit.

Intake and Exhaust Manifolds

Clean
- Old pieces of gasket from the gasket surfaces.
- Excessive carbon build-up in the exhaust passages of the intake manifold.
- Scale and deposits from the coolant passages of the intake manifold.
- EGR passage of excessive carbon deposits.

Inspect (Figure 14)
- Manifolds for cracks, broken flanges, and gasket surface damage.

Camshaft

Important
- Whenever the camshaft needs to be replaced, a new set of lifters must also be installed.

Inspect
- Camshaft lobes and journals for scratches, pitting, scoring, and wear.

Measure
- Camshaft journal diameter (Figure 15). The proper diameter is listed in "Specifications."

Camshaft Bearings
Referring to GENERAL ENGINE MECHANICAL (SEC. 6A) for replacement procedures.

Timing Chain and Sprockets

Inspect
- Sprockets for chipped teeth and wear.
- Timing chain for damage.
- It should be noted that excessively worn sprockets will rapidly wear a new chain. Likewise, an excessively worn chain will rapidly wear a new set of sprockets.

Crankshaft Sprocket Replacement

Remove or Disconnect (Figure 16)
Tool Required:
- J-5825-A Crankshaft Sprocket Puller
1. Crankshaft sprocket using J-5825-A.
2. Key (if necessary).
Install or Connect

Tool Required:
J-5590, Crankshaft Sprocket Installer
1. Key (if removed).
2. Crankshaft sprocket using J-5590.

WATER PUMP

Clean
• Old gasket from the gasket surface.

Important
• Do not immerse the pump in solvent. The solvent may enter the pump's permanently lubricated bearings, dissolve the bearings; lubricant supply, and cause premature bearing failure.

Inspect
• Water pump shaft for roughness and end play. If the shaft does not turn smoothly, or if there is excessive end play, replace the water pump.
• Water pump body at the drain hole. If there is evidence of coolant leakage, the water pump shaft seal is leaking and the water pump should be replaced.

OIL PAN AND ROCKER ARM COVERS

Clean
• Parts in solvent. Remove all sludge and varnish.
• Old gaskets from the gasket surfaces.

Inspect
• Gasket flanges for bending or damage.
• Rubber grommets and parts on the rocker arm cover for deterioration.
• Oil pan for rock damage or cracks.
• Oil pan baffle for lack of fit.
• Drain plug threads for stripping.

OIL PUMP

Remove or Disconnect (Figure 17)
1. Pump cover attaching bolts (9) and the pump cover (5).
• Mark the teeth so the pump gears can be installed with the same gear teeth indexed.
2. Idler gear (4), drive gear (3), and shaft and retainer (1) from the pump body.
3. Pressure relief valve retaining pin (8).
4. Spring (7) and pressure relief valve (6).
5. Pick-up screen and pipe.
• Do not remove the pick-up screen and pipe unless replacement is required.
Figure 17—Oil Pump Components

- The pick-up pipe is a press fit in the pump body.
- Do not try to remove the screen from the pipe. The pick-up screen and pipe is serviced as an assembly only.

Clean
- All parts in clean solvent and blow dry with compressed air.

Inspect (Figure 17)
- Pump body (2) and cover (5) for cracks or other damage.
- Gears (3 and 4) for wear.
- Drive gear and shaft (3) for lack of fit in the pump body (2).
- Inside of the cover (5) for wear that would permit oil to leak past the ends of the gears. The pump gears, cover, and body are not serviced separately. If the parts are damaged or worn, replace the entire oil pump assembly.
- Pick-up screen and pipe (10) for damage to the screen, pipe or relief grommet.
- Pressure relief valve (6) for fit. The regulator valve should slide freely in its bore without sticking or binding.

Install or Connect (Figure 17)

Tool Required:
J-21882, Pick-up Tube and Screen Installer
1. Pressure regulator valve.
2. Spring.
3. Spring retaining pin.
4. Drive gear and shaft.
5. Idler gear.
 - Index the marks made during disassembly.
6. Cover and screws.

Tighten
- Screws to 5.0 N·m (84 in. lbs.).
- Turn the drive shaft by hand to check for smooth operation.

NOTICE: Be careful of twisting, shearing or collapsing the pipe while installing the pump.

7. Pick-up screen and pipe (if removed) (figure 18).
 - If the pick-up screen and pipe assembly was removed, it should be replaced with a new part. Loss of press fit condition could result in an air leak and loss of oil pressure.
 - Mount the oil pump in a soft jawed vise.
 - Apply sealer to the end of the pipe.
 - Tap the pick-up screen and pipe into place, using J-21882 and a hammer.
 - The pump screen must be parallel with the bottom of the oil pan when installed.

8. Oil pump drive shaft and connector (1).

VALVE TRAIN COMPONENTS

PUSHRODS, ROCKER ARMS, BALLS, AND NUTS

Clean
- Parts in solvent. Blow dry with compressed air.
- Make sure the oil passages in the pushrods are clear.

Inspect
- Rocker arms and balls at their mating surfaces. These surfaces should be smooth and free from scoring or other damage.
- Rocker arm areas which contact the valve stems and the sockets which contact the pushrods. These areas should be smooth and free of damage and wear.
- Rocker arm nuts.
- Pushrods for bending. Roll the pushrod on a flat surface to determine if it is bent. Replace if necessary.
- Pushrod ends for scoring or roughness.

HYDRAULIC LIFTERS
Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

CYLINDER HEAD

Remove or Disconnect (Figures 19 and 20)

Tool Required:
J-8062, Valve Spring Compressor
1. Valve keepers (20).
 - Compress the springs with J-8062 (figure 20).
 - Remove the keepers.
 - Remove J-8062.
2. Cap (21), shield (22), seal (24), and damper (25), and spring (26) (intake valve).
3. Rotator (28), shield (22), seal (24), and damper (25), and spring (26) (exhaust valve).
4. O-ring seals (23).
5. Valves (27 and 29).
 - Place the valves in a rack so they can be returned to their original position at assembly.
CLEANING AND INSPECTION OF COMPONENTS
Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) and perform the following.

Clean
- Components as outlined.

Inspect
- Components as outlined.

Measure
- Valve stem clearance.
- Valve spring tension and free length.
Other information outlined includes:
- Valve and seat grinding.
- Valve guide reaming.

ROCKER ARM STUD REPLACEMENT

Remove or Disconnect (Figure 21)

Tool Required:
J-5802-01, Rocker Arm Stud Remover
4.3 LITER V-6 6A3-15

Figure 22—Installing the Rocker Arm Stud

- Rocker arm stud.
 - Place J-5802-01 over the rocker arm stud.
 - Install a nut and flat washer.
 - Turn the nut to remove the stud.

Install or Connect (Figure 22)

Tools Required:
J-5715, Reamer (0.003-inch oversize)
or
J-6036, Reamer (0.013-inch oversize)
J-6880, Rocker Arm Stud Installer

NOTICE: Do not attempt to install an oversize rocker arm stud without reaming the stud hole as this could damage the cylinder head.

- Ream the hole to the proper size for the replacement oversize rocker arm stud. Use J-5715 for 0.003-inch oversize studs; J-6036 for 0.013-inch oversize stud (figure 23).
- Coat lower end (press-fit area) of rocker arm stud with hypoid axle lubricant.
- Rocker arm stud. Use J-6880 (figure 22). Stud is installed to proper depth when the tool bottoms on the cylinder head.

ASSEMBLY

Install or Connect (Figures 19, 20, and 24)

Tools Required:
J-8062, Valve Spring Compressor
J-23738-A, Vacuum Pump

Figure 23—Reaming the Rocker Arm Stud Bore

1. Valves (27 and 29).
 - Lubricate the valve stems with engine oil.
 - Insert the valves into the proper seats.
2. Seal (24) (intake valve only).
 - Install the seal over the valve stem and seat it against the head.
3. Springs and dampers.
4. Shields (22).
5. Cap (21) or rotator (28).
6. O-ring seals (23) and valve keepers (20).

Figure 24—Checking the Valve Seals
• Compress the valve spring using J-8062 (figure 20). Compress the spring enough so the lower valve stem groove can be seen clearly.
• Push a new O-ring seal (23) onto the valve stem. The seal is to be installed on the stem's lower groove. Make sure the seal is flat and not twisted.
• Apply a small amount of grease to the area of the upper valve stem groove. Assemble the two valve keepers using the grease to hold the keys in place. Make sure the keepers seat properly in the groove.
• Release the compressor tool. Make sure the valve keepers stay in place.
• Repeat the preceding steps on the remaining valves.
• Check each O-ring seal for leakage (figure 24).
 • Place the suction cup supplied with J-23738-A over the shield.
 • Connect J-23738-A to the suction cup and apply a vacuum. Watch the vacuum pump gage. No air should be able to leak past the seal. If the seal will not hold a vacuum, it may have been damaged or improperly installed.

![Figure 25—Measuring the Crankshaft Journals](image)

CRANKSHAFT AND BEARINGS

Clean
- Crankshaft with solvent.
 - Do not scratch the bearing journals.
 - Blow all sludge from the oil passages with compressed air.
- Main bearing inserts. Wipe free of oil with a soft cloth.

Inspect
- Crankshaft for cracks. Use the magnaflux method, if available.
- Crankpins, main bearing journals and thrust surfaces for scoring, nicks, or damage caused by lack of lubrication.
- Main bearing inserts for scoring or other damage.

In general, the lower inserts (except the #1 bearing), show greater wear and the most distress from fatigue. If, upon inspection, the lower insert is suitable for use, it can be assumed that the upper insert is also satisfactory. If the lower insert shows evidence of wear or damage, both the upper and lower inserts must be replaced.

Measure
- Main bearing and connecting rod journal diameters (figure 25). Compare with “Specifications.” Grind or replace the crankshaft if necessary.
- Main bearing and connecting rod journals for taper and out-of-round (figure 25). If the journals are tapered more than 0.001-inch or out-of-round more than 0.002-inch, grind or replace the crankshaft.
- Crankshaft run-out.
 - Mount the crankshaft in V-blocks or between centers.
 - Use a dial indicator.
 - If the main journals are misaligned, the crankshaft is bent and must be replaced, along with the main bearing.

THERMOSTAT AND WATER OUTLET

Remove or Disconnect
1. Bolts.
2. Water outlet.
4. Thermostat.

Inspect
- Water outlet for cracks.

Install or Connect
1. Thermostat.
2. New gasket.
3. Water outlet.
4. Bolts.

Tighten
- Bolts to 28 N·m (21 ft. lbs.).
ASSEMBLY OF ENGINE

PRIOR TO ASSEMBLY

The importance of cleanliness during the assembly procedure cannot be overstressed. Dirt will cause premature wear of the rebuilt engine.

Lubricate all moving parts lightly with engine oil or engine assembly lubricant (unless specified otherwise) during assembly. This will provide initial lubrication when the engine is started.

CRANKSHAFT AND MAIN BEARING INSTALLATION

Main bearings are of the precision insert type and do not use shims for adjustment. If clearances are excessive, a new bearing plus both upper and lower inserts will be required. Service bearings are available in standard size and 0.001-inch, 0.002-inch, 0.009-inch, 0.010-inch, and 0.020-inch undersize.

Selective fitting of both rod and main bearing inserts is necessary in production to obtain close tolerances. For this reason you may find one half of a standard insert with one half of a 0.001-inch undersize insert which will decrease the clearance 0.0005-inch from using a full standard bearing.

Some engines may have rear main bearings that are 0.008-inch wider than standard across the thrust faces.
- The crankshaft on these engines can be identified by "0.08" stamped on the rear counterweight.
- If the rear main bearings are replaced, they must have the proper distance between thrust faces to obtain proper crankshaft end play.

Install or Connect

1. Upper main bearing inserts to the block.

Important
- If any undersized bearings are used, make sure they are fitted to the proper journals.
2. Crankshaft.
3. Lower main bearing inserts to the main bearing caps.

Measure
- Main bearing clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).
- Apply engine oil to the main bearing inserts.
4. Main bearing caps (except rear cap) and bolts to the block.

Tighten
- Main bearing cap bolts to 100 N·m (75 ft. lbs.).
5. Rear main bearing cap.
- Apply engine oil to the bearing inserts.
6. Rear main bearing cap bolts.

Tighten
- Bolts to 14 N·m (10 ft. lbs.).

REAR CRANKSHAFT OIL SEAL RETAINER INSTALLATION

Clean
- Gasket surfaces on the block and seal retainer.

Install or Connect (Figure 27)

1. New gasket (84) to the block.
- It is not necessary to use sealant to hold the gasket in place.
CAMSHAFT, TIMING CHAIN AND SPROCKET INSTALLATION

Install or Connect (Figures 29, 30, and 31)

1. Coat the camshaft lobes and journals with a high quality engine oil supplement (GM Engine Oil Supplement or equivalent).

2. Two or three 5/16-18 bolts 100-125 mm (4-5 inches) long into the camshaft threaded holes. Use these bolts to handle the camshaft.

3. Camshaft to the engine (figure 30). Handle the camshaft carefully to prevent damage to the camshaft bearings.

4. Camshaft sprocket and timing chain.

Important

- Line up the timing marks on the camshaft sprocket and crankshaft sprocket (figure 31).

5. Camshaft sprocket bolts.

FRONT COVER INSTALLATION

Install or Connect

1. Front cover gasket to the front cover.
 - Use gasket cement to hold the gasket in place.

2. Front cover to the engine.

3. Front cover bolts.

TIGHTEN

- Front cover to block bolts to 11.3 N·m (100 in. lbs.).

TORSIONAL DAMPER INSTALLATION

Install or Connect (Figure 32)

Tool Required:

J-23523-E, Torsional Damper Puller and Installer

1. Crankshaft key (if removed).
4.3 LITER V-6 6A3-19

NOTICE: The inertia weight section of the torsional damper is assembled to the hub with rubber type material. The correct installation procedures (with the proper tool) must be followed or movement of the inertia weight section of the hub will destroy the tuning of the torsional damper.

2. Stud (item A, figure 32) to the crankshaft. Thread the stud fully into the tapped hole in the crankshaft.

Figure 29—Camshaft and Components

Figure 30—Installing the Camshaft

Figure 31—Timing Marks

Figure 32—Installing the Torsional Damper
3. Torsional damper over the end of the stud. Align the keyway in the torsional damper shaft with the crankshaft key.

4. Bearing, washer and nut (figure 28).
 - Turn the nut to pull the vibration damper into place.
 - Remove the tool.

5. Torsional damper bolt and washer.

Tighten
- Bolt to 95 N·m (70 ft. lbs.).

PISTON AND CONNECTING ROD INSTALLATION

CONNECTING ROD BEARING SELECTION
Connecting rod bearings are of the precision insert type and do not use shims for adjustment. DO NOT FILE RODS OR ROD CAPS. If clearances are excessive install a new bearing. Service bearings are available in standard size and 0.0014 mm undersize for use with new and used standard size crankshafts.

Install or Connect (Figures 33 through 35)
Tools Required:
- J-5239, Connecting Rod Guide Set
- J-8037, Ring Compressor
- Lubricate the cylinder walls lightly with engine oil.
- Make sure the piston is installed in the matching cylinder.

1. Connecting rod bearings.
 - Be certain that the bearing inserts are of the proper size.
 - Install the bearing inserts in the connecting rod and connecting rod cap.
 - Lubricate the bearings with engine oil.

2. Piston and connecting rod to the proper bore.
 - With the connecting rod cap removed, install J-5239 onto the connecting rod studs.
4.3 LITER V-6 6A3-21

- Locate the piston ring end gaps as shown in figure 33. Lubricate the piston and rings with engine oil.
- Without disturbing the ring end gap location, install J-8037 over the piston (figure 34).
- The piston must be installed so that the notch in the piston faces the front of the engine (figure 33).
- Place the piston in its matching bore. The connecting rod bearing tang slots must be on the side opposite the camshaft. Using light blows with a hammer handle, tap the piston down into its bore (figure 34). At the same time, from beneath the vehicle guide the connecting rod to the crankpin with J-5239 (figure 35). Hold the ring compressor against the block until all rings have entered the cylinder bore.
- Remove J-5239 from the connecting rod bolts.

Important
- Each connecting rod and bearing cap should be marked, beginning at the front of the engine. Cylinders 1, 3 and 5 are at the left bank and 2, 4 and 6 are the right bank. The numbers on the connecting rod and bearing cap must be on the same side when installed in the cylinder bore. If a connecting rod is ever transposed from one block or cylinder to another, new connecting rod bearings should be fitted and the connecting rod should be numbered to correspond with the new cylinder number.

3. Connecting rod cap with bearing insert.

Measure
- Connecting rod bearing clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

Tighten
- Connecting rod cap nuts to 60 N·m (45 ft. lbs.).

Measure
- Connecting rod side clearance (figure 36). The proper clearance is 0.006 to 0.014-inch.

OIL PUMP INSTALLATION

Install or Connect
1. Oil pump to the engine.
 - Align the slot in the oil pump shaft with the tang on the distributor shaft.
 - The oil pump should slide easily into place.
 - No gasket is used.
2. Oil pump to main bearing cap bolt.

Tighten
- Oil pump to main bearing cap bolt to 90 N·m (65 ft. lbs.).

Figure 36—Measuring Connecting Rod Side Clearance

OIL PAN INSTALLATION

Install or Connect (Figure 37)
- Apply PST sealant (GM part number 1052080 or equivalent) to the front cover to block joint and to the rear crankshaft retainer seal to block joint. Apply the sealant about 25 mm (1-inch) in both directions from each of the four corners (figure 37).
1. Oil pan gasket to the oil pan.
2. Oil pan to the engine.
3. Oil pan reinforcements, bolts and nuts.

Tighten
- Bolts to 11.3 N·m (100 in. lbs.).
- Nuts to 22.6 N·m (200 in. lbs.).

CYLINDER HEAD INSTALLATION

Clean
- Gasket surfaces on the block and cylinder head.

Install or Connect (Figure 38)
1. Head gasket.
 - If a steel gasket is used, coat both sides of the gasket with sealer. Spread the sealer thin and even.
 - Do not use sealer on composition steel-asbestos gaskets.
 - Place the gasket over the block dowel pins with the head up.
2. Cylinder head. Carefully guide the cylinder head into place over the dowel pins and gasket.
3. Cylinder head bolts. Coat threads of the cylinder head bolts with sealing compound (GM part number 1052080 or equivalent) and install finger-tight.

Tighten
- Cylinder head bolts, a little at a time, using the sequence shown in figure 38. The proper torque is 90 N·m (65 ft. lbs.).
Figure 37—Oil Pan Installation

A-Forward
B-Sealant
70. Gasket
71. Reinforcement
Figure 38—Cylinder Head Bolt Tightening Sequence

VALVE TRAIN COMPONENT INSTALLATION

Important
- Replace all hydraulic lifters if a new camshaft was installed.

Install or Connect (Figure 39)
- Lubricate the hydraulic lifter bodies and feet with Engine Oil Supplement (GM Part No. 1051396 or equivalent).
 1. Hydraulic lifters to the block.
 2. Restrictors (46) and retainer (41) with bolts (40).

Tighten
- Bolts (40) to 16.4 N·m (145 in. lbs.).
- Pushrods.
 - Seat the pushrods into the socket in the hydraulic lifters.
 - Coat the mating surfaces of the rocker arms and balls with "Molykote" or equivalent.
- Rocker arms.
- Balls.
- Nuts.

VALVE ADJUSTMENT

1. Crank the engine until the mark on the torsional damper lines up with the "O" mark on the timing tab and the engine in the number one firing position. This may be determined by placing fingers on the number one valve as the mark on the damper comes near the "O" mark on the timing tab. If the rocker arms are not moving, the engine is in the number one firing position. If the rocker arms move as the mark comes up to the timing tab, the engine is in the number four firing position and should be turned over one more time to reach the number one position.
2. With the engine in the number one firing position as determined above, the following valves may be adjusted:
 - Exhaust: 1, 5, 6.
 - Intake: 1, 2, 3.

(Even numbered cylinders are in the right bank; odd numbered cylinders are in the left bank, when viewed from the rear of the engine).

3. Back out the adjusting nut until lash is felt at the pushrod then turn in the adjusting nut until all lash is removed. This can be determined by rotating the pushrod while turning the adjusting nut. When the play has been removed, turn the adjusting nut in one full additional turn (to center the lifter plunger).
4. Crank the engine one revolution until the timing tab "O" mark and torsional damper mark are again in alignment. This is the number four firing position. The following valves may be adjusted:
 - Exhaust: 2, 3, 4.
 - Intake: 4, 5, 6.

INTAKE MANIFOLD INSTALLATION

Install or Connect (Figures 40 and 41)
1. Gaskets to the cylinder head.
2. RTV to the front and rear sealing surfaces on the block. Apply a 5 mm (⅛-inch) bead of RTV (GM Part No. 1052366 or equivalent) to the front and rear of the block as shown in figure 40. Extend the bead 13 mm (⅓-inch) up each cylinder head to seal and retain the gaskets.
3. Intake manifold to the engine.
4. Intake manifold bolts.

Tighten
- Bolts to 48 N·m (35 ft. lbs.) using the tightening sequence shown in figure 41.

ROCKER ARM COVER INSTALLATION

Install or Connect (Figure 42)
1. Rocker arm cover and new gasket.
2. Rocker arm cover bolts and washers.

Tighten
- Rocker arm cover bolts to 11.3 N·m (100 in. lbs.).

EXHAUST MANIFOLD INSTALLATION

Install or Connect (Figure 43)
1. Exhaust manifold.
2. Heat shield (if removed).
3. Exhaust manifold bolts, washers, and tab washers.

Tighten
- Bolts on center exhaust tube to 36 N·m (26 ft. lbs.).
- Bolts on front and rear exhaust tubes to 28 N·m (20 ft. lbs.).
• Bend the tab washers over the heads of all bolts.

EGR VALVE INSTALLATION

Install or Connect

1. New gasket.
2. EGR valve.

Tighten

• Bolts to 31 N·m (23 ft. lbs.).

FLYWHEEL INSTALLATION

Install or Connect

1. Flywheel.
2. Flywheel bolts.

Tighten

• Bolts to 100 N·m (75 ft. lbs.).

ENGINE ACCESSORY INSTALLATION

Install the engine accessories (distributor, carburetor, oil filter, generator, etc.) as directed in the proper Truck Service Manual. Connect all vacuum hoses and electrical equipment the same way as removed.
ENGINE SET-UP AND TESTING

1. After overhaul, the engine should be tested before installation in the vehicle. If a suitable test stand is not available, the following procedure can be used after the engine is installed in the vehicle.

2. Fill the crankcase with the proper quantity and grade of oil.

 Important
 - If a new camshaft or hydraulic lifters were
6A3-26 4.3 LITER V-6

3. Fill the cooling system with the proper coolant.
4. With the ignition "OFF," or disconnected, crank the engine several times. Listen for any unusual noises or evidence that any parts are binding.
5. Start the engine and listen for unusual noises.
6. Run the engine at about 1000 rpm until the engine is at operating temperature.
7. Listen for improperly adjusted valves or sticking lifters, and other unusual noises.
8. Check for oil and coolant leaks while the engine is running.
9. Using the proper Truck Service Manual or Emission Control Label for specifications, adjust the ignition timing, idle rpm and mixture, and governor settings, if so equipped.

Figure 43—Exhaust Manifold Components

installed, add Engine Oil Supplement (GM part no. 1051396) or equivalent to the engine oil.
SPECIFICATIONS

ENGINE SPECIFICATIONS

All Specifications are in INCHES unless otherwise noted.

<table>
<thead>
<tr>
<th>GENERAL DATA:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>V6</td>
</tr>
<tr>
<td>Displacement</td>
<td>4.3L (262 Cu. In.)</td>
</tr>
<tr>
<td>RPO</td>
<td>LB4</td>
</tr>
<tr>
<td>Bore</td>
<td>4.00</td>
</tr>
<tr>
<td>Stroke</td>
<td>3.48</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>9.3:1</td>
</tr>
<tr>
<td>Firing Order</td>
<td>1 - 6 - 5 - 4 - 3 - 2</td>
</tr>
<tr>
<td>Oil Pressure</td>
<td>10 psi @ 500 RPM; 30-35 psi @ 2000 RPM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CYLINDER BORE:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>3.9995-0.0025</td>
</tr>
<tr>
<td>Out Of Round</td>
<td>Production 0.001 (Maximum)</td>
</tr>
<tr>
<td></td>
<td>Service 0.002 (Maximum)</td>
</tr>
<tr>
<td>Taper</td>
<td>Production Thrust Side 0.0005 (Maximum)</td>
</tr>
<tr>
<td></td>
<td>Relief Side 0.001 (Maximum)</td>
</tr>
<tr>
<td></td>
<td>Service 0.001 (Maximum)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PISTON:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearance</td>
<td>Production 0.0007-0.0017</td>
</tr>
<tr>
<td></td>
<td>Service Limit 0.0027 (Maximum)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PISTON RING:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Top</td>
</tr>
<tr>
<td>COMPRESSION</td>
<td>0.0012-0.0032</td>
</tr>
<tr>
<td>Groove Clearance</td>
<td>Service Limit Hi Limit Production + 0.001</td>
</tr>
<tr>
<td>Gap</td>
<td>Top</td>
</tr>
<tr>
<td></td>
<td>0.010-0.020</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
</tr>
<tr>
<td></td>
<td>0.010-0.025</td>
</tr>
<tr>
<td></td>
<td>Service Limit Hi Limit Production + 0.010</td>
</tr>
<tr>
<td>OIL</td>
<td>Groove Clearance</td>
</tr>
<tr>
<td></td>
<td>Production</td>
</tr>
<tr>
<td></td>
<td>0.002-0.007</td>
</tr>
<tr>
<td></td>
<td>Service Limit Hi Limit Production + 0.001</td>
</tr>
<tr>
<td></td>
<td>Gap</td>
</tr>
<tr>
<td></td>
<td>Production</td>
</tr>
<tr>
<td></td>
<td>0.015-0.055</td>
</tr>
<tr>
<td></td>
<td>Service Limit Hi Production + 0.010</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PISTON PIN:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>0.9270-0.09273</td>
</tr>
<tr>
<td>Clearance</td>
<td>Production 0.0002-0.0007</td>
</tr>
<tr>
<td>In Piston</td>
<td>Service Limit 0.001 (Maximum)</td>
</tr>
<tr>
<td>Fit In Rod</td>
<td>0.0008-0.0016 Interference</td>
</tr>
</tbody>
</table>

F-04489
SPECIFICATIONS

ENGINE SPECIFICATIONS (CONT.)

All specifications are in INCHES unless otherwise noted.

<table>
<thead>
<tr>
<th>DISPLACEMENT:</th>
<th>4.3L</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRANKSHAFT:</td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td></td>
</tr>
<tr>
<td>#1</td>
<td>2.4484-2.4493</td>
</tr>
<tr>
<td>#2, #3</td>
<td>2.4481-2.4490</td>
</tr>
<tr>
<td>#4</td>
<td>2.4479-2.4488</td>
</tr>
<tr>
<td>Taper</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>0.0002 (Maximum)</td>
</tr>
<tr>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Out Of Round</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>0.0002 (Maximum)</td>
</tr>
<tr>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Main Journal</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td></td>
</tr>
<tr>
<td>#1</td>
<td>0.0008-0.0020</td>
</tr>
<tr>
<td>#2, #3</td>
<td>0.0011-0.0023</td>
</tr>
<tr>
<td>#4</td>
<td>0.0017-0.0032</td>
</tr>
<tr>
<td>Service Limit</td>
<td></td>
</tr>
<tr>
<td>#1</td>
<td>0.0010-0.0015</td>
</tr>
<tr>
<td>#2, #3</td>
<td>0.0010-0.0025</td>
</tr>
<tr>
<td>#4</td>
<td>0.0025-0.0035</td>
</tr>
<tr>
<td>Crankshaft End Play</td>
<td>0.002-0.006</td>
</tr>
<tr>
<td>Crankpin</td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td>2.2487-2.2497</td>
</tr>
<tr>
<td>Taper</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>0.0005</td>
</tr>
<tr>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Out Of Round</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>0.0005</td>
</tr>
<tr>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Rod Bearing Clearance</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>0.0013-0.0035</td>
</tr>
<tr>
<td>Service Limit</td>
<td>0.0030</td>
</tr>
<tr>
<td>Rod Side Clearance</td>
<td>0.006-0.014</td>
</tr>
<tr>
<td>CAMSHAFT:</td>
<td></td>
</tr>
<tr>
<td>Lobe</td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>0.357</td>
</tr>
<tr>
<td>Exhaust</td>
<td>0.390</td>
</tr>
<tr>
<td>Journal Diameter</td>
<td>1.8682-1.8692</td>
</tr>
<tr>
<td>Camshaft End Play</td>
<td>0.004-0.012</td>
</tr>
<tr>
<td>VALVE SYSTEM:</td>
<td></td>
</tr>
<tr>
<td>Lifter</td>
<td>Hydraulic</td>
</tr>
<tr>
<td>Rocker Arm Ratio</td>
<td>1.50:1</td>
</tr>
<tr>
<td>Valve Lash</td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>One Turn Down From Zero Lash</td>
</tr>
<tr>
<td>Exhaust</td>
<td></td>
</tr>
<tr>
<td>Face Angle (Intake & Exhaust)</td>
<td>45°</td>
</tr>
<tr>
<td>Seat Angle (Intake & Exhaust)</td>
<td>46°</td>
</tr>
<tr>
<td>Seat Runout (Intake & Exhaust)</td>
<td>0.002 (Maximum)</td>
</tr>
<tr>
<td>Seat Width</td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>$\frac{1}{32}$-$\frac{1}{16}$</td>
</tr>
<tr>
<td>Exhaust</td>
<td>$\frac{1}{16}$-$\frac{3}{32}$</td>
</tr>
<tr>
<td>Stem Clearance</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>0.0010-0.0027</td>
</tr>
<tr>
<td>Exhaust</td>
<td>0.0010-0.0027</td>
</tr>
<tr>
<td>Valve Spring (Outer)</td>
<td></td>
</tr>
<tr>
<td>Pressure</td>
<td></td>
</tr>
<tr>
<td>Closed</td>
<td>76-84 lbs. @ 1.70-in.</td>
</tr>
<tr>
<td>Open</td>
<td>194-206 lbs. @ 1.25-in.</td>
</tr>
<tr>
<td>Installed Height</td>
<td>$\pm \frac{1}{32}$</td>
</tr>
<tr>
<td>Valve Spring Damper</td>
<td></td>
</tr>
<tr>
<td>Free Length</td>
<td>2.03</td>
</tr>
<tr>
<td>Approx. # of Coils</td>
<td>4</td>
</tr>
</tbody>
</table>
SPECIFICATIONS (CONTINUED)

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>N·m</th>
<th>FT. LBS.</th>
<th>IN. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocker Arm Cover Bolts</td>
<td>11.3</td>
<td>—</td>
<td>100</td>
</tr>
<tr>
<td>Intake Manifold Bolts</td>
<td>48</td>
<td>35</td>
<td>—</td>
</tr>
<tr>
<td>Exhaust Manifold Bolts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Center Two Bolts</td>
<td>36</td>
<td>26</td>
<td>—</td>
</tr>
<tr>
<td>All Others</td>
<td>28</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Cylinder Head Bolts</td>
<td>90</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Torsional Damper Bolt</td>
<td>95</td>
<td>70</td>
<td>—</td>
</tr>
<tr>
<td>Front Cover Bolts</td>
<td>11.3</td>
<td>—</td>
<td>100</td>
</tr>
<tr>
<td>Oil Pan Bolts</td>
<td>22.6</td>
<td>—</td>
<td>200</td>
</tr>
<tr>
<td>Oil Pan Bolts</td>
<td>11.3</td>
<td>—</td>
<td>100</td>
</tr>
<tr>
<td>Oil Pump Bolt</td>
<td>90</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pump Cover Bolts</td>
<td>5.0</td>
<td>—</td>
<td>84</td>
</tr>
<tr>
<td>Rear Crankshaft Oil Seal Retainer Screws and Nuts</td>
<td>15.3</td>
<td>—</td>
<td>135</td>
</tr>
<tr>
<td>Camshaft Sprocket Bolts</td>
<td>23</td>
<td>17</td>
<td>—</td>
</tr>
<tr>
<td>Connecting Rod Cap Nuts</td>
<td>60</td>
<td>45</td>
<td>—</td>
</tr>
<tr>
<td>Oil Filter Adapter Bolts</td>
<td>20</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>Main Bearing Cap Bolts</td>
<td>100</td>
<td>75</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pump Cover Bolts</td>
<td>9.0</td>
<td>—</td>
<td>80</td>
</tr>
<tr>
<td>Flywheel Bolts</td>
<td>100</td>
<td>75</td>
<td>—</td>
</tr>
<tr>
<td>Spark Plugs</td>
<td>30</td>
<td>22</td>
<td>—</td>
</tr>
<tr>
<td>Water Outlet Bolts</td>
<td>28</td>
<td>21</td>
<td>—</td>
</tr>
<tr>
<td>Water Pump Bolts</td>
<td>40</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Flywheel Housing Bolts</td>
<td>44</td>
<td>32</td>
<td>—</td>
</tr>
<tr>
<td>Hydraulic Lifter Restrictor Retainer Bolts</td>
<td>16.4</td>
<td>—</td>
<td>145</td>
</tr>
<tr>
<td>Oil Pan Studs to Oil Seal Retainer or Crankcase</td>
<td>1.7</td>
<td>—</td>
<td>15</td>
</tr>
<tr>
<td>Camshaft Thrust Plate</td>
<td>11.9</td>
<td>—</td>
<td>105</td>
</tr>
</tbody>
</table>
SPECIAL TOOLS

<table>
<thead>
<tr>
<th>No.</th>
<th>Tool Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Torsional Damper Remover and Installer</td>
<td>J-23523-E</td>
</tr>
<tr>
<td>2</td>
<td>Valve Spring Compressor</td>
<td>J-8062</td>
</tr>
<tr>
<td>3</td>
<td>Crankshaft Seal Installer</td>
<td>J-35468</td>
</tr>
<tr>
<td>4</td>
<td>Main Bearing Replacer</td>
<td>J-8080</td>
</tr>
<tr>
<td>5</td>
<td>Piston Ring Compressor</td>
<td>J-8037</td>
</tr>
<tr>
<td>6</td>
<td>Guide Set</td>
<td>J-5239</td>
</tr>
<tr>
<td>7</td>
<td>Vacuum Pump</td>
<td>J-23738-A</td>
</tr>
<tr>
<td>8</td>
<td>Stud Remover</td>
<td>J-5802-01</td>
</tr>
<tr>
<td>9</td>
<td>Reamer (0.003-inch oversize)</td>
<td>J-5715</td>
</tr>
<tr>
<td>10</td>
<td>Reamer (0.013-inch oversize)</td>
<td>J-6036</td>
</tr>
<tr>
<td>11</td>
<td>Stud Installer</td>
<td>J-6880</td>
</tr>
<tr>
<td>12</td>
<td>Crankshaft Gear Puller</td>
<td>J-5825-A</td>
</tr>
<tr>
<td>13</td>
<td>Crankshaft Gear Installer</td>
<td>J-5590</td>
</tr>
<tr>
<td>14</td>
<td>Rear Crankshaft Seal Installer</td>
<td>J-35621</td>
</tr>
</tbody>
</table>

1. Torsional Damper Remover and Installer
2. Valve Spring Compressor
3. Crankshaft Seal Installer
4. Main Bearing Replacer
5. Piston Ring Compressor
6. Guide Set
7. Vacuum Pump
8. Stud Remover
9. Reamer (0.003-inch oversize)
10. Reamer (0.013-inch oversize)
11. Stud Installer
12. Crankshaft Gear Puller
13. Crankshaft Gear Installer
14. Rear Crankshaft Seal Installer
Subject Page

<table>
<thead>
<tr>
<th>Description</th>
<th>Tools and Shop Equipment</th>
<th>Accessory Removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleaning</td>
<td></td>
<td>Parts Identification</td>
</tr>
<tr>
<td>Draining the Engine</td>
<td></td>
<td>Air Manifold and Injection Tube Removal</td>
</tr>
<tr>
<td>Manifold Removal</td>
<td></td>
<td>Thermostat Housing Removal</td>
</tr>
<tr>
<td>Water Pump Removal</td>
<td></td>
<td>Valve Train Component Removal</td>
</tr>
<tr>
<td>Cylinder Head Removal</td>
<td></td>
<td>Torsional Damper Removal</td>
</tr>
<tr>
<td>Oil Pan Removal</td>
<td></td>
<td>Oil Pump Removal</td>
</tr>
<tr>
<td>Timing Gear Cover Removal</td>
<td></td>
<td>Piston and Connecting Rod Removal</td>
</tr>
<tr>
<td>Flywheel Removal</td>
<td></td>
<td>Crankshaft Removal</td>
</tr>
<tr>
<td>Main Bearing Removal (Without Removing Crankshaft)</td>
<td></td>
<td>Crankshaft Rear Oil Seal Removal (Without Removing Crankshaft)</td>
</tr>
<tr>
<td>Camshaft Removal</td>
<td></td>
<td>Water Pump</td>
</tr>
<tr>
<td>Cleaning, Inspection, and Repair</td>
<td></td>
<td>Oil Pan and Rocker Arm Cover</td>
</tr>
<tr>
<td>Block</td>
<td></td>
<td>Oil Pump</td>
</tr>
<tr>
<td>Main Bearing Cap Replacement</td>
<td></td>
<td>Valve Train Components</td>
</tr>
<tr>
<td>Cylinder Bores</td>
<td></td>
<td>Cylinder Head</td>
</tr>
<tr>
<td>Piston and Connecting Rod Assemblies</td>
<td></td>
<td>Thermostat and Housing</td>
</tr>
<tr>
<td>Intake and Exhaust Manifolds</td>
<td></td>
<td>Torsional Damper</td>
</tr>
<tr>
<td>Camshaft</td>
<td></td>
<td>Crankshaft and Bearings</td>
</tr>
<tr>
<td>Camshaft Bearings</td>
<td></td>
<td>Oil Filter Relief Valve Replacement</td>
</tr>
<tr>
<td>Timing Gear Cover</td>
<td></td>
<td>Assembly of Engine</td>
</tr>
<tr>
<td>Water Pump</td>
<td></td>
<td>Prior to Assembly</td>
</tr>
<tr>
<td>Oil Pan and Rocker Arm Cover</td>
<td></td>
<td>Crankshaft Rear Oil Seal Installation</td>
</tr>
<tr>
<td>Oil Pump</td>
<td></td>
<td>Main Bearing Installation (With Crankshaft Installed)</td>
</tr>
<tr>
<td>Valve Train Components</td>
<td></td>
<td>Crankshaft and Main Bearing Installation</td>
</tr>
<tr>
<td>Cylinder Head</td>
<td></td>
<td>Camshaft Installation</td>
</tr>
<tr>
<td>Thermostat and Housing</td>
<td></td>
<td>Timing Gear Cover Installation</td>
</tr>
<tr>
<td>Torsional Damper</td>
<td></td>
<td>Torsional Damper Installation</td>
</tr>
<tr>
<td>Crankshaft and Bearings</td>
<td></td>
<td>Piston and Connecting Rod Installation</td>
</tr>
<tr>
<td>Oil Filter Relief Valve Replacement</td>
<td></td>
<td>Oil Pump Installation</td>
</tr>
</tbody>
</table>

Page

<table>
<thead>
<tr>
<th>Description</th>
<th>.6A4-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tools and Shop Equipment</td>
<td>.6A4-4</td>
</tr>
<tr>
<td>Accessory Removal</td>
<td>.6A4-4</td>
</tr>
<tr>
<td>Cleaning</td>
<td>.6A4-4</td>
</tr>
<tr>
<td>Parts Identification</td>
<td>.6A4-4</td>
</tr>
<tr>
<td>Air Manifold and Injection Tube Removal</td>
<td>.6A4-8</td>
</tr>
<tr>
<td>Thermostat Housing Removal</td>
<td>.6A4-9</td>
</tr>
<tr>
<td>Water Pump Removal</td>
<td>.6A4-9</td>
</tr>
<tr>
<td>Valve Train Component Removal</td>
<td>.6A4-9</td>
</tr>
<tr>
<td>Cylinder Head Removal</td>
<td>.6A4-10</td>
</tr>
<tr>
<td>Torsional Damper Removal</td>
<td>.6A4-10</td>
</tr>
<tr>
<td>Oil Pan Removal</td>
<td>.6A4-10</td>
</tr>
<tr>
<td>Oil Pump Removal</td>
<td>.6A4-10</td>
</tr>
<tr>
<td>Timing Gear Cover Removal</td>
<td>.6A4-11</td>
</tr>
<tr>
<td>Piston and Connecting Rod Removal</td>
<td>.6A4-11</td>
</tr>
<tr>
<td>Flywheel Removal</td>
<td>.6A4-11</td>
</tr>
<tr>
<td>Crankshaft Removal</td>
<td>.6A4-12</td>
</tr>
<tr>
<td>Crankshaft Rear Oil Seal Removal (Without Removing Crankshaft)</td>
<td>.6A4-12</td>
</tr>
<tr>
<td>Main Bearing Removal (Without Removing Crankshaft)</td>
<td>.6A4-12</td>
</tr>
<tr>
<td>Camshaft Removal</td>
<td>.6A4-13</td>
</tr>
<tr>
<td>Cleaning, Inspection, and Repair</td>
<td>.6A4-14</td>
</tr>
<tr>
<td>Block</td>
<td>.6A4-14</td>
</tr>
<tr>
<td>Main Bearing Cap Replacement</td>
<td>.6A4-14</td>
</tr>
<tr>
<td>Cylinder Bores</td>
<td>.6A4-15</td>
</tr>
<tr>
<td>Piston and Connecting Rod Assemblies</td>
<td>.6A4-15</td>
</tr>
<tr>
<td>Intake and Exhaust Manifolds</td>
<td>.6A4-15</td>
</tr>
<tr>
<td>Camshaft</td>
<td>.6A4-16</td>
</tr>
<tr>
<td>Camshaft Bearings</td>
<td>.6A4-17</td>
</tr>
<tr>
<td>Timing Gear Cover</td>
<td>.6A4-17</td>
</tr>
<tr>
<td>Water Pump</td>
<td>.6A4-17</td>
</tr>
<tr>
<td>Oil Pan and Rocker Arm Cover</td>
<td>.6A4-18</td>
</tr>
<tr>
<td>Oil Pump</td>
<td>.6A4-18</td>
</tr>
<tr>
<td>Valve Train Components</td>
<td>.6A4-19</td>
</tr>
<tr>
<td>Cylinder Head</td>
<td>.6A4-19</td>
</tr>
<tr>
<td>Thermostat and Housing</td>
<td>.6A4-21</td>
</tr>
<tr>
<td>Torsional Damper</td>
<td>.6A4-22</td>
</tr>
<tr>
<td>Crankshaft and Bearings</td>
<td>.6A4-22</td>
</tr>
<tr>
<td>Oil Filter Relief Valve Replacement</td>
<td>.6A4-23</td>
</tr>
<tr>
<td>Assembly of Engine</td>
<td>.6A4-23</td>
</tr>
<tr>
<td>Prior to Assembly</td>
<td>.6A4-23</td>
</tr>
<tr>
<td>Crankshaft Rear Oil Seal Installation</td>
<td>.6A4-23</td>
</tr>
<tr>
<td>Main Bearing Installation (With Crankshaft Installed)</td>
<td>.6A4-25</td>
</tr>
<tr>
<td>Crankshaft and Main Bearing Installation</td>
<td>.6A4-25</td>
</tr>
<tr>
<td>Camshaft Installation</td>
<td>.6A4-26</td>
</tr>
<tr>
<td>Timing Gear Cover Installation</td>
<td>.6A4-26</td>
</tr>
<tr>
<td>Torsional Damper Installation</td>
<td>.6A4-27</td>
</tr>
<tr>
<td>Piston and Connecting Rod Installation</td>
<td>.6A4-27</td>
</tr>
<tr>
<td>Oil Pump Installation</td>
<td>.6A4-28</td>
</tr>
</tbody>
</table>
CONTENTS (CONTINUED)

SUBJECT	PAGE
Assembly of Engine (Cont.) | 6A4-28
 Oil Pan Installation | 6A4-28
 Cylinder Head Installation | 6A4-29
 Valve Train Component Installation | 6A4-29
 Valve Adjustment | 6A4-29
 Checking Valve Timing | 6A4-30
 Rocker Arm Cover and Tappet Cover Installation | 6A4-30
 Water Pump Installation | 6A4-30
 Thermostat Housing Installation | 6A4-30
 Intake and Exhaust Manifold Installation | 6A4-31
 Air Manifold Installation | 6A4-31
 Flywheel Installation | 6A4-31
 Engine Accessory Installation | 6A4-31
 Engine Set-Up and Testing | 6A4-31
 Specifications | 6A4-32
 Special Tools | 6A4-35

DESCRIPTION

The connecting rods are forged steel, with precision insert type crankpin bearings. The piston pins are a press fit in the connecting rods.

The pistons are case aluminum alloy. The piston pins are a floating fit in the pistons.

Lubrication schematics are shown in figures 1 and 2. The gear type oil pump is driven through an extension shaft from the distributor drive shaft, which is gear driven from the camshaft. Oil is drawn into the oil pump through a pickup screen and pipe (figure 2). Pressurized oil is routed to the oil filter. In case of excessive backpressure at the oil filter, a bypass valve is provided. This valve will allow oil flow to the main oil gallery at the right side of the block (figure 1). This gallery supplies oil to the camshaft bearings, hydraulic lifters, and main bearings. The connecting rods are supplied oil from the main bearings by means of drilled passages in the crankshaft. The valve train is supplied with oil by the hydraulic lifters. Oil is pumped from the lifters through the hollow pushrods to the rocker arms. Oil drains back to the crankcase through oil drain holes and the pushrod holes. The piston, piston pin, and timing gears are lubricated by oil splash.

For engine identification, refer to GENERAL INFORMATION (SEC. 6A).
A. Oil Pressure Sending Unit
B. Distributor Shaft Oiling
C. Splash Oiling
D. Filter Bypass System
E. Full Flow Oil Filter

Figure 2—Lubrication Diagram (Front View)
DISASSEMBLY

2. Clip	22. Bolt	42. Intake Valve
4. Reinforcement	24. Washer	44. Switch
5. PCV Valve	25. Bracket	45. Plug
7. Rocker Arm Cover	27. Gasket	47. Hose
12. Ball	32. Nut	52. Thermostat
15. Valve Key	35. Bolt	55. Bolt
17. Rotator	37. Exhaust Manifold	57. Washer
20. Valve Spring	40. Washer	

TOOLS AND SHOP EQUIPMENT

A clean, well lit work area should be available. Other necessary aids include: A suitable parts cleaning tank, compressed air supply, trays to keep parts and fasteners organized, and an adequate set of hand tools. An approved engine repair stand will aid the work and help prevent personal injury or damage to engine compartments. Special tools are illustrated throughout this section, and are listed at its end. These tools (or their equivalents) are specially designed to quickly and safely accomplish the operations for which they are intended. The use of these tools will also minimize possible damage to engine components. Some precision measuring tools are required for inspection of certain critical components. Torque wrenches will be necessary for correct assembly of various parts.

ACCESSORY REMOVAL

This manual assumes that the engine accessories have been removed. These accessories may include one or more of the following:

- Hydraulic Pump
- AIR Pump
- Generator
- Cooling Fan
- Distributor
- Carburetor

It is beyond the score of this manual to detail the many different accessory installations. Refer to the proper Truck Service Manual for this information.

Diagrams of emission and vacuum hose routings, wiring harness routings, accessory drive belt layout, etc., should be made before removing accessories.

CLEANING

Remove the engine accessories before cleaning to provide better access to engine exterior surfaces. After removing the carburetor, distributor, fuel pump, oil filter, etc., cover the openings with tape to prevent the entry of water, solvent, and dirt.

Methods used to clean the engine will depend on the aids which are available. Steam cleaning, pressure washing, or solvent cleaning are some acceptable methods. Allow the engine to dry before beginning the work.

It is important that the engine be as clean as possible to prevent dirt from entering critical areas during disassembly.

PARTS IDENTIFICATION

Refer to figures 3 through 6.
Figure 4—Cylinder Head, Manifolds, and Components
Figure 5—Block and Components
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>Screw</td>
</tr>
<tr>
<td>94</td>
<td>Camshaft Gear</td>
</tr>
<tr>
<td>95</td>
<td>Thrust Plate</td>
</tr>
<tr>
<td>96</td>
<td>Key</td>
</tr>
<tr>
<td>97</td>
<td>Spacer</td>
</tr>
<tr>
<td>98</td>
<td>Outer Camshaft Bearing</td>
</tr>
<tr>
<td>99</td>
<td>Inner Camshaft Bearing</td>
</tr>
<tr>
<td>100</td>
<td>Hydraulic Lifter</td>
</tr>
<tr>
<td>101</td>
<td>Top Compression Ring</td>
</tr>
<tr>
<td>102</td>
<td>Second Compression Ring</td>
</tr>
<tr>
<td>103</td>
<td>Rail</td>
</tr>
<tr>
<td>104</td>
<td>Expander</td>
</tr>
<tr>
<td>105</td>
<td>Oil Control Ring</td>
</tr>
<tr>
<td>106</td>
<td>Piston Pin</td>
</tr>
<tr>
<td>107</td>
<td>Piston</td>
</tr>
<tr>
<td>108</td>
<td>Connecting Rod</td>
</tr>
<tr>
<td>109</td>
<td>Connecting Rod Stud</td>
</tr>
<tr>
<td>110</td>
<td>Connecting Rod Cap</td>
</tr>
<tr>
<td>111</td>
<td>Nut</td>
</tr>
<tr>
<td>112</td>
<td>Upper Connecting Rod Bearing Insert</td>
</tr>
<tr>
<td>113</td>
<td>Lower Connecting Rod Bearing Insert</td>
</tr>
<tr>
<td>114</td>
<td>Gasket</td>
</tr>
<tr>
<td>115</td>
<td>Block</td>
</tr>
<tr>
<td>116</td>
<td>Plug</td>
</tr>
<tr>
<td>117</td>
<td>Rear Camshaft Plug</td>
</tr>
<tr>
<td>118</td>
<td>Flywheel</td>
</tr>
<tr>
<td>119</td>
<td>Flywheel Housing</td>
</tr>
<tr>
<td>120</td>
<td>Bolt</td>
</tr>
<tr>
<td>121</td>
<td>Dowel</td>
</tr>
<tr>
<td>122</td>
<td>Bolt</td>
</tr>
<tr>
<td>123</td>
<td>Plug</td>
</tr>
<tr>
<td>124</td>
<td>Dowel</td>
</tr>
<tr>
<td>125</td>
<td>Extention</td>
</tr>
<tr>
<td>126</td>
<td>Inspection Cover</td>
</tr>
<tr>
<td>127</td>
<td>Bolt</td>
</tr>
<tr>
<td>128</td>
<td>Bolt</td>
</tr>
<tr>
<td>129</td>
<td>Plug</td>
</tr>
<tr>
<td>130</td>
<td>Upper Main Bearing Inserts</td>
</tr>
<tr>
<td>131</td>
<td>Drain Plug</td>
</tr>
<tr>
<td>132</td>
<td>Upper Seal Half</td>
</tr>
<tr>
<td>133</td>
<td>Upper Rear Main Bearing Insert</td>
</tr>
<tr>
<td>134</td>
<td>Dowel Pin</td>
</tr>
<tr>
<td>135</td>
<td>Lower Seal Half</td>
</tr>
<tr>
<td>136</td>
<td>Lower Rear Main Bearing Insert</td>
</tr>
<tr>
<td>137</td>
<td>Rear Main Bearing Cap</td>
</tr>
<tr>
<td>138</td>
<td>Bolt</td>
</tr>
<tr>
<td>139</td>
<td>Bolt (Special)</td>
</tr>
<tr>
<td>140</td>
<td>Screen</td>
</tr>
<tr>
<td>141</td>
<td>Rear Oil Pan Seal</td>
</tr>
<tr>
<td>142</td>
<td>Gasket</td>
</tr>
<tr>
<td>143</td>
<td>Washer</td>
</tr>
<tr>
<td>144</td>
<td>Drain Plug</td>
</tr>
<tr>
<td>145</td>
<td>Bolt</td>
</tr>
<tr>
<td>146</td>
<td>Oil Pan</td>
</tr>
<tr>
<td>147</td>
<td>Front Oil Pan Seal</td>
</tr>
<tr>
<td>148</td>
<td>Bolt</td>
</tr>
<tr>
<td>149</td>
<td>Nut</td>
</tr>
<tr>
<td>150</td>
<td>Bolt</td>
</tr>
<tr>
<td>151</td>
<td>Oil Pump</td>
</tr>
<tr>
<td>152</td>
<td>Main Bearing Caps</td>
</tr>
<tr>
<td>153</td>
<td>Lower Main Bearing Inserts</td>
</tr>
<tr>
<td>154</td>
<td>Crankshaft</td>
</tr>
<tr>
<td>155</td>
<td>Crankshaft Gear</td>
</tr>
<tr>
<td>156</td>
<td>Key</td>
</tr>
<tr>
<td>157</td>
<td>Timing Gear Cover</td>
</tr>
<tr>
<td>158</td>
<td>Seal</td>
</tr>
<tr>
<td>159</td>
<td>Washer</td>
</tr>
<tr>
<td>160</td>
<td>Bolt</td>
</tr>
<tr>
<td>161</td>
<td>Washer</td>
</tr>
<tr>
<td>162</td>
<td>Torsional Damper</td>
</tr>
<tr>
<td>163</td>
<td>Key</td>
</tr>
<tr>
<td>164</td>
<td>Bolt</td>
</tr>
<tr>
<td>165</td>
<td>Plug</td>
</tr>
<tr>
<td>166</td>
<td>Gasket</td>
</tr>
<tr>
<td>167</td>
<td>Nipple</td>
</tr>
<tr>
<td>168</td>
<td>Plug</td>
</tr>
<tr>
<td>169</td>
<td>Gasket</td>
</tr>
<tr>
<td>170</td>
<td>Bolt</td>
</tr>
<tr>
<td>171</td>
<td>Water Pump</td>
</tr>
<tr>
<td>172</td>
<td>Nipple</td>
</tr>
<tr>
<td>173</td>
<td>Connector</td>
</tr>
<tr>
<td>174</td>
<td>Oil Filter</td>
</tr>
<tr>
<td>175</td>
<td>Bolt</td>
</tr>
<tr>
<td>176</td>
<td>Fuel Pump</td>
</tr>
<tr>
<td>177</td>
<td>Gasket</td>
</tr>
<tr>
<td>178</td>
<td>Bolt</td>
</tr>
<tr>
<td>179</td>
<td>Pushrod Cover</td>
</tr>
<tr>
<td>180</td>
<td>Dipstick Tube</td>
</tr>
<tr>
<td>181</td>
<td>Dipstick</td>
</tr>
<tr>
<td>182</td>
<td>Camshaft</td>
</tr>
</tbody>
</table>
DRAINING THE ENGINE

- Remove or Disconnect (Figure 5)
 - Oil pan drain plug (144). Allow the oil to drain.
 - Oil filter (174).
 - Block drain plug (131). Allow the coolant to drain.

- Install or Connect (Figure 5)
 - Oil pan drain plug (144) and washer (143).
 - Block drain plug (31).

 *Tighten
 - Oil pan drain plug (144) to 24 N·m (18 ft. lbs.).
 - Block drain plug (31).

 *Tighten
 - Block drain plug (131) to 12.7 N·m (112 in. lbs.).

AIR MANIFOLD AND INJECTION TUBE REMOVAL

- Remove or Disconnect (Figures 7 and 8)
 1. Air manifold (182).
 - Unscrew the fittings.
 - Remove the air manifold.
 2. Air injection tubes (183).
 - The air injection tubes are a push fit.
 - If the air injection tubes will not come out, they may be easier to remove after the manifolds (31 and 37) are removed, as described later.

MANIFOLD REMOVAL

The intake and exhaust manifolds are removed as an assembly. Instructions for separating and replacing the manifolds are outlined later in this section.

- Remove or Disconnect (Figures 4, 9, and 10)
 1. Heat stove (191) if used (figure 9).
 - Remove the bolt (190).
47. Water Pump Bypass Hose
50. Thermostat Housing
54. Water Outlet
171. Water Pump

Figure 11—Thermostat Housing and Water Pump Installed

- Remove the heat stove (191).
2. PCV hose.
3. Bolts (35), nuts (30), washers (29) and clamps (34).
4. Intake manifold (31) and exhaust manifold (37) as an assembly.
5. Gasket (27).

THERMOSTAT HOUSING REMOVAL

⇒ Remove or Disconnect (Figures 4 and 11)
1. Bolts (51).
2. Thermostat housing (50).
3. Gasket (49).

WATER PUMP REMOVAL

⇒ Remove or Disconnect (Figures 5 and 11)
1. Bolts (170).
2. Water pump (171).
3. Gasket (169).

Figure 12—Valve Train Component Rack

VALVE TRAIN COMPONENT REMOVAL

⇒ Remove or Disconnect (Figures 3, 4, 12, 13, and 14)
Tools Required:
J-3049 Valve Lifter Remover (Plier Type)
J-9290-01 Valve Lifter Remover (Slide Hammer Type)

Figure 13—Removing the Valve Lifters
1. Rocker arm cover (7).

- If the rocker arm cover adheres to the cylinder head (26), try to shear the gasket by bumping the end of the cover with a rubber mallet. If the cover will not come loose, carefully pry until loose. DO NOT DISTORT THE SEALING FLANGE.

2. Nuts (11), balls (12), rocker arms (13) and pushrods (20).

- Every effort should be made to insure that these mating parts are installed in their original locations during assembly. A simple valve train component organizer rack can be made from a piece of wood, as shown in figure 12.

3. Bolts (178) and pushrod covers (179).

5. Hydraulic lifters (100).

- Remove the lifters one at a time and place them in the organizer rack. The lifters must be installed in the same bore from which they were removed.

- A stuck lifter can be removed using J-3049 (figure 13) or J-9290-01 (figure 14).

CYLINDER HEAD REMOVAL

TORSIONAL DAMPER REMOVAL

OIL PAN REMOVAL

OIL PUMP REMOVAL
TIMING GEAR COVER REMOVAL

Remove or Disconnect (Figure 5)
1. Bolt (164).
2. Timing gear cover (157).
3. Gasket (166).

PISTON AND CONNECTING ROD REMOVAL

Remove or Disconnect (Figures 5, 16, and 17)

Tool Required:
J-5239 Connecting Rod Guide Set

1. Ridge (or deposits) at the top of the cylinder as follows:
 - Turn the crankshaft (154) until one piston (107) is at the bottom of its stroke. Place a soft cloth on top of the piston.
 - Using the manufacturer's directions, install a ridge reamer into the top of the cylinder (figure 16). Perform the cutting operation.
 - After the ridge and/or deposits are removed, remove the ridge reamer. Turn the crankshaft until the piston is at the top of its stroke. Remove the cloth and cuttings.
 - Repeat this procedure for each piston.

2. Connecting rod caps (110) as follows:
 - Make note of the arrangement of the connecting rod (108) markings, to ensure that they will be returned to their proper position during assembly. Mark the connecting rods with a scratch awl if necessary.
 - Remove the nuts (111).
 - To avoid mismatching the connecting rods and connecting rod caps, remove only one connecting rod cap at a time. Place the piston (107) at the bottom of its stroke.
 - Remove the connecting rod cap.
 - Install J-5239 onto the studs (109) (figure 17).

 Use of the specified guide set will prevent the connecting rod from scratching the bore or crankshaft journal during the removal process. The tool will also prevent the rod bearing half from falling out of the connecting rod during removal.

3. Connecting rod (108) and piston (107) from the block (115).
 - Push on the guide rod (item A, figure 17) to push the piston and connecting rod out. Use the guide rod to prevent the connecting rod from scoring the cylinder bore.
 - Loosely assemble the connecting rod cap (110) onto the connecting rod.
 - Repeat this procedure on the remaining piston and connecting rod assemblies.

FLYWHEEL REMOVAL

The crankshaft can be removed from the block without removing the flywheel. If the flywheel is removed, the dowel holes must be reamed oversize and oversized dowel pins installed, as outlined later. If flywheel removal is necessary, proceed as follows:

Remove or Disconnect (Figures 5 and 18)

- Mark the crankshaft (154) and flywheel (118) so that the dowel holes can be aligned in their original positions at the assembly.
1. Flywheel housing (119).
2. Rear main bearing cap (137).
3. Dowel pins (134).

 - With the block (115) inverted, turn the crankshaft (154) so that a dowel pin is at the 12 o'clock position.
 - Drive the dowel pin out, using a hammer and drift.
 - Repeat the preceding steps to drive out the remaining dowel pins. The crankshaft must be turned each time so that the pin can be driven out without contacting the block.
CRANKSHAFT REMOVAL

The main bearings and rear oil seal can be replaced without removing the crankshaft, as outlined later in this section.

- **CRANKSHAFT REAR OIL SEAL REMOVAL (WITHOUT REMOVING CRANKSHAFT)**

Remove or Disconnect (Figures 5, 19, and 20)

1. Rear main bearing cap (137).
2. Lower seal half (135) (figure 19).
3. Upper seal half (132).
 - Tap on the upper seal half, using a small drift and hammer (figure 20).
 - Remove the upper seal half, using pliers (figure 20).

- **MAIN BEARING REMOVAL (WITHOUT REMOVING CRANKSHAFT)**

Remove or Disconnect (Figures 5, 21, and 22)

Tool Required:
- J-8080 Main Bearing Remover/Installer

- Check the main bearing caps (152) for location markings. Mark the caps if necessary. The caps must be returned to their original locations during assembly.
1. Main bearing caps (137 and 152).
2. Upper and lower seal halves (132 and 135), as previously described.
3. Upper rear main bearing insert (133).
• Use a small brass drift and hammer. Tap on the insert, on the side opposite the bearing tang, until the insert rotates out of position (figure 21).
• Use a pair of pliers with the jaws taped to prevent damage to the crankshaft. Clamp the insert to the crankshaft flange (figure 21). Rotate the crankshaft (154) to remove the bearing insert.

4. Upper main bearing inserts (130).
• Insert J-8080 into the crankshaft (154) oil hole (figure 22).
• Rotate the crankshaft to “turn” the bearing insert out of the block.

CAMSHAFT REMOVAL

Remove or Disconnect (Figures 5 and 23)
• Turn the camshaft (182) until the screws (93) are visible through the holes in the camshaft gear (94) (figure 23).
1. Screws (93).
2. Camshaft (182). Pull the camshaft out of the block. Support the camshaft carefully when removing to prevent damage to the camshaft bearings.
A solvent tank, large enough to hold the larger engine parts, will be needed along with various bristle brushes and a gasket scraper. A source of compressed air will be helpful in the cleaning operations.

Precision measuring tools will be required for the inspection procedure. These include: micrometers, cylinder bore gage, feeler gages, dial indicator set, etc. The inspection work, performed with the proper method and tools, is most important. The rebuilt engine cannot be expected to perform properly if parts worn beyond acceptable limits are reused.

BLOCK

1. Block (115) in solvent.
2. Block gasket surfaces.
3. Cylinder bores.
4. Oil galleries and passages.
5. Scale deposits from the coolant passages.

Inspect (Figure 5)

1. All expansion plugs for looseness or leakage.
2. Valve lifter bores for deep scratches and varnish deposits.
3. Block (115) for cracks, especially in the following areas:
 - Cylinder walls.
 - Coolant jackets.
 - Main bearing webs.
 - Engine mount bosses.
4. Main bearing bores and main bearing caps (137 and 152).
 - All main bearing bores should be round and uniform in ID at all bearing supports.

MAIN BEARING CAP REPLACEMENT

1. New main bearing cap (137 or 152). The arrow on the main bearing cap faces the front of the engine (opposite the flywheel).
2. Bolts (138) and stud (139).

Tighten

- Bolts (138) and stud (139) to 90 N·m (65 ft-lbs.).

Measure (Figure 25)

- Main bearing vertical ID (inside diameter). Use an inside micrometer.
 - This dimension should be the same as the other main bearing bore vertical diameters.
 - If it is necessary to increase the vertical ID, use an equal thickness of special service bearing cap shims at each side of the cap to
Figure 24—Checking the Block Gasket Surface

provide the same dimension as at the other bores. This is necessary to assure the proper “crush” on bearing inserts when the engine is assembled.

CYLINDER BORES

Inspect

- Cylinder walls for scoring or other damage.

Measure

- Cylinder out of round and taper. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

CYLINDER BORE RECONDITIONING

Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

PISTON AND CONNECTING ROD ASSEMBLIES

Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) and perform the following:

Disassemble

- Components as required.

Clean

- Components as outlined.

Inspect

- Components as outlined.

Measure

- Piston pin diameter and pin to piston clearance.
- Piston to bore clearance, and fit pistons as outlined.

Assemble

- Components as outlined.

Measure

- Ring end gap and ring clearance.

Inspect

- Ring fit.

INTAKE AND EXHAUST MANIFOLDS

Disassemble (Figure 4)

1. Bolts (39) and washers (40).
3. Intake manifold (31) and exhaust manifold (37).

Clean

- Old pieces of gasket from the gasket surfaces.

Inspect

- Manifolds for cracks, broken flanges, etc.
- Gasket surfaces for heavy scratches.
- Manifold heat control valve (if used). The heat control valve is in the exhaust manifold. The thermostatic spring and anti-rattle spring must be in place and in good condition. The shaft should turn freely when weight is moved and the spring should return the shaft to its original position.

Measure

- Manifold distortion. Lay a straight edge along the full length of the exhaust port faces and measure any gaps between the straight edge and the port faces. If at any point a gap of 0.80 mm (0.030-inch) or more exists, it is likely that the manifold has distorted to a point where it will not seal properly. If a good exhaust seal is to be expected, the exhaust manifold must be replaced.
Assemble (Figure 4)
1. Gasket (36) to the exhaust manifold (37).
2. Intake manifold (31) and exhaust manifold (37).
3. Nuts (32), bolts (39) and washers (40). Leave the fasteners hand-tight until the manifold to cylinder head bolts are torqued. Refer to "Intake and Exhaust Manifold Installation."

CAMSHAFT

Important
* Whenever the camshaft needs to be replaced, a new set of hydraulic lifters must also be installed.

Inspect (Figures 5, 26, 27, and 28)
- Camshaft (182) lobes and journals for scratches, pitting, scoring, and wear.
- Timing gear (94) for damaged or missing teeth.

Measure (Figures 26, 27, and 28)
Tool Required:
 J-7872 Dial Indicator (or equivalent)

CAMSHAFT GEAR AND THRUST PLATE REPLACEMENT

Disassemble (Figures 5 and 29)
1. Camshaft gear (94).
4.8 LITER L6 6A4-17

CAMSHAFT BEARINGS

Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

TIMING GEAR COVER

- Place the camshaft (182) in a press. Support the camshaft gear. DO NOT support the thrust plate (95).

NOTICE: The thrust plate must be positioned so that the key (96) does not damage it during the removal operation.

- Press the camshaft out of the camshaft gear.

2. Thrust plate.
3. Spacer (97).

Assemble (Figures 5 and 30)

Tool Required:
J-22912-01 Support Plate (or equivalent)

- Support the camshaft (182) at the front journal with tool J-22912-01 (or equivalent) (figure 30). Mount the camshaft in a press as shown.
- Lubricate the thrust plate (95) with engine oil.
1. Key (96) (if removed).
2. Spacer (97). Make sure the chamfer in the spacer faces towards the journal radius.
3. Thrust plate.
4. Camshaft gear (94).
 - MAKE SURE THAT THE TIMING MARK IS TO THE OUTSIDE.
 - Press the camshaft gear onto the camshaft until it bottoms on the spacer (figure 30).
 - Remove the camshaft from the press.

Measure (Figure 28)

- Camshaft to thrust plate clearance. Use a feeler gage (figure 28). The correct clearance is 0.003-0.008-inch.

WATER PUMP

- Old gasket from the gasket surface.

Important

- Do not immerse the pump in solvent. The solvent may enter the pump's permanently lubricated bearings, dissolve the bearings' lubricant supply, and cause premature bearing failure.

Inspect

- Water pump shaft for roughness and end play. If the shaft does not turn smoothly, or if there is excessive end play, replace the water pump.
- Water pump body at the drain hole. If there is evidence of coolant leakage, the water pump shaft seal is leaking, and the water pump should be replaced.
DO NOT REMOVE THE PICK-UP SCREEN AND PIPE UNLESS REPLACEMENT IS REQUIRED.

THE PICK-UP PIPE IS A PRESS FIT IN THE PUMP BODY (209).

DO NOT TRY TO REMOVE THE SCREEN FROM THE PIPE. THE PICK-UP SCREEN AND PIPE IS SERVICED AS AN ASSEMBLY ONLY.

Clean
- All parts in clean solvent and blow dry with compressed air.

Inspect (Figure 32)
- Pump body (209) and cover (205) for cracks or other damage.
- Gears (207 and 208) for wear.
- Drive gear and shaft (208) for looseness in the pump body (209).
- Inside of the cover (205) for wear that would permit oil to leak past the ends of the gears.
- The pump gears, cover, and body are not serviced separately.
- Pressure relief valve (201) for fit. The regulator valve should slide freely in its bore without sticking or binding.

Assemble (Figures 32 and 33)
Tool Required:
- J-21882 Pick-up Tube and Screen Installer

1. Pressure relief valve (201).
2. Spring (202).
3. Spring retaining pin (203).
4. Drive gear and shaft (208).
5. Idler gear (207) in the pump body (209) with the smooth side of the gear toward the pump cover opening. Index the marks made during disassembly.
7. Cover (205) and screws (204).

Tighten
- Screws (204) to 7.9 N·m (70 in. lbs.).
- Turn the drive shaft by hand to check for smooth operation.

NOTICE: Be careful not to twist, shear or collapse the pipe while installing.

8. Pick-up screen and pipe (140) (if removed) (figure 33).
- If the pick-up screen and pipe assembly was removed, it should be replaced with a new part. Loss of press fit condition could result in an air leak and loss of oil pressure.
- Mount the oil pump in a soft-jawed vise.
- Apply sealer to the end of the pipe.
- Tap the pick-up screen and pipe into place, using J-21882 and a hammer.
- The pump screen must be parallel with the bottom of the oil pan when installed.
VALVE TRAIN COMPONENTS

PUSHRODS, ROCKER ARMS, BALLS, AND NUTS

Clean

- Parts in solvent. Blow dry with compressed air. Make sure the oil passages in the pushrods are clear.

Inspect (Figure 4)

- Rocker arms (13) and balls (12) at their mating surfaces. These surfaces should be smooth and free from scoring or other damage.
- Rocker arm areas which contact the valve stems, and the sockets which contact the pushrods (20). These areas should be smooth and free of damage and wear.
- Nuts (11). The nuts are prevailing torque nuts. At least 6.2 N·m (55 in. lbs.) torque should be required to thread the nuts onto the rocker arm studs. If not, it is possible that the nut(s) could back off during engine operation, causing loss of lash and valve train noise.
- Pushrods for bending. Roll the pushrod on a flat surface to determine if it is bent. Replace if necessary.
- Ends of the pushrods for scoring or roughness.

HYDRAULIC LIFTERS

Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

CYLINDER HEAD

Disassemble (Figures 34, and 35)

Tool Required:
J-8062 Valve Spring Compressor

1. Valve keys (15).
 - Compress the valve springs (19), using J-8062 (figure 35).
 - Remove the valve keys.
 - Remove the tool.
2. Rotators (17), and shields (18).
3. Valve springs (20) and dampers (240).
4. O-ring seals (16) and seals (19).
5. Valves (42 and 43). Place them in a rack so they can be returned to their original position at assembly.

CLEANING AND INSPECTION OF COMPONENTS
Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) and perform the following:

Clean
• Components as outlined.

Inspect
• Components as outlined.

Measure
• Valve stem clearance.
• Valve spring tension and free length.
Other information outlined includes:
• Valve and seat grinding.
• Valve guide reaming.

ROCKER ARM STUD REPLACEMENT
Tools Required:
J-5802-01 Stud Remover
J-5715 Reamer (0.003-inch oversize) or
J-6036 Reamer (0.013-inch oversize)
J-6880 Stud Installer
Rocker arm studs that have damaged threads or are loose in cylinder heads should be replaced. New studs are available in 0.003-inch and 0.013-inch oversize.
1. Place tool J-5802-01 over the stud to be removed. Install a nut and flat washer. Remove the stud by turning the nut (figure 36).
2. Ream the hole to the proper size for the replacement oversize stud. Use reamer J-5715 for 0.003-inch oversize studs; reamer J-6036 for 0.013-inch oversize stud (figure 37).
3. Coat lower end (press-fit area) of stud with hypoid axle lubricant. Drive the stud into place with a hammer and tool J-6880. Stud is installed to proper depth when the tool bottoms on the cylinder head (figure 38).

ASSEMBLY

Assemble (Figures 34, 35, and 39)

Tools Required:
J-8062 Valve Spring Compressor
J-23738-A Vacuum Pump
1. New seals (19) (intake valves only). Install the seals over the valve guides and seat them against the head.
2. Valves (42 and 43).
• Lubricate the valve stems with engine oil.
Figure 39—Checking the Valve Seals

- Insert the valves into the proper ports.
3. Valve spring shims (if used).
4. Valve springs (20) with dampers (240).
5. Shields (18).
6. Rotators (17).
7. O-ring seals (16) and valve keys (15).
- Compress the valve spring, using J-8062 (figure 35). Compress the spring enough so the lower valve stem groove can be clearly seen.
- Push a new O-ring seal onto the valve stem. The seal is to be installed on the stem's lower groove. Make sure the seal is flat and not twisted.
- Apply grease to the area of the upper valve stem groove. Assemble the two valve keys, using the grease to hold the keys in place. Make sure the keys seat properly in the groove.
- Release the compressor tool. Make sure the valve keys stay in place.
- Repeat the preceding steps on the remaining valves.
- Check each valve stem seal, using J-23738-A (figure 39). Place the adapter cup over the shield (18). Operate the vacuum pump. Observe the vacuum pump gage. No air should be able to leak past the seal. If the O-ring seal will not hold a vacuum, it may have been damaged or improperly installed.

Figure 40—Scale for Checking Valve Spring Installed Height

- Valve spring installed height of each valve spring.
1. Use a narrow, thin scale. A cutaway scale (figure 40) may be helpful.
2. Measure from the valve shim or spring seat to the top of the shield (18) (figure 41).
3. If this measurement exceeds the figure given in "Specifications," install valve spring seat shims of sufficient thickness (between the spring and cylinder head) to give the desired measurement. NEVER shim the spring so as to give an installed height under the specified figure.

THERMOSTAT AND HOUSING

The thermostat is located in a housing bolted to the front of the cylinder head (figure 4).
Thermostats consist of a restriction valve controlled by a thermostatic element. The restriction valve cracks or just starts to open at a predetermined temperature and continues to open as the engine coolant temperature increases. To assure proper cooling and engine warm-up it is important that the correct thermostat be used. Refer to the proper Truck Service Manual for the correct thermostat application.
Disassemble (Figure 4)

1. Bolts (55).
2. Water outlet (54).
3. Thermostat (52).
4. Gasket (53).

Inspect (Figure 4)

- Water outlet (54) and housing (50) for cracks or damage.

Assemble (Figure 4)

1. Thermostat (52).
2. Gasket (53).
3. Water outlet (54).

Tighten

- Bolts (55) to 40 N·m (30 ft. lbs.).

TORSIONAL DAMPER

Inspect

- Torsional damper weight for looseness or signs of shifting on the hub. Replace as needed.
- Area of the torsional damper hub shaft which contacts the front crankshaft seal for roughness or nicks. Replace the damper if this condition exists.

CRANKSHAFT AND BEARINGS

CLEANING AND INSPECTION

Clean

- Crankshaft with solvent.
 - Do not scratch the bearing journals.
 - Blow all sludge from the oil passages with compressed air.
- Main bearing inserts. Wipe free of oil with a soft cloth.

Inspect

- Crankshaft for cracks. Use the magnaflux method, if available.
- Crankpins, main bearing journals and thrust surfaces for scoring, nicks, or damage caused by lack of lubrication.
- Main bearing inserts for scoring or other damage.
 - In general, the lower inserts (except the #1 bearing) shows a greater wear and the most distress from fatigue. If, upon inspection, the lower insert is suitable for use, it can be assumed that the upper insert is also satisfactory. If the lower insert shows evidence of wear or damage, both upper and lower inserts must be replaced.
- Crankshaft gear for chipped or damaged teeth.

Measure (Figures 42 and 43)

- Main bearing and connecting rod journal diameters (figure 42). Compare with "Specifications." Grind or replace the crankshaft if necessary.
CRANKSHAFT BEARING AVAILABILITY
Main bearings are available in standard and 0.001, 0.002, 0.010, 0.020, and 0.030-inch undersizes. Connecting rod bearings are available in standard and 0.001, 0.002, 0.010, and 0.020-inch undersizes.

CRANKSHAFT GEAR REPLACEMENT
Disassemble (Figure 44)
Tool Required:
- J-24420-B Puller
- Crankshaft gear, using J-24420-B.

ASSEMBLY OF ENGINE

PRIOR TO ASSEMBLY
The importance of cleanliness during the assembly procedure cannot be overstressed. Dirt will cause premature wear of the rebuilt engine.
Lubricate all moving parts lightly with engine oil or engine assembly lubricant (unless specified otherwise) during assembly. This will provide initial lubrication when the engine is started.

CRANKSHAFT REAR OIL SEAL INSTALLATION
An oil seal installation tool (figure 46) should be fabricated (if not provided in the seal kit) to prevent seal damage during installation. Extreme care should be
WITH CRANKSHAFT REMOVED

1. Upper seal half (132).
 - Coat the seal lips lightly with engine oil. Keep the oil off of the seal mating ends.
 - Position the tip of the tool between the crankshaft (154) and the seal seat in the block (115) (figure 47).
 - Position the seal half between the crankshaft and tip of the tool. Make sure that the oil seal lip is positioned toward the front of the engine (figure 47).
 - Roll the seal around the crankshaft using the tool as a “shoe-horn” to protect the seal bead from the sharp corner of the seal seat surface in the block. The installation tool must remain in position until the seal half is properly positioned with both ends flush with the block.
 - Remove the tool, being careful not to withdraw the seal half.

2. Lower seal half (135).
 - Coat the seal lips lightly with engine oil. Keep the oil off of the seal mating ends.
 - Insert the seal half into the rear main bearing cap (135). Use the tool to protect the seal half from the sharp edge of the seal seat. Feed the seal half into the rear main bearing cap, using light finger pressure. Make sure the oil seal lip faces the front of the engine (figure 48).

3. Rear main bearing cap (135) as outlined later.

WITH CRANKSHAFT INSTALLED

1. Upper seal half (132).
 - Coat the seal lips lightly with engine oil. Keep the oil off of the seal mating ends.
 - Position the tip of the tool between the crankshaft (154) and the seal seat in the block (115) (figure 47).
 - Position the seal half between the crankshaft and tip of the tool. Make sure that the oil seal lip is positioned toward the front of the engine (figure 47).
 - Roll the seal around the crankshaft using the tool as a “shoe-horn” to protect the seal bead from the sharp corner of the seal seat surface in the block. The installation tool must remain in position until the seal half is properly positioned with both ends flush with the block.
 - Remove the tool, being careful not to withdraw the seal half.

2. Lower seal half (135).
 - Coat the seal lips lightly with engine oil. Keep the oil off of the seal mating ends.
 - Insert the seal half into the rear main bearing cap (135). Use the tool to protect the seal half from the sharp edge of the seal seat. Feed the seal half into the rear main bearing cap, using light finger pressure. Make sure the oil seal lip faces the front of the engine (figure 48).

3. Rear main bearing cap (135) as outlined later.
MAIN BEARING INSTALLATION (WITH CRANKSHAFT INSTALLED)

Refer to "Crankshaft and Main Bearing Installation," later in this section for main bearing insert sizing information.

Install or Connect (Figures 5 and 21)

Tool Required:
J-8080 Main Bearing Remover/Installer

1. Upper rear main bearing insert (133).
 • Apply engine oil to an insert of the proper size.
 • Insert the plain end (without the bearing tang) of the insert between the crankshaft journal and the notched side of the block (115).
 • Use pliers with taped jaws to clamp the bearing to the crankshaft (154) as shown in figure 21. Rotate the crankshaft to "roll" the insert into the block. Then seat the insert using a small drift and hammer.

2. Lower rear main bearing insert (136).
 • Apply engine oil to an insert of the proper size.
 • Press the insert into the rear main bearing cap (137).

3. Upper main bearing inserts (130).
 • Insert J-8080 into a crankshaft main bearing oil hole.
 • Apply engine oil to inserts of the proper size.
 • Insert the plain end (without the bearing tang) between the crankshaft (154) and the notched side of the block (115).
 • Rotate the crankshaft (154) to "roll" the insert into the block.
 • Remove J-8080.

4. Lower main bearing inserts (153) to the main bearing caps (152).
 • Make sure the inserts are of the proper size.
 • Apply engine oil to the inserts.

5. Main bearing caps (137 and 152). Refer to "Crankshaft and Main Bearing Installation" later in this section.

Measure

• Main bearing clearance and crankshaft end play. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

CRANKSHAFT AND MAIN BEARING INSTALLATION

Main bearings are of the precision insert type and do not use shims for adjustment. If clearances are found to be excessive, a new bearing, plus both upper and lower inserts will be required. Service main bearings are available in standard size and 0.001-inch, 0.002-inch, 0.010-inch, 0.020-inch and 0.030-inch undersize.

Selective fitting of the main bearing inserts is necessary in production in order to obtain close tolerances. For this reason you may use one standard insert with one 0.001-inch undersize insert which will decrease the clearance 0.0005-inch from using two standard inserts.

MAIN BEARING SELECTION

The simplest, most accurate way to measure main bearing clearance is with the use of gaging plastic. This wax-like material compresses evenly between the bearing and journal surfaces without damaging them. Proceed as follows:

Install or Connect (Figure 5)

1. Upper main bearing inserts (130 and 133) to the block (115).
 • If any undersized bearings are used, make absolutely certain they are fitted to the proper journal.

2. Crankshaft (154). Take care not to damage the thrust areas.

3. Lower bearing inserts (136 and 153) to the bearing caps (137 and 153).

Measure

• Main bearing clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

• Apply oil to the main bearing inserts.

4. Rear main bearing cap (137).

• Apply a brush-on type oil sealing compound to the mating surface of the block and cap (figure 49). Do not allow any sealant on either crankshaft or rear oil seal.

5. Main bearing caps (137 and 152) with the selected lower main bearing inserts (153). Be sure to put the main bearing caps in their original locations, with the arrows facing the front of the engine.

6. Main bearing caps (152) with the selected lower main bearing inserts (153). Be sure to put the main bearing caps in their original locations, with the arrows facing the front of the engine.

7. Bolts (138 and 139). Make sure the special bolt (139), which retains the oil pump screen bracket, is installed in the proper position. (#5 main bearing cap, camshaft side hole.)

Tighten

• Bolts (138) to 14 Nm (10 ft. lbs.).

8. Main bearing caps (152) with the selected lower main bearing inserts (153). Be sure to put the main bearing caps in their original locations, with the arrows facing the front of the engine.

7. Bolts (138 and 139). Make sure the special bolt (139), which retains the oil pump screen bracket, is installed in the proper position. (#5 main bearing cap, camshaft side hole.)
Figure 50—Measuring Crankshaft End Play

Tighten
- All bolts (138 and 139) EXCEPT THE REAR MAIN BEARING CAP BOLTS to 90 N·m (65 ft. lbs.).

Measure (Figure 50)
- Crankshaft end play.
 1. Tap the end of the crankshaft (154) first rearward then forward with a lead hammer. This will line up the rear main bearing and crankshaft thrust surfaces.
 2. Tighten the rear main bearing cap bolts (138) to 90 N·m (65 ft. lbs.).
 3. With the crankshaft forced forward, measure at the front end of the rear main bearing with a feeler gage (figure 50). The proper clearance is 0.002-0.006-inch.

Inspect
- Crankshaft (154) for binding. Try turning the crankshaft to check for binding. If the crankshaft does not turn freely, loosen the bolts (138 and 139), one pair at a time, until the tight bearing is located. Burrs on the bearing cap, foreign matter between the insert and the block or the bearing cap, or a faulty insert could cause a lack of clearance at the bearing.

CAMSHAFT INSTALLATION

Install or Connect (Figures 5 and 51)
- Coat the camshaft lobes with Engine Oil Supplement (GM part number 1051396) or equivalent. Coat the bearing journals with engine oil.
 1. Camshaft (182) into the block (115). Take care not to damage the camshaft bearings (98 and 99).

 Important
 - Align the timing marks (figure 51).
 2. Screws (93).

Figure 51—Timing Marks and Thrust Plate Screws

Tighten
- Screws (93) to 9.0 N·m (80 in. lbs.).

TIMING GEAR COVER INSTALLATION

Install or Connect (Figures 5 and 52)

Tool Required:
J-35468 Seal Installer and Centering Tool
- Apply engine oil to the lips of the seal (158).
 1. J-35468 to the seal (158). The tool is necessary to properly “center” the front seal on the crankshaft. If the seal is not centered, it may be damaged when the vibration damper is installed, or it may fail prematurely.
 2. Gasket (166) to the block (115).
 3. Timing gear cover (157), with the tool, to the block (115) (figure 52).
 4. Bolts (164).

Tighten
- Bolts (164) to 9.0 N·m (80 in. lbs.).

Figure 52—Front Cover Centering Tool
Figure 53—Installing the Torsional Damper

Remove or Disconnect (Figure 5)
- J-35468 from the seal (158).

TORSIONAL DAMPER INSTALLATION

Install or Connect (Figures 5 and 53)

Tool Required:
J-23523-E Torsional Damper Remover/Installer

NOTICE: The inertia weight section of the torsional damper is assembled to the hub with a rubber type material. The correct installation procedures (with the proper tool) must be followed or movement of the inertia weight section of the hub will destroy the tuning of the damper.

1. Key (163).
2. Stud (item C, figure 53) to the crankshaft (154). Thread the stud fully into the tapped end of the crankshaft.
3. Torsional damper (162) over the end of the stud. Align the keyway in the vibration damper shaft with the crankshaft key.
4. Bearing, washer, and nut (figure 53).
 - Turn the nut to pull the vibration damper into place.
 - Remove the tool.
5. Bolt (160) and washer (161).

 Tighten
- Bolt (160) to 80 N·m (60 ft. lbs.).

Figure 54—Piston Ring Gap Location

PISTON AND CONNECTING ROD INSTALLATION

CONNECTING ROD BEARING SELECTION

Connecting rod bearings are of the precision insert type and do not use shims for adjustment. DO NOT FILE RODS OR ROD CAPS. If clearances are found to be excessive, a new bearing will be required. Service bearings are available in standard size and 0.001-inch and 0.002-inch undersize for use with new and used standard size crankshafts, and in 0.010-inch and 0.020-inch undersize for use with reconditioned crankshafts.

The simplest, most accurate way to measure connecting rod bearing clearance is with the use of gaging plastic. This wax-like material compresses evenly between the bearing and journal surfaces without damaging them.

Selective fitting of the bearing inserts is necessary to obtain close tolerances. For this reason you may use, for example, one standard insert with one 0.001-inch undersize insert, which will decrease the clearance 0.0005-inch from using two standard inserts.

Install or Connect (Figures 5 and 54 through 56)

Tools Required:
J-5329 Connecting Rod Guide Set
J-8037 Ring Compressor
- Make sure the cylinder walls are clean. Lubricate the cylinder wall lightly with engine oil.
- Make sure the piston is installed in the matching cylinder. Refer to "Piston and Connecting Rod Assemblies," previously in this section.
1. Connecting rod bearing inserts (112 and 113).
 - Be certain that the inserts are of the proper size.
 - Install the inserts in the connecting rod (108) and connecting rod cap (110).
2. Piston (107) and connecting rod (108) to the proper bore.
With the connecting rod cap removed, install J-5329 onto the connecting rod studs (69).

Locate the piston ring end gaps as shown in figure 87. Lubricate the piston and rings (101, 102, and 105) with engine oil.

Locate the ring end gaps as shown in figure 54.

Without disturbing the ring end gap location, install J-8037 over the piston (figure 55).

The piston must be installed so that the piston crown depression's flat side faces to the engine's left side (figure 56).

Place the piston in its matching bore. Using light blows with a hammer handle, tap the piston down into its bore (figure 55). At the same time, guide the connecting rod into piston on the crankpin, using the J-5329 Guide Tool. Hold the ring compressor against the block until all rings have entered the cylinder bore.

Connecting rod cap (110) with the lower connecting rod bearing insert.

Connect the rod bearing clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

Then apply engine oil to the connecting rod bearing.

Tighten

Nuts (111) to 80 N·m (60 ft. lbs.).

Measure (Figure 57)

Connecting rod side clearance. Use a feeler gage. The proper clearance is 0.006-0.017 inch.

OIL PUMP INSTALLATION

Install or Connect (Figure 5)

1. Oil pump (151).
2. Bolts (148) and nut (149).

Tighten

Bolts (148) to 13.0 N·m (115 in. lbs.).
Nut (149) to 34 N·m (26 ft. lbs.).

OIL PAN INSTALLATION

Install or Connect (Figure 5)

1. Rear oil pan seal (141).
2. Front oil pan seal (147).
3. Gaskets (142).
4. Oil pan (146).
5. Bolts (145).

Tighten

1/4-20 bolts to 9.0 N·m (80 in. lbs.).
5/16-18 bolts (except oil pan [146] to front cover [157] bolts) to 18.6 N·m (165 in. lbs.).
Oil pan (146) to front cover (157) bolts to 5.1 N·m (45 in. lbs.).

4.8 LITER L6 6A4-29

CYLINDER HEAD INSTALLATION

Clean (Figures 4 and 5)
— Gasket surfaces on the block (115) and cylinder head (26).
— Threads for cylinder head bolts in the block (115).

Install or Connect (Figures 4, 5 and 58)
1. Head gasket (33).
 • On engines using a STEEL gasket, coat both sides of a new gasket with a good sealer. Spread the sealer thin and even. One method of applying the sealer that will assure the proper coat is with the use of a paint roller. Too much sealer may hold the gasket away from the head or block.

 Use no sealer on engines using a composition STEEL ASBESTOS gasket.
 • Place the gasket in position over the dowel pins with the bead up.

2. Cylinder head (26). Carefully guide the cylinder head into place over the dowel pins and head gasket (33).

3. Bolts (21) and stud (59).
 • Coat the threads of the cylinder head bolts and stud with sealing compound (Loctite #592 or equivalent).
 • Install finger tight.

Tighten
• Bolts (21) and stud (59) a little at a time, using the sequence shown in figure 58. The proper torques are as follows:
 — Left-hand front bolt 115 N·m (85 ft. lbs.).
 — All others: 130 N·m (95 ft. lbs.).

VALVE TRAIN COMPONENT INSTALLATION

Important
• Replace all hydraulic lifters if a new camshaft was installed.

Install or Connect (Figures 4 and 5)
• Lubricate the hydraulic lifters (100) with Engine Oil Supplement (GM part number 1051396) or equivalent.
1. Hydraulic lifters (100) into their mating bores in the block (115).
2. Pushrods (20). Seat the pushrods into the socket in the lifters (100).
 • Coat the mating surfaces of the rocker arms (13) and balls (12) with a molybdenum disulfide grease.
3. Rocker arms (13).
5. Nuts (11).

VALVE ADJUSTMENT

Adjust the valves when in contact with the cam base circle, as follows:
1. Turn the crankshaft until the timing mark on the vibration damper is lined up with the “0” mark on the timing marker (figure 59) and cam lobes #7 and #9 (counted from the front of the engine) are up.
2. Turn the adjusting nuts for rocker arm numbers 4, 6, 8, 10, 11, and 12 (counted from the front of the engine) until there is no free lash at the pushrod (figure 60). Then tighten the nut one full additional turn (to center the lifter plunger).
3. Crank the engine one full turn (360 degrees) until the damper timing mark and the “0” mark on the timing marker are again in alignment. Cam lobes #4 and #6 are now up.
4. Adjust rocker arm numbers 1, 2, 3, 5, 7, and 9 as outlined in step 2 above.
5. The following chart shows indicator readings with gears properly indexed for 4.8L engines and the indicator readings resulting from improperly indexed gears.

<table>
<thead>
<tr>
<th>Engine</th>
<th>Camshaft Part Number</th>
<th>Valve Lift</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8L</td>
<td>3848000</td>
<td>0.405"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dial Gears Properly Indexed</th>
<th>0.016" ± 0.004"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicator</td>
<td>One Tooth Advanced</td>
</tr>
<tr>
<td>Readings</td>
<td>One Tooth Retarded</td>
</tr>
</tbody>
</table>

ROCKER ARM COVER AND PUSHROD COVER INSTALLATION

INSTALLATION

Install or Connect (Figures 4 and 5)
1. Gasket (8).
2. Rocker arm cover (7).
3. Bolts (3), clips (2) and reinforcements (4).

Tighten
- Bolts (3) to 4.3 N·m (38 in. lbs.).
5. Pushrod covers (179).

Tighten
- Bolts (178) to 9.0 N·m (80 in. lbs.).

WATER PUMP INSTALLATION

Install or Connect (Figure 5)
1. Gasket (169).
2. Water pump (171).

Tighten
- Bolts (170) to 20 N·m (15 ft. lbs.).

THERMOSTAT HOUSING INSTALLATION

Install or Connect (Figure 4)
1. Gasket (49).
2. Thermostat housing (50).
3. Bolts (51).

Tighten
- Bolts (51) to 38 N·m (28 ft. lbs.).
4. Hose (47).
INTAKE AND EXHAUST MANIFOLD INSTALLATION

Install or Connect (Figure 4)
- The manifold attaching bolt (39) and nuts (32) must be finger tight ONLY. Do not tighten the manifold attaching bolt and nuts until the manifold to head bolts and nuts (30 and 35) have been tightened.
1. Gasket (27).
2. Intake and exhaust manifold assembly.
3. Clamps (34), washers (29), bolts (35) and nuts (30).

Tighten
- Nuts (30) and bolts (35) to 52 N·m (38 ft. lbs.).
- Nuts (32) and bolts (39) to 60 N·m (44 ft. lbs.).

AIR MANIFOLD INSTALLATION

Install or Connect (Figures 7 and 8)
1. Air injection tubes (183).
2. Air manifold (182).

FLYWHEEL INSTALLATION

Clean (Figure 5)
- Mating surfaces of the flywheel (118) and crankshaft (154).

Install or Connect (Figures 5 and 18)
1. Flywheel (118) to the crankshaft (154). Align the marks made at disassembly. Make sure the dowel holes in the crankshaft and flywheel are aligned.
2. Bolts (122).

Tighten
- Bolts (122) to 150 N·m (110 ft. lbs.).
3. Dowel pins (134).
 - The interference fit dowel pins must be replaced with an oversized dowel pin when installing the flywheel.
 - Ream the dowel pin holes to the proper size (0.4510-0.4517-inch).
 - Tap the dowel pins into place, flush with the flywheel retaining bolt surface.

ENGINE SET-UP AND TESTING

1. After overhaul, the engine should be tested before installing in the vehicle. If a suitable test stand is not available, the following procedure can be used after the engine is installed in the vehicle.
2. Fill the crankcase with the proper quantity and grade of oil. Refer to the proper Truck Service Manual or Owner's and Driver's Manual for this information. If a new camshaft or hydraulic lifters were installed, add Engine Oil Supplement (GM part no. 1051396 or equivalent) to the engine oil. Fill the cooling system with the proper coolant.
3. With the ignition "OFF," or disconnected, crank the engine several times. Listen for any unusual noises or evidence that any parts are binding.
4. Start the engine and listen for unusual noises. Run the engine at about 1000 rpm until the engine is at operating temperature.
5. Listen for improperly adjusted valves or sticking lifters, and other unusual noises.
6. Check for oil and coolant leaks while the engine is running.
7. Using the proper Truck Service Manual or Emission Control Label for specifications, adjust the ignition timing, and idle rpm and mixture.

ENGINE ACCESSORY INSTALLATION

Install the engine accessories (distributor, carburetor, oil filter, generator, etc.) as directed in the proper Truck Service Manual. Connect all vacuum hoses and electrical equipment the same way as removed.
SPECIFICATIONS

ENGINE SPECIFICATIONS

All Specifications are in INCHES unless otherwise noted.

<table>
<thead>
<tr>
<th>GENERAL DATA:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>In Line</td>
</tr>
<tr>
<td>Displacement</td>
<td>4.8L (292 Cu. In.)</td>
</tr>
<tr>
<td>No. Of Cylinders</td>
<td>6</td>
</tr>
<tr>
<td>Bore</td>
<td>3.876</td>
</tr>
<tr>
<td>Stroke</td>
<td>4.12</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>8.0:1</td>
</tr>
<tr>
<td>Firing Order</td>
<td>1 - 5 - 3 - 6 - 2 - 4</td>
</tr>
<tr>
<td>Oil Pressure</td>
<td>16 psi @ 700 RPM; 30-45 psi @ 1500 RPM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CYLINDER BORE:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>3.8750-3.8780</td>
</tr>
<tr>
<td>Out Of Round</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>0.0005 (Maximum)</td>
</tr>
<tr>
<td>Service</td>
<td>0.002 (Maximum)</td>
</tr>
<tr>
<td>Taper</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td></td>
</tr>
<tr>
<td>Thrust Side</td>
<td>0.0005 (Maximum)</td>
</tr>
<tr>
<td>Relief Side</td>
<td>0.0005 (Maximum)</td>
</tr>
<tr>
<td>Service</td>
<td>0.001 (Maximum)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PISTON:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearance</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>0.0026-0.0036</td>
</tr>
<tr>
<td>Service Limit</td>
<td>0.0045 (Maximum)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PISTON RING:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPRESS</td>
<td></td>
</tr>
<tr>
<td>Groove</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td></td>
</tr>
<tr>
<td>Top</td>
<td>0.0020-0.0040</td>
</tr>
<tr>
<td>2nd</td>
<td></td>
</tr>
<tr>
<td>Service Limit</td>
<td></td>
</tr>
<tr>
<td>Hi Limit Production ± 0.001</td>
<td></td>
</tr>
<tr>
<td>Gap</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td></td>
</tr>
<tr>
<td>Top</td>
<td>0.010-0.020</td>
</tr>
<tr>
<td>2nd</td>
<td>0.010-0.020</td>
</tr>
<tr>
<td>Service Limit</td>
<td></td>
</tr>
<tr>
<td>Hi Limit Production + 0.010</td>
<td></td>
</tr>
<tr>
<td>OIL</td>
<td></td>
</tr>
<tr>
<td>Groove</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td></td>
</tr>
<tr>
<td>Service Limit</td>
<td></td>
</tr>
<tr>
<td>Hi Limit Production + 0.001</td>
<td></td>
</tr>
<tr>
<td>Gap</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td></td>
</tr>
<tr>
<td>Service Limit</td>
<td></td>
</tr>
<tr>
<td>Hi Production + 0.010</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PISTON PIN:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td></td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>0.00015-0.00025</td>
</tr>
<tr>
<td>In Piston</td>
<td></td>
</tr>
<tr>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Fit In Rod</td>
<td></td>
</tr>
<tr>
<td>0.0008-0.0016 Interference</td>
<td></td>
</tr>
</tbody>
</table>

B-07896
SPECIFICATIONS

ENGINE SPECIFICATIONS (CONT.)

All specifications are in INCHES unless otherwise noted.

CRANKSHAFT:

<table>
<thead>
<tr>
<th>Component</th>
<th>Diameter</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Journal</td>
<td></td>
<td>2.2979-2.2994</td>
</tr>
<tr>
<td>Taper</td>
<td>Production</td>
<td>0.0002 (Maximum)</td>
</tr>
<tr>
<td></td>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Out of Round</td>
<td>Production</td>
<td>0.0002 (Maximum)</td>
</tr>
<tr>
<td></td>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Main Bearing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clearance</td>
<td>Production</td>
<td>#1-#6: 0.0010-0.0024</td>
</tr>
<tr>
<td></td>
<td>Service Limit</td>
<td>#7: 0.0016-0.0035</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#1-#6: 0.0010-0.0025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#7: 0.0015-0.0035</td>
</tr>
<tr>
<td>Crankshaft End Play</td>
<td></td>
<td>0.002-0.006</td>
</tr>
<tr>
<td>Crankpin</td>
<td>Diameter</td>
<td>2.099-2.100</td>
</tr>
<tr>
<td>Taper</td>
<td>Production</td>
<td>0.0005 (Maximum)</td>
</tr>
<tr>
<td></td>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Out of Round</td>
<td>Production</td>
<td>0.0005 (Maximum)</td>
</tr>
<tr>
<td></td>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Rod Bearing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clearance</td>
<td>Production</td>
<td>0.0010-0.0026</td>
</tr>
<tr>
<td></td>
<td>Service Limit</td>
<td>0.0030 (Maximum)</td>
</tr>
<tr>
<td>Rod Side Clearance</td>
<td></td>
<td>0.006-0.017</td>
</tr>
</tbody>
</table>

CAMSHAFT:

<table>
<thead>
<tr>
<th>Component</th>
<th>Intake</th>
<th>Exhaust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lobe Intake</td>
<td>0.2315</td>
<td></td>
</tr>
<tr>
<td>Lobe Lift</td>
<td>0.2315</td>
<td></td>
</tr>
<tr>
<td>Journal Diameter</td>
<td>1.8677-1.8697</td>
<td></td>
</tr>
<tr>
<td>Camshaft Runout</td>
<td>0.020 (Maximum)</td>
<td></td>
</tr>
<tr>
<td>Camshaft End Play</td>
<td>0.003-0.008</td>
<td></td>
</tr>
</tbody>
</table>

VALVE SYSTEM:

<table>
<thead>
<tr>
<th>Component</th>
<th>Intake</th>
<th>Exhaust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifter</td>
<td>Hydraulic</td>
<td></td>
</tr>
<tr>
<td>Rocker Arm Ratio</td>
<td>1.75:1</td>
<td></td>
</tr>
<tr>
<td>Valve Lash</td>
<td>One Turn Down From Zero Lash</td>
<td></td>
</tr>
<tr>
<td>Face Angle (Intake & Exhaust)</td>
<td>46°</td>
<td></td>
</tr>
<tr>
<td>Seat Angle (Intake & Exhaust)</td>
<td>46°</td>
<td></td>
</tr>
<tr>
<td>Seat Runout (Intake & Exhaust)</td>
<td>0.002 (Maximum)</td>
<td></td>
</tr>
<tr>
<td>Seat Width</td>
<td>Intake</td>
<td>Exhaust</td>
</tr>
<tr>
<td></td>
<td>0.035-0.060</td>
<td>0.062-0.093</td>
</tr>
<tr>
<td>Stem Clearance</td>
<td>Intake</td>
<td>Exhaust</td>
</tr>
<tr>
<td>Production</td>
<td>0.0010-0.0027</td>
<td>0.0015-0.0032</td>
</tr>
<tr>
<td>Service</td>
<td>Intake</td>
<td>Exhaust</td>
</tr>
<tr>
<td>Production</td>
<td>High Limit Production + 0.001</td>
<td></td>
</tr>
<tr>
<td>Service</td>
<td>High Limit Production + 0.002</td>
<td></td>
</tr>
<tr>
<td>Free Length</td>
<td>2.08</td>
<td></td>
</tr>
<tr>
<td>Valve Pressure</td>
<td>Closed</td>
<td>Open</td>
</tr>
<tr>
<td>Outer</td>
<td>78-86 lbs. @ 1.66"</td>
<td>170-180 lbs. @ 1.26"</td>
</tr>
<tr>
<td>Installed Height</td>
<td>12 1/2"</td>
<td>± 1/32"</td>
</tr>
<tr>
<td>Valve Spring Installed Height</td>
<td>1.94</td>
<td></td>
</tr>
<tr>
<td>Valve Spring Damper</td>
<td>Approx. # of Coils</td>
<td>4</td>
</tr>
</tbody>
</table>
SPECIFICATIONS (CONT.)

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
<th>In. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flywheel Bolts</td>
<td>150</td>
<td>110</td>
<td>—</td>
</tr>
<tr>
<td>Flywheel Housing Bolts</td>
<td>40</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Main Bearing Cap Bolts</td>
<td>90</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Camshaft Thrust Plate Screws</td>
<td>9.0</td>
<td>—</td>
<td>80</td>
</tr>
<tr>
<td>Front Cover Bolts</td>
<td>9.0</td>
<td>—</td>
<td>80</td>
</tr>
<tr>
<td>Torsional Damper Bolt</td>
<td>70</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>Connecting Rod Cap Nuts</td>
<td>60</td>
<td>44</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pump Bolts</td>
<td>13.0</td>
<td>—</td>
<td>115</td>
</tr>
<tr>
<td>Oil Pump Bracket Nut (to Main Bearing Cap Bolt)</td>
<td>34</td>
<td>25</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pump Cover Bolts</td>
<td>7.9</td>
<td>—</td>
<td>70</td>
</tr>
<tr>
<td>Oil Pan Bolts (to front cover)</td>
<td>5.1</td>
<td>—</td>
<td>45</td>
</tr>
<tr>
<td>(to block [1/4-20])</td>
<td>9.0</td>
<td>—</td>
<td>80</td>
</tr>
<tr>
<td>(to block [5/16-18])</td>
<td>18.6</td>
<td>—</td>
<td>165</td>
</tr>
<tr>
<td>Cylinder Head Bolts (left-front bolt)</td>
<td>115</td>
<td>85</td>
<td>—</td>
</tr>
<tr>
<td>(all others)</td>
<td>130</td>
<td>95</td>
<td>—</td>
</tr>
<tr>
<td>Rocker Arm Cover Bolts</td>
<td>4.3</td>
<td>—</td>
<td>38</td>
</tr>
<tr>
<td>Pushrod Cover Bolts</td>
<td>9.0</td>
<td>—</td>
<td>80</td>
</tr>
<tr>
<td>Water Pump Bolts</td>
<td>20</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>Thermostat Housing to Block Bolts</td>
<td>38</td>
<td>28</td>
<td>—</td>
</tr>
<tr>
<td>Water Outlet to Thermostat Housing Bolts</td>
<td>28</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Intake Manifold to Exhaust Manifold Bolts and Nuts</td>
<td>60</td>
<td>44</td>
<td>—</td>
</tr>
<tr>
<td>Manifold to Cylinder Head Bolts and Nuts</td>
<td>52</td>
<td>38</td>
<td>—</td>
</tr>
<tr>
<td>Spark Plug</td>
<td>20</td>
<td>15</td>
<td>—</td>
</tr>
</tbody>
</table>
SPECIAL TOOLS

1. Torsional Damper Remover and Installer
2. Valve Spring Compressor
3. Support Plate
4. Crankshaft Seal Installer and Centering Tool
5. Main Bearing Replacer
6. Piston Ring Compressor
7. Guide Set
8. Vacuum Pump
9. Hydraulic Lifter Remover (Slide Hammer Type)
10. Hydraulic Lifter Remover (Plier Type)
11. Stud Remover
12. Reamer (0.003-inch oversize)
13. Reamer (0.013-inch oversize)
14. Stud Installer
15. Crankshaft Gear Puller
16. Crankshaft Gear Installer
17. Dial Indicator Adapter
18. Oil Pump Suction Pipe Installer
SECTION 6A5

V8 ENGINE

5.0 LITER (305 Cu. In.)

5.7 LITER (350 Cu. In.)

7.4 LITER (454 Cu. In.)

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>6A5-2</td>
</tr>
<tr>
<td>Engine Identification</td>
<td>6A5-2</td>
</tr>
<tr>
<td>Disassembly</td>
<td></td>
</tr>
<tr>
<td>Tools and Shop Equipment</td>
<td>6A5-6</td>
</tr>
<tr>
<td>Accessory Removal</td>
<td>6A5-6</td>
</tr>
<tr>
<td>Cleaning</td>
<td>6A5-6</td>
</tr>
<tr>
<td>Draining the Engine</td>
<td>6A5-6</td>
</tr>
<tr>
<td>Exhaust Manifold Removal</td>
<td>6A5-6</td>
</tr>
<tr>
<td>Water Pump Removal</td>
<td>6A5-6</td>
</tr>
<tr>
<td>Intake Manifold Removal</td>
<td>6A5-6</td>
</tr>
<tr>
<td>Rocker Arm Cover Removal</td>
<td>6A5-7</td>
</tr>
<tr>
<td>Valve Train Component Removal</td>
<td>6A5-7</td>
</tr>
<tr>
<td>Cylinder Head Removal</td>
<td>6A5-8</td>
</tr>
<tr>
<td>Torsional Damper Removal</td>
<td>6A5-8</td>
</tr>
<tr>
<td>Oil Pan Removal</td>
<td>6A5-8</td>
</tr>
<tr>
<td>Oil Pump Removal</td>
<td>6A5-8</td>
</tr>
<tr>
<td>Front Cover Removal</td>
<td>6A5-8</td>
</tr>
<tr>
<td>Timing Chain and Camshaft Sprocket Removal</td>
<td>6A5-9</td>
</tr>
<tr>
<td>Camshaft Removal</td>
<td>6A5-9</td>
</tr>
<tr>
<td>Piston and Connecting Rod Removal</td>
<td>6A5-9</td>
</tr>
<tr>
<td>Flywheel Removal</td>
<td>6A5-13</td>
</tr>
<tr>
<td>Rear Crankshaft Oil Seal Retainer Removal (5.0 L and 5.7 L Engines)</td>
<td>6A5-13</td>
</tr>
<tr>
<td>Crankshaft Removal</td>
<td>6A5-13</td>
</tr>
<tr>
<td>Cleaning, Inspection, and Repair</td>
<td></td>
</tr>
<tr>
<td>Block</td>
<td>6A5-14</td>
</tr>
<tr>
<td>Piston and Connecting Rod Assemblies</td>
<td>6A5-15</td>
</tr>
<tr>
<td>Intake and Exhaust Manifold</td>
<td>6A5-16</td>
</tr>
<tr>
<td>Camshaft</td>
<td>6A5-16</td>
</tr>
<tr>
<td>Camshaft Bearings</td>
<td>6A5-16</td>
</tr>
<tr>
<td>Timing Chain and Sprockets</td>
<td>6A5-16</td>
</tr>
<tr>
<td>Front Cover</td>
<td>6A5-17</td>
</tr>
<tr>
<td>Water Pump</td>
<td>6A5-18</td>
</tr>
<tr>
<td>Oil Pan and Rocker Arm Covers</td>
<td>6A5-18</td>
</tr>
<tr>
<td>Oil Pump</td>
<td>6A5-18</td>
</tr>
<tr>
<td>Valve Train Components</td>
<td>6A5-19</td>
</tr>
<tr>
<td>Cylinder Head</td>
<td>6A5-20</td>
</tr>
<tr>
<td>Thermostat and Water Outlet</td>
<td>6A5-23</td>
</tr>
<tr>
<td>Torsional Damper</td>
<td>6A5-24</td>
</tr>
<tr>
<td>Crankshaft and Bearings</td>
<td>6A5-24</td>
</tr>
<tr>
<td>Oil Filter Bypass Valve</td>
<td>6A5-24</td>
</tr>
<tr>
<td>Rear Crankshaft Oil Seal Retainer (5.0 L and 5.7 L Engines)</td>
<td>6A5-25</td>
</tr>
<tr>
<td>Assembly of Engine</td>
<td>6A5-26</td>
</tr>
<tr>
<td>Prior to Assembly</td>
<td>6A5-26</td>
</tr>
<tr>
<td>Rear Crankshaft Oil Seal Installation (7.4 L Engines)</td>
<td>6A5-26</td>
</tr>
<tr>
<td>Crankshaft and Main Bearing Installation</td>
<td>6A5-27</td>
</tr>
</tbody>
</table>
6A5-2 V8 ENGINE

CONTENTS (CONT.)

SUBJECT PAGE

Assembly of Engine Cont. .. 6A5-28
Rear Crankshaft Oil Seal and Retainer Installation (5.0 L and 5.7 L Engines). 6A5-28
Camshaft, Timing Chain, and Sprocket Installation 6A5-28
Front Cover Installation ... 6A5-29
Torsional Damper Installation .. 6A5-30
Piston and Connecting Rod Installation 6A5-30
Oil Pump Installation .. 6A5-32
Oil Pan Installation .. 6A5-32
Cylinder Head Installation .. 6A5-33
Valve Train Component Installation ... 6A5-34
Valve Adjustment .. 6A5-34
Intake Manifold Installation .. 6A5-35
Rocker Arm Cover Installation .. 6A5-35
Exhaust Manifold Installation ... 6A5-35
Water Pump Installation ... 6A5-36
Engine Accessory Installation .. 6A5-36
Engine Set-Up and Testing ... 6A5-36
Specifications ... 6A5-41
Special Tools .. 6A5-48

DESCRIPTION

GM V8 engines covered by this section are 90-degree V8 type, overhead valve, water cooled, with cast iron block and heads.

The camshaft is supported by five plain type bearings and is chain driven. Motion from the camshaft is transmitted to the valves by hydraulic lifters, pushrods, and ball-pivot type rocker arms. The valve guides are integral in the cylinder head.

The crankshaft is supported by five precision insert type bearings, with crankshaft thrust taken at the number five (rear) bearing.

The connecting rods are forged steel, with precision insert type crankpin bearings. The piston pins are a press fit in the connecting rods.

The pistons are cast aluminum alloy. The piston pins are a floating fit in the pistons.

The gear type oil pump is driven through an extension shaft from the distributor driveshaft which is gear driven from the camshaft. The oil is drawn from the engine oil pan through a pickup screen and tube. Pressurized oil is delivered through internal passages to the camshaft and crankshaft to lubricate the bearings. Lubrication diagrams are shown in figure 1, 2, and 3.

ENGINE IDENTIFICATION

Two basic types of engines, with three different displacements, are covered in this section.

The first type is the "small block" engine, which is available in 5.0 L (305 cu. in.) and 5.7 L (350 cu. in.) displacements.

The second type is the 7.4 L (454 cu. in.) engine, which is sometimes referred to as the "Mark IV" engine.

To determine the displacement of the engine, use the Vehicle Identification (VIN) of the vehicle the engine was removed from. Refer to "Specifications" at the end of this section. If the VIN is not available, the bore and stroke of the engine involved can be measured and compared against "Specifications" to determine the engine model.

Refer to General Information (Section 0A) in this manual for further information.
Figure 1—Lubrication Diagram (5.0L and 5.7L Engines)
Figure 2—Lubrication Diagram (5.0L and 5.7L Engines)
Cylinder walls are oiled by oil thrown off pressure fed connecting rod bearings.

Cylinder Wall and Camshaft Lobe Oiling

Fuel Pump Push Rod Oiling

Oil Filter and Distributor Oiling

Crankcase and Crankshaft Oiling

Valve Mechanism Oiling

Figure 3—Lubrication Diagram (7.4L Engines)
DISASSEMBLY

TOOLS AND SHOP EQUIPMENT

A clean, well lit work area should be available. Other necessary equipment includes: A suitable parts cleaning tank, compressed air supply, trays to keep parts and fasteners organized, and an adequate set of hand tools.

An approved engine repair stand will aid the work and help prevent personal injury or damage to engine components.

Special tools are illustrated throughout this section, and are listed at its end. These tools (or their equivalents) are specially designed to quickly and safely accomplish the operations for which they are intended. The use of these tools will also minimize possible damage to engine components.

Some precision measuring tools are required for inspection of certain critical components. Torque wrenches will be necessary for correct assembly of various parts.

ACCESSORY REMOVAL

This manual assumes that the engine accessories have been removed. These accessories may include one or more of the following: Hydraulic Pump, Distributor, AIR Pump, Carburetor, Generator, Fuel Pump, Air Conditioning, EGR Valve and Compressor, Emission Control, Cooling Fan, Equipment. It is beyond the scope of this section to detail the many different accessory installations. Refer to the proper Truck Service Manual for this information.

Diagrams of emission and vacuum hose routings, wiring harness routing, accessory drive belt layout, etc., should be made before removing accessories.

CLEANING

Remove the engine accessories before cleaning, to provide better access to engine exterior surfaces. After removing the carburetor, distributor, fuel pump, etc., cover the openings with tape to prevent the entry of water, solvent, and dirt.

Methods used to clean the engine will depend on the aids which are available. Steam cleaning, pressure washing, or solvent cleaning are some acceptable methods. Allow the engine to dry before beginning the work.

It is important that the engine be as clean as possible to prevent dirt from entering critical areas during disassembly.

DRAINING THE ENGINE

Remove or Disconnect
1. Oil pan drain plug. Allow the oil pan to drain.
2. Oil filter.
3. Block drain plugs. Allow the coolant to drain.

Install or Connect
1. Oil pan drain plug.

Tighten
• Oil pan drain plug to 28 N·m (20 ft. lbs.).
2. Block drain plugs.

Tighten
• Block drain plugs to 12.7 N·m (112 in. lbs.).

EXHAUST MANIFOLD REMOVAL

Remove or Disconnect (Figures 4 and 5)
1. Oil dipstick tube.
 • On 5.0 L and 5.7 L engines with cast iron manifolds, bend back the tab washers (3).
2. Bolts and studs (4).
3. Tab washers (3) and washers (2) (some 5.0 L and 5.7 L engines).
4. Heat shields (6) (if used).
5. Exhaust manifold (1). Take care not to damage the AIR injection tubes (if used).

WATER PUMP REMOVAL

Remove or Disconnect (Figure 6)
1. Bolts (12).
2. Water pump (10).

INTAKE MANIFOLD REMOVAL

Remove or Disconnect (Figures 7 and 8)
1. Bolts (20).
2. Intake manifold (21).
 • Pull the intake manifold up.
 • Do not attempt to loosen the manifold by prying under the gasket surface with any tool.
3. Gaskets (22), and clips (some TBI engines).
4. Seals (23) (7.4 L engines).
ROCKER ARM COVER REMOVAL

Remove or Disconnect (Figure 9)

1. Nuts (30), clips (35), and reinforcements (31) or bolts (36) and washers (37).
2. Rocker arm covers (32). If the rocker arm cover adheres to the cylinder head, try to shear the gasket by bumping the end of the cover with a rubber mallet. If the cover will not come loose, carefully pry until loose. DO NOT DISTORT THE SEALING FLANGE.

VALVE TRAIN COMPONENT REMOVAL

Remove or Disconnect (Figures 10 through 13)

Tools Required:
J-3049 Valve Lifter Remover (Plier Type)

1. Nuts (40), balls (41), rocker arms (42) and pushrods (43).
 - Note that on 7.4 L engines, the exhaust valve pushrods are longer than the intake valve pushrods.
 - Every effort should be made to insure that these mating parts are installed in their original locations during assembly. A simple valve train component organizer rack can be made from a piece of wood, as shown in figure 11.
2. Hydraulic lifters (44).
 - Remove the lifters one at a time, using a magnet. Place the lifters in the organizer rack, or tag them in some way to insure that they can be returned to the valve lifter bore from which they were removed.
Figure 6—Water Pumps

Some lifters may be stuck in their bores due to gum or varnish deposits. These lifters can be removed using either J-3049 (figure 12) or J-9290-01 (figure 13).

CYLINDER HEAD REMOVAL

Remove or Disconnect (Figure 10)
1. Bolts (45).
2. Cylinder heads (46). Use care when handling the cylinder heads, to prevent damage to rocker arm studs or gasket sealing surfaces.

TORSIONAL DAMPER REMOVAL

Remove or Disconnect (Figure 14)
Tool Required:
J-23523-E Torsional Damper Puller and Installer
1. Crankshaft pulley.

OIL PAN REMOVAL

Remove or Disconnect (Figures 15 and 16)
1. Oil pan bolts, timing marker (if used), clips and reinforcements.
2. Oil pan.
3. Gasket or gaskets.
4. Front and rear oil pan seals (7.4 L engines).

OIL PUMP REMOVAL

Remove or Disconnect (Figure 15)
1. Oil pump retaining bolt.
2. Nuts (73) (if equipped).
4. Oil pump, with drive shaft and connector, and baffle (71).

FRONT COVER REMOVAL

Remove or Disconnect (Figure 17)
1. Bolts (93).
2. Timing tab (92) (7.4 L engines).
3. Front cover (91).
4. Gasket (90).
TIMING CHAIN AND CAMSHAFT SPROCKET REMOVAL

Remove or Disconnect (Figure 18)

- Timing chain free play. If the chain can be moved back and forth in excess of 16 mm (5/8-inch), make a note that the timing chain should be replaced during assembly.

Remove or Disconnect (Figure 18)

1. Bolts (100).

2. Camshaft sprocket (101) and timing chain (102) together.

CAMSHAFT REMOVAL

Remove or Disconnect (Figure 19)

- Camshaft.

- Install three 5/16-18 bolts 100–125 mm (4–5-inches) long into the camshaft tapped holes. Use these bolts to handle the camshaft.

- Pull the camshaft from the block.

- Use care to prevent damage to the camshaft and bearings.

PISTON AND CONNECTING ROD REMOVAL

Remove or Disconnect (Figures 20 and 21)

Tool Required:

J-5239 Connecting Rod Guide Set
30. Nut
31. Reinforcement
32. Rocker Arm Cover
33. Stud
34. Gasket
35. Clip
(Number and Location Varies)

31 30 32 33 34 35

B-08008

Figure 9—Rocker Arm Cover (7.4L Engines)

40. Nut
41. Ball
42. Rocker Arm
43. Pushrod
44. Hydraulic Lifter
45. Bolt
46. Cylinder Head
47. Gasket

B-08009

Figure 10—Cylinder Head and Components (Typical)

A. 22 mm (7/8-inch)
B. 55 mm (2 1/4-inch)
C. 40 mm (1 1/2-inch)
D. 10 mm (3/8-inch) drill, 25 mm (1-inch) deep
E. 22 mm (7/8-inch) drill, 25 mm (1-inch) deep
F. Material: 50 mm x 200 mm (2 x 8-inch) lumber

B-05267

Figure 11—Valve Train Component Organizer

1. Ridge (or deposits) at the top of the cylinder as follows:
 - Turn the crankshaft until one piston is at the bottom of its stroke. Place a soft cloth on top of the piston.
 - Using the manufacturer's directions, install a ridge reamer into the top of the cylinder (figure 20). Perform the cutting operation.
 - After the ridge and/or deposits are removed, remove the ridge reamer. Turn the crankshaft

B-03442

Figure 12—Removing the Hydraulic Lifter
Figure 13—Removing the Hydraulic Lifter

until the piston is at the top of its stroke. Remove the cloth and cuttings.
- Repeat this procedure for each piston.

2. Connecting rod caps as follows:
- Make note of the arrangement of the connecting rod markings, to insure that they will be returned to their proper position during assembly. Mark the connecting rods with a scratch awl if necessary.
- Remove the connecting rod nuts.
- To avoid mismatching the connecting rods and connecting rod cap, remove only one connecting rod cap at a time. Place the piston at the bottom of its stroke.
- Remove the connecting rod cap.
- Install J-5239 onto the studs. Use of the specified guide set will prevent the connecting rod from scratching the bore or crankshaft journal during the removal process. The tool will also prevent the rod bearing half from falling out of the connecting rod during removal.

Figure 14—Removing the Torsional Damper

Figure 15—Oil Pan (5.0L and 5.7L Engines)

70. Oil Pump
71. Baffle (Some 5.7L Engines)
72. Bolt
73. Nut (Some 5.7L Engines)
74. Gasket
75. Reinforcement
3. Connecting rod and piston from the block.
 - Push on the guide rod (item A, figure 21) to push the piston and connecting rod out.
 - Use the guide rod to prevent the connecting rod from scoring the cylinder bore.
 - Assemble the connecting rod cap onto the connecting rod. Do not tighten.
 - Repeat this procedure on the remaining piston and connecting rod assemblies.
FLYWHEEL REMOVAL

Remove or Disconnect (Figure 22)

1. Bolts (111).
2. Flywheel (110).

REAR CRANKSHAFT OIL SEAL RETAINER REMOVAL (5.0 L and 5.7 L ENGINES)

Remove or Disconnect (Figure 23)

1. Screws and nuts.
2. Seal retainer (121).
3. Gasket (120).

CRANKSHAFT REMOVAL

Remove or Disconnect (Figures 24 and 25)

- Check the main bearing caps for location markings. Mark the caps if necessary. The caps must be returned to their original locations during assembly.
- Bolts (134).
Figure 24—Crankshaft and Components (Typical)

CLEANING, INSPECTION, AND REPAIR

A solvent tank, large enough to hold the larger engine parts, will be needed along with various bristle brushes and a gasket scraper. A source of compressed air will be helpful in the cleaning operations.

Precision measuring tools will be required for the inspection procedure. These include: micrometers, cylinder bore gage, feeler gages, dial indicator set, etc. The inspection work, performed with the proper method and tools, is most important. The rebuilt engine cannot be expected to perform properly if parts worn beyond acceptable limits are reused.

BLOCK

Clean
1. Block in solvent.
2. Block gasket surfaces.
3. Cylinder bores.

Inspect
1. All expansion plugs for poor fit or leakage.
2. Hydraulic lifter bores for deep scratches and varnish deposits.
3. Block for cracks.
 - Cylinder walls.
 - Coolant jackets.
 - Main bearing webs.
 - Engine mount bosses.
4. Main bearing bores and main bearing caps.
 - All main bearing bores should be round and uniform in ID at all bearing supports.
 - The area where the main bearing inserts contact the main bearing bore should be smooth.

Figure 25—Removing the Rear Crankshaft Seal (7.4L Engines)

2. Main bearing caps (132 and 133).
3. Crankshaft. Lift the crankshaft straight up, taking care to avoid damage to the crankshaft journals and thrust flange surfaces.
4. Upper and lower seal halves (130 and 131) (7.4 L engines). Pry the seal halves out with a screwdriver (figure 25).
5. Main bearing inserts (136 and 136). If the main bearings are to be reused, mark them to insure they are installed in their original positions before removal.
Figure 26—Checking the Block Gasket Surface

— If a main bearing cap is damaged and requires replacement, replace it as outlined later.

Measure (Figure 26)
- Head gasket surface distortion. Use a straight edge and feeler gage to check for flatness of the milled surface at the top of the cylinder block. The surface must be flat (within 0.10mm [0.004-inch]) to assure proper head gasket sealing.

MAIN BEARING CAP REPLACEMENT

Install or Connect
1. New main bearing cap. The arrow on the main bearing cap faces the front of the engine (opposite the flywheel).
2. Main bearing cap bolts.

Tighten
- Bolts to "Specifications."

Measure (Figure 27)
- Main bearing vertical ID (inside diameter). Use an inside micrometer.
- This dimension should be the same as the other main bearing bore vertical diameters.
- If it is necessary to increase the vertical ID, use an equal thickness of special service bearing cap shims at each side of the cap to provide the same dimension as at the other bores. This is necessary to assure the proper crush on the bearing inserts when the engine is assembled.

CYLINDER BORES

Inspect
- Cylinder bores for scoring and other damage.

Measure
- Cylinder out of round and taper. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

PISTON AND CONNECTING ROD ASSEMBLIES

Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) and perform the following:

Disassemble
- Components as required.

Clean
- Components as outlined.

Inspect
- Components as outlined.

Measure
- Piston pin diameter and pin to piston clearance.
- Piston to bore clearance, and fit pistons as outlined.

Important
- Each connecting rod and bearing cap should be marked, beginning at the front of the engine. Cylinders 1, 3, 5 and 7 are the left bank and 2, 4, 6, and 8 are the right bank. The numbers on the connecting rod and bearing cap must be on the same side when installed in the cylinder bore. If a connecting rod is ever transposed from one block or cylinder to another, new connecting rod bearings should be fitted and the connecting rod should be numbered to correspond with the new cylinder number.
IN INTAKE AND EXHAUST MANIFOLD

Clean
- Old pieces of gasket from the gasket surfaces.
- Excessive carbon build-up in the exhaust passages of the intake manifold.
- Scale and deposits from the coolant passages of the intake manifold.
- EGR passage (if used) of excessive carbon deposits.

Inspect (Figure 28)
- Manifolds for cracks, broken flanges, and gasket surface damage.
- Alignment of exhaust manifold flanges. Use a straight edge and feeler gage (figure 28). If the flanges do not align, the manifold is warped and should be replaced.
- AIR injection tubes for damage. Replace as needed.

CAMSHAFT

Important
- Whenever the camshaft needs to be replaced, a new set of valve lifters must also be installed.

Inspect
- Camshaft lobes and journals for scratches, pitting, scoring, and wear.

CAMSHAFT BEARINGS

Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) for replacement procedures.

TIMING CHAIN AND SPROCKETS

Inspect
- Sprockets for chipped teeth and wear.
- Timing chain for damage.
- It should be noted that excessively worn sprockets will rapidly wear a new chain. Likewise, an excessively worn chain will rapidly wear a new set of sprockets.

CRANKSHAFT SPROCKET REPLACEMENT

Disassemble (Figures 31 and 32)

Tools Required:
- J-5825 Crankshaft Sprocket Puller (5.0 L and 5.7 L engines)
- J1619 Crankshaft Sprocket Puller (7.4L engines)

2. Key, if necessary.
Figure 30—Checking the Camshaft Journals

Figure 31—Crankshaft Sprocket Replacement (5.0L and 5.7L Engines)

Assemble (Figures 31 and 32)

Tools Required:
- J-5590 Crankshaft Sprocket Installer (5.0 L and 5.7 L engines)
- J-22102 Crankshaft Sprocket Installer (7.4 L engines)

1. Key, if removed.
2. Crankshaft sprocket. Use J-5590 (5.0 L and 5.7 L engines) or J-22102 (7.4 L engines). Make sure the timing mark faces outside.

FRONT COVER

Clean
- Old gasket from the gasket surfaces.

Inspect
- Timing marker for damage.
- Front cover for damage, dents, or cracks.
Disassemble
- Front crankshaft seal. Pry the seal out with a screwdriver.

Assemble (Figure 33)
- Front crankshaft seal. Use J-35468 (5.0 L and 5.7 L engines) or J-22102 (7.4 L engines) (figure 33). The open end of the seal must be facing the inside of the front cover.
- Lightly coat the seal lips with grease.

WATER PUMP

Clean
- Old gasket from the gasket surface.

Important
- Do not immerse the pump in solvent. The solvent may enter the pump's permanently lubricated bearings, dissolve the bearings' lubricant supply, and cause premature bearing failure.

Inspect
- Water pump shaft for roughness and end play. If the shaft does not turn smoothly, or if there is excessive end play, replace the water pump.
- Water pump body at the drain hole. If there is evidence of coolant leakage, the water pump shaft seal is leaking and the water pump should be replaced.

OIL PAN AND ROCKER ARM COVERS

Clean
- Parts in solvent. Remove all sludge and varnish.
- Old gaskets from the gasket surfaces.

Figure 33—Installing the Front Crankshaft Seal (Typical)

Figure 34—Oil Pump Components (5.0L and 5.7L Engines)

Disassemble (Figures 34 and 35)
1. Oil pump driveshaft (178) and connector (179).
2. Cover screws (186).
3. Cover (182).
 - Mark the gear teeth so the pump gears can be installed with the same gear teeth indexed.
4. Drive gear and shaft (181).
5. Idler gear (181).
6. Spring retaining pin (185).

OIL PUMP
7. Washer (189) (7.4 L engines).
8. Spring (184).
9. Pressure relief valve (183).
 • Do not remove the pickup screen and pipe unless replacement is required.
 • The pickup pipe is a press fit in the pump body (182).
 • Do not try to remove the screen from the pipe. The pickup screen and pipe is serviced as an assembly only.

Clean
• All parts in clean solvent and blow dry with compressed air.

Inspect
— Pump body (180) and cover (182) for cracks or other damage.
— Gears (181 and 188) for wear.
— Drive gear and shaft (181) for lack of fit in the pump body (180).
— Inside of the cover (182) for wear that would permit oil to leak past the ends of the gears. The pump gears, cover, and body are not serviced separately. If the parts are damaged or worn, replace the entire oil pump assembly.
— Pressure relief valve (183) for fit. The regulator valve should slide freely in its bore without sticking or binding.

Assemble (Figures 34, 35, and 36)

Tool Required:
J-21882 Pickup Tube and Screen Installer
(5.0 L and 5.7 L engines)
J-22144 Pickup Tube and Screen Installer
(7.4L engines)
1. Pressure relief valve (183).
2. Spring (184).
3. Washer (189) (7.4 L engines).
4. Spring retaining pin (185).
5. Drive gear and shaft (181).

6. Idler gear (188) in the pump body (180) with the smooth side of the gear toward the pump cover opening. Index the marks made during disassembly.
7. Cover (182) and screws (186).

Tighten
• Screws (186) to 9.0 N·m (80 in. lbs.).
• Turn the driveshaft by hand to check for smooth operation.

NOTICE: Be careful of twisting, shearing or collapsing the pipe while installing in the pump.

8. Pickup screen and pipe (187) (if removed) (figure 36).
 • If the pickup screen and pipe assembly was removed, it should be replaced with a new part. Loss of press fit condition could result in an air leak and loss of oil pressure.
 • Mount the oil pump in a soft jawed vise.
 • Apply sealer to the end of the pipe.
 • Tap the pickup screen and pipe into place, using J-21882 (5.0 L and 5.7 L engines) or J-22144 (7.4 L engines), and a hammer.
 • The pump screen must be parallel with the bottom of the oil pan when installed.

9. Oil pump driveshaft (178) and connector (179).

VALVE TRAIN COMPONENTS

PUSHRODS, ROCKER ARMS, BALL, AND NUTS

Clean
• Parts in solvent. Blow dry with compressed air.
• Make sure the oil passages in the pushrods are clear.

Inspect
— Rocker arms and balls at their mating surfaces. These surfaces should be smooth and free from scoring or other damage.
— Rocker arm areas which contact the valve stems and the sockets which contact the pushrods. These areas should be smooth and free of damage and wear.

— Rocker arm nuts.
 • The nuts are prevailing torque nuts. At least 6.2 N·m (55 in. lbs.) torque should be required to thread the nuts onto the rocker arm studs. If not, it is possible that the nut(s) could back off during engine operation, causing loss of lash and valve train noise.

— Pushrods for bending. Roll the pushrod on a flat surface to determine if it is bent. Replace if necessary.

— Ends of the pushrods for scoring or roughness.

HYDRAULIC LIFTERS
Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

CYLINDER HEAD

Disassemble (Figures 37, 38 and 39)

Tool Required:
- J-8062 Valve Spring Compressor

1. Valve keepers (251).
 - Compress the springs (256) with J-8062 (figure 39).
 - Remove the valve keepers.
 - Remove J-8062.

2. Caps (253), shields (255), springs with dampers (256) and rotators (254).

3. O-ring seals (252) (if used) and seals (257).

4. Valves (258 and 259). Place them in a rack so they can be returned to their original position at assembly.

CLEANING AND INSPECTION OF COMPONENTS

Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) and perform the following:

- **Clean**
 - Components as outlined.

- **Inspect**
 - Components as outlined.

- **Measure**
 - Valve stem clearance.
 - Valve spring tension and free length.

Other information outlined includes:

- Valve and seat grinding.
- Valve guide reaming.

ROCKER ARM STUD REPLACEMENT
(5.0 L AND 5.7 L ENGINES)

Tools Required:
- J-5802-01 Stud Remover
- J-5715 Reamer (0.003-inch oversize) or J-6036 Reamer (0.013-inch oversize)
- J-6880 Stud Installer

Rocker arm studs that have damaged threads or are loose in cylinder heads should be replaced. New studs are available in 0.003-inch and 0.013-inch oversize.
ROCKER ARM STUD AND PUSHROD GUIDE REPLACEMENT (7.4 L ENGINES)

The rocker arm studs used in 7.4 L engines are threaded in place.

Disassemble (Figure 38)

1. Rocker arm studs (250). Use a deep socket.

Figure 38—Cylinder Head and Components (7.4L Engines)

Figure 39—Compressing the Valve Springs

Figure 40—Removing the Rocker Arm Stud (5.0L and 5.7L Engines)

1. Place J-5802-01 over the stud to be removed. Install a nut and flat washer. Remove the stud by turning the nut (figure 40).
2. Ream the hole to the proper size for the replacement oversize stud. Use J-5715 for 0.003-inch oversize studs; J-6036 for 0.013-inch oversize studs (figure 41).
3. Coat lower end (press-fit area) of stud with hypoid axle lubricant. Drive the stud into place with a hammer and J-6880. Stud is installed to proper depth when the tool bottoms on the cylinder head (figure 42).

Figure 41—Reaming the Rocker Arm Stud Bore (5.0L and 5.7L Engines)

Assemble (Figure 38)
1. Pushrod guide.
2. Rocker arm studs. Use a deep socket.

Tighten
- Rocker arm studs to 68 N·m (50 ft. lbs.).

ASSEMBLY (5.0 L AND 5.7 L ENGINES)

Assemble (Figures 37, 39, and 43)

Tools Required:
- J-8062 Valve Spring Compressor
- J-23738-A Valve Seal Leak Detector

1. Valves (258 and 259).
 - Lubricate the valve stems with engine oil.
 - Insert the valves into the proper ports.
2. Seals (257) (intake valve only). Install the seals over the valve stems and seat them against the head.
3. Springs with dampers (256).
5. Caps (253) (intake valves only).
6. Rotators (254) (exhaust valves only).
7. O-ring seals (252) and valve keepers (251).
 - Compress the valve spring, using J-8062 (figure 39). Compress the spring enough so the lower valve stem groove can be clearly seen.

Push a new O-ring seal onto the valve stem. The seal is to be installed on the stem's lower groove. Make sure the seal is flat and not twisted.

Apply a small amount of grease to the area of the upper valve stem groove. Assemble the two valve keepers using the grease to hold the keys in place. Make sure the keepers seat properly in the groove.

Release the compressor tool. Make sure the valve keepers stay in place.

Repeat the preceding steps on the remaining valves.

Check each seal, using J-23738-A (figure 43). Place the adapter cup over the shield. Operate the vacuum pump. Observe the vacuum pump gage. No air should be able to leak past the seal. If the seal will not hold a vacuum, it may have been damaged or improperly installed.

Measure (Figures 44 and 45)

Valve spring installed height of each valve spring as follows:
1. Use a narrow, thin scale. A cutaway scale (figure 44) may be helpful.
2. Measure from the valve shim or spring seat to the top of the shield (255) (figure 45).
3. If this measurement exceeds the figure given in “Specifications,” install valve spring seat shims of sufficient thickness (between the spring and cylinder head) to give the desired...
ASSEMBLY (7.4 L ENGINES)

Assemble (Figures 38 and 39)

Tool Required:
J-8062 Valve Spring Compressor
1. Valves (258 and 259).
 - Lubricate the valve stems with engine oil.
 - Insert the valve into the proper port.
2. Rotators (254).
3. Seals (257).
 - Lubricate the seals with engine oil.
 - Push the seals into place.
4. Valve springs with dampers (256).
5. Caps (253).
6. Valve keepers (251).
 - Compress the valve spring using J-8062 (figure 39). Compress the spring until the valve stem groove can be seen.
 - Apply a small amount of grease to the area of the valve stem groove.
 - Assemble the valve keepers, using the grease to hold the keys in place. Make sure the keepers seat properly in the groove.
 - Release the compressor tools. Make sure the valve keepers stay in place.
 - Repeat this procedure on the remaining valves.

Measure (Figures 44 and 45)

- Valve spring installed height of each valve spring.
 1. Use a narrow, thin scale. A cutaway scale (figure 44) may be helpful.
 2. Measure from the spring seat to the top of the valve spring (figure 45).
 3. If this measurement exceeds the figure given in “Specifications,” install valve spring seat shims of sufficient thickness (between the spring and cylinder head) to give the desired measurement. NEVER shim the spring so as to give an installed height under the specified figure.

THERMOSTAT AND WATER OUTLET

Disassemble (Figure 46)

1. Bolts or studs (300).
2. Water outlet (301).
4. Thermostat (303).

Inspect
- Water outlet for cracks.

Thermostat Check
1. Suspend the thermostat and a thermometer in water with the thermometer located close to the thermostat. The thermostat must be completely submerged and the water thoroughly agitated while heating. Apply heat to the water and record both the temperature at which the thermostat begins to open and the temperature at which the thermostat is fully open.
2. Compare the temperature readings taken in the test with those given in the proper Truck Service Manual.
3. Do not attempt to repair the thermostat. If the thermostat does not function properly, replace it with a new unit which has been checked as directed previously.

Install or Connect (Figure 46)

1. Thermostat (303).
2. Gasket (302).
3. Water outlet (301).
4. Bolts or studs (300).

Tighten
- Bolts or studs to specifications.
 - 5.0 L and 5.7 L engines: 28 N·m (21 ft. lbs.).
 - 7.4 L engines: 40 N·m (30 ft. lbs.).

TORSIONAL DAMPER

Inspect
- Torsional damper weight for lack of fit or signs of shifting on the hub. Replace as needed.
- Area of the torsional damper hub shaft which contacts the front crankshaft seal for roughness or nicks. Replace the damper if this condition exists.

CRANKSHAFT AND BEARINGS

Clean
- Crankshaft with solvent.
- Blow all sludge from the oil passages with compressed air.
- Main bearing inserts. Wipe free of oil with a soft cloth.
- Seal running surfaces with a non-abrasive cleaner.

Inspect
- Crankshaft for cracks. Use the magnaflux method, if available.

Measure (Figures 47 and 48)
- Main bearing and connecting rod journal diameters (figure 47). Compare with "Specifications." Grind or replace the crankshaft if necessary.
- Main bearing and connecting rod journals for taper and out-of-round (figure 47). If the journals are tapered or out-of-round more than 0.001-inch, grind or replace the crankshaft.
- Crankshaft run-out (figure 48).
 - Mount the crankshaft in V-blocks or between centers.
 - Use a dial indicator as shown.
 - If the main journals are misaligned, the crankshaft is bent and must be replaced, along with the main bearing.

Crankshaft Bearing Availability
Crankshaft main and connecting rod bearings are available in 0.001, 0.002, 0.010, and 0.020-inch undersizes.

OIL FILTER BYPASS VALVE

Disassemble (Figure 49)
1. Bolts (321).
2. Oil filter bypass valve (320).

Clean
- Oil filter bypass valve.
- Oil passages in the block.
Inspect (Figure 49)
- Valve disc (item A) and spring for damage or sticky operation. Replace the assembly if faulty.

Assemble (Figure 49)
1. Oil filter bypass valve (320).
2. Bolts (321).

Tighten
- Bolts (321) to 9.0 N·m (80 in. lbs.).

REAR CRANKSHAFT OIL SEAL RETAINER (5.0 L AND 5.7 L ENGINES)

Disassemble (Figure 50)
- Rear crankshaft oil seal. Insert a screwdriver into the notches provided in the seal retainer and pry the seal out (figure 50).

Clean
- All traces of old gasket from the retainer.

Inspect
- Retainer for cracks, porosity, and damage to the sealing surfaces.

Important
- Install the new rear crankshaft oil seal with the proper tool, after the retainer is assembled to the engine, as outlined later.
ASSEMBLY OF ENGINE

PRIOR TO ASSEMBLY

The importance of cleanliness during the assembly procedure cannot be overstressed. Dirt will cause premature wear of the rebuilt engine.

Lubricate all moving parts lightly with engine oil or engine assembly lubricant (unless specified otherwise) during assembly. This will provide initial lubrication when the engine is started.

REAR CRANKSHAFT OIL SEAL INSTALLATION (7.4 L ENGINES)

An oil seal installation tool (figure 51) should be fabricated (if not provided in the seal kit) to prevent seal damage during installation. Extreme care should be exercised when installing this seal to protect the sealing bead located in the channel on the outside diameter of the seal.

Install or Connect (Figures 51, 52, and 53)

1. Lower seal (131) (figure 52).
 - Insert the seal half into the rear main bearing cap (132). Use the tool to protect the seal half from the sharp edge of the seal seat. Feed the seal half into the rear main bearing cap, using light finger pressure. Make sure the oil lip faces the front of the engine.
 - Coat the seal lips lightly with engine oil. Keep the oil off the oil seal mating ends.

2. Upper seal half (130).
 - Insert the seal half in the block using the installation tool to protect the back sealing bead of the seal from the sharp corner of the block. Position the seal and the tip of the tool so that the seal contacts the tool. Make sure that the oil seal lip is positioned toward the front of the engine.
 - Feed the seal into position the same way as for the main bearing cap, gradually, using the tool as a “shoe-horn” to protect the seal outer lip.
diameter from damage. The tool must remain in position until the seal is properly in position, with both ends flush with the block.

- Remove the tool, being careful not to withdraw the seal.

CRANKSHAFT AND MAIN BEARING INSTALLATION

Main bearings are of the precision insert type and do not use shims for adjustment. If clearances are excessive, a new bearing plus both upper and lower inserts will be required. Service bearings are available in standard size and 0.001-inch, 0.002-inch, 0.010-inch, and 0.020-inch undersize. 0.009 inch is available for 5.0L and 5.7L engines only.

Selective fitting of both rod and main bearing inserts is necessary to obtain close tolerances. For this reason you may use, for example, one half of a 0.001-inch undersize insert which will decrease the clearance 0.0005-inch from using a full standard bearing.

UNDERSIZE MAIN JOURNALS
(5.0 L AND 5.7 L ENGINES)

- On 5.0 L and 5.7 L engines, when a production crankshaft cannot be precision fit by the method described previously, it is then ground 0.009-inch undersize on only those main journals that cannot be properly fitted. All journals will not necessarily be ground. A 0.009-inch undersize bearing or 0.010-inch undersize bearing will then be used for precision fitting in the same manner as previously described.

OVERSIZE REAR MAIN BEARING THRUST FACES (5.0 L AND 5.7 L ENGINES)

- Some 5.0 L and 5.7 L production engines may have rear main bearings that are 0.008-inch wider than standard across the thrust faces.
- The crankshaft on these engines can be identified by "008" stamped on the rear counterweight.
- If the rear main bearings are replaced, they must have the proper distance between thrust faces to obtain correct crankshaft end play.

Install or Connect (Figures 53, 54, and 55)

1. Upper main bearing inserts to the block.

Important
- If any undersized bearings are used, make sure they are fitted to the proper journals.

2. Crankshaft.

3. Lower main bearing inserts to the main bearing caps.

Measure
- Main bearing clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).
- Apply engine oil to the main bearing inserts.

4. Main bearing caps (except rear cap) and bolts to the block.

Figure 53—Main Bearings in Position

5. Rear main bearing cap and bolts to the block.

a. On 7.4 L engines, apply a brush-on type oil sealing compound to the mating surface of the block and cap (figure 54). Do not allow any sealant on either crankshaft or rear oil seal.

Install or Connect (Figures 53, 54, and 55)

- Main bearing cap bolts to specifications.

- 5.0 L and 5.7 L engines:
 - Outer bolts on #2, #3, and #4 main bearing caps: 95 N-m (70 ft. lbs.).
 - All others: 110 N-m (80 ft. lbs.).

- 7.4 L engines: 150 N-m (110 ft. lbs.).

Apply Sealant to Shaded Areas Only

Apply Sealant to Shaded Areas Only B-03498

Figure 54—Applying Sealant to the Block
(7.4L Engines)

Tighten
- Rear main bearing cap bolts temporarily to 14 N-m (10 ft. lbs.).

Tighten
- Rear main bearing cap bolts temporarily to 14 N-m (10 ft. lbs.).

Figure 55—Measuring Crankshaft End Play B-05288
Measure (Figure 55)

- Crankshaft end play, as follows:
 - Tap the end of the crankshaft first rearward then forward with a lead hammer. This will line up the rear main bearing and crankshaft thrust surfaces.

Tighten

- Rear main bearing cap bolts to specifications:
 - 5.0 L and 5.7 L engines: 110 N·m (80 ft. lbs.).
 - 7.4 L engines: 150 N·m (110 ft. lbs.).

2. With the crankshaft forced forward, measure at the front end of the rear main bearing with a feeler gage (figure 55). The proper clearance is 0.002-0.006-inch (5.0L and 5.7L engines), 0.006-0.010-inch (7.4L engines).

3. On 5.0 L and 5.7 L engines, if correct end play cannot be obtained, be certain that the correct size rear main bearing has been installed. Production engines may have rear main bearings that are 0.008-inch wider across the thrust faces than standard, as explained previously.

Inspect

- Crankshaft for binding. Try turning the crankshaft to check for binding. If the crankshaft does not turn freely, loosen the main bearing cap bolts, on one cap at a time, until the tight bearing is located. Burrs on the bearing cap, foreign matter between the insert and the block or the bearing cap, or a faulty insert could cause a lack of clearance at the bearing.

REAR CRANKSHAFT OIL SEAL AND RETAINER INSTALLATION (5.0 L AND 5.7 L ENGINES)

Install or Connect (Figures 56 and 57)

Tool Required:
J-35621 Seal Installer
- Whenever the seal retainer is removed, a new retainer gasket and rear crankshaft oil seal must be installed.

1. Gasket (120) to the block. It is not necessary to use sealant to hold the gasket in place.
2. Seal retainer (121).
3. Screws and nuts.

Tighten

- Screws and nuts to 15.3 N·m (135 in. lbs.).
4. Rear crankshaft oil seal (figure 57).
 - Make sure the crankshaft rear chamfer is free of grit, loose rust, and burrs. Correct as needed.
 - Lubricate the inner and outer diameter of the seal with engine oil.
 - Install the seal on J-35621.

Figure 56—Rear Crankshaft Oil Seal Retainer (5.0L and 5.7L Engines)

- Position J-35621 against the crankshaft. Thread the attaching screws into the tapped holes in the crankshaft.
- Tighten the screws securely with a screwdriver. This will ensure that the seal is installed squarely over the crankshaft.
- Turn the handle until it bottoms.
- Remove J-35621.

CAMSHAFT, TIMING CHAIN AND SPROCKET INSTALLATION

Install or Connect (Figures 58 and 59)

- Coat the camshaft lobes and journals with Engine Oil Supplement (GM part number 1051396) or equivalent.
1. Camshaft (figure 58).
• Use three 5/16-18 bolts 100-125 mm (4-5 inches) long, threaded into the camshaft’s tapped holes, to handle the camshaft.
• Take care to avoid damaging the camshaft bearings.
• Remove the three bolts after installation.

2. Timing chain to the camshaft sprocket.
3. Camshaft sprocket and timing chain to the engine.

Important
• Align the timing marks on the camshaft sprocket and crankshaft sprocket (figure 59).

4. Camshaft sprocket bolts. Use the bolts to draw the camshaft sprocket onto the camshaft. DO NOT ATTEMPT TO HAMMER THE CAMSHAFT SPROCKET ONTO THE CAMSHAFT TO DO SO MAY DISLODGE THE REAR CAMSHAFT PLUG.

Tighten
• Camshaft sprocket bolts to specifications.
 — 5.0 L and 5.7 L engines: 24 N·m (18 ft. lbs.).
 — 7.4 L engines: 26 N·m (20 ft. lbs.).

Measure
• Timing chain free play. The free play should not exceed 16 mm (%/8-inch).

FRONT COVER INSTALLATION

Install or Connect (Figure 60)
• Lubricate the lips of the front seal crankshaft oil with engine oil.
1. Gasket (90).
2. Front cover (91).
3. Timing tab (92) (7.4 L engines).
4. Bolts (93).

Tighten
• Bolts (93) to specifications:
 — 5.0 L and 5.7 L engines: 10.8 N·m (96 in. lbs.).
 — 7.4 L engines: 11.3 N·m (100 in. lbs.).
TORSIONAL DAMPER INSTALLATION

Install or Connect (Figure 61)

Tools Required:
J-23523-E Torsional Damper Puller and Installer

1. Crankshaft key.

NOTICE: The inertia weight section of the torsional damper is assembled to the hub with a rubber type material. The correct installation procedures (with the proper tool) must be followed or movement of the inertia weight section of the hub will destroy the tuning of the torsional damper.

2. Stud (item A, figure 61) to the crankshaft. Thread the stud fully into the tapped hole in the crankshaft.

3. Torsional damper over the end of the stud. Align the keyway in the torsional damper shaft with the crankshaft key.

4. Bearing, washer and nut (figure 61).
 - Turn the nut to pull the vibration damper into place.
 - Remove the tool.
 - Use a small amount of RTV sealant to seal the keyway to crankshaft joint.

5. Torsional damper bolt and washer.

Tighten

- Bolt to specifications.
 - 5.0 L and 5.7 L engines: 95 N·m (70 ft. lbs.).
 - 7.4 L engines: 115 N·m (85 ft. lbs.).

PISTON AND CONNECTING ROD INSTALLATION

CONNECTING ROD BEARING SELECTION

Connecting rod bearings are of the precision insert type and do not use shims for adjustment. DO NOT FILE RODS OR ROD CAPS. If clearances are excessive install a new bearing. Service bearings are available in standard size and 0.001-inch and 0.002-inch undersize for use with new and used standard size crankshafts, and in 0.010-inch and 0.020-inch undersize for use with reconditioned crankshafts.

On production 5.0 L and 5.7 L engines, it is possible to find an 0.010-inch undersize bearing. These are used in manufacturing for selective fitting.

Selective fitting of both rod and main bearing inserts is necessary to obtain close tolerances. For this reason you may use, for example, one half of a standard insert with one half of a 0.001-inch undersize insert which will decrease the clearance 0.0005-inch from using a full standard bearing.

INSTALLATION

Install or Connect (Figures 62 through 65)

Tools Required:
J-5239 Connecting Rod Guide Set
J-8037 Ring Compressor

- Lubricate the cylinder walls lightly with engine oil.
- Make sure the piston is installed in the matching cylinder.

1. Connecting rod bearing inserts.
 - Be certain that the inserts are of the proper size.
 - Install the inserts in the connecting rod and connecting rod cap.

2. Piston and connecting rod to the proper bore.
 - With the connecting rod cap removed, install J-5239 onto the connecting rod studs.
Figure 63—Piston Ring End Gap Location (7.4L Engines)

- Locate the piston ring end gaps as shown in figure 62 (5.0 L and 5.7 L engines) or figure 63 (7.4 L engines).
- Lubricate the piston and rings with engine oil.
- Without disturbing the ring end gap location, install J-8037 over the piston (figure 64).
- Use a hammer handle to tap the piston down into its matching bore.

Figure 64—Installing the Piston

Figure 65—Piston Installed (7.4L Engines)

- On 5.0 L and 5.7 L engines, the notch in the piston crown (figure 62) must face the front of the engine.
- On 7.4 L engines, the valve clearance notches must face the top of the block (figure 65).
- While tapping the piston into its bore, guide the connecting rod into position on the crankpin, using J-5239. Hold the ring compressor against the block until all rings have entered the cylinder bore.

Important

- Each connecting rod and bearing cap should be marked, beginning at the front of the engine. Cylinder 1, 3, 5 and 7 are the left bank and 2, 4, 6, and 8 are the right bank. The numbers on the connecting rod and bearing cap must be on the same side when installed in the cylinder bore. If a connecting rod is ever transposed from one block or cylinder to another, new connecting rod bearings should be fitted and the connecting rod should be numbered to correspond with the new cylinder number.

3. Connecting rod cap with bearing insert.

Measure

- Connecting rod bearing clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A). Then apply engine oil to the connecting rod bearing.

Tighten

- Connecting rod cap nuts to specifications.
 - 5.0 L and 5.7 L engines: 60 N·m (45 ft. lbs.).
 - 7.0 L engines: 66 N·m (48 ft. lbs.).
Measure (Figure 66)

- Connecting rod side clearance. Use a feeler gage between the connecting rods (figure 66). The proper clearance is as follows:
 - 5.0 L and 5.7 L engines: 0.006–0.014-inch.
 - 7.4 L engines: 0.013–0.023-inch.

OIL PUMP INSTALLATION

Install or Connect

1. Oil pump with connector and oil pump driveshaft.
2. Baffle (71) (some 5.7L engines) (figure 67).
3. Oil pump to main bearing cap bolt.

Tighten

- Bolt to 90 N-m (65 ft. lbs.).
4. Nuts (73) (some 5.7L engines) (figure 67).

Tighten

- Nuts to 34 N-m (25 ft. lbs.).

OIL PAN INSTALLATION

5.0 L AND 5.7 L ENGINES

Install or Connect (Figure 67)

- Apply PST sealer (GM part no. 1052080 or equivalent) to the front cover to block joint and rear crankshaft seal retainer to block joint as shown in figure 67.
1. Oil pan gasket to the oil pan.
2. Oil pan to the engine.
3. Oil pan bolts, nuts, and reinforcements.

Tighten

- Oil pan bolts to 11.3 N-m (100 in. lbs.).
- Oil pan nuts to 22.6 N-m (200 in. lbs.).
7.4 L ENGINES

Install or Connect (Figure 68)

1. Gaskets (74) to the block. Retain with gasket cement.
2. Rear oil pan seal (76) to the rear main bearing cap. The ends of the seal should mate against the gaskets (74).
3. Front oil pan seal (78) to the front cover. The ends of the seal should mate against the gaskets (74).
4. Oil pan. Make sure the gasket and seals stay in place.
5. Clips (79), reinforcements (75) and bolts.

Tighten

- Bolts to specifications:
 - Oil pan to block bolts: 18.1 N·m (160 in. lbs.).
 - Oil pan to front cover bolts: 7.9 N·m (70 in. lbs.).

Figure 69—Cylinder Head and Components

CYLINDER HEAD INSTALLATION

Clean

- Gasket surfaces on block and cylinder head.

Install or Connect (Figures 69, 70, and 71)

1. Head gasket.

- On engines using a STEEL gasket, coat both sides of the new gasket with a good sealer. Spread the sealer thin and even. One method of applying the sealer that will assure the
proper coat is with the use of a paint roller. Too much sealer may hold the gasket away from the head or block.

- Use no sealer on engines using a composition STEEL ASBESTOS gasket.
- Place the gasket in position over the dowel pins with the bead up.

2. Cylinder head. Carefully guide the cylinder head into place over the dowel pins and head gaskets.

3. Cylinder head bolts. Coat the threads of the bolts with sealing compound (Loctite #592 or equivalent) and install finger tight.

- Bolts a little at a time using the sequence shown in figures 70 or 71 until the proper torque is reached:
 - 5.7 L engines: 90 N·m (65 ft. lbs.).
 - 7.4 L engines: 110 N·m (80 ft. lbs.).

VALVE TRAIN COMPONENT INSTALLATION

- Replace all hydraulic lifters if a new camshaft was installed.

Install or Connect (Figure 69)

1. Hydraulic lifters (44) to the block.
2. Pushrods (43). Seat the pushrods into the socket in the hydraulic lifters.
- Coat the mating surfaces of the rocker arms (42) and balls (41) with "Moly Kote" or equivalent.
3. Rocker arms.
4. Balls.
5. Nuts (40).

VALVE ADJUSTMENT

1. Remove the rocker arm covers.
2. Crank the engine until the mark on the torsional damper lines up with the center or "0" mark on the timing tab (figure 72). The engine must be in the number one firing position. This may be determined by placing fingers on the number one cylinder's valves as the mark on the damper comes near the "0" mark on the crankcase front cover. If the valves are not moving, the engine is in the number one firing position. If the valves move as the mark comes up to the timing tab, the engine is in the number six firing position and should be turned over one more time to reach the number one position.
3. With the engine in the number one firing position as determined above, the following valves may be adjusted:

 - Exhaust - 1, 3, 4, 8
 - Intake - 1, 2, 5, 7

 (Even numbered cylinders are in the right bank; odd numbered cylinders are in the left bank, when viewed from the rear of the engine.)

4. Back out the adjusting nut until lash is felt at the pushrod then turn in the adjusting nut until all lash is removed. This can be determined by rotating the pushrod while turning the adjusting nut (figure 73). When the play has been removed, turn the adjusting nut in as follows:

 - 5.0 L and 5.7 L engines: One full turn.
 - 7.4 L engines: 3/4 turn.

5. Crank the engine one revolution until the pointer "0" mark and torsional damper mark are again in alignment. This is the number six firing position. With the engine in this position the following valves may be adjusted:

 - Exhaust - 2, 5, 6, 7
 - Intake - 3, 4, 6, 8
INTAKE MANIFOLD INSTALLATION

5.0 L AND 5.7 L ENGINES

Install or Connect (Figures 74 and 75)

1. Gaskets to the cylinder heads.
 - On TBI engines, make sure the tab and/or arrow faces the front of the engine. The side stamped “This Side Down” must face the cylinder head.
2. Gasket clips (some TBI engines).
 - Place the clip over the gaskets, as shown in figure 74.
 - Apply a dot of RTV sealant to the upper side of the clips, as shown.
3. RTV sealant to the front and rear intake manifold sealing surfaces on the block as follows:
 - Refer to figure 74.
 - Apply a 5 mm (3/32-inch) bead of RTV sealer (part number 1052289 or equivalent) on the front and rear of the block. Extend the bead 13 mm (1/2-inch) up each cylinder head to seal and retain the gaskets.
4. Intake manifold to the engine.
5. Intake manifold bolts.

Tighten
- Bolts to 48 N·m (35 ft. lbs.). Use the tightening sequence shown in figure 75.

7.4 L ENGINES

Install or Connect (Figures 76 and 77)

1. Gaskets (22) to the cylinder heads.
2. Seals (23) to the block.
3. Intake manifold (21).

Tighten
- Bolts (20) to 40 N·m (30 ft. lbs.). Use the tightening sequence shown in figure 77.

ROCKER ARM COVER INSTALLATION

5.0L AND 5.7L TBI ENGINES

Install or Connect (Figure 78)

1. Gaskets (34).
2. Rocker arm covers (32).
3. Bolts (36) and washers (37).

Tighten
- Bolts to 11.3 N·m (100 in. lbs.)

ALL OTHERS

Install or Connect (Figure 79)

1. Gaskets (34).
2. Rocker arm covers (32).
3. Reinforcements (31) and clips.

Tighten
- Nuts (30) to specification:
 - 5.0 L and 5.7 L engines: 7.3 N·m (65 in. lbs.).
 - 7.4 L engines: 13.0 N·m (115 in. lbs.).

EXHAUST MANIFOLD INSTALLATION

Install or Connect (Figures 80 and 81)

1. Exhaust manifold (1).
2. Spark plug wire heat shields (if used).
3. Washers (2), tab washers (3) (5.0 L and 5.7 L engines) and bolts or studs (4).

Tighten
- Bolts or studs to specifications:
 - 5.0 L and 5.7 L engines with cast iron manifolds:
 - Two center bolts: 36 N·m (26 ft. lbs.).
 - Outside bolts: 28 N·m (20 ft. lbs.).
 - Bend the tab washers against the bolt heads.

- 5.0 L and 5.7 L engines with aluminum manifolds:
 - Two center bolts: 30 N·m (22 ft. lbs.).
 - Outside bolts: 28 N·m (20 ft. lbs.).
 - Bend the tab washers against the bolt heads.
Figure 74—Intake Manifold (5.0L and 5.7L Engines)

- 5.0 L and 5.7 L engines with stainless steel manifolds: 36 N·m (26 ft. lbs.).
- 7.4 L engines: 54 N·m (40 ft. lbs.).

WATER PUMP INSTALLATION

![Diagram of Engine Parts](image)

- Install or Connect (Figure 82)

 1. Gaskets (11).
 2. Water pump (10).

- **Tighten**
 - Bolts (12) to 40 N·m (30 ft. lbs.).

ENGINE ACCESSORY INSTALLATION

Install the engine accessories (distributor, carburetor, oil filter, generator, etc.) as directed in the proper Truck Service Manual. Connect all vacuum hoses and electrical equipment the same way as removed.

ENGINE SET-UP AND TESTING

1. After overhaul, the engine should be tested before installation in the vehicle. If a suitable test stand is not available, the following procedure can be used after the engine is installed in the vehicle.

2. Fill the crankcase with the proper quantity and grade of oil.

 ![Important](image)

 - **Important**

 - If a new camshaft or hydraulic lifters were installed, add Engine Oil Supplement (GM part no. 1051396) or equivalent to the engine oil.

3. Fill the coolant system with the proper coolant.

4. With the ignition "OFF," or disconnected, crank the engine several times. Listen for any unusual noises or evidence that any parts are binding.

5. Start the engine and listen for unusual noises.

6. Run the engine at about 1000 until the engine is at operating temperature.
7. Listen for improperly adjusted valves or sticking lifters, and other unusual noises.
8. Check for oil and coolant leaks while the engine is running.
9. Using the proper Truck Service Manual or Emission Control Label for specifications, adjust the ignition timing, idle and mixture, and governor settings, if so equipped.

Figure 75—Intake Manifold Bolt Tightening Sequence (5.0L and 5.7L Engines)

20. Bolt
21. Intake Manifold
22. Gasket
23. Seal

Figure 76—Intake Manifold (7.4L Engines)

Figure 77—Intake Manifold Bolt Tightening Sequence (7.4L Engines)
Figure 78—Rocker Arm Cover Installation (5.0L and 5.7L Engines)
30. Nut
31. Reinforcement
32. Rocker Arm Cover
33. Stud
34. Gasket
35. Clip
(Number and Location Varies)

Figure 79—Rocker Arm Cover Installation
(7.4L Engines)

Figure 80—Exhaust Manifold (5.0L and 5.7L Engines)
CAST IRON MANIFOLD

STAINLESS STEEL MANIFOLD

1. Exhaust Manifold
4. Bolt/Stud
6. Spark Plug Wire Heat Shield

5.0L AND 5.7L ENGINES

10. Water Pump
11. Gasket
12. Bolt

7.4L ENGINES

Figure 81—Exhaust Manifold (7.4L Engines)

Figure 82—Water Pumps and Components
SPECIFICATIONS

ENGINE SPECIFICATIONS (5.0 L/5.7 L)

All Specifications are in INCHES unless otherwise noted.

<table>
<thead>
<tr>
<th>GENERAL DATA:</th>
<th>V8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>V8</td>
</tr>
<tr>
<td>Displacement</td>
<td>5.0L (305 Cu. In.)</td>
</tr>
<tr>
<td>RPO (VIN Code)</td>
<td>L03 (H)</td>
</tr>
<tr>
<td>Bore</td>
<td>3.736</td>
</tr>
<tr>
<td>Stroke</td>
<td>3.480</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>9.3:1</td>
</tr>
<tr>
<td>Firing Order</td>
<td>1 - 8 - 4 - 3 - 6 - 5 - 7 - 2</td>
</tr>
<tr>
<td>Oil Pressure</td>
<td>10 psi @ 500 RPM; 30-55 psi @ 2000 RPM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CYLINDER BORE:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>3.7350-3.7385</td>
</tr>
<tr>
<td>Out Of Round</td>
<td>Production</td>
</tr>
<tr>
<td></td>
<td>Service</td>
</tr>
<tr>
<td>Taper</td>
<td>Production</td>
</tr>
<tr>
<td></td>
<td>Service</td>
</tr>
<tr>
<td></td>
<td>Service</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PISTON:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearance</td>
<td>Production</td>
</tr>
<tr>
<td></td>
<td>Service Limit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PISTON RING:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression</td>
<td>Groove Clearance</td>
</tr>
<tr>
<td></td>
<td>Service Limit</td>
</tr>
<tr>
<td>Gap</td>
<td>Production</td>
</tr>
<tr>
<td></td>
<td>Service Limit</td>
</tr>
<tr>
<td>Oil Groove</td>
<td>Production</td>
</tr>
<tr>
<td></td>
<td>Service Limit</td>
</tr>
<tr>
<td>Gap</td>
<td>Production</td>
</tr>
<tr>
<td></td>
<td>Service Limit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PISTON PIN:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>0.9269-0.9271</td>
</tr>
<tr>
<td>Clearance</td>
<td>Production</td>
</tr>
<tr>
<td>In Piston</td>
<td>Service Limit</td>
</tr>
<tr>
<td>Fit In Rod</td>
<td>0.0008-0.0016 Interference</td>
</tr>
</tbody>
</table>

* 8.6:1 (Heavy Duty Emissions)
* 9.3:1 (Light Duty Emissions)
SPECIFICATIONS

ENGINE SPECIFICATIONS (5.0 L/5.7 L) (Cont.)

All specifications are in INCHES unless otherwise noted.

<table>
<thead>
<tr>
<th>DISPLACEMENT</th>
<th>5.0L (305 Cu. In.)</th>
<th>5.7L (350 Cu. In.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRANKSHAFT:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main Journal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td>#1</td>
<td>#2, #3, #4</td>
</tr>
<tr>
<td></td>
<td>2.4484-2.4493</td>
<td>2.4481-2.4490</td>
</tr>
<tr>
<td></td>
<td>#5</td>
<td>2.4479-2.4488</td>
</tr>
<tr>
<td>Taper</td>
<td>Production</td>
<td>0.0002 (Maximum)</td>
</tr>
<tr>
<td></td>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Out Of Round</td>
<td>Production</td>
<td>0.0002 (Maximum)</td>
</tr>
<tr>
<td></td>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Main Bearing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>#1</td>
<td>#2, #3, #4</td>
</tr>
<tr>
<td></td>
<td>0.0006-0.0020</td>
<td>0.0011-0.0023</td>
</tr>
<tr>
<td></td>
<td>#5</td>
<td>0.0017-0.0032</td>
</tr>
<tr>
<td></td>
<td>0.0010-0.0015</td>
<td></td>
</tr>
<tr>
<td>Rod Bearing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>0.0013-0.0035</td>
<td></td>
</tr>
<tr>
<td>Clearance</td>
<td>Service Limit</td>
<td>0.003 (Maximum)</td>
</tr>
<tr>
<td>Crankshaft End Play</td>
<td>Diameter</td>
<td>2.0988-2.0998</td>
</tr>
<tr>
<td></td>
<td>Taper</td>
<td>0.0005 (Maximum)</td>
</tr>
<tr>
<td></td>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Crankpin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taper</td>
<td>Production</td>
<td>0.0005 (Maximum)</td>
</tr>
<tr>
<td></td>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Rod Side Clearance</td>
<td>Production</td>
<td>0.0013-0.0035</td>
</tr>
<tr>
<td></td>
<td>Service Limit</td>
<td>0.003 (Maximum)</td>
</tr>
<tr>
<td>CAMSHAFT:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lobe</td>
<td>Intake</td>
<td>Exhaust</td>
</tr>
<tr>
<td>Lift ± 0.002</td>
<td>0.2336</td>
<td>0.2565</td>
</tr>
<tr>
<td>0.2565</td>
<td>0.2690</td>
<td></td>
</tr>
<tr>
<td>Journal Diameter</td>
<td></td>
<td>1.8682-1.8692</td>
</tr>
<tr>
<td>Camshaft End Play</td>
<td></td>
<td>0.004-0.012</td>
</tr>
<tr>
<td>VALVE SYSTEM:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifter</td>
<td>Hydraulic</td>
<td></td>
</tr>
<tr>
<td>Rocker Arm Ratio</td>
<td></td>
<td>1.50:1</td>
</tr>
<tr>
<td>Valve Lash</td>
<td>Intake</td>
<td>Exhaust</td>
</tr>
<tr>
<td></td>
<td>One Turn Down From Zero Lash</td>
<td></td>
</tr>
<tr>
<td>Face Angle (Intake & Exhaust)</td>
<td>45°</td>
<td></td>
</tr>
<tr>
<td>Seat Angle (Intake & Exhaust)</td>
<td>46°</td>
<td></td>
</tr>
<tr>
<td>Seat Runout (Intake & Exhaust)</td>
<td>0.002 (Maximum)</td>
<td></td>
</tr>
<tr>
<td>Seat Width</td>
<td>Intake</td>
<td>Exhaust</td>
</tr>
<tr>
<td>Stem Clearance</td>
<td>Production</td>
<td>0.0010-0.0027</td>
</tr>
<tr>
<td></td>
<td>Intake</td>
<td>Exhaust</td>
</tr>
<tr>
<td></td>
<td>0.0010-0.0027</td>
<td>High Limit Production + 0.001</td>
</tr>
<tr>
<td></td>
<td>Service</td>
<td>Exhaust</td>
</tr>
<tr>
<td></td>
<td>High Limit Production + 0.002</td>
<td></td>
</tr>
<tr>
<td>Valve Spring (Outer)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free Length</td>
<td>2.03</td>
<td></td>
</tr>
<tr>
<td>Pressure</td>
<td>Closed</td>
<td>76-84 lbs. @ 1.70"</td>
</tr>
<tr>
<td>lbs. @ in</td>
<td>Open</td>
<td>194-206 lbs. @ 1.25"</td>
</tr>
<tr>
<td>Installed Height</td>
<td>± 1/16"</td>
<td>1/2"</td>
</tr>
<tr>
<td>Valve Spring Damper</td>
<td>Free Length</td>
<td>1.86</td>
</tr>
<tr>
<td>Approx. # of Coils</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

F-04504
SPECIFICATIONS

ENGINE SPECIFICATIONS (7.4 L)

All Specifications are in INCHES unless otherwise noted.

GENERAL DATA:

<table>
<thead>
<tr>
<th>Type</th>
<th>V8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement</td>
<td>7.4L (454 Cu. In.)</td>
</tr>
<tr>
<td>RPO</td>
<td>L19, LE8</td>
</tr>
<tr>
<td>Bore</td>
<td>4.25</td>
</tr>
<tr>
<td>Stroke</td>
<td>4.00</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>8.0:1</td>
</tr>
<tr>
<td>Firing Order</td>
<td>1-8-4-3-6-5-7-2</td>
</tr>
<tr>
<td>Oil Pressure</td>
<td>10 psi @ 500 RPM Minimum; 40-60 psi @ 2000 RPM</td>
</tr>
</tbody>
</table>

CYLINDER BORE:

<table>
<thead>
<tr>
<th>Diameter</th>
<th>4.2495-4.2525</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out Of Round Production</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Service</td>
<td>0.002 (Maximum)</td>
</tr>
<tr>
<td>Taper Production Thrust Side</td>
<td>0.0005 (Maximum)</td>
</tr>
<tr>
<td>Relief Side</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Service</td>
<td>0.001 (Maximum)</td>
</tr>
</tbody>
</table>

PISTON:

| Clearance Production | 0.003-0.004 |
| Service Limit | 0.005 (Maximum) |

PISTON RING:

COMPRESSION Groove Production Top	0.0017-0.0032
Gap Service Limit 2nd	Hi Limit Production + 0.001
Production Top	0.010-0.018
2nd	0.016-0.024

OIL Groove Production	0.0050-0.0065
Clearance Service Limit	Hi Limit Production + 0.001
Gap Production	0.015-0.065
Service Limit	Hi Limit Production + 0.010

PISTON PIN:

Diameter	0.9895-0.9898
Clearance Production	0.00025-0.00035
In Piston Service Limit	0.001 (Maximum)
Fit In Rod	0.0013-0.0021 Interference
SPECIFICATIONS

ENGINE SPECIFICATIONS (7.4 L) (Cont.)

All specifications are in INCHES unless otherwise noted.

<table>
<thead>
<tr>
<th>DISPLACEMENT</th>
<th>7.4L</th>
</tr>
</thead>
</table>

CRANKSHAFT:

<table>
<thead>
<tr>
<th>Diameter</th>
<th>#1, #2, #3, #4</th>
<th>2.7481-2.7490</th>
</tr>
</thead>
<tbody>
<tr>
<td>#5</td>
<td>2.7476-2.7486</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Taper</th>
<th>Production</th>
<th>0.0002 (Maximum)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Out Of Round</th>
<th>Production</th>
<th>0.0002 (Maximum)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Main Bearing Production</th>
<th>#1, #2, #3, #4</th>
<th>0.0013-0.0025</th>
</tr>
</thead>
<tbody>
<tr>
<td>#5</td>
<td>0.0024-0.0040</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Service Limit</th>
<th>#1, #2, #3, #4</th>
<th>0.00010-0.0025</th>
</tr>
</thead>
<tbody>
<tr>
<td>#5</td>
<td>0.0025-0.0035</td>
<td></td>
</tr>
</tbody>
</table>

Crankshaft End Play

<table>
<thead>
<tr>
<th>Diameter</th>
<th>0.006-0.010</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Taper</th>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Out Of Round</th>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Round Service Limit</th>
<th>0.001</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Crankpin Diameter</th>
<th>2.1990-2.200</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Taper</th>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Out Of Round</th>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rod Bearing Production</th>
<th>#1, #2, #3, #4</th>
<th>0.0009-0.0025</th>
</tr>
</thead>
<tbody>
<tr>
<td>#5</td>
<td>0.0024-0.0040</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Service Limit</th>
<th>#1, #2, #3, #4</th>
<th>0.0003 (Maximum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#5</td>
<td>0.0013-0.0023</td>
<td></td>
</tr>
</tbody>
</table>

CAMSHAFT:

<table>
<thead>
<tr>
<th>Lobe</th>
<th>Intake</th>
<th>0.2343</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exhaust</td>
<td>0.2530</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Journal Diameter</th>
<th>1.9482-1.9492</th>
</tr>
</thead>
</table>

VALVE SYSTEM:

<table>
<thead>
<tr>
<th>Intake</th>
<th>Valve Lash</th>
<th>3/4 Turn Down From Zero Lash</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exhaust</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Face Angle (Intake & Exhaust)</th>
<th>45°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seat Angle (Intake & Exhaust)</td>
<td>46°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intake</th>
<th>1/32-1/16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhaust</td>
<td>1/16-3/32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Production</th>
<th>Intake</th>
<th>0.0010-0.0027</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhaust</td>
<td>0.0012-0.0029</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Service</th>
<th>Intake</th>
<th>High Limit Production + 0.001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhaust</td>
<td>High Limit Production + 0.002</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seat Runout (Intake & Exhaust)</th>
<th>0.002 (Maximum)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Intake</th>
<th>1/32-1/16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhaust</td>
<td>1/16-3/32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stem Clearance</th>
<th>Intake</th>
<th>0.0010-0.0027</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhaust</td>
<td>0.0012-0.0029</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valve Spring Pressure</th>
<th>Closed</th>
<th>74-86 lbs. @ 1.80 in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>lbs. @ in. Open</td>
<td>195-215 lbs. @ 1.40 in.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Installed Height</th>
<th>15°/64</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Valve Spring Fit In Damper</th>
<th>0.042-0.094 Interference</th>
</tr>
</thead>
</table>

F-04506
SPECIFICATIONS (CONT.)

TORQUE SPECIFICATIONS

(5.0 L AND 5.7 L ENGINES)

<table>
<thead>
<tr>
<th>Item</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
<th>In. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocker Arm Cover Nuts (Carbureted Engines)</td>
<td>7.3</td>
<td>—</td>
<td>65</td>
</tr>
<tr>
<td>Rocker Arm Cover Bolt (TBI Engines)</td>
<td>11.3</td>
<td>—</td>
<td>100</td>
</tr>
<tr>
<td>Intake Manifold Bolts</td>
<td>48</td>
<td>35</td>
<td>—</td>
</tr>
<tr>
<td>Exhaust Manifold Bolts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cast Manifolds:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two Center Bolts</td>
<td>36</td>
<td>26</td>
<td>—</td>
</tr>
<tr>
<td>All Others</td>
<td>28</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Tubular (Stainless Steel) Manifolds (All Bolts)</td>
<td>36</td>
<td>26</td>
<td>—</td>
</tr>
<tr>
<td>Cylinder Head Bolts</td>
<td>90</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Torsional Damper Bolt</td>
<td>95</td>
<td>70</td>
<td>—</td>
</tr>
<tr>
<td>Front Cover Bolts</td>
<td>11.3</td>
<td>—</td>
<td>100</td>
</tr>
<tr>
<td>Oil Pan Nuts at Corners</td>
<td>22.6</td>
<td>—</td>
<td>200</td>
</tr>
<tr>
<td>Oil Pan Bolts</td>
<td>11.3</td>
<td>—</td>
<td>100</td>
</tr>
<tr>
<td>Oil Pump Bolt</td>
<td>90</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pan Baffle Nuts (Some 5.7 L Engines)</td>
<td>36</td>
<td>26</td>
<td>—</td>
</tr>
<tr>
<td>Rear Crankshaft Oil Seal Retainer Screws and Nuts</td>
<td>15.3</td>
<td>—</td>
<td>135</td>
</tr>
<tr>
<td>Camshaft Sprocket Bolts</td>
<td>24</td>
<td>18</td>
<td>—</td>
</tr>
<tr>
<td>Connecting Rod Cap Nuts</td>
<td>60</td>
<td>45</td>
<td>—</td>
</tr>
<tr>
<td>Oil Filter Bypass Valve Bolts</td>
<td>26</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Main Bearing Cap Bolts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outer Bolts on #2, #3, and #4 Caps</td>
<td>95</td>
<td>70</td>
<td>—</td>
</tr>
<tr>
<td>All Others</td>
<td>110</td>
<td>80</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pump Cover Bolts</td>
<td>9.0</td>
<td>—</td>
<td>80</td>
</tr>
<tr>
<td>Flywheel Bolts</td>
<td>100</td>
<td>75</td>
<td>—</td>
</tr>
<tr>
<td>Spark Plugs</td>
<td>30</td>
<td>22</td>
<td>—</td>
</tr>
<tr>
<td>Water Outlet Bolts</td>
<td>28</td>
<td>21</td>
<td>—</td>
</tr>
<tr>
<td>Water Pump Bolts</td>
<td>40</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Flywheel Housing Bolts</td>
<td>44</td>
<td>32</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pan Drain Plug</td>
<td>28</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Block Drain Plug</td>
<td>12.7</td>
<td>—</td>
<td>112</td>
</tr>
<tr>
<td>Rocker Arm Cover Studs to Head (Carbureted Engines)</td>
<td>1.7</td>
<td>—</td>
<td>15</td>
</tr>
</tbody>
</table>

(7.4 L ENGINES)

<table>
<thead>
<tr>
<th>Item</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
<th>In. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocker Arm Cover Nuts</td>
<td>13.0</td>
<td>—</td>
<td>115</td>
</tr>
<tr>
<td>Intake Manifold Bolts</td>
<td>40</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Rocker Arm Studs</td>
<td>68</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>Exhaust Manifold Bolts</td>
<td>54</td>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>Cylinder Head Bolts</td>
<td>110</td>
<td>80</td>
<td>—</td>
</tr>
<tr>
<td>Torsional Damper Bolts</td>
<td>115</td>
<td>85</td>
<td>—</td>
</tr>
<tr>
<td>Front Cover to Block Bolts</td>
<td>10.8</td>
<td>—</td>
<td>96</td>
</tr>
<tr>
<td>Oil Pan to Front Cover Bolts</td>
<td>7.9</td>
<td>—</td>
<td>70</td>
</tr>
<tr>
<td>Oil Pan to Block Bolts</td>
<td>18.1</td>
<td>—</td>
<td>160</td>
</tr>
<tr>
<td>Oil Pump Bolt</td>
<td>90</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Main Bearing Caps</td>
<td>150</td>
<td>110</td>
<td>—</td>
</tr>
<tr>
<td>Camshaft Sprocket Bolts</td>
<td>26</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Connecting Rod Cap Nuts</td>
<td>66</td>
<td>48</td>
<td>—</td>
</tr>
<tr>
<td>Oil Filter Bypass Valve Bolts</td>
<td>26</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Flywheel Bolts</td>
<td>90</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pump Cover Bolts</td>
<td>9.0</td>
<td>—</td>
<td>80</td>
</tr>
<tr>
<td>Flywheel Housing Bolts</td>
<td>40</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Water Pump Bolts</td>
<td>40</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Water Outlet Bolts</td>
<td>40</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Spark Plugs</td>
<td>30</td>
<td>22</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pan Drain Plug</td>
<td>28</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Block Drain Plug</td>
<td>12.7</td>
<td>—</td>
<td>112</td>
</tr>
</tbody>
</table>
SPECIAL TOOLS

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Torsional Damper Remover and Installer</td>
<td>J-23523-E</td>
</tr>
<tr>
<td>2</td>
<td>Valve Spring Compressor</td>
<td>J-8062</td>
</tr>
<tr>
<td>3</td>
<td>Oil Pump Pick-Up Tube Installer (Small Block Engines)</td>
<td>J-23590</td>
</tr>
<tr>
<td>4</td>
<td>Oil Pump Pick-Up Tube Installer (Mark IV Engines)</td>
<td>J-22144</td>
</tr>
<tr>
<td>5</td>
<td>Crankshaft Seal Installer</td>
<td>J-35468</td>
</tr>
<tr>
<td>6</td>
<td>Piston Ring Compressor</td>
<td>J-22102</td>
</tr>
<tr>
<td>7</td>
<td>Guide Set</td>
<td>J-8037</td>
</tr>
<tr>
<td>8</td>
<td>J-5239</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J-23738-A</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>J-9290-01</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Crankshaft Sprocket Puller</td>
<td>J-3049</td>
</tr>
<tr>
<td>11</td>
<td>Crankshaft Sprocket Installer</td>
<td>J-5802-01</td>
</tr>
<tr>
<td>12</td>
<td>Crankshaft Sprocket Installer</td>
<td>J-5825-A</td>
</tr>
<tr>
<td>13</td>
<td>Rear Oil Seal Installer</td>
<td>J-5590</td>
</tr>
<tr>
<td>14</td>
<td>Rear Oil Seal Installer</td>
<td>J-35621</td>
</tr>
<tr>
<td>15</td>
<td>Rear Oil Seal Installer</td>
<td>J-1619</td>
</tr>
<tr>
<td>16</td>
<td>Rear Oil Seal Installer</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Rear Oil Seal Installer</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Rear Oil Seal Installer</td>
<td></td>
</tr>
</tbody>
</table>

1. Torsional Damper Remover and Installer
2. Valve Spring Compressor
3. Oil Pump Pick-Up Tube Installer (Small Block Engines)
4. Oil Pump Pick-Up Tube Installer (Mark IV Engines)
5. Crankshaft Seal Installer
6. Piston Ring Compressor
7. Guide Set
8. Vacuum Pump
9. Hydraulic Lifter Remover (Slide Hammer Type)
10. Hydraulic Lifter Remover (Plier Type)
11. Stud Remover
12. Reamer (0.003-inch oversize)
13. Reamer (0.013-inch oversize)
14. Stud Installer
15. Crankshaft Sprocket Puller (Small Block Engines)
16. Crankshaft Sprocket Installer (Small Block Engines)
17. Rear Oil Seal Installer (Small Block Engines)
18. Crankshaft Sprocket Puller (Mark IV Engines)
SECTION 6A7

6.2 LITER DIESEL

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>6A7-2</td>
</tr>
<tr>
<td>Engine Lubrication</td>
<td>6A7-2</td>
</tr>
<tr>
<td>Disassembly</td>
<td>6A7-3</td>
</tr>
<tr>
<td>Tools and Shop Equipment</td>
<td>6A7-3</td>
</tr>
<tr>
<td>Accessory Removal</td>
<td>6A7-3</td>
</tr>
<tr>
<td>Cleaning</td>
<td>6A7-4</td>
</tr>
<tr>
<td>Draining the Engine</td>
<td>6A7-4</td>
</tr>
<tr>
<td>Vacuum Pump/Oil Pump Drive Removal</td>
<td>6A7-4</td>
</tr>
<tr>
<td>Intake Manifold Removal</td>
<td>6A7-4</td>
</tr>
<tr>
<td>Injection Line Removal</td>
<td>6A7-5</td>
</tr>
<tr>
<td>Injection Nozzle Removal</td>
<td>6A7-5</td>
</tr>
<tr>
<td>Glow Plug Removal</td>
<td>6A7-6</td>
</tr>
<tr>
<td>Exhaust Manifold Removal</td>
<td>6A7-6</td>
</tr>
<tr>
<td>Dipstick Tube Removal</td>
<td>6A7-6</td>
</tr>
<tr>
<td>Water Crossover Removal</td>
<td>6A7-6</td>
</tr>
<tr>
<td>Rocker Arm Cover Removal</td>
<td>6A7-6</td>
</tr>
<tr>
<td>Rocker Arm and Pushrod Removal</td>
<td>6A7-6</td>
</tr>
<tr>
<td>Cylinder Head Removal</td>
<td>6A7-6</td>
</tr>
<tr>
<td>Hydraulic Lifter Removal</td>
<td>6A7-6</td>
</tr>
<tr>
<td>Water Pump Removal</td>
<td>6A7-7</td>
</tr>
<tr>
<td>Torsional Damper Removal</td>
<td>6A7-7</td>
</tr>
<tr>
<td>Injection Pump Removal</td>
<td>6A7-8</td>
</tr>
<tr>
<td>Front Cover Removal</td>
<td>6A7-8</td>
</tr>
<tr>
<td>Timing Chain and Sprocket Removal</td>
<td>6A7-8</td>
</tr>
<tr>
<td>Camshaft Removal</td>
<td>6A7-8</td>
</tr>
<tr>
<td>Oil Pan Removal</td>
<td>6A7-8</td>
</tr>
<tr>
<td>Oil Pump Removal</td>
<td>6A7-9</td>
</tr>
<tr>
<td>Piston and Connecting Rod Removal</td>
<td>6A7-9</td>
</tr>
<tr>
<td>Flywheel Removal</td>
<td>6A7-10</td>
</tr>
<tr>
<td>Crankshaft Removal</td>
<td>6A7-10</td>
</tr>
<tr>
<td>Cleaning, Inspection, and Repair</td>
<td>6A7-11</td>
</tr>
<tr>
<td>Block</td>
<td>6A7-11</td>
</tr>
<tr>
<td>Cylinder Bores</td>
<td>6A7-11</td>
</tr>
<tr>
<td>Piston and Connecting Rod Assemblies</td>
<td>6A7-11</td>
</tr>
<tr>
<td>Intake and Exhaust Manifolds</td>
<td>6A7-11</td>
</tr>
<tr>
<td>Camshaft</td>
<td>6A7-12</td>
</tr>
<tr>
<td>Camshaft Bearings</td>
<td>6A7-12</td>
</tr>
<tr>
<td>Timing Chain, Sprockets, and Timing Gears</td>
<td>6A7-13</td>
</tr>
<tr>
<td>Front Cover</td>
<td>6A7-13</td>
</tr>
<tr>
<td>Water Pump</td>
<td>6A7-13</td>
</tr>
<tr>
<td>Oil Pan and Rocker Arm Covers</td>
<td>6A7-14</td>
</tr>
<tr>
<td>Oil Pump</td>
<td>6A7-14</td>
</tr>
<tr>
<td>Valve Train Components</td>
<td>6A7-14</td>
</tr>
<tr>
<td>Cylinder Head</td>
<td>6A7-15</td>
</tr>
<tr>
<td>Glow Plugs</td>
<td>6A7-17</td>
</tr>
<tr>
<td>Thermostat and Water Crossover</td>
<td>6A7-17</td>
</tr>
<tr>
<td>Injection Nozzles</td>
<td>6A7-17</td>
</tr>
<tr>
<td>Injection Lines</td>
<td>6A7-17</td>
</tr>
<tr>
<td>Injection Pump</td>
<td>6A7-18</td>
</tr>
<tr>
<td>Crankshaft and Bearings</td>
<td>6A7-18</td>
</tr>
<tr>
<td>Flywheel</td>
<td>6A7-18</td>
</tr>
<tr>
<td>Torsional Damper</td>
<td>6A7-18</td>
</tr>
<tr>
<td>Oil Filter Bypass Valve Replacement</td>
<td>6A7-19</td>
</tr>
</tbody>
</table>
DESCRIPTION

GM 6.2L diesel engines are 90 degree V8 type, naturally aspirated, with indirect type combustion chambers. The crankshaft is supported by five precision insert main bearings, with crankshaft thrust taken at the number three (center) main bearing.

The camshaft is supported by five plain type bearings and is chain driven. Motion from the camshaft is transmitted to the overhead valves by roller type hydraulic lifters, pushrods, and spindle mounted rocker arms. The valve guides are integral in the cylinder head.

The connecting rods are forged steel, with precision insert type crankpin bearings. The piston pins are retained by snap ring retainers.

For engine identification information, refer to GENERAL INFORMATION (SEC. 0A).

ENGINE LUBRICATION

A lubrication schematic is shown in figure 1. The gear type oil pump is driven from either the vacuum pump shaft or from a drive gear, depending on engine application. The vacuum pump or drive gear is driven by the camshaft. Oil is drawn into the pump through a pickup screen and pipe.

Pressurized oil is routed to the oil cooler, located in the radiator. A bypass valve is provided should the oil cooler become restricted. Oil flows from the cooler to a full flow oil filter. An oil filter bypass valve is provided should the oil filter become restricted.

Oil flows from the oil filter to the oil galleries, providing pressurized lubrication to various components.

The hydraulic valve lifters receive oil from the oil galleries. Oil flows from the hydraulic lifters through hollow pushrods to the rocker arms. Oil from the overhead drains back to the crankcase through oil drain holes.

The pistons, rings, piston rings, cylinder walls, and connecting rod small end bearings are lubricated by oil splash.
TOOLS AND SHOP EQUIPMENT

A clean, well lit work area should be available. Other necessary equipment includes: A suitable parts cleaning tank, compressed air supply, trays to keep parts and fasteners organized, and an adequate set of hand tools.

An approved engine repair stand will aid the work and help prevent personal injury or damage to engine components.

Special tools are illustrated throughout this section, and are listed at its end. These tools (or their equivalents) are specially designed to quickly and safely accomplish the operations for which they were intended. The use of these tools will also minimize possible damage to engine components.

Some precision measuring tools are required for inspection of certain components. Torque wrenches will be necessary for correct assembly of various parts.

ACCESSORY REMOVAL

This manual assumes that the engine accessories have been removed. These accessories may include one or more of the following:

- Hydraulic Pump
- Generator
- Air Conditioning Compressor
- Cooling Fan
- Fuel Pump
- CDR Valve, EGR Valve, and other emissions equipment

It is beyond the scope of this section to details the many different accessory installations. Refer to the proper Truck Service Manual for this information.

Diagrams of emission and vacuum hose routings, wiring harness routing, accessory drive belt layout, etc., should be made before removing accessories.
CLEANING

NOTICE: Clean the engine only when it is cold, never when it is warm or hot, and never when the engine is running. Spraying or pouring water or other fluids on your engine when it is warm or hot, or when it is running, can cause serious damage to the engine and its components.

Remove the engine accessories before cleaning, to provide better access to engine exterior surfaces. Cover the openings with tape to prevent the entry of water, solvent, and dirt.

Methods used to clean the engine will depend on the aids which are available. Steam cleaning, pressure washing, or solvent cleaning are some acceptable methods. Allow the engine to dry before beginning the work.

It is important that the engine be as clean as possible to prevent dirt from entering critical areas during disassembly.

DRAINING THE ENGINE

1. Remove or Disconnect
 1. Oil pan drain plug. Allow the oil pan to drain.
 2. Oil filter.
 3. Block drain plugs. Allow the coolant to drain.

2. Install or Connect
 1. Oil pan drain plug.
 - Tighten
 - Oil pan drain plug to 10.0 N·m (90 in. lbs.).
 2. Block drain plugs.
 - Tighten
 - Block drain plugs to 22 N·m (16 ft. lbs.).

VACUUM PUMP/OIL PUMP DRIVE REMOVAL

1. Remove or Disconnect (Figure 2)
 1. Hold down clamp and bolt.
 2. Vacuum pump or oil pump drive. Pull out to remove.

2. Install or Connect
 Tool Required: J-29664 Manifold Cover Set
 - J-29664-1 to the intake ports.

INTAKE MANIFOLD REMOVAL

1. Remove or Disconnect (Figure 3)
 1. Intake manifold bolts and fuel line clips.
 2. Intake manifold.

2. Install or Connect
 Tool Required:
 - J-29664 Manifold Cover Set
INJECTION LINE REMOVAL

Clean
- All injection line fittings at the nozzles and injection pump.

Remove or Disconnect (Figure 4)
1. Injection line clips at the brackets.
2. Injection lines at the nozzles.
 - Cap the lines and nozzles immediately.
 - Do not bend injection lines.
3. Injection lines at the pump.
 - Cap the lines and pump fittings immediately.
 - Tag the lines for installation.
4. Injection line brackets.

INJECTION NOZZLE REMOVAL

Remove or Disconnect (Figure 5)
Tool Required:
- J-29873, Nozzle Socket
1. Fuel line clip.
2. Fuel return hose.
NOTICE: When removing an injection nozzle, use J-29873. Remove the nozzle using the 30 mm hex portion. Failure to do so will result in damage to the injection nozzle.

3. Injection nozzle using J-29873. Store the nozzles in a clean place.

GLOW PLUG REMOVAL

Remove or Disconnect
- Glow plugs. Use a suitable socket.

EXHAUST MANIFOLD REMOVAL

Remove or Disconnect
1. Exhaust manifold bolts.
2. Exhaust manifolds.

DIPSTICK TUBE REMOVAL

Remove or Disconnect
1. Dipstick tube. Pull out to remove.
2. O-ring from the dipstick tube.

WATER CROSSOVER REMOVAL

Remove or Disconnect (Figure 6)
1. Clamps (47).
2. Bolts or studs (44).
3. Water crossover (45).
5. Hose (48).

ROCKER ARM COVER REMOVAL

Remove or Disconnect (Figure 7)
1. Bolts (58).

NOTICE: Do not pry on the rocker arm cover. Damage to sealing surfaces may result.

2. Rocker arm covers (57).

ROCKER ARM AND PUSHROD REMOVAL

Remove or Disconnect (Figure 7)
1. Bolts (54).
2. Rocker arm assemblies (55). Mark the assemblies so they can be returned to the original location at assembly.
3. Pushrods (18).

CYLINDER HEAD REMOVAL

Remove or Disconnect (Figure 7)
1. Fuel return line bolts.
2. Bolts (56).
3. Cylinder heads (53).
4. Head gaskets (52).
6.2 LITER DIESEL 6A7-7

Figure 7—Cylinder Head and Components

HYDRAULIC LIFTER REMOVAL

Remove or Disconnect (Figure 7)
1. Clamps (51).
2. Guide plates (50).
3. Hydraulic lifters (17). Place the lifters in an organizer rack. The lifters must be installed in the same bore from which they were removed.

WATER PUMP REMOVAL

Remove or Disconnect (Figure 8)
1. Nuts (84).
2. Oil filler neck (83).
3. Bolts and studs (76).
4. Water pump (82) with water pump plate (75).
5. Bolts (88).
6. Water pump from the water pump plate.
7. Gasket (77).

Figure 8—Front Cover and Components

Figure 9—Removing the Torsional Damper (Typical)
TORSIONAL DAMPER REMOVAL

Remove or Disconnect (Figures 8 and 9)

Tool Required:
- J-23523-E Torsional Damper Puller
- Bolt (80) and washer (81).
- Torsional damper (79). Use J-23523-E (figure 9).

INJECTION PUMP REMOVAL

Remove or Disconnect (Figure 10)

- Scribe a line across the injection pump flange and front cover.
- Wires and hoses at the injection pump.
- Bolts (105).
- Injection pump gear (106).
- Nuts (101), and throttle spring bracket (102).
- Injection pump (100).
- Gasket (103).

FRONT COVER REMOVAL

Remove or Disconnect (Figure 8)

- Oil pan to front cover bolts.
- Bolts (86), nut (87) and baffle (72).
- Bolts (70).
- Front cover (71).

TIMING CHAIN AND SPROCKET REMOVAL

Measure

- Timing chain free play as follows:
 1. Mount a dial indicator to the front of the block.
 2. Position the dial indicator so that the plunger contacts the timing chain between the two gears.

- Pull the chain outward (parallel to the front face of the block) the maximum amount with finger pressure on the inside of the chain.
- Set the dial indicator to zero.
- Move the chain inward (parallel to the front face of the block) the maximum amount with finger pressure on the outside of the chain.
- The total indicator travel can be noted. With used parts, the deflection must not exceed 20.3 mm (0.80 inch). If the deflection exceeds this limit, the sprockets and timing chain must be inspected for wear and replaced as necessary.

CAMSHAFT REMOVAL

Remove or Disconnect (Figure 11)

- Bolt (119) and washer (118).
- Camshaft gear (104).
- Camshaft sprocket (115) with timing chain (116).
- Crankshaft sprocket (117).

OIL PAN REMOVAL

Remove or Disconnect (Figure 12)

- Bolts (133).
- Oil Pan (134).
- Oil pan rear seal (132).
OIL PUMP REMOVAL

- Remove or Disconnect (Figure 12)
 1. Bolt (131).
 2. Oil pump (130).

PISTON AND CONNECTING ROD REMOVAL

- Remove or Disconnect (Figures 13 and 14)
 1. Ridge or deposits from the upper end of the cylinder bores.
Figure 13—Removing the Cylinder Ridge

- Turn the crankshaft until the piston is at BDC.
- Place a cloth on top of the piston.
- Perform the cutting operation with a ridge reamer (figure 13).
- Turn the crankshaft until the piston is at TDC.
- Remove the cloth and cuttings.

2. Connecting rod cap. Check the connecting rod and cap for identification marks. Mark the parts if required. The connecting rod and cap must be kept together as mating parts.

3. Connecting rod and piston.

- Attach two short pieces of 10 mm (3/8-inch) hose to the connecting rod bolts (figure 14). This will protect the crankshaft journal during removal.
- Push the connecting rod and piston out of the bore.
- After removal, assemble the connecting rod and cap.

Figure 14—Removing the Piston and Connecting Rod

A. Use short pieces of 10 mm (3/8-inch) hose to protect the crankshaft journal.

Figure 15—Crankshaft and Components

FLYWHEEL REMOVAL

- Remove or Disconnect (Figure 15)
 1. Bolts (141).
 2. Flywheel (140).

CRANKSHAFT REMOVAL

- Remove or Disconnect (Figure 15)
 1. Check the main bearing caps for location markings. Mark the caps if necessary. The caps must be returned to their original locations during the engine assembly.
 2. Bolts (146).
 3. Main bearing caps (147).
 4. Crankshaft (148). Lift the crankshaft straight up, taking care to avoid damage to the crankshaft journals and thrust flange surfaces.
 5. Rear crankshaft seal halves (142 and 145).
 6. Main bearing inserts (143 and 144).
Cleansing, Inspection, and Repair

A solvent tank, large enough to hold the larger engine parts, will be needed along with various bristle brushes and a gasket scraper. A source of compressed air will be helpful in the cleaning operations.

Precision measuring tools will be required for the inspection procedure. These include: micrometers, cylinder bore gage, feeler gages, dial indicator set, etc. The inspection work, performed with the proper method and tools, is most important. The rebuilt engine cannot be expected to perform properly if parts worn beyond acceptable limits are reused.

BLOCK

- **Clean**
 1. Block in solvent.
 2. Block gasket surfaces.
 3. Cylinder bores.
 4. Oil galleries and passages.
 5. Scale deposits from the coolant passages.

- **Inspect**
 1. All expansion plugs for poor fit or leakage.
 2. Hydraulic lifter bores for deep scratches and varnish deposits.
 3. Block for cracks.
 - Cylinder walls.
 - Coolant jackets.
 - Main bearing webs.
 - Engine mount bosses.
 4. Main bearing bores and main bearing caps.
 - All main bearing bores should be round and uniform in ID at all bearing supports.
 - The area where the main bearing inserts contact the main bearing bore must be free of burrs and scratches.
 5. Head gasket surface for scratches, burrs and damage.

- **CYLINDER BORES**

- **Inspect**
 - Cylinder bores for scoring and other damage.

- **Measure**
 - Cylinder out of round and taper. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

- **Cylinder Bore Recomconditioning**
 - Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

PISTON AND CONNECTING ROD ASSEMBLIES

Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) and perform the following:

- **Disassemble**
 - Components as required.

- **Clean**
 - Components as outlined.

- **Inspect**
 - Components as outlined.

- **Measure**
 - Piston pin diameter and pin to connecting rod bushing.
 - Piston to bore clearance, and fit pistons as outlined.

- **Assemble**
 - Components as outlined.

- **Important**
 - Each connecting rod and bearing cap should be marked, beginning at the front of the engine. Cylinders 1, 3, 5 and 7 are the left bank and, 2, 4, 6, and 8 are the right bank. The numbers on the connecting rod and bearing cap must be on the same side when installed in the cylinder bore. If a connecting rod is ever transposed from one block or cylinder to another, new connecting rod bearings should be fitted and the connecting rod should be numbered to correspond with the new cylinder number.

- **Measure**
 - Ring end gap and ring clearance.

- **Inspect**
 - Ring fit.

INTAKE AND EXHAUST MANIFOLDS

- **Clean**
 - Old pieces of gasket from the gasket surfaces.
 - Soot deposits from the intake manifold.

- **Inspect**
 - Manifolds for cracks, broken flanges, and gasket surface damage.
Whenever the camshaft needs to be replaced, a new set of hydraulic lifters must also be installed.

Inspect (Figure 11)
- Camshaft lobes and journals for scratches, pitting, scoring, and wear.
- Thrust plate (113) for wear and scoring.

Measure (Figure 16)
- Camshaft journals. Use a micrometer (figure 16). The proper journal dimensions are as follows:
 - #5 (rear) journal: 50.975-51.025 mm.
 - All others: 54.975-55.025 mm.

CAMSHAFT BEARINGS

Inspect
- Camshaft bearings for scratches, pits, or loose fit in their bores. Replace the camshaft bearings if necessary.

Disassemble (Figures 17 and 18)
Tools Required:
- J-6098-01 Camshaft Bearing Remover and Installer
- J-6098-10 Adapter Set
1. Rear camshaft plug.
2. Inner camshaft bearings. Use J-6098-01 and J-6098-10 (figure 17).
 - Insert the pilot into the front camshaft bearing bore.
 - Slide the puller screw, with the nut and washer, through the pilot.
 - Insert the bearing tool (J-6098-11) into the inner camshaft bearing bore, with the shoulder of the tool against the bearing.
3. Front camshaft bearing. Use J-6098-01 and J-6098-10 (figure 18).
 - Assemble the bearing tool (J-6098-11) and driver handle.
 - Drive the outer camshaft bearings out of the block.
4. Rear camshaft bearing, as described in step 3. Use the driver handle and bearing tool J-6098-12 (figure 18).

Clean
- Camshaft bearing bores in the block.
Assemble (Figures 17 and 18)

Tool Required:
- J-6098-01 Camshaft Bearing Remover and Installer
- J-6098-10 Adapter Set

- The outer camshaft bearings must be installed first. These bearings serve as guides for the pilot, and help center the inner bearings during the installation process.
- Be sure to fit the correct cam bearing into the bore. The cam bearing bores vary in size.

1. Rear camshaft bearing. Drive the bearing into place using the driver handle and J-6098-12 (figure 18).

 Important
 - The bearing oil hole MUST align with the oil hole in the block. This hole is located at about the 4 o'clock position from the block upright (viewed from the front of the block).
 - The seam in the bearing must be in the upper half of the block face.

2. Front camshaft bearing. Drive the bearing into place with the driver handle and J-6098-11 (figure 18).

 Important
 - The notch in the bearing must face the front of the block.
 - There are two oil holes in the bearing. One hole is located at about the 4 o'clock position; the other is located between the 12 o'clock and 1 o'clock position (block upright). The bearing oil holes MUST align with the holes in the block.
 - The seam in the bearing must be in the upper half of the block face.

3. Inner camshaft bearings. Use J-6098-01 and J-6098-10 (figure 17).

 Assemble the tool with the pilot engaged in the front bearing and the pilot flange against the front face of the block.
 Slide the puller screw, with nut and washer, through the pilot.
 Place the new bearing on the bearing tool (J-6098-011). Hold the bearing tool and bearing against the bearing bore. Align the bearing oil hole with the oil hole in the block.
 Thread the puller screw into the bearing tool enough to hold the tool and bearing in place.
 Holding the puller screw with a wrench, turn the nut with a second wrench to pull the camshaft bearing into place.
 Remove the puller screw, pilot, and bearing tool.

 Important
 - The bearing oil hole MUST align with the oil hole in the block. This hole is located at about the 4 o'clock position with the block upright (viewed from the front of the block).
 - The seam in the bearing must be in the upper half of the block face.

4. New rear camshaft plug.

 Important
 - Coat the camshaft plug with sealer (Loctite #592 or equivalent).
 - Install the plug flush to 0.80 mm (1/32-inch) deep.

TIMING CHAIN, SPROCKETS AND TIMING GEARS

Inspect
- Sprockets for chipped teeth and wear.
- Timing chain for damage.
 - It should be noted that excessively worn sprockets will rapidly wear a new chain. Likewise, an excessively worn chain will rapidly wear a new set of sprockets.
- Timing gears on the injection pump and camshaft for wear and broken teeth.

Important
- If the timing chain, sprockets, or gears are replaced, it will be necessary to re-time the engine, as outlined later.

FRONT COVER

Clean
- Old sealer from the sealing surfaces.

Inspect
- Baffle for damage.
- Front cover for cracks and damage to the sealing surfaces.

Disassemble
- Front crankshaft seal. Pry the seal out with a large screwdriver.

Assemble

Tool Required:
- J-22102 Seal Installer
- Front crankshaft seal. Use J-22102. The open end of the seal must face inside the cover.
- Coat the seal lips with grease.

Important
- If a new front cover is installed, the engine must be re-timed, as outlined later.

WATER PUMP

Clean
- Old gasket from the gasket surfaces on the water pump and water pump plate.

Important
- Do not immerse the pump in solvent. The solvent may enter the pump's permanently...
lubricated bearings, dissolve the bearings' lubricant supply, and cause premature bearing failure.

Inspect
- Water pump shaft for roughness and end play. If the shaft does not turn smoothly, or if there is excessive end play, replace the water pump.
- Water pump body at the drain hole. If there is evidence of coolant leakage, the water pump shaft seal is leaking and the water pump should be replaced.
- Water pump plate for damage.

OIL PAN AND ROCKER ARM COVERS

Clean
- Parts in solvent. Remove all sludge and varnish.
- Old sealer from the sealing surfaces.

Inspect
- Sealing flanges for bending or damage.
- Rubber grommets and parts on the rocker arm cover for deterioration.
- Oil pan for rock damage or cracks.
- Oil pan baffle for loose fit.
- Drain plug threads for stripping.

OIL PUMP

Disassemble
1. Oil pump cover screws.
2. Oil pump cover.
 - Mark the gear teeth so the pump gears can be installed with the same gear teeth indexed.
3. Drive gear and shaft.
4. Idler gear.
5. Pressure regulator valve retaining pin, valve, spring, and related parts. Note the order of assembly.

Clean
- All parts in clean solvent and blow dry with compressed air.

Inspect
- Pump body and cover for cracks or other damage.
- Gears for wear.
- Drive gear and shaft for improper fit in the pump body.
- Inside of the cover for wear that would permit oil to leak past the ends of the gears. The pump gears, cover, and body are not serviced separately. If the parts are damaged or worn, replace the entire oil pump assembly.
- Pick-up screen and pipe for damage to the screen, pipe or relief grommet.

Assemble
1. Pressure regulator valve and related parts.
2. Idler gear and drive gear with shaft. Align the marks made during disassembly.
3. Oil pump cover.
4. Oil pump cover screws.

Inspect
- Oil pump operation. Turn the drive shaft by hand and check for smooth rotation.

VALVE TRAIN COMPONENTS

Clean
- Parts in solvent. Blow dry with compressed air.
- Make sure the oil passages in the pushrods are clear.

Disassemble (Figure 19)
1. Rocker arm retainers (160).
 - Insert a screwdriver into the rocker arm shaft bore and break off the end of the retainers.
 - Pull the rocker arm retainers out with pliers (figure 19).
2. Rocker arms from the rocker arm shaft. Mark the rocker arms so they can be returned to their original locations at assembly.

Inspect
- Rocker arms and shafts at their mating surfaces. These surfaces should be smooth and free from scoring or other damage.
- Rocker arm areas which contact the valve stems and the sockets which contact the pushrods. These areas should be smooth and free of damage and wear.
- Pushrods for bending. Roll the pushrod on a flat surface to determine if it is bent. Replace if necessary.
- Ends of the pushrods for scoring or roughness.
- Hydraulic lifter guide plates and clamps for damage.

Assemble
1. Rocker arms to the rocker arm shaft. Used rocker arms must be returned to their original locations.
Important
- Lubricate the rocker arms with engine oil before installing.

2. New rocker arm retainers (160).
- Center the rocker arms on the corresponding holes in the rocker arm shaft.
- Install the retainers with a drift of at least 13 mm (1/2-inch) diameter.

HYDRAULIC LIFTERS
Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

Important
- Some engines will have both standard 0.010-inch oversize hydraulic lifters. The oversize lifter will have a "10" etched on the side. The block will be stamped "O.S." on the cast pad adjacent to the lifter bore and on the top rail of the cylinder case above the lifter bore.

CYLINDER HEAD

Disassemble (Figures 20, 21, and 22)
Tool Required:
J-8062 Valve Spring Compressor
1. Valve keepers (173).
 - Compress the valve springs (176) with J-8062 (figure 21).
 - Remove the valve keepers.
 - Remove J-8062.
2. Caps (170), rotators (178), shields (175), valve springs with dampers (176) and shims (177).
3. Valve seals (174).
4. Valves (171 and 172). Place them in a rack so they can be returned to their original position at assembly.
5. Pre-chambers (180) (if required) (figure 22). Drive out with a small nylon drift inserted through the injection nozzle hole.
Cleaning and Inspection of Components

Clean
- Components as outlined in GENERAL ENGINE MECHANICAL (SEC. 6A).

Inspect (Figure 23)
1. Components outlined in GENERAL ENGINE MECHANICAL (SEC. 6A).
2. Pre-chambers for cracks. Replace any pre-chambers with facial cracks longer than 5 mm (3/16-inch) (figure 23). Service pre-chambers are available in standard and 0.254 mm oversize.

Measure (Figure 24)
1. Valve stem clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).
2. Valve spring tension and free length. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).
3. Cylinder head warpage. Use a straightedge and a feeler gage (figure 24). If the head is warped more than 0.15 mm (0.006-inch) longitudinally or 0.08 mm (0.003-inch) transversely, replace the cylinder head. Resurfacing is not recommended.

Valve Guides and Valve Seats
Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

NOTICE: Valve seats on 6.2L engines are induction hardened. Excessive removal of stock may result in damage to the valve seats.

Assemble (Figures 20, 21 and 22)
Tool Required:
- J-8062 Valve Spring Compressor
1. Pre-chambers (180) (if removed) (figure 22).
 - Align the locating notches. The pre-chamber will fit correctly in only one position.
 - Tap into place. Use a 32 mm (1 1/4-inch) socket.
2. Valves (171 and 172).
 - Lubricate the valve stems with engine oil.
 - Insert the valves into the proper ports.
3. Shims (177).
4. Valve springs with dampers (176).
5. Shields (175).
6. Caps (170) (intake valves only).
7. Rotators (178) (exhaust valves only).
8. Valve seals (174) and valve keepers (173).
 - Compress the valve spring, using J-8062 (figure 21). Compress the spring enough so the lower valve stem groove can be clearly seen.
 - Push a new seal onto the valve stem. The seal is to be installed on the stem's lower groove. Make sure the seal is flat and not twisted.
 - Apply a small amount of grease to the area of the upper valve stem groove. Assemble the two valve keepers using the grease to hold the keepers in place. Make sure the keepers seat properly in the groove.
 - Release the compressor tool. Make sure the valve keepers stay in place.
THERMOSTAT AND WATER CROSSOVER

Disassemble (Figure 6)
1. Bolts or studs (40).
2. Water outlet (41).
3. Thermostat (42).
4. Gasket (43).

Inspect
- Water outlet and water crossover for cracks.

Thermostat Check
1. Suspend the thermostat and a thermometer in water with the thermometer located close to the thermostat. The thermostat must be completely submerged and the water thoroughly agitated while heating. Apply heat to the water and record both the temperature at which the thermostat begins to open and the temperature at which the thermostat is fully open.
2. Compare the temperature readings taken in the test with those given in the proper Truck Service Manual.
3. Do not attempt to repair the thermostat. If the thermostat does not function properly, replace it with a new unit which has been checked as directed previously.

Install or Connect (Figure 6)
1. Gasket (43).
2. Thermostat (42).
3. Water outlet (41).
4. Bolts or studs (40).

Tighten
- Bolts or studs to 47 N·m (35 ft. lbs.).

INJECTION NOZZLES

Perform the following tests on the injection nozzles as outlined in the proper truck service manual:
- Nozzle opening pressure.
- Leakage test.
- Chatter test.
- Spray pattern test.
Replace any faulty nozzles. Do not attempt repairs.

NOTICE: Nozzles used in G models are shorter than nozzles used in C-K and P models. Attempts to use the incorrect nozzle will damage the cylinder heads.

INJECTION LINES

Inspect
- Injection lines for kinks and damaged fittings. Replace any damaged lines.
INJECTION PUMP

Inspect
- Injection pump body and mounting flange for damage.
- Injection pump for evidence of fuel leakage.
- Injection line fittings for stripping.

Injection Pump Repair
Refer to the proper truck service manual for allowable repairs. If necessary, have the pump repaired by an authorized repair station.

CRANKSHAFT AND BEARINGS

CLEANING AND INSPECTION

Clean
- Crankshaft with solvent.
 - Do not scratch the bearing journals.
 - Blow all sludge from the oil passages with compressed air.
- Main bearing inserts. Wipe free of oil with a soft cloth.

Inspect
- Crankshaft for cracks. Use the magnaflux method, if available.
- Crankpins, main bearing journals and thrust surfaces for scoring, nicks, or damage caused by lack of lubrication.
- Main bearing inserts for scoring or other damage.
 In general, the lower inserts (except the #1 bearing) show greater wear and the most distress from fatigue. If, upon inspection, the lower insert is suitable for use, it can be assumed that the upper insert is also satisfactory. If the lower insert shows evidence of wear or damage, both the upper and lower inserts must be replaced.

Measure (Figures 27 and 28)
- Main bearing and connecting rod journal diameters (figure 27). Compare with “Specifications.” Grind or replace the crankshaft if necessary.
 - Main bearing and connecting rod journals for taper and out-of-round (figure 27). If the journals are tapered or out-of-round more than 0.001-inch, replace the crankshaft.
 - Crankshaft run-out (figure 28).
 • Mount the crankshaft in V-blocks or between centers.
 • Use a dial indicator as shown.
 • If the main journals are misaligned, the crankshaft is bent and must be replaced, along with the main bearings.

AVAILABLE BEARING SIZES
- Main bearings are available in 0.013 mm (0.0005-inch) and 0.026 mm (0.001-inch) undersizes for select fitting to attain proper main bearing clearance.
- Connecting rod bearings are available in 0.026 mm (0.001-inch) undersizes for select fitting.
 - Some VIN Code C (RPO LH6) (light duty emissions) engines may have both standard and 0.08 mm (0.003-inch) OVERSIZE connecting rod bearings. The oversize connecting rods are stamped “O.S.” on the cap’s lower end.

FLYWHEEL

Clean
- Mating surfaces of crankshaft and flywheel. Remove any burrs.

Inspect
- Flywheel for burning, scoring, warping, and wear. Replace the flywheel if necessary. Do not machine the flywheel.
- Flywheel ring gear for worn or broken teeth.

Flywheel Ring Gear Replacement
1. Use a torch to heat the gear around the entire circumference, then drive the gear off the flywheel, using care not to damage the flywheel.
 NOTICE: Never heat starter gear to red heat as this will change metal structure.
2. Uniformly heat the flywheel gear to temperature which will expand the gear to permit installation. Temperature must not exceed 200°C (400°F).
3. As soon as the gear has been heated, install on the flywheel.

TORSIONAL DAMPER

Inspect
- Oil seal contact area on the torsional damper shaft for grooving and roughness. Replace if necessary.
OIL FILTER BYPASS VALVE REPLACEMENT

Remove or Disconnect (Figure 28)
1. Oil filter.
2. Oil filter bypass valve. Pry out with a screwdriver.

Clean
- Recess in the block.

Install or Connect (Figure 28)
1. Oil filter bypass valve. Tap into place, using a 16 mm socket.
2. Oil filter.
CRANKSHAFT INSTALLATION

MAIN BEARING SELECTION
Main bearings are of the precision insert type and do not use shims for adjustment. If clearances are excessive, a new bearing, both upper and lower inserts, will be required. Service bearings are available in standard size and 0.013 mm (0.0005-inch) and 0.026 mm (0.001-inch) undersizes.

Selective fitting of both rod and main bearing inserts is necessary to obtain close tolerances. For this reason you may use, for example, one half of a standard insert with one half of a 0.026 mm (0.001-inch) undersize insert which will decrease the clearance 0.013 mm (0.0005-inch) from using a full standard bearing.

REAR CRANKSHAFT OIL SEAL
The production rear crankshaft oil seal is a “rope” type seal. The rope seal can be replaced with a two piece type seal, if desired. Installation procedures for both types of seal follow.

INSTALLATION

Clean
Main bearing cap and block mating surfaces with carburetor cleaner or equivalent.
Seal grooves in the block and main bearing cap with carburetor cleaner of equivalent.

Install or Connect (Figures 30 through 35)

Tool Required:
J-33153 Rear Oil Seal Installer (for rope type seal)
1. New upper rope seal piece to the seal groove in the block (if a rope type seal is to be installed).
 - Apply a drop of adhesive (GM part number 1052621 [Loctite 414] or equivalent) to the seal groove in the block.
 - Install the new rope seal piece. The seal must be firmly installed in place, completely filling the groove.
 - Cut the seal clean and flush with the block surface. Use a sharp tool.
2. New rope seal to the main bearing cap (if a rope type seal is to be installed).
 - Apply adhesive (GM part number 1052621 [Loctite 414] or equivalent) to the seal groove.
 - Position the rope seal on the bearing cap.
 - Use J-33153 to install the seal (figure 31).
 - After correctly positioning the seal, rotate J-33153 slightly and cut the seal ends flush with the bearing cap surface. Use a sharp tool (figure 32).
3. Upper main bearing inserts to the block.
5. Lower main bearing inserts to the main bearing caps.
6. Rear crankshaft oil seal halves to the block (if a two piece type seal is to be installed).

- Apply a light coat of engine oil to the seal lips where they contact the crankshaft.
- "Roll" one seal half into the block seal groove until 13 mm (1/2-inch) of the seal's one end is extending out of the block (figure 33).
- Insert the other seal half into the opposite side of the seal groove in the block (figure 33).

Important
- The contact ends of the seal halves should now be at the four and ten o'clock positions, or at the eight and two o'clock positions. This is necessary to align the rear main bearing cap and seal lips.
NOTICE: The main bearing caps are to be tapped into place with a brass or leather mallet before the attaching bolts are installed. Do not use the attaching bolts to pull the main bearing caps into their seats, as this may damage the bearing cap and/or block.

7. Number 5 (rear) main bearing cap.
 - If a two piece type seal is to be installed, lightly coat the seal groove in the cap with adhesive (GM part number 1052621 [Loctite 414] or equivalent).
 - Apply a thin film of anaerobic sealant (GM part number 1052756 or equivalent) to the bearing cap as shown in figure 34. Keep the sealant off the seal and bearing. Do not put sealant in the bearing cap oil relief slot.
 - Apply engine oil to the main bearing cap bolt threads.
 - Tap the main bearing cap into place with a brass or leather mallet. Then install the bolts.
 - Tighten
 - Bolts to specifications, in the following sequence:
 - Inner bolts: 150 N·m (110 ft. lbs.).
 - Outer bolts: 135 N·m (100 ft. lbs.).
 - Re-tighten all bolts in the same sequence.

8. Numbers 1, 2, and 4 main bearing caps and bolts.
 - Tighten
 - Bolts to specifications. Refer to step 7.

9. Number 3 (center) main bearing cap and bolts.
 - Tighten the bolts temporarily to 14 N·m (10 ft. lbs.).
 - Measure (Figure 35)
 - Crankshaft end play, as follows:
 - Tap the end of the crankshaft first rearward then forward with a lead hammer. This will line up the main bearing and crankshaft thrust surfaces.
 - Tighten the main bearing cap bolts to specifications. Refer to step 7.
 - With the crankshaft forced forward, measure at the front end of the number 3 main bearing with a feeler gage (figure 35). The proper clearance is 0.10-0.25 mm.
 - Inspect
 - Crankshaft for binding. Try turning the crankshaft to check for binding. If the crankshaft does not turn freely, loosen the main bearing cap bolts, one pair at a time, until the tight bearing is located. Burrs on the bearing cap, foreign matter between the insert and the block or the bearing cap, or a faulty insert could cause a lack of clearance at the bearing.

FLYWHEEL INSTALLATION

Install or Connect (Figure 30)
1. Flywheel (140).
2. Bolts (141).
 - Tighten
 - Bolts (141) to 90 N·m (65 ft. lbs.).

CONNECTING ROD AND PISTON INSTALLATION

CONNECTING ROD BEARING SELECTION
Connecting rod bearings are of the precision insert type and do not use shims for adjustment. DO NOT FILE RODS OR ROD CAPS. If clearances are excessive install a new bearing. Service bearings are available in standard size and 0.026 mm (0.001-inch) undersizes.
Selective fitting of both rod and main bearing inserts is necessary to obtain close tolerances. For this reason you may use, for example, one half of a standard insert with one half of a 0.026 mm (0.001-inch) undersize insert which will decrease the clearance 0.013 mm (0.0005-inch) from using a full standard bearing.
Some VIN Code C (RPO LH6) (light duty emissions) engines may have both standard and 0.08 mm (0.003-inch) oversize connecting rod bearings. The oversize connecting rods are stamped “O.S.” on the cap’s lower end.
Install or Connect (Figures 36, 37, and 38)

Tool Required:
J-8037 Ring Compressor

- Make sure the cylinder walls are clean. Lubricate the cylinder wall lightly with engine oil.
- Make sure the piston is installed in the matching cylinder. Install new pistons in the cylinders for which they were fitted. Install used pistons in the cylinder from which they were removed.

1. Connecting rod bearings.
 - Be certain that the bearings are the proper size.
 - Install the bearings in the connecting rod and connecting rod cap.

2. Piston and connecting rod to the proper bore.
 - With the connecting rod cap removed, install two short pieces of 10 mm (3/8-inch) hose onto the connecting rod studs.
 - Locate the piston ring end gaps as shown in figure 36. Lubricate the piston and rings with engine oil.
 - Without disturbing the ring end gap location, install J-8037 over the piston (figure 37).
 - The piston must be installed so that the depression in the piston crown is towards the outside of the engine. The connecting rod bearing tang slots must be opposite the camshaft.
 - Place the piston in its matching bore. Using light blows with a hammer handle, tap the piston down into its bore (figure 37). At the same time, from beneath the engine guide the connecting rod to the journal with the pieces of hose (figure 38). Hold the ring compressor against the block until all rings have entered the cylinder bore.
 - Remove the hoses from the connecting rod bolts.

Important

- Each connecting rod and bearing cap should be marked, beginning at the front of the engine. Cylinders 1, 3, 5 and 7 are the left bank and 2, 4, 6 and 8 are the right bank. The numbers on the connecting rod and bearing cap must be on the same side when installed in the cylinder bore. If a connecting rod is ever transposed from one block or cylinder to another, new connecting rod bearings should be fitted and the connecting rod should be numbered to correspond with the new cylinder number.

Measure

- Connecting rod bearing clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).
- Apply engine oil to the connecting rod bearings.

3. Connecting rod cap with bearing.

4. Connecting rod cap nuts.

Tighten

- Connecting rod cap nuts to 65 N m (48 ft. lbs.).

Measure (Figure 39)

- Connecting rod side clearance. Use a feeler gage between the connecting rod and crankshaft (figure 39). The correct clearance is 0.17-0.63 mm.
CAMSHAFT INSTALLATION

Install or Connect (Figure 40)

- When a new camshaft is installed, replacement of all hydraulic lifters, engine oil, and oil filter is recommended.

1. Key (112).
2. Spacer (111), with the ID chamfer towards the camshaft (110).
3. Camshaft.
 - Coat the camshaft lobes with "Molykote" or equivalent.
 - Lubricate the camshaft bearing journals with engine oil.
 - Insert the camshaft carefully into the block to avoid damage to the camshaft bearings.
4. Thrust plate (113) and bolts (114).

Tighten
- Bolts (114) to 23 N·m (17 ft. lbs.).

TIMING CHAIN AND SPROCKET INSTALLATION

Install or Connect (Figure 40)

1. Crankshaft sprocket (117).
2. Camshaft sprocket (115) with timing chain (116).

Important
- Align the timing marks (figure 40).
3. Camshaft gear (104), washer (118) and bolts (119).

Tighten
- Bolt (119) to 100 N·m (75 ft. lbs.).

Measure
- Timing chain free play as follows:

1. Mount a dial indicator to the front of the block.
2. Position the dial indicator so that the plunger contacts the timing chain between the two sprockets.
3. Pull the chain outward (parallel to the front face of the block) the maximum amount with finger pressure on the inside of the chain.
4. Set the dial indicator to zero.
5. Move the chain inward (parallel to the front face of the block) the maximum amount with finger pressure on the outside of the chain.
6. The total indicator travel can be noted. With used parts, the deflection must not exceed 20.3 mm (0.80-inch). If the deflection exceeds this limit, the sprockets and timing chain must be inspected for wear and replaced as necessary. With new parts, the deflection must not exceed 12.7 mm (0.50-inch).
FRONT COVER INSTALLATION

Clean
- Sealing surfaces on the block and front cover with carburetor cleaner or equivalent.

Install or Connect (Figures 41 and 42)
- Apply a 2 mm (3/32-inch) bead of anaerobic sealant (GM part number 1052357 or equivalent) to the front cover sealing area shown in figure 42.

1. Front cover to the engine. Install the bolts (70).

Tighten
- Bolts (70) to 45 N·m (33 ft. lbs.).

2. Baffle (72), bolts (86) and nut (87).

Tighten
- Bolts (86) and nut (87) to 45 N·m (33 ft. lbs.).

Measure
- Clearance between injection pump gear and baffle (figure 42). It is necessary to maintain a minimum of 1.0 mm (0.040-inch) between the gear and baffle, or noise may result.

Important
- If a new front cover was installed, mark TDC on the cover as outlined following. This is necessary to provide a reference mark for timing the injection pump.

MARKING TDC ON THE FRONT COVER
Tool Required:
- J-33042, Timing Fixture

1. Set the engine so that number 1 cylinder is at TDC (firing).

2. Install J-33042 in the injection pump location.
- Do not use the gasket.

3. Set the injection pump gear (106) (figure 45) in place, aligning the timing marks on the injection pump and camshaft gears, as shown. The slot in the injection pump gear should be in the vertical 6 o'clock position (figure 43). If not, remove J-333042 and rotate the engine crankshaft 360 degrees.

4. Fasten J-33042 to the injection pump gear and tighten (figure 44).

5. Install one 10 mm nut to the upper housing stud to hold the tool flange.
- The nut should be finger tight.

6. Tighten the large bolt (18 mm head) clockwise (looking at the front of the engine) to 48 N·m (35 ft. lbs.).

7. Tighten the 10 mm nut.

8. Check that the crankshaft has not rotated and that the tools did not bind.

9. Strike the scriber with a mallet to mark TDC on the front cover.

OIL PUMP INSTALLATION

Install or Connect (Figure 45)

1. Oil pump with extension.

2. Bolt (131).

Tighten
- Bolt (131) to 90 N·m (65 ft. lbs.).

OIL PAN INSTALLATION

Install or Connect (Figure 45)

Apply a 5 mm (3/32-inch) bead of RTV sealant (GM part number 1052915 or equivalent) to the oil pan sealing surface, inboard of the bolt holes (figure 42). The sealer must be wet to the touch when the oil pan is installed.

1. Oil pan rear seal to the oil pan.

2. Oil pan to the engine.

3. Bolts (133).
Install or Connect (Figure 46)

1. Gasket (103) to the front cover.
2. Injection pump (100).
3. Throttle spring bracket (102).
4. Nuts (101). Leave finger tight until the injection pump timing is adjusted.

Tighten
- All except rear two bolts to 10.0 N·m (84 in. lbs.).
- Rear two bolts to 23 N·m (17 ft. lbs.).
5. Injection pump gear (106). Align the slot in the injection pump with the locating pin on the injection pump hub (107).

Important
- Align the timing marks (figure 46).

Tighten
- Bolts (105) to 25 N·m (20 ft. lbs.).

7. Wires and hoses at the injection pump.

Adjust (Figure 47)
- Injection pump timing. For the engine to be properly timed, the marks on the top of the engine front cover must be aligned with the marks on the injection pump flange (figure 47). The engine must be off when the timing is reset. On Federal models, align the scribe marks. On California emissions models, align the half circles.
TORSIONAL DAMPER INSTALLATION

Install or Connect (Figure 41)
1. Torsional damper (79). Tap into place with a mallet. Make sure the key is in place. Make sure the damper is all the way on the crankshaft.
2. Bolt (80) and washer (81).
 - **Tighten**
 - Bolt (80) to 270 N·m (200 ft. lbs.).

WATER PUMP INSTALLATION

Clean
- Sealing surfaces on the water pump plate and block. Use carburetor cleaner or equivalent.

Install or Connect (Figures 41 and 48)
1. Water pump (82) and gasket (77) to the water pump plate (75).
2. Bolts (88).
 - **Tighten**
 - Bolts (88) to 22 N·m (16 ft. lbs.).
 - Apply a bead of anaerobic sealer (GM part number 1052357 or equivalent) to the water pump plate as shown in figure 48.
3. Water pump plate to the engine. The sealer must be wet to the touch when installing the plate.
 - **Apply sealant (GM Part no. 1052080 or equivalent) to the threads of bolts and studs (76).**
4. Bolts and studs (76).
 - **Tighten**
 - Water pump to front cover bolts to 42 N·m (32 ft. lbs.).

HYDRAULIC LIFTER INSTALLATION

Important
- Some engines will have both standard and 0.010-inch oversize hydraulic lifters. The oversize lifter will have a "10" etched on the side. The block will be stamped "O.S." on the cast pad adjacent to the lifter bore and on the top rail of the cylinder case above the lifter bore.

Install or Connect (Figure 49)

NOTICE: New hydraulic lifters must be primed before installation. Damage to the lifters may result if dry when the engine is started.

1. Hydraulic lifters to the engine.
 - Prime new hydraulic lifters before installation by working the lifter plunger while submerged in clean kerosene or diesel fuel.
 - Coat the lifter roller and bearings with lubricant (GM part number 1052365 or equivalent).
 - Lifters MUST be installed in their original locations.
2. Guide plates (50).
3. Clamps (51).
 - **Tighten**
 - Clamp bolts to 26 N·m (18 ft. lbs.).

Important
- After all clamps are installed, turn the crankshaft by hand 720 degrees (two full turns), to insure free movement of the lifters in...
The guide plates. If the engine will not turn over by hand, one or more of the lifters may be binding in the guide plate.

CYLINDER HEAD INSTALLATION

Install or Connect (Figures 49 and 50)

Tool Required:
- J-29664 Manifold Cover Set

1. Head gasket to the block, over the dowel pins.

Important
- The block gasket surfaces must be clean.
- DO NOT use a sealer on the head gasket. The head gasket is manufactured with the proper amount of sealant “printed” on its surface. Additional sealer may cause leakage or malfunction. In addition, some sealers may attack the sealant already on the head gasket.

2. Cylinder head. Make sure the gasket surfaces are clean. Guide the head carefully into place over the dowel pins.

- Make sure the bolt threads are clean.
- Apply sealant (GM part number 1052080 or equivalent) to the bolt threads and under the bolt heads.

Tighten
- Bolts (56).
- Using the sequence shown in figure 50, tighten all bolts to 25 N·m (20 ft. lbs.).
- In sequence, tighten all bolts to 65 N·m (50 ft. lbs.).
- In sequence, tighten all bolts an additional 90 degrees (¼ turn).

4. J-29664-1 to the intake ports.

PUSHROD AND ROCKER ARM INSTALLATION

Install or Connect (Figures 49 and 51)

NOTICE: The pushrods must be installed with the marked or painted end up. Failure to do so may result in damage or premature wear.

1. Pushrods, with the painted or marked end up.

2. Rocker arm shaft assembly. Make sure the ball ends of the pushrods seat in the rocker arms.

NOTICE: Improper installation of the rocker arm shaft bolts may cause rocker arm shaft breakage and/or piston to valve contact.

3. Bolts (54).

- Rotate the engine until the mark on the torsional damper aligns with the “0” mark on the timing tab.
- Rotate the engine counterclockwise 88 mm (3½-inches), measured at the torsional damper. This measurement can be estimated by aligning the torsional damper mark with the
first lower water pump bolt (figure 51). This procedure will position the engine so no valves are close to a piston crown.

- Install the bolts finger tight.

Tighten
- Bolts (54) alternately to 55 N·m (40 ft. lbs.).

ROCKER ARM COVER INSTALLATION

Clean
- Sealing surfaces on the cylinder head and rocker arm cover with carburetor cleaner or equivalent.

Install or Connect (Figures 49 and 51)

NOTICE: Do not allow RTV sealant into the rocker arm cover bolt holes. This may cause a "hydraulic lock" condition when the bolts are tightened, damaging the cylinder head casting.

- Apply a 5 mm (5/32-inch) bead of RTV sealant (GM part number 1052915 or equivalent) to the rocker arm covers, inboard of the bolt holes. Refer to figure 52. The sealer must be wet to the touch when the bolts are torqued.
 1. Rocker arm covers.
 2. Bolts (58).

WATER CROSSOVER INSTALLATION

Install or Connect (Figure 53)

1. Gaskets (46).
2. Water crossover.
3. Bolts and studs (44).
6.2 LITER DIESEL 6A7-31

Figure 53—Thermostat and Water Crossover

- Tighten
 - Bolts and studs (44) to 42 N·m (31 ft. lbs.).
 - Hose (48) and clamps (47).

DIPSTICK TUBE INSTALLATION

- Install or Connect
 1. New O-ring to the dipstick.
 2. Dipstick to the engine.

EXHAUST MANIFOLD INSTALLATION

- Install or Connect
 - Exhaust manifolds and bolts.
 - Bolts to 35 N·m (26 ft. lbs.).

INJECTION NOZZLE INSTALLATION

- Install or Connect (Figure 54)
 - J-29873, Nozzle Socket
 - NOTICE: Nozzles used in engines used in G models are shorter than nozzles used in other models. Attempts to install an incorrect nozzle will damage the cylinder heads.
 - NOTICE: When installing an injection nozzle, use J-29873. Install the nozzle using the 30 mm hex portion. Failure to do so will result in damage to the injection nozzle.
 - Bolts to 35 N·m (26 ft. lbs.).

GLOW PLUG INSTALLATION

- Install or Connect
 - Glow plugs.
 - Tighten
 - Glow plugs to 14 N·m (10 ft. lbs.).
Figure 55—Injection Lines

Tighten
- Nozzle to 70 N·m (50 ft. lbs.).
2. Fuel return hose.
3. Fuel line clip.

INJECTION LINE INSTALLATION

Install or Connect (Figures 55 and 56)
1. Injection line brackets.
2. Injection lines to the pump. Uncap the lines before assembly. Do not bend the injection lines.
3. Injection lines to the nozzles. Uncap the lines before assembly. Do not bend the injection lines.

Tighten
- Injection line fittings at both ends of the lines to 25 N·m (19 ft. lbs.).
4. Injection line clips to the brackets.

INTAKE MANIFOLD INSTALLATION

Remove or Disconnect
- J-29664-1 from the intake ports.

Install or Connect (Figure 57)
Tool Required:
J-29664 Manifold Cover Set

1. New gaskets. Be sure to use the correct gasket. The gaskets for light duty emissions models have openings for the EGR, the gaskets for heavy duty emissions models do not.
2. Intake manifold.
3. Intake manifold bolts and fuel line clips.

Tighten
- Intake manifold bolts to 42 N·m (31 ft. lbs.). Use the tightening sequence shown in figure 57.
4. J-29664-2 to the mouth of the intake manifold.

OIL PUMP DRIVE OR VACUUM PUMP INSTALLATION

NOTICE: Do not run the engine without the gear driven vacuum pump or oil pump drive in place. This will cause extensive engine damage.

Install or Connect (Figures 58, 59, and 60)
1. New gasket to the oil pump drive or vacuum pump.
2. Oil pump drive or vacuum pump to the engine. Index the drive or pump with the camshaft gear and oil pump drive shaft. Make sure the drive or pump seats fully.
- Rotate the vacuum pump (if used) to its correct position (figure 60).
3. Clamp and bolt.
Tighten
• Bolt to 42 N·m (31 ft. lbs.).

ENGINE ACCESSORY INSTALLATION

Install the engine accessories as directed in the proper Truck Service Manual. Connect all vacuum hoses and electrical equipment the same way as removed.

ENGINE SET-UP AND TESTING

1. After overhaul, the engine should be tested before installation in the vehicle. If a suitable test stand is not available, the following procedure can be used after the engine is installed in the vehicle.

2. Fill the crankcase with the proper quantity and grade of oil and install a new oil filter. Refer to the proper Truck Service Manual or Owner’s and Driver’s Manual for this information. Replacement of the engine oil and filter is recommended, especially if a new camshaft was installed.

3. Fill the cooling system with the proper coolant.

4. With the shutdown solenoid disconnected, crank the engine several times. Listen for any unusual noises or evidence that any parts are binding.

5. Start the engine and listen for unusual noises. Run the engine at about 1000 rpm until the engine is at operating temperature. Listen for sticking lifters, and other unusual noises. Check for oil and coolant leaks while the engine is running.

Using the proper Truck Service Manual or Emission Control Label for specifications, adjust idle speed, fast idle speed, etc. as required.

Figure 56—Injection Line Routing
Figure 57—Intake Manifold Installation

A. Forward
60. Oil Pump Drive
61. Clamp
62. Bolt
63. Gasket

Figure 58—Oil Pump Drive Installed

Figure 59—Vacuum Pump
SPECIFICATIONS

ENGINE SPECIFICATIONS

All Specifications are in millimeters (mm) unless otherwise noted.

<table>
<thead>
<tr>
<th>GENERAL DATA:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>90-degree V8 Diesel</td>
</tr>
<tr>
<td>Displacement</td>
<td>6.2L</td>
</tr>
<tr>
<td>RPO</td>
<td>LH6 LL4</td>
</tr>
<tr>
<td>Bore</td>
<td>101</td>
</tr>
<tr>
<td>Stroke</td>
<td>97</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>21.3:1</td>
</tr>
<tr>
<td>Firing Order</td>
<td>1-8-7-2-6-5-4-3</td>
</tr>
<tr>
<td>Oil Pressure</td>
<td>10 psi at idle (hot); 40–45 psi at 2000 RPM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CYLINDER BORE:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>100.987–101.065</td>
</tr>
<tr>
<td>Diameter (Maximum)</td>
<td>0.02</td>
</tr>
<tr>
<td>Taper (Thrust Side)</td>
<td>0.02 (Maximum)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PISTON:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearance</td>
<td></td>
</tr>
<tr>
<td>Bohn Pistons</td>
<td>Bores 1 through 6</td>
</tr>
<tr>
<td></td>
<td>Bores 7 and 8</td>
</tr>
<tr>
<td>Zollner Pistons</td>
<td>Bores 1 through 6</td>
</tr>
<tr>
<td></td>
<td>Bores 7 and 8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PISTON RING:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Groove</td>
<td></td>
</tr>
<tr>
<td>Compression</td>
<td>Top</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
</tr>
<tr>
<td></td>
<td>Gap Top</td>
</tr>
<tr>
<td></td>
<td>2nd Gap</td>
</tr>
<tr>
<td>Oil</td>
<td>Groove Clearance</td>
</tr>
<tr>
<td></td>
<td>Gap</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PISTON PIN:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>30.9961–31.0039</td>
</tr>
<tr>
<td>Clearance</td>
<td>0.0101–0.0153</td>
</tr>
<tr>
<td>Fit in Rod</td>
<td>0.0081–0.0309</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CRANKSHAFT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td>#1, 2, 3, 4</td>
</tr>
<tr>
<td></td>
<td>#5</td>
</tr>
<tr>
<td>Journal</td>
<td>Taper</td>
</tr>
<tr>
<td></td>
<td>Out of Round</td>
</tr>
<tr>
<td>Main Bearing</td>
<td>#1, 2, 3, 4</td>
</tr>
<tr>
<td></td>
<td>#5</td>
</tr>
<tr>
<td>Crankshaft End Play</td>
<td>0.10–0.25</td>
</tr>
<tr>
<td>Crankpin</td>
<td>Diameter</td>
</tr>
<tr>
<td></td>
<td>Taper</td>
</tr>
<tr>
<td></td>
<td>Out-of-Round</td>
</tr>
<tr>
<td>Rod Bearing Clearance</td>
<td>0.045–0.100</td>
</tr>
<tr>
<td>Rod Side Clearance</td>
<td>0.17–0.63</td>
</tr>
</tbody>
</table>

B-08051
SPECIFICATIONS

ENGINE SPECIFICATIONS (CONT.)
All Specifications are in millimeters (mm) unless otherwise noted.

<table>
<thead>
<tr>
<th>DISPLACEMENT</th>
<th>6.2 L</th>
</tr>
</thead>
</table>

CAMSHAFT:

- **Lobe Lift ± 0.05**
 - Intake: 7.133
 - Exhaust: 7.133

- **Journal Diameter**
 - #1, 2, 3, 4: 54.975-55.025
 - #5: 50.975-51.025

- **Journal Clearance**: 0.026-0.101

- **Camshaft End Play**: 0.051-0.305

VALVE SYSTEM:

- **Lifter**: Hydraulic Roller

- **Rocker Arm Ratio**: 1.5 : 1

- **Valve Lash**
 - Intake: Not Adjustable
 - Exhaust: Not Adjustable

- **Face Angle (Intake & Exhaust)**: 45°

- **Seat Angle (Intake & Exhaust)**: 46°

- **Seat Runout (Intake & Exhaust)**: 0.05

- **Seat Width**
 - Intake: 0.89-1.53
 - Exhaust: 1.57-2.36

- **Stem Clearance**
 - Intake: 0.026-0.069
 - Exhaust: 0.026-0.069

- **Valve Spring Pressure**
 - Closed: 356 N @ 46.0 mm
 - Open: 1025 N @ 35.3 mm

- **Installed Height**: 46

- **Timing Chain Free Play**
 - New Chain: 12.7 mm (0.500-inch)
 - Used Chain: 20.3 mm (0.800-inch)

- **Hydraulic Lifter Diameter**
 - Standard: 23.39-23.41
 - 0.010-inch Oversize: 23.64-23.66

- **Lifter Bore Diameter**
 - Standard: 23.45-23.47
 - 0.010-inch Oversize: 23.70-23.72

- **Lifter to Bore Clearance**: 0.040-0.080*

An oversize lifter can be used to replace a standard lifter, if resulting clearance is as specified.
SPECIFICATIONS (CONT.)

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
<th>In. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Outlet Bolts/Studs</td>
<td>47</td>
<td>35</td>
<td>—</td>
</tr>
<tr>
<td>Water Crossover to Cylinder Head Bolts/Studs</td>
<td>42</td>
<td>31</td>
<td>—</td>
</tr>
<tr>
<td>Main Bearing Cap Bolts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Inner)</td>
<td>150</td>
<td>110</td>
<td>—</td>
</tr>
<tr>
<td>(Outer)</td>
<td>135</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>Flywheel Bolts</td>
<td>90</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Connecting Rod Cap Nuts</td>
<td>65</td>
<td>48</td>
<td>—</td>
</tr>
<tr>
<td>Camshaft Thrust Plate Bolts</td>
<td>23</td>
<td>17</td>
<td>—</td>
</tr>
<tr>
<td>Camshaft Gear Bolt</td>
<td>100</td>
<td>75</td>
<td>—</td>
</tr>
<tr>
<td>Front Cover to Block Bolts</td>
<td>45</td>
<td>33</td>
<td>—</td>
</tr>
<tr>
<td>Injection Pump Gear Baffle Bolts and Nut</td>
<td>45</td>
<td>33</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pump to Bearing Cap Bolt</td>
<td>90</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pan Bolts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All except Rear Two Bolts</td>
<td>10.0</td>
<td>—</td>
<td>84</td>
</tr>
<tr>
<td>Rear Two Bolts</td>
<td>23</td>
<td>17</td>
<td>—</td>
</tr>
<tr>
<td>Injection Pump Gear Bolts</td>
<td>25</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Injection Pump Flange Nuts</td>
<td>40</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pan Drain Plug</td>
<td>10.0</td>
<td>—</td>
<td>90</td>
</tr>
<tr>
<td>Block Drain Plug</td>
<td>22</td>
<td>16</td>
<td>—</td>
</tr>
<tr>
<td>Torsional Damper Bolt</td>
<td>270</td>
<td>200</td>
<td>—</td>
</tr>
<tr>
<td>Water Pump Plate to Water Pump Bolts</td>
<td>22</td>
<td>16</td>
<td>—</td>
</tr>
<tr>
<td>Water Pump to Front Cover Bolts</td>
<td>42</td>
<td>32</td>
<td>—</td>
</tr>
<tr>
<td>Water Pump Plate to Front Cover Bolts</td>
<td>22</td>
<td>16</td>
<td>—</td>
</tr>
<tr>
<td>Hydraulic Lifter Guide Plate Clamp Bolts</td>
<td>26</td>
<td>18</td>
<td>—</td>
</tr>
<tr>
<td>Cylinder Head Bolts — See Text</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rocker Arm Assembly Bolts</td>
<td>55</td>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>Rocker Arm Cover Bolts</td>
<td>22</td>
<td>16</td>
<td>—</td>
</tr>
<tr>
<td>Exhaust Manifold Bolts</td>
<td>35</td>
<td>26</td>
<td>—</td>
</tr>
<tr>
<td>Glow Plugs</td>
<td>14</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>Injection Nozzles</td>
<td>70</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>Injection Line Fittings</td>
<td>25</td>
<td>19</td>
<td>—</td>
</tr>
<tr>
<td>Intake Manifold Bolts</td>
<td>42</td>
<td>31</td>
<td>—</td>
</tr>
<tr>
<td>Vacuum Pump/Oil Pump Drive Clamp Bolt</td>
<td>42</td>
<td>31</td>
<td>—</td>
</tr>
</tbody>
</table>
SPECIAL TOOLS

1. Ring Compressor
2. Rear Oil Seal Packer
3. Rear Oil Seal Installer
4. Timing Fixture
5. Nozzle Socket
6. Seal Installer
7. Torsional Damper Remover
8. Manifold Cover Set
SECTION 6C1
CARBURETORS

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1MEF Carburetor</td>
<td>6C1-1</td>
</tr>
<tr>
<td>Model M4ME AND M4MEF Carburetors</td>
<td>6C1-23</td>
</tr>
</tbody>
</table>

MODEL 1MEF CARBURETOR

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carburetor Identification</td>
<td>6C1-2</td>
</tr>
<tr>
<td>General Description</td>
<td>6C1-2</td>
</tr>
<tr>
<td>Carburetor Disassembly</td>
<td>6C1-6</td>
</tr>
<tr>
<td>Cleaning, Inspection and Repair</td>
<td>6C1-13</td>
</tr>
<tr>
<td>Carburetor Reassembly</td>
<td>6C1-16</td>
</tr>
<tr>
<td>Metering Rod Adjustment</td>
<td>6C1-18</td>
</tr>
<tr>
<td>Float Adjustment</td>
<td>6C1-18</td>
</tr>
<tr>
<td>Choke Stat Lever Adjustment</td>
<td>6C1-20</td>
</tr>
<tr>
<td>Choke Link (Fast Idle Cam) Adjustment</td>
<td>6C1-20</td>
</tr>
<tr>
<td>Vacuum Break Adjustment</td>
<td>6C1-21</td>
</tr>
<tr>
<td>Choke Unloader Adjustment</td>
<td>6C1-21</td>
</tr>
<tr>
<td>Specifications</td>
<td>6C1-22</td>
</tr>
<tr>
<td>Special Tools</td>
<td>6C1-22</td>
</tr>
</tbody>
</table>
CARBURETOR IDENTIFICATION

Model Number: 17086101
Application: Federal (Non-California)
4.8 Liter L6 engine

The carburetor identification number is stamped vertically on the float bowl, next to the fuel inlet nut (Figure 1). Refer to this number when servicing the carburetor. If replacing the float bowl assembly, transfer the identification number to the new float bowl. Follow the instructions on the envelope included in the service package.

Carburetor parts are shown in the disassembled view (Figure 14), and are identified by name on the facing page (Figure 15).

NOTICE: The factory-set metering rod adjusting screw, located in the air horn (Figure 6), controls the position of the enrichment portion of the metering rod in the jet. Any unnecessary adjustment of that screw could result in engine damage or excessive emissions.

GENERAL DESCRIPTION

Model 1MEF is a single stage, single barrel carburetor of the "1M" family (Figure 2). Letters following the "1M" designate these features:
E: It has an integral Electric choke.
F: It has adjustable wide open throttle mixture control.

Model 1MEF has three major assemblies: an air horn, a float bowl and a throttle body. It has the six operating systems shown in Figures 3 through 8:

Figure 3 Float Figure 6 Power
Figure 4 Idle Figure 7 Pump
Figure 5 Main Metering Figure 8 Choke

IDLE STOP SOLENOID (ISS)
The electric idle stop solenoid (ISS) is used to provide the desired engine idle speed, and to prevent "dieseling" when the ignition is switched off.

UNIT REPAIR

The information that follows applies to a complete overhaul, after the carburetor has been removed from the engine, and includes disassembly, thorough cleaning, inspection and replacement of all gaskets, seals, worn or damaged parts, and adjustment of individual systems.

Refer to the disassembled view (Figure 14), and parts list (Figure 15), for parts identification.
215. Fuel Inlet Filter
218. Fuel Filter Spring
226. Float
228. Float Hinge Pin
231. Float Needle
234. Float Needle Seat

A. Internal Vent
B. Vent Tube to Canister
C. Check Valve Seat
D. Fuel In
E. Check Valve
F. Valve Closing Spring

282. Jet-Main Metering
286. Idle Tube Assembly
326. Needle-Idle Mixture
333. Plug-Idle Mixture Needle

A. Throttle Valve
B. Idle Channel Restriction
C. Top Idle Air Bleed
D. Lower Idle Air Bleed
E. Off-Idle Port
F. Idle Discharge Orifice
G. Timed Vacuum Port

Figure 3 - Float System

Figure 4 - Idle System
266. Rod - Power Piston
274. Power Valve Piston Assembly
276. Spring - Power Piston
279. Metering Rod and Spring Assembly
282. Jet - Main Metering
 A. Throttle Valve
 B. Vacuum Channel
 C. Main Venturi
 D. Boost Venturi
 E. Main Discharge Nozzle
 F. Lower Idle Air Bleed
 G. Main Well
 H. Fuel Feed Orifice
 I. Part Throttle Adjusting Screw
 J. Top Main Well Air Bleed
 K. Main Well to Aspirator Bleed

Figure 5 - Main Metering System

266. Rod - Power Piston
274. Power Valve Piston Assembly
276. Spring - Power Piston
279. Metering Rod and Spring Assembly
282. Jet - Main Metering
310. Lever - Pump and Power Rod
314. Link - Power Rod
 A. Throttle Valve
 B. Vacuum Channel
 C. Main Discharge Nozzle
 D. Lower Idle Air Bleed
 E. Main Well
 F. Metering Rod Adjusting Screw
 G. Setscrew
 H. Metering Rod Adjusting Screw Plug
 I. Top Main Well Air Bleed
 J. Main Well to Aspirator Bleed

Figure 6 - Power System
240. Rod - Pump
247. Cup - Pump Plunger
248. Spring - Pump Plunger
252. Spring - Pump Return
256. Guide - Pump Discharge Spring
258. Spring - Pump Discharge Ball
260. Ball - Pump Discharge
310. Lever - Pump and Power Rod
317. Link - Pump
 A. Pump Plunger Head
 B. Pump Duration Spring
 C. Pump Discharge Channel
 D. Pump Jet

Figure 7 - Pump System

10. Fast Idle Cam
15. Fast Idle Cam Link
20. Choke Shaft, Lever and Link Assembly
40. Choke Shaft and Lever Assembly
43. Choke Stat Lever
65. Bowl Side Vacuum Break Assembly
69. Vacuum Break Lever and Link Assembly
 A. Choke Valve
 B. Thermostatic Coil
 C. Plunger Bucking Spring
 (not used on all models)

Figure 8 - Choke System - Electric
CARBURETOR DISASSEMBLY

IDLE MIXTURE NEEDLE PLUG

- Remove or Disconnect (Figure 9)

1. Invert carburetor, and support it, to avoid damaging external components.

2. Make two parallel hacksaw cuts (C) in the throttle body, one on each side of the locator point (B) above idle mixture needle plug (333).
 - Cut down to the plug, but not more than 1/8" beyond the locator point.

3. Place a flat punch (D) at a point near the ends of the saw marks. Hold the punch at a 45° angle, and drive it into the throttle body to break casting away, to expose the plug.

4. Use center punch (E) to break plug apart, to uncover idle mixture needle.

5. Remove all loose pieces of plug.

FUEL INLET NUT AND FILTER

- Support carburetor to avoid damaging external components.

- Support carburetor to avoid damaging external components.

IDLE STOP SOLENOID

- Remove or Disconnect (Figures 14, 15)

- Idle stop solenoid (400), and idle stop solenoid spring (401).
 - Use 9/16" socket or hex wrench on end of solenoid body.

THROTTLE RETURN SPRING BRACKET

- Remove or Disconnect (Figures 14, 15)

1. Loosen bracket attaching screw (421)(bottom).

2. Remove countersunk bracket attaching screws (420) and throttle return spring anchor bracket (415).

CHOKE COMPONENTS

Vacuum Break Assembly

- Remove or Disconnect (Figure 11)

1. Vacuum break hose (67).
2. Air horn to float bowl (vacuum break attaching) screws (111) and bowl side vacuum break assembly (65).
 - Disconnect vacuum break from vacuum break link (69A).
 - Allow choke wire connector bracket assembly (47A) to hang freely.

Choke Housing

Remove or Disconnect (Figure 12)
- Choke housing attaching screws (36, 37), and choke housing and bearing assembly (35).
 - Disconnect choke housing from choke link (20A).

Fast Idle Cam and Link

Remove or Disconnect (Figure 13)
- Fast idle cam attaching screw (12), cam (10) and cam link (15).
 - Disconnect fast idle cam link from choke shaft lever (20).

AIR HORN COMPONENTS

Remove or Disconnect (Figure 16)
1. Air horn to float bowl screw assemblies (105, 108).
MODEL 1MEF CARBURETOR

Parts Identification

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Gasket - Air Cleaner</td>
</tr>
<tr>
<td>5.</td>
<td>Gasket - Flange</td>
</tr>
<tr>
<td>10.</td>
<td>Cam - Fast Idle</td>
</tr>
<tr>
<td>12.</td>
<td>Screw - Fast Idle Cam Attaching</td>
</tr>
<tr>
<td>15.</td>
<td>Link - Fast Idle Cam</td>
</tr>
<tr>
<td>20.</td>
<td>Choke Shaft, Lever & Link Assembly</td>
</tr>
<tr>
<td>20A.</td>
<td>Link - Choke</td>
</tr>
<tr>
<td>35.</td>
<td>Choke Housing & Bearing Assembly</td>
</tr>
<tr>
<td>36.</td>
<td>Screw Assembly - Choke Housing Attaching</td>
</tr>
<tr>
<td>37.</td>
<td>Screw - Choke Housing Attaching</td>
</tr>
<tr>
<td>40.</td>
<td>Choke Shaft & Lever Assembly</td>
</tr>
<tr>
<td>43.</td>
<td>Lever - Choke Stat</td>
</tr>
<tr>
<td>44.</td>
<td>Screw - Stat Lever Attaching</td>
</tr>
<tr>
<td>47.</td>
<td>Electric Choke Cover & Stat Assembly</td>
</tr>
<tr>
<td>47A.</td>
<td>Connector & Bracket Assembly</td>
</tr>
<tr>
<td>50.</td>
<td>Retainer - Choke Cover</td>
</tr>
<tr>
<td>52.</td>
<td>Rivet - Choke Cover Attaching</td>
</tr>
<tr>
<td>65.</td>
<td>Vacuum Break Assembly - Bowl Side</td>
</tr>
<tr>
<td>67.</td>
<td>Hose - Vacuum Break</td>
</tr>
<tr>
<td>69.</td>
<td>Vacuum Break Lever & Link Assembly</td>
</tr>
<tr>
<td>69A.</td>
<td>Link - Vacuum Break</td>
</tr>
<tr>
<td>73.</td>
<td>Screw - Lever Attaching</td>
</tr>
<tr>
<td>100.</td>
<td>Air Horn Assembly</td>
</tr>
<tr>
<td>101.</td>
<td>Gasket - Air Horn to Float Bowl</td>
</tr>
<tr>
<td>105.</td>
<td>Screw Assembly - Air Horn to Float Bowl (Long)</td>
</tr>
<tr>
<td>108.</td>
<td>Screw Assembly - Air Horn to Float Bowl</td>
</tr>
<tr>
<td>111.</td>
<td>Screw - Air Horn to Float Bowl (Countersunk)</td>
</tr>
<tr>
<td>126.</td>
<td>Bracket - Air Cleaner</td>
</tr>
<tr>
<td>129.</td>
<td>Screw Assembly - Air Cleaner Bracket Attaching</td>
</tr>
<tr>
<td>200.</td>
<td>Float Bowl Assembly</td>
</tr>
<tr>
<td>210.</td>
<td>Nut - Fuel Inlet</td>
</tr>
<tr>
<td>212.</td>
<td>Gasket - Fuel Inlet Nut</td>
</tr>
<tr>
<td>215.</td>
<td>Filter - Fuel Inlet</td>
</tr>
<tr>
<td>218.</td>
<td>Spring - Fuel Filter</td>
</tr>
<tr>
<td>226.</td>
<td>Float</td>
</tr>
<tr>
<td>228.</td>
<td>Hinge Pin - Float</td>
</tr>
<tr>
<td>231.</td>
<td>Needle - Float</td>
</tr>
<tr>
<td>234.</td>
<td>Seat - Float Needle</td>
</tr>
<tr>
<td>235.</td>
<td>Gasket - Float Needle</td>
</tr>
<tr>
<td>240.</td>
<td>Rod - Pump</td>
</tr>
<tr>
<td>242.</td>
<td>Seal - Pump Rod</td>
</tr>
<tr>
<td>246.</td>
<td>Pump Assembly</td>
</tr>
<tr>
<td>247.</td>
<td>Cup - Pump Plunger</td>
</tr>
<tr>
<td>248.</td>
<td>Spring - Pump Plunger</td>
</tr>
<tr>
<td>252.</td>
<td>Spring - Pump Return</td>
</tr>
<tr>
<td>256.</td>
<td>Guide - Pump Discharge Spring</td>
</tr>
<tr>
<td>260.</td>
<td>Ball - Pump Discharge</td>
</tr>
<tr>
<td>266.</td>
<td>Rod - Power Piston</td>
</tr>
<tr>
<td>268.</td>
<td>Seal - Power Piston Rod</td>
</tr>
<tr>
<td>270.</td>
<td>Retainer - Power Piston Rod Seal</td>
</tr>
<tr>
<td>274.</td>
<td>Power Valve Piston Assembly</td>
</tr>
<tr>
<td>276.</td>
<td>Spring - Power Piston</td>
</tr>
<tr>
<td>279.</td>
<td>Metering Rod & Spring Assembly</td>
</tr>
<tr>
<td>282.</td>
<td>Jet - Main Metering</td>
</tr>
<tr>
<td>286.</td>
<td>Idle Tube Assembly</td>
</tr>
<tr>
<td>300.</td>
<td>Throttle Body Assembly</td>
</tr>
<tr>
<td>301.</td>
<td>Gasket - Float Bowl to Throttle Body</td>
</tr>
<tr>
<td>305.</td>
<td>Screw Assembly - Float Bowl to Throttle Body</td>
</tr>
<tr>
<td>310.</td>
<td>Lever - Pump & Power Rod</td>
</tr>
<tr>
<td>311.</td>
<td>Screw - Pump Lever Attaching</td>
</tr>
<tr>
<td>314.</td>
<td>Link - Power Rod</td>
</tr>
<tr>
<td>317.</td>
<td>Link - Pump</td>
</tr>
<tr>
<td>326.</td>
<td>Needle - Idle Mixture</td>
</tr>
<tr>
<td>327.</td>
<td>Spring - Idle Mixture Needle</td>
</tr>
<tr>
<td>332.</td>
<td>Limiter - Idle Mixture Needle</td>
</tr>
<tr>
<td>333.</td>
<td>Plug - Idle Mixture Needle</td>
</tr>
<tr>
<td>400.</td>
<td>Solenoid - Idle Stop</td>
</tr>
<tr>
<td>401.</td>
<td>Spring - Idle Stop Solenoid</td>
</tr>
<tr>
<td>415.</td>
<td>Bracket - Throttle Return Spring Anchor</td>
</tr>
<tr>
<td>420.</td>
<td>Screw - Bracket Attaching (Countersunk)</td>
</tr>
<tr>
<td>421.</td>
<td>Screw - Bracket Attaching</td>
</tr>
</tbody>
</table>

Figure 15 -- Monojet - Model 1MEF

2. Air horn assembly (100).

3. Air horn to float bowl gasket (101).
 - Discard gasket.

Further disassembly of the air horn is not required. Do not remove the staked choke valve screws, or the vacuum break lever attaching screw, which is installed with thread locking compound.

NOTICE: Do not turn or remove the metering rod adjusting screw (Figure 6). Unnecessary adjustment of this screw could result in engine damage or increased exhaust emissions.

FLOAT BOWL COMPONENTS

Float and Float Needle

- Remove or Disconnect
 (Figure 17)

1. Float (226) and hinge pin (228).
 - Pull up on hinge pin.
Figure 16 - Air Horn Screw Location and Tightening Sequence

Figure 17 - Float and Float Needle
2. Float needle (231) from needle seat (234).

Pump and Power Piston

Remove or Disconnect (Figures 18 - 22)
1. Pump lever attaching screw (311).
2. Pump and power rod lever (310), power rod link (314), and pump link (317) as follows:
 A. Close throttle.

Figure 18 - Pump and Power Rod Lever
B. Remove pump and power rod lever (310) from end of throttle shaft.
C. Press down on power valve piston assembly (274), and disconnect power rod link (314) from power piston rod (266).
D. Press down on pump rod (240), and disconnect pump link (317) from slot in rod.

3. Pump rod (240) and pump assembly (246).
 Disassemble (Figure 21)
 • Pump plunger spring (248) and cup (247) from pump assembly (246).
4. Pump rod seal (242) from boss on float bowl.
5. Pump return spring (252) from pump well.
6. Power valve piston assembly (274), metering rod and spring assembly (279), and power piston rod (266)
 Disassemble (Figure 22)
 • Metering rod and spring assembly (279) from metering rod hanger.
7. Power piston spring (276) from float bowl.
240. Pump Rod
266. Power Piston Rod
310. Pump and Power Rod Lever
311. Pump Lever Attaching Screw
314. Power Rod Link
317. Pump Link

Figure 19 - Pump and Power Piston Linkage

246. Pump Assembly
247. Pump Plunger Cup
248. Pump Plunger Spring

Figure 21 - Pump Plunger Cup and Spring

240. Pump Rod
242. Pump Rod Seal

Figure 20 - Pump Rod Seal

279. Metering Rod and Spring Assembly
282. Main Metering Jet
276. Power Piston Spring
274. Power Valve Piston Assembly

Figure 22 - Power Piston, Metering Rod and Jet
Float Needle Seat and Main Metering Jet

- Remove or Disconnect (Figures 23, 22)
 1. Float needle seat (234) and seat gasket (235).
 2. Main metering jet (282).

Idle Tube Assembly

- Remove or Disconnect (Figure 24)
 - Idle tube assembly (286).
 - Invert carburetor, and catch idle tube.

Pump Discharge Ball and Spring

- Remove or Disconnect (Figure 24)
 1. Pump discharge spring guide (256).
 - Use needle nose pliers.
 2. Pump discharge ball spring (258), and ball (260).
 - Invert carburetor, and catch spring and ball.

THROTTLE BODY COMPONENTS

Idle Mixture Needle

- Remove or Disconnect (Figure 25)
 Tool required:
 J-29030-B or BT-7610B, Idle Mixture Socket (Adjusting Tool).
 - Idle mixture needle (326) and spring (327)
 - Count, and make a record of, number of turns needed to lightly bottom needle, for use in reassembly.
Inspect (Figure 25)
- Idle mixture needle for damaged tip or threads.
 - If damaged, replacement is required.

Throttle Body
- Invert carburetor.

Remove or Disconnect (Figure 26)
1. Float bowl to throttle body screw assemblies (305).
2. Throttle body assembly (300), and float bowl to throttle body gasket (301).
- Do not disassemble throttle body further. The throttle body is serviced as a complete assembly.

POWER PISTON SEAL
- Invert float bowl.

Remove or Disconnect (Figure 27)
1. Power piston rod seal retainer (270).
 - Use small screwdriver or awl.
2. Power piston rod seal (268).

CLEANING, INSPECTION AND REPAIR

Inspect
- If an excessive amount of foreign material is found in the float bowl, check tank(s) and fuel lines for the source.

Clean (Figure 28)
1. Power piston bore of float bowl
6C1-14 MODEL 1MEF CARBURETOR

- Use 0.375 inch soft wire brush. Turn clockwise through full length of the power piston bore. Turn brush several more turns, to remove dirt and varnish.

2. Metal carburetor parts in cold immersion type cleaner, Carbon X (X-55) or equivalent.

NOTICE: Do not immerse idle stop solenoid, electric choke cover and stat assembly, vacuum break, float, pump plunger, and seals in cleaner, as they may become non-functional, swell, harden or distort.

3. Blow out all passages in the castings with compressed air.
- Do Not pass drill bits or wire through main metering jet or other passages.

Inspect
Check the following items, and if the condition listed is noted, clean, repair or replace the components.

- Air and fuel passages, and metering parts, for dirt or burrs.
- Mating surfaces of castings, for nicks or damage that would prevent sealing air or fuel.
- Power valve piston assembly for free movement in bore.
- Power piston spring for being distorted.
- Choke valve for freedom of movement.
- Throttle shaft for freedom of movement. If cleaning does not correct condition, replace throttle body assembly.
- Throttle valve for nicks or damage. If noted, replace throttle body assembly.
- Idle mixture needle for grooves, ridges or bends.
- Levers for looseness on shafts, or wear in holes. If throttle lever is loose, replace throttle body assembly.
- Links for wear or rubbing against other components.
- Correct cause, and replace if necessary.
- Float, float lever and hinge pin for distortion, binds and burrs.
- The float for being loaded.
- Check weight of float in comparison with a new float, and replace if heavier.
- Plastic parts for cracks, damage, etc.

PUMP SYSTEM CHECK

Inspect (Figures 21, 24, 7)
- Perform this check with a new pump cup installed on the pump plunger, and with the pump discharge ball, ball spring and spring guide installed.

1. Fill empty float chamber and pump well with a clean solvent, such as mineral spirits.

2. Seal the pump discharge passage on top of the pump discharge spring guide with a finger. Use other hand to push pump assembly slowly downward in pump well.
 - Pump assembly should not travel to bottom of well. Only movement should be compressing of the duration spring.
 - If pump assembly moves down in well, this may indicate that the pump cup is not sealing properly or that the pump well is worn or scored.

3. With clean solvent in float chamber and pump well, slowly move pump assembly down in pump well until solvent is visible at top of the pump discharge passage guide.

4. Remove pump assembly, continue to observe solvent level at the spring guide. Solvent level should not lower.
 - If level lowers, the discharge ball may not be seating correctly because of foreign material, damage to the ball, or because the seat for the ball needs restaking.

5. Satisfactory pump system operation requires that these checks be successful. After cleaning or parts replacement, repeat procedure.

VACUUM BREAK CHECKING PROCEDURE

Inspect (Figures 29, 30)
Tool required:
 J-23738-A or BT-7517 - Hand Operated Vacuum Pump.

1. If the vacuum break has an air bleed hole, plug it as shown, during this checking procedure.

A. Pump Cup or Valve Stem Seal
B. Tape Hole in Tube
C. Tape End of Cover

Figure 29 - Vacuum Break Information
2. Apply 51kPa (15" Hg) vacuum to the vacuum break.
 • Apply finger pressure to the plunger to see if it has moved through full travel. If not, replace the vacuum break.
 • Observe vacuum gage. Vacuum should hold for at least twenty seconds. If not, replace the vacuum break.

3. Replace vacuum break hose if it is cracked, cut or hardened.

Electric Choke Cover and Stat Assembly Replacement

The electric choke cover and stat assembly may be removed for replacement or to access the choke shaft and lever assembly as follows:

Electric Choke Cover and Stat

Remove or Disconnect (Figure 31)
1. Heads of choke cover attaching rivets (52).
 • Use 4 mm (5/32") drill bit.
2. Choke cover retainers (50).
3. Electric choke cover and stat assembly (47).
4. Remaining pieces of rivets in housing.
 • Use punch to drive out.

IDLE STOP SOLENOID CHECKING PROCEDURE

Check the idle stop solenoid (400) electrically, using a 12 volt automotive battery.

1. Hold the solenoid plunger in (against the internal stop), using finger pressure.
2. Apply +12 volts to the terminal and -12 volts to the solenoid body.
3. If the solenoid plunger does not extend when the voltage is applied, replace the solenoid.
Choke Housing

Assemble (Figure 32)

1. Choke shaft and lever assembly (40) in choke housing (35).
2. Choke stat lever (43) on flats of choke shaft assembly (40).
 - Line-up gaging hole in choke shaft lever with hole in housing, install stat lever on shaft in the four o’clock position.
3. Stat lever attaching screw (44).

Electric Choke Cover and Stat

Install or Connect (Figures 32, 33)

1. Electric choke cover and stat assembly (47) in choke housing (35) as follows:
 A. Line up gaging hole in choke shaft lever (40) with hole in housing, install choke cover with stat tang under stat lever.
 B. Rotate choke cover to line-up notch in the cover with the projection on the housing.
2. Choke cover retainers (50) and attaching rivets (52).
 - Use blind rivet tool to install rivets.

CARBURETOR REASSEMBLY

POWER PISTON ROD SEAL (In Float Bowl)

Install or Connect (Figure 27)

1. New power piston rod seal (268) in float bowl.
2. New power piston rod seal retainer (270).
 - Install flush with casting surface.

THROTTLE BODY COMPONENTS

Throttle Body

- Invert float bowl (200).

Install or Connect (Figure 26)

1. New float bowl to throttle body gasket (301).
 - Install over locator bosses on float bowl.
2. Throttle body assembly (300).
3. Float bowl to throttle body screw assemblies (305).

Tighten
- Screw assemblies to 20N·m (15 ft.lbs.).

Idle Mixture Needle
- Support carburetor.

Install or Connect (Figure 25)

Tool required:
- J-29030-B or BT-7610B, Idle Mixture Socket (Adjusting Tool).
- Idle mixture needle (326) and spring (327).
- Turn needle in to lightly bottom, then back out number of turns counted during disassembly.
- Final idle mixture adjustment is made on the vehicle. For information on the idle mixture adjustment procedure, refer to Carburetors (SEC. 6C1) in the 1987 Light Duty Trucks Service Manual.

FLOAT BOWL COMPONENTS
If replacing the float bowl assembly, transfer the identification number to the new float bowl at location shown, (figure 1). Follow the instructions on the envelope included in the service package.

Pump Discharge Ball and Spring

Install or Connect (Figure 24)
1. Pump discharge ball (260).
2. Pump discharge ball spring (258).
3. Pump discharge spring guide (256).
 - Install flush with casting surface.

Idle Tube Assembly

Install or Connect (Figure 24)
- Idle tube assembly (286).
 - Should be flush with casting surface.

Main Metering Jet and Float Needle Seat

Install or Connect (Figures 22, 23)
1. Main metering jet (282).
2. Float needle seat (234) with new gasket (235).

POWER PISTON AND PUMP

Install or Connect (Figures 34, 20, 35)
1. Power piston spring (276) in float bowl.
2. Power piston rod (266) with piston drive end facing away from piston cavity.
3. Power valve piston assembly (274), without the metering rod spring assembly (279).
 - Press down on piston and rotate piston rod to engage slot in piston.

Assemble (Figure 21)
- Pump assembly (246), with new pump plunger cup (247), and spring (248), (if not installed for pump system check).
4. Pump return spring (252) in pump well.
5. New pump rod seal (242) over boss on float bowl.
6. Pump assembly (246) and pump rod (240).

Assemble (Figure 35)
- Pump link (317) and power rod link (314) to pump and power rod lever (310) as shown in Figure 35.
7. Pump and power rod lever and links to carburetor as follows:
 A. Press down on pump rod (240) and connect pump link (317) to pump rod.
 B. Press down on power valve piston assembly (274) and connect power rod link (314) to power piston rod (266).
 C. Close throttle and install pump and power rod lever (310) on flats of throttle shaft.

8. Pump lever attaching screw (311).

METERING ROD ADJUSTMENT

Adjust (Figures 36, 44)

Tool Required:
J-9789-D or BT-3005A, Universal Carburetor Gage Set

- Metering Rod
 - Specification is in Figure 44.
 - Close the throttle valve completely, and press the power valve piston down against its stop.
 - Swing the metering rod hanger over the flat bowl surface next to the carburetor bore.
 - Gage between the end of the metering rod hanger and the top of the casting.

- Back out idle stop solenoid and hold throttle valve closed.
- Remove metering rod from hanger.
 A. Power Valve Piston Assembly - Hold Down While Gaging
 B. Plug Gage - Slide Fit
 C. Bend Hanger Here to Adjust
 D. Bending Tool - J-9789-111 or BT-3006M

FLOAT AND FLOAT NEEDLE

Install or Connect (Figure 17)

1. Float needle (231) in seat (234).
2. Float hinge pin (228) through float lever
3. Float (226) and hinge pin.

FLOAT ADJUSTMENT

Adjust (Figures 37, 44)

Tool Required:
J-34817-A or BT-8426, Float Positioning Tool Kit

- Float Level.
 - Specification is in Figure 44.

AIR HORN COMPONENTS

Install or Connect (Figure 38)

1. Air horn to float bowl gasket (101).
 - Slit portion over metering rod hanger.
2. Air horn assembly (100)
3. Long air horn to float bowl screw assemblies (105) at locations #1, 3 and 4, short screw assembly (108) at location #6.
 • Finger tighten only.

![Diagram of carburetor components]

CHOOSE COMPONENTS

Fast Idle Cam and Link

Install or Connect (Figure 13)
1. Fast idle cam link (15) through slot in choke shaft lever (20).

2. Attach fast idle cam (10) to cam link (15).
 • Unloader tang on cam should face outward.

3. Fast idle cam attaching screw (12).

Choke Housing

Install or Connect (Figure 12)
1. Connect choke link (20A) to choke shaft and lever assembly (40), then position choke housing and bearing assembly (35) on float bowl.
 • Choke shaft lever should be facing upward.

2. Install choke housing attaching screws as follows:
 A. Start countersunk attaching screw (37). It is slightly longer than throttle return spring anchor bracket attaching screws (420).
 B. Start attaching screw assemblies (36).
 C. Tighten countersunk screw (37), then tighten screw assemblies (36).

Vacuum Break

Install or Connect (Figures 11, 38)
1. Connect bowl side vacuum break assembly (65) to vacuum break link (69A).

2. Position choke wire connector and bracket assembly (47A) under vacuum break bracket.

3. Install air horn to float bowl (vacuum break attaching) screws (111).
 • Tighten all air horn to float bowl screws (in sequence shown in Figure 38.)

THROTTLE RETURN SPRING BRACKET

Install or Connect (Figures 14, 15)
- Throttle return spring anchor bracket (415) with bracket attaching screws (420, 421)
IDLE STOP SOLENOID

Install or Connect (Figures 14, 15)
- Idle stop solenoid (400) and spring (401).
- Use 9/16" socket or hex wrench on end of solenoid body.
- Turn solenoid in, until plunger just contacts throttle lever.

FUEL INLET NUT AND FILTER

Install or Connect (Figure 10)
1. Fuel filter spring (218), in float bowl.
2. New gasket (212), on fuel inlet nut (210).
3. Inlet nut with new filter (215).

Tighten
- Fuel inlet nut to 45 N-m (33 ft.lbs.).

CHOKE ADJUSTMENTS

- Tools required:
 J-9784-D or BT-3005A, Universal Carburetor Gage Set
 J-23738-A or BT-7517, Hand Operated Vacuum Pump
- Specifications are in Figure 44.

CHOKE STAT LEVER ADJUSTMENT

Adjust (Figure 39)
- Place the fast idle cam follower on the highest step of the fast idle cam.
- Hold the choke valve completely closed.
- Insert a 3 mm (0.120 inch) plug gage through the hole in the lever, and into the hole in the choke housing.
- If gage does not pass freely through both holes, bend choke link at point shown in Figure 39 to align the holes.

CHOKE LINK (FAST IDLE CAM) ADJUSTMENT

Adjust (Figures 40, 44)
- Position the fast idle cam follower on the second step of the fast idle cam against the rise of the high step.
- Hold down on the choke valve with the fast idle cam link in the end of the choke lever slot.
- Check the gap between the lower edge of the choke valve and the air horn wall.
- If an adjustment is needed, bend the fast idle cam link at the point shown in Figure 40.
VACUUM BREAK ADJUSTMENT

Adjust (Figures 41 - 42, 44)

- Place the fast idle cam follower on the highest step of the cam.
- If vacuum break has a bleed orifice (hole), plug it as shown, during the adjustment.
- Apply 51kPa (15" Hg) vacuum to the vacuum break. Push down on the choke valve. (Compress the plunger bucking spring and seat the plunger stem.)
- Check the gap between the lower edge of the choke valve and the air horn wall.
- If an adjustment is needed, bend the vacuum break link at the point shown in inset, Figure 42.
- Release the vacuum source and apply it again.
- Check the gap once more, and adjust as needed.

CHOKE UNLOADER ADJUSTMENT

Adjust (Figures 43, 44)

- Hold the throttle lever in the wide open throttle position.
- Hold down on the choke valve with the fast idle cam link in the end of the choke lever slot.
- Check the gap between the lower edge of the choke valve and the air horn wall.
- If adjustment is needed, bend the unloader tang on throttle lever as shown in inset of Figure 43.

Install or Connect

- Carburetor on vehicle, with new flange gasket(s).

Adjust

- Idle mixture and idle speeds.
- For information on idle mixture and idle speed adjustments, refer to Carburetors (SEC. 6C1) in the 1987 Light Duty Trucks Service Manual.
Specifications

1MEF Carburetor

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Float Level</td>
<td>11/32 inch</td>
</tr>
<tr>
<td>Metering Rod</td>
<td>0.090 inch</td>
</tr>
<tr>
<td>Choke Stat Lever</td>
<td>0.120 inch</td>
</tr>
<tr>
<td>Choke Link - Fast Idle Cam</td>
<td>0.275 inch</td>
</tr>
<tr>
<td>Vacuum Break</td>
<td>0.200 inch</td>
</tr>
<tr>
<td>Unloader</td>
<td>0.520 inch</td>
</tr>
</tbody>
</table>

Figure 44 Specifications

Special Tools

1. Idle Mixture Socket (Adjusting Tool)
 - J-29030-B or BT-7610B

2. Hand Operated Vacuum Pump
 - J-23738-A or BT-7517

3. Universal Carburetor Gauged Set
 - J-9789-D or BT-3005A

4. Float Positioning Tool Set
 - J-34817-A or BT-8426
MODELS M4ME AND M4MEF CARBURETORS

CONTENTS

SUBJECT PAGE
Carburetor Identification 6C2-23
General Description 6C2-23
Carburetor Disassembly 6C2-29
Cleaning And Inspection 6C2-39
Pump System Checking Procedure 6C2-40
Vacuum Break Checking Procedure 6C2-40
Throttle Kicker Checking Procedures 6C2-41
Idle Stop Solenoid Checking Procedure 6C2-41
Carburetor Reassembly 6C1-41
Adjustment Procedures 6C2-45
Specifications 6C2-53
Special Tools 6C2-53

CARBURETOR IDENTIFICATION

Listed below are model identification numbers of carburetors used, with their applications, either California or Federal (non-California).

<table>
<thead>
<tr>
<th>MODEL</th>
<th>MODEL NUMBER</th>
<th>APPLICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>M4ME</td>
<td>17085001</td>
<td>CAL. 5.7L V8</td>
</tr>
<tr>
<td>M4ME</td>
<td>17085000</td>
<td>CAL. 7.4L V8</td>
</tr>
<tr>
<td>M4MEF</td>
<td>17085003</td>
<td>FED. 5.7L V8 W/MT</td>
</tr>
<tr>
<td>M4MEF</td>
<td>17085213</td>
<td>FED. 5.7L V8 W/AT</td>
</tr>
<tr>
<td>M4MEF</td>
<td>17085004</td>
<td>FED. 7.4L V8 W/MT</td>
</tr>
<tr>
<td>M4MEF</td>
<td>17085212</td>
<td>FED. 7.4L V8 W/AT</td>
</tr>
</tbody>
</table>

The carburetor model identification number is stamped vertically on the float bowl, near the secondary throttle lever, as shown, (figure 1). Refer to this part number when servicing the carburetor. If replacing the float bowl assembly, transfer the identification number to the new float bowl. Follow the instructions on the envelope included in the service package.

Carburetor parts are shown in the disassembled views, (Model M4ME in figure 12, and Model M4MEF in figure 14), and are identified by name on the facing pages (figures 13 and 15).

GENERAL DESCRIPTION

The letters and number in the model names M4ME and M4MEF describe specific features of the carburetors:

M: It has a Modified open-loop primary metering system.

4M: A member of the Quadrajet (four barrel, two stage) carburetor family.

E: It has an integral Electric choke.

F: It has adjustable wide open throttle mixture control.
Models M4ME and M4MEF are four barrel, two stage carburetors, with three major sub-assemblies: the air horn, the float bowl and the throttle body. Each has six basic operating systems, shown in Figures 2 through 11:

- **FLOAT**
- **IDLE**
- **MAIN METERING**
- **POWER**
- **PUMP**
- **CHOKE**

Important

The part throttle adjusting screw (on both models) was set at the factory and then plugged. Any attempt to readjust this screw could result in increased exhaust emissions.

NOTICE: On Model M4MEF carburetors, the rich stop adjusting bushing and the secondary well bleed adjusting screw (figure 8) are also factory set, and any attempt to readjust them could result in engine damage or increased exhaust emissions.

THROTTLE KICKER ASSEMBLY

California Engine Applications

The vacuum operated Throttle Kicker assembly, found on these applications, is used to retard throttle closing during deceleration, to improve emission control. Vacuum to the throttle kicker is controlled by the Throttle Return Control (TRC) System. For information on the TRC system, refer to Diverbility and Emissions - Carbureted (SEC. 6E8) in the 1987 Light Duty Trucks Service Manual.

IDLE STOP SOLENOID (ISS)

Federal (non - California) Engine Applications With Manual Transmission Only.

The electric Idle Stop Solenoid (ISS), found on these applications, is used to provide the desired engine idle speed, and to prevent "dieseling" when the ignition is switched off.

Figure 2 -- Float System - All Models

- A. Internal Bowl Vents
- B. Float Chamber
- C. Inlet Check Valve
- D. Vent Tube to Canister
- 236. Float Hinge Pin
- 237. Float
- 238. Float Needle Pull Clip
- 239. Float Needle
- 240. Float Needle Seat
- 375. Fuel Inlet Filter
- 377. Fuel Filter Spring
MODELS M4ME AND M4MEF CARBURETORS

A. Fixed Idle Air By-Pass
B. Lower Idle Air Bleed
C. Timed Vacuum Ports
D. Off-Idle Operation
E. Primary Throttle Valve
F. Idle Discharge Orifice
G. Off-Idle Port
H. Idle Tube
J. Idle Channel Restriction
K. Idle Air Bleed

Primary Metering Jet
Idle Mixture Needle
Idle Mixture Needle Plug

Figure 3 -- Idle System - Model M4ME (California Applications)

A. Idle Tube
B. Idle Air Bleed
C. Idle Channel Restriction
D. Lower Idle Air Bleed
E. Off - Idle Port
F. Idle Discharge Orifice
G. Fixed Idle Air By-Pass
H. Primary Throttle Valve
J. Timed Vacuum Ports

248. Primary Metering Jet
420. Idle Mixture Needle
422. Idle Mixture Needle Plug

Figure 4 -- Idle System - Model M4MEF (Federal Applications)
A. Part Throttle Adjusting Screw (Do Not Turn or Remove)
B. Main Well Air Bleeds
C. Main Discharge Nozzle
D. Boost Venturi
E. Main Venturi
F. Main Well
G. Primary Throttle Valve
H. Vacuum Channel
212. Power Valve Piston Assembly
213. Primary Metering Rod
218. Power Piston Spring
248. Primary Metering Jet

Figure 5 -- Main Metering System - Model M4ME (California Applications)

Figure 6 -- Main Metering System - Model M4MEF (Federal Applications)
MODELS M4ME AND M4MEF CARBURETORS

Figure 7 -- Power System - Model M4ME (California Applications)

Figure 8 -- Power System - Model M4MEF (Federal Applications)
Figure 9 -- Pump System - All Models

Figure 10 -- Choke System - Electric - With Primary Side and Secondary Side Vacuum Breaks - Model M4ME

(California Applications)
UNIT REPAIR

The information that follows applies to a complete overhaul, after the carburetor has been removed from the engine, and includes disassembly, thorough cleaning, inspection and replacement of all gaskets, seals, worn or damaged parts, and adjustment of individual systems.

Refer to the correct exploded view for parts identification:

- M4ME Figures 12 and 13.
- M4MEF Figures 14 and 15.

CARBURETOR DISASSEMBLY

IDLE MIXTURE NEEDLE PLUGS

<table>
<thead>
<tr>
<th>Action</th>
<th>Figure 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove or Disconnect</td>
<td></td>
</tr>
</tbody>
</table>

1. Invert carburetor, and support it, to avoid damaging external components.

2. Make two parallel hacksaw cuts in the throttle body, between the locator points near one idle mixture needle plug (422). The distance between the cuts depends on the size of the punch to be used.
 - Cut down to the plug, but not more than 1/8" beyond the locator points.

3. Place a flat punch at a point near the ends of the saw marks. Hold the punch at a 45° angle, and drive it into the throttle body to break casting away, to expose the plug.

4. Use center punch to break plug apart, to uncover idle mixture needle.
 - Remove all loose pieces of plug.

5. Repeat steps 2 through 4 for other needle plug.

CARBURETOR HOLDING STAND (Figure 17)

Tool Required:
- J-9789-118 or BT-3553 - Carburetor Holding Stand.

- Place carburetor on holding stand.

NOTICE: Failure to place carburetor on holding stand could cause damage to throttle valves.
NOT ALL PARTS APPEAR ON ALL MODELS

Figure 12 -- Model M4ME (California Applications)
CARBURETOR MODEL M4ME

Parts Identification

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gasket - Air Cleaner</td>
</tr>
<tr>
<td>5</td>
<td>Gasket - Flange</td>
</tr>
<tr>
<td>10</td>
<td>Air Horn Assembly</td>
</tr>
<tr>
<td>30</td>
<td>Screw - Secondary Metering Rod Holder Attaching</td>
</tr>
<tr>
<td>31</td>
<td>Holder - Secondary Metering Rod</td>
</tr>
<tr>
<td>32</td>
<td>Rod - Secondary Metering</td>
</tr>
<tr>
<td>35</td>
<td>Lever - Choke</td>
</tr>
<tr>
<td>36</td>
<td>Screw - Choke Lever Attaching</td>
</tr>
<tr>
<td>41</td>
<td>Lever - Pump</td>
</tr>
<tr>
<td>42</td>
<td>Pin - Pump Lever Hinge</td>
</tr>
<tr>
<td>45</td>
<td>Screw Assembly - Air Horn to Throttle Body</td>
</tr>
<tr>
<td>46</td>
<td>Screw Assembly - Air Horn to Float Bowl</td>
</tr>
<tr>
<td>47</td>
<td>Screw - Air Horn to Float Bowl (Countersunk)</td>
</tr>
<tr>
<td>50</td>
<td>Baffle - Air Horn</td>
</tr>
<tr>
<td>55</td>
<td>Vacuum Break Assembly - Primary Side (Front)</td>
</tr>
<tr>
<td>56</td>
<td>Screw - Primary Side (Front) Vacuum Break Assembly Attaching</td>
</tr>
<tr>
<td>57</td>
<td>Hose - Primary Side (Front) Vacuum Break</td>
</tr>
<tr>
<td>58</td>
<td>Link - Primary Side Vacuum Break - Air Valve Lever</td>
</tr>
<tr>
<td>67</td>
<td>Retainer - Pump Stem Seal</td>
</tr>
<tr>
<td>68</td>
<td>Seal - Pump Stem</td>
</tr>
<tr>
<td>200</td>
<td>Float Bowl Assembly</td>
</tr>
<tr>
<td>201</td>
<td>Gasket - Air Horn to Float Bowl</td>
</tr>
<tr>
<td>203</td>
<td>Spring - Pump Plunger</td>
</tr>
<tr>
<td>204</td>
<td>Cup - Pump Plunger</td>
</tr>
<tr>
<td>205</td>
<td>Pump Assembly</td>
</tr>
<tr>
<td>206</td>
<td>Spring - Pump Return</td>
</tr>
<tr>
<td>212</td>
<td>Power Valve Piston Assembly</td>
</tr>
<tr>
<td>213</td>
<td>Rod - Primary Metering</td>
</tr>
<tr>
<td>214</td>
<td>Spring - Primary Metering Rod</td>
</tr>
<tr>
<td>218</td>
<td>Spring - Power Piston</td>
</tr>
<tr>
<td>234</td>
<td>Insert - Aneroid Cavity</td>
</tr>
<tr>
<td>235</td>
<td>Insert - Float Bowl</td>
</tr>
<tr>
<td>236</td>
<td>Hinge Pin - Float</td>
</tr>
<tr>
<td>237</td>
<td>Float</td>
</tr>
<tr>
<td>238</td>
<td>Pull Clip - Float Needle</td>
</tr>
<tr>
<td>239</td>
<td>Needle - Float</td>
</tr>
<tr>
<td>240</td>
<td>Seat - Float Needle</td>
</tr>
<tr>
<td>241</td>
<td>Gasket - Float Needle Seat</td>
</tr>
<tr>
<td>248</td>
<td>Jet - Primary Metering</td>
</tr>
<tr>
<td>250</td>
<td>Plug - Pump Discharge (Retainer)</td>
</tr>
<tr>
<td>251</td>
<td>Ball - Pump Discharge</td>
</tr>
<tr>
<td>252</td>
<td>Baffle - Pump Well</td>
</tr>
<tr>
<td>315</td>
<td>Hose - Secondary Side (Rear) Vacuum Break</td>
</tr>
<tr>
<td>316</td>
<td>Tee - Secondary Side (Rear) Vacuum Break</td>
</tr>
<tr>
<td>320</td>
<td>Vacuum Break Assembly - Secondary Side (Rear)</td>
</tr>
<tr>
<td>321</td>
<td>Screw - Secondary Side (Rear) Vacuum Break Assembly Attaching</td>
</tr>
<tr>
<td>322</td>
<td>Link - Secondary Side (Rear) Vacuum Break to Choke</td>
</tr>
<tr>
<td>323</td>
<td>Link - Secondary Side Vacuum Break - Air Valve Lever</td>
</tr>
<tr>
<td>330</td>
<td>Rivet - Choke Cover Attaching</td>
</tr>
<tr>
<td>331</td>
<td>Retainer - Choke Cover</td>
</tr>
<tr>
<td>335</td>
<td>Electric Choke Cover and Stat Assembly</td>
</tr>
<tr>
<td>340</td>
<td>Choke Housing Assembly</td>
</tr>
<tr>
<td>341</td>
<td>Screw and Washer Assembly - Choke Housing to Float Bowl</td>
</tr>
<tr>
<td>345</td>
<td>Screw - Choke Stat Lever Attaching</td>
</tr>
<tr>
<td>348</td>
<td>Lever - Choke Stat</td>
</tr>
<tr>
<td>350</td>
<td>Intermediate Choke Shaft, Lever and Link Assembly</td>
</tr>
<tr>
<td>352</td>
<td>Fast Idle Cam Assembly</td>
</tr>
<tr>
<td>354</td>
<td>Lever - Intermediate Choke</td>
</tr>
<tr>
<td>356</td>
<td>Link - Choke</td>
</tr>
<tr>
<td>360</td>
<td>Lever - Secondary Throttle Lockout</td>
</tr>
<tr>
<td>364</td>
<td>Seal - Intermediate Choke Shaft</td>
</tr>
<tr>
<td>370</td>
<td>Nut - Fuel Inlet</td>
</tr>
<tr>
<td>372</td>
<td>Gasket - Fuel Inlet Nut</td>
</tr>
<tr>
<td>375</td>
<td>Filter - Fuel Inlet</td>
</tr>
<tr>
<td>377</td>
<td>Spring - Fuel Filter</td>
</tr>
<tr>
<td>380</td>
<td>Screw - Throttle Stop</td>
</tr>
<tr>
<td>381</td>
<td>Spring - Throttle Stop Screw</td>
</tr>
<tr>
<td>400</td>
<td>Throttle Body Assembly</td>
</tr>
<tr>
<td>401</td>
<td>Gasket - Float Bowl to Throttle Body</td>
</tr>
<tr>
<td>405</td>
<td>Screw Assembly - Float Bowl to Throttle Body</td>
</tr>
<tr>
<td>410</td>
<td>Link - Pump</td>
</tr>
<tr>
<td>420</td>
<td>Needle - Idle Mixture</td>
</tr>
<tr>
<td>421</td>
<td>Spring - Idle Mixture Needle</td>
</tr>
<tr>
<td>422</td>
<td>Plug - Idle Mixture Needle</td>
</tr>
<tr>
<td>425</td>
<td>Screw - Fast Idle Adjusting</td>
</tr>
<tr>
<td>426</td>
<td>Spring - Fast Idle Adjusting Screw</td>
</tr>
<tr>
<td>500</td>
<td>Solenoid and Bracket Assembly</td>
</tr>
<tr>
<td>501</td>
<td>Screw - Bracket Attaching</td>
</tr>
<tr>
<td>510</td>
<td>Throttle Kicker Assembly</td>
</tr>
<tr>
<td>511</td>
<td>Bracket - Throttle Kicker</td>
</tr>
<tr>
<td>512</td>
<td>Nut - Throttle Kicker Assembly Attaching</td>
</tr>
<tr>
<td>513</td>
<td>Washer - Tab Locking</td>
</tr>
</tbody>
</table>

Figure 13 -- Model M4ME - Parts Description
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gasket - Air Cleaner</td>
<td>240</td>
<td>Seat - Float Needle</td>
</tr>
<tr>
<td>5</td>
<td>Gasket - Flange</td>
<td>241</td>
<td>Gasket - Float Needle Seat</td>
</tr>
<tr>
<td>10</td>
<td>Air Horn Assembly</td>
<td>248</td>
<td>Jet - Primary Metering</td>
</tr>
<tr>
<td>30</td>
<td>Screw - Secondary Metering Rod Holder Attaching</td>
<td>250</td>
<td>Plug - Pump Discharge (Retainer)</td>
</tr>
<tr>
<td>31</td>
<td>Holder - Secondary Metering Rod</td>
<td>251</td>
<td>Ball - Pump Discharge</td>
</tr>
<tr>
<td>32</td>
<td>Rod - Secondary Metering</td>
<td>252</td>
<td>Baffle - Pump Well</td>
</tr>
<tr>
<td>35</td>
<td>Lever - Choke</td>
<td>330</td>
<td>Rivet - Choke Cover Attaching</td>
</tr>
<tr>
<td>36</td>
<td>Screw - Choke Lever Attaching</td>
<td>331</td>
<td>Retainer - Choke Cover</td>
</tr>
<tr>
<td>41</td>
<td>Lever - Pump</td>
<td>335</td>
<td>Electric Choke Cover and Stat Assembly</td>
</tr>
<tr>
<td>42</td>
<td>Pin - Pump Lever Hinge</td>
<td>340</td>
<td>Choke Housing Assembly</td>
</tr>
<tr>
<td>45</td>
<td>Screw Assembly - Air Horn to Throttle Body</td>
<td>341</td>
<td>Screw and Washer Assembly - Choke Housing to Float Bowl</td>
</tr>
<tr>
<td>46</td>
<td>Screw Assembly - Air Horn to Float Bowl</td>
<td>345</td>
<td>Screw - Choke Stat Lever Attaching</td>
</tr>
<tr>
<td>47</td>
<td>Screw - Air Horn to Float Bowl (Countersunk)</td>
<td>348</td>
<td>Lever - Choke Stat</td>
</tr>
<tr>
<td>50</td>
<td>Baffle - Air Horn</td>
<td>350</td>
<td>Intermediate Choke Shaft, Lever and Link Assembly</td>
</tr>
<tr>
<td>55</td>
<td>Vacuum Break Assembly - Primary Side (Front)</td>
<td>352</td>
<td>Fast Idle Cam Assembly</td>
</tr>
<tr>
<td>56</td>
<td>Screw - Primary Side (Front) Vacuum Break Assembly Attaching</td>
<td>354</td>
<td>Lever - Intermediate Choke</td>
</tr>
<tr>
<td>57</td>
<td>Hose - Primary Side (Front) Vacuum Break</td>
<td>356</td>
<td>Link - Choke</td>
</tr>
<tr>
<td>58</td>
<td>Link - Primary Side Vacuum Break - Air Valve Lever</td>
<td>360</td>
<td>Lever - Secondary Throttle Lockout</td>
</tr>
<tr>
<td>67</td>
<td>Retainer - Pump Stem Seal</td>
<td>364</td>
<td>Seal - Intermediate Choke Shaft</td>
</tr>
<tr>
<td>68</td>
<td>Seal - Pump Stem</td>
<td>370</td>
<td>Nut - Fuel Inlet</td>
</tr>
<tr>
<td>200</td>
<td>Float Bowl Assembly</td>
<td>372</td>
<td>Gasket - Fuel Inlet Nut</td>
</tr>
<tr>
<td>201</td>
<td>Gasket - Air Horn to Float Bowl</td>
<td>375</td>
<td>Filter - Fuel Inlet</td>
</tr>
<tr>
<td>203</td>
<td>Spring - Pump Plunger</td>
<td>377</td>
<td>Spring - Fuel Filter</td>
</tr>
<tr>
<td>204</td>
<td>Cup - Pump Plunger</td>
<td>380</td>
<td>Screw - Throttle Stop</td>
</tr>
<tr>
<td>205</td>
<td>Pump Assembly</td>
<td>381</td>
<td>Spring - Throttle Stop Screw</td>
</tr>
<tr>
<td>206</td>
<td>Spring - Pump Return</td>
<td>400</td>
<td>Throttle Body Assembly</td>
</tr>
<tr>
<td>212</td>
<td>Power Valve Piston Assembly</td>
<td>401</td>
<td>Gasket - Float Bowl to Throttle Body</td>
</tr>
<tr>
<td>213</td>
<td>Rod - Primary Metering</td>
<td>405</td>
<td>Screw Assembly - Float Bowl to Throttle Body</td>
</tr>
<tr>
<td>214</td>
<td>Spring - Primary Metering Rod</td>
<td>410</td>
<td>Link - Pump</td>
</tr>
<tr>
<td>218</td>
<td>Spring - Power Piston</td>
<td>420</td>
<td>Needle - Idle Mixture</td>
</tr>
<tr>
<td>235</td>
<td>Insert - Float Bowl</td>
<td>421</td>
<td>Spring - Idle Mixture Needle</td>
</tr>
<tr>
<td>236</td>
<td>Hinge Pin - Float</td>
<td>422</td>
<td>Plug - Idle Mixture Needle</td>
</tr>
<tr>
<td>237</td>
<td>Float</td>
<td>425</td>
<td>Screw - Fast Idle Adjusting</td>
</tr>
<tr>
<td>238</td>
<td>Pull Clip - Float Needle</td>
<td>426</td>
<td>Spring - Fast Idle Adjusting Screw</td>
</tr>
<tr>
<td>239</td>
<td>Needle - Float</td>
<td>500</td>
<td>Solenoid and Bracket Assembly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>501</td>
<td>Screw - Bracket Attaching</td>
</tr>
</tbody>
</table>
FUEL INLET NUT AND FILTER

Remove or Disconnect (Figure 18)

1. Fuel inlet nut (370).
2. Fuel inlet filter (375), inlet nut gasket (372), and filter spring (377).
 • Discard gasket.

Inspect
• Cut filter open. If clogged, check tank(s) and fuel lines for source of material.

SOLENOID AND BRACKET OR THROTTLE KICKER ASSEMBLY

Remove or Disconnect (Figures 12-15)

• Bracket attaching screws (501), and solenoid and bracket assembly (500) or throttle kicker assembly (510).

VACUUM BREAK ASSEMBLIES

Remove or Disconnect - (if used) (Figures 12-15)

2. Secondary side vacuum break assembly (320).
 • Disconnect vacuum break from secondary side vacuum break to choke link (322).
3. Secondary side vacuum break to choke link from lever on intermediate choke shaft (350).
4. Primary side vacuum break hose (57).
5. Primary side vacuum break attaching screws (56).
6. Primary side vacuum break assembly (55) and primary side vacuum break-air valve lever link (58).

AIR HORN COMPONENTS

Secondary Metering Rods

Remove or Disconnect (Figure 19)

1. Secondary metering rod holder attaching screw (30).
2. Metering rod holder (31), and metering rods (32).
Pump Lever and Link

Remove or Disconnect (Figure 21)

Tool Required:

- J-25322 or BT-7523 - Pump Lever Pin Punch

1. Pump lever (41).
 - Use tool J-25322 or BT-7523, or small punch, to drive pump lever hinge pin (42) inward, to release pump lever.

2. Pump link (410), from throttle lever.

Choke Lever and Link

Remove or Disconnect (Figure 20)

1. Choke lever attaching screw (36).

2. Choke lever (35).

3. Choke link (356).
 - Pull up on link, hold intermediate choke lever (354) outward with screwdriver. Twist link from lever.

Air Horn

Remove or Disconnect (Figure 22)

1. Air horn screws:
 - Air horn to throttle body screw assemblies (45)
Air horn to float bowl screw assemblies (46).
- Air horn baffle (50), if used.
- Air horn to float bowl (countersunk) screws (47).

2. Air horn assembly (10).
- Lift straight up.
- Leave air horn gasket (201) on float bowl.

NOTICE: Use care when removing air horn, to prevent damage to tubes pressed into the air horn casting. (DO NOT remove tubes.)

Pump Stem Seal
- Invert air horn assembly.

![Figure 23 -- Pump Stem Seal](image)

Remove or Disconnect (Figure 23)
- Pump stem seal (68).
 - Use small screwdriver to remove the seal retainer (67).
 - Use suitable tool to remove old staking.

FloT BOWL COMPONENTS

Pump
- Remove or Disconnect (Figure 24)
 1. Air horn to float bowl gasket (201).
 - Discard.
 2. Pump assembly (205).
 - Pump plunger spring (203), and cup (204).
 3. Pump return spring (206) from pump well.
 4. Aneroid cavity insert (234), if used.

Power Valve Piston and Metering Rods
- Remove or Disconnect (Figures 25 - 27)
 1. Power valve piston assembly (212) and primary metering rods (213).
 - Press down on piston stem and release it, causing the power piston to snap up against retainer. Repeat until free.

NOTICE: Do not use pliers on metering rod holder to remove power valve piston, as the holder could come loose from piston.

NOTICE: If Model M4MEF, do not turn nor remove the rich stop adjusting bushing (Figure 8). Unnecessary adjustment of this bushing could result in engine damage or increased exhaust emissions.
MODELS M4ME AND M4MEF CARBURETORS 6C1-37

Important (Figure 25)

Do not remove nor adjust the factory set part throttle adjusting (APT) screw, which could result in increased exhaust emissions.

- If required, a replacement float bowl contains a preset APT adjusting screw.

Disassemble (Figure 27)

- Primary metering rods (213) and metering rod spring (214), from power valve piston assembly (212).
- Note the position of the metering rod spring for reassembly.

2. Remove power piston spring (218) from float bowl.

Float, Needle and Seat

Remove or Disconnect (Figure 28)

Tool Required:

- J-22769 or BT-3006M - Needle Seat Tool.

1. Float bowl insert (235).
2. Float (237), hinge pin (236), float needle (239) and pull clip (238).
 - Pull up on float hinge pin (236).
3. Float needle seat (240), and gasket (241).

Primary Metering Jets

Remove or Disconnect (Figure 27)

- Primary metering jets (248) from float bowl.

NOTICE: Do not remove secondary metering discs. They are pressed into place, and if damaged, entire bowl replacement is required.
Pump Discharge Ball and Pump Well Baffle

Remove or Disconnect (Figure 24)
1. Pump discharge plug (retainer) (250).
2. Pump discharge ball (251).
 - Invert bowl and catch ball.
3. Pump well baffle (252).

CHOKE COMPONENTS

The tamper resistant choke cover discourages unnecessary readjustment of the choke cover and stat assembly. However, for overhaul, it is necessary to remove this assembly.

Electric Choke Cover and Stat

Remove or Disconnect (Figure 29)
1. Heads of choke cover attaching rivets (330).
 - Use a 4 mm (5/32") drill bit.
2. Choke cover retainers (331).
3. Electric choke cover and stat assembly (335).
4. Remaining pieces of rivets in housing.
 - Use punch to drive out.

Choke Housing

Remove or Disconnect (Figure 30)
1. Choke housing to float bowl screw and washer assembly (341).
2. Choke housing assembly (340).
 - Secondary throttle lockout lever (360).
 - Intermediate choke lever (354).
 - Invert bowl.

Figure 30 -- Choke Housing Assembly

- Intermediate choke shaft seal (364), from float bowl.
 - Do not remove bushing from float bowl.

Disassemble (Figure 30)
1. Remove choke stat lever attaching screw (345).
2. Choke stat lever (348).
3. Intermediate choke shaft, lever and link assembly (350).

THROTTLE BODY COMPONENTS

Idle Mixture Needles

Remove or Disconnect (Figure 31)

Tool Required:
- J-29030-B or BT-7610B, Idle Mixture Socket (Adjusting Tool).
- Idle mixture needles (420), and springs (421).
- Count, and make a record of, number of turns needed to lightly bottom needles, for use in reassembly.

Inspect (Figure 31)
- Needles for damaged tip or threads.
 - If damaged, replacement is required.
Throttle Body
- Invert carburetor.

Remove or Disconnect (Figure 32)
1. Float bowl to throttle body screw assemblies (405).
2. Throttle body assembly (400), and float bowl to throttle body gasket (401).
 - Discard gasket.
3. Do not disassemble throttle body further. The throttle body is serviced as a complete assembly.

CLEANING AND INSPECTION

If an excessive amount of foreign material is found in float bowl, check tanks and fuel lines for the source.

![Figure 33 -- Cleaning Power Piston Bore](image)

1. **Clean** (Figure 33)
 - Power piston bore of float bowl.
 - Use 0.375 inch soft wire brush. Turn clockwise through full length of the power piston bore. Turn brush several more turns, to remove dirt and varnish.

2. Metal parts in cold immersion cleaner, X-55 or equivalent.

NOTICE: Do not immerse ISS, throttle kicker, vacuum breaks, electric choke cover and stat assembly, float and float bowl insert, aneroid cavity insert, pump plunger, seals, etc., in cleaner, as they may become non-functional, swell, harden, or distort.

- The plastic cam on the air valve shaft will withstand normal cleaning.

3. Rinse thoroughly after soaking.
4. Blow dry with compressed air.
 - Do Not pass drill bits or wire through jets or other passages.

Inspect

Check the following items, and if the condition listed is noted, clean, repair or replace the components.

- Air and fuel passages, and metering parts, for dirt or burrs.
- Mating surfaces of castings, for nicks or damage that would prevent sealing air or fuel.

IMPORTANT (Figure 34)

If replacing float bowl, look for letters "MW", which indicate Machined pump.
Well, and determine the type of pump that can be used. If present, a new bowl also must have the letters.

Power valve piston assembly for free movement in the bore.

Power piston spring for being stretched or distorted.

Choke valve and secondary air valves for freedom of movement.

Throttle shafts for freedom of movement. If cleaning does not correct condition, replace throttle body assembly.

Throttle valves for nicks or damage. If noted, replace throttle body assembly.

Idle mixture needles for grooves, ridges or bends.

Levers for looseness on shafts, or wear in holes. If throttle lever is loose, replace throttle body assembly.

Links for wear or rubbing against other components.

• Correct cause, and replace if necessary.

Float, float lever and hinge pin for distortion, binds and burrs.

The float for being loaded.

• Check weight of float in comparison with a new float, and replace if heavier.

Plastic parts for cracks, damage, etc.

PUMP SYSTEM CHECKING PROCEDURE

Inspect (Figures 24, 9)

• Perform this check with a new pump cup installed on the pump plunger, and with the pump discharge ball, plug (retainer), and pump well baffle, installed.

1. Fill empty float chamber and pump well with a clean solvent, such as mineral spirits.

2. Seal the two pump discharge passages on top surface of float bowl with two fingers. Use other hand to push pump assembly down slowly in pump well.
 - Pump assembly should not travel to bottom of well. Only movement should be compressing of the duration spring.
 - If pump assembly moves down in well, this may indicate that the pump cup is not sealing properly, the pump well is worn or scored, or the pump discharge plug is leaking (as indicated by bubbles around plug).

3. With clean solvent in float chamber and pump well, slowly move pump assembly down in pump well until solvent is visible at top of pump discharge passages.

4. Remove pump assembly. Continue to watch solvent in passages. The level should not lower.
 - If level begins to drop, the discharge check ball may be missing, or may not be seating correctly because of foreign material, damage to the ball, or because the seat for the ball needs restaking.

5. Satisfactory pump system operation requires all above checks be successful. After cleaning or parts replacement, repeat procedure.

VACUUM BREAK CHECKING PROCEDURE

Inspect (Figures 35 and 36)

Tool required:
 - J-23738-A or BT-7517 - Hand Operated Vacuum Pump.

1. If the vacuum break has an air bleed hole, plug it as shown, during this checking procedure.

2. Apply 15" Hg (51kPa) vacuum to the vacuum break.
 - Apply finger pressure to the plunger to see if it has moved through full travel. If not, replace the vacuum break.
 - Observe vacuum gage. Vacuum should hold for at least twenty seconds. If not, replace the vacuum break.

3. Replace vacuum break hoses that are cracked, cut or hardened.
THROTTLE KICKER
CHECKING PROCEDURE

Inspect (Figure 37)

Tool required:
J-23738-A or BT-7517 - Hand Operated Vacuum Pump.

1. Apply 20" Hg (68 kPa) vacuum to the throttle kicker.
 - Apply finger pressure to the plunger to see if it has extended fully. If not, replace throttle kicker.
 - Observe vacuum gage. Vacuum should hold for at least twenty seconds. If not, replace throttle kicker.

2. Release vacuum to the kicker.
 - If the plunger does not retract to its starting position, replace kicker.

IDLE STOP SOLENOID
CHECKING PROCEDURE

Inspect

Check the idle stop solenoid (425) electrically, using a 12 volt automotive battery.

1. Retract the solenoid plunger, using finger pressure.
2. Apply +12 volts to the terminal and -12 volts to the solenoid body.
3. If the solenoid plunger does not extend when the voltage is applied, replace the solenoid with a new one.

CARBURETOR REASSEMBLY

THROTTLE BODY COMPONENTS

Throttle Body

- Invert float bowl (200).
- Install or Connect (Figure 32)

1. New float bowl to throttle body gasket (401).
 - Install over locator pins on float bowl.
2. Throttle body assembly (400).
3. Float bowl to throttle body screw assemblies (405).
Idle Mixture Needles

Install or Connect (Figures 17, 31)

Tools Required:
- J-9789-118 or BT-3553 - Carburetor Holding Stand
- J-29030-B or BT-7610B - Idle Mixture Socket (Adjusting tool)

1. Place carburetor on J-9789-118 or BT-3553.
2. Idle mixture needles (420), and springs (421).
 - Use J-29030-B or BT-7610B to lightly seat each needle, then back out the number of turns counted in disassembly.
 - Final idle mixture adjustment is made on the vehicle. For information on the idle mixture adjustment procedure, refer to Carburetors (SEC. 6C1) in the 1987 Light Duty Trucks Service Manual.

3. Fast idle cam assembly (352) to choke housing (340), with cam bushing facing away from housing.
 - Position tail of cam (weighted end) in line with housing attaching screw hole.
2. Intermediate choke shaft assembly (350) into the choke housing, so the vacuum break lever will surround the tail of the fast idle cam.
3. Choke stat lever (348) on flats of intermediate choke shaft, with stat lever tang lined up with vacuum break lever of intermediate choke shaft.
4. Install choke stat lever attaching screw (345).

CHoke COMPONENTS

Choke Housing

Assemble (Figure 38)

1. Fast idle cam assembly (352) to choke housing (340), with cam bushing facing away from housing.
2. Intermediate choke shaft assembly (350) into the choke housing, so the vacuum break lever will surround the tail of the fast idle cam.
3. Choke stat lever (348) on flats of intermediate choke shaft, with stat lever tang lined up with vacuum break lever of intermediate choke shaft.
4. Install choke stat lever attaching screw (345).
B. Guide intermediate choke shaft through slot in intermediate choke lever.

4. Choke housing to float bowl screw and washer assembly (341).

Inspect
- Linkage for freedom of movement.

Important
Electric choke cover and stat assembly (335) should be installed after making choke stat lever adjustment.

FLOAT BOWL COMPONENTS

If replacing the float bowl assembly, transfer the identification number on the new float bowl at location shown, (figure 1). Follow the instructions on the envelope included in the service package.

Pump Discharge Ball and Pump Well Baffle

Install or Connect (Figure 24)

1. Pump well baffle (252).
 - Slot toward bottom.

2. Pump discharge ball (251).

3. Pump discharge plug (retainer) (250).

Primary Metering Jets

Install or Connect (Figure 40)
- Primary metering jets (248) in float bowl.

Power Valve Piston and Metering Rods

Assemble (Figure 40)
- Primary metering rods (213), and metering rod spring (214), to power valve piston assembly (212).

Install or Connect (Figures 40, 25)

1. Power piston spring (218).
2. Install power valve piston assembly and primary metering rods, as follows:
 A. Align pin on piston with slot in bore, and primary metering rods in jets.
 B. Press plastic retainer flush with top of float bowl.
 • If necessary, use a small punch and hammer.

Pump

- Assemble (Figure 24)
 - Pump assembly (205) with new pump plunger cup (204), and spring (203).
- Install or Connect (Figure 24)
 1. Pump return spring (206).
 2. Pump assembly (205).
 3. Aneroid cavity insert (234), if used.
 4. New air horn to float bowl gasket (201).

AIR HORN COMPONENTS

Pump Stem Seal

- Install or Connect (Figure 23)
 1. New pump stem seal (68) in air horn.
 • Sealing lip faces outward.
 2. New seal retainer (67).
 • Lightly stake retainer in three different places than original stakings.

Air Horn

- Install or Connect (Figure 43)
 1. Air horn assembly (10).
 • Hold air horn gasket (201) down at pump location, guide pump stem through air horn.
 • Be sure that tubes are positioned properly through the holes in the air horn gasket.
 2. Air horn screws, in sequence shown:
 • Two countersunk screws (47) (locations #1 & 2), located next to the venturi area.
 • Air horn to float bowl screw assemblies (46).
 • Air horn baffle (50), if used, under screw assemblies in locations #3 and 4.
 • Air horn to throttle body screw assemblies (45).

Pump Lever and Link

- Install or Connect (Figures 58,44)
 Tool Required:
 J-25322 or BT-7523 - Pump Lever Pin Punch
 1. Pump link (410), in throttle lever.
 • End of link with squirt (bump) faces outward in the lever.
 2. Pump lever (41).
 A. Pump link in specified hole.
 • Specification is in figure 58.
 B. Use J-25322 or BT-7523, or small punch, to align hole in lever with hole in air horn casting.
C. Use screwdriver to push pump lever hinge pin (42) in, until flush with casting boss.

Choke Lever and Link

![Diagram of choke lever and link](image)

Install or Connect (Figure 20)
1. Choke link (356) into intermediate choke lever (354).
 - Hold fast idle cam (352) down, to rotate lever up, for easier installation.
2. Choke lever (35).
 - Connect lever to choke link, and install on end of choke shaft.
3. Choke lever attaching screw (36).

Secondary Metering Rods

Install or Connect (Figure 19)
1. Secondary metering rods (32), and holder (31).
 - Ends of rods face each other.
2. Holder attaching screw (30).
 - Work air valves up and down several times, to be sure they move freely both ways.

VACUUM BREAK ASSEMBLIES

Install or Connect - (if used) (Figures 12 - 15)
1. Primary side vacuum break - air valve lever link (58) to air valve lever.
2. Primary side vacuum break assembly (55).
 - Connect plunger to the air valve lever link.
3. Vacuum break attaching screws (56).
4. Primary side vacuum break hose (57).
5. Secondary side vacuum break to choke link (322), to lever on intermediate choke shaft (350).
 - Connect plunger to the secondary side vacuum break to choke link (322).
7. Vacuum break attaching screws (321).

SOLENOID AND BRACKET OR THROTTLE KICKER ASSEMBLY

Install or Connect (Figures 12 - 15)
- Solenoid and bracket assembly (500), or throttle kicker assembly (510), with bracket attaching screws (501).

FUEL INLET NUT AND FILTER

Install or Connect (Figure 18)
1. Fuel filter spring (377), in float bowl.
2. New gasket (372), on inlet nut (370).
3. Inlet nut with new filter (375).
 - Tighten
 - Nut to 62 N-m (46 ft. lbs.).

ADJUSTMENT PROCEDURES

If you are following the unit repair procedures, proceed with adjustments in Figures 47 - 57.

Adjust (Figures 46 through 58)

Tools Required:
- J-9789-D or BT-3005A, Universal Carburetor Gage Set.
- J-9789-90 or BT-8037, Float Level T-Scale.
- J-9789-111 or BT-3006M, Linkage Bending Tool.
- J-26701-A or BT-7704, Choke Valve Angle Gage.
- J-23738-A or BT-7517, Hand Operated Vacuum Pump.
- Float, Figure 46.
- Pump, Figure 47.
- Air Valve Return Spring, Figure 48.
- Choke Stat Lever, Figure 49.
Electric Choke Cover and Stat

Install or Connect (Figure 45)

1. Place fast idle cam (352) on high step, against cam follower lever.

2. Electric choke cover and stat assembly (335) in the choke housing (340).
 - Be sure coil tang engages the choke stat lever, and notch in cover lines up with projection on housing.

Important
Ground contact for the electric choke is provided by the metal plate on the back side of the choke cover assembly. Do Not install a stat cover gasket.

3. Choke cover retainers (331) and attaching rivets (330).
 - Use blind rivet tool to install rivets.
 - It may be necessary to use an adapter (tube) if the tool interferes with the electrical connector on the electric choke cover and stat (335).
 - Instructions are included in choke cover retainer kit.

Install or Connect
- Carburetor on vehicle, with new flange gasket.
1. REMOVE AIR HORN, GASKET, POWER PISTON AND METERING ROD ASSEMBLY, AND FLOAT BOWL INSERT.
2. ATTACH J-34817-1 OR BT-8227A-1 TO FLOAT BOWL.
3. PLACE J-34817-3 OR BT-8227A IN BASE WITH CONTACT PIN RESTING ON OUTER EDGE OF FLOAT LEVER.
4. MEASURE DISTANCE FROM TOP OF CASTING TO TOP OF FLOAT, AT POINT 3/16" FROM LARGE END OF FLOAT. USE J-9789-90 OR BT-8037.
5. IF MORE THAN ±2/32" FROM SPECIFICATION, USE J-34817-25 OR BT-8427 TO BEND LEVER UP OR DOWN. REMOVE BENDING TOOL AND MEASURE, REPEATING UNTIL WITHIN SPECIFICATION.
6. CHECK FLOAT ALIGNMENT.
7. REASSEMBLE CARBURETOR.

Figure 46 -- Float Adjustment

1. Make sure the pump link is in the specified hole.
2. With the fast idle cam off the cam follower lever, turn the throttle stop screw out so it does not touch the throttle lever.
3. Measure the distance from the top of the choke valve wall to the top of the pump stem.
4. Adjust, if necessary, by supporting the pump lever at S and bending at the notch.

Figure 47 -- Pump Adjustment
6C1-48 MODELS M4ME AND M4MEF CARBURETORS

1. Loosen set screw.

2a. Turn Spring Fulcrum Pin until Air Valves open.

2b. Turn pin until Air Valves close, then additional turns specified.

3. Tighten set screw.

4. Apply Lithium grease to spring contact area.

Figure 48 -- Air Valve Return Spring Adjustment

1. If riveted, drill out and remove rivets. Remove Choke Cover and Stat Assembly.

2. Place Fast Idle Cam on high step against Cam Follower Lever.

3. Push up on Choke Stat Lever to close Choke Valve.

4. Check Stat Lever for correct orientation by inserting .120" plug gage in hole.
 - Gage should fit in hole and touch edge of lever.

5. Adjust, if necessary, by bending Choke Link.

Figure 49 -- Choke Stat Lever Adjustment
1. Attach Angle Gage Magnet to closed Choke Valve.
2. Rotate degree scale until zero is opposite pointer.
3. Center the leveling bubble.
4. Rotate scale to specified angle.
5. Open Choke Valve as described.
6. Adjust linkage if bubble is not recentered.

Figure 50 -- Choke Valve Angle Gage

1. Attach rubber band to Vacuum Break Lever of Intermediate Choke Shaft.
2. Open Throttle to allow Choke Valve to close.
3. Set up Angle Gage and set to specification.
4. Place Fast Idle Cam A on second step against Cam Follower Lever B, with Lever contacting rise of High Step. If Lever does not contact Cam, turn Fast Idle Adjusting Screw C in additional turn(s).
5. Adjust, if bubble is not recentered, by bending Fast Idle Cam Kick Lever with pliers.

Figure 51 -- Choke Link - Fast Idle Cam Adjustment
PLUGGING AIR BLEED HOLES

PUMP CUP OR VALVE STEM SEAL

TAPE HOLE IN TUBE

TAPE END OF COVER

BUCKING SPRINGS

Plunger Stem Extended (Spring Compressed)

LEAF TYPE BUCKING SPRING

Tape End of Cover

Tape Hole in Tube

Apply 15” Hg (51 k Pa) vacuum to seat Vacuum Break Plunger.

Seat Bucking Spring, if applicable.

On Quadrajets, if necessary:
- Bend Air Valve Link (B) to permit full plunger travel.
- Reapply vacuum.

Adjust, if bubble is not centered, by turning screw.

Figure 52 -- Vacuum Break Adjustment Information

Figure 53 -- Primary Side (Front) Vacuum Break Adjustment
1. Attach rubber band to Vacuum Break Lever of Intermediate Choke Shaft.
2. Open Throttle to allow Choke Valve to close.
3. Set up Angle Gage and set to specification.
4. Plug Vacuum Break Bleed Holes, if applicable.
 - Apply 15" Hg (51 k Pa) vacuum to seat Vacuum Break Plunger.
 - Compress Plunger Bucking Spring, if applicable.
 - On Quadrajets, if necessary:
 - Bend Air Valve Link (A) to permit full plunger travel.
 - Reapply vacuum.
5. Adjust, if bubble is not recentered, by either:
 - Supporting at "S" and bending Vacuum Break Link.
 - OR —
 - Turning screw with 1/8" hex wrench.

Figure 54 -- Secondary Side (Rear) Vacuum Break Adjustment

1. Plug Vacuum Break bleed holes, if applicable. Air Valves (A) closed.
 - Apply 15" Hg (51 k Pa) vacuum to seat Vacuum Break Plunger.
2. Gage the clearance between Air Valve Link and end of slot in lever.
3. Adjust, if necessary, by bending link.

Figure 55 -- Air Valve Link Adjustment
1. Attach rubber band to Vacuum Break Lever of Intermediate Choke Shaft.
2. Open Throttle to allow Choke Valve to close.
3. Set up Angle Gage and set to specification.
4. On Quadrajet, hold Secondary Throttle Lockout Lever away from pin.
5. Hold Throttle Lever in wide open position.
6. Adjust, if bubble is not recentered, by bending Fast Idle Lever.

Figure 56 -- Unloader Adjustment

1. Place Fast Idle Cam on high step against Cam Follower Lever.
2. Hold Throttle Lever closed.
3. Gage the clearance between Lockout Lever and pin. It must be .015" ±.005”.
4. Adjust, if necessary, by bending pin.
5. Push down on tail of Fast Idle Cam to move Lockout Lever away from pin.
6. Rotate Throttle Lever to bring Lockout Pin to position of minimum clearance with Lockout Lever.
7. Gage the clearance between Lockout Lever and pin. Minimum must be .015”.
8. Adjust, if necessary, by filing end of pin.

Figure 57 -- Secondary Throttle Lockout Adjustment
<table>
<thead>
<tr>
<th>CARBURETOR NUMBER</th>
<th>FLOAT SETTING ± 2/32"</th>
<th>PUMP SETTING</th>
<th>AIR VALVE SPRING TURNS</th>
<th>CHOKE STAT LEVER</th>
<th>CHOKE LINK CAM ± 2.5°</th>
<th>VAC. BRK. FRONT ± 2.5°</th>
<th>VAC. BRK. REAR ± 3.5°</th>
<th>AIR VALVE LINK</th>
<th>UN-LOADER ± 4°</th>
</tr>
</thead>
<tbody>
<tr>
<td>17085000</td>
<td>12/32"</td>
<td>Inner 9/32"</td>
<td>7/8</td>
<td>0.120" G</td>
<td>46°</td>
<td>24°</td>
<td>30°</td>
<td>0.025"</td>
<td>40°</td>
</tr>
<tr>
<td>17085001</td>
<td>12/32"</td>
<td>Inner 9/32"</td>
<td>1</td>
<td>0.120" G</td>
<td>46°</td>
<td>23°</td>
<td>30°</td>
<td>0.025"</td>
<td>40°</td>
</tr>
<tr>
<td>17085003</td>
<td>13/32"</td>
<td>Inner 9/32"</td>
<td>7/8</td>
<td>0.120" G</td>
<td>46°</td>
<td>27°</td>
<td>---</td>
<td>0.025"</td>
<td>35°</td>
</tr>
<tr>
<td>17085004</td>
<td>13/32"</td>
<td>Inner 9/32"</td>
<td>7/8</td>
<td>0.120" G</td>
<td>46°</td>
<td>23°</td>
<td>---</td>
<td>0.025"</td>
<td>35°</td>
</tr>
<tr>
<td>17085212</td>
<td>13/32"</td>
<td>Inner 9/32"</td>
<td>7/8</td>
<td>0.120" G</td>
<td>46°</td>
<td>23°</td>
<td>---</td>
<td>0.025"</td>
<td>35°</td>
</tr>
<tr>
<td>17085213</td>
<td>13/32"</td>
<td>Inner 9/32"</td>
<td>7/8</td>
<td>0.120" G</td>
<td>46°</td>
<td>27°</td>
<td>---</td>
<td>0.025"</td>
<td>35°</td>
</tr>
</tbody>
</table>

Notes:
1. Secondary Lockout 0.015 inches
2. G = Gage Dimension

Figure 58 -- Specifications
6C1-54 MODELS M4ME AND M4MEF CARBURETORS

SPECIAL TOOLS

1. Universal Carburetor Gage Set
2. Carburetor Holding Stand
3. Pump Lever Pin Punch (Not Shown)
4. Needle Seat Tool
5. Idle Mixture Socket (Adjusting Tool)
6. Hand Operated Vacuum Pump
7. Choke Lever Installer
8. Float Level T-Scale
9. Float Positioning Tool Set
10. Choke Valve Angle Gage
11. Linkage Bending Tool

J-9789-D or BT-3005A
J-23417 or BT-6911
J-29030-B or BT-7610B
J-26701-A or BT-7704
J-23738-A or BT-7517
J-9789-111 or BT-3006M
J-9789-90 or BT-8037
J-34817-A or BT-8426
J-22769 or BT-3006M
J-9789-118 or BT-3553
J-9789-111 or BT-3006M

SECTION 6D
ENGINE ELECTRICAL

SUBJECT

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delco-Remy 12-SI Series, Type 100 and 17-SI Series, Type 100 Generators</td>
<td>6D-1</td>
</tr>
<tr>
<td>Description</td>
<td>6D-1</td>
</tr>
<tr>
<td>Generator Output Test</td>
<td>6D-3</td>
</tr>
<tr>
<td>Disassembly</td>
<td>6D-4</td>
</tr>
<tr>
<td>Inspection and Repair</td>
<td>6D-7</td>
</tr>
<tr>
<td>Electrical Tests</td>
<td>6D-7</td>
</tr>
<tr>
<td>Assembly</td>
<td>6D-9</td>
</tr>
<tr>
<td>Delco-Remy 5MT, 10MT and 27MT Starting Motors</td>
<td>6D-10</td>
</tr>
<tr>
<td>Description</td>
<td>6D-10</td>
</tr>
<tr>
<td>Diagnosis of the Starting Motor</td>
<td>6D-10</td>
</tr>
<tr>
<td>Disassembly</td>
<td>6D-13</td>
</tr>
<tr>
<td>Inspection and Repair</td>
<td>6D-14</td>
</tr>
<tr>
<td>Assembly</td>
<td>6D-19</td>
</tr>
<tr>
<td>Pinion Clearance Check</td>
<td>6D-21</td>
</tr>
<tr>
<td>Delco-Remy Distributors</td>
<td>6D-21</td>
</tr>
<tr>
<td>Description</td>
<td>6D-21</td>
</tr>
<tr>
<td>Disassembly of Distributors with Integral Coils</td>
<td>6D-23</td>
</tr>
<tr>
<td>Inspection and Electrical Tests</td>
<td>6D-24</td>
</tr>
<tr>
<td>Assembly of Distributors with Integral Coils</td>
<td>6D-28</td>
</tr>
<tr>
<td>Disassembly of Distributors with Separate Coils</td>
<td>6D-28</td>
</tr>
<tr>
<td>Inspection and Electrical Tests</td>
<td>6D-30</td>
</tr>
<tr>
<td>Assembly of Distributors with Separate Coils</td>
<td>6D-32</td>
</tr>
<tr>
<td>Specifications</td>
<td>6D-33</td>
</tr>
<tr>
<td>Lubrication</td>
<td>6D-34</td>
</tr>
<tr>
<td>Special Tools</td>
<td>6D-34</td>
</tr>
</tbody>
</table>

DELCO-REMY 12-SI SERIES, TYPE 100 AND 17-SI SERIES, TYPE 100 GENERATORS

DESCRIPTION

The generators shown in figures 1 and 2 feature a solid state regulator mounted inside the slip ring end frame. The SI-series indicates “Systems Integral” (generator with built-in regulator). All regulator components are enclosed in a solid mold. This unit, along with the brush holder assembly, is attached to the slip ring end frame. The regulator voltage setting is not adjustable.

The generator rotor bearings contain enough grease to eliminate periodic lubrication. Two brushes carry current through two slip rings to the field coil.

The stator windings are assembled on the inside of a laminated core that forms part of the generator frame. A rectifier bridge connected to the stator windings contains six diodes, and electrically changes the stator AC voltages to a DC voltage which appears at the generator output “BAT” terminal. Generator field current is supplied through a diode trio connected to the stator windings. A capacitor, or condenser, mounted to the end frame protects the rectifier bridge and diode trio from high voltages, and suppresses radio noise.

The generator part number is the seven-digit number stamped on the drive end frame above the build date (figure 1).

OPERATING PRINCIPLES (Figure 3)

The battery is directly connected to the No. 2 terminal on the generator. This supplies voltage through resistor R5 to the base-emitter of transistor TR3. Transistor TR3 turns on which then turns on transistor TR1 which allows field current to flow through to ground. Also, resistors R2 and R3 are connected to the battery through terminal No. 2, but the discharge current of the battery is very low because of the resistance values of R2, R3, R5, TR1 and TR3.

At this point, transistors TR3 and TR1 are turned on, but no current is flowing through them. Now the engine control switch is closed, allowing current to flow from the battery through the indicator lamp to the No. 1 terminal on the generator. From No. 1 terminal, the current goes through resistor R1, transistors TR3 and TR1 to ground, turning on the indicator lamp. Resistor R6 carries some of the indicator lamp current.
When the generator is spinning, AC voltages are generated in the "Y" stator windings (delta windings on the 17-SI). The AC is converted to DC current in the diode trio, and is then fed through to the field to transistor TR1 and to ground. At the same time, the DC voltage from the diode trio causes the indicator lamp current to stop, making the indicator lamp go out.

Now the AC voltages are converted to DC in the rectifier bridge. This DC voltage is then fed through the "BAT" terminal to the battery, thus keeping the battery charged and supplying electricity to the vehicle electrical loads.

As the generator speed and voltage increase, the voltage between R2 and R3 increases to the point where the zener diode D1 conducts. This turns on transistor TR2 which causes TR3 and TR1 to turn off. With TR1 off, the field current and system voltage decrease. D2 stops conducting when the voltage drops to a certain level, causing TR3 and TR1 to turn back on. This cycle repeats many times per second to limit the generator voltage to a preset value.

Capacitor C1 smoothes out the voltage across R3. Resistor R4 prevents excessive current through TR1 at high temperatures. Diode D2 prevents induced high voltages in the field windings when TR1 turns off. Resistor R2 is a thermister which causes the regulated voltage to vary with temperature, thus providing the optimum voltage for charging the battery.

Some installations do not use an indicator lamp. Instead a resistor or resistance wire is used in its place. The charge rate is then indicated by a voltmeter.
Figure 4—Generator Bench Check

If an open should occur in the No. 2 terminal circuit, TR3 and TR1 will turn off, field current will stop and the indicator lamp current will flow through R6 to ground, causing the indicator lamp to come on. Also, an open in the field circuit will cause the indicator lamp to turn on because indicator lamp current will flow through R6 to ground.

If an open should occur in the No. 1 terminal circuit, the indicator lamp will stay off, and the generator will not generate current.

GENERATOR OUTPUT TEST

To check the generator in a test stand, proceed as follows:

1. Make the connections as shown in figure 4, except leave the carbon pile disconnected.
 - The ground polarity of the battery and the generator must be the same.
 - Use a fully charged battery, and a 10 ohm resistor rated at six watts or more between the generator No. 1 terminal and the battery.

2. Slowly increase the generator speed and observe the voltage.

3. If the voltage is uncontrolled with speed and increases above 15.5 volts on a 12-volt system, replace the regulator and check the field winding.

4. If the voltage is below 15.5 volts on a 12-volt system, connect the carbon pile as shown.

5. Operate the generator at moderate speed as required and adjust the carbon pile as required to obtain maximum current output.

6. If the output is within 10 amperes of the rated output as stamped on the generator frame, the generator is good.

7. If the output is not within 10 amperes of the rated output, keep the battery loaded with the carbon pile, and ground the generator field (figure 5).
 - The field ground tab is within 25 mm (1-inch) of the casting surface. DO NOT force the screwdriver deeper into the end frame.

8. Operate the generator at a moderate speed and adjust the carbon pile as required to obtain maximum output.

9. If the output is within 10 amperes of the rated output, replace the regulator and check the field winding.

10. If the output is not within 10 amperes of the rated output, check the field winding, diode trio, rectifier bridge, and stator as described later under "Inspection and Repair" and "Electrical Tests".
6D-4 ENGINE ELECTRICAL

Figure 6—Slip Ring End Frame: 12-SI 100

DISASSEMBLY

SLIP RING END FRAME

Disassemble (Figures 6, 7, 8, and 9)

- Hold the generator in a vise, clamping the mount flange lengthwise.
- Make a scribe mark to help locate the frame end parts in the same position during assembly.
1. Four through bolts (27).
2. Slip ring housing (40) and stator (41).
3. Stator lead nuts.
4. Stator from the end frame.
5. Insulated screws (30) and ground screw (29) from the brush holder (13).
6. Wire resistor (14).
7. Diode trio (15).
8. Brush holder (13).
10. Capacitor lead bolt.
11. Capacitor strap bolt.

12-SI Series (Figures 6 and 8)

13. Ground screw (29) from the rectifier bridge (17).
14. "BAT" terminal stud nut (20) from the rectifier bridge.
15. Rectifier bridge (17), "BAT" terminal (1), and insulator (36) from the end frame.

Figure 7—Slip Ring End Frame: 17-SI 100

17-SI Series (Figures 7 and 9)

16. Two ground screws from the rectifier bridge (17).
17. "BAT" terminal stud nut (20) from the rectifier bridge.
18. Rectifier bridge, "BAT" terminal (1), and insulator (36) from the end frame.

Both Models

- Support the bearing housing from the inside.
- Press out the bearing, using a tube slightly smaller than the bearing shell.
 — Press out the bearing from the outside toward the inside.

DRIVE END FRAME

Disassemble (Figures 9 and 10)

- Place the rotor, but not the rotor shaft, in a vise and tighten only enough to permit removal of the pulley nut.

NOTICE: The rotor may be distorted if the vise is overtightened.

1. Pulley nut (22).

- Insert a hex head wrench in the end of the rotor shaft to counteract the force of rotation when removing the pulley nut.

2. Washer (23).
3. Pulley (43).
4. Fan (44).
5. Front collar (34).
1. "BAT" Terminal
13. Brush Holder
14. Resistor
15. Diode Trio
16. Regulator
17. Rectifier Bridge
18. Capacitor
19. Nut
20. "BAT" Terminal Nut
22. Pulley Nut
23. Washer
24. Bolt
29. Grounded Screw
30. Insulated Screw
31. Rear Bearing
32. Front Bearing
34. Front Collar
35. Rear Collar
36. Insulator
37. Retainer
38. Brushes
39. Drive End Frame
40. Slip Ring End Frame
41. Stator
42. Rotor
43. Pulley
44. Fan

Figure 8—12-SI Series 100 Components
Figure 9—17-SI Series 100 Components
6. Rotor (42).
7. Rear collar (35).
 - Support the bearing housing when pressing out the bearing.

INSPECTION AND REPAIR

Clean
- All metal parts except the voltage regulator, rectifier bridge, stator, rotor and bearing assemblies in a suitable solvent.
 - Wipe or blow the parts dry.

Inspect
1. Brush holder for damage.
 - Brush holder. Make sure the brush pockets are clean.
 - Brushes with a soft dry cloth.
2. Insulating sleeves on the insulated screws for splits or wear.
3. Brushes for wear. If the brushes are worn to one half or less of their original length, replace them.
4. Brush leads for broken wires, corrosion or chafing.
5. Slip ring end bearing for grease. If the grease supply is used up, replace the bearing. DO NOT relubricate the bearing.
6. Slip ring end of the rotor shaft for overheating or scoring. If the signs of overheating or scoring are present, replace the bearing and rotor.
7. Drive end bearing for roughness, looseness, and seal condition. If the condition of the bearing is doubtful, replace it.
8. Windings for burned insulation. Replace the rotor or stator if either looks burned.
 - Burned insulation appears as a very dark or blackened wiring. A strong acrid odor will be apparent.
9. Terminal connectors for corrosion or breaks.
10. Windings on the stator for chipped insulation. If the chipped area is small and the rest of the stator is OK, repair the stator with insulating varnish.
11. Slip rings for scoring, wear or pitting.
 - If the rings are dirty, clean with a 400 grain, or finer, polishing cloth.
 - Spin the rotor and hold the polishing cloth against the slip rings until they are clean.
 - If scored, worn, or pitted, true the rings in a lathe to 0.05 mm (0.002-inch).
 - Finish with 400 grain or finer polishing cloth. Blow away all dust.
12. Rotor and stator windings electrically as described later under “Electrical Tests.”
13. Generator housing for cracks, warping, or other damage.

ELECTRICAL TESTS

Except as stated, make the following tests with an ohmmeter on the low range scale.

ROTOR FIELD WINDING CHECKS (Figure 10)

The rotor may be checked electrically with a 110-volt test lamp or an ohmmeter.

Open Winding
To check for opens, connect the test lamp or ohmmeter to each slip ring. If the lamp fails to light, or if the ohmmeter reading is high (infinite), the winding is open.

Ground Winding
Connect a test lamp or ohmmeter from one slip ring to the shaft. If the lamp lights, or if the reading is low, the rotor winding is grounded.

Short Circuit or Resistance Check
The winding is checked for short-circuits or excessive resistance by connecting a battery and ammeter in series with the edge of the two slip rings. Note the ammeter reading and refer to “Specifications” at the end of this section.

An ammeter reading above the specified value indicates shorted windings; a reading below the specified value indicates excessive resistance. An alternate method is to check the resistance of the field by connecting an ohmmeter to the two slip rings. If the resistance reading is above the specified value the winding has excessive resistance. Note the reading and refer to “Specifications” at the end of this section.

Remember that the winding resistance and ammeter readings will vary slightly with winding temperature changes. If the rotor is all right, but the generator fails to supply rated output, the problem is in the diode trio, rectifier bridge, stator or regulator.

If the rotor is bad, replace it.
DIODE TRIO CHECK (Figure 11)

Connect an ohmmeter having a 1.5-volt cell, and using the lowest range scale, to the single connector and to one of the three connectors (figure 11). Observe the reading. Then reverse the ohmmeter leads to the same two connectors. If both readings are the same, replace the diode trio. A good diode trio will give one high and one low reading. Repeat this same test between the single connector and each of the other two connectors. Also, connect the ohmmeter to each pair of the three connectors (not illustrated). If any reading is zero, replace the diode trio.

RECTIFIER BRIDGE CHECK (Figure 12)

To check the rectifier bridge, connect the ohmmeter to the grounded heat sink and one of the three flat metal connectors or threaded studs, depending on the type of regulator. Refer to figure 12.

Observe the ohmmeter reading and reverse the lead connectors to the grounded heat sink and the same flat metal connector or stud. If both readings are the same, replace the rectifier bridge. A good rectifier bridge will give one high and one low reading. Repeat this same test between the grounded heat sink and the other two terminals or connectors, and between the insulated heat sink and each of the three terminals or connectors. This makes a total of six checks, with two readings taken for each check.

The ohmmeter check of the rectifier bridge, and of the diode trio as previously covered, is a valid and accurate check. Do not replace either unit unless at least one pair of readings is the same.

STATOR CHECKS (Figure 13)

The stator windings may be checked with a 110-volt test lamp or ohmmeter. If the meter reading is low when connected from any stator lead to the frame, the windings are grounded. If the lamp fails to light, or if the meter reading is high when successively connected between each pair of stator leads, the windings are open.

Delta windings on the 17-SI Series cannot be checked for opens. Check the windings for ground only.

A short circuit in the delta stator windings is difficult to locate without laboratory test equipment due to the low resistance of the windings. However, if all other electrical checks are normal and the generator fails to supply rated output, shorted stator windings or an open delta winding is indicated. Also a shorted stator can cause the indicator lamp to be on with the engine at low speed. Check the regulator before replacing the stator.

TESTING THE VOLTAGE REGULATOR (Figure 14)

1. Connect the voltmeter and the fast charger to the 12-volt battery.
2. Connect the regulator and the test lamp as shown. Observe battery polarity.
3. Test lamp should be on.
4. Turn on the fast charger and slowly increase the charge rate. Observe the voltmeter. The lamp should go out at the voltage regulator setting. The voltage regulator setting should be a minimum of 13.5 volts and a maximum of 16.0 volts.
The test lamp is connected into the circuit, exactly as the rotor is when the regulator is inside the generator. The regulator shuts off the current to the test lamp when the regulator setting is reached. This voltage will vary with temperature differences.

ASSEMBLY

SLIP RING END FRAME

Install or Connect (Figures 8, 9 and 15)

- If the old bearing is dry, do not lubricate or reinstall it. Replace the bearing.

1. Bearing (31).
 - Support the inside of the frame.
 - Place a flat plate over the bearing and press in from the outside to the inside of the end frame housing.
 - Press the bearing flush with the outside of the end frame (figure 15).

2. Rectifier bridge (17) (figures 7 and 8).

3. Ground screw(s) (29) in the rectifier bridge.
4. “BAT” terminal (1) and insulator (36).
5. “BAT” terminal nut (20).
6. Capacitor (18) in the end frame.
 - Retain with a screw.
7. Capacitor lead to the rectifier bridge (17) with a screw.
8. Regulator (16).
9. Brushes (38) in the brush holder (13).
 - Retract the brushes in the holder.
6D-10 ENGINE ELECTRICAL

DRIVE END FRAME

Assemble (Figures 8 and 9)

1. Bearing (32).
 • Support the end frame.
 • Position the bearing with the sealed end toward the outside of the generator.
 • Press the bearing into the bore using a metal tube against the bearing outer race.
 • Fill the cavity between the retainer plate and the bearing with specified lubricant. Refer to “Lubrication” later in this section.
 • If the bearing is sealed on both sides, do not add lubricant.
2. Bearing retainer (37).
3. Three attaching bolts (24).
4. Rear collar (35) in the bearing retainer, if previously removed.
5. Rotor (42) through the rear collar and the bearing in the drive end frame.
6. Front collar (34).
7. Fan (44).
8. Pulley (43).
9. Wave washer (23).
 • Clamp the rotor in a vise only tight enough to torque the nut.

Tighten
• Pulley nut to 68 N-m (50 ft. lbs.).

MAIN ASSEMBLY

Install or Connect

1. Drive end frame (39) and rotor assembly to the slip ring end.
2. Four through bolts (27). Tighten securely.
 • Remove the brush retainer (toothpick) from the end frame.
 • Test the generator output.

DELCO-REMY 5MT, 10MT, AND 27MT STARTING MOTORS

DESCRIPTION

The overrunning-clutch type starting motors covered in this section are the enclosed shift lever type (figures 17, 18 and 19).

The starting motor has the drive end housing extended to enclose the shift lever and solenoid plunger. The solenoid flange is mounted on the drive end housing with sealing compound between the flange and the field frame.

The starter motor bearings are lubricated during motor assembly and do not require service except during motor repair.

The part number can be found either stamped on the outside of the frame or on an identification label attached to the frame.

DIAGNOSIS OF THE STARTING MOTOR

STARTING MOTOR TESTS

Before disassembling the starting motor for repair, the following tests should be made.

NOTICE: Never operate the starting motor more than 30 seconds at a time without pausing to allow it to cool for at least two minutes. Overheating, caused by too much cranking, will damage the starting motor.

Inspect
1. Pinion for freedom of operation by turning it on the spline shaft.
2. Armature for freedom of rotation by prying the pinion with a screwdriver.
 - Tight bearings, a bent armature shaft, or a loose pole shoe screw will cause the armature to not turn freely.
 - If the armature does not turn freely, the motor should be disassembled.
 - If the armature does rotate freely, the motor should be given a no-load test before disassembly.

NO LOAD TEST (Figure 20)
Connect a voltmeter from the motor terminal to the motor frame and an rpm indicator to measure armature speed. Connect the motor and an ammeter in series with a fully charged battery of the specified voltage, and a switch in the open position switch terminal. Close the switch and compare the rpm, current, and voltage readings with the specifications at the end of this section. It is not necessary to obtain the exact voltage specified as a good reading can be made by understanding that if the voltage is slightly higher the rpm will be slightly higher, with the current remaining basically unchanged. However, if the exact voltage is desired, a carbon pile connected across the battery can be used to reduce the voltage to the specified value. Compare the test results as follows:
1. Rated current draw and no-load speed indicates normal condition of the starting motor.

Figure 17—5MT Starting Motor

Figure 18—10MT Starting Motor
2. Low free speed and high current draw indicates:
 a. **Too much friction.** Tight, dirty, or worn bearings, bent armature shaft or loose pole shoes allowing the armature to drag.
 b. **Shorted armature.** This can be further checked on a growler after disassembly.
 c. **Grounded armature or fields.** Check further after disassembly.

3. Failure to operate with high current draw indicates:
 a. **A direct ground** in the terminal or fields.
 b. **Seized bearings.** This should have been noted by turning the armature by hand.

4. Failure to operate with no current draw indicates:
 a. **Open field circuit.** This can be checked after disassembly by inspecting internal connections and tracing the circuit with a test lamp.
 b. **Open armature coils.** Inspect the commutator for badly burned bars after disassembly.
 c. **Broken brush springs, worn brushes.** High insulation between the commutator bars or other causes which would prevent good contact between the brushes and commutator.

5. Low no-load speed and low current draw indicates a high internal resistance due to poor connections, defective leads, dirty commutator and causes listed under step 4.

6. High free speed and high current draw indicates shorted fields. If shorted fields are suspected, replace the field coil assembly and check for improved performance.
DISASSEMBLY

If the motor does not perform to specifications, it may need to be disassembled for further testing of the components. Normally the starting motor should be disassembled only so far as is necessary to make repair or replacement of parts. As a precaution, it is suggested that safety glasses be worn when disassembling or assembling the starting motor.

FIELD FRAME

Disassemble (Figures 21, 22, and 23)

- Clean the outside of the starter housing, removing grease, oil, mud, etc.
- Make scribe marks to show the relationship of the nose housing, lever housing, field frame, and end frame to aid in assembly.

1. Field coil strap (51) from the solenoid motor terminal (figure 24).
2. Through bolts (35).
3. End frame (41).
4. Washer (34) from the commutator end of the armature shaft (10MT and 27MT).
5. Field frame (41) from the drive housing (31) and the armature assembly (9).
6. Armature from the drive housing by tilting the armature to disengage the shift lever fingers (1) from the drive collar (32) (figure 25).

- On the 27MT, it may be necessary to perform steps 2, 3 and 4 below before the drive assembly can be removed from the drive housing.

LEVER HOUSING

Disassemble

1. Drive assembly (32) from the armature shaft (9) as follows:
 - Remove the pinion stop washer (34) or thrust collar (39) from the armature shaft.
 - Drive the stop collar (39) away from the pinion stop retainer ring (37) by sliding a metal cylinder onto the armature shaft and with a hammer, striking the metal cylinder against the stop collar (figures 26 and 27).
 - Remove the pinion stop retainer ring from the groove in the armature shaft. If the retainer ring is distorted during removal, it must be replaced.
 - Slide the drive assembly and the stop collar off the armature shaft.
2. Bolts (35) attaching the solenoid (3) to the drive housing.
3. Bolt and nut (44) and washer on the 10MT or the retainer ring (37) and shaft (43) on the 5MT and 27MT attaching the shift lever to the drive housing.
4. Shift lever (1) and the attached solenoid plunger (2) from the drive housing.
5. Roll pin (40) in order to separate the shift lever from the solenoid plunger (2).
BRUSHES

Disassemble

5MT (Figure 28)
1. Brush holders (38) from the brush supports (62).
2. Screws from the brush holders.
3. Brushes (33) from the holders.

10MT and 27MT (Figure 29)
1. Brush holder pivot pins (63).
2. Brush springs (64).
3. Brushes (33) from the brush holders.

Solenoid

First perform the electrical tests on the solenoid described under “Inspection and Repair” later in this section. Then disassemble the solenoid to inspect the contact disc and terminals.

Remove or Disconnect (Figure 30)
1. Nuts from the “S” terminal (23) and the motor terminal (24).
2. Screws attaching the end cover (67).
3. End cover from the solenoid body.

Inspect
1. Contact disc for wear.
 • Replace if worn.

INSPECTION AND REPAIR

Clean
- All parts, except the drive, with mineral spirits. Do not clean the parts in a degreasing tank or with grease dissolving solvents.
 — Dry by wiping with a clean cloth.
1. Lever
2. Plunger
3. Solenoid
4. Bushing (Some Models)
5. Spring
6. Coil
7. Armature
8. Grommet
9. Housing
10. Drive
11. Brush
12. Washer
13. Bolt
14. Screw
15. Ring
16. Collar
17. Pin
18. Frame
19. Shaft
20. Nut
21. Lead
22. Grounded Brush Holder
23. Insulated Brush Holder
24. Field Coil Connection
25. Support
26. Center Bearing
27. Retaining Screw
28. Shoe Pole

Figure 23—27MT Components
Inspect

1. Armature bearing fit in the end frame, lever housing, and nose housing. On 27MT models with bushings, check them. If the bushings are worn, replace them. Also replace the oil wicks when a bushing is replaced.

- Lubricate the oil wicks and bushings before assembling the starter motor.

Figure 24—Light Duty Starting Motor

Figure 25—Disengaging the Drive Collar from the Shift Lever Fingers

Figure 26—Retaining Ring on Armature

Figure 27—Driving the Stop Collar Off the Retaining Ring
2. End frame bushing (light duty starting motor only) for damage or wear. Replace if damaged or worn.

3. Armature shaft for runout or scoring. Replace the armature assembly if the condition of the armature shaft is doubtful.

4. Commutator for run out.
 - Do not turn the commutator.
 - Do not undercut the insulation.
 - Clean the commutator with No. 240 grit emery cloth. If the commutator cannot be cleaned, replace the armature.

5. Armature for short circuits (figure 31).
 - Rotate the armature in a growler with a steel strip, such as a hacksaw blade, held on the armature parallel to the shaft. The steel strip will vibrate on the area of the short circuit.
 - Shorts between the commutator bars are sometimes produced by brush dust or copper dust.

6. Armature for opens.
 - Look for loose connections where the conductors join the commutator bars. Poor connections cause arcing and burning of the commutator. If the bars are not badly burned, the leads can be resoldered.

7. Armature for grounds by using a test lamp (figure 32).
 - If the test lamp lights when one test prod is placed on the commutator and the other test prod is placed on the armature core of shaft, the armature is grounded.
11. Brush springs for distortion or discoloring. If the springs are weak, bent, or discolored, replace them.
12. Field coils.
 - Look for burned or damaged insulation, damaged connections or loose poles. Replace the field coils if their condition is doubtful.
13. Field coils for grounds.
 - Disconnect the field coil ground connections.
 - Connect a test lamp between the field frame and the field connector.
 - If the test lamp lights, the field coils are grounded and must be repaired or replaced.
14. Field coils for opens.
 - Connect a test lamp across the ends of the coils.
 - If the test lamp does not light, the field coils are open.
15. Field coils for shorts.
 - Shorts are indicated by poor motor performance after everything else has been checked out. On the 5MT starter motor, the coils cannot be replaced separately because of the integral frame construction. The frame and field assembly must be replaced. To replace the field coils on the 10MT or 27MT, a pole shoe spreader and pole shoe screwdriver should be used. Care should be exercised in replacing the field coils to prevent grounding or shorting them as they are tightened into place. Where the pole shoe has a long lip on the side, it should be assembled in the direction of armature rotation.
16. Drive assembly (clutch) by turning the drive pinion in the cranking direction.
 - If the drive pinion turns roughly or slips in the cranking direction, replace the complete overrunning clutch assembly.
17. Solenoid for grounds.
 - Connect a 100 volt test lamp between the solenoid case and each terminal, one terminal at a time.
 - If the test lamp lights, the terminal is grounded. If the solenoid is grounded, replace the solenoid.
 - With all the leads disconnected from the solenoid, make the test connections as shown in figure 33.

NOTICE: To prevent overheating the pull-in winding, do not leave the winding energized more than 15 seconds. The current draw will decrease as the winding temperature increases.

- Turn the switch on and adjust the carbon pile to lower the battery voltage to the value shown in "Specifications" at the end of this section.
- Note the ampere reading; a high reading indicates a shorted or grounded winding, and a low reading indicates excessive resistance.
- The windings resistance can be read directly using a digital ohmmeter that can measure tenths of an ohm.
The coil resistance can be determined by dividing the voltage by the current (amperes) values listed in "Specifications" at the end of this section.

ASSEMBLY

SOLENOID

Assemble (Figure 30)

1. New solenoid disc assembly if needed.
2. End cover to the solenoid body.
3. Screws attaching the end cover.
4. Nuts from the "S" terminal and the motor terminal.

BRUSHES

Assemble

5MT (Figure 28)

1. Brushes (33) into the holders (38).
2. Screws into the brush holders.
3. Brush holders into the brush supports (62).

10MT and 27MT (Figure 29)

1. Brushes (33) into the brush holders.
2. Brush springs (64).
3. Brush holder pivot pins (63).

LEVER HOUSING AND FIELD FRAME (Figures 21 through 23)

Assemble

1. Solenoid plunger (2) to the shift lever (1) with the roll pin (40).
2. Lever assembly in the drive housing (31) with bolt (35), washer (34), and nut (44) on the 10MT or with the shaft (43) and snap ring on the 5MT and 27MT.
 - Make sure the shift lever pivots freely.

Important

1. Lubricate the drive end, commutator, bushings or bearings and armature shaft with Delco-Remy Lubricant No. 1960954 or equivalent.
2. On starters with bronze bearings and oil wicks, soak the wicks and bearing surfaces with non-detergent SAE #20 oil. Do not drill, ream or machine sintered bronze bearings in any way. Oil from the wick will bleed through the highly porous bearing to lubricate the shaft.
3. Lubricate the shaft underneath the overrunning clutch assembly with a silicone grease, such as General Electric CG321, or Dow Corning 33 medium, or equivalent. The overrunning clutch does not require lubrication.
4. Drive assembly (32) on the armature shaft.
 - Slide the drive assembly on the shaft with the pinion gear toward the shaft end.
5. Stop collar (39) on the shaft with the cupped end away from the pinion gear.
5. Retainer ring (37) on the shaft (figure 34).
- Place the ring on the end of the shaft.
- With a wood block on the top of the ring, force the ring onto the shaft with a light hammer blow.
- Slide the ring down and into the shaft groove. Do not distort the retainer ring when installing it.

6. Stop collar with the retainer ring (figure 35).

7. Thrust collar (39) or pinion stop washer (34) with the flat side away from the pinion.
- Apply sealing compound to the solenoid flange, just under the solenoid.
- Spread the brush assemblies using a tool socket slightly larger in diameter than the commutator.

Figure 36—Pinion Clearance Circuit
- Place a suitable washer over the retainer ring end and squeeze the collar and washer together.
- Remove the washer.

Figure 37—Measuring Pinion Clearance
A. Press on the Clutch to Remove the Slack.
B. Pinion Clearance
• Slide the field frame over the armature. The brush retaining tool socket will slide out as the field frame bottoms.
• Install the washer, end frame and the two through bolts.
8. Brake washer (34) on the commutator end of the armature shaft (10MT and 27MT).
9. Solenoid (3) and the solenoid return spring (5) with the drive end housing (31).
10. Solenoid retaining screws.
11. Drive assembly collar to the shift lever fingers.
12. Armature shaft into the drive end bearing.
13. Field frame to the drive end assembly.
14. Field coil strap to the solenoid motor terminal.

PINION CLEARANCE CHECK

The pinion clearance cannot be adjusted but should be checked after reassembly of the motor. Improper clearance is an indication of worn parts.

To check pinion clearance, perform the following steps (figures 36 and 37).
1. Disconnect the motor field connector from the solenoid motor terminal and **insulate it carefully**.
2. Connect a battery of the same voltage as the solenoid from the solenoid switch terminal to the solenoid frame.
3. **Momentarily** flash a jumper lead from the solenoid motor terminal to the solenoid frame. This will shift the pinion into cranking position and it will remain so until the battery is disconnected.
4. Push the pinion back toward the commutator end to eliminate slack movement.
5. Measure the distance between pinion and pinion stop.
 • Clearance should be 0.25 mm to 3.56 mm (0.010 inch to 0.140 inch).

DELCO-REMY DISTRIBUTORS

This distributor is a magnetic pulse triggered, transistor controlled, inductive discharge distributor (figures 38 through 41). The magnetic pickup assembly located inside the distributor contains a permanent magnet, a pole piece with internal teeth, and a pickup coil. When the teeth of the timer core rotating inside the pole piece line up with the teeth of the pole piece, an induced voltage in the pickup coil signals the electronic module to trigger the coil primary circuit. The primary current decreases and a high voltage of up to 35,000 volts is induced in the ignition coil secondary winding which is directed through the rotor and secondary leads to fire the spark plugs. The capacitor in the distributor is for radio noise suppression.

The magnetic pickup assembly is mounted over the main bearing on the distributor housing. The electronic module within the distributor automatically controls the dwell period.

A distributor with an integral coil is used on engines without TBI (Throttle Body Injection). A distributor with a separate coil is used on engines with TBI, and the ignition system is then controlled by the computer. This EST (Electronic Spark Timing) system may include ESC (Electronic Spark Control). Refer to ENGINE ELECTRICAL (SEC. 6D) in the applicable truck service manual for a description of these systems.

On a distributor with an integral coil, the part number (seven digits) is stamped on the distributor housing (figure 38). On a distributor with a separate coil, it is located on a label on the distributor cap (figure 39).

IGNITION COIL

The coil is built like a transformer with the winding surrounded by a laminated iron frame. It generates a high secondary voltage (up to 35,000 volts) when the primary circuit is broken. It may be contained in the cap or mounted separately and connected to the distributor by a high tension wire.

ELECTRONIC MODULE

The electronic module is a solid state unit containing many complete circuits. The circuits control spark triggering, switching, current limiting, dwell control and distributor pickup. The dwell angle is controlled by the module and is varied in direction relation to engine speed.
With an EST system, the computer sends signals to the module to control dwell and spark timing. The module may have from four to eight terminals, depending on the ignition system.

POLE PIECE AND COIL ASSEMBLY (Figure 42)

The pole piece and plate assembly (often referred to as the pickup coil assembly) consists of the following: A stationary pole piece with internal teeth and a pickup coil and magnet which are located between the pole piece and a bottom plate.

CENTRIFUGAL AND VACUUM ADVANCE (Figures 42 and 43)

Distributors without EST systems have centrifugal advance weights and springs. Some also have vacuum advance units.

Centrifugal advance is achieved through the rotation of the timer core in relation to the distributor shaft. Vacuum advance is achieved by attaching the pickup coil and pole piece to the vacuum advance unit actuating arm.
On distributors without the vacuum unit, a plastic retainer is installed to hold the pickup coil assembly stationary. Only centrifugal advance is used on these models.

HALL EFFECT SWITCH
This switch, used on some distributors in the EST system, signals the computer which cylinder will fire next.

DISASSEMBLY OF DISTRIBUTORS WITH INTEGRAL COILS

Remove or Disconnect (Figure 44)

Cap
1. Wiring harness connector from the ignition coil terminal connector (figure 38).
 • Unlatch the four spring latches holding the cap to the housing.
2. Cap and coil.
 • Inspect and check the coil. Refer to "Inspection and Electrical Tests" later in this section.

Coil
3. Cover attaching bolts (32) and the cover (19) from the cap (23).
4. Four attaching bolts from the coil (21).
5. Coil wires from the connector housing with needle nose pliers (figure 45).
6. Coil and wiring from the cap.
7. Arc seal (22) and the ground wire (20) from the cap (23).
 • Refer to "Inspection and Electrical Tests" later in this section.

Shaft Assembly
8. Two bolts (32) holding the rotor (10) to the shaft (26).
10. Two bolts holding the Hall Effect switch to the housing (if equipped).
11. Hall Effect switch (35) if equipped (figure 46).
 • Refer to "Inspection and Electrical Tests" later in this section.
12. Roll pin (27) from the shaft (26) (figure 47).
 • Mark the shaft and driven gear so they can be aligned for assembly.
 • Drive out the roll pin with a small punch.
14. Driven gear (29), shim washer (31) and thrust washer on distributor for an 8-cylinder engine.
15. Timer core shaft (26) from the housing (30).
 • Distributors for non-EST ignition systems have centrifugal advance weights and springs. These are part of the shaft assembly and are not serviceable.

Module Components
16. Four-wire connector from the pickup coil connector on distributors with ESC (figure 48).
17. Pickup coil connector from the module (figure 49).
2. Vacuum Unit
10. Rotor
11. Pickup Coil Assembly (Pole Piece and Plate)
14. Module
19. Cover
20. Ground Strap
21. Ignition Coil Assembly
22. Seal
23. Cap
24. Resistor
25. Screw
26. Shaft Assembly
27. Pin
28. Terminal Block
29. Gear
30. Housing
31. Washer
32. Bolt
33. Tang Washer

Figure 44—Distributor Components

- Check the vacuum advance unit (if equipped) and the pickup coil. Refer to "Inspection and Electrical Tests" later in this section.

18. Screw holding the capacitor to the housing.
19. Capacitor (36), wiring harness connector (40) and module (14) from the housing (figure 50).
20. Connector from the module.
- Check the module. Refer to "Inspection and Electrical Tests" later in this section.

Pickup Coil Assembly (Figure 51)
22. Thin washer (31) from the housing.
23. Pickup coil assembly (11).
- Do not disassemble. The coil is serviced only as an assembly.
24. Vacuum unit (2) (if equipped) or plastic retainer and two bolts.

INSPECTION AND ELECTRICAL TESTS

inspect

1. Cap for cracks or holes. Replace the cap if it is damaged at all.
2. Metal terminals in the cap for corrosion. Scrape them clean with a knife or replace the cap.
3. Seal and the button in the cap (figure 52). Replace the button if the end that contacts the distributor rotor is pitted or burned.
4. Rotor for wear or burning at the outer terminal. The presence of carbon on the terminal indicates rotor wear and the need for replacement. Do not try to scrape carbon deposits from the outer terminal since this would shorten the terminal and might alter ignition timing.
5. Advance assembly components (springs and weights) for corrosion or dirt.
20. Ground Strap
21. Coil Assembly
34. C, Ground, B + Terminals

Figure 45—Ignition Coil

11. Pickup Coil Assembly (Underneath)
14. Module
35. Hall Effect Switch

Figure 46—Distributor with Hall Effect Switch

14. Module
36. Capacitor
37. Ignition Coil Connector
38. Pickup Coil Connector
39. Electronic Spark Control Connector

Figure 47—Removing the Roll Pin

Figure 48—Module and Connectors
Clean

- The advance components and rotor shaft in a solvent.
- The advance components and shaft can only be replaced as an assembly.

6. Distributor shaft for shaft-to-bushing looseness. Insert the shaft in the housing. If the shaft wobbles in the bushings, replace the housing and/or shaft. The bushings are not serviceable.

7. Housing for cracks or damage.
Measure

Tool Required:

J-24642-F Module Tester

1. Vacuum level of the vacuum advance unit with a vacuum source (figure 53). Compare to "Specifications" at the end of this section. The unit must function with no leak-down; that is, it must hold a vacuum until the vacuum source is released.

2. Voltage of the Hall Effect switch (if equipped).
 - Connect a 12 volt battery and voltmeter as shown in figure 54.
 - With a knife blade inserted and held against the magnet the voltmeter should read within 0.5 volts of the battery voltage. If not, replace the switch.
 - Remove the knife blade. The voltmeter should read less than 0.5 volts. If not, replace the switch.

3. Resistance of the pickup coil with an ohmmeter.
 - Connect an ohmmeter as shown in figure 55, step 1. If the ohmmeter reads less than 500 ohms or more than 1500 ohms while flexing the leads, replace the pickup coil.
 - If the coil does not have an open, check for ground as shown in step 2. The reading should be infinite.

4. Resistance of the ignition coil with an ohmmeter.
 - Connect the ohmmeter as shown in figure 56, step 1. The reading should be zero or nearly zero. If not, replace the coil.
 - Connect the ohmmeter as shown in steps 2 and 3. Use the high scale. Replace the coil only if both readings are infinite.

5. Electrical performance of the module. The module can only be checked with an approved module tester, such as J-24642-F or equivalent. Follow the directions exactly that come with the tester.
ASSEMBLY OF DISTRIBUTORS WITH INTEGRAL COILS

Install or Connect (Figure 44)

Cap
1. Spring, button (41) and seal (42) into the cap (figure 52).
2. Coil (21) and wiring into the cap (figure 45).
3. Four bolts holding the coil to the cap.
4. Cover (19) to the cap (23) with two bolts.

Distributor Components
5. Lubricant into the lube cavity of the housing (30) only if needed.
 • Refer to "Specifications" at the end of this section.
6. Vacuum unit (2) if equipped or plastic retainer.
7. Screws holding the vacuum unit or retainer to the housing.
8. Pickup coil assembly (11) into the housing (30).
 • Position the assembly over the pin on the vacuum unit or retainer.

NOTICE: If the arm of the assembly is not properly installed on the pin, the arm can float and cause the ignition timing to vary.
 • Secure the assembly with the C-washer (figure 51).
9. Magnetic shield (if equipped).

10. Wiring connectors to the module (figure 48).
 • Lubricate.
 • Module terminals with a thin coat of petroleum jelly to prevent future oxidation.
 • Bottom of the module and the module rest pad in the housing with silicone grease or an equivalent heat transfer substance.

NOTICE: Be sure to thoroughly coat the bottom of the module. Failure to do so could result in heat damage to the module.

Install or Connect

— Pickup coil connector to the module.
— ESC connector (if equipped) to the pickup coil connector.
— Wiring harness and capacitor to the other end of the module.

11. Module, wiring harness, and capacitor to the housing with three bolts.

12. Shaft assembly into the housing.
 • Rotate the shaft to check for even clearance all around between the pickup coil assembly and the teeth on the distributor shaft assembly. If interference exists, loosen the three bolts on the pickup coil assembly and move the pole piece (teeth) to provide an even clearance and tighten the three bolts.

13. Hall Effect switch (if equipped) to the housing with two bolts.

14. Rotor to the shaft assembly with two screws.

Distributors for 6 Cylinder Engines
15. Driven gear (29) onto the shaft.

Distributors for 8 Cylinder Engines
16. Seal (22), thrust washer, washer (31), and driven gear (29) onto the shaft.

All Distributors
• Align the timing mark (48) on the driven gear with the rotor tip (47) (figure 57).

17. Roll pin into the driven gear (figure 58).

18. Distributor cap (23) onto the housing (30) with the tab on the rim of the cap in the notch of the housing.

19. Four spring clips on the cap onto the rim of the housing.

20. Wiring harness connector to the terminal on the side of the distributor cap (figure 59).

DISASSEMBLY OF DISTRIBUTORS WITH SEPARATE COILS

DISTRIBUTORS WITH SEALED MODULE CONNECTORS (Figure 40)

Remove or Disconnect (Figure 60 and 61)

1. Screws and washers holding the cap to the housing.
2. Cap (23) from the housing.
• Place marks on the rotor and the shaft assembly to help line up the rotor during assembly.
3. Rotor (10) from the shaft by lifting or prying straight up.
4. Roll pin (27) from the shaft (26).
 • Mark the shaft and driven gear for reassembly.
 • Drive out the roll pin with a small punch (figure 62).
5. Driven gear (29), washer or spring, and spring retainer (52) or tang washer (33).

DISTRIBUTORS WITHOUT SEALED MODULE CONNECTORS

1. Cap.
 • Unlatch the spring latches holding the cap to the housing.
 • Place a mark on the rotor and on the shaft assembly to help line up the rotor during reassembly.
2. Rotor (10).
3. Two bolts holding the Hall Effect switch (if equipped) to the housing.
 • Lift away the locking tab of the connector to the switch.
4. Hall Effect switch (35) by lifting straight up.
5. Roll pin (26) from the shaft (27).
 • Mark the shaft and driven gear so they can be aligned for assembly.
 • Drive out the roll pin with a small punch (figure 62).
10. Rotor
11. Pickup Coil
14. Module
23. Cap
25. Screw
26. Shaft Assembly
27. Pin
29. Gear
30. Housing
49. Retainer
50. Shield
51. Spring
52. Spring Retainer

Figure 60—Distributor Components (Separate Coil and Sealed Connector)

Figure 61—Distributor Components (Separate Coil and Sealed Connector) for an 8-Cylinder Engine

6. Driven gear (29), washer (31), spring (51), retainer (52), and tang washer (33).
7. Shaft (27) from the housing (30).
 • Pry straight up.

8. Thin “C” retaining washer (53) from inside the pickup coil assembly.
9. Pickup coil connector from the module (14).
10. Pickup coil assembly (11) from the housing.
11. Wiring harness connectors from the module.
12. Two screws holding the module to the housing.
14. Bolt holding the wiring harness to the housing.
15. Wiring harness.

INSPECTION AND ELECTRICAL TESTS

Inspect
1. Cap for cracks or tiny holes. Replace the cap if it is damaged at all.
2. Metal terminals in the cap for corrosion. Scrape them clean with a knife or replace the cap.
Figure 63—Distributor Components (Separate Coil)

3. Rotor for wear or burning at the outer terminal. The presence of carbon on the terminal indicates rotor wear and the need for replacement.
4. Shaft for shaft-to-bushing looseness. Insert the shaft in the housing. If the shaft wobbles, replace the housing and/or shaft.
5. Housing for cracks or damage.

Measure

Tools Required:
J-24642-F Module Tester

1. Voltage of the Hall Effect switch (if equipped).
 - Connect a 12 volt battery and voltmeter as shown in figure 54.
 - With a knife blade inserted and held against the magnet, the voltmeter should read within 0.5 volts of the battery voltage. If not, replace the switch.
 - Remove the knife blade. The voltmeter should read less than 0.5 volts. If not, replace the switch.
2. Resistance of the pickup coil with an ohmmeter.
 - Connect an ohmmeter to either pickup coil lead and the housing as shown in figure 64, step 1. The reading should be infinite. If not, replace the coil.
 - Connect an ohmmeter to both pickup coil leads as shown in figure 64, step 2. Flex the leads by hand at the coil and the connector to locate any intermittent opens. The ohmmeter should read a constant unchanging value in the 500 to 1500 ohm range. If not, replace the coil.
3. Electrical performance of the module. The module can only be checked with an approved module tester, such as J-24642 or equivalent. Follow the directions exactly that come with the tester.
4. Resistance of the ignition coil with an ohmmeter.
 - Connect the ohmmeter as shown in figure 65, step 1. Use the high scale. The reading should be infinite. If not, replace the coil.
 - Connect the ohmmeter as shown in step 2. Use the low scale. The reading should be very low or zero. If not, replace the coil.
• Connect the ohmmeter as shown in step 3. Use the high scale. The meter should not read infinite. If it does, replace the coil.

ASSEMBLY OF DISTRIBUTORS WITH SEPARATE COILS

DISTRIBUTORS WITH SEALED MODULE CONNECTORS (Figure 40)

Install or Connect (Figure 60 and 61)

- Lubricate
 - Bottom of the module and the module rest pad in the housing with silicone grease or an equivalent heat transfer substance.

NOTICE: Be sure to thoroughly coat the bottom of the module. Failure to do so could result in heat damage to the module.

1. Module (14) to the housing (30) with two screws.
2. Pickup coil (11).
 - Fit the tab on the bottom of the coil into the anchor hole in the housing.
3. Pickup coil wiring connector to the module.
 - Make sure the locking tab is in place.
4. Shield (50) onto the coil.
5. Retainer (49) onto the shield.
6. Shaft assembly (26) into the housing (30).
7. Spring retainer (52), spring (51), washer and driven gear (29) onto the bottom of the shaft.
 - Align the marks on the driven gear, housing, and shaft assembly.
8. Roll pin (27) into the gear.
 - Spin the shaft and make sure the teeth on the shaft assembly do not touch the pole piece.
9. Rotor (10) onto the shaft.
 - Fit the tab in the rotor into the slot on the shaft.
10. Cap (23) to the housing with screws and washers.

DISTRIBUTORS WITHOUT SEALED CONNECTOR (Figure 63)

Install or Connect

- Lubricate
 - Bottom of the module and the module rest pad in the housing with silicone grease or an equivalent heat transfer substance.

NOTICE: Be sure to thoroughly coat the bottom of the module. Failure to do so could result in heat damage to the module.

1. Module (14) to the housing (30) with two screws.
2. Wiring harness into the housing.
3. Two harness mounting tabs to the housing with one bolt.
4. Two wiring connectors to the module.
 - Be sure the locking tabs are in place.
5. Pickup coil (11) to the housing.
 - Fit the tab on the bottom of the coil into the anchor hole in the housing.
6. Pickup coil wiring connector to the module.
7. Thin "C" washer into the coil.
8. Shaft (26) into the housing.
9. Tang washer (33), spring retainer (52), spring (51), and driven gear (29) onto the shaft.
 • Align the marks on the driven gear, housing, and shaft assembly.
10. Roll pin into the driven gear.
 • After assembly, turn the shaft by hand to check tooth clearance between the shaft and pickup coil assembly. If the clearance needs adjustment, loosen and retighten the three pickup coil bolts.
11. Wiring connector to the Hall Effect switch (if equipped).
12. Hall Effect switch to the housing with two bolts.
 • The teeth on the shaft should rotate between the back plate and the magnet of the switch without touching.
13. Rotor (10) onto the shaft.
 • Fit the tab in the rotor into the slot on the shaft.
14. Cap (23) onto the housing.
 • Fit the tab inside the rim of the cap into the slot on the rim of the housing.
15. Spring clips on the cap onto the rim of the housing.

SPECIFICATIONS

GENERATOR SPECIFICATIONS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Series</th>
<th>Rotation Viewing</th>
<th>Field-Oohms 27°C (80°F)</th>
<th>Field Current @ 12 Volts 27°C (80°F) AMPS</th>
<th>Cold Output AMPS</th>
<th>Hot Output AMPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100207</td>
<td>12 SI</td>
<td>CW</td>
<td>2.4-2.7</td>
<td>4.5-5.0</td>
<td>23</td>
<td>66</td>
</tr>
<tr>
<td>1101205</td>
<td>17 SI</td>
<td>CW</td>
<td>2.6-3.0</td>
<td>1.7-2.1</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>1101240</td>
<td>12 SI</td>
<td>CW</td>
<td>2.4-2.8</td>
<td>4.2-5.0</td>
<td>30</td>
<td>94</td>
</tr>
<tr>
<td>1101241</td>
<td>12 SI</td>
<td>CW</td>
<td>2.4-2.8</td>
<td>4.2-5.0</td>
<td>30</td>
<td>94</td>
</tr>
<tr>
<td>1101242</td>
<td>12 SI</td>
<td>CW</td>
<td>2.4-2.8</td>
<td>4.5-5.0</td>
<td>23</td>
<td>66</td>
</tr>
<tr>
<td>1101243</td>
<td>12 SI</td>
<td>CW</td>
<td>2.4-2.8</td>
<td>4.2-5.0</td>
<td>23</td>
<td>66</td>
</tr>
<tr>
<td>1101244</td>
<td>12 SI</td>
<td>CW</td>
<td>2.4-2.8</td>
<td>4.0-5.0</td>
<td>23</td>
<td>66</td>
</tr>
<tr>
<td>1101245</td>
<td>12 SI</td>
<td>CW</td>
<td>2.4-2.8</td>
<td>4.2-5.0</td>
<td>30</td>
<td>94</td>
</tr>
<tr>
<td>1105628</td>
<td>12 SI</td>
<td>CW</td>
<td>2.4-2.7</td>
<td>4.5-5.0</td>
<td>30</td>
<td>81</td>
</tr>
<tr>
<td>1105632</td>
<td>12 SI</td>
<td>CW</td>
<td>2.4-2.7</td>
<td>4.5-5.0</td>
<td>23</td>
<td>70</td>
</tr>
</tbody>
</table>

STARTER SPECIFICATIONS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Series</th>
<th>Type</th>
<th>AMPS</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1113589</td>
<td>27MT</td>
<td>136</td>
<td>120</td>
<td>120</td>
<td>210</td>
</tr>
<tr>
<td>1113590</td>
<td>27MT</td>
<td>136</td>
<td>120</td>
<td>120</td>
<td>210</td>
</tr>
<tr>
<td>1998559</td>
<td>10MT</td>
<td>101</td>
<td>60</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>1998560</td>
<td>10MT</td>
<td>101</td>
<td>70</td>
<td>70</td>
<td>110</td>
</tr>
<tr>
<td>1998561</td>
<td>10MT</td>
<td>101</td>
<td>70</td>
<td>70</td>
<td>110</td>
</tr>
<tr>
<td>1998562</td>
<td>10MT</td>
<td>101</td>
<td>70</td>
<td>70</td>
<td>110</td>
</tr>
<tr>
<td>1998565</td>
<td>10MT</td>
<td>101</td>
<td>70</td>
<td>70</td>
<td>110</td>
</tr>
<tr>
<td>1998574</td>
<td>10MT</td>
<td>101</td>
<td>70</td>
<td>70</td>
<td>110</td>
</tr>
<tr>
<td>1998530</td>
<td>5MT</td>
<td>101</td>
<td>50</td>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>1998524</td>
<td>5MT</td>
<td>101</td>
<td>50</td>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>1998532</td>
<td>5MT</td>
<td>101</td>
<td>50</td>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>1998583</td>
<td>10MT</td>
<td>101</td>
<td>70</td>
<td>70</td>
<td>110</td>
</tr>
<tr>
<td>1998584</td>
<td>10MT</td>
<td>101</td>
<td>70</td>
<td>70</td>
<td>110</td>
</tr>
<tr>
<td>1998588</td>
<td>10MT</td>
<td>101</td>
<td>70</td>
<td>70</td>
<td>110</td>
</tr>
<tr>
<td>1998589</td>
<td>10MT</td>
<td>101</td>
<td>70</td>
<td>70</td>
<td>110</td>
</tr>
</tbody>
</table>

ENGINE ELECTRICAL 6D-33
SPECIFICATIONS (CONT.)

SOLENOID SWITCHES

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Volts</th>
<th>Pull-In Winding</th>
<th>Hold-In Winding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Volts</td>
<td>Amps</td>
</tr>
<tr>
<td>1114247</td>
<td>12</td>
<td>13-16</td>
<td>5</td>
</tr>
<tr>
<td>1114520</td>
<td>12</td>
<td>23-30</td>
<td>5</td>
</tr>
<tr>
<td>1114522</td>
<td>12</td>
<td>23-30</td>
<td>5</td>
</tr>
<tr>
<td>1114530</td>
<td>12</td>
<td>23-30</td>
<td>5</td>
</tr>
<tr>
<td>1114558</td>
<td>12</td>
<td>13-16</td>
<td>5</td>
</tr>
<tr>
<td>1114563</td>
<td>12</td>
<td>26-30</td>
<td>5</td>
</tr>
</tbody>
</table>

DISTRIBUTOR SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Start Distributor RPM</th>
<th>Degree</th>
<th>Intermediate Distributor RPM</th>
<th>Degree</th>
<th>Maximum Distributor RPM</th>
<th>Degree</th>
<th>Vacuum Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1103606</td>
<td>600</td>
<td>0-3</td>
<td>850</td>
<td>4-6</td>
<td>1900</td>
<td>9-11</td>
<td>1973626</td>
</tr>
<tr>
<td>1103717</td>
<td>650</td>
<td>0-3</td>
<td>1200</td>
<td>6-6</td>
<td>2050</td>
<td>11-13</td>
<td>1973682</td>
</tr>
</tbody>
</table>

VACUUM ADVANCE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>Vacuum Model</th>
<th>Inches</th>
<th>-kPa</th>
<th>Inches</th>
<th>-kPa</th>
<th>Max. Dist. (Deg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hg.</td>
<td></td>
<td>Hg.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1973626</td>
<td></td>
<td>3-6</td>
<td>10-21</td>
<td>7-9</td>
<td>23-31</td>
<td>5</td>
</tr>
<tr>
<td>1973682</td>
<td></td>
<td>7-9</td>
<td>24-32</td>
<td>13-14</td>
<td>42-46</td>
<td>5</td>
</tr>
</tbody>
</table>

LUBRICATION

For generator bearing lubrication, use only Delco-Remy Lubricant No. 1948791 or equivalent. This lubricant is a premium type lithium soap-mineral oil grease made especially for ball and roller bearings.

For starter and distributor part lubrication, use Delco-Remy Gear and Shift Lubricant No. 1960954 or equivalent.

SPECIAL TOOLS

1. Module Tester

J-24642-F
SECTION 7A

AUTOMATIC TRANSMISSION

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>700-R4 Automatic Transmission</td>
<td>700-R4-1</td>
</tr>
<tr>
<td>400/475 Automatic Transmission</td>
<td>400-1</td>
</tr>
<tr>
<td>180C Automatic Transmission</td>
<td>180C-1</td>
</tr>
</tbody>
</table>

The information on the 400 automatic transmission also applies to the 475 automatic transmission.

The automatic transmissions in this section are GM Hydromatics.

All automatic transmissions have a metal identification nameplate attached to the case exterior. For additional information refer to AUTOMATIC TRANSMISSION (SEC. 7A) in the 1987 Light Duty Truck Service Manual.

700-R4

AUTOMATIC TRANSMISSION

MD8

CONTENTS

TRANSMISSION DISASSEMBLY

- General Service Information ... 700-R4-4
- DISASSEMBLY
 - 2-4 Servo Assembly .. 700-R4-4
 - Servo Pin Length .. 700-R4-4
 - Governor And Extension ... 700-R4-4
 - Valve Body And Wiring Harness 700-R4-5
 - Transmission End Play Check 700-R4-6
 - Oil Pump Assembly ... 700-R4-7
 - 2-4 Band, Reverse Input Clutch, Input And Input Gear Set 700-R4-8
 - Reaction Gear Set .. 700-R4-12
 - Lo And Reverse Clutch Parts 700-R4-12

COMPONENT REPAIR AND TRANSMISSION ASSEMBLY

- Inner Manual Linkage ... 700-R4-12
- Manual Shaft Seal Replacement 700-R4-12
- Case .. 700-R4-13
- Third Accumulator Retainer And Check Ball Assembly 700-R4-14
- Case Assembly .. 700-R4-17
- Lo And Reverse Clutch Assembly 700-R4-17
- Parking Pawl ... 700-R4-17
- Reaction Internal Gear And Carrier Assembly 700-R4-18
- Reaction Internal Gear And Support 700-R4-18
- Lo And Reverse Support Assembly 700-R4-20
- Reaction Sun Gear And Shell .. 700-R4-20
- Input Internal Gear And Output Shaft 700-R4-21

- Input Carrier And Sun Gear .. 700-R4-22
- Input Clutch Assembly .. 700-R4-23
- Check Valve Retainer and Ball Assembly Replacement Procedures .. 700-R4-26
- Forward Clutch Sprag Assembly 700-R4-30
- 3-4 Clutch Piston Travel Check 700-R4-32
- Clutch Air Check .. 700-R4-33
- Reverse Input Clutch Assembly .. 700-R4-33
- Reverse Input And Input Clutches 700-R4-34
- 2-4 Band Assembly .. 700-R4-35
- Oil Pump Assembly .. 700-R4-35
- Pump Body .. 700-R4-35
- Oil Pump Cover .. 700-R4-35
- Oil Pump Body And Cover .. 700-R4-39
- Transmission End Play Check ... 700-R4-40
- Valve Body And Associated Parts 700-R4-42
- Control Valve Assembly .. 700-R4-44
- 2-4 Servo Assembly .. 700-R4-50
- Governor Assembly .. 700-R4-52
- Speedometer ... 700-R4-53
- ITSS ... 700-R4-54
- Torque Converter Assembly ... 700-R4-55

SEALS AND BEARING LOCATIONS

TORQUE SPECIFICATIONS AND BUSHING LOCATIONS

BUSHING REPLACEMENT PROCEDURE

GOVERNOR BORE REPAIR PROCEDURE

SPECIAL TOOLS

All information is subject to change without notice. Consult the latest service manual for specific details.
<table>
<thead>
<tr>
<th>ILL. NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CONVERTER ASSEMBLY</td>
</tr>
<tr>
<td>2</td>
<td>SEAL ASSEMBLY, OIL</td>
</tr>
<tr>
<td>3</td>
<td>BUSHING, OIL PUMP BODY</td>
</tr>
<tr>
<td>4</td>
<td>BUSHING, STATOR SHAFT (FRONT)</td>
</tr>
<tr>
<td>5</td>
<td>BOLT, PUMP TO CASE</td>
</tr>
<tr>
<td>6</td>
<td>WASHER, PUMP TO CASE BOLT</td>
</tr>
<tr>
<td>7</td>
<td>PUMP ASSEMBLY, OIL</td>
</tr>
<tr>
<td>8</td>
<td>SEAL, OIL (PUMP TO CASE)</td>
</tr>
<tr>
<td>9</td>
<td>GASKET, PUMP COVER TO CASE</td>
</tr>
<tr>
<td>10</td>
<td>CASE, TRANSMISSION</td>
</tr>
<tr>
<td>11</td>
<td>VENT ASSEMBLY, TRANSMISSION</td>
</tr>
<tr>
<td>12</td>
<td>CONNECTOR, OIL COOLER PIPE</td>
</tr>
<tr>
<td>13</td>
<td>RING, SERVO COVER RETAINING</td>
</tr>
<tr>
<td>14</td>
<td>SEAL, "O" RING (2-4 SERVO COVER)</td>
</tr>
<tr>
<td>15</td>
<td>COVER, 2-4 SERVO</td>
</tr>
<tr>
<td>16</td>
<td>PISTON, 4TH APPLY</td>
</tr>
<tr>
<td>17</td>
<td>RING, OIL SEAL (4TH APPLY PISTON) (OUTER)</td>
</tr>
<tr>
<td>18</td>
<td>RING, RETAINER (APPLY PIN)</td>
</tr>
<tr>
<td>19</td>
<td>WASHER, SERVO APPLY PIN</td>
</tr>
<tr>
<td>20</td>
<td>SPRING, SERVO APPLY PIN</td>
</tr>
<tr>
<td>21</td>
<td>SEAL, "O" RING</td>
</tr>
<tr>
<td>22</td>
<td>HOUSING, SERVO PISTON INNER</td>
</tr>
<tr>
<td>23</td>
<td>RING, OIL SEAL (2ND APPLY PISTON) (INNER)</td>
</tr>
<tr>
<td>24</td>
<td>RING, OIL SEAL (2ND APPLY PISTON) (OUTER)</td>
</tr>
<tr>
<td>25</td>
<td>PISTON, 2ND APPLY</td>
</tr>
<tr>
<td>26</td>
<td>SPRING, SERVO CUSHION</td>
</tr>
<tr>
<td>27</td>
<td>RETAINER, SERVO CUSHION SPRING</td>
</tr>
<tr>
<td>28</td>
<td>RING, RETAINER (2ND APPLY PISTON)</td>
</tr>
<tr>
<td>29</td>
<td>PIN, 2ND APPLY PISTON</td>
</tr>
<tr>
<td>30</td>
<td>SEAL, 2ND APPLY PISTON PIN</td>
</tr>
<tr>
<td>31</td>
<td>SPRING, SERVO RETURN</td>
</tr>
<tr>
<td>32</td>
<td>PLUG, PRESSURE</td>
</tr>
<tr>
<td>33</td>
<td>CONNECTOR, ELECTRICAL</td>
</tr>
<tr>
<td>34</td>
<td>SEAL, "O" RING (ELECTRICAL CONNECTION)</td>
</tr>
<tr>
<td>35</td>
<td>SEAL, CASE EXTENSION TO CASE</td>
</tr>
<tr>
<td>36</td>
<td>EXTENSION, CASE</td>
</tr>
<tr>
<td>37</td>
<td>BOLT, CASE EXTENSION TO CASE</td>
</tr>
<tr>
<td>38</td>
<td>BUSHING, CASE EXTENSION</td>
</tr>
<tr>
<td>39</td>
<td>SEAL ASSEMBLY, CASE EXTENSION OIL</td>
</tr>
<tr>
<td>40</td>
<td>RETAINER, SPEEDO DRIVEN GEAR FITTING</td>
</tr>
<tr>
<td>41</td>
<td>BOLT & WASHER ASSEMBLY</td>
</tr>
<tr>
<td>42</td>
<td>SEAL, "O" RING (SPEEDO FITTING TO CASE EXTENSION)</td>
</tr>
<tr>
<td>43</td>
<td>FITTING ASSEMBLY, SPEEDO DRIVEN GEAR</td>
</tr>
<tr>
<td>44</td>
<td>GEAR, SPEEDO DRIVEN</td>
</tr>
<tr>
<td>45</td>
<td>GOVERNOR ASSEMBLY</td>
</tr>
<tr>
<td>46</td>
<td>COVER, GOVERNOR</td>
</tr>
<tr>
<td>47</td>
<td>SCREEN, TRANSMISSION OIL PRESSURE (CONVERTER & GOVERNOR)</td>
</tr>
<tr>
<td>48</td>
<td>PIN, BAND ANCHOR</td>
</tr>
<tr>
<td>49</td>
<td>SEAL, "O" RING (SOLENOID)</td>
</tr>
<tr>
<td>50</td>
<td>SOLENOID ASSEMBLY</td>
</tr>
<tr>
<td>51</td>
<td>BOLT, HEX WASHER HEAD (SOLENOID)</td>
</tr>
<tr>
<td>52</td>
<td>PISTON, 3-4 ACCUMULATOR</td>
</tr>
<tr>
<td>53</td>
<td>RING, OIL SEAL (3-4 ACCUMULATOR PISTON)</td>
</tr>
<tr>
<td>54</td>
<td>SPRING, 3-4 ACCUMULATOR</td>
</tr>
<tr>
<td>55</td>
<td>BALL, .25 DIAMETER</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ILL. NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>PLATE, VALVE BODY SPACER</td>
</tr>
<tr>
<td>59</td>
<td>SPRING, 1-2 ACCUMULATOR</td>
</tr>
<tr>
<td>60</td>
<td>RING, OIL SEAL (1-2 ACCUMULATOR PISTON)</td>
</tr>
<tr>
<td>61</td>
<td>PISTON, 1-2 ACCUMULATOR</td>
</tr>
<tr>
<td>62</td>
<td>COVER & PIN ASSEMBLY, 1-2 ACCUM.</td>
</tr>
<tr>
<td>63</td>
<td>BOLT, ACCUMULATOR COVER</td>
</tr>
<tr>
<td>64</td>
<td>LINK, THROTTLE LEVER TO CABLE</td>
</tr>
<tr>
<td>65</td>
<td>LEVER & BRACKET ASSEMBLY, THROTTLE</td>
</tr>
<tr>
<td>66</td>
<td>CLIP, ELECTRICAL WIRE</td>
</tr>
<tr>
<td>67</td>
<td>VALVE ASSEMBLY, CONTROL BODY</td>
</tr>
<tr>
<td>69</td>
<td>BOLT, VALVE BODY</td>
</tr>
<tr>
<td>70</td>
<td>SEAL, "O" RING FILTER</td>
</tr>
<tr>
<td>71</td>
<td>FILTER ASSEMBLY, TRANSMISSION OIL</td>
</tr>
<tr>
<td>72</td>
<td>GASKET, TRANSMISSION OIL PAN</td>
</tr>
<tr>
<td>73</td>
<td>PAN, TRANSMISSION OIL</td>
</tr>
<tr>
<td>74</td>
<td>SCREW, SPEC. HEX WASHER HEAD (PAN)</td>
</tr>
<tr>
<td>75</td>
<td>BOLT, MANUAL DETENT SPRING</td>
</tr>
<tr>
<td>76</td>
<td>BUSHING, CASE</td>
</tr>
<tr>
<td>77</td>
<td>PIN, ACCUMULATOR PISTON</td>
</tr>
<tr>
<td>80</td>
<td>RETAINER & BALL ASSEMBLY, 3RD ACCUMULATOR</td>
</tr>
<tr>
<td>81</td>
<td>PLUG, TRANSMISSION CASE (ACCUMULATOR BLEED)</td>
</tr>
<tr>
<td>82</td>
<td>PIN, GOVERNOR GEAR RETAINER</td>
</tr>
<tr>
<td>83</td>
<td>GEAR, GOVERNOR DRIVEN</td>
</tr>
<tr>
<td>84</td>
<td>PIN, GOVERNOR WEIGHT</td>
</tr>
<tr>
<td>85</td>
<td>CAP, GOVERNOR THRUST</td>
</tr>
<tr>
<td>86</td>
<td>PLUG, CASE SERVO</td>
</tr>
<tr>
<td>87</td>
<td>CLIP, FILTER RETAINER</td>
</tr>
<tr>
<td>88</td>
<td>GASKET, SPACER PLATE TO CASE</td>
</tr>
<tr>
<td>89</td>
<td>GASKET, SPACER PLATE TO VALVE BODY</td>
</tr>
<tr>
<td>90</td>
<td>BUSHING, STATOR SHAFT (REAR)</td>
</tr>
<tr>
<td>91</td>
<td>BALL, CARBON STEEL (T.V. EXHAUST)</td>
</tr>
<tr>
<td>92</td>
<td>CONDUIT, SOLENOID WIRE</td>
</tr>
<tr>
<td>93</td>
<td>MAGNET, CHIP COLLECTOR</td>
</tr>
<tr>
<td>96</td>
<td>TUBE, AUXILIARY ACCUMULATOR VALVE</td>
</tr>
<tr>
<td>97</td>
<td>CLAMP, TUBE</td>
</tr>
<tr>
<td>99</td>
<td>SPEED SENSOR, INTERNAL TRANSMISSION</td>
</tr>
<tr>
<td>100</td>
<td>BOLT, SPEEDO SENSOR RETAINING</td>
</tr>
<tr>
<td>374</td>
<td>BOLT, SPECIAL HEX HEAD (M6 X 1 X 16)</td>
</tr>
<tr>
<td>375</td>
<td>BOLT, HEX HEAD (M6 X 1 X 35)</td>
</tr>
<tr>
<td>376</td>
<td>BOLT, HEX HEAD (M6 X 1 X 45)</td>
</tr>
<tr>
<td>377</td>
<td>AUXILIARY ACCUMULATOR VALVE BODY ASSEMBLY</td>
</tr>
<tr>
<td>709</td>
<td>SPRING ASSEMBLY, MANUAL DETENT</td>
</tr>
</tbody>
</table>
TRANSMISSION DISASSEMBLY

General Service Information

- **Teflon Oil Seal Rings**
 If any seal rings are damaged, cut, or do not rotate freely in their groove be certain to check the ring groove for debris, burrs, or damage.
- **Thrust Washer Surfaces**
 The thrust washer and thrust bearing surfaces may appear to be polished. This is a normal condition and should not be considered damage.

Clean
- Thoroughly clean the exterior of the transmission.

Remove or Disconnect
- Torque Converter (1)

Install or Connect (Figure 42)

Tools Required:
- J-8763-02 Holding Fixture and Base
 1. J-8763-02 onto the transmission case.
 2. Holding fixture into the base.

Remove or Disconnect
- Drain the transmission fluid.

2-4 Servo Assembly

Remove or Disconnect (Figures 41, 41L, and 43)

Tools Required:
- J-29714 Servo Cover Compressor
 1. Install J-29714.
 2. Servo cover retaining ring (13)
 3. Servo cover and “O” ring seal (14 and 15)
 4. 2-4 servo assembly (16-31)

Servo Pin Length

As a diagnostic aid, the servo pin length should now be checked. If the pin length is too short or too long be certain to inspect the

2-4 band and reverse input drum for damage or wear when disassembled.

Remove or Disconnect (Figures 43, 44, 45, 46)

Tools Required:
- J-22269-01 Piston Compressor
 1. 4th apply piston (16)
 2. Servo return spring (31)
 3. Servo pin retainer ring (18), washer (19), and apply pin spring (20)
 4. 2nd apply piston pin (29).
 5. Install J-22269-01.
 6. Retainer ring (28)
 7. Cushion spring retainer (27) and cushion spring (26)

Measure (Figure 47)

Tools Required:
- J-33037 Band Apply Pin Tool
 1. Install J-33037 as shown with apply pin (29).
 2. Apply 11 N·m (100 in. lbs.) torque.
 3. If white line “A” appears in gage slot “B” pin length is correct.
 4. Use pin selection chart to determine correct pin length.

Governor and Extension

Remove or Disconnect (Figure 48)

1. Governor cover (46)
 - tap around the cover flange with a punch to remove
 - DO NOT DAMAGE THE GOVERNOR COVER
2. Governor assembly (45)
 Mechanical Speedometer:
 3. Bolt and washer assembly (41) and retainer (40)
 4. Speedometer driven gear assembly (43), speedo driven gear (44) and o-ring seal (42)

Internal Transmission Speed Sensor (I.T.S.S.)
3. Bolt and washer assembly (41)
4. Speed Sensor assembly (99) and o-ring seal (42)
5. Case extension bolts (37) and case extension (36)
6. Extension seal ring (35)
7. Output shaft sleeve (690) and output shaft o-ring seal (691)
 - Not all models use an output shaft sleeve and seal

Remove or Disconnect (Figure 48)

Models with Mechanical Speedometer
1. Speedometer drive gear (689) and clip (688)
 - push tab of retaining clip and tap speedometer gear off the output shaft.
 - use care not to damage the speedo gear

Valve Body and Wiring Harness

Remove or Disconnect (Figures 49, 50)
1. Bolts (74), oil pan (73), and gasket (72).
2. Oil filter (71) and o-ring seal (70).
 - o-ring ring seal may be stuck in the case
3. Outside electrical connector (33) and o-ring seal (34).
4. Electrical connections from switches.
 - refer to wiring diagrams in the Hydraulic Diagnosis Section for specific model applications
5. Solenoid bolts (51) and solenoid assembly (50) with o-ring seal (49) and wiring harness.
6. Accumulator cover bolts (63) and 1-2 accumulator cover and pin assembly (62).
7. 1-2 accumulator piston (61) and seal (60).
8. Spring (59).

Remove or Disconnect (Figures 51, 52, 53)
1. Bolt (75) and manual detent spring assembly (709).
2. Electrical wire clips (66) and tube clamps (97).
3. Auxiliary valve tube (96).
4. Wiring harness retaining washer (A) and the filter retainer clips (87).
5. Bolts (69) and T.V. lever and bracket assembly (65)
6. T.V. link (64)

Remove or Disconnect (Figures 51, 53 and 53A)
1. Remaining valve body bolts (69)
2. Manual valve link (705)
3. Control valve assembly (67)
4. Bolts (374-376), auxiliary valve body (377), and check ball (55)
13 RING, SERVO COVER RETAINING
14 SEAL, "O" RING (2-4, SERVO COVER)
15 COVER, 2-4 SERVO
16 PISTON, 4TH APPLY
17 RING, OIL SEAL OUTER (4TH APPLY PISTON)
18 RING, RETAINER (APPLY PIN)
19 WASHER, SERVO APPLY PIN
20 SPRING, SERVO APPLY PIN
21 SEAL, "O" RING
22 HOUSING, SERVO PISTON INNER
23 RING, OIL SEAL INNER (2ND APPLY PISTON)
24 RING, OIL SEAL OUTER (2ND APPLY PISTON)
25 PISTON, 2ND APPLY
26 SPRING, SERVO CUSHION
27 RETAINER, SERVO CUSHION SPRING
28 RING, RETAINER (2ND APPLY PISTON)
29 PIN, 2ND APPLY PISTON
30 SEAL, 2ND APPLY PISTON PIN
31 SPRING, SERVO RETURN

25 SECOND APPLY PISTON ASM.

PIN IS PRESET AT FACTORY AND MUST NOT BE READJUSTED

<table>
<thead>
<tr>
<th>2 4 SERVO PIN SELECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIN LENGTH</td>
</tr>
<tr>
<td>mm</td>
</tr>
<tr>
<td>66.37-66.67</td>
</tr>
<tr>
<td>67.74-68.04</td>
</tr>
<tr>
<td>69.11-69.41</td>
</tr>
</tbody>
</table>

5. Spacer plate (56) and spacer plate gaskets (88 and 89)
6. Check balls (55 and 91) spring (54), piston (52), seal (53) and pin
 Three are located under the valve body and five are located in the case. The large copper flash colored ball is #10 check ball (91)

Transmission End Play Check

As a diagnostic aid transmission end play should be checked prior to removing the internal parts. If the end play is not within specifications you should watch for possible worn or misassembled parts during disassembly.
Figure 48 Extension and Associated Parts

Tighten (Figures 56 and 57)

TOOLS REQUIRED:
- J-24773-A Oil Pump Remover
- J-25022-A End Play Adaptor (245 mm)
- J-34725 End Play Adaptor (298 mm)
- J-25025-7A Post Dial Indicator

1. Remove an oil pump bolt (5) and install a 278 mm (11 in.) bolt and locknut or J-25025-7A.
2. Install J-25022-A or J-34725 as shown.
3. Install J-24773-A as shown.
4. Install dial indicator.
 - set to zero
 - pull up on J-24773-A
 - end play should be 0.13/0.92 mm (.005/.036 in.).

Oil Pump Assembly

Remove or Disconnect (Figures 59 and 60)

TOOLS REQUIRED:
- J-24773-A Oil Pump Remover

ILL.

NO. DESCRIPTION

10 CASE, TRANSMISSION
33 CONNECTOR, ELECTRICAL
34 SEAL, "O" RING (ELECTRICAL CONNECTION)
49 SEAL, "O" RING (SOLENOID)
50 SOLENOID ASSEMBLY
51 BOLT, HEX WASHER HEAD (SOLENOID)
56 PLATE, VALVE BODY SPACER
67 ALVE ASSEMBLY, CONTROL BODY
70 SEAL, "O" RING FILTER
71 FILTER ASSEMBLY, TRANSMISSION OIL
72 GASKET, TRANSMISSION OIL PAN
73 PAN, TRANSMISSION OIL
74 SCREW, SPEC. HEX WASHER HEAD (PAN)
87 CLIP, FILTER RETAINER
88 GASKET, SPACER PLATE TO CASE
89 GASKET, SPACER PLATE TO VALVE BODY
93 MAGNET, CHIP COLLECTOR
96 TUBE, AUXILIARY ACCUMULATOR VALVE
377 AUXILIARY ACCUM. VALVE BODY ASM.
52 PISTON, 3-4 ACCUMULATOR
53 RING, OIL SEAL (3-4 ACCUMULATOR PISTON)
54 SPRING, 3-4 ACCUMULATOR
56 PLATE, VALVE BODY SPACER
59 SPRING, 1-2 ACCUMULATOR
60 RING, OIL SEAL (1-2 ACCUMULATOR PISTON)
61 PISTON, 1-2 ACCUMULATOR
62 COVER & PIN ASSEMBLY, 1-2 ACCUMULATOR
63 BOLTS, ACCUMULATOR COVER
77 PIN, ACCUMULATOR PISTON
88 GASKET, SPACER PLATE TO CASE
89 GASKET, SPACER PLATE TO VALVE BODY

Figure 50 Accumulator Assembly

A WASHER WIRE RETAINER
50 SOLENOID ASSEMBLY
51 BOLT, HEX WASHER HEAD (SOLENOID)
63 BOLT, ACCUMULATOR COVER
66 CLIP, ELECTRICAL WIRE
69 BOLT, VALVE BODY
75 BOLT, MANUAL DETENT SPRING
87 CLIP, FILTER RETAINER
92 CONDUIT, SOLENOID WIRE
374 BOLT, SPEC. HEX WASHER HEAD
(M6 X 1 X 16)
375 BOLT, HEX HEAD (M6 X 1 X 35)
376 BOLT, HEX HEAD (M6 X 1 X 45)

Figure 51 Valve Body Bolt Locations

64 LINK, THROTTLE LEVER TO CABLE
65 LEVER & BRACKET ASSEMBLY, THROTTLE
69 BOLTS, CONTROL VALVE ASSEMBLY

Figure 52 T.V. Lever and Bracket

1. "O" ring seal (618)
2. All oil pump bolts (5) and washers (6)
3. Oil pump assembly (7) with J-24773-A
4. Oil pump to case seal (8) and gasket (9)
5. Reverse input clutch to oil pump thrust washer (601)

2-4 Band Reverse Input Clutch, Input Clutch and Input Gear Set
1. Reverse input clutch (605) and input clutch (62) together
 - (grasp the turbine shaft and lift)
2. Band assembly pin (48)
3. The 2-4 band assembly (602)
4. Input sun gear (658)

Install or Connect (Figure 61)

TOOLS REQUIRED:
J-29837 Output Shaft Support Fixture
Figure 53A Removing Auxiliary Valve Body Assembly

Figure 55 Case Checkballs and Filters

Figure 54 Valve Body Checkballs

Figure 56 End Play Tool

- J-29837 as shown

Important
- Output shaft (687) may fall free when input carrier retaining ring (661) is removed if J-29837 is not used.

Remove or Disconnect (Figures 58, 58L and 62)

TOOLS REQUIRED:
J-34627 Snap Ring Pliers
Figure 58 Transmission Internal Parts
<table>
<thead>
<tr>
<th>ILL. NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>601</td>
<td>WASHER, THRUST (PUMP TO DRUM)</td>
</tr>
<tr>
<td>602</td>
<td>BAND ASSEMBLY, 2-4</td>
</tr>
<tr>
<td>603</td>
<td>BUSHING, REVERSE INPUT CL. (FRONT)</td>
</tr>
<tr>
<td>604</td>
<td>RETAINER & BALL ASM., CHECK VALVE</td>
</tr>
<tr>
<td>605</td>
<td>HOUSING & DRUM ASSEMBLY, REVERSE INPUT CLUTCH</td>
</tr>
<tr>
<td>606</td>
<td>BUSHING, REVERSE INPUT CLUTCH (REAR)</td>
</tr>
<tr>
<td>607</td>
<td>PISTON ASM., REVERSE INPUT CLUTCH</td>
</tr>
<tr>
<td>608</td>
<td>SEALS, REVERSE INPUT CLUTCH (INNER & OUTER)</td>
</tr>
<tr>
<td>609</td>
<td>SPRING ASM., REVERSE INPUT CLUTCH</td>
</tr>
<tr>
<td>610</td>
<td>RING, REVERSE INPUT CLUTCH SPRING RETAINER</td>
</tr>
<tr>
<td>611</td>
<td>PLATE, REVERSE INPUT CLUTCH (WAVED)</td>
</tr>
<tr>
<td>612</td>
<td>PLATE ASM., REVERSE INPUT CLUTCH</td>
</tr>
<tr>
<td>613</td>
<td>PLATE, REVERSE INPUT CLUTCH BACKING</td>
</tr>
<tr>
<td>614</td>
<td>RING, REVERSE INPUT CL. RETAINING</td>
</tr>
<tr>
<td>615</td>
<td>BEARING ASSEMBLY, STATOR SHAFT/SELECTIVE WASHER</td>
</tr>
<tr>
<td>616</td>
<td>WASHER, THRUST (SELECTIVE)</td>
</tr>
<tr>
<td>617</td>
<td>RETAINER & BALL ASM., CHECK VALVE</td>
</tr>
<tr>
<td>618</td>
<td>SEAL, "O" RING (TURBINE SHAFT/SELECTIVE WASHER)</td>
</tr>
<tr>
<td>619</td>
<td>RING, OIL SEAL (SOLID)</td>
</tr>
<tr>
<td>620</td>
<td>RETAINER & CHECK BALL ASSEMBLY</td>
</tr>
<tr>
<td>621</td>
<td>HOUSING & SHAFT ASSEMBLY, INPUT</td>
</tr>
<tr>
<td>622</td>
<td>SEAL, "O" RING INPUT TO FORWARD HSG.</td>
</tr>
<tr>
<td>623</td>
<td>PISTON, 3RD & 4TH CLUTCH</td>
</tr>
<tr>
<td>624</td>
<td>SEAL, 3RD & 4TH CL. (INNER & OUTER)</td>
</tr>
<tr>
<td>625</td>
<td>RING, 3RD & 4TH CLUTCH APPLY</td>
</tr>
<tr>
<td>626</td>
<td>SPRING ASSEMBLY, 3RD & 4TH CLUTCH</td>
</tr>
<tr>
<td>627</td>
<td>RETAINER & BALL ASSEMBLY, FORWARD CLUTCH HOUSING</td>
</tr>
<tr>
<td>628</td>
<td>HOUSING, FORWARD CLUTCH</td>
</tr>
<tr>
<td>629</td>
<td>SEAL, FORWARD CLUTCH (INNER & OUTER)</td>
</tr>
<tr>
<td>630</td>
<td>PISTON, FORWARD CLUTCH</td>
</tr>
<tr>
<td>631</td>
<td>SEAL, OVERRUN CLUTCH (INNER & OUTER)</td>
</tr>
<tr>
<td>632</td>
<td>PISTON, OVERRUN CLUTCH</td>
</tr>
<tr>
<td>633</td>
<td>BALL, OVERRUN CLUTCH</td>
</tr>
<tr>
<td>634</td>
<td>SPRING ASSEMBLY, OVERRUN CLUTCH</td>
</tr>
<tr>
<td>635</td>
<td>SNAP RING, OVERRUN CLUTCH SPRING RETAINER</td>
</tr>
<tr>
<td>636</td>
<td>SEAL, INPUT HOUSING TO OUTPUT SHAFT</td>
</tr>
<tr>
<td>637</td>
<td>BEARING ASSEMBLY, INPUT SUN GEAR</td>
</tr>
<tr>
<td>638</td>
<td>SNAP RING, OVERRUN CL. HUB RETAINING</td>
</tr>
<tr>
<td>639</td>
<td>HUB, OVERRUN CLUTCH</td>
</tr>
<tr>
<td>641</td>
<td>RETAINER & RACE ASSEMBLY, SPRAG</td>
</tr>
<tr>
<td>642</td>
<td>FORWARD SPRAG ASSEMBLY</td>
</tr>
<tr>
<td>643</td>
<td>RETAINER RINGS, SPRAG ASSEMBLY</td>
</tr>
<tr>
<td>644</td>
<td>RACE, FORWARD CLUTCH (OUTER)</td>
</tr>
<tr>
<td>645</td>
<td>PLATE ASSEMBLY, OVERRUN CLUTCH</td>
</tr>
<tr>
<td>646</td>
<td>PLATE, FORWARD CLUTCH APPLY</td>
</tr>
<tr>
<td>648</td>
<td>PLATE, FORWARD CLUTCH (WAVED)</td>
</tr>
<tr>
<td>649</td>
<td>PLATE ASSEMBLY, FORWARD CLUTCH</td>
</tr>
<tr>
<td>650</td>
<td>PLATE, FORWARD CLUTCH BACKING (SEL.)</td>
</tr>
<tr>
<td>651</td>
<td>RING, FORWARD CLUTCH BACKING PLATE RETAINER</td>
</tr>
<tr>
<td>652</td>
<td>PLATE, 3RD & 4TH CLUTCH RING RETAINER</td>
</tr>
<tr>
<td>653</td>
<td>PLATE, 3RD & 4TH CLUTCH APPLY</td>
</tr>
<tr>
<td>654</td>
<td>PLATE ASSEMBLY, 3RD & 4TH CLUTCH</td>
</tr>
<tr>
<td>655</td>
<td>PLATE, 3RD & 4TH CLUTCH BACKING (SEL.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ILL. NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>656</td>
<td>RING, 3RD & 4TH CLUTCH BACKING PLATE RETAINER</td>
</tr>
<tr>
<td>657</td>
<td>BUSHING, INPUT SUN GEAR (FRONT)</td>
</tr>
<tr>
<td>658</td>
<td>GEAR, INPUT SUN</td>
</tr>
<tr>
<td>659</td>
<td>BUSHING, INPUT SUN GEAR (REAR)</td>
</tr>
<tr>
<td>661</td>
<td>RET., OUTPUT SHAFT TO INPUT CARRIER</td>
</tr>
<tr>
<td>662</td>
<td>CARRIER ASSEMBLY, INPUT (COMPLETE)</td>
</tr>
<tr>
<td>663</td>
<td>BEARING ASSEMBLY, THRUST (INPUT CARRIER TO REACTION SHAFT)</td>
</tr>
<tr>
<td>664</td>
<td>GEAR, INPUT INTERNAL</td>
</tr>
<tr>
<td>665</td>
<td>BUSHING, REACTION CARRIER SHAFT (FRONT)</td>
</tr>
<tr>
<td>666</td>
<td>SHAFT, REACTION CARRIER</td>
</tr>
<tr>
<td>667</td>
<td>BUSHING, REACTION CARRIER SHAFT (REAR)</td>
</tr>
<tr>
<td>668</td>
<td>RING, REACTION SHAFT/INTERNAL GEAR RETAINER</td>
</tr>
<tr>
<td>669</td>
<td>WASHER, THRUST (REACTION SHAFT/SHAFT)</td>
</tr>
<tr>
<td>670</td>
<td>SHELL, REACTION SUN</td>
</tr>
<tr>
<td>671</td>
<td>RING, REACTION SUN GEAR RETAINER</td>
</tr>
<tr>
<td>672</td>
<td>BUSHING, REACTION SUN</td>
</tr>
<tr>
<td>673</td>
<td>GEAR, REACTION SUN</td>
</tr>
<tr>
<td>674</td>
<td>WASHER, THRUST (RACE/REACTION SHELL)</td>
</tr>
<tr>
<td>675</td>
<td>RACE, LO & REVERSE ROLLER CLUTCH</td>
</tr>
<tr>
<td>676</td>
<td>RING, LO & REVERSE SUPPORT TO CASE RETAINER</td>
</tr>
<tr>
<td>677</td>
<td>RING, LO & REVERSE RETAINER (ROLLER ASSEMBLY/CAM)</td>
</tr>
<tr>
<td>678</td>
<td>CLUTCH ASSEMBLY, LO & REVERSE ROLLER</td>
</tr>
<tr>
<td>679</td>
<td>SUPPORT ASM., LO & REVERSE CLUTCH</td>
</tr>
<tr>
<td>680</td>
<td>SPRING, TRANSMISSION (LO & REVERSE CLUTCH SUPPORT RETAINER)</td>
</tr>
<tr>
<td>681</td>
<td>CARRIER ASSEMBLY, REACTION</td>
</tr>
<tr>
<td>682</td>
<td>PLATE ASSEMBLY, LO & REVERSE CLUTCH</td>
</tr>
<tr>
<td>683</td>
<td>BEARING ASSEMBLY, THRUST (REACTION CARRIER/SUPPORT)</td>
</tr>
<tr>
<td>684</td>
<td>GEAR, INTERNAL REACTION</td>
</tr>
<tr>
<td>685</td>
<td>SUPPORT, INTERNAL REACTION GEAR</td>
</tr>
<tr>
<td>686</td>
<td>RING, REACTION GEAR/SUPPORT RETAINER</td>
</tr>
<tr>
<td>687</td>
<td>SHAFT, OUTPUT</td>
</tr>
<tr>
<td>688</td>
<td>CLIP, SPEEDO DRIVE GEAR</td>
</tr>
<tr>
<td>689</td>
<td>GEAR, SPEEDO DRIVE</td>
</tr>
<tr>
<td>690</td>
<td>SLEEVE, OUTPUT SHAFT</td>
</tr>
<tr>
<td>691</td>
<td>SEAL, OUTPUT SHAFT</td>
</tr>
<tr>
<td>692</td>
<td>BRG., REACTION GEAR SUPPORT TO CASE</td>
</tr>
<tr>
<td>693</td>
<td>RING, LO & REVERSE CLUTCH RETAINER</td>
</tr>
<tr>
<td>694</td>
<td>SPRING ASSEMBLY, LO & REVERSE CLUTCH</td>
</tr>
<tr>
<td>695</td>
<td>PISTON, LO & REVERSE CLUTCH</td>
</tr>
<tr>
<td>696</td>
<td>SEAL, TRANSMISSION (LO & REVERSE CLUTCH – OUTER, CENTER, INNER)</td>
</tr>
<tr>
<td>697</td>
<td>DEFLECTOR, OIL (HIGH OUTPUT MODELS ONLY)</td>
</tr>
<tr>
<td>698</td>
<td>PLUG, ORIFICED CUP</td>
</tr>
<tr>
<td>699</td>
<td>ROTOR, INTERNAL TRANSMISSION SPEED SENSOR</td>
</tr>
</tbody>
</table>
1. Input carrier to output shaft retaining ring (661) with J-34627. Do not overexpand the ring.
2. Input carrier assembly (662)
3. J-29837 and output shaft (687)

Important
- The manufacturer assembles the output shaft and reaction internal gear with adhesive for ease of assembly. If these parts have not become separated during use, the output shaft will come out later along with the reaction internal gear.

4. Thrust bearing assembly (663)

Reaction Gear Set

Remove or Disconnect (Figures 58, 58L, 63)

1. Input internal gear (664) and reaction carrier (666)
2. Reaction sun shell (670) and thrust washer (669)
3. Reaction sun shell to inner race thrust washer (674)
4. Lo and reverse support to case retainer ring (676)
5. Lo and reverse clutch support retainer spring (680)
6. Reaction sun gear (673)
7. Lo and reverse inner race (675), roller assembly (678), support assembly (679), and reaction carrier assembly (681)
8. Lo and reverse clutch plates (682)
9. Reaction internal gear (684) and thrust bearing assembly (683)
10. Reaction gear support to case bearing (692)

Lo and Reverse Clutch Parts

Remove or Disconnect (Figures 63, 64 and 65)

TOOLS REQUIRED:
- J-23327 Clutch Spring Compressor

1. Bolts (715) and parking lock bracket (710)

Important
- Due to interference, the parking pawl may have to be removed before removing or installing the low and reverse piston.

2. Parking pawl shaft plug (713) with a #4 screw extractor
3. Parking pawl pivot shaft (712) with a magnet
4. Parking pawl (711) and return spring (714)
5. Install tool J-23327.
6. Lo and reverse clutch retainer ring (693)
7. Lo and reverse clutch spring assembly (694)
8. Lo and reverse clutch piston (695)
 - by application of air pressure in the case apply passage

COMPONENT REPAIR AND TRANSMISSION REASSEMBLY

Inner Manual Linkage

Remove or Disconnect (Figure 65)

1. Inside manual shaft nut (702)
2. Manual shaft (707) and manual shaft retainer (706)
3. Parking lock actuator assembly (701) and inside detent lever (703)

Manual Shaft Seal Replacement

Remove or Disconnect (Figure 66)

- Manual shaft seal (708)
 - pry out with a screwdriver

Install or Connect

- Tap a new seal in place
 - use a 14 mm socket

Inspect (Figures 65 and 66)

- Actuator rod (701) for damage
- Inside detent lever (703) for damage or cracks
- Manual shaft (707) for damage or burrs
- Manual detent spring assembly (709) for roller freeness or damage

Install or Connect (Figure 53)

- Parking lock actuator (701) onto inside detent lever (703)
- Manual shaft (707) into case (10) and inside detent lever (703)
- Inside manual shaft nut (702) onto manual shaft (707)
 - torque to 31 N·m (23 ft. lbs.)
- Manual shaft retainer (706) onto manual shaft (707)
Case

Inspect (Figures 67, 68 and 69)

- Case (10) exterior for cracks or porosity
- Case to valve body face for damage, interconnected oil passages and flatness. The face flatness can be checked by inspecting the spacer plate to case gasket for proper land impressions.
- Vent assembly (11) for damage
- Air check all oil passages. See diagnosis section for oil passage identification.
- 2-4 servo bore for damage, porosity, or burrs
- Any sharp edges (i.e. oil passages, slots for retaining ring removal - remove if found)
- Orifice cup plug (86) in servo bore for debris or damage
- Third accumulator bore for porosity, damage, or burrs
- Pin damage (77)
- Orifice cup plug (81) damaged or plugged
- Speedometer bore damaged
- Sharp edges
- Porosity
- All bolt holes for thread damage
- Heli-coil to repair
- Cooler connectors (12) for damage
- Proper torque 38 N·m (28 ft. lbs.)
- Case interior for damaged ring grooves or casting flash
- Clutch plate lugs worn or damaged
- Bushing (76) scored, worn, or damaged (see Bushing Replacement)
- Governor support pin installation depth. Incorrect installation depth will cause governor driven gear damage and shift problems.

ILL. NO. DESCRIPTION

5 BOLT, PUMP TO CASE
6 WASHER, PUMP TO CASE BOLT
7 PUMP ASSEMBLY, OIL
8 SEAL, OIL (PUMP TO CASE)
9 GASKET, PUMP COVER TO CASE
10 CASE, TRANSMISSION
601 WASHER, THRUST (PUMP TO DRUM)
605 HOUSING & DRUM ASSEMBLY, REVERSE INPUT CLUTCH
621 HOUSING & SHAFT ASSEMBLY, INPUT
Third Accumulator Retainer and Ball Assembly (80)

- Inspect
 - Ball
 - missing

Figure 61 Input Carrier Removal

Figure 62 Output Shaft Support Fixture

Figure 63 Reaction Gear Set Removal
![Image](image.png)

(Fig. 64 Piston Removal)

- sticking or leaking
- Retainer
 - missing
 - loose
 - not seated correctly
 - feed slots restricted

Retainer and Ball Assembly Leak Check Procedure

1. Install the servo assembly into the servo bore.
2. Install the servo cover and retainer.
3. Pour a suitable solvent into the accumulator bore.
4. Watch for leakage inside the case.
5. If leakage is observed, replace the third accumulator retainer and ball assembly.

Replacement Procedure - Third Accumulator Retainer and Ball Assembly

- Remove or Disconnect (Figures 70 and 71)

 TOOLS REQUIRED:
 - 6.3 mm (#4) Screw Extractor
 - Third accumulator retainer and ball assembly (80)
 - use 6.3 (#4) screw extractor

- Install or Connect (Figures 70 and 71)

 TOOLS REQUIRED:
 - 9.5 mm (3/8 in.) Diameter Metal Rod
 - A new third accumulator retainer and ball assembly
 - oil feed slots in the retainer must line up with oil passage in the servo bore.
 - To be certain of correct installation depth, scribe a mark at 42.0 mm (1.653 in.) on the 9.5 mm (3/8")

ILL. NO. DESCRIPTION

- 701 ACTUATOR ASSEMBLY, PARKING LOCK
- 702 NUT, HEX HEAD
- 703 LEVER, INSIDE DETENT
- 705 LINK, MANUAL VALVE
- 706 RETAINER, MANUAL SHAFT
- 707 SHAFT, MANUAL
- 708 SEAL, MANUAL SHAFT
- 709 MANUAL DETENT ROLLER AND SPRING ASM.
- 710 BRACKET, PARKING LOCK
- 711 PAWL, PARKING BRAKE
- 712 SHAFT, PARKING BRAKE PAWL
- 713 PLUG, STEEL CUP
- 714 SPRING, PARKING PAWL RETURN
- 715 BOLT, PARKING LOCK BRACKET

![Image](image.png)

(Fig. 65 Parking Linkage)
Figure 66 Manual Shaft Seal

Figure 67 Servo Bore

Figure 68 Third Accumulator Bore

Figure 69 Governor Pin Location

Figure 70 Leak Check - 3rd Accumulator

Figure 71 Third Accumulator Retainer and Ball Asm. - Installation

diameter metal rod. Use it to seat the third accumulator and ball assembly as shown. When the scribed line is flush with the case face, installation depth is correct.
Case Assembly

Clean
- Thoroughly with solvent
- Air dry
 - do not wipe with cloth.

Lo and Reverse Clutch Assembly

Inspect (Figure 73)
- Lo and reverse piston (695) for
 - porosity or damage
 - ring groove damage
- Piston seals (696) for nicks or cuts
- Spring assembly (694) for damage
- Retainer ring (693) overstressed

Measure (Figure 72)

TOOLS REQUIRED:
Scale and Straight Edge
- Dimension “A” for correct piston/model application

Install or Connect (Figure 73)

TOOLS REQUIRED:
J-23327 Clutch Spring Compressor
1. Piston seals (696) onto the piston (695)
 - lubricate with transmission fluid
2. Piston (695) into the case
 - index the piston with the notch in the bottom of the case.
3. Spring assembly (694) onto the piston
 - flat side of the retainer upward
4. J-23327 over the spring assembly
 - compress the spring assembly past the ring groove in the case hub.
5. Retainer ring (693) into the case hub ring groove

Parking Pawl

Inspect (Figure 74)
- Parking pawl (711) for cracks, burrs, or damage
- Parking pawl return spring (714) for distortion or damage
- Parking pawl pivot shaft (712) for damage and freeeness of fit with the parking pawl

Install or Connect (Figure 74)
1. Parking pawl (711) and parking pawl return spring (714) into the case
2. Parking pawl pivot shaft (712) into the parking pawl (711) and the case
 - CHECK FOR PROPER OPERATION
3. Retaining plug (713) into the case
 - coat the plug with loc-tite sealant or equivalent and install it with a hammer and punch.

<table>
<thead>
<tr>
<th>LO & REVERSE CLUTCH PISTON</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODEL</td>
</tr>
<tr>
<td>MCM, MTM, PRM, TAM, TBM, YXM</td>
</tr>
<tr>
<td>ALL OTHERS</td>
</tr>
</tbody>
</table>

Figure 72 Lo and Reverse Clutch Piston Measurement

Figure 73 Lo and Reverse Piston
Reaction Internal Gear and Carrier Assembly

Inspect (Figures 75, 76 and 77)
- Reaction internal gear (683) and support (684) for
 - proper assembly
 - stripped splines
 - cracks
 - teeth or lug damage
- Thrust bearing assemblies (683 and 692) for damage
- Lo and reverse clutch plates (682)
 - Composition for wear, heat damage, or delamination
 - Steel for heat damage or surface finish damage
- Reaction carrier assembly (681) for
 - pinion gear damage
 - excessive pinion washer wear (end play .20-.61 mm/.008-.024 in.)
 - proper pinion staking
 - keystoned pinion gears (pinions must turn free)
 - damaged or worn thrust bearing
 To check the captive thrust bearing in the carrier for wear, place a bushing or an output shaft sleeve on the bearing race (do not contact the pinion gears) and turn it with the palm of your hand. Any imperfections will be felt through the bushing.

Reaction Internal Gear and Support

Install or Connect (Figures 78, 79 and 80)
1. Reaction gear support to case bearing (692) onto the case hub as shown
 - Outside bearing race goes toward case hub.
 - Retain with petrolatum.
2. Reaction internal gear and support (684 and 685) onto the bearing as shown
3. Reaction carrier to support thrust bearing assembly (683) onto the support (685)
 - Outer bearing race goes toward the support
4. Reaction carrier (681) onto the thrust bearing
5. Lo and reverse clutch plates (682) into case lugs
 - Start with a steel plate and alternate with composition.
 - Index with the splines of the reaction carrier and the case as shown.
 - See the chart for the correct number of clutch plates.
Lo and Reverse Support Assembly

Remove or Disconnect (Figure 81)
1. Inner race (675) from the support assembly
2. One retainer ring (677)
3. Roller clutch assembly (678)

Inspect (Figure 81)
- Inner race (675) for damage and surface finish
- Roller clutch assembly (678) for
 - damaged rollers
 - broken springs
- Cam and support assembly for
 - loose cam
 - surface finish
 - cracks or damaged lugs.

Install or Connect (Figure 81 and 82)
1. Roller clutch assembly (678) into the cam and support assembly (679)
2. Support and roller assembly into the case with the hub down
3. Inner race (675) into the roller assembly
 - rotate as shown in figure 65.
 - push down for full engagement.
 - bottom tangs will be flush with carrier hub when properly installed.
4. Support retainer spring (680) into the case
 - insert between the case lug and the one open notch in the support.

Reaction Sun Gear and Shell

Inspect (Figure 84)
- Reaction Sun Gear (673) for
 - nicked, scored, or worn bushing. (See Bushing Replacement).
 - damaged spline or teeth
 - loose or weak retaining ring (do not remove this ring, except to replace it.)
- Reaction sun shell (670) for
 - stripped or worn splines
 - broken hub
 - bent tangs

Lo & Reverse Clutch Plate Chart

<table>
<thead>
<tr>
<th>MODEL</th>
<th>FLAT STEEL</th>
<th>COMP. FACED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. Thickness</td>
<td>No. Thickness</td>
</tr>
<tr>
<td>MCM, MTM, PRM, TAM, TBM, YXM</td>
<td>4 1.77mm (.069")</td>
<td>4 2.25mm (.088")</td>
</tr>
<tr>
<td>ALL OTHERS</td>
<td>5 1.77mm (.069")</td>
<td>5 2.25mm (.088")</td>
</tr>
</tbody>
</table>

Figure 80 Lo and Reverse Clutch Plate Chart
Lo and reverse inner race to reaction sun gear shell thrust washer (674) for wear or damage

Reaction shaft to reaction sun gear shell thrust washer (669) for wear or damage (bronze thrust washer).

Install or Connect (Figure 84 and 85)

1. Reaction sun gear retainer ring (671) onto the reaction sun gear, if previously removed.
2. Reaction sun gear (673) into the reaction carrier
 - index the teeth with the pinion gears.
3. Thrust washer (674) onto the lo and reverse support inner race
 - index the four locating ears into the inner race.
4. Reaction gear shell (670) onto the reaction sun gear
5. (Bronze) thrust washer (669) onto the reaction sun shell
 - index tangs into the shell.

Input Internal Gear and Output Shaft

Remove or Disconnect (Figure 86)

1. Retainer ring (668) from input internal gear (664)
2. Reaction carrier shaft (666) from the input internal gear

Inspect (Figures 86 and 88)

- Reaction Carrier Shaft (666) for
 - scored, damaged, or worn bushings (see Bushing Replacement)
 - cracked shaft
 - damaged spline or gear teeth
 - under cut around the shaft from interference with the sun gear
- Input internal gear (664) for
 - cracks
 - damaged spline or gear teeth
- Input carrier to reaction shaft thrust bearing (663) for wear or damage
- Output shaft
 - plugged or restricted lube passages
Internal Transmission Speed Sensor Rotor

REMOVE ONLY IF DAMAGED

Remove or Disconnect (Figure 87)

TOOLS REQUIRED:
- J-21427-01 speedometer gear puller adapter
- J-8433 speedometer gear puller
- J-36352 speedometer gear installer & "C" washer
- Mechanical press

1. Install J-21427 with J-8433 and remove rotor.
2. Place new rotor over output shaft.
3. Place J-36352-1 in groove on output shaft.

DO NOT REUSE ROTOR

4. Place J-36352-2 on shaft and press to make contact with J-36352-1.

Install or Connect (Figures 86 and 88)

1. Reaction shaft (666) into the input internal gear (664)
2. Retainer ring (668) into the input internal gear
3. Input internal gear and shaft assembly into the sun gear shell
 - index the shaft spline into the reaction carrier.
4. Thrust Bearing (663) onto the reaction carrier shaft.
 - outer race goes toward the reaction carrier shaft.
5. Output shaft (687) into the transmission
 - index the splines with the mating parts.
6. J-29837 onto the case
 - position upwards as far as possible to support the output shaft.

Input Carrier and Sun Gear

Inspect (Figures 89 and 90)

- Input carrier assembly (662) for
- pinion gear damage
- excessive pinion washer wear (end play .20-.61 mm/.008-.024 in.)
- proper pin stake
- keystoned pinion gears (pinion gears must rotate freely)
- damaged or worn thrust bearing

- Input sun gear (658) for
 - bushing damage or wear (see Bushing Replacement Procedure).
 - cracks
 - damaged spline or gear teeth

1. Input carrier assembly (662) onto the output shaft
2. Retainer ring (661) into the output shaft ring groove
 - Do not reuse the old retainer ring if it has been overexpanded.
 - Use care not to overexpand the ring during installation.
4. Input sun gear (658) into the input carrier
 - index the sun gear teeth into the pinion gear teeth.
5. Remove J-29837.

Input Clutch Assembly

- Remove or Disconnect (Figure 91)
 - Reverse input clutch assembly (605) from the input clutch assembly (621)
- Oil pump to selective washer thrust bearing (615)
- Selective washer (616)

- Disassemble (Figures 93 and 94)

TOOLS REQUIRED:
- J-23456 Clutch Spring Compressor Press
- J-25018 Clutch Spring Compressor
1. Place the input clutch assembly (621) on the bench with the turbine shaft through the bench hole.
2. The 3-4 clutch plate retainer ring (656) and the backing plate (655)
3. The 3-4 clutch plates (654)
4. The 3-4 clutch apply plate (653)
5. The 3-4 clutch ring retainer plate (652)
6. Forward clutch backing plate retainer ring (651) and backing plate (650)
7. Forward clutch sprag assembly (638-644)

Disassemble

1. Input sun gear bearing assembly (637)
2. Input housing to output shaft lip seal (636).
3. Forward clutch plates (649)
4. Forward wave plate (648)
5. Forward clutch apply plate (646) and spacer plate (647)
6. Overrun clutch plates (645)

Disassemble

1. Install J-23456 and J-25018
 - Compress overrun clutch spring assembly (634).
2. Overrun clutch retainer ring (635).
3. Overrun clutch spring assembly (634).
4. Overrun clutch piston (632)
 - inner and outer lip seals (631)
5. Forward clutch piston assembly (630)

Inspect (Figure 97)

1. Input housing for porosity or damage
2. Input housing and shaft assembly (621)
 - all splines for wear or damage
 - air check feed passages.
 - three turbine shaft sealing balls
 - the balls must not be loose or leaking.
 - the open hole is the lube oil passage which feeds the output shaft.
 - Presence of orificed cup plug (698)
 - Cracks at lube holes.
<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>615</td>
<td>BEARING ASSEMBLY, STATOR SHAFT/SELECTIVE WASHER</td>
<td></td>
</tr>
<tr>
<td>616</td>
<td>WASHER, THRUST (SELECTIVE)</td>
<td></td>
</tr>
<tr>
<td>620</td>
<td>RETAINER & CHECK BALL ASSEMBLY</td>
<td></td>
</tr>
<tr>
<td>621</td>
<td>HOUSING & SHAFT ASSEMBLY, INPUT</td>
<td></td>
</tr>
<tr>
<td>623</td>
<td>PISTON, 3RD & 4TH CLUTCH</td>
<td></td>
</tr>
<tr>
<td>625</td>
<td>RING, 3RD & 4TH CLUTCH APPLY</td>
<td></td>
</tr>
<tr>
<td>626</td>
<td>SPRING ASSEMBLY, 3RD & 4TH CLUTCH</td>
<td></td>
</tr>
<tr>
<td>628</td>
<td>HOUSING, FORWARD CLUTCH</td>
<td></td>
</tr>
<tr>
<td>630</td>
<td>PISTON, FORWARD CLUTCH</td>
<td></td>
</tr>
<tr>
<td>632</td>
<td>PISTON, OVERRUN CLUTCH</td>
<td></td>
</tr>
<tr>
<td>634</td>
<td>SPRING ASSEMBLY, OVERRUN CLUTCH</td>
<td></td>
</tr>
<tr>
<td>635</td>
<td>SNAP RING, OVERRUN CLUTCH SPRING RETAINER</td>
<td></td>
</tr>
<tr>
<td>636</td>
<td>SEAL, INPUT HOUSING TO OUTPUT SHAFT</td>
<td></td>
</tr>
<tr>
<td>645</td>
<td>PLATE ASSEMBLY, OVERRUN CLUTCH</td>
<td></td>
</tr>
<tr>
<td>646</td>
<td>PLATE, FORWARD CLUTCH APPLY</td>
<td></td>
</tr>
<tr>
<td>648</td>
<td>PLATE, FORWARD CLUTCH (WAVED)</td>
<td></td>
</tr>
<tr>
<td>649</td>
<td>PLATE ASSEMBLY, FORWARD CLUTCH</td>
<td></td>
</tr>
<tr>
<td>650</td>
<td>PLATE, FORWARD CLUTCH BACKING (SEL.)</td>
<td></td>
</tr>
<tr>
<td>651</td>
<td>RING, FORWARD CLUTCH BACKING PLATE RETAINER</td>
<td></td>
</tr>
<tr>
<td>652</td>
<td>PLATE, 3RD & 4TH CLUTCH RING RETAINER</td>
<td></td>
</tr>
<tr>
<td>653</td>
<td>PLATE, 3RD & 4TH CLUTCH APPLY</td>
<td></td>
</tr>
<tr>
<td>654</td>
<td>PLATE ASSEMBLY, 3RD & 4TH CLUTCH</td>
<td></td>
</tr>
<tr>
<td>655</td>
<td>PLATE, 3RD & 4TH CLUTCH BACKING (SEL.)</td>
<td></td>
</tr>
<tr>
<td>656</td>
<td>RING, 3RD & 4TH CLUTCH BACKING PLATE RETAINER</td>
<td></td>
</tr>
<tr>
<td>657</td>
<td>BUSHING, INPUT SUN GEAR (FRONT)</td>
<td></td>
</tr>
<tr>
<td>698</td>
<td>PLUG, ORIFICED CUP</td>
<td></td>
</tr>
</tbody>
</table>

*Only used with a 4 PLATE CLUTCH PACK.
Four turbine shaft oil seal rings (619) and their ring grooves for damage, burrs, or cuts - these seals must fit freely into the ring grooves.

Check valve retainer and ball assembly (617) for damage - the ball must move freely in the retainer.
- the retainer must be tight in the turbine shaft.

Check Valve Retainer and Ball Assembly - Replacement Procedures

Remove or Disconnect (Figure 95)

TOOLS REQUIRED:
- #4 Screw extractor
1. Straighten the tangs of the retainer and remove the ball.
2. Check valve retainer
 - use #4 Screw Extractor

Install or Connect (Figure 95)

TOOLS REQUIRED:
- 9.5 mm (3/8") diameter metal rod
- New check valve retainer and ball assembly (617)
 - use the 9.5 mm (3/8") metal rod.
 - seat the retainer 3.0 mm (1/8 in.) below top surface of the turbine shaft.
 - be certain the ball is loose.

Inspect

- Turbine shaft “O” ring seal (618) for nicks, cuts, or damage
- Input housing check valve ball (620).
 - the ball must move freely.
 - leak check the ball with solvent.

Important (Figure 96)

- If the 3-4 clutch plates are burned or worn and a cause is not found during diagnosis or disassembly, replacement of the retainer and check ball assembly may be required.

Inspect (Figures 93, 100, 102)

- Forward clutch housing (628) for
 - proper check ball operation
 - damage or distortion
 - burrs in seal areas
 - cracks
- Forward clutch piston (630) and overrun clutch piston (632) for
A LUBE PASSAGE

615 BEARING ASSEMBLY, STATOR SHAFT/SELECTIVE WASHER
616 WASHER, THRUST (SELECTIVE)
620 RETAINER & CHECK BALL ASSEMBLY
621 HOUSING & SHAFT ASSEMBLY, INPUT
636 SEAL, INPUT HOUSING TO OUTPUT SHAFT
687 SHAFT, OUTPUT
698 PLUG, ORIFICED CUP

Figure 96 Input Housing Check Valve Ball
- apply leg damage
- Overrun spring assembly (634) for damage or distortion
- Input housing to output shaft lip seal (636) for damage or wear

Assemble (Figures 100 and 101)

TOOLS REQUIRED:
- J-23456 Clutch Spring Compressor Press
- J-25018 Clutch Spring Compressor
- J-29882 Overrun Clutch Inner Seal Protector
- J-29883 Forward Clutch Inner Seal Protector

1. Forward clutch housing to input clutch housing "O" ring seal (622) as shown
 - lubricate with transmission fluid.
2. Inner and outer seals (629) on forward clutch piston
 - seal lips must face away from the piston tangs as shown.
 - lubricate with transmission fluid.
3. Forward clutch piston (630) into the forward clutch housing
 - use care not to damage the outer lip seal.
4. The 3-4 clutch spring assembly (626) onto the 3-4 clutch apply ring
5. Forward clutch assembly onto the 3-4 clutch spring assembly
 - the forward clutch piston apply legs must be indexed with the 3-4 clutch apply ring legs.
6. J-29883 on the input housing as shown
7. Apply ring and forward clutch assembly into the input housing as shown
 - hold the assembly by the apply ring legs during installation.
 - do not let the forward clutch piston separate from the housing.
 - firmly seat the assembly.
8. J-29882 on the input housing as shown
9. Overrun clutch piston (632)
 - hub facing upward as shown.
 - if all parts are properly seated to this point, the overrun piston hub will be approximately 3/16 in. below the snap ring groove in the input housing hub.

Assemble (Figures 102 and 103)

1. Overrun clutch spring assembly (634) onto the overrun clutch piston.
 - locate the springs on the piston tabs
2. J-23456 and J-25018 onto the overrun spring assembly.
 - compress springs (Do not over-compress).
3. Retainer snap ring (635) into the snap ring groove
4. Input housing to output shaft lip seal (636)

Inspect
- Overrun clutch plates (645)
ILL. NO.

DESCRIPTION

- 621 HOUSING & SHAFT ASSEMBLY, INPUT
- 622 SEAL, O-RING (INPUT/FWD. HSG.)
- 623 PISTON, 3RD & 4TH CLUTCH
- 625 RING, 3RD & 4TH CLUTCH APPLY
- 626 SPRING ASSEMBLY, 3RD & 4TH CLUTCH
- 628 HOUSING, FORWARD CLUTCH
- 629 SEALS, FWD. CLUTCH (INNER & OUTER)
- 630 PISTON, FORWARD CLUTCH
- 631 SEAL, OVERRUN CLUTCH (INNER & OUTER)
- 632 PISTON, OVERRUN CLUTCH
- 636 SEAL, INPUT HOUSING TO OUTPUT SHAFT
- 637 BEARING ASSEMBLY, INPUT SUN GEAR
- 687 SHAFT, OUTPUT

Assemble (Figures 104 and 105)

1. Overrun clutch plates (645) into the input housing.
 - overrun clutch plates are the smallest of the three sets of plates in the input housing.
 - index the plate as shown.
2. Thrust bearing assembly (637) onto the input clutch hub
 - the inside race must face the input housing hub.

- Composition plates for damaged tangs, delamination, or excessive wear
- Steel plates for damaged tangs, wear, or heat damage
- Input sun gear bearing assembly (637) for wear, flatness or damage
3. Align the tangs on the two composition overrun clutch plates.

Forward Clutch Sprag Assembly

Disassemble (Figure 106)
1. Forward sprag outer race (644)
2. Overrun clutch hub retaining snap ring (638) and clutch hub (639)
3. Forward clutch retainer and race assembly (641)

Inspect
- Forward clutch sprag assembly (642) for
 - wear or damage
 - weak or broken springs
 - damaged or missing retainer caps (brass)
- Overrun clutch hub (639) for
 - spline damage
 - plugged lubrication holes
 - damaged tangs
 - cracks
- Forward clutch retainer and race assembly (641) for
 - spline damage
 - ring groove damage
 - surface finish damage
 - loose retainer

Assemble (Figures 107, 108, 109)
1. Forward clutch sprag assembly (642) into the outer race
 - to correctly install, the notches in the sprag cage must face upward as shown.
2. One (brass) sprag retainer ring (643) onto the race and retainer assembly
- the flange on the retainer ring must face away from the retainer.

3. Race and retainer assembly into the sprag assembly
 - to assemble, hold the outer race in your left hand with your fingers supporting the sprag at the recessed side of the outer race.
 - insert the race and retainer assembly by pushing in and turning to the left.

4. The remaining (brass) retainer ring onto the sprag assembly

5. Overrun clutch hub (639) onto the wear plate

6. Overrun clutch hub retaining snap ring (638) into the snap ring groove of the race and retainer assembly

7. Test the assembly for proper operation as shown.
 - If the assembly operates backwards, you have installed the sprag backwards. Reassemble correctly.

Assemble

- Forward clutch sprag assembly into the input clutch housing
 - index the overrun clutch hub into the overrun clutch plates.

Inspect (Figure 110 and 111)

- Forward (649) and 3-4 clutch plates (654)
 - Composition plates for damaged tangs, delamination, or wear
 - Steel plates for damaged tangs, wear, or heat damage

- Forward (650) and 3-4 clutch backing plates (655) for
 - flatness
 - surface finish damage
 - burrs or nicks

- Forward clutch apply plate (646) and spacer plate (647) for
 - flatness
 - surface finish damage
 - burrs or nicks

- The 3-4 clutch apply plate (653) for
 - flatness
 - surface finish damage

- The 3-4 clutch ring retainer plate (652) for
 - bent tangs
 - flatness

Assemble (Figures 110, 111, 112 and 113)

1. Forward clutch apply plate (646) into the input clutch housing
 - index as shown.

2. Waved steel forward clutch plate (648) into the input clutch housing
 - index as shown.

3. The remaining forward clutch plates (649) into the input clutch housing
 - start with steel plate and alternate with a composition
4. Forward clutch selective backing plate (650)
5. Forward clutch retaining ring (651)

Forward Clutch Piston Travel Check

都不能(Figure 112A)

- Check the end clearance between the backing plate (650) and the retaining ring (651) with two feeler gages.
- Select the proper backing plate from the chart to obtain the correct clearance

Assemble

1. The 3-4 ring retainer plate (652)
 - index each leg into the apply ring legs.
2. The 3-4 clutch apply plate (653)
3. The 3-4 clutch plates (654)
 - start with composition and alternate with steel
4. The 3-4 clutch backing plate (655) and retainer ring (656)
 - chamfered side up.

3-4 Clutch Piston Travel Check

都不能(Figure 114)

- Check the end clearance between the backing plate (655) and the first composition plate with a feeler gage.
FORWARD CLUTCH INFORMATION CHART

<table>
<thead>
<tr>
<th>PLATE TYPE</th>
<th>THICKNESS</th>
<th>QUANTITY REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLAT STEEL CLUTCH PLATE</td>
<td>2.29mm (.090")</td>
<td>5</td>
</tr>
<tr>
<td>COMPOSITION FACED CLUTCH PLATES</td>
<td>1.78mm (.070")</td>
<td>5</td>
</tr>
<tr>
<td>APPLY PLATE</td>
<td>6.44mm (.251")</td>
<td>1</td>
</tr>
<tr>
<td>WAVED STEEL CLUTCH PLATE</td>
<td>2.03mm (.079")</td>
<td>1</td>
</tr>
<tr>
<td>BACKING PLATE</td>
<td>SELECTIVE</td>
<td>1</td>
</tr>
</tbody>
</table>

Select the proper backing plate from the chart to obtain the correct clearance.

Clutch Air Check
(Figure 115)

Air check the 3-4, forward, and overrun clutches by applying air pressure at the feed holes in the turbine shaft. (When the overrun clutch is checked, the air well blow by the forward clutch piston lip seals and exit out the forward clutch feed hole in the turbine shaft.)

Assemble (Figure 116)

TOOLS REQUIRED:
- J-36418-1 seal installer
- J-36418-2 seal sizer
1. Install four turbine shaft oil seal rings (619) using J-36418-1
2. Adjust screw to obtain proper height
3. Use J-36418-2 to size the seals after installation

Reverse Input Clutch Assembly

Disassemble (Figure 118 and 119)

TOOLS REQUIRED:
- J-23327 Clutch Spring Compressor
- J-25018 Clutch Spring Compressor Adaptor
1. Retaining ring (614) from reverse input housing
2. Backing plate (613)
3. Clutch plates (612) and waved steel plate (611)
4. Install J-23327 and J-25018.

Inspect (Figures 118, 120 and 121)

- Backing plate (613) for:
 - damage
 - distortion or flatness
 - burrs or surface finish damage
- Clutch Plates (612)
 - Composition for tang damage, delamination, or wear
 - Steel for tang damage, wear, or heat damage
- Spring assembly (609) for distortion or damage
- Piston (607) for:
 - dishing or deforming
 - seal retaining rings loose
- Housing and drum assembly (605) for:
 - damaged or worn bushings (603 and 606)
 - surface on the hub and outer housing
3-4 Clutch Plate Chart

<table>
<thead>
<tr>
<th>Plate Type</th>
<th>Thickness</th>
<th>Quantity Required</th>
<th>*A-Models</th>
<th>*B-Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat Steel Clutch Plate</td>
<td>1.97mm (.077")</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Composition Faced Clutch Plates</td>
<td>2.03mm (.079")</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Apply Plate</td>
<td>3.30mm (.130")</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Backing Plate</td>
<td>Selective</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

* A-Models: MCM, MTM, PRM, TAM, TBM, YXM * B-Models: All Others

Figure 113 3-4 Clutch Plate Chart

- retainer and ball assembly moving freely (leak check with solvent).
- leak at the weld

Assemble (Figures 118, 119, 122 and 123)

TOOLS REQUIRED:
- J-23327 Clutch Spring Compressor
- J-25018 Clutch Spring Compressor Adaptor

1. Inner and outer seals (608) on the piston - lips must face away from the hub as shown. - lubricate with transmission fluid.
2. Piston (607) into the housing and drum assembly - use an 8 mm feeler gage to position the lip seals. - use care not to damage the seals.
3. Spring assembly (609) - large opening in the assembly goes towards the piston.
4. Install J-23327 and J-25018. - compress the spring assembly - install the retainer ring (610).
5. Waved steel clutch plate (611)
6. Clutch plates (612). - start with a composition and alternate with steel - see chart for correct number of clutch plates.
7. Backing plate (613) - chamfered side up
8. Retaining ring (614)

3-4 Backing Plate Selection

<table>
<thead>
<tr>
<th>Model</th>
<th>Backing Plate Travel</th>
<th>*Back Up Plate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Backing Plate Which Gives Correct Travel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dim.</td>
<td>I.D.</td>
<td></td>
</tr>
<tr>
<td>MCM, MTM, PRM, TAM, TBM, YXM</td>
<td>1.39 - 2.78 mm (.055" - .109")</td>
<td>7.125 mm (.278")</td>
</tr>
<tr>
<td>ALL OTHERS</td>
<td>1.25 - 2.87 mm (.049" - .113")</td>
<td>5.125 mm (.200")</td>
</tr>
</tbody>
</table>

Figure 114 Backing Plate Selection Chart

Reverse Input and Input Clutches

Assemble (Figures 124 and 125)

1. Selective thrust washer (616) onto the input housing
2. Bearing assembly (615) - inside (black race) goes toward the oil pump.
3. Reverse input clutch assembly (605) onto the input clutch assembly - index the reverse input clutch plates with the input clutch hub. - make certain all clutches are fully engaged.

Assemble (Figure 126)

- Reverse input and input clutch assembly into the transmission case - index the 3-4 clutch plates with the input internal gear. - make sure all clutch plates are fully engaged.
AUTOMATIC TRANSMISSION 700-R4-35

Figure 115 Turbine Shaft Oil Passages

1. CONVERTER RELEASE
2. OVERRUN CLUTCH
3. FORWARD CLUTCH
4. 3-4 CLUTCH
5. LUBE

Figure 116 Turbine Shaft Oil Seal Rings

619 RING, OIL SEAL (TURBINE SHAFT)

Oil Pump Assembly

- - Remove or Disconnect (Figure 130)
1. Thrust washer (601)
2. Pump cover to case gasket (9)
3. Pump to case oil seal (8)
4. Pump cover bolts (236)
5. Pump cover (217) from pump body (203)

Pump Body

- - Disassemble (Figure 130)
1. Pump slide spring (209)
 - compress with needle nose pliers.
 - pull straight out.
 CAUTION: Spring is under very high pressure. Place covering over spring to prevent possible injury.
2. From the pump pocket
 - Pump guide rings (212)
 - Pump vanes (215)
 - Pump rotor (214)
 - Pump guide (213)
 - Slide (206)
 - Slide Seal (211)
 - Seal Support (210)
 - Pivot slide pin (208) and spring (207)
 - Slide seal ring (204) and slide back up seal (205)
3. Retainer (94), oil seal assembly (2)
 - pry out with a screwdriver.

Oil Pump Cover

- - Disassemble (Figures 130)
1. Converter clutch apply valve train
 - compress converter clutch apply valve spring (228) with a screwdriver.
 - remove retaining ring (225).
 - slowly release the spring tension.
 - stop valve (226), converter clutch valve (227), and two converter clutch valve springs.
2. Pressure relief ball (231)
 - ball is under strong spring pressure.
 - cover the ball with a cloth when removed.
3. Pressure regulator assembly (218-224).
 - follow the same procedure used to remove the converter clutch valve.

Inspect

- 2-4 band assembly (602) for damage or wear

Assemble (Figure 126, 127)

1. The 2-4 band assembly (602) into the case
 - index the band anchor pin end with the case pin hole.
2. Band anchor pin (48) into the case
 - index the pin into the 2-4 band.

When properly assembled, the reverse input clutch housing will be located just below the case oil pump face.

2-4 Band Assembly

Inspect

- 2-4 band assembly (602) for damage or wear

Assemble (Figure 126, 127)

1. The 2-4 band assembly (602) into the case
 - index the band anchor pin end with the case pin hole.
2. Band anchor pin (48) into the case
 - index the pin into the 2-4 band.

Inspect

- Pressure regulator valve assembly (218-224) and converter clutch apply valve assembly (225-229) for
 - chips, burrs, distortion, plugged oil passage, and free movement in bore
 - remove burrs with crocus cloth
- Pressure relief assembly (230-232) for damage or distortion
- Pump cover (217) and pump body (203) for:
 - worn or damaged bushings (see Bushing Replacement Procedure)
 - foreign material or debris
 - porosity
 - scored or irregular mating faces
 - cross channel leaks
 - ring groove damage
- Rotor (214) and slide (206) for cracks
- Oil seal assembly for damage or wear

Clean
- Wash and air dry all parts.
 - do not wipe dry with a cloth.

Measure (Figure 129)
TOOL REQUIRED:
One inch Micrometer
- Oil pump rotor (214) thickness
- Oil pump slide (206) thickness

Important
Measurement of rotor/slide must be made on undamaged surfaces. Select similar size replacements. Lightly hone both sides of replacement rotor or slide to remove any nicks or burrs.

Pump Body

Assemble (Figures 130, 131 and 132)
TOOL REQUIRED:
J-25016 Seal Installer
1. “O” ring seal (205) and oil seal ring (204) into the groove on the back side of the slide
 - retain with petrolatum.
2. Pivot pin spring (207) and pivot pin (208) into the pump body
3. Slide (206)
 - index the notch in the slide with the pivot pin.
 - the oil seal ring must face downward into the pump pocket.
4. Slide seal (211) and support (210)
5. Vane guide ring (212)
6. Rotor guide (213) onto the rotor
 - retain with petrolatum.
7. Rotor (214)
 - with guide toward the pump pocket.
8. Vanes (215)
9. Vane guide ring (212)
10. Pump slide spring (209)
11. Oil seal assembly (2), retainer (94)
 - use J-25016

Oil Pump Cover

Assemble (Figures 130, 130L and 133)

1. Pressure relief ball (231), spring (232) and rivet (230)
2. Inner (229) and outer (228) converter clutch valve springs into the converter clutch valve bore
3. Converter clutch valve (227)
4. Stop valve (226)
5. Retaining ring (225)
6. Pressure regulator valve (218) into the pressure regulator bore
7. Pressure regulator valve spring (219)
8. T.V. boost valve (222) into the T.V. bushing
REVERSE INPUT CLUTCH

<table>
<thead>
<tr>
<th>MODEL</th>
<th>FLAT STEEL</th>
<th>COMP. FACED</th>
<th>WAVED STEEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>Thickness</td>
<td>No.</td>
</tr>
<tr>
<td>MCM, MTM, PRM, TAM, TBM, YXM</td>
<td>2</td>
<td>1.97mm (.077")</td>
<td>3</td>
</tr>
<tr>
<td>ALL OTHERS</td>
<td>3</td>
<td>1.97mm (.077")</td>
<td>4</td>
</tr>
</tbody>
</table>

- long land of the valve into the large hole of the bushing.
- retain with petrolatum.

9. Reverse boost valve (220) into the reverse boost valve sleeve
 - small end of the valve first.
 - retain with petrolatum.

10. Reverse boost valve sleeve (221) into the pressure regulator bore

11. T.V. boost valve sleeve (223) into the pressure regulator bore

12. Retainer ring (224)
Oil Pump Cover and Body

Assemble (Figures 130, 134, 135 and 137)

TOOLS REQUIRED:
- J-21368 Oil Pump Body and Cover Alignment Band
- Oil pump cover (217) onto oil pump body
- Stator shaft through a bench hole.
- Pump cover bolts (236)
- Leave finger tight.
- Align pump cover and pump body with J-21368.
- Place a screwdriver through a bolt hole and into a hole in the bench.
- Torque attaching bolts to 22 N·m (18 ft. lbs.)
- Pump to case gasket (009) onto case
- Retain with petrolatum.
- Oil seal rings (233), if removed previously, onto the pump cover hub
- Retain with petrolatum.
- Pump to case oil seal (008)
- Do not twist the seal.
- Lubricate with transmission fluid.
- Thrust washer (601)
OIL PUMP ROTOR SELECTION CHART

<table>
<thead>
<tr>
<th>THICKNESS (mm)</th>
<th>THICKNESS (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.948 - 17.961</td>
<td>0.7066 - 0.7071</td>
</tr>
<tr>
<td>17.961 - 17.974</td>
<td>0.7071 - 0.7076</td>
</tr>
<tr>
<td>17.974 - 17.987</td>
<td>0.7076 - 0.7081</td>
</tr>
<tr>
<td>17.987 - 18.000</td>
<td>0.7081 - 0.7086</td>
</tr>
<tr>
<td>18.000 - 18.013</td>
<td>0.7086 - 0.7091</td>
</tr>
</tbody>
</table>

OIL PUMP SLIDE SELECTION CHART

<table>
<thead>
<tr>
<th>THICKNESS (mm)</th>
<th>THICKNESS (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.948 - 17.961</td>
<td>0.7066 - 0.7071</td>
</tr>
<tr>
<td>17.961 - 17.974</td>
<td>0.7071 - 0.7076</td>
</tr>
<tr>
<td>17.974 - 17.987</td>
<td>0.7076 - 0.7081</td>
</tr>
<tr>
<td>17.987 - 18.000</td>
<td>0.7081 - 0.7086</td>
</tr>
<tr>
<td>18.000 - 18.013</td>
<td>0.7086 - 0.7091</td>
</tr>
</tbody>
</table>

1. Remove an oil pump to case bolt and install a 278 mm (11 in.) bolt and lock nut or J-25025-7A.
2. Install J-25022-A or J-34725 as shown.
3. Install J-24773-A as shown.
4. Install a dial indicator.
5. Pull up on J-24773-A.
6. End play should be 0.13 - 0.92 mm (.005 - .036 in.).
7. The selective washer which controls end play is located between the input housing and the thrust bearing on the oil pump hub. If more or less end play is required, select the proper washer from the chart and install. If dial indicator shows no end play, the selective washer and thrust bearing have been misassembled.

Inspect (Figure 41 & 145)

- The 1-2 accumulator cover and pin assembly (62) for porosity or damage
- scored piston wall
- plugged oil passage
- 1-2 accumulator piston (61) and the 3-4 accumulator piston (52) for porosity
- ring groove damage
- pin hole damage
- 1-2 accumulator spring (59) and 3-4 accumulator spring (54) for distortion or damage
- Spacer plate (56) and gaskets (88 and 89) for damage
- Checkballs (55) for damage
- T.V. Link (64) for damage
- Manual detent spring (709) for damage
- Oil filter (71) for cut or damaged “O” ring seal (70)
- cracks in the neck or body
ILL. NO. DESCRIPTION
002 SEAL ASSEMBLY, OIL
003 BUSHING, PUMP BODY
094 RETAINER, FRONT HELIX SEAL
203 BODY, PUMP
204 RING, OIL SEAL (SLIDE TO WEAR PLATE)
205 SEAL, "O" RING (SLIDE SEAL BACK-UP)
206 SLIDE, PUMP
207 SPRING, PIVOT PIN
208 PIN, PIVOT SLIDE
209 SPRING, PUMP SLIDE (OUTER)
210 SUPPORT, PUMP SLIDE SEAL
211 SEAL, PUMP SLIDE
212 RING, PUMP VANE
213 GUIDE, ROTOR
214 ROTOR, OIL PUMP
215 VANE, PUMP
216 SHAFT, STATOR
217 COVER, PUMP
218 VALVE, PRESSURE REGULATOR
219 SPRING, PRESSURE REGULATOR VALVE
220 VALVE, REVERSE BOOST
221 SLEEVE, REVERSE BOOST VALVE
222 VALVE, T.V. BOOST
223 BUSHING, T.V. BOOST
224 RING, OIL PUMP REVERSE BOOST VALVE RETAINING
225 RING, OIL PUMP CONVERTER CLUTCH VALVE RETAINING
226 VALVE, STOP
227 VALVE, CONVERTER CLUTCH
228 SPRING, CONVERTER CLUTCH VALVE (OUTER)
229 SPRING, CONVERTER CLUTCH VALVE (INNER)
230 RIVET, PRESSURE RELIEF BOLT
231 BALL, PRESSURE RELIEF
232 SPRING, PRESSURE RELIEF
233 RING, OIL SEAL (STATOR SHAFT)
234 SEAL, OIL PUMP COVER SCREEN
235 SCREEN, OIL PUMP COVER
236 BOLT, M8 x 1.25 x 40 (COVER TO BODY)
237 PLUG, OIL PUMP AIR BLEED
238 PLUG, OIL PUMP COVER
239 PLUG, OIL PUMP COOLER FEED
240 PLUG, OIL PUMP CONVERTER CLUTCH SIGNAL
241 RETAINER & BALL ASSEMBLY, PUMP COVER
242 SCREW, STATOR SHAFT (M6 x 1 x 16.0)
243 SPRING, PUMP SLIDE (INNER)

Figure 130 Oil Pump Assembly
700-R4-42 AUTOMATIC TRANSMISSION

Valve Body and Associated Parts

- casting flash in the neck
- Solenoid assembly (50) for
 - damage
 - cut or pinched wires
 - damaged connectors
 - cut or damaged "O" ring (49)

Valve Body and Associated Parts

Install or Connect (Figure 145 and 146)

1. The 3-4 accumulator pin (77) into the case
2. The 3-4 accumulator piston seal (53) onto the 3-4 accumulator piston
3. The 3-4 accumulator piston (52) onto the pin
 - the end with three legs must face the valve body.

ILL. NO. **DESCRIPTION**

218 VALVE, PRESSURE REGULATOR

219 SPRING, PRESSURE REGULATOR VALVE

220 VALVE, REVERSE BOOST

221 SLEEVE, REVERSE BOOST VALVE

222 VALVE, T.V. BOOST

223 BUSHING, T.V. BOOST

224 RING, OIL PUMP REVERSE BOOST VALVE RETAINING

225 RING, OIL PUMP CONVERTER CLUTCH VALVE RETAINING

226 STOP VALVE

227 VALVE, CONVERTER CLUTCH

228 SPRING, CONVERTER CLUTCH VALVE (OUTER)

229 SPRING, CONVERTER CLUTCH VALVE (INNER)

Figure 131 Oil Pump Seal

Figure 132 Slide Back Up and Slide Seal

Figure 133 Pressure Regulator and Converter Clutch

Apply Valve Trains
4. The 3-4 accumulator piston spring (54)

Install or Connect (Figures 147)

TOOLS REQUIRED:
- J-25025-5 Guide Pins

1. Governor and converter clutch oil screens (47)
2. Five checkballs (55) into the case as shown
3. J-25025-5 into the case
4. Spacer plate to case gasket (88)
 - gasket identified by a "C"
5. Spacer plate (56)
TRANSMISSION END PLAY
WASHER SELECTION CHART

<table>
<thead>
<tr>
<th>WASHER THICKNESS</th>
<th>I.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.87 - 1.97 mm</td>
<td>(.074" - .078")</td>
</tr>
<tr>
<td>2.04 - 2.14 mm</td>
<td>(.080" - .084")</td>
</tr>
<tr>
<td>2.21 - 2.31 mm</td>
<td>(.087" - .091")</td>
</tr>
<tr>
<td>2.38 - 2.48 mm</td>
<td>(.094" - .098")</td>
</tr>
<tr>
<td>2.55 - 2.65 mm</td>
<td>(.100" - .104")</td>
</tr>
<tr>
<td>2.72 - 2.82 mm</td>
<td>(.107" - .111")</td>
</tr>
<tr>
<td>2.89 - 2.99 mm</td>
<td>(.113" - .118")</td>
</tr>
<tr>
<td>3.06 - 3.16 mm</td>
<td>(.120" - .124")</td>
</tr>
</tbody>
</table>

Figure 140 End Play Chart

Correctly Installed

Incorrectly Installed

Figure 141 Selective Washer and Thrust Bearing Properly Installed

6. Valve body to spacer plate gasket (89)
 - gasket indentified by a "V"

Control Valve Assembly

Clean
- Control valve assembly (67) thoroughly in clean solvent-move the valves with a pick or small screwdriver to dislodge any dirt or debris that may have accumulated
- Air Dry

Disassemble (Figures 148 & 149)
- Control Valve Assembly
 - Position as shown on a clean surface

Clean
- All valves, springs, bushings and control valve body in clean solvent
- Dry using compressed air

Inspect
- All Valves and Bushings For:
 - Porosity
 - Scoring
 - Nicks
- Scratches
- Springs for Damaged or Distorted Coils
- Valve Body Casting For:
 - Porosity
 - Cracks
 - Interconnected Oil Passages
 - Damaged Machined Surfaces

Assemble (Figures 148, 149)
- Control valve assembly (67) exactly as shown. Notice the position of the valve lands and bushing passages.

Install or Connect (Figures 150, 151)
1. Three checkballs (55) and one checkball (91) into the valve body assembly as shown. Checkball (91) is the larger copper colored ball shown as # 10 on Figure 150.
 - retain with petrolatum.
2. Valve body assembly (67)
 - connect the manual valve link (705) to the inside detent lever (703).

Auxiliary Accumulator Valve Body Assembly

Clean
- Auxiliary valve assembly (377) thoroughly in clean solvent
 - move the valves with a pick or small screwdriver to dislodge any dirt or debris that may have accumulated
- Air dry
Disassemble (Figure 150A)

1. (3) Bolts (373)
 - Cover (371) is under spring pressure
2. Cover (371) and accumulator piston spring (370)
3. Piston (367)
4. Piston oil seal ring (53)

Disassemble (Figure 150A)

- Position the auxiliary accumulator valve body on a clean surface. Remove valve trains beginning with the lower left hand corner. NOTE; valves are under pressure-cover bores while removing the roll pin.
- Valves and springs must be laid out on a clean surface in the exact sequence as they are removed.

Clean

- All valves and springs in clean solvent
- Air dry

Inspect

- Piston (367) for:
 - cracks
 - porosity
 - damage
- Valves for:
 - scoring
 - nicks
 - scratches
- Springs for damaged or distorted coils
- Auxiliary valve body (377) for:
 - porosity
 - damaged machined surfaces
- Orifice cup plug (359)
 - remove only if damaged

Remove or Disconnect

Tools Required
- #3 Screw Extractor
- Orifice cup plug (359). Use modified #3 screw extractor.

Install or Connect

Tools Required
- 3/8" Rod
 - seat flush

Assemble (Figure 150A)

- Auxiliary accumulator valve train exactly as shown. Notice the valve lands

Assemble (Figure 150A)

1. Piston oil seal ring (053) onto piston (367)
 - lubricate with petrolatum
2. Piston (367)
3. Accumulator spring (370)
4. Cover (371) and (3) bolts (373)

Install or Connect (Figures 153 and 154)

1. Check ball (55) into auxiliary accumulator valve (377)
 - do not block orifice cup plug
 - retain with petrolatum
2. Bolts (374-376) and auxiliary valve body (377)
 - torque to 11 N·m (8 lbs.-ft.)

Install or Connect (Figures 152, 153 and 154)

1. T.V. link (64) onto the T.V. lever and bracket as shown
2. T.V. lever and bracket assembly (65) onto the valve body as shown
 - attach with two valve body to case bolts (69).
3. Wire harness clips (66), filter retaining clip (87), manual spring assembly (68), wire retaining washer, and all remaining valve body to case bolts (69)
 - Torque to 11.0 N·m (8 ft.lbs.).
4. "O"ring seal (34) onto the electrical connector (33)
 - lubricate with transmission fluid.
5. Electrical connector (33) into the case

Inspect (Figure 144)

- The throttle lever and bracket assembly (65) for sticking, binding or damage
- Make sure it operates freely without restrictions
- Replace if necessary

Inspect (Figure 147)

- CHECK BALL LOCATIONS
 - 55D #9 CHECK BALL (DETENT/LO)
 - 55E #4 CHECK BALL (3-4 CLUTCH/3-2 EX.)
 - 55F #8 CHECK BALL (2ND/1-2)
 - 55G #1 CHECK BALL (4TH ACCUMULATOR)
 - 55H #3 CHECK BALL (PART THROTTLE/DRIVE 3)
 - 47 GOVERNOR FILTER LOCATIONS
 - 47 CONVERTER CLUTCH FILTER LOCATION
AUTOMATIC TRANSMISSION 700-R4-49

ILL. NO. DESCRIPTION
301 VALVE, T.V. MODULATOR DOWNSHIFT
302 SPRING, T.V. MODULATOR DOWNSHIFT VALVE
303 VALVE, T.V. MODULATOR UP SHIFT
304 SPRING, T.V. MODULATOR UP SHIFT VALVE
305 SLEEVE, CONVERTER CLUTCH THROTTLE
306 SPRING, CONVERTER CLUTCH THROTTLE
307 VALVE, CONVERTER CLUTCH THROTTLE
308 VALVE, CONVERTER CLUTCH SHIFT
309 SLEEVE, 3-4 THROTTLE VALVE
310 SPRING, 3-4 THROTTLE VALVE
311 VALVE, 3-4 THROTTLE
312 VALVE, 3-4 SHIFT
313 SLEEVE, 2-3 THROTTLE VALVE
314 SPRING, 2-3 THROTTLE VALVE
315 VALVE, 2-3 THROTTLE
316 VALVE, 2-3 SHIFT
317 SLEEVE, 1-2 THROTTLE VALVE
318 SPRING, 1-2 THROTTLE VALVE
319 VALVE, 1-2 THROTTLE
320 SLEEVE, LO RANGE CONTROL
321 VALVE, 1-2 LO RANGE DOWNSHIFT
322 VALVE, 1-2 SHIFT
323 SLEEVE, THROTTLE VALVE PLUNGER
324 PLUNGER, THROTTLE VALVE
325 SPRING, THROTTLE VALVE
326 VALVE, THROTTLE
327 VALVE, 3-4 RELAY
328 VALVE, 4-3 SEQUENCE
329 SPRING, 4-3 SEQUENCE VALVE
330 SPRING, T.V. LIMIT VALVE
331 VALVE, T.V. LIMIT
332 VALVE, 1-2 ACCUMULATOR
333 SLEEVE, 1-2 ACCUMULATOR VALVE
334 SPRING, 1-2 ACCUMULATOR VALVE
335 VALVE, LINE BIAS
336 SPRING, LINE BIAS VALVE
337 SPRING, 3-2 CONTROL
338 VALVE, 3-2 CONTROL
339 VALVE, MANUAL
340 VALVE, 3-2 CONTROL
341 PIN, COILED SPRING
342 PIN, COILED SPRING
343 RETAINER, SPRING (SLEEVE)
344 PLUG, VALVE BORE
345 PLUG, CUP (.33 DIA.)
346 SWITCH ASM., PRESSURE (3RD CLUTCH)
347 SWITCH ASM., PRESSURE (4-3 PULSE)
348 SWITCH ASM., PRESSURE (4TH CLUTCH)
349 SWITCH ASM., PRESSURE (T.C.C. SIGNAL)
350 BODY, CONTROL VALVE
351 PLUG, T.V. LIMIT
352 PLUG, VALVE BORE (12.5 - O.D.)
353 VALVE, 1-2 LO RANGE UPSHIFT
354 PLUG, CONVERTER CLUTCH SHIFT VALVE BORE (ECM CONTROLLED VEHICLES)
355 PLUG, CONVERTER CLUTCH T.V. BUSHING BORE (ECM CONTROLLED VEHICLES)

Figure 149 Control Valve Assembly-Legend

Figure 150 Valve Body Checkball Locations

6. "O" ring seal (49) on the solenoid assembly (50)
7. Solenoid assembly (50) into the case
 - attach with two solenoid bolts (51)
 - torque to 11 N·m (8 ft. lbs.)
 - to correctly route and hook up the wires see
 the wiring diagrams in the 700-R4 diagnosis
 section.
 The wire connectors are color coded to
 correspond to the information in the wiring
 diagram. On switches which take two
 connectors, the terminals are reversible. It
 will be necessary to identify and use the
 wiring diagram chart which corresponds to
 the type of vehicle you are working on. (See
 the Diagnosis Section for the wiring
 diagrams.)

++ Install or Connect (Figures 145, 152, and 153)
1. Parking bracket (710)
 - torque to 22 N·m (18 ft. lbs.)
2. Oil passage cover (79) and bolts (78)
 - torque to 11 N·m (8 ft. lbs.)
3. The 1-2 accumulator piston seal (60) onto the 1-2
 accumulator piston ((61)
4. The 1-2 accumulator piston (61) into the 1-2
 accumulator cover and pin assembly (62)
 - the three legs on the piston must face up
 toward the case when installed.
5. The 1-2 accumulator spring (59) onto the piston
6. The 1-2 accumulator cover and pin assembly (62)
 onto the case
2-4 Servo Assembly

Measure (Figure 156)

TOOLS REQUIRED:
- J-33037 Band Apply Pin Tool

1. Install J-33037 as shown with apply pin (29).
2. Apply 11.0 N·m (100 in. lbs.) torque.
3. If white line “A” appears in the gage slot “B”, pin length is correct.
4. Use pin selection chart to determine the correct pin length.

1. “O” ring seal (70) onto the oil filter
- lubricate with transmission fluid.

2. Oil filter (71)
3. Oil pan gasket (72)
4. Chip magnet (93) into oil pan (73)
5. Oil pan (73) and bolts (74)
- torque to 16 N·m (12 ft. lbs.)
Inspect
- Pistons for porosity or damage
- Ring groove damage
- Cover (15) for porosity or damage
- Seals for nicks or cuts
- Freeness in the seal groove
- Springs for distortion
- Pin for wear or burrs

Important
Check servo bore in the case for any wear or sharp edges which may cut the servo seals.

Measure (Figure 157)

TOOLS REQUIRED:
- Vernier Calipers
- Scale
1. Measure Piston (25) Dimension *A
A. WHITE LINE
B. GAGE SLOT

PIN IS PRESET AT FACTORY AND MUST NOT BE READJUSTED

2-4 SERVO PIN SELECTION

<table>
<thead>
<tr>
<th>PIN LENGTH</th>
<th>PIN I.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>66.37</td>
<td>2.61-2.62</td>
</tr>
<tr>
<td>67.74</td>
<td>2.67-2.68</td>
</tr>
<tr>
<td>69.11</td>
<td>2.72-2.73</td>
</tr>
<tr>
<td>mm</td>
<td>2.61-2.62</td>
</tr>
<tr>
<td>66.67</td>
<td></td>
</tr>
<tr>
<td>68.04</td>
<td></td>
</tr>
<tr>
<td>69.41</td>
<td></td>
</tr>
</tbody>
</table>

Figure 156 Servo Pin Length

2. Measure housing (22) Dimension **B
3. Check Model Application

** Assemble (Figures 158, 159, 160 and 161)

** TOOLS REQUIRED:

- J-22269-01
- J-29714

1. Cushion spring (26) into the 2nd apply piston (25)
2. Cushion spring retainer (27) on the cushion spring
3. Install J-22269-01.
 - compress the retainer past the snap ring groove in the 2nd apply piston.
 - install the retainer ring (28).
4. The 2nd apply piston (25) onto the apply pin (29).
 - retainer goes toward the shoulder of the pin.
5. Servo apply pin spring (20) on the pin
6. Servo apply pin washer (19) and retaining clip (18)
7. Inner (23) and outer (24) seals on the 2nd apply piston
 - retain with petrolatum.
8. Apply pin seals (30) on the apply pin
 - retain with petrolatum.
9. "O" ring seal (21) on servo piston housing
10. Servo piston inner housing (22) on the 2nd apply piston
11. Seal ring (17) onto the 4th apply piston
12. The 4th apply piston (16) onto the apply pin
13. Return spring (31) on the pin

22 HOUSING, SERVO PISTON (INNER)
25 PISTON, 2ND APPLY

Figure 157 2nd Apply Piston and Housing Measurement

14. Servo piston assembly into the servo bore
15. "O" ring seal (14) on the servo cover
 - lubricate the seal with transmission fluid.
16. Servo cover (15) into the servo bore
17. Install J-29714.
 - compress the servo cover.
 - install the retainer ring (13)

** Governor Assembly (45)

** Inspect (Figure 162)

- Valve for free operation
- Weights for free operation
- Springs - missing or distorted
- Sleeve for nicks, burrs, scored or galled
- Driven gear for damage

** Disassemble

** DO NOT DISASSEMBLE EXCEPT, FOR CLEANING OR PART REPLACEMENT.

1. Cut off one end of each governor weight pin.
2. Pins (84)
3. Weights
4. Valve
5. Driven gear (83)
 - Drive out the retainer pin (82) with a small punch.
 - Support the governor assembly sleeve on plates installed in the exhaust slots. Push out the gear with an arbor press and a long punch.

Clean
- Wash all parts in solvent.
- Air dry and blow out passages.

Assemble
1. Install a new governor drive gear.
 - support the governor or plates through the exhaust slots.
 - press gear (83) into the sleeve until seated.
 - drill a new retaining pin hole in the sleeve ninety degrees from the existing hole. Use a 3.0 mm (1/8 in.) drill.
 - Install retainer pin (82) and stake.
2. Valve into the sleeve
3. Weights, springs, and thrust cap onto the governor assembly
4. Retaining pins (84) into the thrust cap (85) and governor assembly
5. Stake the retaining pins (84).
6. Check for free operation of the valve and weights.

Install or Connect (Figures 164 thru 169)

MECHANICAL SPEEDOMETER
TOOLS REQUIRED:
J-23103 or J-25016 Seal Installer
J-21426 Seal Installer
1. Speedometer drive gear (689) and clip (688)
if the output shaft has two speedometer locating holes, use the hole nearest the yoke spline for Corvette vehicles only.

2. “O” ring seal (691) on the output shaft sleeve
3. Output shaft sleeve (690) on the output shaft
A APPLY SEALANT ON THIS FLANGE BEFORE INSTALLATION
10 CASE, TRANSMISSION
45 GOVERNOR ASSEMBLY
46 COVER, GOVERNOR

Figure 163 Governor Cover

- use J-25016 or J-23103.
- do not push the sleeve past the machined surface on the output shaft.

4. Seal ring (35) on the case extension
5. Case extension (36) and bolts (37) or, stud (100) and nut (98)
 - position extension so the speedometer bore is on the governor side of the case.
 - torque to 35 N·m (26 ft. lbs.)
6. Remove case extension oil seal (89)
 - pry out with a screwdriver
 - install new seal with J-21426
7. Speedometer driven gear (44) and assembly (43) or speed sensor (99)
8. Retainer (40) bolt and washer (41)
9. Outside electrical connector, manual lever and nut

Torque Converter Assembly

Inspect

The torque converter assembly (1) must be replaced for any of the following conditions:

- Evidence of damage to the pump assembly
- Metal particles are found after flushing the cooler and cooler pipes
- External leaks in hub weld area
- Converter pilot is broken, damaged or poor fit into crankshaft
- Converter hub is scored or damaged
- Internal damage to stator
- Contamination from engine coolant
- Excess end play

Measure (Figure 172)

Tool Required:
J-35138 Torque Converter End Play Checking Tool

- Install J-35138 and measure end play
 - 0mm - .5mm (.020") for 245mm Torque Converters
 - 0mm - .6mm (.024") for 298mm Torque Converters

The Torque Converter Should Not Be Replaced

If:

- The fluid has an odor, discolored or no evidence of metal or clutch plate material
 - Drain out as much fluid as possible
 - Replace the oil filter and pan gasket
 - Fill to proper level (Refer to Section 7A)

Flushing the torque converter is not recommended.

Install or Connect

1. Torque converter (1)
2. J-21366 converter holding strap
3. Remove transmission from holding fixture

Figure 164 Speedo. Clip Holes
700-R4-56 AUTOMATIC TRANSMISSION

Figure 165 Speedometer Gear

Figure 166 Speedo. Gear - Installation

Figure 167 Output Shaft Sleeve and Seal

Figure 168 Output Shaft Sleeve - Installation

Figure 169 Case Extension and Seal
<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>CASE, TRANSMISSION</td>
</tr>
<tr>
<td>35</td>
<td>SEAL, CASE EXTENSION TO CASE</td>
</tr>
<tr>
<td>36</td>
<td>EXTENSION, CASE</td>
</tr>
<tr>
<td>37</td>
<td>BOLT, CASE EXTENSION TO CASE</td>
</tr>
<tr>
<td>39</td>
<td>SEAL ASSEMBLY, CASE EXTENSION OIL</td>
</tr>
<tr>
<td>40</td>
<td>RETAINER, SPEEDO DRIVEN GEAR FITTING</td>
</tr>
<tr>
<td>41</td>
<td>BOLT & WASHER ASSEMBLY</td>
</tr>
<tr>
<td>42</td>
<td>SEAL, "O" RING (SPEEDO FITTING TO CASE EXTENSION)</td>
</tr>
<tr>
<td>43</td>
<td>FITTING ASSEMBLY, SPEEDO DRIVEN GEAR</td>
</tr>
<tr>
<td>44</td>
<td>GEAR, SPEEDO DRIVEN</td>
</tr>
<tr>
<td>45</td>
<td>GOVERNOR ASSEMBLY</td>
</tr>
<tr>
<td>98</td>
<td>NUT, FLANGED HEX</td>
</tr>
<tr>
<td>99</td>
<td>SPEED SENSOR, INTERNAL TRANSMISSION</td>
</tr>
<tr>
<td>100</td>
<td>STUD, DOUBLE END</td>
</tr>
<tr>
<td>687</td>
<td>SHAFT, OUTPUT</td>
</tr>
<tr>
<td>688</td>
<td>CLIP, SPEEDO DRIVE GEAR</td>
</tr>
<tr>
<td>689</td>
<td>GEAR, SPEEDO DRIVE</td>
</tr>
<tr>
<td>690</td>
<td>SLEEVE, OUTPUT SHAFT</td>
</tr>
<tr>
<td>691</td>
<td>SEAL, OUTPUT SHAFT</td>
</tr>
</tbody>
</table>

Figure 170 Case Extension and Associated Parts

Figure 171 Case Extension Oil Seal Assembly

Figure 172 Checking Torque Converter End Play
ILL. NO.	DESCRIPTION
601 | WASHER, THRUST (PUMP TO DRUM)
608 | SEALS, REVERSE INPUT CLUTCH – INNER & OUTER
615 | BEARING ASSEMBLY, STATOR SHAFT/SELECTIVE WASHER
616 | WASHER, THRUST (SELECTIVE)
622 | SEAL, “O” RING INPUT TO FORWARD HSG.
624 | SEAL, 3RD & 4TH CLUTCH – INNER & OUTER
629 | SEAL, FORWARD CLUTCH – INNER & OUTER
631 | SEAL, OVERRUN CLUTCH – INNER & OUTER
637 | BEARING ASSEMBLY, INPUT SUN GEAR

ILL. NO.	DESCRIPTION
663 | BEARING ASSEMBLY, THRUST (INPUT CARRIER TO REACTION SHAFT)
669 | WASHER, THRUST (REACTION SHAFT/ SHELL)
674 | WASHER, THRUST (RACE/REACTION SHELL)
683 | BEARING ASSEMBLY, THRUST (REACTION CARRIER/SUPPORT)
692 | BEARING, REACTION GEAR SUPPORT TO CASE
696 | SEAL, TRANSMISSION (LO & REVERSE CLUTCH – OUTER, CENTER – INNER)

Figure 173 Seals and Bearing Locations
ILL. NO. DESCRIPTION
3 BUSHING, OIL PUMP BODY
4 BUSHING, STATOR SHAFT (REAR)
38 BUSHING, CASE EXTENSION
76 BUSHING, CASE
90 BUSHING, STATOR SHAFT (FRONT)
603 BUSHING, REVERSE INPUT CLUTCH (FRONT)
606 BUSHING, REVERSE INPUT CLUTCH (REAR)

ILL. NO. DESCRIPTION
657 BUSHING, INPUT SUN GEAR (FRONT)
659 BUSHING, INPUT SUN GEAR (REAR)
665 BUSHING, REACTION SHAFT (FRONT)
667 BUSHING, REACTION SHAFT (REAR)
672 BUSHING, REACTION SUN GEAR

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>QTY</th>
<th>SIZE</th>
<th>TORQUE</th>
<th>LOCATION</th>
<th>QTY</th>
<th>SIZE</th>
<th>TORQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCUMULATOR COVER TO CASE</td>
<td>2</td>
<td>M6 1.0</td>
<td>11 N-m</td>
<td>PARK BRAKE BRACKET TO CASE</td>
<td>2</td>
<td>M8 1.25</td>
<td>22 N-m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x35.0</td>
<td>(8 FT.-LB.)</td>
<td></td>
<td></td>
<td>x20.0</td>
<td>(18 FT.-LB.)</td>
</tr>
<tr>
<td>ACCUMULATOR COVER TO CASE</td>
<td>1</td>
<td>M6 1.0</td>
<td>11 N-m</td>
<td>PUMP COVER TO BODY</td>
<td>5</td>
<td>M8 1.25</td>
<td>22 N-m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x65.0</td>
<td>(8 FT.-LB.)</td>
<td></td>
<td></td>
<td>x40.0</td>
<td>(18 FT.-LB.)</td>
</tr>
<tr>
<td>DETENT SPRING TO</td>
<td>1</td>
<td>M8 1.7</td>
<td>22 N-m</td>
<td>PUMP ASSY. TO CASE</td>
<td>7</td>
<td>M8 1.25</td>
<td>22 N-m</td>
</tr>
<tr>
<td>VALVE BODY TO CASE</td>
<td></td>
<td>5 x20.</td>
<td>(18 FT.-LB.)</td>
<td></td>
<td></td>
<td>5 x60.0</td>
<td>(18 FT.-LB.)</td>
</tr>
<tr>
<td>VALVE BODY TO CASE</td>
<td>15</td>
<td>M6 1.0</td>
<td>11 N-m</td>
<td>CASE EXTENSION TO CASE</td>
<td>4</td>
<td>M10 1.5</td>
<td>34 N-m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x50.0</td>
<td>(8 FT.-LB.)</td>
<td></td>
<td></td>
<td>x30.0</td>
<td>(26 FT.-LB.)</td>
</tr>
<tr>
<td>OIL PASSAGE COVER TO CASE</td>
<td>3</td>
<td>M6 1.0</td>
<td>11 N-m</td>
<td>MANUAL SHAFT TO INSIDE DET. LEVER</td>
<td>1</td>
<td>M10 1.5</td>
<td>31 N-m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x16.0</td>
<td>(8 FT.-LB.)</td>
<td></td>
<td></td>
<td>x50.0</td>
<td>(23 FT.-LB.)</td>
</tr>
<tr>
<td>SOLENOID ASSY. TO PUMP</td>
<td>2</td>
<td>M6 1.0</td>
<td>11 N-m</td>
<td>PRESSURE PLUGS</td>
<td>1-4</td>
<td>½ - 27</td>
<td>11 N-m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x12.0</td>
<td>(8 FT.-LB.)</td>
<td></td>
<td></td>
<td></td>
<td>(8 FT.-LB.)</td>
</tr>
<tr>
<td>TRANSMISSION OIL PAN TO</td>
<td>16</td>
<td>M8 1.2</td>
<td>11 N-m</td>
<td>PRESSURE PLUGS</td>
<td>3</td>
<td>¾ - 18</td>
<td>24 N-m</td>
</tr>
<tr>
<td>CASE</td>
<td></td>
<td>5 x19.3</td>
<td>(8 FT.-LB.)</td>
<td></td>
<td></td>
<td></td>
<td>(18 FT.-LB.)</td>
</tr>
<tr>
<td>PRESSURE SWITCHES</td>
<td>1-3</td>
<td>¾ - 27</td>
<td>11 N-m</td>
<td>CONNECTOR COOLER PIPE</td>
<td>2</td>
<td>¾ - 18</td>
<td>38 N-m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8 FT.-LB.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(28 FT.-LB.)</td>
</tr>
</tbody>
</table>

Figure 174 Torque Specifications and Bushing Locations
Bushing Replacement Procedure

Protect parts with wood blocks or cloth as necessary.

<table>
<thead>
<tr>
<th>Remove as shown</th>
<th>Install as shown</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Bushing, Stator Shaft - Front</td>
<td>4 Bushing, Stator Shaft - Front</td>
</tr>
<tr>
<td>90 Bushing, Stator Shaft - Rear</td>
<td>90 Bushing, Stator Shaft - Rear</td>
</tr>
<tr>
<td>217 Cover, Pump</td>
<td>217 Cover, Pump</td>
</tr>
</tbody>
</table>

- **J-7004-1**
- **J-21465-15**
- **J-25019-14**
- **J-25019-2**

- **J-8092**
- **J-34196-12**
- **J-34196-3**

<table>
<thead>
<tr>
<th>3 Bushing, Oil Pump Body</th>
<th>3 Bushing, Oil Pump Body</th>
</tr>
</thead>
<tbody>
<tr>
<td>203 Body, Pump</td>
<td>203 Body, Pump</td>
</tr>
</tbody>
</table>

- **J-8092**
- **J-25019-4**
- **J-25019-9**

<table>
<thead>
<tr>
<th>603 Bushing, Reverse Input Clutch - Front</th>
<th>603 Bushing, Reverse Input Clutch - Front</th>
</tr>
</thead>
<tbody>
<tr>
<td>605 Housing & Drum Assembly, Reverse Input Clutch</td>
<td>605 Housing & Drum Assembly, Reverse Input Clutch</td>
</tr>
<tr>
<td>606 Bushing, Reverse Input Clutch - Rear</td>
<td>606 Bushing, Reverse Input Clutch - Rear</td>
</tr>
</tbody>
</table>

- **J-8092**
- **J-25019-16**
- **J-25019-4**
- **J-25019-9**

Figure 175 Bushing Replacement Procedure
Figure 176 Bushing Replacement Procedure

<table>
<thead>
<tr>
<th>REMOVE AS SHOWN</th>
<th>INSTALL AS SHOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>J-8092</td>
<td>J-8092</td>
</tr>
<tr>
<td>J-34196-5</td>
<td>J-34196-4</td>
</tr>
<tr>
<td>657 BUSHING, INPUT SUN GEAR – FRONT</td>
<td>657 BUSHING, INPUT SUN GEAR – FRONT</td>
</tr>
<tr>
<td>658 GEAR, INPUT SUN</td>
<td>658 GEAR, INPUT SUN</td>
</tr>
<tr>
<td>659 BUSHING, INPUT SUN GEAR – REAR</td>
<td>659 BUSHING, INPUT SUN GEAR – REAR</td>
</tr>
<tr>
<td>J-23907</td>
<td>J-8092</td>
</tr>
<tr>
<td>J-29369-2</td>
<td>J-34196-3</td>
</tr>
<tr>
<td>J-7004-1</td>
<td>J-34196-3</td>
</tr>
<tr>
<td>J-25019-14</td>
<td></td>
</tr>
<tr>
<td>665 BUSHING, REACTION CARRIER SHAFT – FRONT</td>
<td>665 BUSHING, REACTION CARRIER SHAFT – FRONT</td>
</tr>
<tr>
<td>666 SHAFT, REACTION CARRIER</td>
<td>666 SHAFT, REACTION CARRIER</td>
</tr>
<tr>
<td>667 BUSHING, REACTION CARRIER SHAFT – REAR</td>
<td>667 BUSHING, REACTION CARRIER SHAFT – REAR</td>
</tr>
<tr>
<td>J-8092</td>
<td></td>
</tr>
<tr>
<td>J-34196-1</td>
<td></td>
</tr>
<tr>
<td>672 BUSHING, REACTION SUN</td>
<td>672 BUSHING, REACTION SUN</td>
</tr>
<tr>
<td>673 GEAR, REACTION SUN</td>
<td>673 GEAR, REACTION SUN</td>
</tr>
</tbody>
</table>

490233.700-R4
BUSHING REPLACEMENT PROCEDURE
PROTECT PARTS WITH WOOD BLOCKS OR CLOTH AS NECESSARY

<table>
<thead>
<tr>
<th>REMOVE AS SHOWN</th>
<th>INSTALL AS SHOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>J-8092</td>
<td>J-8092</td>
</tr>
<tr>
<td>J-23062-14</td>
<td>J-34196-4</td>
</tr>
<tr>
<td>36 EXTENSION, CASE</td>
<td>36 EXTENSION, CASE</td>
</tr>
<tr>
<td>38 BUSHING, CASE EXTENSION</td>
<td>38 BUSHING, CASE EXTENSION</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASE, TRANSMISSION</td>
<td>CASE, TRANSMISSION</td>
</tr>
<tr>
<td>76 BUSHING, CASE</td>
<td>76 BUSHING, CASE</td>
</tr>
</tbody>
</table>

Figure 177 Bushing Replacement Procedure
GOVERNOR BORE REPAIR PROCEDURE
FOLLOW STEPS 1-6 TO REPAIR THE GOVERNOR BORE

STEP 1 Install holding fixture J-28763 and mount in vise.

STEP 2 Remove (file) any excess material from the governor face.

STEP 3 Install J-22976-3 and J-22976-1. Torque bolts to 13 N·m (10 ft.-lbs.). Make sure J-22976-3 rotates freely and then remove it.

STEP 4 Ream the governor bore as follows:
- Oil J-122976-9, J-22976-1 and the governor bore with transmission fluid.
- After each ten revolutions, remove the reamer and dip in transmission fluid to clean.
- After the reamer reaches the end of the bore and bottoms on the governor support pin, rotate the reamer ten additional revolutions.
- Remove the reamer. Be certain to rotate during removal to prevent scoring the bore.
- Remove the tools and thoroughly clean the case.

STEP 5 Align the slots in the bushing with the slots in the governor bore.

STEP 6 Install the bushing until the slots in the bushing align with the feed holes in the governor bore.

Figure 178 Governor Bore Repair Procedure
<table>
<thead>
<tr>
<th>Tool Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universal Remover</td>
<td>J-7004-1</td>
</tr>
<tr>
<td>Dial Indicator Set</td>
<td>J-8001</td>
</tr>
<tr>
<td>Handle</td>
<td>J-8092</td>
</tr>
<tr>
<td>Holding Fixture & Base</td>
<td>J-8763-02</td>
</tr>
<tr>
<td>Oil Pump Body & Cover Alignment Band</td>
<td>J-21368</td>
</tr>
<tr>
<td>Rear Seal Installer</td>
<td>J-21426</td>
</tr>
<tr>
<td>Pump Oil Seal Installer</td>
<td>J-25016</td>
</tr>
<tr>
<td>Piston Compressor</td>
<td>J-22269-01</td>
</tr>
<tr>
<td>Bushing Remover</td>
<td>J-23062-14</td>
</tr>
<tr>
<td>Clutch Spring Compressor</td>
<td>J-23327</td>
</tr>
<tr>
<td>Clutch Spring Compressor Adaptor</td>
<td>J-25018-A</td>
</tr>
<tr>
<td>End Play Checking Fixture</td>
<td>J-23907</td>
</tr>
<tr>
<td>Universal Remover</td>
<td>J-23456</td>
</tr>
<tr>
<td>Oil Pump Remover & End Play Checking Fixture</td>
<td>J-24773-A</td>
</tr>
<tr>
<td>Bushing Remover</td>
<td>J-25022</td>
</tr>
<tr>
<td>Bushing Remover</td>
<td>J-25019-4</td>
</tr>
<tr>
<td>Bushing Installer</td>
<td>J-25019-12</td>
</tr>
<tr>
<td>Bushing Remover</td>
<td>J-25019-9</td>
</tr>
<tr>
<td>Bushing Remover</td>
<td>J-25019-16</td>
</tr>
<tr>
<td>Turbine Shaft Seal Installer</td>
<td>J-36418-1</td>
</tr>
<tr>
<td>Turbine Shaft Seal Sizer</td>
<td>J-36418-2</td>
</tr>
<tr>
<td>Bushing Remover</td>
<td>J-25019-14</td>
</tr>
<tr>
<td>Bushing Remover</td>
<td>J-25019-16</td>
</tr>
<tr>
<td>Bushing Remover</td>
<td>J-25019-14</td>
</tr>
<tr>
<td>Bushing & Universal Remover Set</td>
<td>J-29369-1</td>
</tr>
<tr>
<td>Speedometer Gear Puller & Adapter</td>
<td>J-21427-01</td>
</tr>
<tr>
<td>Servo Cover Compressor</td>
<td>J-29714</td>
</tr>
<tr>
<td>Output Shaft Support Fixture</td>
<td>J-29369-2</td>
</tr>
<tr>
<td>Inner Overrun Clutch Seal Protector</td>
<td>J-21427-01</td>
</tr>
<tr>
<td>Inner Forward Clutch Seal Protector</td>
<td>J-29837</td>
</tr>
<tr>
<td>2-4 Band Apply Pin Tools</td>
<td>J-29837</td>
</tr>
<tr>
<td>Speed Sensor Rotor Installer</td>
<td>J-29882</td>
</tr>
<tr>
<td>Bushing Set</td>
<td>J-29883</td>
</tr>
<tr>
<td>Dial Indicator Stand and Guide Pin Set</td>
<td>J-25025-B</td>
</tr>
<tr>
<td>Speedometer Gear Installer</td>
<td>J-36352</td>
</tr>
<tr>
<td>E - Essential Tool</td>
<td></td>
</tr>
<tr>
<td>A - Available Tool</td>
<td></td>
</tr>
</tbody>
</table>

Figure 179 Special Tools
TRANSMISSION DISASSEMBLY

GENERAL SERVICE INFORMATION

- Teflon Oil Seal Rings: During disassembly, check seals for damage and make sure that they rotate freely in their grooves. Inspect the grooves for dirt, burrs or other damage.

- Thrust washers and surfaces: These washers and the surfaces they engage may appear polished. This is a normal condition and does not indicate damage.

- Thoroughly clean the exterior of the transmission.

- As the unit is disassembled clean the assemblies or components so that proper inspection can be made.

Remove or Disconnect (Figure 1)
Torque converter (1).

Install or Connect (Figure 3)
Tools Required:
J-8763-02 Holding Fixture and Base

Important
Do not overtighten the tool as case damage may result.

2. Transmission and holding fixture into the base.
3. Fixture pin.
4. Drain transmission fluid.

COMPONENT REPAIR AND TRANSMISSION ASSEMBLY

- Speedometer Drive Gear/Speed Sensor Rotor Replacement 400-16
- Gear Unit Assembly 400-17
- Reaction Carrier Assembly 400-17
- Intermediate Clutch Piston 400-20
- Low Clutch Roller Assembly 400-21
- Direct Clutch and Intermediate Roller Assembly 400-21
- Direct Clutch Piston 400-22
- Direct Clutch Assembly 400-22
- Center Support and Gear Unit Assembly 400-23
- Intermediate Clutch Assembly 400-24
- Direct Clutch Assembly and Front Band 400-24
- Forward Clutch Assembly 400-25
- Turbine Shaft Removal 400-25
- Oil Pump Assembly 400-26
- Pump Body 400-28
- Gear Clearance 400-29
- Pump Cover 400-29
- Rear Unit End Play Check 400-31
- Front Unit End Play Check 400-31
- Governor Assembly 400-32
- Driven Gear Replacement 400-33
- Rear Servo Accumulator Assembly 400-35
- Front Servo Assembly 400-36
- Control Valve Assembly 400-37
- Oil Pan and Filter Assembly 400-39
- Torque Converter 400-40

TORQUE SPECIFICATIONS

SPECIAL TOOLS

BUSHING REPLACEMENT

400-43
400-44
400-45
400-46
ILL. NO.	**DESCRIPTION**
1 | CONVERTER ASSEMBLY
4 | BOLT, HEX HD 5/16-18 X 1.406 (PUMP TO CASE)
5 | WASHER, PUMP TO CASE BOLTS
6 | PUMP ASSEMBLY
7 | SEAL, RING (PUMP TO CASE)
8 | GASKET, PUMP COVER TO CASE
9 | VENT, PIPE
10 | CASE, TRANSMISSION
11 | BOLT, HEX HD 5/16-18 X .62
12 | RETAINER, MODULATOR
13 | VACUUM MODULATOR ASSEMBLY
14 | SEAL, O-RING
15 | VALVE, VACUUM MODULATOR
16 | CONNECTOR, COOLER FITTING
17 | SCREW, NAMEPLATE
18 | NAMEPLATE
19 | BOLT, HEX HD 5/16-18 X .62
20 | COVER, GOVERNOR
21 | GASKET, GOVERNOR COVER
22 | GOVERNOR ASSEMBLY
23 | BOLT, HEX HD 3/8-16 X 1 (CASE EXTENSION TO CASE)
24 | NUT, HEX 3/8-24 (STUD)
25 | WASHER, FLAT
26 | SEAL, CASE EXTENSION
27 | CASE EXTENSION ASSEMBLY
28 | BEARING ASSEMBLY
29 | SPACER, BEARING
30 | BUSHING, CASE EXTENSION
31 | RING, INTERNAL SNAP
32 | SEAL, CASE EXTENSION TO CASE
33 | BUSHING
34 | GASKET, CASE TO EXTENSION
35 | CONNECTOR, ELECTRICAL
36 | SEAL, O-RING
37 | SCREW & CONICAL WASHER ASSEMBLY
38 | PAN, TRANSMISSION
39 | GASKET, TRANSMISSION OIL PAN
40 | MAGNET, CHIP COLLECTOR
41 | BOLT, SHOULDER (FILTER TO VALVE BODY)
42 | FILTER ASSEMBLY, TRANSMISSION OIL
43 | SPACER, VALVE BODY TO FILTER
44 | PIPE, INTAKE
45 | PIPE, INTAKE
46 | SEAL, O-RING
47 | BOLT, HEX HD 5/16-18 X 1.875 (V.B. TO CASE)
48 | MANUAL DETENT ROLLER & SPRING ASSEMBLY
49 | CONTROL VALVE ASSEMBLY
50 | PIPE, GOVERNOR
51 | BOLT
52 | SCREEN ASSEMBLY, GOVERNOR
53 | SCREW, HEX HD & WASHER
54 | SOLENOID ASSEMBLY
55 | GASKET, SOLENOID
56 | GASKET, VALVE BODY TO SPACER PLATE
57 | PLATE, VALVE BODY SPACER
58 | GASKET, SPACER PLATE TO CASE
59 | BALL, (25° DIA.)
60 | PISTON, FRONT SERVO
61 | WASHER, FRONT SERVO
62 | PIN, FRONT SERVO PISTON
63 | RETAINER, FRONT SERVO SPRING
64 | SPRING, FRONT SERVO PISTON
65 | BOLT, HEX HD 5/16-18 X .62 (SERVO COVER TO CASE)
66 | COVER, REAR SERVO
67 | GASKET, REAR SERVO COVER
68 | RING, RETAINING (SERVO PISTON)
69 | PISTON, ACCUMULATOR (REAR SERVO)
70 | SEAL, REVERSE SERVO PISTON
71 | RING, OIL SEAL (ACCUMULATOR PISTON — OUTER)
72 | PISTON, ACCUMULATOR
73 | RING, OIL SEAL (ACCUMULATOR PISTON — INNER)
74 | WASHER, SERVO ASSEMBLY
75 | SPRING, REAR SERVO
76 | RETAINER, REAR SERVO SPRING
77 | PIN, REAR BAND APPLY
78 | SPRING, REAR ACCUMULATOR
79 | BOLT, CASE TO CENTER SUPPORT
80 | STUD, CASE TO CASE EXTENSION
81 | SPEED SENSOR, INTERNAL TRANSMISSION
82 | O-RING, SPEED SENSOR
83 | BOLT, SPEED SENSOR RETAINING

Figure 2 - Case and External Parts Legend

DISASSEMBLY

Vacuum Modulator Assembly

- **Remove or Disconnect** (Figure 4)

 Tool Required:

 Magnet to capture modulator valve

 1. Bolt (11) and retainer (12).
 2. Vacuum modulator assembly (13), and O-ring seal (14)
 - seal may be stuck in case
 3. Modulator valve (15) with magnet.

Oil Pan & Filter Assembly

- **Remove or Disconnect** (Figure 5)

 1. Rotate transmission upside down and lock in place with base pin.
 2. Oil pan bolts (37)
 3. Oil pan (38), gasket (39) and magnet (40).
4. Oil filter bolt (41), spacer (43), filter (42), intake pipe (45), and O-ring seal (46) - o-ring may be stuck in the case

Control Valve Assembly

Remove or Disconnect (Figure 6)

1. Bolts (47), manual detent spring and roller (48).
2. Bolts (51)
3. Governor oil pipes (50) up from case and rotate them away from their holes.
4. Governor oil screen (52) from the inboard hole.
5. Control valve assembly (49).

Solenoid Assembly

Remove or Disconnect (Figure 6)

1. Wire connecting solenoid (54) to exterior electrical connector.
2. Screws (53) and solenoid (54).
 - Be careful not to press against solenoid cover.
3. Valve body to spacer plate gasket (56), spacer plate (57) and spacer plate to case gasket (58).
4. Six check balls (59)
 - Use a magnet

Front and Rear Servo Assemblies

Remove or Disconnect (Figures 7 and 8)

1. Servo piston assembly (60-62), retainer (63) and spring (64).
2. Bolts (65), cover (66) and gasket (67).
3. Rear servo accumulator assembly (68 - 78)

Band Apply Pin Check

Measure (Figures 9, 10 and 11)

Tools Required:
J-21370-5 Gage Pin
J-21370-6 Selector Gage
Figure 6 - Removing Control Valve Assembly

1. Place J-21370-5 in the servo pin bore.
2. Position J-21370-6 over the bore with the hex nut facing the parking pawl linkage.
3. Fasten with two 5/16-18 X 1" screws and torque to 18 lbs./ft. (24 N·m)
4. Make sure stepped side of pin faces front of case and moves freely in the tool and pin bore.
5. To determine correct pin length apply 25 lbs./ft. torque to the nut on the gage.
6. Pin measurement
 - If gage pin is even with the top of the gage surface or above the upper step of the pin, use the long pin.
 - If gage pin is between the upper and lower steps, use the medium pin.
 - If the gage surface is even with or below the step on the gage pin, use the short pin.

Governor Assembly

Figure 7 - Front Servo Assembly

1. Place J-21370-5 in the servo pin bore.
2. Position J-21370-6 over the bore with the hex nut facing the parking pawl linkage.
3. Fasten with two 5/16-18 X 1" screws and torque to 18 lbs./ft. (24 N·m)
4. Make sure stepped side of pin faces front of case and moves freely in the tool and pin bore.
5. To determine correct pin length apply 25 lbs./ft. torque to the nut on the gage.
6. Pin measurement
 - If gage pin is even with the top of the gage surface or above the upper step of the pin, use the long pin.
 - If gage pin is between the upper and lower steps, use the medium pin.
 - If the gage surface is even with or below the step on the gage pin, use the short pin.

Governor Assembly

1. Place J-21370-5 in the servo pin bore.
2. Position J-21370-6 over the bore with the hex nut facing the parking pawl linkage.
3. Fasten with two 5/16-18 X 1" screws and torque to 18 lbs./ft. (24 N·m)
4. Make sure stepped side of pin faces front of case and moves freely in the tool and pin bore.
5. To determine correct pin length apply 25 lbs./ft. torque to the nut on the gage.
6. Pin measurement
 - If gage pin is even with the top of the gage surface or above the upper step of the pin, use the long pin.
 - If gage pin is between the upper and lower steps, use the medium pin.
 - If the gage surface is even with or below the step on the gage pin, use the short pin.

Governor Assembly

Figure 7 - Front Servo Assembly

1. Place J-21370-5 in the servo pin bore.
2. Position J-21370-6 over the bore with the hex nut facing the parking pawl linkage.
3. Fasten with two 5/16-18 X 1" screws and torque to 18 lbs./ft. (24 N·m)
4. Make sure stepped side of pin faces front of case and moves freely in the tool and pin bore.
5. To determine correct pin length apply 25 lbs./ft. torque to the nut on the gage.
6. Pin measurement
 - If gage pin is even with the top of the gage surface or above the upper step of the pin, use the long pin.
 - If gage pin is between the upper and lower steps, use the medium pin.
 - If the gage surface is even with or below the step on the gage pin, use the short pin.

Governor Assembly

1. Place J-21370-5 in the servo pin bore.
2. Position J-21370-6 over the bore with the hex nut facing the parking pawl linkage.
3. Fasten with two 5/16-18 X 1" screws and torque to 18 lbs./ft. (24 N·m)
4. Make sure stepped side of pin faces front of case and moves freely in the tool and pin bore.
5. To determine correct pin length apply 25 lbs./ft. torque to the nut on the gage.
6. Pin measurement
 - If gage pin is even with the top of the gage surface or above the upper step of the pin, use the long pin.
 - If gage pin is between the upper and lower steps, use the medium pin.
 - If the gage surface is even with or below the step on the gage pin, use the short pin.

Governor Assembly

Figure 7 - Front Servo Assembly

1. Place J-21370-5 in the servo pin bore.
2. Position J-21370-6 over the bore with the hex nut facing the parking pawl linkage.
3. Fasten with two 5/16-18 X 1" screws and torque to 18 lbs./ft. (24 N·m)
4. Make sure stepped side of pin faces front of case and moves freely in the tool and pin bore.
5. To determine correct pin length apply 25 lbs./ft. torque to the nut on the gage.
6. Pin measurement
 - If gage pin is even with the top of the gage surface or above the upper step of the pin, use the long pin.
 - If gage pin is between the upper and lower steps, use the medium pin.
 - If the gage surface is even with or below the step on the gage pin, use the short pin.

Governor Assembly

Figure 7 - Front Servo Assembly

1. Place J-21370-5 in the servo pin bore.
2. Position J-21370-6 over the bore with the hex nut facing the parking pawl linkage.
3. Fasten with two 5/16-18 X 1" screws and torque to 18 lbs./ft. (24 N·m)
4. Make sure stepped side of pin faces front of case and moves freely in the tool and pin bore.
5. To determine correct pin length apply 25 lbs./ft. torque to the nut on the gage.
6. Pin measurement
 - If gage pin is even with the top of the gage surface or above the upper step of the pin, use the long pin.
 - If gage pin is between the upper and lower steps, use the medium pin.
 - If the gage surface is even with or below the step on the gage pin, use the short pin.
Front End Play Check

Measure (Figures 13 and 14)

Tools Required:
- J-6125 Slide Hammer Bolt
- J-8001 Dial Indicator

1. Remove oil pump bolt (4) and washer (5) at the 10-o’clock position as shown and install J-6125.
3. Eliminate slack by pressing turbine shaft to the rear and output shaft (691) forward.
4. Index J-8001 against the end of turbine shaft and set dial to "0".
5. Pull out on the turbine shaft and note the measurement on J-8001. End play should be between .003" and .024" (.076-610 mm)
6. Select correct washer from chart.
7. Remove tools.

Important
During reassembly Front End Play Check must be repeated to verify accuracy of selective thrust washer (207)
Rear Unit End Play Check

Measure (Figures 16 and 17)

Tools Required:
- J-21797 Bolt
- J-8001 Dial Indicator

1. Attach J-21797 to one of the bolt holes at the end of the transmission case (10).
2. Mount J-8001 on the bolt and index it to the end of the output shaft (691).
3. Move the output shaft in and out noting the amount of end play.
 - correct end play is between .007" and .019" (.178 - 483 mm)

Important

During reassembly, Rear End Play Check must be repeated to verify accuracy of selective thrust washer (696).

<table>
<thead>
<tr>
<th>THICKNESS (INCH)</th>
<th>IDENTIFICATION NOTCH AND/OR NUMERAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>.074 - .078</td>
<td>None</td>
</tr>
<tr>
<td>.082 - .086</td>
<td>ON SIDE OF 1 TAB</td>
</tr>
<tr>
<td>.090 - .094</td>
<td>ON SIDE OF 2 TABS</td>
</tr>
<tr>
<td>.098 - .102</td>
<td>ONE END OF 1 TAB</td>
</tr>
<tr>
<td>.105 - .110</td>
<td>ON END OF 2 TABS</td>
</tr>
<tr>
<td>.114 - .118</td>
<td>ON END OF 3 TABS</td>
</tr>
</tbody>
</table>

Oil Pump Assembly

Remove or Disconnect (Figures 18 and 19)

Tool Required:
- J-24773-1 Oil Pump Remover
1. Bolts (4) and washers (5).
2. Oil pump assembly (6).
3. Pump seal (7) and gasket (8).

Parking Lock Pawl and Actuator Assembly

Remove or Disconnect (Figure 20 and 21)

1. Nut (703) and pin (704).
2. Detent lever (707) and actuator (708).
3. Bolts (701) and parking pawl bracket (702).
4. Spring (710) and retainer (711).
5. Shaft (712) and plug (709).
Forward Clutch Assembly

- Remove or Disconnect (Figure 22, 23 and 24)
 - Forward clutch assembly (602-618).
 - Grasp turbine shaft and lift.

Direct Clutch Assembly

- Remove or Disconnect (Figures 22, 23 and 25)
 1. Direct clutch assembly (619 - 638)
 2. Front band (639)

Intermediate Clutch Assembly

- Remove or Disconnect (Figure 26)
 1. Snap ring (640).
 2. Intermediate clutch backing plate (641).
 3. Clutch plates (642 and 643).
 4. Waved plate (644) when part of assembly.

Center Support and Gear Unit Assembly

- Remove or Disconnect (Figures 27, 28 and 29)
 Tool Required:
 - J-6116 Gear Unit Holding Fixture
 - J-21795 Main Shaft Tool.
 1. Center support bolt (79)
 2. Snap ring (645)
 3. Center support assembly (646-654)
<table>
<thead>
<tr>
<th>AUTOMATIC TRANSMISSION 400-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILL. NO.</td>
</tr>
<tr>
<td>601</td>
</tr>
<tr>
<td>602</td>
</tr>
<tr>
<td>603</td>
</tr>
<tr>
<td>604</td>
</tr>
<tr>
<td>605</td>
</tr>
<tr>
<td>606</td>
</tr>
<tr>
<td>607</td>
</tr>
<tr>
<td>608</td>
</tr>
<tr>
<td>609</td>
</tr>
<tr>
<td>610</td>
</tr>
<tr>
<td>611</td>
</tr>
<tr>
<td>612</td>
</tr>
<tr>
<td>613</td>
</tr>
<tr>
<td>614</td>
</tr>
<tr>
<td>615</td>
</tr>
<tr>
<td>616</td>
</tr>
<tr>
<td>617</td>
</tr>
<tr>
<td>618</td>
</tr>
<tr>
<td>619</td>
</tr>
<tr>
<td>620</td>
</tr>
<tr>
<td>621</td>
</tr>
<tr>
<td>622</td>
</tr>
<tr>
<td>623</td>
</tr>
<tr>
<td>624</td>
</tr>
<tr>
<td>625</td>
</tr>
<tr>
<td>626</td>
</tr>
<tr>
<td>627</td>
</tr>
<tr>
<td>628</td>
</tr>
<tr>
<td>629</td>
</tr>
<tr>
<td>630</td>
</tr>
<tr>
<td>631</td>
</tr>
<tr>
<td>632</td>
</tr>
<tr>
<td>633</td>
</tr>
<tr>
<td>634</td>
</tr>
<tr>
<td>635</td>
</tr>
<tr>
<td>636</td>
</tr>
<tr>
<td>637</td>
</tr>
<tr>
<td>638</td>
</tr>
<tr>
<td>639</td>
</tr>
<tr>
<td>640</td>
</tr>
<tr>
<td>641</td>
</tr>
<tr>
<td>642</td>
</tr>
<tr>
<td>643</td>
</tr>
<tr>
<td>644</td>
</tr>
<tr>
<td>645</td>
</tr>
<tr>
<td>646</td>
</tr>
<tr>
<td>647</td>
</tr>
<tr>
<td>648</td>
</tr>
</tbody>
</table>

Figure 23 - Internal Parts - Legend

4. Sun gear shaft (664)
5. Gear unit assembly (656-697)
6. Rear band (672), selective washer (695), selective thrust washer (696).

Transmission Case

- **Inspect (Figure 30)**
- Case (10) for cracks, porosity and connected passages.
- Case extension (27) for cracks, porosity, scored bushing (30).

- All threaded holes for damage.
 - Heli-coil to repair.
- Air check all oil passages
 - see Diagnosis Section for oil passage identification.
- Front and rear servo bores for damage, porosity, or burrs.
- Cooler connectors (16) for
 - damage
 - proper torque 38 N·m (28 lbs. ft.)
- Intermediate clutch plate lugs for damage or hardening (brinelling).
- Snap ring grooves for damage.
- Governor and modulator bores for scoring or damage.
Figure 28 - Removing Center Support and Gear Unit Assembly

Figure 29 - Removing Rear Band and Selective Washer
Figure 30 - Transmission Case And Extension Assembly
TRANSMISSION ASSEMBLY

Park Lock Pawl and Actuator Assembly

Inspect

- Parking pawl (713) for cracks burrs, damage
- Parking pawl shaft (712) for damage and freeness of fit
- Parking pawl return spring (710) for distortion or damage
- Detent lever (707) and actuator (708) for:
 - Damage or cracks
- Manual shaft for damage

Install or Connect (Figures 31 and 32)

1. Parking pawl (713).
2. Pawl shaft (712).
3. Plug (709).
4. Retainer (711).
5. Pawl return spring (710).
6. Detent lever (707) to actuator (708).
7. Actuator (708) under parking pawl (713).
8. Manual shaft (705) and seal (706).
11. Parking lock bracket (702) with bolts (701).

Rear Band and Selective Thrust Washer

Inspect (Figure 33)

- Rear band (672) and thrust washer (696) for:
 - Wear or damage
Install or Connect (Figure 33)
1. Selective thrust washer (696) from Rear End Play Check.
2. Output shaft to case thrust washer (695).
3. Rear band (672).

Figure 33 - Installing Rear Band and Selective Thrust Washer

Gear Unit and Output Carrier Assemblies

Disassemble (Figure 34)
1. Thrust bearing (661) and races (660, 662).
2. Reaction carrier (666).
3. Sun gear (665), thrust washer (674) and front internal gear ring (673).
4. Snap ring (694), output shaft (691) and O-ring (697).
5. Thrust bearing (683) and races (682 and 684) from rear internal gear (685).
6. Rear internal gear (685) and main shaft (681).
7. Snap ring (689) from main shaft (681).
8. Races (686 and 688) and bearing (687).

Inspect (Figures 34 and 35)
- Output shaft (691) for:
 - damaged splines
 - worn or damaged governor drive gear teeth
- Output shaft bushing (690) for:
 - wear, scoring or galling
 - See Bushing Replacement Procedure
- Speedometer drive gear (693) for:
 - wear or cracks
- Main shaft (681) for:
 - scored, damaged or worn bushings (see Bushing Replacement Procedure)
 - cracks
 - damaged splines
- Rear internal gear (685) for:
 - stripped splines
 - damaged teeth
 - cracks

Output carrier assembly (675) for:
- damaged lugs
- pinion gear damage
- excess pinion washer wear (end play should be .009"-.024"/.228-.610 mm)

Front internal gear ring (673) for:
- damage
- cracks

Speedometer Drive Gear/Speed Sensor Rotor Replacement
Tools Required:
- J 21427-01 Speedometer Gear Puller Adapter
- J 8433 Speedometer Gear Puller
- J 5590 Speedometer Gear Installer
- J 36352-3 Rotor Installer
- J 36352-5 Rotor Installer Mechanical Press

Do not remove rotor (698) unless damaged. After removal a new rotor must be installed to insure press fit to output shaft.

(Figures 34 and 36)
1. Install J 21427-01 and J 8433 puller.
2. Depress clip (692) and remove gear (693) or rotor (698).
3. Install rotor (698) using J 36352-3 or J 36352-5. Install speedometer drive gear (693) and clip (692) using J 5590.

Pinion Gear Replacement Procedure - Output Carrier Assembly

Remove or Disconnect (Figures 37 and 38)
1. Stake marks from pinion pins (680) with 1/2" drill.

Important
Do not allow drill to remove stock from carrier. Excessive removal of material will weaken carrier.

2. Pinion pins (680) from carrier (675).
3. Pinion gears (679) thrust washers (676, 677) and roller needle bearings (678).

Inspect (Figures 38 and 39)
- Pinion pocket thrust faces for burrs.
- Output carrier (675) for:
 - cracks, damage or wear

Assemble (Figures 38 and 39)
1. Needle bearings (678) in pinion gears (679).
2. Bronze (676) and steel (677) thrust washers on each side of pinion gears.
 - steel washers are next to pinion gears
3. Pinion gear assemblies into carriers (675).
4. Pinion pins (680).
 - headed end of pins must be flush with carrier face.
5. Stake pins at three points with blunt chisel.
 - pins must not extend beyond carrier surface
Figure 34 - Gear Unit Assembly

Assemble (Figure 40)

1. Race (682) thrust bearing (683), and race (684) on grooved end of mainshaft (681).
2. Main shaft (681) into rear internal gear (685).
3. Race (686), bearing (687) and race (688) on main shaft (681).
4. Snap ring (689) on main shaft (681).
5. Main shaft assembly (681-689) to output shaft (691).
6. Snap ring (689).
7. O-ring seal (697).

Reaction Carrier Assembly

Inspect (Figure 40 and 42)

- Reaction carrier assembly for:
 - pinion gear damage
 - excess pinion washer wear (end play should be .009"-.024"/.228-.610 mm)
400-18 AUTOMATIC TRANSMISSION

REMOTE TRANSMISSION

- cracks or damage to band apply surface
- Roller clutch assembly for damage to:
 - rollers
 - springs
 - cage
- Sun gear (665) and sun gear shaft (664) for:
 - nicked, scored or worn bushings (663) (see Bushing Replacement Procedure)
 - damaged splines or teeth
 - cracks

Figure 39 - Staking Pinion Pin

Pinion Gear Replacement Procedure - Reaction Carrier Assembly

- Remove or Disconnect (Figures 42, 43 and 44)

1. Stake marks from pinion pins (671) with 1/2" drill

Important

DO NOT ALLOW DRILL TO REMOVE STOCK FROM CARRIER. EXCESSIVE REMOVAL OF MATERIAL WILL WEAKEN CARRIER.

2. Pinion pins (671) from carrier (666)
3. Pinion gears (669), thrust washers (667, 670) and roller needle bearings (668)

Inspect

- Pinion pocket thrust surfaces for burrs.
- Reaction carrier (666) for:
 - cracks, damage or wear
2. Bronze washers (670) and steel washers (667) as shown
3. Pinion gear assemblies into carrier (666)
4. Pinion pins (671)
 - headed end of pins must be flush with carrier face
5. Stake pins at three points with blunt chisel
Intermediate Clutch Piston

Remove or Disconnect (Figure 46)

1. Oil rings (653) from center support (654).
2. Press in on spring retainer (647) and remove snap ring (646).
3. Retainer (647) and three clutch release springs (648).
4. Spring guide (649) and clutch piston (650).
5. Inner seal (651) and outer seal (652) from clutch piston (650).

Important

Do not remove three screws holding roller clutch race to center support (654).

Inspect (Figures 46 and 47)

- Roller clutch race inside center support (654) for scratches, wear or damage.
- Center support (654) for:
 - cracks
 - damaged lugs
- Oil rings (653) and ring grooves for damage, burrs or cuts.
- Air check oil passages.
- Intermediate clutch piston (650) for cracks or damage.
- Sealing surfaces and seal grooves for scratches or other damage.
- Springs (648) for collapsed coils or distortion.
- Constant bleed orifice is open approximately .020".
- Clean all components

Assemble (Figure 48)

Tool Required:

J-21363 Intermediate Clutch Inner Seal Protector

1. Lubricate new inner and outer clutch piston seals (651 and 652) and grooves with transmission fluid.
2. Seals (651 and 652) on piston (650) with lips facing away from spring guide (649).
3. Clutch piston (650) on center support (654) with J-21363.
4. Spring guide (649) and clutch release springs (648).
5. Spring retainer (647) and snap ring (646).
6. Oil seal rings (653) on center support hub (654).

Inspect (Figure 49)

- Air check operation of intermediate clutch piston as shown.

Low Roller Clutch Assembly

Install or Connect (Figures 50 and 51)

1. Thrust washer (656) in recess of center support (654).
2. Spacer (659) and roller assembly (658) into reaction carrier (666).
3. Center support (654) into reaction carrier (666).

Important

To verify correct assembly, hold reaction carrier (666) stationary. Center support (654) should turn counter clockwise only.

Direct Clutch and Intermediate Roller Assembly

Disassemble (Figures 52 and 53)

Tools Required:
- J-4670 Spring Compressor
- J-21664 Adapter
- Mechanical Press
- Snap ring (638) and clutch retainer (637).
- Race (636) and roller assembly (634) (or sprag assembly 635).
- Snap ring (619).
- Direct clutch backing plate (620) and clutch plates (621 and 622).
- Snap ring (625) with J-4670 and J-21664.
- Retainer (626) and clutch release springs (627).
- Apply ring (628) and piston (629).
- Inner seal (630) and outer seal (631) from piston (629).
- Center piston seal (632) from housing (633).

Inspect (Figure 52)

- Roller assembly (634) for damaged rollers, cage or distorted springs.
- Clutch housing (633) for cracks, wear and proper opening of oil passages.
- Clutch plates (621 and 622) for:
 - wear
 - burned
 - flaking
- Backing plate (620) and piston (629) for damage or cracks.
- Clutch springs (627) for collapsed coils or distortion.
 - replace if necessary
Direct Clutch Assembly

Install or Connect (Figures 56, 57, 58 and 59)

Tools Required:
- J-21362 Seal Protector
- J-21409 Piston Installer
- J-21664 Adapter

1. J-21362 on housing (633) hub.
2. Piston (629) inside J-21409.
3. J-21409 and piston assembly into housing (333).
4. Clutch release springs (627) in pockets.

5. Spring retainer (626) with J-21664.

Direct Clutch Piston

Install or Connect (Figure 54 and 55)

1. Apply ring (628) onto piston (629).
2. Waved clutch plate (623) or dished clutch plate (624) into direct clutch housing (633).
3. Clutch plates (621 and 622).
 - alternate steel and composition plates as shown in chart
4. Direct clutch backing plate (620) and snap ring (619).
5. Roller assembly (634) or sprag assembly (635).
6. Intermediate clutch race (636) with clockwise motion. When properly installed it should not rotate counter-clockwise.
7. Intermediate clutch retainer (637) and snap ring (638).

Inspect (Figure 60)

1. Place direct clutch assembly on center support (654) for air check operation.
2. Air applied to reverse passage will escape from direct passage. This condition is normal. Apply air to direct passage to actuate piston and move clutch plates.
Center Support and Gear Unit Assembly

Install or Connect (Figure 61)

Tool Required:

- J-21795-1 Gear Assembly Remover and Installer Adapter

1. J-21795-1 to main shaft (681).
2. Place transmission in horizontal position.
3. Align bolt hole in center support (654) with hole in case (10) and carefully set into case.

Figure 53 - Direct Clutch and Intermediate Roller Assembly

Figure 54 - Installing Direct Clutch Piston

Figure 55 - Installing Piston Release Springs
400-24 AUTOMATIC TRANSMISSION

DIRECT CLUTCH APPLY RINGS

<table>
<thead>
<tr>
<th>APPLY RING</th>
<th>MODEL(S)</th>
<th>IDENTIFICATION</th>
<th>OPTIONAL IDENTIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>"A"</td>
<td>EVA, FSA, HRA, MAA, RJA, RVA</td>
<td>0</td>
<td>NONE</td>
</tr>
<tr>
<td>"B"</td>
<td>FGA, ZDA, ZVA</td>
<td>CHAMFER</td>
<td>1</td>
</tr>
<tr>
<td>"A"</td>
<td>LAA, LBA, LCA, LDA, LFA, LHA, LJA, LRA, LSA</td>
<td>3</td>
<td>NONE</td>
</tr>
<tr>
<td>"A"</td>
<td>ALL OTHER</td>
<td>1</td>
<td>NONE</td>
</tr>
</tbody>
</table>

Figure 56 - Direct Clutch Apply Ring Chart

4. Pry gently with a punch to align hole in case (10) with threaded hole in center support (654).
5. Rotate case to vertical position.
6. Case to center support bolt (79).
 - torque to 25 lbs.ft. (31 N·m)
7. Snap ring (645).

1987 THM 400 CLUTCH PLATE APPLICATION CHART

<table>
<thead>
<tr>
<th>MODELS</th>
<th>NO. OF FLAT STEEL PLATES</th>
<th>NO. OF WAVED STEEL PLATES</th>
<th>NO. OF DISHED PLATES</th>
<th>NO. OF COMPOSITION PLATES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>THICKNESS</td>
<td>2.32 MM (.0915")</td>
<td>1.97 MM (.0775")</td>
<td>1.54 MM (.0605")</td>
</tr>
<tr>
<td>FAA, FHA, FRA, FXA, LX A</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVA, FBA, FKA, FSA, HRA, MAA, RVA</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FQA, RHA, RNA</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>RJA</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ALL OTHER</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure 57 - Direct Clutch Plate Chart

Intermediate Clutch Assembly

Inspect (Figure 62)
- Clutch plates (642) for:
 - wear, pitting, flaking or cracks in lining
- Clutch plates (643) for:
 - discoloration, scoring or cracks
- Backing plate (641) for burrs and dirt.
- Front band for:
 - wear, pitting, flaking or cracks in lining

Assemble (Figure 62 and 63)
1. Waved plate (644), if used.
2. Steel plates (643) and composition plates (642) alternately.
 - refer to chart
3. Intermediate clutch backing plate (641).
4. Snap ring (640).

Direct Clutch Assembly and Front Band

Install or Connect (Figure 64)
1. Direct clutch assembly (619, 638) onto the intermediate clutch.
2. Front band (639).
Forward Clutch Assembly

Disassemble (Figure 65 and 66)

Tools Required:
- J-4670-01 Spring Compressor
- J-21364 Adapter
- J-6116-01 Holding Fixture
- J-21664 Adapter

1. Snap ring (619) and direct clutch driving hub (618) from forward clutch housing (602).
2. Forward clutch hub (616).
3. Thrust washers (615 and 617).
5. Waved clutch plate (611) or dished plate (612).
6. Apply ring (610).
7. Snap ring (609) and release spring retainer (608) with J-4670-01 and J-21364.
8. Piston release springs (607), piston (606).

Important

Unless forward clutch housing (602) and turbine shaft (601) are damaged, disassembly is not necessary.

Turbine Shaft Removal

1. Place housing (602) in mechanical press with turbine shaft (601) down.
2. Remove turbine shaft (601) by placing 3/8" drive extension on end of shaft and pressing out.

Forward Clutch Assembly

Inspect (Figure 66)
- Clutch plates (613 and 614) for:
 - burning, scoring, flaking, pitting or wear.
- Release springs (607) for collapsed coils or distortion.
- Clutch hubs (616 and 618) for spline wear, open lubrication holes and damaged thrust faces.
- Piston (606) for cracks.
- Forward clutch housing (602) for wear, scoring, cracks and open oil passages.
- Free operation of check ball.
- Turbine shaft (601) for spline damage, open oil passages, cracks or distortion.

Install or Connect
1. Forward clutch housing (602) in press facing up.
2. Turbine shaft (601) in clutch housing (602) approximately 1/8".
3. Continue installing in small steps, checking frequently to make sure connection is straight.
400-26 AUTOMATIC TRANSMISSION

Figure 61 - Installing Center Support and Gear Unit Assembly

Assemble (Figure 65, 66 and 67)

Tools Required:
- J-21409 Seal Protector
- J-21362 Piston Installer

1. Lubricate new inner seal (605) and outer seal (604) with transmission fluid. Lubricate seal grooves with petrolatum.
2. Seals (604) and (605) on piston (606) with lips facing away from spring pockets.
3. Lubricate center piston seal (603) and groove.
4. Center piston seal (603) onto clutch housing (602) with lip facing up.
5. J-21409 over clutch hub.
6. Piston (606) inside J-21362 and insert assembly into housing (602) rotating slightly clockwise until seated.

Assemble (Figures 68, 69, 70 and 71)

Tools Required:
- J-21664 Spring Compressor

1. Clutch release springs (607) in piston (606).
2. Retainer (608) on springs (607) with J-21664.
3. Snap ring (609).
4. Thrust washer (617) on outside of forward clutch hub (616).
5. Bronze thrust washer (615) on inside of hub (616).
 - retain with petrolatum
6. Forward clutch hub (616) in clutch housing (602).
7. Apply ring (610) into housing (602)
8. Waved clutch plate (611) or dished clutch plate (612).
9. Clutch plates (614 and 613) alternately.
 - refer to chart for model application
10. Direct clutch hub (618) in forward clutch housing (602) (over clutch plates).
11. Snap ring (619).

Inspect (Figure 72)

- Install forward clutch on oil pump assembly.
- Check piston and clutch operation by applying air to forward clutch passage in pump.
- Install forward clutch assembly (602-618) with turbine shaft (601) into transmission.

Oil Pump Assembly

Disassemble (Figure 74)

NOTICE: Regulator spring (214) is tightly compressed. Use care when removing bushing (212).

1. Retaining ring (211).
2. Pressure regulator and boost valve assemblies (212-217).
3. Bolts (203, 204 and 205).
1987 THM 400 CLUTCH PLATE APPLICATION CHART

INTERMEDIATE CLUTCH

<table>
<thead>
<tr>
<th>MODELS</th>
<th>NO. OF FLAT STEEL PLATES</th>
<th>NO. OF WAVED STEEL PLATES</th>
<th>NO. OF COMPOSITION PLATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>THICKNESS</td>
<td>2.51 MM (0.099")</td>
<td>1.74 MM (0.0685")</td>
<td></td>
</tr>
<tr>
<td>EVA, FGA, FKA, FSA, HRA, MAA, RVA, ZDA, ZVA</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ALL OTHERS</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Figure 63 - Intermediate Clutch Plate Chart
Figure 66 - Forward Clutch Assembly

Figure 67 - Installing Forward Clutch Piston

Figure 68 - Installing Forward Clutch Piston Release

Springs

Important

Before removing gears (209) and (210) from pump body, mark gear faces to ensure reassembly to same position.

4. Pump drive gear (209) and driven gear (210).
5. Straight pin (219) and valve bore plug (218).
6. Oil seal rings (208) and thrust washer (207).

Pump Body

Inspect (Figure 74)

- Gear pockets, crescent, pump body face, and bushing for:
 - scoring
 - nicks
 - wear
- Oil passages for:
 - foreign material or debris
 - porosity
 - scored or irregular mating surfaces
Forward Clutch Apply Rings

<table>
<thead>
<tr>
<th>APPLY RING TYPE</th>
<th>MODEL(S)</th>
<th>IDENTIFICATION</th>
<th>OPTIONAL IDENTIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>"A"</td>
<td>EVA, FSA, HRA, MAA, RVA</td>
<td>1</td>
<td>NONE</td>
</tr>
<tr>
<td>"B"</td>
<td>FGA, RHA, RJA, RNA, ZDA, ZVA</td>
<td>NONE</td>
<td>0</td>
</tr>
<tr>
<td>"A"</td>
<td>ALL OTHER</td>
<td>2</td>
<td>NONE</td>
</tr>
</tbody>
</table>

Figure 70 - Forward Clutch Apply Ring

- Cross channel leaks
- Pump body bolt threads for damage.
- Oil seal (2), bushing (3) for wear or damage.

Gear Clearance

Measure (Figure 75)

1. Install pump gears (209 and 210) in body (201) as marked.
2. Measure clearance between gears and body.
 - .0008"-.0035" (.02 mm-.09 mm) maximum clearance
3. Pump body with straight edge to assure it is flat.

Pump Cover

Inspect (Figure 74)

- Pump gear face for:
 - Wear
 - Scoring
- Stripped or damaged stator shaft splines
- Bushings (220) and (206) for:
 - Wear, galling
- Oil ring grooves for nicks, burrs or debris
- Pressure regulator (217) and boost regulator valves (213) for:
 - Free movement in regulator bore.
 - Chips, burrs, distortion or plugged oil passages
- Breather hole in pump cover blocked.
400-30 AUTOMATIC TRANSMISSION

1987 THM 400 CLUTCH PLATE APPLICATION CHART
FORWARD CLUTCH

<table>
<thead>
<tr>
<th>MODELS</th>
<th>NO. OF FLAT STEEL PLATES</th>
<th>NO. OF WAVED STEEL PLATES</th>
<th>NO. OF DISHEDED PLATES</th>
<th>NO. OF COMPOSITION PLATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.32 MM (.0915")</td>
<td>1.97 MM (.0775")</td>
<td>1.54 MM (.0605")</td>
<td>1.37 MM (.054")</td>
<td>2.03 MM (.080")</td>
</tr>
<tr>
<td>RHA, RJA, RNA</td>
<td>5</td>
<td>1</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>EVA, HRA, MAA, RVA</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAA, FHA, FLA, FQA, FRA, FXA, LXA</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBA, FJA, FMA, FNA, FPA, FTA, FUA</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALL OTHER MODELS</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure 71 - Forward Clutch Plate Chart

Oil Pump Assembly

Assemble (Figures 74 and 76)
1. Drive gear (209) and driven gear (210) with alignment marks in correct position.
 - lugs on drive gear should be flush with pump body (201).
 - lubricate drive gear (209) and driven gear (210) with automatic transmission fluid.
2. Pressure regulator valve (217) into bore.
3. Pressure regulator spring spacer(s) (216), if used.
4. Spring retainer washer (215) and spring (214) in pressure regulator bore.
5. Regulator boost valve (213) into boost valve bushing (212), stem out against spring (214).
6. Snap ring (211).
7. Bore plug (218) and valve straight pin (219).
8. Cover (202) on body (201).
9. Bolts (203, 204 and 205).
 - do not fully torque

Assemble (Figures 74, 77 and 78)
Tools Required:
 - J-21368 Alignment Band
 - J-21359 Oil Seal Installer
1. J-21368 on pump assembly.
 - torque bolts 18 lbs. ft. (24 N·m)
2. New square cut O-ring (7) and oil seal (2)
 - use J-21359
3. Correct thrust washer (207) as determined by End Play Check during disassembly.
4. Two oil seals (208).

Install or Connect (Figure 79)
1. Gasket (8) on transmission case (10).
2. Forward clutch and oil pump assembly (6) in transmission case (10).
3. Bolts (4) except bolt in 10 o'clock position.
 - torque to 18 lbs. ft. (24 N·m)
Important

If turbine shaft cannot be rotated as pump assembly is being pulled into place, the forward and/or direct clutch housings have not been installed properly to index with all the clutch plates. This condition must be corrected before pump assembly is fully installed.

Rear Unit End Play Check

Measure (Figures 80 and 81)

Tools Required:
- J-21797 Bolt
- J-8001 Dial Indicator

1. Install J-8001 on the bolt and index it to the end of the output shaft (691).
 - set indicator to “0”
2. Move output shaft (691) in and out.
 - proper end play is .007”-.019” (.178 mm-.483 mm)
3. Remove tools and correct if necessary.

Front Unit End Play Check

Measure (Figures 82 and 83)

Tools Required:
- J-6125 Slide Hammer Bolt
- J-8001 Dial Indicator

1. Install J-8001
2. Eliminate slack by pressing turbine shaft (601) to the rear and output shaft (691) forward.
3. Index J-8001 against end of turbine shaft.
 - set dial to “0”
4. Pull out turbine shaft.
 - proper end play is .003”-.024” (.076 mm-.610 mm)
5. Remove tools and correct end play if necessary.
Governor Assembly

Important

Governor assembly is calibrated and is serviced as an assembly. However, driven gear (409) may be serviced separately and unit may be disassembled for cleaning.

Disassemble (Figure 84)

1. Governor pins (406).
 - use diagonal cutting pliers
2. Thrust cap (401), weights (404 and 405) and springs (403).
3. Governor valve (402) from sleeve (407).
4. Clean all parts in solvent and air dry.

Inspect

- Sleeve (407) for nicks, burrs or galling and free operation in case bore.
- Valve (402) for damage and free operation in bore of sleeve (407).
- Driven gear (409) for damage.
- Springs (403) for distortion or damage.
- Weights (404 and 405) for free operation in retainers.
Figure 79 - Gasket and Oil Pump Assembly

Figure 80 - Rear Unit End Play Check

Figure 81 - Thrust Washer Thickness Chart

Figure 82 - Front Unit End Play Check

Figure 83 - Thrust Washer Thickness Chart

Measure (Figure 85)
- Valve opening at entry with weights
 - minimum clearance is .020”.
- Valve opening at exhaust with weights inward.
 - minimum clearance is .020”.

Driven Gear Replacement

Disassemble (Figure 84)
1. Driven gear retaining pin (408).
 - use small punch or 1/8” diameter rod
2. Driven gear (409) from sleeve and carrier assembly (407) with long punch and mechanical press.

Important
Support governor with plates set into exhaust slots of sleeve.

Clean
- Chips or residue from sleeve and carrier assembly (407).
Assemble (Figures 86 and 87)
1. Governor driven gear (409) in sleeve and carrier assembly (407).
2. Drill new 1/8" (.125") hole in sleeve and carrier assembly (407) and governor driven gear (409), 90 degrees from original hole.
3. Pin (408) in new 1/8" hole.
5. Weights (404 and 405), springs (403) and thrust cap (401) on sleeve (407).

Inspect
- Weight assemblies (404 and 405) for free movement on pins.

Internal Transmission Speed Sensor (I.T.S.S.)
Inspect
- Sensor (81) for porosity, cracks or damage
- O-ring (82) and o-ring groove for nicks or damage
- Speed sensor bore in case for porosity, scoring or damage
Install or Connect (Figure 88)

1. Governor (22) into case (10).
2. Governor cover (20) and gasket (21) with bolts (19).
3. Lubricate speed sensor bore in case with petroleum jelly.
4. Speed sensor (81) with new o-ring (82) into case.

NOTICE: Properly align the speed sensor before installing into the case to prevent damage to the rotor or sensor.

5. Retain sensor with bolt (83).

Band Apply Pin Check

Measure (Figures 89, 90 and 91)

1. Place J-21370-5 in the servo pin bore.
2. Position J-21370-6 over the bore with the hex nut facing the parking pawl linkage.
3. Fasten with two 5/16-18 x 1" screws and torque to 18 lbs./ft. (24 N·m).
4. Make sure stepped side of pin faces front of case and moves freely in the tool and pin bore.
5. To determine correct pin length, apply 25 lbs./ft. Torque to the nut on the gage.
6. Pin measurement
 - If gage pin is even with the top of the gage surface or above the upper step of the pin, use the long pin.
 - If gage pin is between the upper and lower steps, use the medium pin.
 - If the gage surface is even with or below the step on the gage pin, use the short pin.

Rear Servo Accumulator

Inspect (Figure 92)

- Remove retaining ring (68) from rear band apply pin (77) and inspect
- Accumulator pistons (69 and 72) for:
 - porosity or damage
 - ring groove damage
- Seals (70, 71, 73) for:
 - nicks or cuts
- Cover (66) for:
 - porosity
 - scored or damaged
- Springs (75, 78) for distortion
- Pin (77) for wear
- Servo bore for wear or scoring
Assemble (Figure 92)

1. Rear accumulator spring (78).
2. Rear servo spring retainer (76), rear servo spring (75) and servo washer (74) on rear band apply pin (77).
3. Inner (73) and outer (71) accumulator piston oil seals on accumulator piston (72). Place on rear band apply pin assembly.
4. Rear servo piston seal (70) on rear servo piston (69) and press onto rear band apply pin (77).
5. Retaining ring (68).

Install or Connect (Figure 92)

1. Assembly in bore.
2. Cover (66), gasket (67) and bolts (65).

Front Servo Assembly

Inspect (Figure 93)

- Servo piston (60) for:
 - porosity or damage
 - ring groove damage
- Piston pin (62) for wear
- Spring (64) for distortion
60 PISTON, FRONT SERVO
61 WASHER, FRONT SERVO
62 PIN, FRONT SERVO PISTON
63 RETAINER, FRONT SERVO SPRING
64 SPRING, FRONT SERVO PISTON

63 RETAINER, FRONT SERVO SPRING
64 SPRING, FRONT SERVO PISTON

53 SCREW, HEX HD & WASHER
54 SOLENOID ASSEMBLY
55 GASKET, SOLENOID
56 GASKET, VALVE BODY TO Spacer PLATE
57 PLATE, VALVE BODY SPACER
58 GASKET, Spacer PLATE TO CASE
59 BALL, (.25" DIA.)

Figure 93 - Front Servo Assembly

Servo bore for wear or scoring

Figure 94 - Check Ball Location

Install or Connect (Figures 93, 94 and 95)
1. Front servo piston spring (64) and retainer (63).
2. Washer (61), piston pin (62) and piston (60).
 - make certain tapered end contacts band
3. Front servo assembly into case.
4. Six check balls (59) in case.
5. Spacer plate to case gasket (58).

6. Valve body spacer plate (57).
7. Valve body to spacer plate gasket (56).
8. Gasket (55) and solenoid assembly (54) with screw (53)
 - finger tight
9. Wire connector to case connector

Control Valve Assembly

Disassemble (Figures 96, 97 and 98)
1. Install J-21885 on front accumulator piston.
2. Retainer (302) and front accumulator piston (303).
3. Accumulator spring (305).
4. Accumulator piston seal (304).
5. Remove J-21885.

J-21885 Piston Installer

Clean
- Control valve assembly (49) thoroughly in clean solvent-move the the valves with a pick or small screwdriver to dislodge any dirt or debris that may have accumulated
- Air Dry

Disassemble (Figures 96 and 97)
- Control Valve Assembly
 - Position as shown on a clean surface
 - Remove valve trains beginning with the upper left hand corner. **NOTE:** Some valves
Figure 97 - Control Valve Assembly Legend

- Valves, springs and bushings must be laid out on a clean surface in the exact sequence they are removed
- Remove pressure switches
- All valves, springs, bushings and control valve body in clean solvent
- Dry using compressed air
- All Valves and Bushings For:
 - Porosity
 - Scoring
 - Nicks
 - Scratches
- Springs for Damaged or Distorted Coils

Valve Body Casting For:
- Porosity
- Cracks
- Interconnected oil passages
- Damaged machined surfaces

Install or Connect (Figure 101)
1. Intake pipe (45), O-ring (46) and filter (42).

Installing Control Valve Assembly

- Valve Body, Control Valve
- Retainer (Accumulator Piston)
- Piston, Front Accumulator
- Oil Seal (Accumulator Piston)
- Switch, Pressure (RCA, RRA, RTA, RVA Models)
- Wire, Lead (RCA, RRA, RTA, RVA Models)
- Pin, Grooved
- Plug, Valve Bore (.56 O.D.)
- Valve, 1-2 Accumulator
- Spring, 1-2 Accumulator Valve Primary
- Spring, 1-2 Accumulator Valve Secondary
- Pin, Coiled Spring
- Plug, Valve Bore (.50)
- Valve, Detent
- Valve, Detent Regulator
- Pin, Detent Regulator Valve
- Spring, Detent Regulator
- Valve, Manual
- Bushing, 1-2 Modulator Valve
- Valve, 1-2 Regulator
- Spring, 1-2 Regulator Valve
- Valve, 1-2 Detent
- Valve, 1-2
- Spring, 1-2 Modulator Valve
- Valve, 1-2 Modulator
- Pin, Straight
- Bushing, 2-3 Modulator Valve
- Spring, 2-3 Valve (Outer)
- Valve, 2-3 Modulator
- Spring, 2-3 Valve (Inner)
- Valve, 2-3
- Pin, Straight
- Plug, Valve Bore (.437)
- Spring, 3-2 Valve
- Pin, 3-2 Valve
- Valve, 3-2

Figure 98 - Removing Front Accumulator Piston

- All Valves and Bushings For:
 - Porosity
 - Scoring
 - Nicks
 - Scratches

Tool Required:
- J-21885 Piston Installer
1. Front accumulator piston spring (305).
2. Front accumulator piston (303) and retainer ring (302) with J-21885.
3. Governor screen (52), pointed end up.
4. Governor oil pipes (50).
5. Control valve assembly (49).
6. Bolts (47), (51) and (53).
7. Detent spring and roller assembly (48) and bolt (47).

Oil Pan and Filter Assembly

- Intake pipe (45), O-ring (46) and filter (42).
4. Oil pan (38) with screw and conical washer assembly (37).
 - torque to 13 lbs. ft. (17.5 N·m)

Case Extension Assembly

[Inspection Figure 102]
- for wear or damage
 - bearings (28)
 - spacer (29)
 - bushings (30) and (33)
 (See Bushing Replacement)

[Install or Connect Figure 30]

Tool Required:
- J-214426 Rear seal installer
1. New rear seal (26) with J-214426.
2. Extension to case seal (32).
3. Gasket (34) to extension (27)
4. Extension (27) to case (10) with bolts (23).

Vacuum Modulator Assembly

[Inspect Figures 103 and 104]

Tool Required:
- J-24466 Modulator Checking Tool
1. Modulator (13) with J-24466 and a known good modulator
 - place gage between modulators and apply pressure to both
 - if the indicator line moves out of view replace the modulator
2. Modulator valve (15) for nicks or damage
3. Modulator valve bore in the case for burrs, porosity or scoring

[Install or Connect Figure 104]

1. Modulator valve (15) into case.
 - small end first
2. New O-ring seal (14) onto modulator.
3. Modulator assembly (13) into case.
4. Retainer (12) and bolt (11).
 - torque to 27 N·m (20 lbs. ft.)

TORQUE CONVERTER ASSEMBLY

[Inspect]

The torque converter assembly (1) must be replaced for any of the following conditions:
- Evidence of damage to the pump assembly
- Metal particles are found after flushing the cooler and cooler lines
- External leaks in hub weld area
- Converter pilot is broken, damaged or poor fit into crankshaft
- Converter hub is scored or damaged
- Internal failure to stator
- Contamination from engine coolant
- Excess end play
AUTOMATIC TRANSMISSION 400-41

Figure 100 - Governor Screen

Figure 101 - Installing Filter & Oil Pan

Figure 102 - Installing Case Extension

Figure 103 Checking Modulator Assembly
Measure (Figure 105)

Tool Required:
- J-35138 Torque Converter End Play Checking Tool
 - Install J-35138 and measure end play
 - 0mm - .6mm (.024")

The Torque Converter Should Not Be Replaced
If:
- The fluid has an odor, discolored or no evidence of metal or clutch plate material
 - Drain out as much fluid as possible
 - Replace the oil filter and pan gasket
 - Fill to proper level (Refer to Section 7A)
- The converter bolt hole threads are damaged

Flush the torque converter is not recommended.

Install or Connect (Figure 79)

Tool Required:
- J-21366 Converter Holding Strap
 - Torque converter (1) with J-21366
 - Engage turbine shaft, stator shaft and lugs on oil pump driven gear. Three clicks will be felt as each engages slots in converter.
<table>
<thead>
<tr>
<th>FASTENER APPLICATION</th>
<th>ASSEMBLY TORQUE</th>
<th>RECHECK TORQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N·m</td>
<td>LB.-FT.</td>
</tr>
<tr>
<td>FILTER TO VALVE BODY SCREW</td>
<td>8-14</td>
<td>6-10</td>
</tr>
<tr>
<td>SOLENOID TO CASE SCREW</td>
<td>5-14</td>
<td>4-10</td>
</tr>
<tr>
<td>CONTROL VALVE ASSEMBLY TO CASE SCREW</td>
<td>8-14</td>
<td>6-10</td>
</tr>
<tr>
<td>LINE PRESSURE PLUG</td>
<td>7-14</td>
<td>5-10</td>
</tr>
<tr>
<td>FLYWHEEL HOUSING COVER TO TRANSMISSION SCREW</td>
<td>5-8</td>
<td>4-6</td>
</tr>
<tr>
<td>PUMP BODY TO COVER SCREW</td>
<td>20-27</td>
<td>15-20</td>
</tr>
<tr>
<td>PUMP ASSEMBLY TO CASE SCREW</td>
<td>20-27</td>
<td>15-20</td>
</tr>
<tr>
<td>REAR SERVO COVER TO CASE SCREW</td>
<td>20-27</td>
<td>15-20</td>
</tr>
<tr>
<td>GOVERNOR COVER TO CASE</td>
<td>20-27</td>
<td>15-20</td>
</tr>
<tr>
<td>PARKING PAWL BRACKET TO CASE SCREW</td>
<td>20-27</td>
<td>15-20</td>
</tr>
<tr>
<td>VACUUM MODULATOR RETAINER TO CASE SCREW</td>
<td>20-27</td>
<td>15-20</td>
</tr>
<tr>
<td>SPEEDOMETER DRIVEN GEAR RETAINER TO CASE SCREW</td>
<td>5-8</td>
<td>4-6</td>
</tr>
<tr>
<td>OIL PAN TO CASE SCREW</td>
<td>8-14</td>
<td>6-10</td>
</tr>
<tr>
<td>EXTENSION HOUSING TO CASE SCREW</td>
<td>27-34</td>
<td>20-25</td>
</tr>
<tr>
<td>MANUAL SHAFT TO DETENT LEVER NUT</td>
<td>20-27</td>
<td>15-20</td>
</tr>
<tr>
<td>MANUAL YOKE TO MANUAL SHAFT NUT</td>
<td>18-24</td>
<td>13-18</td>
</tr>
<tr>
<td>CASE TO CENTER SUPPORT SCREW</td>
<td>27-34</td>
<td>20-25</td>
</tr>
<tr>
<td>FLYWHEEL TO CONVERTER SCREW</td>
<td>41-47</td>
<td>30-35</td>
</tr>
<tr>
<td>TRANSMISSION CASE TO ENGINE SCREW</td>
<td>41-47</td>
<td>30-35</td>
</tr>
<tr>
<td>OIL COOLER PIPE CONNECTOR NUT AT CASE & RADIACTOR</td>
<td>35-41</td>
<td>26-30</td>
</tr>
<tr>
<td>COOLER PIPE CONNECTOR AT CASE</td>
<td>35-41</td>
<td>26-30</td>
</tr>
<tr>
<td>ENGINE REAR MOUNT TO TRANSMISSION BOLT</td>
<td>41-47</td>
<td>30-35</td>
</tr>
<tr>
<td>ENGINE REAR SUPPORT BRACKET TO FRAME NUT</td>
<td>41-47</td>
<td>30-35</td>
</tr>
<tr>
<td>SWITCH ASSEMBLY</td>
<td>3-5</td>
<td>2-3.5</td>
</tr>
</tbody>
</table>

Figure 106 - Torque Specifications
<table>
<thead>
<tr>
<th>Tool Description</th>
<th>Part Number</th>
<th>Tool Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slide Hammer (5/8" x 18 with 1/2" x 13 Adapter)</td>
<td>J-2619-01</td>
<td>Forward and Direct Clutch Inner Seal Protector</td>
<td>J-21362</td>
</tr>
<tr>
<td>Forward Clutch Spring Compressor (Use with J-6129 & J-21664)</td>
<td>J-6129</td>
<td>Second Clutch Inner Seal Protector</td>
<td>J-2163</td>
</tr>
<tr>
<td>Clutch Unit Holding Fixture</td>
<td>J-6116-01</td>
<td>Support Adapter (Used with J-6116-01)</td>
<td>J-21364-A</td>
</tr>
<tr>
<td>5/16-18 Thread with 3/8-16 Adapter (Set of 2)</td>
<td>J-6125-B</td>
<td>Pump Body and Cover Alignment Band</td>
<td>J-21368</td>
</tr>
<tr>
<td>Dial Indicator Set</td>
<td>J-8001</td>
<td>Band Apply Selector Gauge</td>
<td>J-21370</td>
</tr>
<tr>
<td>Driver Handle (3/4"-10 Thread)</td>
<td>J-8092</td>
<td>Band to Apply Pin Gauge (Used with J-21370-6)</td>
<td>J-21370-5</td>
</tr>
<tr>
<td>Speedo Gear Remover (Use with J-21427-01)</td>
<td>J-8433</td>
<td>Band to Apply Pin Assembly</td>
<td>J-21370-6</td>
</tr>
<tr>
<td>Transmission Holding Fixture (Use with J-3289-20)</td>
<td>J-8763-02</td>
<td>Universal Converter End-Play Tool (All Turbo Hydra-matic Torque Converters)</td>
<td>J-35138</td>
</tr>
<tr>
<td>Transmission Modulator Checking Tool</td>
<td>J-24466</td>
<td>Oil Pump Remover & End-Play Checking Fixture</td>
<td>J-24773-A</td>
</tr>
<tr>
<td>Forward and Direct Clutch Outer Seal Protector</td>
<td>J-21409</td>
<td>Center Support Tool</td>
<td>J-23093</td>
</tr>
<tr>
<td>Pump Oil Seal Installer</td>
<td>J-21359</td>
<td>Extension Housing Oil Seal Installer</td>
<td>J-21426</td>
</tr>
<tr>
<td>Pump Oil Seal Installer Extension Housing Oil Seal Installer</td>
<td>J-21359</td>
<td>Speed Sensor Rotor Installer</td>
<td>J 36352-5, J 36352-3</td>
</tr>
</tbody>
</table>

Figure 107 - Special Tools
Figure 108 - Bushing Locations
BUSHING REPLACEMENT PROCEDURE
PROTECT PARTS WITH WOOD BLOCKS
OR CLOTH AS NECESSARY

<table>
<thead>
<tr>
<th>REMOVE AS SHOWN</th>
<th>INSTALL AS SHOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>J-2619</td>
<td>J-8092</td>
</tr>
<tr>
<td>J-2619-4</td>
<td>J-21465-3</td>
</tr>
<tr>
<td>J-21465-15</td>
<td>220</td>
</tr>
<tr>
<td>206</td>
<td>202</td>
</tr>
<tr>
<td>663</td>
<td>3</td>
</tr>
<tr>
<td>664</td>
<td>201</td>
</tr>
<tr>
<td>202 COVER ASSEMBLY, PUMP</td>
<td></td>
</tr>
<tr>
<td>206 BUSHING, STATOR SHAFT</td>
<td></td>
</tr>
<tr>
<td>220 BUSHING, PUMP COVER (REAR)</td>
<td></td>
</tr>
</tbody>
</table>

3 BUSHING, PUMP BODY
201 BODY ASSEMBLY, PUMP

663 BUSHING, STATOR SHAFT (MAINSHAFT)
664 SHAFT, SUN GEAR

Figure 109 - Bushing Replacement Procedure
BUSHING REPLACEMENT PROCEDURE
PROTECT PARTS WITH WOOD BLOCKS
OR CLOTH AS NECESSARY

REMOVE AS SHOWN

INSTALL AS SHOWN

654 SUPPORT, CENTER
655 BUSHING

690 BUSHING, OUTPUT SHAFT
691 SHAFT, OUTPUT

10 CASE, TRANSMISSION
33 BUSHING

Figure 110 - Bushing Replacement Procedure
Bushing Replacement Procedure

Protect parts with wood blocks or cloth as necessary

<table>
<thead>
<tr>
<th>REMOVE AS SHOWN</th>
<th>INSTALL AS SHOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>J-8092</td>
<td>J-8092</td>
</tr>
<tr>
<td>J-21465-17</td>
<td>J-21465-17</td>
</tr>
</tbody>
</table>

27 CASE EXTENSION ASSEMBLY
30 BUSHING, CASE EXTENSION

Figure 111 - Bushing Replacement Procedure
GENERAL INFORMATION

UNIT REPAIR

EXTERNAL PARTS ... 180C-1
 Servo Piston Removal 180C-1
 Selector Lever and Electrical
 Connector
 Removal .. 180C-2
 Modulator and Detent Valve
 Assemblies ... 180C-3
 Extension Housing, Speedometer
 Driven Gear
 and Governor Assembly 180C-3

INTERNAL PARTS .. 180C-3

COMPONENT REPAIR AND
TRANSMISSION ASSEMBLY

Case .. 180C-6
 Case Interior .. 180C-6
 Selector Lever and Shaft 180C-6

TRANSMISSION DISASSEMBLY

GENERAL SERVICE INFORMATION

- Oil Seal Rings
 If any seal rings are damaged, cut, or do not rotate freely in their grooves, be certain to check the ring groove for debris, burrs, or damage.
- Thrust washer surfaces
 The thrust washers and bearing surfaces may appear to be polished. This is a normal condition and should not be considered damage.
- Snap rings
 Do not over expand snap rings when removing or installing.

EXTERNAL PARTS

Clean
- Thoroughly clean the exterior of the transmission.

Remove or Disconnect
- Torque converter

Install or Connect

Tools Required
 J-3289-20 Base
 J-8763-01 Holding Fixture
2. Holding fixture into the base.

Remove or Disconnect

- Drain the transmission fluid through the rear extension.

Remove or Disconnect (Figure 1)
1. Bolts, oil pan and gasket.
2. Bolts, oil strainer and gasket.
4. Electrical connections at the governor pressure switch.
5. Solenoid from transfer plate reinforcement.
6. Solenoid from the solenoid pipes.
7. Solenoid pipes from the valve body and the case.

Remove or Disconnect (Figure 2)
1. Governor pressure switch using a 1-1/16 oil pressure switch socket.
2. Bolts, transfer plate reinforcement.
3. Bolts, servo cover, and gasket.
5. Check balls.

Servo Piston Removal

Remove or Disconnect (Figures 3 and 4)

Tools Required
 J-23075 Servo/3rd Clutch Piston Spring
 Compressor
1. Install J-23075 with tool offset to the rear case.
2. Compress servo piston.
1. Oil Pan Gasket
2. Oil Pan
3. Valve Body and Transfer Plate
4. Strainer
5. Manual Detent Spring
6. Manual Valve & Link
7. Holding Fixture
8. Servo Cover
9. Modulator
10. Governor Pressure Switch
11. Solenoid Valve
12. Transfer Plate Reinforcement

5. Remove J-23075, servo piston, return spring, and the servo apply rod.

Figure 3 Compressing the Servo Piston

Figure 1 Exploded View - External Parts

Figure 2 Hookup of Solenoid Pipes and Electrical Wires

1. Servo piston snap ring.
2. Slowly release servo piston.

Selector Lever and Electrical Connector Removal

Remove or Disconnect (Figures 5 and 6)
1. Inner selector hex nut.
2. Inside range selector.
3. Range selector shaft spring pin, using diagonal pliers. Insert a wire in the center of the spring pin to prevent it from collapsing during removal.

NOTICE: Inspect the range shaft for burrs before removing shaft to prevent damage to the case.

4. Range selector shaft.
5. Selector shaft seal, if necessary.
6. Electrical connector and "O" ring if necessary.
Modulator and Detent Valve Assemblies

Remove or Disconnect (Figures 7 and 8)

Tool Required
J-23100 Vacuum Modulator Wrench

NOTICE: Use of another tool to remove the vacuum modulator may result in internal damage to the modulator.

1. Vacuum modulator, "O" ring, and modulator plunger.
2. Modulator valve and sleeve.
3. Detent valve retaining pin using diagonal pliers. Insert a wire in the center of the spring pin to prevent it from collapsing during removal.
4. Detent sleeve, valve, and spring.
5. "O" ring.

Extension Housing, Speedometer, Driven Gear and Governor Assembly

Remove or Disconnect (Figures 9, 10 and 11)

Tools Required
J-7004 Slide Hammer
J-23129 Converter Housing Seal Remover
1. Bolt and speedometer guide bracket.
2. Speedometer driven gear assembly and seal ring.
3. Extension housing seal using J-23129 and J-7004 if necessary.

INTERNAL PARTS

Remove or Disconnect (Figures 12, 13 and 14)

Tools Required
J-7004 Slide Hammer
J-23129 Converter Housing Seal Remover
1. Converter housing oil seal using J-7004 and J-23129, if necessary.
2. Seven outer bolts.
3. Loosen five inner bolts.
4. "O" ring from input shaft.
 CAUTION: If the "O" ring is not removed, the second speed clutch and the third speed clutch will come out with the converter housing. The "O" ring may shear while the parts are being held, allowing the second and the third speed clutches to fall, causing personal injury.
5. Converter housing with the oil pump and reverse clutch assembly.

Remove or Disconnect (Figure 15)
1. Second and third clutch assemblies.
2. Separate the second clutch and the third clutch assemblies.

NOTICE: If the reverse clutch plates are not being replaced, they must be installed in their original position.

3. Reverse clutch plates and aluminum pressure plate.
4. Inside selector lever and parking lock actuator rod.
5. Bearing assembly and thrust washer.
6. Planetary carrier assembly, bearing assembly and thrust washer.

Remove or Disconnect
1. Reaction sun gear and drum.
2. Bearing assembly and thrust washer.
3. Low band.
4. Case vent, if necessary. If case vent is removed install a new vent.
AUTOMATIC TRANSMISSION 180C-5

1. CUT-AWAY VIEW CONVERTER HOUSING
2. INPUT SHAFT "O" RING SEAL
3. INNER CIRCLE OF BOLTS ARE OIL PUMP ATTACHING BOLTS (5)
4. OUTER CIRCLE OF BOLTS ARE CONVERTER HOUSING ATTACHING BOLTS (7)

Figure 13 Converter Housing Attaching Bolts and "O" Ring Seal

H-180C-22

Inspect
- Low band for
 - cracks
 - flaking
 - heat damage
- Reaction sun gear and drum for
 - chipped teeth
 - worn bushing
 - scored drum

H-180C-24A

Figure 15 Internal Parts

1. REV. CL. WAVED PLATE
2. REVERSE CLUTCH PLATE
3. REV. CL. COMPOSITION PLATE
4. PRESSURE PLATE
5. 2ND CLUTCH ASM.
6. 3RD CLUTCH ASM.
7. BEARING ASSEMBLY
8. THRUST WASHER
9. PLANETARY CARRIER ASM.
10. THRUST WASHER
11. BEARING ASSEMBLY
12. SUN GEAR DRUM
13. LOW BAND
14. BEARING ASSEMBLY
15. THRUST WASHER

Figure 14 Removing Converter Housing
Inspect

- Reverse clutch plates
 - composition plates for damaged tangs, delamination or excessive wear
 - steel plates for worn lugs or heat damage.

Component Repair and Transmission Assembly

NOTICE: When assembling the transmission, do not use any "O" rings, gaskets, or oil seals that have been removed.

Case

Inspect

- Case exterior for cracks or porosity
- Case to valve body face for damage
- Interconnected oil passages for damage
- Servo bore for
 - sharp edges
 - porosity
- All bolt holes for thread damage
 - Heli-coil to repair
- Cooler connections for
 - proper torque 38 N·m (28 lbs.-ft)

Case Interior

Inspect

- Ring grooves for damage
- Clutch plate lugs for wear or damage
- Band retaining pins for good retention
- Detent bore for scoring or scratches
- Modulator bore for scoring or scratches

Selector Lever and Shaft

Install or Connect (Figures 16, 17 and 18)

1. Selector seal, if necessary.
2. Selector shaft.
 - identification groove must be on the outside.
3. Spring pin. Check the selector lever shaft for free movement.
4. Inside selector lever and parking pawl actuator assembly.
5. Inside selector lever.
6. Electrical connector with a new "O" ring if necessary.

Install or Connect (Figure 15)

1. Thrust washer and bearing.
 - The case bushing acts as a guide for the thrust washer and the bearing.
2. Band
3. Reaction sun gear and drum assembly.
4. Bearing and thrust washer.
 Use petrolatum to hold the bearing and thrust bearing in place.

Planetary Carrier

Inspect (Figure 19)

- Planetary carrier and output shaft for:
 - damage
 - distortion
- Planetary pinions for:
 - damage
 - chipped teeth
Measure

- Pinion clearance at points A and B with a feeler gage. Clearance should be .127-.889 mm (.005-.035”).

![Figure 19 Planetary Carrier and Pinion Clearance](image)

Install or Connect (Figure 20)

1. Planetary carrier and output shaft assembly.
2. Thrust washer and bearing.
 - Use petrolatum to hold the thrust washer and bearing in place.

![Figure 20 Installing Planetary Carrier](image)

Third Clutch Assembly

Disassemble (Figures 21 and 22)

Tools Required

![Figure 21 Removing Third Clutch Retaining Ring](image)

J-28456 Third Clutch Ring Compressor (Through early 1979)
J-29351 Third Clutch Ring Compressor (late 1979 to current)

1. Mount the third clutch assembly in a soft jaw vise as shown.
2. Position the five pins of J-28456 in the elongated slot. DO NOT PUT A PIN INTO A SLOT IF THE INTERIOR SNAP RING IS NOT VISIBLE.
4. Pull on the input sun gear until the internal snap ring clears the ring groove.
5. Remove J-28456/J-29351.
7. Thrust washer and bearing.

![Figure 22 Sprag Assembly and Third Clutch Assembly](image)

NOTICE: If the third clutch plates are not being replaced, they must be installed in their original position.
Disassemble (Figures 23 and 24)

Tools Required
- J-23075 Servo/Third Clutch Piston Spring Compressor
1. Position third clutch and input shaft assembly in a press with the input shaft facing down.
4. Release the clutch piston.
 DO NOT LET THE SPRING SEAT CATCH IN THE RING GROOVE.
5. Spring seat and return springs.
6. Clutch piston.

Inspect (Figure 26)
- Third clutch piston check ball
 - Shake the piston and listen for check ball movement.
 - Replace the piston if check ball is missing or falls out.
- Clutch piston lip seal for nicks, cuts, or damage.
- Input shaft lip seal for nicks, cuts, or damage.

Inspect (Figure 26)
- Clutch plates
 - composite plates for damaged tangs, delamination or excessive wear.
 - steel plates for damaged lugs, or heat damage.
- Third clutch drum for damage or worn clutch splines.
- Thrust washer and bearing for damage.

Assemble (Figures 26 and 27)

Tools Required
- J-23084 Third Clutch Seal Protector
1. Input shaft lip seal. Lip seal must point toward the input shaft. Lubricate the lip seal with transmission fluid.

2. Piston lip seal onto the piston as shown.
 Lubricate the lip seal with transmission fluid. Use J-23084 to protect the seal during installation.
3. Piston into the clutch drum.
4. Remove J-23084.

(Figures 23 and 26)

Tools Required
- J-23075 Servo/Third Clutch Piston Compressor
1. Third clutch piston return springs.
2. Spring seat.
3. Position the third clutch and input shaft assembly in a press with the input shaft pointing down.
1. THIRD CLUTCH HOUSING
2. THIRD CLUTCH PISTON LIP SEALS
3. THIRD CLUTCH PISTON
4. RETURN SPRINGS
5. SPRING SEAT
6. RETAINING CLIP
7. THIRD CLUTCH HUB
8. STEEL CLUTCH PLATES
9. COMPOSITION CLUTCH PLATES
10. CONICAL STEEL PLATE (CUSHION SPRING)
11. INPUT SUN GEAR BEARING & THRUST WASHER

Figure 26 Third Clutch

Figure 27 Input Shaft Lip Seal

4. Compress the piston return springs using J-23075.
5. Spring seat snap ring.

Assemble (Figure 28)
1. Third clutch plates into the clutch hub.
 - start with a steel clutch plate and alternate with a composition plate.
2. Conical steel plate.
 - bevel faces down
3. Align the internal clutch tangs.
4. Thrust washer and the bearing.
 Use petrolatum to hold the thrust washer and the bearing in place.

Figure 28 Third Clutch

Sprag Unit

Disassemble (Figure 29)
1. Sprag assembly from the third speed clutch sun gear.
2. Sprag cage and retaining washers from the outer sprag race.

Figure 29 Sprag Assembly

Inspect (Figures 29 and 30)
- Sun gear for nicked or chipped teeth.
- Sun gear sprag surface for pitting or damage.
- Outer sprag race for pitting or heat damage.
- Retaining ring damage.
Assemble

1. Retaining rings and sprag cage onto the sun gear. Flared shoulder of the sprag cage faces the sun gear.

Important

This procedure must be followed exactly to be sure that the sprag assembly is installed properly.

2. Outer sprag race over the sprag cage.
 - Hold the sun gear with your left hand. The sprag and retainer assembly should hold firmly when turned in a clockwise direction with your right hand.
 - The sprag race and retainer assembly should rotate freely when turned in a counterclockwise direction with your right hand.

4. Thrust washer.

Disassemble (Figures 32, 33 and 34)

Tools Required
- J-23327 Clutch Spring Compressor
- J-29838 Clutch Spring Compressor Adapter

1. Install J-23327 and J-29838.
2. Compress the piston return springs.
3. Retaining snap ring.
5. Spring seal and return springs.
6. Clutch piston.
7. Piston lip seal and the clutch drum lip seal if nicked, cut or damaged.

Inspect

- Second speed clutch piston
 - Shake the piston and listen for check ball movement. Movement indicates proper check ball operation. Replace the piston if check ball is missing or falls out.

- Second speed clutch plates
 - composition clutch plates for damaged tangs or delamination
 - steel clutch plates for damaged tangs, wear, or heat damage

- Clutch hub
 - bushing for scoring or damage
 - clutch splines for wear or damage
 - thrust washer for wear or damage

Assemble

Tools Required
- J-23327 Clutch Spring Compressor
- J-29838 Clutch Spring Compressor Adapter
- J-23080 Second Speed Piston Seal Installer

1. Clutch drum lip seal with the lip facing down, if necessary. Lubricate the lip seal with transmission fluid.
1. RETAINING RING
2. RING GEAR
3. SPACER
4. STEEL CLUTCH PLATES
5. WAVED PLATE (CUSHION)
6. COMPOSITION PLATES
7. THRUST WASHER
8. RETAINING RING
9. PISTON RETURN SPRINGS (22)
10. SECOND CLUTCH
11. PISTON SEAL
12. SECOND CLUTCH HOUSING

Figure 32 Second Clutch

2. Outer piston lip seal with the lip facing down, if necessary. Lubricate the lip seal with transmission fluid.

3. Second clutch piston into the clutch drum. Lubricate the lip seals with liberal amounts of transmission fluid. Use J-23080 to protect the outer piston lip seal.

4. Remove J-23080.

Assemble (Figure 33)

Tools Required
- J-23327 Clutch Spring Compressor
- J-29838 Clutch Ring Compressor Adapter
- J-23080 Second Speed Piston Seal Installer

1. Piston return springs and spring seat on the second clutch piston.
2. Use J-23327 and J-29838 to compress the second clutch piston return springs.

DO NOT LET SPRING SEAT CATCH IN RING GROOVE.

3. Snap ring.
1. SECOND CLUTCH PISTON
2. SECOND CLUTCH HOUSING

Figure 35 Installing Second Clutch Piston Into Second Clutch Drum

4. Remove J-23327 and J-29838.
5. Thrust washer. Seat the tang in the slot on the second clutch hub.
 Use petrolatum to hold the thrust washer in position.
6. Clutch plates into the second clutch drum in the following order:
 - Waved plate
 - Steel plate
 - Composition plate
 - Steel plate
7. Align the internal splines of the clutch plates.

Assemble (Figure 32)
1. Ring gear spacer.
 - wavy end toward the clutch plates.
2. Spacer retaining ring.
3. Ring gear.
 - grooved edge facing up.
4. Ring gear retaining ring.

Assemble (Figure 36)
1. Third clutch and input shaft assembly into the second clutch drum.
2. Second and third clutch assembly.

Determining Selective Washer Thickness

Tools Required

J-23085 Selective Washer Gaging Tool

1. Install J-23085 on the case flange and against the input shaft.
2. Position the inner shaft of J-23085 against the thrust surface of the second speed clutch hub.
 Select the thickest washer available without exceeding measurement "A".

Reverse Clutch Parts

Assemble (Figure 37)
1. Aluminum pressure plate with the flat side up.
 LUGS ON PRESSURE PLATE MUST ENGAGE NARROW NOTCH IN THE CASE.
2. Reverse clutch plates.
 - start with a steel plate and alternate with a composition plate.
Converter Housing, Oil Pump and Reverse Clutch

Remove or Disconnect (Figures 40 and 41)

1. Oil pump to case gasket.
2. Oil pump outer square cut gasket.

3. Five oil pump to converter bolts.
4. Separate the oil pump from the converter housing.
5. Oil pump wear plate.
6. Oil pump gears.

Tools Required

- J-23327 Clutch Spring Compressor

1. Install J-23327.
2. Compress the reverse clutch return springs.
3. Retaining ring.
4. Release the reverse clutch return springs. DO NOT LET SPRING SEAT CATCH IN RING GROOVE.
5. Remove J-23327, spring seat, and return springs.
6. Reverse clutch piston. Apply compressed air to the "apply" oil passage.
7. Inner and outer piston oil seals if necessary.

Disassemble (Figure 43)

Do not remove the converter clutch control valve, pressure regulator valve, or the reverse boost valve, unless determined by oil pressure checks to be malfunctioning.

CAUTION: Valves are under spring pressure, use caution when disassembling.

1. Retaining pin from the converter clutch control port.
2. Oil pump boost valve sleeve, boost valve, spring, spring seats, and valve.
3. Screen, retainer, valve and spring.
4. Oil pump seal rings.

Inspect (Figures 43 and 44)

- Reverse boost valve, pressure regulator valve, and the converter clutch control valve for:
 - nicks
 - scoring
 - damage
- Oil pump seal rings for:
 - side wear
 - damage

Clean

- Thoroughly clean the pressure regulator valve, reverse boost valve, and the converter clutch control valve.
- Soak valves in transmission fluid.

Assemble

1. Spring, valve, retainer and screen.
2. Plug, valve, spring seats, spring, oil pump boost valve, sleeve, and retaining ring.
3. (2) Piston oil seals.

Assemble (Figures 45 and 46)

Tools Required

- J-23327 Clutch Spring Compressor
- J-23082 Converter Housing to Oil Pump Alignment Tool
- J-21359 Seal Installation Tool

Important

Failure to use J-23082 will cause pump damage when transmission is operated after assembly.

1. Oil pump wear plate.
2. Converter housing oil seal. Use J-21359.
3. Converter housing onto the oil pump.
4. Loosely install oil pump bolt.
5. Install J-23082. Tool will bottom out on the oil pump gear.
6. Tighten oil pump bolts to half torque, then go to 19 N·m (14 lbs.-ft.) in an alternating pattern.
7. Remove J-23082.

Assemble (Figures 50 and 51)

1. Oil pump to case gasket.
2. Oil pump outer square cut oil seal.
3. Converter housing and reverse clutch assembly. Use guide pins.
4. Converter to case bolts.

Tighten

- Torque bolt to 33 N·m (25 lbs.-ft.). Rotate input shaft to check for proper assembly.

Install or Connect

- Input "O" ring.
Governor Hub

inspect (figures 52 and 53)
- Seal rings for nicks, burrs, or damage.
- Governor hub oil screen.
- Governor hub splines for;
 - cracks
 - chipped teeth

assemble
1. Oil screen flush with the governor hub.

Governor Body and Speedometer Drive Gear

disassemble
1. Secondary valve spring retainer.
Inspect
- Primary and secondary valves for:
 - nicks
 - burrs
- Oil passages and valve bores for:
 - nicks
 - burrs
 - varnish

Inspect (Figure 54)
1. Primary valve, small end first.

2. Secondary valve, small end first.
4. Governor body, gasket, bolts.

Tighten
- Torque bolts to 8 N·m (6 lbs.-ft.).
 Valve should move freely.

Assemble
- Speedometer drive gear and retaining clip.
Extension Housing and Speedometer Drive Gear

Inspect (Figure 55)
- Extension housing for cracks or porosity.
- Parking pawl and spring.

Assemble (Figures 56 and 57)

Tools Required
- J-21426 Extension Housing Seal Installer

1. Extension housing seal, use J-21426.
2. Gasket.
3. Align the parking pawl actuator rod into the extension housing.
4. Extension housing bolts.

Tighten
- Extension housing bolts to 31 N·m (32 lbs.-ft.).
Detent Valve and Modulator

Inspect (Figures 58 and 59)
- Detent valve sleeve for nicks, scratches, or scoring.
- Detent valve for nicks, or scoring.
- Modulator plunger for nicks, scratches, or scoring.
- Modulator valve sleeve for nickes, scratches, or scoring.
- Modulator valve for nicks, scratches, or scoring.

Assemble

- Tools Required
 - J-23100 Modulator Wrench

1. Spring seats, spring, detent valve, SLOTS FACE OIL PAN. Detent valve sleeve, oil seal, and retaining pin.
 - Lubricate with transmission fluid.
2. Modulator valve sleeve, small end first.
 - TAB MUST ENGAGE SLOT IN MODULATOR BORE.
3. Modulator valve and plunger.
4. "O" ring onto the modulator assembly.

NOTICE: Use of another tool to install the vacuum modulator may result in internal damage to the modulator.

5. Modulator assembly.

Tighten
- Torque modulator to 52 N·m (38 lbs.-ft.)

Servo Piston

Disassemble (Figure 60)

1. Servo piston and apply rod.
2. Locknut.
4. Compress the cushion spring.
5. Retaining clip.
6. Release the cushion spring.
7. Sleeve, spring seat, cushion spring and adjusting bolt.

Inspect
- Servo piston ring for:
 - nicks, burrs, or side damage
- Piston sleeve for nicks, or burrs
- Apply rod for nicks, burrs, or scoring

Assemble
1. Spring seat and cushion spring onto the sleeve.
2. Insert the sleeve into the piston.
3. Position the piston and sleeve in a press.
4. Compress the cushion spring.
5. Retaining clip.
6. Release the cushion spring.

Adjust
1. Torque adjusting bolt to 4.5 N·m (40 lbs.-in.).
2. Back off the adjusting screw exactly 5 turns.
3. Tighten locknut securely.

Control Valve Assembly

Disassemble (Figure 64)
2. Bolts, transfer plate and gaskets.
1. VALVE BODY
2. VALVE BODY-TO-TRANSFER PLATE GASKET
3. TRANSFER PLATE
4. TRANSFER PLATE-TO-CASE GASKET
5. RETAINING BOLTS

Disassemble
- Position the control valve as shown on a clean surface.
 - Remove the valve trains beginning with the upper left hand corner.
 - Some of the valves are under pressure—cover the bores while removing the retaining pins.
 - Remove blind hole roll pins with a modified drill bit.
 - Valves, springs, and sleeves must be laid out on a clean surface in the exact sequence they are removed.

Clean
- All valves, springs, sleeves, and control valve body.
- Dry using compressed air.

Inspect
- All valves and sleeves for:
 - porosity
 - scoring
 - nicks
 - scratches
- Springs for damaged or distorted coils
- Valve body casting for:
 - porosity
 - cracks
 - interconnected oil passages
 - damaged machined surfaces.

Assemble
- Control valve assembly exactly as shown.
- Notice the position of the valve lands and sleeves position.

Clean (Figure 65)
- Control valve assembly thoroughly in cleaning solvent. Move the valves with a pick or small screwdriver to dislodge any dirt or debris that may have accumulated.
1. RETAINING CLIP
2. OIL RING
3. 1-2 ACCUMULATOR PISTON
4. 1-2 ACCUMULATOR SPRING
5. RETAINING PIN
6. 1-2 ACCUMULATOR VALVE PLUG
7. 1-2 ACCUMULATOR VALVE
8. 1-2 ACCUMULATOR VALVE SPRING
 1/2” x 1-1/16”
9. HIGH SPEED DOWNSHIFT TIMING VALVE
 SPRING 7/16” x 1-5/16”
10. HIGH SPEED DOWNSHIFT TIMING VALVE
11. TIMING AND CONTROL VALVE PLUG
12. LOW SPEED DOWNSHIFT TIMING VALVE
13. LOW SPEED DOWNSHIFT TIMING VALVE
 SPRING 7/16” x 1-3/8”
14. MANUAL LOW CONTROL VALVE SPRING
 7/16” x 1-5/16”
15. MANUAL LOW CONTROL VALVE
16. REVERSE CONTROL VALVE
17. 1-2 SHIFT VALVE
18. 1-2 SHIFT CONTROL VALVE SPRING
 3/4” x 2-7/16”
19. 1-2 SHIFT CONTROL VALVE
20. 1-2 SHIFT CONTROL VALVE SPRING
21. 1-2 SHIFT CONTROL VALVE SLEEVE
22. 2-3 SHIFT VALVE
23. 2-3 SHIFT CONTROL VALVE SPRING SEAT
24. 2-3 SHIFT CONTROL VALVE SPRING
 11/16” x 1-3/4”
25. 2-3 SHIFT CONTROL VALVE
26. 2-3 SHIFT CONTROL VALVE SLEEVE
27. 3-2 CONTROL VALVE
28. 3-2 CONTROL VALVE SPRING 7/16” x 1-3/4”
29. 3-2 CONTROL VALVE PLUG
30. DETENT PRESSURE REGULATOR VALVE
31. DETENT PRESSURE REGULATOR VALVE
 SPRING 1/2” x 1-5/8”
32. MANUAL VALVE
33. MANUAL LINK

Figure 65 Typical Valve Body
Assemble (Figures 64)

1. Gasket, transfer plate, and bolts.
 - Torque to 9.5 N·m (7 lbs.-ft.)

Assemble

1. Check balls.
2. Gasket
3. Control valve. Position manual valve link as shown.
4. Bolts
 - Torque to 19 N·m (14 lbs-ft).

Install or Connect (Figures 68)

1. Bolts and selector lever roller and spring.
 - torque to 13 N·m (9 lbs-ft).
2. Bolts, reinforcement plate, and ground wire.
 - torque to 19 N·m (14 lbs-ft).
3. Governor pressure switch.
 - torque to 10 N·m (7 lbs-ft).
4. Solenoid tubing, solenoid and bolts.
 - torque to 19 N·m (14 lbs-ft).
 - make sure tubing does not interfere with manual valve operation.
5. Electrical connections.

Install or Connect (Figures 69 and 70)

1. Servo cover, gasket and bolts
 - torque to 24.4 N·m (18 lbs-ft).
2. Oil strainer, gasket, and bolts.
 - torque to 18.9 N·m (14 lbs-ft).
3. Oil pan, gasket, and bolts.
 torque to 11 N·m (8 lbs.-ft.).
4. Torque converter.
Torque Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>N·m</th>
<th>LB·FT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil Pan-To-Case</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>Modulator Assembly</td>
<td>52</td>
<td>33</td>
</tr>
<tr>
<td>Extension Housing-To-Case</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Oil Pressure Check Plug</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Converter Housing-To-Cylinder Block</td>
<td>34</td>
<td>25</td>
</tr>
<tr>
<td>Transmission Support-To-Extension</td>
<td>44</td>
<td>33</td>
</tr>
<tr>
<td>Shift Lever-To-Selector Lever Shaft</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Detent Cable, Retainer-To-Case</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Oil Cooler Fittings-To-Case</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Oil Cooler Fittings-To-Radiator</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Oil Cooler Hose Clamps-To-Cooler Lines</td>
<td>1</td>
<td>.7</td>
</tr>
<tr>
<td>Shifter Assy-To-Console</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Neutral Safety Switch-To-Bracket</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Lower Cover-To-Converter Housing</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Flexplate-To-Converter</td>
<td>48</td>
<td>35</td>
</tr>
<tr>
<td>Transfer Plate-To-Valve Body</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Reinforcement Plate-To-Case</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>Valve Body-To-Case</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>Servo Cover-To-Case</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>Converter Housing-To-Oil Pump</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>Converter Housing-To-Case</td>
<td>33</td>
<td>25</td>
</tr>
<tr>
<td>Selector Lever Locknut</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>Governor Body-To-Governor Hub</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Servo Adjusting Bolt Locknut</td>
<td>18</td>
<td>14</td>
</tr>
<tr>
<td>Governor Pressure Switch</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Solenoid</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>Oil Strainer</td>
<td>18.9</td>
<td>14</td>
</tr>
</tbody>
</table>

Figure 71 Torque Specifications
1. SELECTIVE THRUST WASHER (OIL PUMP HUB-T0-2ND CLUTCH)
2. BRONZE THRUST WASHER (2ND CLUTCH-T0-3RD CLUTCH)
3. STEEL THRUST WASHER (2ND CLUTCH-T0-3RD CLUTCH)
4. THRUST WASHER (INPUT SHAFT-TO-INPUT SUN GEAR)
5. TORRINGTON BEARING (INPUT SHAFT-TO-INPUT SUN GEAR)

NO'S. 4 & 5 MAY BE STAKED TOGETHER

6. TORRINGTON BEARING (SUN GEAR-TO-OUTPUT SHAFT)
7. THRUST WASHER
8. THRUST WASHER (OUTPUT SHAFT-TO-REACTION SUN GEAR)

9. TORRINGTON BEARING
10. TORRINGTON BEARING (REACTION SUN GEAR-TO-CASE)
11. THRUST WASHER
12. OIL PUMP HUB BUSHING (FRONT)
13. CONVERTER HOUSING BUSHING
14. OIL PUMP BODY BUSHING (REAR)
15. SECOND CLUTCH HUB BUSHING
16. REACTION SUN GEAR DRUM BUSHING
17. REACTION SUN GEAR DRUM BUSHING SLEEVE
18. CASE BUSHING
19. EXTENSION BUSHING

Figure 72 Washer and Bushing Location

Figure 73 Removing or Installing Converter Housing Bushing

Figure 74 Removing Oil Pump Bushing - Front
A. SCRIBE MARK
B. HOLES TO LINE UP WITH SCRIBE MARK

Figure 75 Installing Oil Pump Bushing – Front

Figure 76 Removing Oil Pump Bushing – Rear (Inner Tool Threads Into Bushing)

Figure 77 Installing Oil Pump Bushing – Rear (Inner)

Figure 78 Removing or Installing Second Clutch Bushing (Bearing Must Be Driven In Until Tool Bottoms On Bench)

Figure 79 Removing Reaction Sun Gear Drum Bushing
1. REACTION SUN GEAR DRUM

Figure 80 Installing Sun Gear Drum Bushing

Figure 81 Removing or Installing Extension Housing Bushing

Figure 82 Removing or Installing Case Bushing

Figure 83 Removing Reaction Sun Gear Drum Bushing Sleeve

Figure 84 Installing Reaction Sun Gear Drum Bushing Sleeve
Figure 85 Transmission – Special Tools
MUNCIE TRANSMISSIONS

76 mm (RPO’S M62 AND M64)

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>7B-2</td>
</tr>
<tr>
<td>76 mm Transmissions</td>
<td>7B-2</td>
</tr>
<tr>
<td>117 mm Transmission</td>
<td>7B-3</td>
</tr>
<tr>
<td>Disassembly of the 76 mm Transmissions</td>
<td>7B-3</td>
</tr>
<tr>
<td>Disassembly and Assembly of Sub-Assemblies</td>
<td></td>
</tr>
<tr>
<td>Mainshaft</td>
<td>7B-6</td>
</tr>
<tr>
<td>Main Drive Gear Bearing Retainer</td>
<td>7B-7</td>
</tr>
<tr>
<td>Rear Extension</td>
<td>7B-8</td>
</tr>
<tr>
<td>Side Cover</td>
<td>7B-9</td>
</tr>
<tr>
<td>Specifications</td>
<td>7B-11</td>
</tr>
<tr>
<td>Fastener Torque</td>
<td>7B-11</td>
</tr>
<tr>
<td>Lubrication</td>
<td>7B-11</td>
</tr>
<tr>
<td>Special Tools</td>
<td>7B-11</td>
</tr>
<tr>
<td>Disassembly of the 117 mm Transmission</td>
<td>7B-12</td>
</tr>
<tr>
<td>Disassembly and Assembly of Sub-Assemblies</td>
<td></td>
</tr>
<tr>
<td>Main Drive Gear</td>
<td>7B-16</td>
</tr>
<tr>
<td>Mainshaft</td>
<td>7B-17</td>
</tr>
<tr>
<td>Countergear</td>
<td>7B-20</td>
</tr>
<tr>
<td>Rear Bearing Retainer</td>
<td>7B-22</td>
</tr>
<tr>
<td>Main Drive Gear Bearing Retainer</td>
<td>7B-22</td>
</tr>
<tr>
<td>Shift Cover</td>
<td>7B-23</td>
</tr>
<tr>
<td>Transmission Assembly (Installation of Sub-Assemblies)</td>
<td></td>
</tr>
<tr>
<td>Specifications</td>
<td>7B-28</td>
</tr>
<tr>
<td>Fastener Torque</td>
<td>7B-28</td>
</tr>
<tr>
<td>Lubrication</td>
<td>7B-28</td>
</tr>
<tr>
<td>Special Tools</td>
<td>7B-28</td>
</tr>
</tbody>
</table>

117 mm (RPO M20)

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>7B-2</td>
</tr>
<tr>
<td>76 mm Transmissions</td>
<td>7B-2</td>
</tr>
<tr>
<td>117 mm Transmission</td>
<td>7B-3</td>
</tr>
<tr>
<td>Disassembly of the 117 mm Transmissions</td>
<td>7B-3</td>
</tr>
<tr>
<td>Disassembly and Assembly of Sub-Assemblies</td>
<td></td>
</tr>
<tr>
<td>Mainshaft</td>
<td>7B-6</td>
</tr>
<tr>
<td>Main Drive Gear Bearing Retainer</td>
<td>7B-7</td>
</tr>
<tr>
<td>Rear Extension</td>
<td>7B-8</td>
</tr>
<tr>
<td>Side Cover</td>
<td>7B-9</td>
</tr>
<tr>
<td>Specifications</td>
<td>7B-11</td>
</tr>
<tr>
<td>Fastener Torque</td>
<td>7B-11</td>
</tr>
<tr>
<td>Lubrication</td>
<td>7B-11</td>
</tr>
<tr>
<td>Special Tools</td>
<td>7B-11</td>
</tr>
<tr>
<td>Disassembly of the 117 mm Transmission</td>
<td>7B-12</td>
</tr>
<tr>
<td>Disassembly and Assembly of Sub-Assemblies</td>
<td></td>
</tr>
<tr>
<td>Main Drive Gear</td>
<td>7B-16</td>
</tr>
<tr>
<td>Mainshaft</td>
<td>7B-17</td>
</tr>
<tr>
<td>Countergear</td>
<td>7B-20</td>
</tr>
<tr>
<td>Rear Bearing Retainer</td>
<td>7B-22</td>
</tr>
<tr>
<td>Main Drive Gear Bearing Retainer</td>
<td>7B-22</td>
</tr>
<tr>
<td>Shift Cover</td>
<td>7B-23</td>
</tr>
<tr>
<td>Transmission Assembly (Installation of Sub-Assemblies)</td>
<td></td>
</tr>
<tr>
<td>Specifications</td>
<td>7B-28</td>
</tr>
<tr>
<td>Fastener Torque</td>
<td>7B-28</td>
</tr>
<tr>
<td>Lubrication</td>
<td>7B-28</td>
</tr>
<tr>
<td>Special Tools</td>
<td>7B-28</td>
</tr>
</tbody>
</table>

IDENTIFICATION

The Muncie transmissions can be identified by a label attached to the top of the case (3-speed) or on the top of the cover near the tower (4-speed). The three-letter code for the 3 speed will be UUJ, UUH, UUJ or UUK. The 4 speed code will be GGT, GGK, GBF, GGB, GAU or GAV.

The New Process transmissions each have a tag on the right side with the manufacturer’s logo, GM part number, and assembly date stamped on it.

The Isuzu transmission can be identified by its integral clutch housing.

Each Warner transmission has the manufacturer's name cast in the housing. A tag is attached on the upper left side between the case and extension giving the part number.
76 mm TRANSMISSIONS

The 76 mm 3 speed (RPO's M62 and M64) are constant mesh transmissions, synchronized in all speeds except reverse, (figure 1).

The main components are:

1. Main drive gear.
 - An integral shaft is splined to engage with the clutch driven plate.
 - The gear drives the countergear.
 - A ball bearing supports the shaft in the case.

2. Countershaft.
 - The countergear is keyed to the countershaft for constant rotation with the main drive gear.
 - Roller bearings support the countergear on the countershaft.
 - Thrust washers limit play between the countergear and the transmission case thrust bosses.

 - The drive gears rotate freely on the mainshaft and are in constant mesh with the countergear.
 - Key type synchronizers are splined to the mainshaft and engage with the drive gears to turn the mainshaft.
 - A ball bearing supports the mainshaft in the extension housing.
 - Roller bearings support the mainshaft independently in the input shaft.
 - The input shaft and mainshaft are engaged by a synchronizer for direct drive in top gear.

4. Reverse idler shaft.
 - An idler gear drives the main shaft in reverse.
 - A bushing in the case supports the shaft.

5. Side cover.
 - Shift forks mounted in the cover move the synchronizers to engage the gears.
117 mm TRANSMISSION

The 117 mm heavy duty 4 speed transmission (RPO M20) uses a constant mesh 1st gear. 2nd, 3rd and 4th gears are synchronized, (figure 21).

The main components are:

1. Main drive gear.
 - An integral shaft is splined to engage with the clutch driven plate.
 - The gear drives the countergear.
 - A ball bearing supports the shaft in the case.

2. Countergear.
 - The countergear is in constant rotation with the main drive gear. The clutch gear and the 3rd speed gear are removable.
 - A roller bearing and a ball bearing support the countergear.
 - Thrust washers limit the play between the countergear and the transmission case thrust bosses.

 - The drive gears rotate freely on the mainshaft and are in constant mesh with the countergear.
 - Key type synchronizers are splined to the mainshaft and engage with the drive gears to turn the mainshaft.
 - A ball bearing supports the mainshaft in the rear of the case.

- Roller bearings support the mainshaft independently in the input shaft.
- The input shaft and mainshaft are engaged by a synchronizer for direct drive in top gear.

4. Reverse idler shaft.
 - An idler gear drives the mainshaft in reverse.
 - A bushing in the case supports the shaft.

5. Shift cover.
 - Shift forks mounted on shafts move the synchronizers to engage the gears.
 - A ball pin interlock blocks the other shafts when one is moved.

Certain precautions should be followed when repairing the transmissions. Unless proper care is taken, the components may be damaged.

- Repair of a transmission should be done in a clean work area. The outside of the case should be clean to keep dirt out of the transmission. On transmissions with a standard gearshift lever, install the lever before cleaning the outside of the transmission.
- During transmission repair, all the parts should be cleaned in cleaning solvent and then air dried. Wiping cloths or rags should not be used to dry the parts as lint may get on the parts and cause trouble later. All the parts, except those being worked on, should be kept covered with clean paper.

DISASSEMBLY OF THE 76 mm TRANSMISSIONS

Remove or Disconnect (Figure 2)

Tool Required:
J-22246 Countershaft Alignment Tool
1. Adapter, the sleeve and the speedometer driven gear (144).
2. Side cover (163) and the gasket.
3. Bearing retainer (102) and the gasket.
4. Snap rings, the main drive gear (101) and the bearing.
 - The bearing to gear (small) snap ring.
 - Pull the drive gear forward for clearance and remove the bearing to case (large) snap ring.
 - Bearing.
5. Rear extension screws.
 - Nuts if used.
6. Retaining rings from the reverse idler shaft (136), (figure 3).
7. Rear extension (117), the mainshaft (120) and the drive gear (101) as one piece.
 - The drive gear, the bearings and the top speed blocker ring.
 - Snap ring and the mainshaft (figure 4).
8. Countershaft (135) and the woodruff key using J-22246, (figure 5).
 - Drive the countershaft out the rear of the case.
9. Countergear (134), the thrust washers and the bearings.
10. Reverse idler shaft (136) and the woodruff key, (figure 6).
 - Drive the shaft out the rear of the case.
11. Reverse idler gear (139), and the spacer if used.
101. Drive Gear
102. Bearing Retainer
103. Pilot Bearings
104. Case
117. Rear Extension
118. Vent
120. Mainshaft
121. Rear Oil Seal
122. Retainer Oil Seal
123. Snap Ring - Bearing to Gear
124. Drive Gear Bearing
125. Snap Ring - Bearing to Case
126. Thrust Washer - Front
127. Thrust Washer - Rear
128. Snap Ring - Bearing to Extension
130. Countergear Roller Bearings
134. Countergear
135. Countershaft
136. Reverse Idler Shaft
138. Retaining Ring - Reverse Idler
139. Reverse Idler Gear
140. Woodruff Key
147. Gasket
148. Spring Washer
149. Screw
150. Rear Extension Bushing
151. Speedometer Driven Gear
152. Seal
153. Sleeve
154. Adapter
155. Screw
156. Spring Washer
157. Gasket
158. Retaining Washer
159. Spacer - Reverse Idler Shaft
160. Detent Pin
161. Screw
162. Spring Washer
163. Side Cover
164. Gasket
A. Blocker Ring (Top Gear)

Figure 2—Three Speed Transmission Components
Figure 3—Removing the Reverse Idler Retaining Ring

Figure 4—Removing the Rear Extension

Figure 5—Removing the Countershaft

Figure 6—Removing the Reverse Idler Shaft
MAINSHAFT

Disassemble (Figure 7)

1. Remove the snap ring and slide the 2-3 synchronizer (107) off, (figure 8).
 - Do not let the synchronizer come apart.
2. Remove the 2nd speed blocker ring and the 2nd gear (109).
 - Press the retaining clip down.
 - Tap the gear off.

Important

- Do not let the mainshaft fall to the floor.

4. Rear bearing (129) and the reverse gear (114), (figures 9 and 10).
 - Remove the rear bearing snap ring.
 - Support the reverse gear in a press.
 - Press the mainshaft through the bearing, the reverse gear washers and the gear.
5. Remove the snap ring and the 1-Reverse synchronizer (137).
 - Do not let the synchronizer come apart.
6. Remove the 1st speed blocker ring and the 1st gear (110).
7. Synchronizers (107 and 137), (figure 11).
 - The synchronizer hub and sleeve are a select fit. Do not mix the parts of the two synchronizers.
 - Mark the hub and sleeve alignment for reassembly.
 - Push the hub out of the sleeve while holding the springs and keys to avoid losing them.
Figure 10—Pressing the Mainshaft Through the Ring Bearing

Clean
- All parts in a suitable solvent and air dry.

Important
- Do not spin dry the bearings.

Inspect
1. Gears for cracks, chipped gear teeth, and other damage that could cause gear noise.
2. Thrust washers and bushings for damage and wear.
3. Related surfaces on the gears like thrust faces and bearing surface diameters.
4. The reverse sliding gear for a sliding fit on the synchronizer hub without excess radial or circular play. If the sliding gear is not free on the hub, inspect it for burrs on the ends of the internal splines. Remove any burrs by honing as required.
5. Synchronizer sleeves for a sliding fit on the synchronizer hubs and the hubs for a snug fit on the mainshaft splines.
6. Synchronizer springs and keys for looseness or damage.
7. Brass synchronizer rings for wear or damage.
8. All gear teeth for wear.
10. Lubricate all roller bearings with light engine oil and check for rough rotation.

Assemble (Figures 7 and 12)
- Put a thin coat of transmission oil on all the parts before installing them.
1. Synchronizers (107 and 137), (figure 13).
 - Place the keys in the hub.
 - Engage the springs in different slots in either side of the hub so they support all the keys.
 - Slide the sleeve onto the hub aligning the marks made during disassembly.
2. 1st gear (110), with the clutching teeth to the rear, against the flange (A).
3. Install the 1st speed blocker ring (111) with the clutching teeth to the front.
 - The blocker ring must be engaged with the 1st gear.
4. 1-Reverse synchronizer (137).
 - Align the synchronizer with the mainshaft splines.
 - Push the synchronizer on and engage it with the blocker ring.
 - Install a new snap ring.
5. Install the reverse gear (114) with the clutching teeth to the rear.
6. Install the reverse gear thrust washer (115) and a new wave washer.
7. Press the rear bearing (129) on with the snap ring slot to the front.
 - Install a new bearing to mainshaft snap ring.
8. Install the speedometer drive gear (119) and the retaining clip.
9. Install the 2nd gear (109), with the clutching teeth to the front, against the flange (A).
10. Install the 2nd speed blocker ring (108) with the clutching teeth to the rear.
 - The blocker ring must be engaged with the 2nd gear.
11. Push the 2-3 synchronizer (107) on with the fork slot to the rear and install a new snap ring.
 - The synchronizer must be engaged with the blocker ring.

MAIN DRIVE GEAR BEARING RETAINER

Remove or Disconnect (Figure 2)
1. Seal (122).
2. Gasket material from the flange of the retainer (102).

Inspect
1. Retainer nose for scoring, wear or cracks, especially at the flange.
2. Snap ring groove for damage caused by drive gear bearing movement.
3. Replace the retainer if it is worn or damaged.

Install or Connect (Figure 2)

- Tool Required:
 - J-23096 Drive Gear Seal Installer
- New seal (122), using J-23069. Coat the inside of the seal with transmission oil.

REAR EXTENSION

Remove or Disconnect (Figure 2)

- Tool Required:
 - J-23062-14 Extension Housing Bushing Installer
 - Seal (121).
 - Gasket material from the flange of the extension (117).
SIDE COVER

Disassemble (Figure 16)
1. Pull the shift forks (175) from the shift shafts (177 and 186).
2. Remove the shift levers (179).
3. Pull the shift shafts (177 and 186) from the cover.
 - Tag the shafts so they can be installed in the same positions.
4. Remove the detent spring (185).
5. Remove the retaining clip and the detent cams (184).
6. Pry the seals from the cover.

Clean
- All parts using cleaning solvent. Air dry.

Inspect
- All parts for wear and damage.
- Gasket surface for nicks and scratches.
- Shift shafts and the forks for burrs and wear.
- Seal bores for cracks and damage.

Assemble (Figures 16 and 17)
1. Install new seals into the cover.
2. Install the 1st-Reverse detent cam (184) with the spring tang above the 2-3 shift shaft opening.
3. Install the 2nd-3rd detent cam (186) with the spring tang above the 1st-Reverse shift shaft opening, and a new retaining ring.
4. Hook the detent spring (185) to the spring tangs on the cams.
5. Slide the shift shafts (177 and 186) through the cover.
 - Be sure each shaft is in the position it was removed from.
6. Install the shift levers (179).
 - Use new spring washers.
7. Lift the detent cams and slide the shift forks (175) into the shafts.
 - Be sure the forks are seated completely.
TRANSMISSION ASSEMBLY
(INSTALLATION OF SUB-ASSEMBLIES)

Use new seals, gaskets and thread sealer on all bolt threads when assembling the transmission. Tighten all bolts to specified torque.
Lubricate all assemblies as they are installed in the transmission case using transmission oil.

Install or Connect (Figure 2)

Tool Required:
J-22246 Countershaft Alignment Tool
1. Countergear (134) using J-22246 (figure 5).
 - Needle bearings and a retaining washer on each end of the countergear, (figure 18).
 - A thrust washer on each end of the countergear with the tabs pointing away from the countergear.
 - Put the countergear into place with the thrust washer tabs in the slots in the case.
2. Countershaft (135) and the woodruff key.
 - Be sure all needle bearings and the thrust washers are in place.
3. Reverse idler gear (139) and the spacer.
4. Reverse idler shaft (136) and the woodruff key.
 - Do not install the retaining clips at this time.
5. Rear extension (117), a new gasket, the mainshaft (120) and the drive gear (101) together.
 - New snap ring and the mainshaft into the extension. Be sure the snap ring is seated.
 - Needle bearings into the drive gear, (figure 19).
76 mm MANUAL TRANSMISSION 7B-11

Figure 19—Drive Gear Bearings

- 3rd speed blocker ring and the drive gear onto the mainshaft. The blocker ring must be engaged with the 2-3 synchronizer with the clutching teeth toward the drive gear.
- Gasket and the extension.

6. Rear extension screws.
 - Nuts if used.

7. New snap rings and the drive gear bearing (124).
 - Bearing to case (large) snap ring onto the bearing.
 - Bearing into the case bore.
 - Bearing to gear (small) snap ring.

8. New gasket and the bearing retainer (102), (figure 20).
 - The oil hole (A) must be to the bottom.

Figure 20—Installing the Bearing Retainer Oil Seal

9. New reverse idler gear retaining rings.
 - Shift the synchronizer sleeves into neutral positions.
 - Align the shift forks with the synchronizer grooves and install the cover.
 - Turn the drive gear and shift the transmission to free rotation in all gears.

11. New seal and the speedometer driven gear (144), the sleeve and the adapter.

SPECIFICATIONS

FASTENER TORQUE

<table>
<thead>
<tr>
<th>Item</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plug, Drain and Fill</td>
<td>23</td>
<td>17</td>
</tr>
<tr>
<td>Drive Gear Bearing Retainer Screws</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Shift Cover Screws</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Rear Extension Screws</td>
<td>61</td>
<td>45</td>
</tr>
<tr>
<td>Shift Lever to Shaft Screws</td>
<td>32</td>
<td>25</td>
</tr>
</tbody>
</table>

LUBRICATION

| Capacity | 4.0 L | 4.2 qts. |
| Type Recommended | API GL5 | SAE 80W90 |

SPECIAL TOOLS

A. J-21426 Extension Housing Seal Installer
B. J-22246 Counter Shaft Alignment Tool
C. J-23096 Drive Gear Seal Installer
D. J-23062-14 Extension Housing Bushing Installer
DISASSEMBLY OF THE 117 mm TRANSMISSION

Remove or Disconnect (Figures 21 and 22)

Tools Required:
- J-28509-A Countergear Front Bearing Remover
- J-8433 Bearing Puller
- J-22832-01 Countergear and Mainshaft Rear Bearing Remover
- J-35907 Mainshaft Lock Nut
- Wrench (4WD models only)

- Speedometer driven gear, switches and any external components.

1. Shifter housing.
 - Remove shifter housing bolts.
 - Move the reverse shift fork to partially engage the reverse idler gear.
 - Lift off the housing.

2. Flange nut (221).
3. Brake drum and the flange, or the yoke (220).
4. Parking brake assembly.
 - Mainshaft lock nut (256) and the washer using J-35907 (4WD models only).
5. Rear bearing retainer (223) and the gasket.
7. Front bearing retainer (202) and the gasket.
8. Cover (238) and the gasket.
10. Snap rings (225 and 226).
 - J-22832-01 must be seated in the groove completely.
12. Main drive gear (201).
 - Remove the bearing to case (large) snap ring.
 - Rotate the gear so the cutout portion is down to clear the countershaft, (figure 25).
 - Pull the drive gear from the case.
13. 4th speed blocker ring (204).
 - 1st speed thrust washer.
16. Mainshaft (250) from the case.
17. Countershaft (227) from the case.
18. Idler gear (230) and the shaft.
 - Drive the shaft from the case.
Figure 22—Transmission Components
Figure 23—Removing the Countergear Front Bearing

Figure 24—Removing the Countergear Rear Bearing

Figure 25—Main Drive Gear Cutout

Figure 26—Removing the Mainshaft Rear Bearing
DISASSEMBLY AND ASSEMBLY OF SUB-ASSEMBLIES

Main Drive Gear Components

- 201. Main Drive Gear
- 203. Snap Ring - Bearing to Case
- 239. Pilot Bearings
- 240. Slinger
- 241. Snap Ring - Bearing to Shaft
- 275. Snap Ring
- 276. Main Drive Gear Bearing

Main Drive Gear Components

Disassemble (Figure 27)

Tools Required:
- J-358-1 Bearing Remover Holder
- J-22872 Drive Gear Bearing Remover

1. Pilot bearings (239).
 - Do not remove the snap ring from the bore.
2. Bearing retainer (276).
4. Bearing (278), using J-358-1 and J-22872, (figures 28 and 29)
5. Slinger (240).

Clean

- All parts in a suitable solvent.

Inspect

1. Parts for damage and wear.
2. Oil the bearings and check for roughness.

Assemble (Figures 27 and 30)

Tools Required:
- J-358-1 Bearing Remover Holder
- J-22872 Drive Gear Bearing Remover

1. New slinger (240).
 - The concave side goes toward the gear.

Important

- Do not damage or bend the slinger when installing the bearing.
 - The bearing snap ring groove goes away from the gear.
3. New bearing to shaft (small) snap ring (241).
4. New bearing to case (large) snap ring (203).
5. Pilot bearings (239).
 - Use chassis grease to hold the bearings in place.

MAINSHAFT

Disassemble (Figure 31)

1. Thrust washer and the 1st speed gear (216).
2. Reverse driven gear (211), the synchronizer keys and springs.
 - Do not loose the keys and springs.
3. 3-4 synchronizer snap ring (280).
 - Do no let the synchronizer come apart.
4. 3-4 synchronizer, the 3rd speed gear (208), the 2nd speed gear (209), the bushing, and the thrust washer (243).
 - Support the second speed gear and press the mainshaft out, (figure 32).

Important

- Do not let the mainshaft fall to the floor.
5. 2nd speed blocker ring (282).
6. 1st speed gear bushing and the 1-2 synchronizer hub (210).
Figure 33—Removing the Mainshaft from the 1st and 2nd Speed Synchronizer Hub

- Support the hub on J-8176 and press the mainshaft out, (figure 33).

Important
- Do not let the mainshaft fall to the floor.
- Use a cold chisel to split the bushing if it is worn or damaged.

Important
- Do not scratch or gouge the mainshaft.

8. 3-4 synchronizer (205), (figure 34).
- The synchronizer hub and sleeve are a select fit. Do not mix the parts of the two synchronizers.

Figure 34—Synchronizer Components

- Mark the hub and sleeve alignment for reassembly.
- Push the hub out of the sleeve while holding the springs and keys to avoid loosening them.

Clean
- All parts in a suitable solvent and air dry.

Important
- Do not spin dry the bearings.

Inspect
1. Gears for cracks, chipped gear teeth, and other damage that could cause gear noise.
2. Thrust washers and bushings for damage and wear.
3. Related surfaces on the gears like thrust faces and bearing surface diameters.
4. The reverse sliding gear for a sliding fit on the synchronizer hub without excess radial or circular play. If the sliding gear is not free on the hub, inspect it for burrs on the ends of the internal splines. Remove any burrs by honing as required.
5. Synchronizer sleeves for a sliding fit on the synchronizer hubs and for the hubs a snug fit on the mainshaft splines.
6. Synchronizer springs and keys for looseness and damage.
7. Brass synchronizer rings for excess wear and damage.
8. All gear teeth for excess wear.
10. Lubricate all roller bearings with light engine oil and check for rough rotation.

Assemble (Figure 31)

Tools Required:
- J-22873 Mainshaft Bushing Installer
- J-22875 3rd Gear Assembly Tool

NOTICE: The mainshaft 1st, 2nd and 3rd speed gear bushings are sintered iron. The bushings could be damaged if they are not properly installed. The bushings must be installed in the proper positions.

1. 3-4 synchronizer (205), (figure 35).
 - Place the keys in the hub.
 - Engage the springs in different slots in either side of the hub so they support all the keys.
 - Slide the sleeve onto the hub aligning the marks made during disassembly.
2. 2nd speed bushing, using J-22873, (figure 36).
3. 1-2 synchronizer hub (210), (figure 37).
 - A minimum press of 681 kg (1500 lbs.) is required to move the hub.
 - The annulus must be to the rear of the shaft.
5. 1st speed bushing (245), using J-22873, (figure 38).
6. 2nd speed blocker ring, the 2nd speed gear (209) and the 3rd speed thrust washer (243) (figure 39).
 - The tab on the thrust washer must be in the slot in the mainshaft.
7. 3rd speed bushing (242) using J-22875 (figure 39).
Figure 35—Synchronizer Assembled

Figure 36—Installing the 2nd Speed Bushing

Figure 37—Installing the 1st and 2nd Synchronizer

Figure 38—Installing the 1st Speed Gear Bushing
8. 3rd speed gear (208) and the blocker ring (figure 40).
9. 3-4 synchronizer (205) using J-22873 (figure 40).
 • A minimum press of 681 kg (1500 lbs.) is required to move the hub.
 • The stepped side of the sleeve goes to the front of the mainshaft.
11. Reverse gear (211).
 • The shift fork groove goes to the rear of the mainshaft.
12. 1st speed gear (216).

COUNTERGEAR

Disassemble (Figure 42)

Tools Required:
- J-22832-01 Countergear and Mainshaft Rear Bearing Remover
1. Snap ring and the thrust washer (235).
2. Driven gear (234).
 • Install J-22832-01 with the open side to the spacer (figure 43).
 • Support the gear and press the countergear through (figure 44).

Important
- Do not let the countergear fall to the floor.
4. 3rd speed gear (290).
Clean
- Countergear and the gears in suitable solvent and air dry.

Inspect
- Countergear and the gears for nicks, burrs, and broken teeth.
- The splined area on the countergear for chips and wear.

Assemble (Figure 42)

Tools Required:
- J-22873 Mainshaft Bushing Installer
- J-22830-A Snap Ring Installer
- A minimum press of 681 kg (1500 lbs.) is required to move each gear. If less pressure is required, replace the gear(s) or the shaft, or both.

1. 3rd speed gear (290) (figure 45).
 - The gear is marked "FRONT" in the web area, as shown in figure 42.

2. Spacer (233).

3. Driven gear (234), using J-22873 (figure 46).

4. Thrust washer (235).

Important
- Do not bend or damage the thrust washer.
- The snap ring should be tight in the groove with no side play.
REAR BEARING RETAINER

SEAL REPLACEMENT

Remove or Disconnect (Figure 22)
1. Seal (222).
 - Pry the seal out with a small pry bar.
2. Gasket material from the retainer (223) using a scraper.
 - Inspect the retainer for damage.

Install or Connect (Figure 22)

Tools Required:
- J-22834 Extension Housing Seal Installer
1. Locking compound on the outside of a new seal (222).
 - Use J-22834-1 if a parking brake is used.
 - Fill between the seal lips with chassis grease.

MAIN DRIVE GEAR BEARING RETAINER

SEAL REPLACEMENT

Remove or Disconnect (Figure 22)
1. Seal (222).
 - Pry the seal out with a small pry bar.
2. Gasket material from the retainer (202) using a scraper.
Inspect

1. Retainer nose for scoring, wear, or cracks, especially at the flange.
2. Snap ring groove for damage caused by drive gear bearing movement.
3. Retainer for wear and damage.

Install or Connect (Figure 22)

Tool Required:
- J-22833 Front Housing Drive Gear Seal Installer
- Seal (222), using J-22833. The lip of the seal goes toward the installing tool, (figure 49).

Shift Cover

Disassemble (Figure 50)

1. Three plugs (297).
 - Use a punch to drive the plugs out.

Important

- The reverse shift fork retaining pin cannot be removed until the other shift forks have been removed.
- Note the positions of the shift forks and the rods before removing them.
2. Fork retaining pins (303), (figure 51).
 - Shift rods must be in neutral position before any one rod can be removed.
 - Do not lose the detent balls and springs and the interlock shuttles and pin when removing the rods.
4. Interlock shuttles (306) and the pin (304).
5. Detent balls (213) and the springs (212).
6. Retainer (302) from the plunger (299).
7. Plunger (299) and spring (300) from the reverse shift fork (301).

Clean (Figure 50)

- All parts in solvent and air dry.

Inspect (Figure 50)

1. Shift fork
 - For damage or bends.
 - For worn finger pads.
2. Shift rods
7B-24 117 mm MANUAL TRANSMISSION

Figure 51—Removing the Retaining Pin

- For damage and bends.
- For worn or damaged detents and detent balls.
- For broken detent springs.

3. Shift control cover
- For cracks and warping.
- For smooth shift rod fit.

Assembly (Figure 50)

1. Plunger (299), spring (300) and the retainer (302) to the reverse shift fork (301), (figure 52).

 Important
 - The shift rods must be installed in the proper positions, (figure 53).

2. Shift rods (307, 305 and 214).
 - Place the detent springs (212) and the balls (213) in the holes in the cover, (figure 54).
 - Start the shift rods into the cover by depressing the spring loaded detent ball and pushing the rod over the ball.

 Figure 51—Removing the Retaining Pin

- Position each rod part way into the cover with the detent groove down toward the spring loaded detent ball.

 Important
 - Shift forks must be installed in the following order: Reverse, 3rd-4th, and 1st-2nd.

3. Hold the reverse shift fork (301) in position and push the rod through the fork and into the front support bore. Install a new retaining pin through the fork and rod.

4. Position the 3rd-4th shift fork (206) and push the rod through the yoke but not into the front support bore.

5. Place an interlock shuttle (306) in the cross-bore of the front support between the reverse and the 3rd-4th shift rods, (figure 54). Then install the interlock pin (304) in the 3rd-4th shift rod hole.

6. Push the 3rd-4th shift rod (306) into the front support bore and install a new retainer pin through the fork and rod.

7. Position the reverse and 3rd-4th shift rods in neutral position. Then place an interlock shuttle (306) in the cross-bore between the 1st-2nd and 3rd-4th shift rods, (figure 54).

8. Position the 1st-2nd shift fork (215) and push the rod through the fork and into the front support bore. DO NOT force the rod into the front to see that the reverse and 3rd-4th shift rods are in neutral.

9. Install a new retainer pin through the shift fork and rod. Move the rod to neutral position.

10. Apply gasket sealer to the edges of three new expansion plugs (297) and install them in the housing openings. Position each plug with the convex side out and drive a flat faced 13 mm (½-inch) dowel pin against it to seat the plug.

 Figure 52—Plunger Retainer
206. 3rd and 4th Shift Fork
212. Detent Spring
213. Detent Ball
214. Reverse Shift Rod
215. 1st and 2nd Shift Fork
301. Reverse Shift Fork
303. Retaining Pin
304. Interlock Pin
305. 3rd and 4th Shift Rod
306. Interlock Shuttle
307. 1st and 2nd Shift Rod

Figure 53—Shift Rod and Fork Positions
Before assembling the transmission, check the reverse idler gear bushing for wear. Clearance between the bushing and shaft at both ends should be no more than 0.10 mm (0.004-inch). If it is more, install a new gear and bushing assembly, and/or a new shaft as required.

Use new seals, gaskets, and thread sealer on all bolt threads when assembling the transmission. Tighten all bolts to specified torque.

Lubricate all assemblies as they are installed in the transmission case using transmission oil.

Install or Connect (Figure 22)

- Do not install the bearings.
- Reverse idler gear (230) and the shaft.
 - The gear teeth go forward.
 - The slot in the shaft faces down.
 - Drive the shaft flush with the case.

3. Mainshaft (250) into the case.
 - The rear of the mainshaft must be through the rear bearing hole.
 - Place J-22874-5 into the front bearing hole, engaged with the mainshaft, (figure 55).

Important

- Be sure the 1st speed gear thrust washer is in place.

4. Mainshaft rear bearing (224).
 - Install a new snap ring (218) onto the bearing.
 - Drive the bearing until the snap ring is flush with the case using J-22874-1 (figure 55).
Figure 55—Installing the Mainshaft Rear Bearing

- Remove J-22874-5.

5. 4th speed blocker ring (204).
 - Be sure the cut outs align with the synchronizer keys.

⚠️ Important
- Be sure the main drive gear pilot bearings are in place.

6. Main drive gear (201).
 - The drive gear cutout goes down (figure 25).
 - Tap on the outer bearing race to install the assembly.

7. Bearing retainer (202) and a new gasket.

8. Countergear rear bearing (228).
 - Support the front of the countergear using J-22874-10, (figure 56).
 - New snap ring (225) onto the bearing.
 - Drive the bearing onto the countershaft until the snap ring is flush with the case, using J-22874-1, (figure 57).

 - Remove J-22874-10.

10. Countergear front bearing (237).
 - Tap the bearing into place.

11. Cover (238) and a new gasket.

13. Rear bearing retainer (223) and a new gasket.

 - 4WD models only.
 - Back plate.
 - New mainshaft lock nut (256) and a new spring washer using J-35907.

15. Brake drum and the flange or yoke (220).
 - Lubricate the flange sealing surface with transmission oil.

16. Flange nut (221).

17. Shift nut (268) and a new gasket.
 - Move the transmission gears and shift rods to the neutral position.
 - Partially engage the reverse idler gear with the countergear and move the reverse shift fork an equal distance in the shift cover.
 - Position the cover over the transmission case (not cocked or tilted) and lower the cover with the reverse shift fork entering the case first. As the cover is near its resting point on the case, observe that the 1-2 and 3-4 shift forks engage with the synchronizer collars.
 - Repeat above procedures if needed to install.

18. Shift cover screws (267).
 - Speedometer driven gear, switches and any external components that were removed.

Figure 56—Tool J-22874-10 Installed

- 4WD models only.
 - Back plate.
 - New mainshaft lock nut (256) and a new spring washer using J-35907.

Figure 57—Installing the Countergear Rear Bearing
7B-28 117 mm MANUAL TRANSMISSION

SPECIFICATIONS

FASTENER TORQUE

<table>
<thead>
<tr>
<th>Fastener Type</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rear Bearing Retainer Screws Top</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Bottom</td>
<td>23</td>
<td>17</td>
</tr>
<tr>
<td>Plug, Drain and Fill</td>
<td>32</td>
<td>25</td>
</tr>
<tr>
<td>Drive Gear Bearing Retainer Screws</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Shift Lever to Shift Shaft Nut</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Cover Screws</td>
<td>41</td>
<td>30</td>
</tr>
<tr>
<td>Parking Brake Plate Screws</td>
<td>135</td>
<td>100</td>
</tr>
<tr>
<td>Mainshaft Lock Nut (K model only)</td>
<td>23</td>
<td>17</td>
</tr>
<tr>
<td>Universal Joint Flange Nut</td>
<td>135</td>
<td>100</td>
</tr>
<tr>
<td>Power Take Off Cover Bolts</td>
<td>41</td>
<td>30</td>
</tr>
<tr>
<td>Countergear Front Cover Screws</td>
<td>3</td>
<td>4.5</td>
</tr>
<tr>
<td>Parking Brake Flange Plate Bolts</td>
<td>4.0L</td>
<td>4.2 qts.</td>
</tr>
</tbody>
</table>

LUBRICATION

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Type Recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0L</td>
<td>API GL5 SAE 80W90</td>
</tr>
</tbody>
</table>

SPECIAL TOOLS

1. J-22873 Main Shaft Bushing Installer
2. J-22875 3rd Gear Assembly Tool
3. J-22834 Extension Housing Seal Installer
4. J-22833 Front Housing Drive Gear Seal Installer
5. J-22874 Main Shaft And Counter Gear Bearing Installer
6. J-35907 Main Shaft Lock Nut Tool
7. J-8433 Bearing Puller
8. J-22832-01 Countergear And Mainshaft Rear Bearing Remover
9. J-8176 Bearing Separator
10. J-22872 Drive Gear Bearing Remover
11. J-28509-A Countergear Front Bearing Remover
12. J-22830-A Snap Ring Installer
13. J-358-1 Bearing Remover Holder
NEW PROCESS TRANSMISSION
89 mm (RPO MY6)

DESCRIPTION

The 89 mm 4 speed transmission (RPO MY6) is an overdrive transmission and is fully synchronized in all speeds except reverse, (figure 66).

The main components are:

1. Main drive gear.
 - An integral shaft is splined to engage with the clutch driven plate.
 - The gear drives the countergear.
 - A ball bearing supports the shaft in the case.

2. Countershaft.
 - The countergear is keyed to the countershaft for constant rotation with the main drive gear.
 - Roller bearings align the countergear on the shaft.
 - Thrust washers and a spacer limit the countershaft end play.
 - The countershaft is not a press fit, and a plug seals the case bore.

 - The drive gears rotate freely on the mainshaft and are in constant mesh with the countergear.
 - Key type synchronizers are splined to the mainshaft and engage with the drive gears to turn the mainshaft.
 - A ball bearing supports the mainshaft in the extension housing.

 - Roller bearings support the mainshaft independently in the input shaft.
 - The input shaft and mainshaft are engaged by a synchronizer for direct drive in top gear.

4. Reverse idler shaft.
 - An idler gear drives the mainshaft in reverse.
 - A bushing supports the gear on the shaft.

5. Side cover.
 - Shift forks mounted in the cover move the synchronizers to engage the gears.
 - The reverse shift lever and a detent ball and spring are mounted in the case.

Certain precautions should be followed when repairing the transmission. Unless proper care is taken, the components of the transmission may be damaged.

- Repair of the transmission should be done in a clean work area. The outside of the case should be clean to keep dirt out of the transmission. On transmissions with a standard gearshift lever, install the lever before cleaning the outside of the transmission.
- During the transmission repair, all the parts should be cleaned in cleaning solvent and then air dried. Wiping cloths or rags should not be used to dry the parts as lint may get on the parts and cause trouble later. All the parts, except those being worked on, should be kept covered with clean paper.
401. Drive Gear Bearing Retainer
402. Seal
403. Snap Ring, Bearing to Shaft
404. Drive Gear Bearing
405. Main Drive Gear
406. 3rd Speed Blocker Ring
407. 3rd and Overdrive Synchronizer
408. Overdrive Blocker Ring
409. Overdrive Gear
410. 2nd Speed Gear
411. 2nd Speed Blocker Ring
412. 1st and 2nd Synchronizer (Reverse Gear)
413. 1st Speed Blocker Ring
414. 1st Speed Gear
415. Main Shaft Rear Bearing
416. Extension Housing
417. Vent Plug
418. Main Shaft
419. Retainer
420. Speedometer Gear
421. Rear Extension Seal
422. Reverse Idler Gear
423. Reverse Idler Gear Bushing
424. Reverse Idler Shaft
425. Snap Ring, Bearing to Shaft
426. Woodruff Key
427. Thrust Washer
428. Countershaft Roller Bearings
429. Countershaft
430. Counter Gear
431. Countershaft Spacer
432. Expansion Plug
433. Snap Ring
434. Pilot Bearings
DISASSEMBLY OF THE 89 mm TRANSMISSIONS

Remove or Disconnect (Figure 67)

Tool Required:
- J-29793 Countershaft Alignment Tool
- Speedometer driven gear, switches and any external components.
- Shift the transmission into neutral.
1. Reverse shift lever (445).
2. Side cover (450) and the gasket.
 - Detent ball and the spring.
 - Shift forks (452 and 453). Note the positions they were removed from.
3. Extension housing screws (439), (figure 68).
 - Turn the housing upside down on the mainshaft.
 - Install one screw to hold the housing, as shown.

Important
- Do not damage the countershaft or bearings when removing the plug and the countershaft.
 - Punch or drill a hole in the center of the plug.
 - Reaching through the hole, drive the countershaft to the rear until the woodruff key can be removed.
 - Drive the countershaft to the front until it pushes the plug out of the case.
 - Drive the countershaft out the rear of the case.
 - Turn the housing to the normal position.
7. Bearing retainer (401) and the gasket.
8. Main drive gear (405).
 - Drive the gear out the front of the case.
9. Extension housing (416) and the mainshaft.
 - Slide the 3rd and overdrive synchronizer sleeve (407) to the front, (figure 66).
 - Slide the reverse idler gear (422) to the center of the idler shaft.
 - Drive the housing to the rear.
10. Snap ring (454) and the mainshaft (418) from the extension housing, (figure 69).
11. Countergear (430) and the thrust washers.
12. Reverse idler shaft (424).
 - Place a \(\frac{3}{16} \)-inch x \(3\frac{1}{2} \)-inch screw and nut into a \(\frac{3}{16} \)-inch drive, deep \(7\frac{1}{16} \)-inch socket.
 - Place the screw head against the case and the socket against the shaft.
 - Turn the nut against the socket, driving the shaft out of the bore, (figure 70).
 - Remove the shaft, the gear and the key.
13. Reverse shift shaft (443) and the seal.
401. Drive Gear Bearing Retainer 429. Countershaft
405. Main Drive Gear 430. Countergear
406. Overdrive Blocker Ring 431. Countershaft Spacer
415. Main Shaft Rear Bearing 432. Expansion Plug
416. Extension Housing 435. Screw
417. Vent Plug 436. Bearing Retainer Gasket
418. Mainshaft 437. Transmission Case
422. Reverse Idler Gear 438. Spring Washer
423. Reverse Idler Gear Bushing 439. Screw
424. Reverse Idler Shaft 440. Extension Housing Gasket
426. Woodruff Key 441. Detent Ball
427. Thrust Washer 442. Detent Spring
443. Reverse Shift Shaft
444. Seal
445. Reverse Shift Lever
446. Washer
447. Nut
448. Spring Washer
449. Screw
450. Side Cover
451. Side Cover Gasket
452. 3rd and Overdrive Shift Fork
453. 1st and 2nd Shift Fork
454. Snap Ring, Bearing to Extension
Figure 68—Turning the Extension Housing

Figure 69—Removing the Mainshaft

Figure 70—Removing the Reverse Idler Shaft
DISASSEMBLY AND ASSEMBLY OF SUB-ASSEMBLIES

MAIN DRIVE GEAR

Disassemble (Figure 71)
1. Pilot bearings (434) and the snap ring.
2. Bearing to case snap ring (460).
3. Bearing to shaft snap ring (403).
4. Bearing (404).

Clean (Figure 71)
- All parts in a suitable solvent.
 (Do not spin the bearings dry.)

Inspect (Figure 71)
1. Parts for damage and wear.
2. Oil the bearings and check for roughness.

Assemble (Figure 71)
1. Bearing (404).
 - Press the bearing against the shoulder on the shaft.
2. New bearing to shaft snap ring (403).
3. New bearing to case snap ring (460).
4. Pilot bearings (434).
 - Use chassis grease to hold the bearings in place.

MAINSHAFT

Disassemble (Figure 72)
1. Slide the 3rd speed blocker ring (406) off.
2. Remove the snap ring and slide the 3rd and overdrive synchronizer (407) off.
 - Do not let the synchronizer come apart.
3. Remove the overdrive blocker ring and the overdrive gear (409).
4. Speedometer drive gear (419).
 - Press the retaining clip down.
 - Tap the gear off.

Important
- Do not let the mainshaft fall to the floor.
5. Rear bearing (415) and the 1st speed gear (414).
 - Remove the snap ring.
 - Support the gear in a press.
 - Press the mainshaft through the bearing and the gear (figure 73).
6. Slide the 1st speed blocker ring off.
7. Remove the snap ring and the 1st and 2nd synchronizer (412).
 - Do not let the synchronizer come apart.
8. Remove the 2nd speed blocker ring and the 2nd speed gear (410).
9. Synchronizers (407 and 412), (figure 74).
 - The synchronizer hub and sleeve are a select fit, do not mix the parts of the two synchronizers.
 - Mark the hub and sleeve alignment for reassembly.
 - Push the hub out of the sleeve while holding the springs and keys to avoid losing them.

Clean
- All parts in a suitable solvent and air dry.

Important
- Do not spin dry the bearings.

Inspect
1. Gears for cracks, chipped gear teeth, and other damage that could cause gear noise.
2. Thrust washers and bushings for damage and wear.
3. Related surfaces on the gears like thrust faces and bearing surface diameters.
4. The reverse sliding gear for a sliding fit on the synchronizer hub without excess radial, or circular play. If the sliding gear is not free on the hub, inspect it for burrs on the ends of the internal splines. Remove any burrs by honing as required.
5. Synchronizer sleeves for a sliding fit on the synchronizer hubs, also, the hubs have to be a snug fit on the mainshaft splines.
6. Synchronizer springs and keys for looseness and damage.
7. Brass synchronizer rings for excess wear and damage.
8. All gear teeth for excess wear.
10. Lubricate all roller bearings with light engine oil and check for rough rotation.

Assemble (Figures 72 and 75)

- Coat all parts with transmission oil before installing them onto the shaft.

1. Synchronizers (407 and 412), (figure 74).
 - Place the keys into the hub.
 - Engage the springs in different slots in either side of the hub, so they support all the keys.
 - Slide the sleeve onto the hub, aligning the marks made during disassembly.

Important

- The long side of the hub center (A) must be to the front.

2. 2nd speed gear (410) and the blocker ring.
Figure 75—Mainshaft Assembled

- Slide the gear on, with the cone to the rear.
- Slide the blocker ring onto the gear cone with the clutching teeth to the front.

3. Install the 1st and 2nd synchronizer (412) and a new snap ring.
- The hub slots must be engaged with the blocker ring.

4. 1st speed gear (414) and the blocker ring.
- Slide the blocker ring on with the clutching teeth to the rear, engaged in the synchronizer hub slots.
- Install the gear with the cone into the blocker ring.

5. Press the rear bearing (415) on and install a new snap ring.

Important
- Use the correct snap ring, it is a select fit to limit the mainshaft end play.

6. Install the speedometer drive gear (419) and the retaining clip.
7. Overdrive gear (409) and the blocker ring.
- Slide the gear on with the cone to the front.
- Slide the blocker ring onto the gear cone with the clutching teeth to the rear.

8. Install the 3rd and overdrive synchronizer (407) and a new snap ring.
- The shift fork slot must be to the rear.

Figure 75—Mainshaft Assembled

407. 3rd and Overdrive Synchronizer
409. Overdrive Gear
410. 2nd Speed Gear
412. 1st and 2nd Synchronizer (Reverse Gear)
414. 1st Speed Gear
416. Extension Housing
418. Main Shaft

Figure 76—Countergear and Components

- The hub slots must be engaged with the blocker ring.

9. Install the 3rd speed blocker ring with the clutching teeth to the front.
- The ring must be engaged with the synchronizer hub slots.
- Hold the ring in place with grease.

COUNTERGEAR

Disassemble (Figure 76)

Tool Required:
J-29793 Countershaft Alignment Tool
1. Remove tool J-29793.
2. Remove the bearings (428) and the spacers.
3. Remove the countershaft spacer (431).

Clean
- All parts in suitable solvent and air dry.

Inspect
- Countergear for nicks, burrs, and broken teeth.
- Bearings for wear and rough surfaces.
- Spacers for wear and grooves.
- Countershaft for wear, nicks and burrs.

Measure
- Countershaft to case bore clearance. Clearance must be no more than 0.127 mm (0.005-in.).

Assemble (Figure 76)

Tool Required:
J-29793 Countershaft Alignment Tool
- Coat the inside of the countergear with grease.
1. Install the countershaft spacer (431) using J-29793.
2. Install the bearings (428) and the spacers.
- Be sure the bearings and the spacers are centered.
3. Install a thrust washer (427) to the front of the countergear with the tab inside the countergear.
J-8092 Driver Handle
1. Seal (421).
2. Gasket material from flange of the extension (416).
3. Bushing (478) if it is worn or damaged, using J-21424-9.

Inspect
1. Extension for scoring, wear or cracks, especially at the flange.
2. Snap ring groove for wear and damage.

Install or Connect (Figure 77)
Tools Required:
J-21426 Rear Extension Seal Installer
1. New bushing (478) if needed, using a suitable tool.
 • Coat the bushing with transmission oil.
 • Drive the bushing into the extension (figure 78).
2. Locking compound on the outside of a new seal (421).
 • Fill between the seal lips with chassis grease.

MAIN DRIVE GEAR BEARING RETAINER
Remove or Disconnect (Figure 79)
1. Seal (402).
2. Gasket material from flange of retainer (401).
Inspect
1. Retainer nose for scoring, wear or cracks, especially at the flange.
2. Snap ring groove for damage caused by drive gear bearing movement.
3. Replace the retainer if it is worn or damaged.
Install or Connect (Figure 79)
Tool Required:
J-23096 Drive Gear Seal Installer
• New seal (402), using J-23096. Coat the inside of the seal with transmission oil.

SIDE COVER
Disassemble (Figure 80)
1. Remove the shift levers (484 and 487).
2. Shift shafts (480 and 481).
 • Remove any burrs from the shafts to avoid scoring the cover bores.
 • Pull the shafts out of the cover.
 • Tag the shafts so they can be installed in the positions they were removed from.
3. Remove the retaining clip, the detent cams (488) and the spring.
4. Pry the seals and the retainers (483) from the cover.

Clean (Figure 80)
- All parts using cleaning solvent. Air dry.

Inspect (Figure 80)
- All parts for wear and damage.
- Gasket surface for nicks and scratches.
- Shift shafts and the forks for burrs and wear.
- Seal bores for cracks and damage.

Assemble (Figure 80)
1. Install the detent cams (488), a new retainer clip and the spring.
2. Shift shafts (480 and 481).
 - Coat the cover bores with grease.
 - Install the shafts in the positions they were removed from.
3. Install new seals and the retainers (483).
4. Install the shift levers (484 and 487).
 - The 3rd and overdrive lever must point down.

TRANSMISSION ASSEMBLY
(INSTALLATION OF SUB-ASSEMBLIES)

Use new seals, gaskets and thread sealer on all bolt threads when assembling the transmission. Tighten all bolts to specified torque.

Lubricate all assemblies as they are installed in the transmission case using transmission oil.

Install or Connect (Figure 67)
- Tap the gear in until the bearing snap ring bottoms against the case.

Important
- The main drive gear must fit smoothly into place, if it does not, check to see that all components of the mainshaft are in the proper positions.

5. Countershaft (429) and the woodruff key.
 - Lift the countershaft into mesh with the mainshaft. Be sure the thrust washers are in place.
 - Push the countershaft half way into the countershaft and install the woodruff key.
 - Push the countershaft into place and remove J-29793.

6. Reverse shift shaft (443) and a new seal.
7. Reverse idler shaft (424) and the reverse gear.
 - Push the shaft in part way.
 - Put the gear onto the shaft with the fork slot to the rear and engage the slot with the reverse shift shaft fork, (figure 81).
89 mm MANUAL TRANSMISSION 7B-39

Figure 81—Reverse Idler Gear and Case

- Install the woodruff key and drive the shaft flush with the case.

8. Extension housing screws.
 - Do not damage the gasket when turning the housing into place.

9. Bearing retainer (401) and a new gasket.

 - Coat the outside of the plug with sealing compound.

11. 1st and 2nd shift fork (453) into the synchronizer slot.

12. 3rd and overdrive shift fork (452) into the side cover.

13. New side cover gasket (451) and the detent ball and spring.

14. Side cover (450).
 - Move the synchronizer sleeves and the reverse idler gear to the neutral positions.
 - Move the shift levers to neutral (straight up).
 - Hold the detent cam against the 1st and 2nd shift lever, then lift the cam over the fork to install the cover.

Important
- Be sure the detent ball and the spring are in position.

15. Side cover screws (449) and new spring washers.
 - Install the locating (long shoulder) screw finger tight in the locating hole (A), (figure 81).
 - Install the remaining screws finger tight.
 - Tighten the screws evenly.

 - Shift the transmission through all gears to check the operation.
 - Speedometer driven gear, switches and any external components that were removed.

SPECIFICATIONS

FASTENER TORQUE

Shift Lever Nut .. 25 18
Extension Housing Screw .. 68 50
Drive Gear Bearing Retainer ... 41 30
Side Cover Screw .. 20 15

LUBRICATION

Capacity ... 4.0 L 4.2 qts.
Type Recommended .. Dexron II Automatic Transmission Fluid
SPECIAL TOOLS

1. J-21426 Rear Extension Seal Installer
2. J-23096 Drive Gear Retainer Seal Installer
3. J-8092 Driver Handle
4. J-29793 Countershaft Alignment Tool
5. J-21424-9 Extension Housing Bushing Remover

Figure 82—Special Tools
DESCRIPTION

The 77.5 mm 4-speed (RPO M73) transmission is a constant mesh transmission, synchronized in all speeds except reverse.

The main components are:

1. Main drive gear.
 - An integral shaft is splined to engage with the clutch driven plate.
 - The gear drives the countergear.
 - A ball bearing supports the shaft in the case.

2. Countergear.
 - The countergear is one unit for constant rotation with the main drive gear.
 - Ball bearings support the countergear in the case.
 - The countergear is held in place by a rear lock nut.

 - The drive gears rotate freely on the mainshaft and are in constant mesh with the countergear.
 - Key type synchronizers are pressed to the mainshaft and engage with the drive gears to turn the mainshaft.
 - A ball bearing supports the mainshaft in the rear of the case.
 - Roller bearings support the mainshaft independently in the main drive gear.
 - The main drive gear and mainshaft are engaged by a synchronizer for direct drive in the 4th gear.
 - The mainshaft is held in place by a rear lock nut.

4. Reverse idler gear.
 - The idler gear drives the main shaft in reverse.
 - The idler gear is supported on its own shaft.

5. Center support.
 - The support holds the mainshaft and countershaft rear bearings in position.
 - The shift shafts are supported by the center support.

6. Shift cover.
 - The shift cover is mounted on the extension housing and holds the shift lever.
 - The shift lever moves the shafts through the center support.
 - Shift forks mounted on shafts move the synchronizers to engage the gears.
 - A pin-type interlock blocks the other shafts when one is moved.

Certain precautions should be followed when repairing the transmission. Unless proper care is taken, the components may be damaged.

• Repair of a transmission should be done in a clean work area. The outside of the case should be clean to keep dirt out of the transmission.
transmissions with a standard gearshift lever, install the lever before cleaning the outside of the transmission.

- During transmission repair, all the parts should be cleaned in cleaning solvent and then air dried.

Wiping cloths or rags should not be used to dry the parts as lint may get on the parts and cause trouble later. All the parts, except those being worked on, should be kept covered with clean paper.

DISASSEMBLY OF THE 77.5 mm TRANSMISSION

1. **Remove or Disconnect** (Figures 83 and 84)
 - Speedometer driven gear, switches and any external components.
 - Clutch assembly and the release bearing, refer to CLUTCH (SEC. 7C) in the S-truck service manual.
 1. Front bearing retainer (502) and the gasket.
 2. Shift cover (510) and the gasket.
 3. Rear extension (512) and the gasket.
 - Transfer case adapter on T models.
 4. Retaining clip and the speedometer drive gear (515), (figure 85).
 5. Reverse shift block (553) and the reverse idler gear (550).
 - Support the shift shaft and drive the pin through, (figure 86).
 - Remove the screws from the block.
 - Pull the shift arm, block, fork and the gear out, (figure 87).
 6. Main drive gear bearing to case (large) snap ring.
 7. Countergear bearing to case (large) snap ring.
 8. Mainshaft and the center support (522).

Important
- Do not hit the front of the main drive gear to push the mainshaft out.
 9. Spring plate (536), the gasket, and the detent springs.
 10. Shift shafts.
 - Support the front of the shafts and drive the pins through, (figure 88).

- Move the shift shafts to the neutral positions.
- Remove the shift shafts, reverse (545), 1st and 2nd (542) then 3rd and 4th (544) in that order.
- Detent balls.
11. Interlock pins (539).
12. Shift forks (541 and 543).
 - Note the positions of the forks.
13. Mainshaft lock nut (517) and the reverse gear (518).
 - Engage the synchronizers to keep the mainshaft from turning.
 - Slide the center support onto the case, (figure 89).
 - Raise the staking and remove the nut.
 - Remove the reverse gear.
14. Countergear lock nut (530) and the reverse gear (527).
 - Spring washer and the washers.
15. Mainshaft and the center support (522).
 - Move the synchronizers to the neutral positions.
16. Bearing retainer (520).
17. Countergear (525).
 - Move the bearing to the rear by moving the countergear back and forth.
 - Pry the bearing out of the center support, (figure 90).
 - Remove the countergear.
18. Main drive gear (505).
 - Do not lose the pilot bearings.
19. 4th speed blocker ring (523).
Figure 83—77.5 mm Transmission Components

501. Screw
502. Front Bearing Retainer
503. Gasket
504. Snap Ring—Bearing To Case
505. Main Drive Gear
506. Plug—Shift Rod
507. Transmission Case
508. Gasket
509. Pin
510. Shift Cover
511. Vent
512. Extension Housing—Transfer Case Adapter
513. Screw
514. Gasket
515. Speedometer Drive Gear
516. Retaining Clip
517. Lock Nut
518. Reverse Gear
519. Screw
520. Bearing Retainer
521. Mainshaft
522. Center Support
523. 4th Speed Blocker Ring
524. Snap Ring
525. Countergear
526. Countergear Rear Bearing
527. Reverse Counter Gear
528. Washer
529. Spring Washer
530. Lock Nut
558. Spring
559. Gasket
560. Gasket
564. Shift Lever
565. Dust Cover
7B-44 77.5 mm MANUAL TRANSMISSION

Figure 84—77.5 mm Shifting Components

Figure 85—Removing the Speedometer Drive Gear

Figure 86—Removing the Reverse Shift Block Pin
Figure 87—Removing the Reverse Shifter Assembly

Figure 88—Removing the Pins from the Shifter Shafts

Figure 89—Removing the Reverse Gears

Figure 90—Removing the Countergear Bearing
Disassembly and Assembly of Sub-Assemblies

Main Drive Gear

1. Pilot bearings (564).
2. Bearing to shaft snap ring (561).
4. Spacer (563).

Clean (Figure 91)
- All parts in a suitable solvent.
- Do not spin the bearings dry.

Inspect (Figure 91)
1. Parts for damage and wear.
2. Oil the bearings and check for roughness.

Assemble (Figure 91)
1. Spacer (563).
2. Bearing (562).
 - The snap ring groove goes away from the gear.
3. New bearing to shaft snap ring (561).
4. Pilot bearings (564).
 - Use chassis grease to hold the bearings in place.

Mainshaft

Disassemble (Figure 92)

Tool Required:
J-22912-01 Bearing and Gear Puller

1. Center support (522) and the rear bearing.
 - Support the 2nd speed gear (571) in a press using J-22912-01, (figure 93).
 - Press the mainshaft through the rear bearing.
 - Remove the bearing and the snap ring.

2. Remove the 1st speed gear (575) and the thrust washer.
 - Bearing and the collar.

3. Remove the 1st speed blocker ring (574).
4. 1st and 2nd synchronizer (573).
 - Support the 2nd speed gear (571) in a press using J-22912-01, (figure 93).
 - Press the mainshaft through the synchronizer, the 2nd speed blocker ring and the 2nd speed gear (571). Do not let the synchronizer come apart.

Important
- Do not let the mainshaft fall to the floor.

5. Remove the snap ring (567).
6. 3rd speed gear (570), the blocker ring and the 3rd and 4th synchronizer.
 - Support the 3rd speed gear in a press.
 - Press the mainshaft through the gear, the blocker ring and the synchronizer.
 - Do not let the synchronizer come apart.

Important
- Do not let the mainshaft fall to the floor.

7. Synchronizers (568 and 573), (figure 94).
 - The synchronizer hub and sleeve are a select fit, do not mix the parts of the two synchronizers.
 - Mark the hub and sleeve alignment for reassembly.
 - Push the hub out of the sleeve while holding the springs and keys to avoid losing them.

Clean (Figure 92)
- All parts in a suitable solvent and air dry.

Important
- Do not spin dry bearings.

Inspect (Figure 92)

1. Gears for cracks, chipped gear teeth, and other damage that could cause gear noise.
2. Thrust washers and bushings for damage and wear.
3. Related surfaces on the gears like thrust faces and bearing surface diameters.
4. The reverse sliding gear for a sliding fit on the synchronizer hub without excess radial, or circular play. If the sliding gear is not free on the hub, inspect it for burrs on the ends of the internal splines. Remove any burrs by honing as required.
521. Mainshaft
522. Center Support
567. Snap Ring
568. 3rd And 4th Synchronizer
569. 3rd Speed Blocker Ring
570. 3rd Speed Gear
571. 2nd Speed Gear
572. 2nd Speed Blocker Ring
573. 1st And 2nd Synchronizer
574. 1st Speed Blocker Ring
575. 1st Speed Gear
576. 1st Gear Collar
577. 1st Gear Bearing
578. 1st Gear Thrust Washer
579. Rear Bearing
580. Snap Ring

5. Synchronizer sleeves for a sliding fit on the synchronizer hubs, also, the hubs have to be a snug fit on the mainshaft splines.

6. Synchronizer springs and keys for looseness and damage.

7. Brass synchronizer rings for excess wear and damage.

8. All gear teeth for excess wear.
Figure 95—Installing the 3rd Gear

10. Lubricate all roller bearings with light engine oil and check for rough rotation.

Assemble (Figure 92)

Tool Required:
J-8853-01 Mainshaft Bearing Race Installer

• Coat all parts with transmission oil before installing them.

1. Synchronizers (568 and 573), (figure 94).
 • Place the inhibitor springs and balls into the hub.
 • Place the keys into the hub.
 • Engage the springs into different slots in either side of the hub, so they support all the keys.
 • Slide the sleeve onto the hub, aligning the marks made during disassembly.

2. 3rd speed gear (570), the blocker ring and the 3rd and 4th synchronizer (568), (figure 95).
 • Support the synchronizer hub in a press.
 • Engage the blocker ring cone into the synchronizer.
 • Slide the 3rd speed gear cone into the blocker ring.
 • Press the front of the mainshaft into the synchronizer.

3. Install a new snap ring (567).

4. 2nd speed gear (571), the blocker ring and the 1st and 2nd synchronizer (573).
 • Support the synchronizer hub in a press.
 • Engage the blocker ring cone into the synchronizer.
 • Slide the 2nd speed gear cone into the blocker ring.
 • Press the rear of the mainshaft into the synchronizer.

5. Press the 1st gear collar (576) onto the mainshaft using J-8853-01.

6. Engage the 1st speed blocker ring cone into the synchronizer.

7. Install the 1st speed gear (575) and the bearing (577).

8. Slide a new thrust washer (578) on with the oil grooves to the gear.

9. Install a new snap ring and the rear bearing (579) into the center support.
 • The snap ring must be to the rear.

10. Press the mainshaft into the rear bearing.

COUNTERGEAR

Disassemble (Figure 96)

1. Remove the snap ring.

2. Press the bearing from the countergear.

3. Press the bearing race off if it is worn or damaged.

Clean (Figure 96)

• All parts in suitable solvent and air dry.

Important

• Do not spin dry the bearing.

Inspect (Figure 96)

• Countergear for nicks, burrs and broken teeth.
• Bearings for wear and rough surfaces.
• Bearing race for grooves, nicks and burrs.
Assemble (Figure 96)
- Coat the bearing and the race with transmission oil before installing them.
1. Press the bearing race onto the countergear.
 - The flange must be to the gears, (figure 97).
2. Press the bearing onto the race.
 - The snap ring groove must be to the front.
3. Install a new snap ring.

EXTENSION HOUSING

Remove or Disconnect (Figure 98)
1. Seal (592).
2. Gasket material from flange of the extension.
3. Bushing (591) if it is worn or damaged.

Inspect (Figure 98)
1. Extension for scoring, wear or cracks, especially at the flange.
2. Snap ring groove for wear and damage.

Install or Connect (Figure 98)
Tools Required:
J-33035 Extension Housing Seal Installer
1. New bushing (591) if needed.
 - Coat the bushing with transmission oil.
 - Drive the bushing into the extension.
2. Locking compound on the outside of a new seal (592).
 - The seal must be recessed 3 mm (0.12-in.) from the end of the housing, (figure 100).
 - Fill between the seal lips with chassis grease.

MAIN DRIVE GEAR BEARING RETAINER

Remove or Disconnect (Figure 101)
1. Seal (595).
2. Gasket material from flange of retainer (502).

Inspect (Figure 101)
1. Retainer nose for scoring, wear or cracks, especially at the flange.
2. Snap ring groove for damage caused by drive gear bearing movement.
3. Replace the retainer if it is worn or damaged.

Install or Connect (Figure 101)
Tool Required:
J-26540 Front Housing Drive Gear Seal Installer
- New seal (595) using J-26540. Coat the inside of the seal with transmission oil, (figure 102).
Figure 99—Installing the Extension Housing Seal

Figure 100—Rear Extension Seal Installed

Figure 101—Front Bearing Retainer and the Oil Seal

Figure 102—Front Bearing Retainer Oil Seal Installed

512. Extension Housing
592. Oil Seal
A. 3 mm (0.12-inch)
TRANSMISSION ASSEMBLY
(INSTALLATION OF SUB-ASSEMBLIES)

Use new seals, gaskets, and thread sealer on all bolt threads when assembling the transmission. Tighten all bolts to specified torque.

Lubricate all assemblies as they are installed in the transmission case using transmission oil.

Install or Connect (Figures 83 and 84)

1. Main drive gear (505) and the 4th speed blocker rings.
 • Do not lose the pilot bearings.
2. Countergear (525) and the bearing to the center support.
3. Bearing retainer (520).
 • Coat the screws with a thread locking compound.
4. Reverse gear (527) and the lock nut to the countergear.
 • Engage the synchronizers to keep the mainshaft from turning.
 • Slide the center support onto the case, (figure 89).
 • Install the gear with the rounded teeth to the rear.
 • Install the washer, a new spring washer and the lock nut.
5. Reverse gear (518) and the lock nut to the mainshaft.
 • Install the gear with the rounded teeth to the rear.
 • Install the lock nut.
 • Stake the lock nut in place, (figure 103).
 • Remove the center support.
6. Interlock pins (539), (figure 104).
 • Coat the pins with grease.
7. Shift forks (541 and 543) as shown, (figure 105).
8. Shift shafts, (figure 104).
 • Slide the 3rd and 4th shift shaft (544) through the center support and the fork. Move the shaft to the neutral position.
 • Slide the 1st and 2nd (542) and the reverse (545) shift shafts through the center support and the forks.
 • Support the front of the shafts and drive the pins through the forks and the shafts.
9. Spring plate (536) and the detent balls, (figure 106).
 • Put the detent balls into the center support.
 • Put the detent springs in.
 • Install the spring plate and a new gasket.

Important
• The reverse detent spring is shorter, be sure it is in the correct hole.

Figure 103—Staking the Mainshaft Lock Nut

10. Center support and a new gasket to the transmission case.

Important
• Do not hit the support or the case to install the support.
11. New countergear front bearing to case (large) snap ring.
12. New main drive gear bearing to case (large) snap ring.
13. Reverse idler gear (550) and the shift block, (figure 107).
 • Hold the gear in the shift fork.

Figure 104—Interlock Pins Installed
Figure 105—Installing the Shifter Shafts and the Forks

Figure 106—Detent Balls and the Springs Installed

Figure 107—Reverse Shift Block installed
• Slide the gear onto the idler shaft and the block onto the shifter shaft at the same time.
• Install the shift block screws.
• Support the shaft and drive the pin through the shift arm and the shaft.
14. Speedometer drive gear (515) and the retaining clip.
15. Rear extension (512) and a new gasket.
• Transfer case adapter on T models.

16. Shift cover (510) and a new gasket.
17. Front bearing retainer (502) and a new gasket.
• Coat the screws with thread locking compound.
• Release bearing and the clutch assembly, refer to CLUTCH (SEC. 7C) in the S Truck Service Manual.
• Speedometer driven gear, switches and any external components that were removed.

SPECIFICATIONS

FASTENER TORQUE

<table>
<thead>
<tr>
<th>Fastener Type</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Countershaft Lock Nut</td>
<td>110</td>
<td>80</td>
</tr>
<tr>
<td>Mainshaft Lock Nut</td>
<td>130</td>
<td>95</td>
</tr>
<tr>
<td>Extension Housing Retaining Bolts</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Gearshift Quadrant Retaining Bolts</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Front Bearing Retainer Bolts</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Detent Spring Plate Retaining Bolts</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Rear Bearing Retainer Screws</td>
<td>20</td>
<td>15</td>
</tr>
</tbody>
</table>

LUBRICATION

<table>
<thead>
<tr>
<th>Capacity</th>
<th>2.3 L</th>
<th>2.5 qts.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type Recommended</td>
<td></td>
<td>Dexron II Automatic Transmission Fluid</td>
</tr>
</tbody>
</table>

SPECIAL TOOLS

A. J-22912-01 Bearing And Gear Puller
B. J-33035 Extension Housing Seal Installer
C. J-26540 Front Housing Drive Gear Seal Installer
D. J-8853-01 Mainshaft Bearing Race Installer
DESCRIPTION

The 77 mm 4 speed (RPO MC9 and MF2) and 5 speed (RPO's ML2, ML3 and MH3) are constant mesh transmissions, synchronized in all speeds except reverse.

The main components are:

1. **Main drive gear.**
 - An integral shaft is splined to engage with the clutch driven plate.
 - The gear drives the countergear.
 - A ball bearing supports the shaft in the case.

2. **Countergear.**
 - The countergear is one unit for constant rotation with the main drive gear.
 - Bearings support the countergear in the case.
 - Thrust washers limit the play of the countergear.
 - An extra gear is mounted to the countergear for 5th speed.

3. **Mainshaft.**
 - The drive gears rotate freely on the mainshaft and are in constant mesh with the countergear.
 - Key type synchronizers engage the gears.
 - The 1st and 2nd synchronizer hub is machined in place.
 - A ball bearing supports the mainshaft in the rear of the case.
 - Roller bearings support the mainshaft independently in the main drive gear.
 - The main drive gear and mainshaft are engaged by a synchronizer for direct drive in top gear.
 - Thrust washers limit the play of the mainshaft.

4. **Reverse idler gear.**
 - The idler gear drives the main shaft in reverse.
 - The idler gear is supported on its own shaft.

5. **Shift lever.**
 - The shift lever is mounted on the extension housing and holds the shift lever.
 - The shift lever moves the shafts which are mounted in the transmission top cover.
 - Shift forks mounted on shafts move the synchronizers to engage the gears.
 - A pin-type interlock blocks the other shafts when one is moved.
Certain precautions should be followed when repairing the transmission. Unless proper care is taken, the components may be damaged.

- Repair of a transmission should be done in a clean work area. The outside of the case should be clean to keep dirt out of the transmission. On transmissions with a standard gearshift lever, install the lever before cleaning the outside of the transmission.

- During transmission repair, all the parts should be cleaned in cleaning solvent and then air dried. Wiping cloths or rags should not be used to dry the parts as lint may get on the parts and cause trouble later. All the parts, except those being worked on, should be kept covered with clean paper.

DISASSEMBLY OF THE 77 mm TRANSMISSION

++ Remove or Disconnect (Figures 109 and 111)

- Speedometer driven gear, switches and any external components.
- **Speedometer driven gear, switches and any external components.**

1. Control lever (653).
 - Boot and the dust cover.
2. Pin (659) from the offset lever (655), (figure 112).
3. Extension housing (613) and the offset lever.

Important
- The offset lever is engaged into the extension housing and cannot be removed when the extension housing is mounted to the transmission.

4. Detent ball and the spring from the offset lever, (figure 113).
5. Countergear rear thrust bearing (612).

Important
- Two of the cover mounting screws are alignment screws. Note the positions they were removed from for installation.

7. 5th speed drive gear (632), (5 speed only).
- Support the 5th speed shift fork (618) and drive the pin out, (figure 115).
- Snap ring and the 5th gear synchronizer (630) and shift fork together, (figure 116).
- 5th speed blocker ring (631) and the 5th speed gear (632).
8. Speedometer drive gear (609) and the clip.
9. 5th speed driven gear snap ring (606), (5 speed only).
10. Main drive gear bearing retainer (646).
- **Mark the retainer and the case for alignment, (figure 117).**

11. Bearing race (644) and the shim pack, (figure 118).
12. Main drive gear (643).
 - Turn the gear so the cut-out is toward the countergear, (figure 119).
13. Retaining ring and the reverse shift shaft lever pivot bolt (624), (figure 120).
14. Mainshaft rear bearing race (605).
15. Mainshaft (604).
16. 5th speed and reverse shift shaft (629), (figure 121).
 - Unhook the lock spring.
 - Turn the shaft to disengage it from the reverse lever.
 - Remove the shaft from the rear of the transmission case.
17. 5th speed and reverse shift lever (623).
18. Reverse idler gear (638).
 - Drive the pin through the front of the idler shaft (637), (figure 122).
 - Idler shaft and the seal.
 - Idler gear.
19. Snap ring and the countergear rear bearing spacer (634), (5 speed only).
20. Countergear rear bearing (635).
 - Drive the countergear (640) to the rear to remove the bearing, (figure 123).

Important
- Note the direction the bearing faces.
21. Countergear (640) and the rear bearing spacer (636).
22. Countergear thrust washer (641).
23. Countergear front bearing (642).
 - Press the bearing from the case.
Figure 109—77 mm Transmission and Components
Figure 110—(Legend) 77 mm Transmission and Components
613. Extension Housing
650. Retainer
651. Boot
652. Retainer
653. Control Lever
654. Damper Sleeve
655. Offset Lever
656. Detent Plate
657. Detent Ball
658. Detent Spring
659. Pin

Figure 111—Shift Lever Components

Figure 112—Removing the Offset Lever Pin

Figure 113—Detent Ball and the Spring

Figure 114—Plastic Funnel

Figure 115—Removing the 5th Speed Shift Fork Pin
Figure 116—Removing the 5th Speed Shift Fork and the Synchronizer

Figure 117—Bearing Cap Alignment Marks

Figure 118—Main Drive Gear Shim Pack

Figure 119—Main Drive Gear Cut Out

Figure 120—5th Speed and Reverse Shift Lever Retaining Ring

623. 5th Speed and Reverse Shift Lever
624. Pivot Bolt
625. Retaining Ring

643. Main Drive Gear A. Cut-out

646. Main Drive Gear Bearing Retainer A. Alignment Marks

644. Main Drive Gear Bearing Race
645. Bearing Shim Pack
646. Main Drive Gear Bearing Retainer
623. 5th Speed and Reverse Shift Lever
627. Lock Spring
629. 5th Speed and Reverse Shift Shaft B-08577

Figure 121—5th Speed and Reverse Shift Shaft

637. Reverse Idler Shaft
639. Pin B-08356

Figure 122—Removing the Reverse Idler Shaft Pin

637. Reverse Idler Shaft
639. Pin

Figure 123—Removing the Countergear Rear Bearing

623. 5th Speed and Reverse Shift Lever
627. Lock Spring
629. 5th Speed and Reverse Shift Shaft B-08577

Figure 121—5th Speed and Reverse Shift Shaft

637. Reverse Idler Shaft
639. Pin B-08356

Figure 122—Removing the Reverse Idler Shaft Pin

637. Reverse Idler Shaft
639. Pin

Figure 123—Removing the Countergear Rear Bearing
DISASSEMBLY AND ASSEMBLY OF SUB-ASSEMBLIES

MAIN DRIVE GEAR

Disassemble (Figure 124)

Tool Required:
J-22912-01 Bearing and Gear Puller
1. Thrust bearing and the race (682).
2. Pilot bearings (681).
3. Bearing (680) using J-22912-01 (Figure 125).

Clean (Figure 124)

- All parts in a suitable solvent.
 (Do not spin the bearings dry.)

Inspect (Figure 124)

1. Parts for damage and wear.
2. Oil the bearings and check for roughness.

Assemble (Figure 124)

Tool Required:
J-22912-01 Bearing and Gear Puller
1. Bearing (680), using J-22912-01, (Figure 125).
2. Pilot bearings.
 - Use chassis grease to hold the bearings in place.
3. Thrust bearing and the race (682).

MAINSHAFT

Disassemble (Figure 126)

Tool Required:
J-22912-01 Bearing and Gear Puller
1. Remove the 4th speed blocker ring (661).
2. 3rd and 4th synchronizer and the 3rd speed gear (664).
 - Press the mainshaft through the synchronizer, the blocker ring and the gear using J-22912-01, (Figure 127).
 - Do not let the synchronizer come apart.

3. Remove the snap ring and the 2nd speed gear thrust washer (666).
4. Remove the 2nd speed gear (667) and blocker ring.
5. Press the mainshaft through the 5th speed driven gear (679) using J-22912-01, (Figure 128), (5 speed only).

Important
- Do not let the mainshaft fall to the floor.
6. Mainshaft rear bearing (678).
 - It may be necessary to press the mainshaft through the bearing using J-22912-01, (Figure 128).

Important
- Do not let the mainshaft fall to the floor.
7. Remove the 1st speed gear thrust washer (677).
8. Pull the retaining pin out and remove the 1st speed gear (676), (Figure 129).
9. 1st and 2nd speed synchronizer sleeve (674), (Figure 130).
 - Mark the hub and sleeve alignment for reassembly.
 - Push the hub out of the sleeve while holding the springs and keys to avoid losing them.
 - Do not lose the antirattle ball and spring (669), (5 speed only).
Figure 126—Mainshaft and Components

- Do not remove the hub. The hub and the mainshaft are machined together as a set.

10. Synchronizers (630 and 662), (figure 130).
 - The synchronizer hub and sleeve are a select fit, do not mix the parts of the two synchronizers.
 - Mark the hub and sleeve alignment for reassembly.
 - Push the hub out of the sleeve while holding the springs and keys to avoid losing them.

Clean (Figure 126)
- All parts in a suitable solvent and air dry.

Important
- Do not spin dry bearings.
Inspect (Figure 126)

1. Gears for cracks, chipped gear teeth, and other damage that could cause gear noise.
2. Thrust washers and bushings for damage and wear.
3. Related surfaces on the gears like thrust faces and bearing surface diameters.
4. The reverse sliding gear for a sliding fit on the synchronizer hub without excess radial, or circular play. If the sliding gear is not free on the hub, inspect it for burrs on the ends of the internal splines. Remove any burrs by honing as required.
5. Synchronizer sleeves for a sliding fit on the synchronizer hubs, also, the hubs have to be a snug fit on the mainshaft splines.
6. Synchronizer springs and keys for looseness and damage.
7. Brass synchronizer rings for excess wear and damage.
8. All gear teeth for excess wear.

Assemble (Figure 126)

Tools Required:
- J-22912-01 Bearing and Gear Puller
- J-25234 Countergear Rear Bearing Installer

- Coat all parts with transmission oil before installing them.

1. Synchronizers (630 and 662), (figure 103).
 - Place the keys into the hub.
 - Engage the springs in the same key with the open ends away from each other, (figure 131).
 - Slide the sleeve onto the hub, aligning the marks made during disassembly.

2. 1st and 2nd speed synchronizer sleeve (674), (figure 130).
 - Hold the antirattle ball and spring (669) in the hub, (5 speed only).
 - Place the keys into the hub.
 - Engage the springs in the same key with the open ends away from each other.
 - Slide the sleeve onto the hub, aligning the marks made during disassembly.

3. Slide the 2nd speed blocker ring (668) onto the mainshaft.
 - The clutching teeth must be to the front.

4. Slide the 2nd speed gear (667) on with the cone into the blocker ring.

5. 2nd speed gear thrust washer (666) and a new snap ring.
 - Be sure the thrust washer tab is seated in the mainshaft groove.

6. Slide the 1st speed blocker ring (675) onto the mainshaft.
 - The clutching teeth must be to the rear.
7B-64 77 mm MANUAL TRANSMISSION

Figure 132—Installing the Mainshaft Rear Bearing

7. Install the 1st speed gear (676) and a new retaining pin, (figure 129).
8. Slide the 1st speed gear thrust washer (677) against the gear.
9. Install the mainshaft rear bearing (678).
 • The bearing may have to be pressed on using J-25234, (figure 132).
10. Install the 5th speed driven gear (679) using J-22912-01, (5 speed only).
11. Slide the 3rd speed gear (664) on with the cone to the front.
12. Slide the 3rd speed blocker ring (663) onto the 3rd speed gear.
 • The clutching teeth must be against the gear.
13. Install the 3rd and 4th synchronizer (662) with the hub offset to the front.
14. Slide the 4th speed blocker ring (661) into the 3rd and 4th synchronizer.
 • The clutching teeth must be to the front.

Figure 133—Extension Housing and Components

EXTENSION HOUSING

Remove or Disconnect (Figure 133)

Tools Required:
J-8092 Driver Handle
J-23062-14 Extension Housing Bushing Remover and Installer
1. Seal (681).
2. Sealing compound from flange of the extension.
3. Bushing (680) if it is worn or damaged, using J-8092 and J-23062-14.

Inspect (Figure 133)

1. Extension for scoring, wear or cracks, especially at the flange.
2. Snap ring groove for wear and damage.

Install or Connect (Figure 133)

Tools Required:
J-8092 Driver Handle
J-23062-14 Extension Housing Bushing Remover and Installer
J-21426 Extension Housing Oil Seal Installer
1. New bushing (680) if needed, using J-8092 and J-23062-14, (figure 134).
 • Coat the bushing with transmission oil.
 • Drive the bushing into the extension.
2. Locking compound on the outside of a new seal (681).
 • Fill between the seal lips with chassis grease.
MAIN DRIVE GEAR BEARING RETAINER

Remove or Disconnect (Figure 136)
1. Seal (683).
2. Sealing compound from flange of retainer (646).

Inspect (Figure 136)
1. Retainer nose for scoring, wear or cracks, especially at the flange.
2. Snap ring groove for damage caused by drive gear bearing movement.
3. Replace the retainer if it is worn or damaged.

Install or Connect (Figure 136)

Tool Required:
J-23096 Front Housing Drive Gear Seal Installer
• New seal (683) using J-23096. Coat the inside of the seal with transmission oil, (figure 137).

SHIFT COVER

Disassemble (Figure 138)
• The shift shaft and shift fork plates must be in the neutral position (centered).
1. Turn the shift shaft (685) until the selector arm (689) is disengaged from the fork plates (688).
2. Drive the retaining pin out of the selector arm (689), (figure 139).
3. Remove the shift shaft (685).
Figure 138—Shift Cover and Components

- Shift forks and the plates.
- Selector arm.
- Interlock plate.

4. Pry the oil seal (602) out.
5. Remove the inserts (686) from the forks.

Clean (Figure 138)

- All metal parts in solvent and air dry.

Figure 139—Shift Forks and Selector Plates

Assemble (Figure 138)

- Coat the shift shaft and the cover bores lightly with grease.
- Install a new shift shaft plug (673), if needed.
 - Coat the outside of the plug with sealing compound.
- Fit the inserts (686) and the fork plates (688) into the shift forks, (figure 139).
- 1st and 2nd (largest) shift fork (672).
 - Fit the shift shaft into the cover rear bore.
 - Hold the shift fork in the cover with the fork offset to the rear, (figure 140).
 - Push the shift shaft through the fork.
- 4th Selector arm (689) and the interlock plate (671).
 - Hold the selector arm and the interlock plate in the cover with the widest part of the plate away from the cover.
 - The shift arm retaining pin hole must be away from the cover and to the rear, (figure 140).
 - Push the shift shaft through the arm.
- 5. 3rd and 4th shift fork (687).
 - Hold the shift fork in the cover with fork offset to the rear, (figure 140).

Figure 140—Removing the Shift Shaft Retaining Pin

Inspect (Figure 138)

1. Shift forks.
 - For damage or bends.
 - For worn inserts.
2. Shift shaft.
 - For damage and bends.
 - For worn or damaged plates.
 - For smooth fit in the cover.
3. Shift cover.
 - For cracks and warping.
 - For smooth shift shaft fit.
 - Shaft plug for damage or leaks.
• The fork plate must be under the 1st and 2nd shift fork plate.
• Push the shift shaft through the fork, into the cover front bore.
6. Turn the shift shaft until the front fork plate is away from the cover and parallel to it.
7. Drive a new retaining pin (670) into the selector arm and the shift shaft.

8. Install a new oil seal (602).
• Be sure the arm and shaft pin holes are aligned.
• The retaining pin must be flush with the selector arm.

TRANSMISSION ASSEMBLY
(INSTALLATION OF SUB-ASSEMBLIES)

Figure 141—Installing the Countergear Front Bearing

Use new seals, gaskets, and thread sealer on all bolt threads when assembling the transmission. Tighten all bolts to specified torque.
Lubricate all assemblies as they are installed in the transmission case using transmission oil.

Install or Connect (Figures 109 and 111)

Tools Required:
J-29895 Countershaft Rear Bearing Installer
J-33032 Rear Cluster Bearing Assembly Tool

1. Countergear front bearing (642), (figure 141).
• Coat the bearing bore with Loctite #601 or equivalent.
• The bearing must be flush with the transmission case.

2. Countergear thrust washer (641).
• Coat the thrust washer with grease.

3. Countergear (604) and the rear bearing spacer (636).
• Tip the transmission case up.
• Fit the countergear into the front bearing.
• Install the rear bearing spacer.

Figure 142—Installing Tool J-33032

4. Countergear rear bearing (635), (figures 142 and 143).
• Coat the bearing with grease.

Figure 143—Installing the Countergear Rear Bearing
7B-68 77 mm MANUAL TRANSMISSION

- Install the bearing using J-33032 and J-29895.

Important
- Be sure the bearing is installed in the direction it was removed from.

Measure
- Countergear rear bearing. It must extend 3 mm (0.125-inch) past the transmission case.

5. Reverse idler gear (638) and the shaft.
- Hold the gear in the case with the shift lever groove to the rear.
- Install the reverse idler shaft from the rear.
- Install a new retaining pin, (figure 122).

6. Fit the mainshaft (604) into place.
7. Mainshaft rear bearing race (605).
8. Main drive gear (643).
- Turn the gear so the cut-out is toward the countergear, (figure 119).
- Be sure the 4th speed blocker ring is engaged in the synchronizer properly.

9. Main drive gear bearing race (644).
10. Main drive gear bearing retainer (646) and the screws.
- Be sure to align the marks, (figure 117).

11. 5th speed and reverse shift lever (623), and the pivot bolt.
- Coat the pivot bolt threads with a non-hardening sealer.
- Be sure the reverse lever fork is engaged in the idler gear slot.

12. New reverse shift lever retaining ring (625).
13. Countergear rear bearing spacer (634) and a new snap ring, (5 speed only).
14. 5th speed drive gear (632), (5 speed only).
15. 5th speed and reverse shift shaft (629), (figure 121).
- Install the shaft from the rear of the case.
- Turn the shaft to engage it in the reverse lever.
- Hook the lock spring to the front of the case.

16. 5th speed shift fork (618) and the synchronizer, (5 speed only).
- Engage the shift fork in the synchronizer.
- Engage the 5th speed blocker ring into the synchronizer.
- Install the synchronizer onto the countergear and the shift fork onto the shift shaft together.

17. New pin (619), (5 speed only).
- Align the holes in the 5th speed shift fork and the shift shaft.
- Support the shift fork and install the pin, (figure 115).

18. Front thrust race (611) and a new snap ring, (5 speed only).

- Coat the bearing with petroleum jelly.
- The bearing race lip must be over the bearing.
- Plastic funnel (615) into the bearing, (5 speed only).

20. Extension housing (613) and the screws.
- Turn the transmission on end and mount a dial indicator to the extension housing, (figure 144).

Measure
- Mainshaft end play.
- Select a shim pack 0.03–0.13 mm (0.001–0.005-inch) LARGER than the end play measured, to preload the mainshaft bearings 0.03–0.13 mm (0.001–0.005-inch).

- Remove the bearing retainer.
- Install the correct shim pack, (figure 118).
- Apply a 3 mm (1/8-inch) diameter bead of RTV #732, or equivalent, sealer to the case mating surface.
- Install the bearing retainer, aligning the marks, (figure 117).

22. Shift cover (601).
- Remove the extension housing.
- Move the shift forks and the synchronizers to the neutral positions.
- Apply a 3 mm (1/8-inch) bead of RTV #732, or equivalent, sealer to the cover mating surface.
- Lower the cover onto the case, aligning the shift forks into the synchronizers.
- The offset lever to shift shaft pin hole must be up.

23. Shift cover screws.
- Install the two locating screws in the holes they were removed from first.

24. Speedometer drive gear (609) and the retaining clip.
- Do not lose the balls from the gear.

25. Extension housing (613).
• Apply a 3 mm (1/8-inch) diameter bead of RTV #732, or equivalent, sealer to the mating surface.
• Hold the extension housing so the shift shaft just enters the shift cover opening.
26. Offset lever (655), the detent ball and the spring, (figure 113).

• Press the offset lever into place and seat the extension housing.
• Install the extension housing screws.
27. New pin (659) into the offset lever and shift shaft.
28. Control lever (653), the boot and the dust cover.
• Silicone sealer in the groove around the dust cover.

SPECIFICATIONS

FASTENER TORQUE

<table>
<thead>
<tr>
<th>Fastener Type</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive Gear Bearing Retainer Screws</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Shift Cover Screws</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>Rear Extension Screws</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>Reverse Pivot Bolt</td>
<td>27</td>
<td>20</td>
</tr>
</tbody>
</table>

LUBRICATION

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Type Recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0 L</td>
<td>2.0 qts. Dexron II Automatic Transmission Fluid</td>
</tr>
</tbody>
</table>
1. J-8001 Dial Indicator
2. J-33032 Rear Cluster Bearing Assembly Tool
3. J-29895 Countershaft Rear Bearing Installer
4. J-22912-01 Bearing and Gear Puller
5. J-23096 Front Housing Drive Gear Oil Seal Installer
6. J-21426 Extension Housing Oil Seal Installer
7. J-8092 Driver Handle
8. J-23062-14 Extension Housing Bushing Remover and Installer

B-08343
SECTION 7D
TRANSFER CASE

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Process 205 Transfer Case — Manual Lock Hubs.</td>
<td>7D-2</td>
</tr>
<tr>
<td>Description</td>
<td>7D-2</td>
</tr>
<tr>
<td>Disassembly</td>
<td>7D-2</td>
</tr>
<tr>
<td>Rear Output Shaft and Yoke Assembly</td>
<td>7D-2</td>
</tr>
<tr>
<td>Front Output Shaft Assembly</td>
<td>7D-3</td>
</tr>
<tr>
<td>Shift Rail and Fork Assemblies</td>
<td>7D-3</td>
</tr>
<tr>
<td>Idler Gear</td>
<td>7D-3</td>
</tr>
<tr>
<td>Cleaning and Inspection</td>
<td>7D-6</td>
</tr>
<tr>
<td>Assembly</td>
<td>7D-7</td>
</tr>
<tr>
<td>Idler Gear</td>
<td>7D-7</td>
</tr>
<tr>
<td>Shift Rail and Fork Assemblies</td>
<td>7D-8</td>
</tr>
<tr>
<td>Front Output Shaft Assembly</td>
<td>7D-8</td>
</tr>
<tr>
<td>Rear Output Shaft Assembly</td>
<td>7D-9</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>7D-10</td>
</tr>
<tr>
<td>New Process 207 Transfer Case</td>
<td>7D-10</td>
</tr>
<tr>
<td>Description</td>
<td>7D-10</td>
</tr>
<tr>
<td>Disassembly</td>
<td>7D-11</td>
</tr>
<tr>
<td>Transfer Case</td>
<td>7D-11</td>
</tr>
<tr>
<td>Mainshaft Assembly</td>
<td>7D-11</td>
</tr>
<tr>
<td>Planetary Gear</td>
<td>7D-15</td>
</tr>
<tr>
<td>Cleaning and Inspection</td>
<td>7D-17</td>
</tr>
<tr>
<td>Assembly</td>
<td>7D-17</td>
</tr>
<tr>
<td>Planetary Gear</td>
<td>7D-17</td>
</tr>
<tr>
<td>Mainshaft</td>
<td>7D-17</td>
</tr>
<tr>
<td>Transfer Case</td>
<td>7D-19</td>
</tr>
<tr>
<td>New Process 208 Transfer Case</td>
<td>7D-20</td>
</tr>
<tr>
<td>Description</td>
<td>7D-21</td>
</tr>
<tr>
<td>Disassembly</td>
<td>7D-21</td>
</tr>
<tr>
<td>External Components</td>
<td>7D-21</td>
</tr>
<tr>
<td>Mainshaft Extension</td>
<td>7D-21</td>
</tr>
<tr>
<td>Internal Components</td>
<td>7D-21</td>
</tr>
<tr>
<td>Front and Rear Bearings</td>
<td>7D-21</td>
</tr>
<tr>
<td>Cleaning and Inspection</td>
<td>7D-24</td>
</tr>
<tr>
<td>Assembly</td>
<td>7D-24</td>
</tr>
<tr>
<td>Front and Rear Bearings</td>
<td>7D-24</td>
</tr>
<tr>
<td>Internal Components</td>
<td>7D-25</td>
</tr>
<tr>
<td>Mainshaft Extension</td>
<td>7D-27</td>
</tr>
<tr>
<td>External Components</td>
<td>7D-27</td>
</tr>
<tr>
<td>New Process 241 Transfer Case</td>
<td>7D-27</td>
</tr>
<tr>
<td>Description</td>
<td>7D-27</td>
</tr>
<tr>
<td>Disassembly</td>
<td>7D-30</td>
</tr>
<tr>
<td>External Components</td>
<td>7D-30</td>
</tr>
<tr>
<td>Minshaft Extension and Oil Pump Housing</td>
<td>7D-30</td>
</tr>
<tr>
<td>Internal Components</td>
<td>7D-30</td>
</tr>
<tr>
<td>Cleaning and Inspection</td>
<td>7D-33</td>
</tr>
<tr>
<td>Assembly</td>
<td>7D-33</td>
</tr>
<tr>
<td>Bearing Replacement</td>
<td>7D-33</td>
</tr>
<tr>
<td>Internal Components</td>
<td>7D-33</td>
</tr>
<tr>
<td>Oil Pump Housing and Mainshaft Extension</td>
<td>7D-34</td>
</tr>
<tr>
<td>External Components</td>
<td>7D-35</td>
</tr>
<tr>
<td>Specifications</td>
<td>7D-36</td>
</tr>
<tr>
<td>Special Tools</td>
<td>7D-37</td>
</tr>
</tbody>
</table>
NEW PROCESS 205 TRANSFER CASE — MANUAL LOCK HUBS

DESCRIPTION

A transfer case mounts behind the transmission and allows drive torque to be transmitted in a proportional split to both the front axle and the rear axle, resulting in four-wheel drive. The shift control lever for the transfer case is floor-mounted in the passenger compartment. Depending on the type of transfer case and the shift lever position, various combinations of rear wheel drive, four wheel drive, high traction (gear reduction) or direct drive may be selected.

The model 205 transfer case is a two-speed unit which can be used for either two-wheel or four-wheel drive. Direct drive (1:1 ratio) is available in two modes, 2H for two-wheel drive, or 4H for four-wheel drive. Gear reduction (1.96:1 ratio) is used in the 4L position. This unit uses constant mesh helical gears to connect the input shaft, idler gear and two output gears, thus allowing gear selection to match driving conditions. The front input shaft gear is in constant mesh with the idler gear and, through the idler gear, with the front output gears and the rear output gear. Sliding clutches allow for selective gear engagement resulting in High or Lo range, and two-wheel or four-wheel drive. Ball bearings support the input shaft, rear output shaft and front output shaft. Tapered roller bearings are used on the idler shaft. When driving in a four-wheel mode (4L or 4H) the hubs on the front wheels must be turned to the “Locked” position.

DISASSEMBLY

REAR OUTPUT SHAFT AND YOKE ASSEMBLY

Clean
- The transfer case exterior using a solvent and a stiff brush.

Remove or Disconnect (Figures 1, 2, 3, and 4)

Tools Required:
- J-23431 Rear Output Shaft Housing Bearing Remover and Installer
- J-23432 Snap Ring Pliers

- Loosen the rear output shaft yoke nut (26).
- 1. Rear output shaft housing bolts (6).
- 2. Housing and retainer assembly (62) from the case (19).
- 3. Yoke nut (26) and washers (25 and 69).
- 4. Yoke (68).
- 5. Shaft assembly from the housing (62).
- 7. Thrust washer (44).
- 8. Washer pin (45).
- 9. Tanged bronze washer (60).
- 10. Gear roller bearings, 32 per row (41).
- 11. Spacer (42).
- 12. Gear roller bearings, 32 per row (41).
- 13. Tanged bronze thrust washer (60).
- 17. Oil seal retainer (65).
- 18. Ball bearing (9) and bearing retaining snap ring.
- 20. Oil seal (67) from the retainer (65).
- 21. Needle bearing (61) from the rear output shaft bearing retainer (62), using J-23431.

FRONT OUTPUT SHAFT ASSEMBLY

Remove or Disconnect (Figures 1, 2, 3, 4 and 5)

Tool Required:
- J-23432-1 Snap Ring Pliers
SHIFT RAIL AND FORK ASSEMBLIES

Remove or Disconnect (Figures 3, 4, 6, and 7)

1. Two poppet screws (15) on top of the case (19).
2. Two poppet springs (17).
3. Poppet balls (18).
 - Use a magnet.
4. Cup plugs.
 - Drive the cup plugs into the case, using a 6.35 mm (1/4-inch) punch.
5. Shift fork pins (36).
 - Position both shift rails into neutral.
 - Drive the shift fork pins through the shift rails and into the case.
6. Clevis pins (38).
7. Shift rail link (13).
8. Upper shift rail (39).
10. Shift forks (77 and 35).
11. Sliding clutch hub (34).
12. Front output high gear (33).
14. Bearing (9).
15. Shift rail cup plugs and shift fork pins (36) from the case.
16. Snap ring (11) in front of the main drive gear bearing (12).
17. Main drive shaft (22).
 - Tap the shaft out the rear of the case.
18. Main drive gear bearing (12).
 - Tap the bearing out the front of the case.
19. Interlock pins (21).

IDLER GEAR

Remove or Disconnect (Figures 3, 4 and 8)

Tool Required: Intermediate Shaft Remover and Installer

1. Idler gear shaft nut (27) and washer (28).
2. Idler shaft rear cover (56).
3. Idler gear shaft (54), using J-23429 and a soft hammer.
4. Idler gear (51).
 - Roll the gear to the front output shaft hole and remove it from the case.
5. Bearing cups (50), as required, from the idler gear (51).
6. Spacer (52).
7. Shims (53).
<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yoke Nut</td>
</tr>
<tr>
<td>2</td>
<td>Washer</td>
</tr>
<tr>
<td>3</td>
<td>Washer (Rubber)</td>
</tr>
<tr>
<td>4</td>
<td>Yoke</td>
</tr>
<tr>
<td>5</td>
<td>Seal</td>
</tr>
<tr>
<td>6</td>
<td>Retainer Bolt</td>
</tr>
<tr>
<td>7</td>
<td>Washer, Toothed Retainer</td>
</tr>
<tr>
<td>8</td>
<td>Retainer</td>
</tr>
<tr>
<td>9</td>
<td>Front and Rear Output Shaft Bearing</td>
</tr>
<tr>
<td>10</td>
<td>Gasket</td>
</tr>
<tr>
<td>11</td>
<td>Bearing Retaining Snap Ring</td>
</tr>
<tr>
<td>12</td>
<td>Main Drive Gear Bearing</td>
</tr>
<tr>
<td>13</td>
<td>Shift Rail Link</td>
</tr>
<tr>
<td>14</td>
<td>Shift Rail Oil Seal</td>
</tr>
<tr>
<td>15</td>
<td>Poppet Plug (on Rear Output Shift Rail) or Four Wheel Indicator Lamp Switch (on Front Output Shift Rail)</td>
</tr>
<tr>
<td>16</td>
<td>Poppet Plug Gasket</td>
</tr>
<tr>
<td>17</td>
<td>Poppet Plug Spring</td>
</tr>
<tr>
<td>18</td>
<td>Poppet Ball</td>
</tr>
<tr>
<td>19</td>
<td>Transfer Case</td>
</tr>
<tr>
<td>20</td>
<td>Fill Plug</td>
</tr>
<tr>
<td>21</td>
<td>Shift Rail Interlink Plunger</td>
</tr>
<tr>
<td>22</td>
<td>Input Main Drive Gear</td>
</tr>
<tr>
<td>23</td>
<td>Pilot Roller Retainer Ring</td>
</tr>
<tr>
<td>24</td>
<td>Rear Output Shaft Roller Bearing Thrust Washer</td>
</tr>
<tr>
<td>25</td>
<td>Rear Output Shaft Pilot Bearing Roller</td>
</tr>
<tr>
<td>26</td>
<td>Rear Output Shaft</td>
</tr>
<tr>
<td>27</td>
<td>Rear Output Shaft Yoke Nut</td>
</tr>
<tr>
<td>28</td>
<td>Washer</td>
</tr>
<tr>
<td>29</td>
<td>Power Take-Off Cover Gasket</td>
</tr>
<tr>
<td>30</td>
<td>Bolt</td>
</tr>
<tr>
<td>31</td>
<td>Power Take-Off Cover</td>
</tr>
<tr>
<td>32</td>
<td>Front Output Shaft Bearing Thrust Washer</td>
</tr>
<tr>
<td>33</td>
<td>Front Output Shaft Front Gear</td>
</tr>
<tr>
<td>34</td>
<td>Front Output Gear Clutch Hub</td>
</tr>
<tr>
<td>35</td>
<td>Front Wheel Shift Fork</td>
</tr>
<tr>
<td>36</td>
<td>Coiled Spring Pin</td>
</tr>
<tr>
<td>37</td>
<td>Shift Link Clevis Spring Clip</td>
</tr>
<tr>
<td>38</td>
<td>Clevis Pin</td>
</tr>
<tr>
<td>39</td>
<td>Two/Four Wheel Shift Rail</td>
</tr>
<tr>
<td>40</td>
<td>Front Output Shaft</td>
</tr>
<tr>
<td>41</td>
<td>Bearing Roller</td>
</tr>
<tr>
<td>42</td>
<td>Spacer</td>
</tr>
<tr>
<td>43</td>
<td>Front and Rear Output Shaft Low Gear</td>
</tr>
<tr>
<td>44</td>
<td>Thrust Bearing</td>
</tr>
<tr>
<td>45</td>
<td>Thrust Washer Retainer Pin</td>
</tr>
<tr>
<td>46</td>
<td>Snap Ring</td>
</tr>
<tr>
<td>47</td>
<td>Bearing</td>
</tr>
<tr>
<td>48</td>
<td>Gasket</td>
</tr>
<tr>
<td>49</td>
<td>Front Output Shaft Rear Bearing Retainer</td>
</tr>
<tr>
<td>50</td>
<td>Idler Gear Bearing</td>
</tr>
<tr>
<td>51</td>
<td>Transfer Case Idler Gear</td>
</tr>
<tr>
<td>52</td>
<td>Idler Gear Bearing Spacer</td>
</tr>
<tr>
<td>53</td>
<td>Idler Gear Shim</td>
</tr>
<tr>
<td>54</td>
<td>Idler Gear Shaft</td>
</tr>
<tr>
<td>55</td>
<td>Idler Shaft Cover Gasket</td>
</tr>
<tr>
<td>56</td>
<td>Idler Shaft Cover</td>
</tr>
<tr>
<td>57</td>
<td>Washer</td>
</tr>
<tr>
<td>58</td>
<td>Bolt</td>
</tr>
<tr>
<td>59</td>
<td>Hi-Lo Range Shift Rail Retainer Bearing</td>
</tr>
<tr>
<td>60</td>
<td>Thrust Washer</td>
</tr>
<tr>
<td>61</td>
<td>Rear Output Shaft Retainer Bearing</td>
</tr>
<tr>
<td>62</td>
<td>Rear Output Shaft Bearing Retainer</td>
</tr>
<tr>
<td>63</td>
<td>Speedometer Gear</td>
</tr>
<tr>
<td>64</td>
<td>Retainer Oil Seal Gasket</td>
</tr>
<tr>
<td>65</td>
<td>Retainer</td>
</tr>
<tr>
<td>66</td>
<td>Bolt</td>
</tr>
<tr>
<td>67</td>
<td>Oil Seal</td>
</tr>
<tr>
<td>68</td>
<td>Yoke</td>
</tr>
<tr>
<td>69</td>
<td>Washer</td>
</tr>
<tr>
<td>70</td>
<td>Extension</td>
</tr>
<tr>
<td>71</td>
<td>Bushing</td>
</tr>
<tr>
<td>72</td>
<td>Seal</td>
</tr>
<tr>
<td>73</td>
<td>Input Drive Gear Seal</td>
</tr>
<tr>
<td>74</td>
<td>Gasket</td>
</tr>
<tr>
<td>75</td>
<td>Retainer</td>
</tr>
<tr>
<td>76</td>
<td>Bolt</td>
</tr>
<tr>
<td>77</td>
<td>Front Output Shift Fork</td>
</tr>
<tr>
<td>78</td>
<td>Fork Insert</td>
</tr>
</tbody>
</table>

Figure 4—New Process 205 Transfer Case

Figure 5—Front Output Shaft Rear Bearing Removal

Figure 6—Shift Fork Pin Removal
CLEANING AND INSPECTION

Clean

1. Bearings and rollers.
 • Remove all old lubricant and dirt.
2. Shafts and gears.
 • Remove all old lubricant and dirt.
3. Transfer case, cover and bearing cups.
 • Remove all old lubricant and dirt.
 • Remove all traces of gaskets.

Inspect

1. Bearings and thrust washers for wear, spalling, brinelling, or corrosion.

2. Rollers for wear, spalling or corrosion.
3. Shaft splines for excessive wear, chipped teeth, or cracks.
4. Gears for excessive wear, chipped teeth, spalling, cracks, or corrosion.
5. Housing, retainers and case for cracks, warpage or damage.
6. Shafts for wear, corrosion, cracks, and damage.
7. Bolts and threaded holes for wear, damage, stretched threads or corrosion.
TRANSFER CASE 7D-7

ASSEMBLY

IDLER GEAR

Install or Connect (Figures 3, 4, 9, 10, 11, 12, and 13)

Tools Required:
J-8092 Driver Handle

Figure 9—Bearing Cup Installation

Figure 10—Idler Gear End Play Check

Figure 11—Idler Gear Assembly Installation

J-9276-2 Intermediate Gear Bearing Cup Installer
J-23429 Intermediate Shaft Remover and Installer

1. Two bearing cups (50) in the idler gear (51) using J-9276-2 and J-8092.
2. Two bearing cones (50), spacer (52), shims (53), and idler gear (51) on J-23429 with the bore up.

Measure
- End play. Limits are .025-.051 mm (0.001-0.002-inch).

3. Idler gear assembly with J-23429 into the case. Go through the front output bore, large end first.
4. Idler shaft (54) from the large bore side.
 - Drive the shaft through, using a soft hammer.
5. Washer (28).

Figure 12—Idler Shaft Installation
Figure 13—Idler Shaft Cover Alignment

- Check for end play and free rotation.

Tighten
- Nut to 202 N·m (150 ft. lbs.).

7. Idler shaft cover gasket (55).
8. Idler shaft cover (56).
- The flat on the cover must be located adjacent to the front output shaft rear cover.

Tighten
- Bolts to 27 N·m (20 ft. lbs.).

SHIFT RAIL AND FORK ASSEMBLIES

Install or Connect (Figures 3, 4, and 14)
1. Two rail seals (14) into the case (19).
 - Seals should be installed with the metal lip outward.
2. Interlink plungers (21) through the large bore or PTO opening.
3. Front output drive shift rail (59).

Figure 14—Shift Fork Lock Pin Installation

Figure 15—Front Output Bearing Retainer Seal Installation

- Start the rail into the case from the back, slotted end first, with the poppet notches up.

4. Shift fork (35).
 - Install the shift fork (long end forward) into the front output drive shift rail (59).
 - Push the rail through to the neutral position.
5. Input shaft bearing (12) and shaft (22) into the case.
6. Range rail (39) into the case.
 - Start the range rail into the case from the front, with the poppet notches up.
7. Sliding clutch (34) and fork (77).
 - Install the sliding clutch onto the fork.
 - Place the assembly over the input shaft (40) in the case.
 - Position the assembly to receive the range rail (39).
 - Push the range rail through to the neutral position.
8. Lock pins (36).
 - Install the new lock pins through the holes at the top of the case.
 - Drive the lock pins into the forks.
 - Tip the case onto the PTO opening when installing the range rail lock pin.

FRONT OUTPUT SHAFT ASSEMBLY

Install or Connect (Figures 3, 4 and 15)

Tools Required:
- J-23432 Snap Ring Pliers
- J-22836 Front Output Shaft Bearing Retainer Seal Installer

1. Roller bearings — 32 per row (41) in the front low gear (43).
2. Spacer (42).
3. Roller bearings — 32 per row (41) in the front low gear (43).
4. Front low gear (43) on the front output shaft (40).
• Place the front output shaft in a soft jawed vise, with the spline end down.
• Install the front low gear on the shaft with the clutch gear facing down.

5. Thrust washer pin (45) in the shaft (40).
6. Thrust washer (44) on the shaft (40).
 • Position the snap ring so that the opening is opposite the pin.
8. Front output shaft front bearing (9) into the case (19).
10. Front output shaft front bearing retainer (8).
11. Retainer bolts (6).

Tighten

• Bolts to 40 N·m (30 ft. lbs.).

13. Front output shaft high gear (33) in the case.
14. Shift fork (77) in the sliding clutch hub (34).
15. Shift fork (77) and rail (39) in the front wheel drive (4H) position with the clutch teeth in mesh with the front output high gear teeth.
16. Front output shaft and low gear assembly through the high gear assembly.
 • Line up the washer (32), high gear (33), and the clutch hub (34) with the bearing bore before installing the front output shaft (40).
17. Bearing (47) in the front output rear bearing retainer (49).
18. Front output rear bearing retainer (49) onto the case (19).
 • Use on gasket.
19. Retainer bolts (6).

Tighten

• Bolts to 40 N·m (30 ft. lbs.).

20. Front output yoke (4).
21. Washers (2 and 3).
22. Lock nut (1).

Tighten

• Nut to 202 N·m (150 ft. lbs.).

REAR OUTPUT SHAFT ASSEMBLY

Install or Connect (Figures 3, 4, 16, 17, and 18)

Tools Required:
- J-22875 Rear Output Shaft Rear Bearing Installer
- J-23432 Snap Ring Pliers
- J-23432-1 Snap Ring Picks
- J-23431 Rear Output Shaft Housing Bearing Remover and Installer
- J-21359 Rear Output Shaft Bearing Retainer Seal Installer

1. First row of roller bearings (41) — 32 each, in the rear output shaft low gear (43).
 • Use grease to retain the rollers.

2. Spacer (42) in the rear output shaft low gear (43).
3. Second row of roller bearings (41) — 32 each, in the rear output shaft low gear (43).
 • Use grease to retain the rollers.
4. Thrust washer (60) onto the rear output shaft (26).
 • Install the washer with the tang down in the clutch gear groove.
5. Rear output shaft low gear (43) onto the rear output shaft (26).
 • Install the gear with the clutch teeth facing toward the clutch hub (34).
6. Thrust washer (60) over the gear (43).
 • Install the washer with the tab pointing up and away from the gear.
7. Washer pin (45).
8. Large thrust washer (44) over the shaft (26) and the pin (45).
 • Rotate the washer until the tab fits into the slot 90 degrees away from the pin.
NEW PROCESS 207 TRANSFER CASE

DESCRIPTION

The 207 transfer case is an aluminum case, chain drive, four position unit providing four-wheel drive high and low ranges, a two-wheel high range, and a neutral position. The 207 is a part-time four-wheel drive unit. Torque input in four-wheel high and low ranges is undifferentiated. The range positions on the 207 transfer case are selected by a floor mounted gearshift lever.

The 207 case is a two-piece aluminum case containing front and rear output shafts, two drive sprockets, a shift mechanism and a planetary gear assembly. The drive sprockets are connected and operated by the drive chain. The planetary assembly which consists of a three pinion carrier and an annulus gear provide the four-wheel drive low range when engaged.

IDENTIFICATION

An identification tag is attached to the rear half of the transfer case. This tag provides the transfer case model number, low range reduction ratio, and assembly number. The information on this tag is necessary for servicing information. If the tag is removed or becomes dislodged during service operations, it should be reattached using an adhesive sealant such as Loctite 312, or equivalent.

POWER FLOW

In all drive range positions input torque is transmitted to the transfer case gear train through the transfer case input gear.

In 2H range, torque flows from the input gear to the planetary assembly and annulus gear which rotate as a unit. Torque is transferred to the mainshaft through the planetary carrier which is splined to the mainshaft. Torque flow continues through the mainshaft and rear yoke which is splined to the mainshaft, and finally to the rear propeller shaft and axle. In 2H range, the sliding clutch remains in a neutral position and does not lock the drive sprocket to the mainshaft. As a result, torque is not transferred to the front output shaft.

In 4H range, input torque from the input gear is transmitted through the planetary and annulus gear and through the mainshaft in exactly the same fashion as in 2H range. However, in 4H position, the sliding clutch is shifted rearward and into engagement with the sprocket.
clutch teeth. This locks the drive sprocket to the mainshaft through the sliding clutch. Torque is now transmitted through the drive sprocket to the front output shaft by the connecting drive chain. The torque then flows through the front output shaft to the front propeller shaft and axle resulting in high range four-wheel drive.

In 4L range, the path of torque through the transfer case is exactly the same as in 4H range but with one major difference. In 4L range, the annulus gear is shifted forward and into engagement with the lock plate. Since the lock plate is fixed in the case, the annulus gear is held stationary and does not rotate. This causes the planetary pinions to rotate about the annulus gear internal teeth producing a gear reduction ratio of 2.61:1.

DISASSEMBLY

TRANSFER CASE

Clean
- The transfer case exterior using a solvent and a stiff brush.

Remove or Disconnect (Figures 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34)

Tools Required:
- J-8092 Driver Handle
- J-29369-1 Input Gear Pilot Bearing Remover
- J-29369-2 Front Output Shaft Rear Bearing Remover
- J-33367 Bearing Cup Puller Bridge
- J-33826 Rear Output Bushing Installer and Mainshaft Sprocket Bearing Remover
- J-33839 Rear Output Bushing Remover
- J-33841 Input Drive Gear Roller Bearing Remover

1. Fill plug (16) and drain plug.
2. Yoke nut (49). Discard the nut.
3. Yoke (48).
4. Yoke seal washer (50). Discard the washer.
 - Position the transfer case on end.
 - Position the front case on wood blocks.
 - Shift the transfer case to 4 Lo.
5. Extension housing attaching bolts (13).
 - Tap the shoulder with a soft hammer on the extension housing to break the sealer loose.
7. Snap ring (11) for the rear bearing (10) from the main shaft (1). Discard the snap ring.
8. Rear retainer attaching bolts (9).
 - Using a hammer, tap the shoulder on the retainer to break the sealer loose.
9. Rear retainer (7) from the case.
10. Pump housing (4) from the case.
11. Pump seal (3) from the pump housing (4). Discard the seal.
12. Case halves retaining bolts (17).
13. Rear case (2) from the front case (44).
 - Insert screwdrivers into the slots casted in the case ends. Pry upward.
14. Front output shaft (21) and drive chain (76) as an assembly.
 - Raise the mainshaft slightly for the output shaft to clear the case.
15. Mode fork shaft (73) from the transfer case.
 - Pull up on the shaft until the shaft clears the range fork.

16. Main drive shaft (1).
 - Pull up on the drive shaft until it separates from the planetary assembly.
 - Remove the drive shaft from the transfer case.
17. Planetary assembly with the range shift fork (66) from the transfer case (2).
18. Main drive gear thrust washer (34).
19. Main drive gear (37).
20. Input gear thrust bearing (38).
22. Shift sector detent spring retaining screw (55).
23. Shift sector detent spring (61).
25. Shift shaft lever (59).
27. Seal (57).
28. Shift sector (74).
29. Spacer (75).
30. Locking plate retaining bolts (47).
31. Lock plate (40).
32. Input gear pilot bearing (35), using J-29369-1 with a slide hammer.
33. Front output shaft seal (52).
34. Input gear seal (46).
35. Rear extension seal (15).
36. Input drive gear caged roller bearings (45).
 - Use J-33841 with J-8092. Press out the bearings.
37. Front output shaft rear bearing (20).
 - Use J-29369-2 with J-33367.
38. Rear mainshaft bearing (10) from the rear retainer (7) using a hammer and a drift.
39. Front output shaft bearing retaining snap ring (53), using a screwdriver.
40. Front output shaft bearing (54), using a hammer and drift.
41. Extension housing bushing (14).
 - Use J-33839 with J-8092. Press the bushing out.

MAINSHAFT ASSEMBLY

Remove or Disconnect (Figures 19, 20, and 36)

Tools Required:
- J-8092 Driver Handle
- J-33826 Mainshaft Sprocket Bearing Remover
- J-33826 Mainshaft Sprocket Bearing Remover
1. Speedometer gear (6).
<table>
<thead>
<tr>
<th>Part Description</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Drive Shaft</td>
<td>1</td>
</tr>
<tr>
<td>Case Housing</td>
<td>2</td>
</tr>
<tr>
<td>Oil Pump Housing Seal</td>
<td>3</td>
</tr>
<tr>
<td>Oil Pump</td>
<td>4</td>
</tr>
<tr>
<td>Oil Pump</td>
<td>5</td>
</tr>
<tr>
<td>Speedometer Drive Gear Retainer</td>
<td>6</td>
</tr>
<tr>
<td>Main Shaft Rear Bearing Retainer</td>
<td>7</td>
</tr>
<tr>
<td>Case Vent Connector</td>
<td>8</td>
</tr>
<tr>
<td>Bolt</td>
<td>9</td>
</tr>
<tr>
<td>Main Shaft Rear Bearing</td>
<td>10</td>
</tr>
<tr>
<td>Retaining Ring</td>
<td>11</td>
</tr>
<tr>
<td>Main Shaft Extension Housing</td>
<td>12</td>
</tr>
<tr>
<td>Bolt</td>
<td>13</td>
</tr>
<tr>
<td>Bushing</td>
<td>14</td>
</tr>
<tr>
<td>Oil Seal</td>
<td>15</td>
</tr>
<tr>
<td>Plug — Fill or Drain</td>
<td>16</td>
</tr>
<tr>
<td>Bolt</td>
<td>17</td>
</tr>
<tr>
<td>Alignment Dowel Washer</td>
<td>18</td>
</tr>
<tr>
<td>Alignment Dowel</td>
<td>19</td>
</tr>
<tr>
<td>Front Output Shaft Pilot Bearing</td>
<td>20</td>
</tr>
<tr>
<td>Front Output Shaft</td>
<td>21</td>
</tr>
<tr>
<td>Planet Gear Carrier Assembly</td>
<td>22</td>
</tr>
<tr>
<td>Thrust Washer</td>
<td>23</td>
</tr>
<tr>
<td>Retainer Ring</td>
<td>24</td>
</tr>
<tr>
<td>Annulus Gear</td>
<td>25</td>
</tr>
<tr>
<td>Synchronizer Retaining Ring</td>
<td>26</td>
</tr>
<tr>
<td>Synchronizer Assembly</td>
<td>27</td>
</tr>
<tr>
<td>Synchronizer Strut</td>
<td>28</td>
</tr>
<tr>
<td>Strut Spring</td>
<td>29</td>
</tr>
<tr>
<td>Stop Ring</td>
<td>30</td>
</tr>
<tr>
<td>Sprocket Bearing</td>
<td>31</td>
</tr>
<tr>
<td>Sprocket</td>
<td>32</td>
</tr>
<tr>
<td>Sprocket Thrust Washer</td>
<td>33</td>
</tr>
<tr>
<td>Input Main Drive Gear Thrust Washer</td>
<td>34</td>
</tr>
<tr>
<td>Input Drive Gear Pilot Bearing</td>
<td>35</td>
</tr>
<tr>
<td>Cup Plug</td>
<td>36</td>
</tr>
<tr>
<td>Input Main Drive Gear Assembly</td>
<td>37</td>
</tr>
<tr>
<td>Input Drive Gear Thrust Bearing</td>
<td>38</td>
</tr>
<tr>
<td>Input Drive Gear Thrust Bearing Washer</td>
<td>39</td>
</tr>
<tr>
<td>Low Range Lock Plate</td>
<td>40</td>
</tr>
<tr>
<td>Indicator Lamp Switch</td>
<td>41</td>
</tr>
<tr>
<td>Indicator Lamp Switch Seal</td>
<td>42</td>
</tr>
<tr>
<td>Oil Access Hole</td>
<td>43</td>
</tr>
<tr>
<td>Case Housing (Front Half)</td>
<td>44</td>
</tr>
<tr>
<td>Input Drive Gear Bearing</td>
<td>45</td>
</tr>
<tr>
<td>Input Drive Gear Seal</td>
<td>46</td>
</tr>
<tr>
<td>Bolt</td>
<td>47</td>
</tr>
<tr>
<td>Yoke</td>
<td>48</td>
</tr>
<tr>
<td>Yoke Nut</td>
<td>49</td>
</tr>
<tr>
<td>Yoke Washer (Rubber)</td>
<td>50</td>
</tr>
<tr>
<td>Yoke Deflector</td>
<td>51</td>
</tr>
<tr>
<td>Front Output Shaft Seal</td>
<td>52</td>
</tr>
<tr>
<td>Bearing Retainer Ring</td>
<td>53</td>
</tr>
<tr>
<td>Front Output Shaft Bearing</td>
<td>54</td>
</tr>
<tr>
<td>Shift Sector Spring Screw</td>
<td>55</td>
</tr>
<tr>
<td>Shift Lever Stop Bolt</td>
<td>56</td>
</tr>
<tr>
<td>Oil Seal</td>
<td>57</td>
</tr>
<tr>
<td>Shift Sector and Shaft Retainer</td>
<td>58</td>
</tr>
<tr>
<td>Shifter Shaft Lever</td>
<td>59</td>
</tr>
<tr>
<td>Nut</td>
<td>60</td>
</tr>
<tr>
<td>Shift Sector Detent Spring</td>
<td>61</td>
</tr>
<tr>
<td>Range Fork Bushing</td>
<td>62</td>
</tr>
<tr>
<td>Fork End Pad</td>
<td>63</td>
</tr>
<tr>
<td>Range Shift Fork Pin</td>
<td>64</td>
</tr>
<tr>
<td>Fork Center Pad</td>
<td>65</td>
</tr>
<tr>
<td>Range Shift Fork</td>
<td>66</td>
</tr>
<tr>
<td>Mode Shift Fork Bracket Pin</td>
<td>67</td>
</tr>
<tr>
<td>Mode Shift Fork Center Pad</td>
<td>68</td>
</tr>
<tr>
<td>Mode Shift Fork</td>
<td>69</td>
</tr>
<tr>
<td>Fork Spring Cup</td>
<td>70</td>
</tr>
<tr>
<td>Fork Spring</td>
<td>71</td>
</tr>
<tr>
<td>Mode Shift Fork Bracket Assembly</td>
<td>72</td>
</tr>
<tr>
<td>Shift Fork Shaft</td>
<td>73</td>
</tr>
<tr>
<td>Shift Sector</td>
<td>74</td>
</tr>
<tr>
<td>Shift Sector Shaft Spacer</td>
<td>75</td>
</tr>
<tr>
<td>Drive Chain</td>
<td>76</td>
</tr>
</tbody>
</table>

Figure 20—New Process 207 Transfer Case

Figure 21—Extension Housing Removal

Figure 22—Rear Output Bearing Retaining Ring Removal
1. Main Drive Shaft
5. Oil Pump
6. Speedometer Drive Gear
25. Annulus Gear
27. Synchronizer Assembly
32. Sprocket
66. Range Shift Fork

Figure 26—Main Drive Shaft Removal

2. Pump gear (5) from the mainshaft (1).
3. Synchronizer hub retaining snap ring (26) from the mainshaft.
4. Synchronizer hub (27) from the mainshaft.
 • Tap the hub off with a brass hammer.
5. Drive sprocket (32).
6. Thrust washer (33).
7. Caged roller bearings (31) from the drive sprocket (32), using J-33826 and J-8092.

Figure 27—Planetary Gear and Range Fork Removal

25. Annulus Gear
66. Range Shift Fork
74. Shift Sector
8. Synchronizer keys (28) from the synchronizer hub.
9. Retaining rings (29) from the synchronizer hub (27).

PLANETARY GEAR

++ Remove or Disconnect (Figure 19, 20, and 37)
1. Snap ring (24) retaining the planetary gear (22) in the annulus gear (25).
2. Outer thrust ring (23). Discard.
3. Planetary gear (22) from the annulus gear (25).
4. Inner thrust ring (23) from the planetary assembly. Discard the ring.
Figure 33—Front Output Shaft Rear Bearing Removal

Figure 34—Front Output Shaft Front Bearing Retainer Ring Removal

Figure 35—Extension Housing Bushing Removal

Figure 36—Drive Sprocket Bearing Removal

Figure 37—Planetary Gear Thrust Rings
CLEANING AND INSPECTION

Clean
1. Bearings and rollers.
 • Remove all old lubricant and dirt.
2. Shafts and gears.
 • Remove all old lubricant and dirt.
3. Transfer case.
 • Remove all old lubricant and dirt. Apply compressed air to each oil feed port and channel in each case half to remove obstructions or cleaning solvent residue.
 • Remove all traces of gaskets and sealers.

Inspect
1. Bearings and thrust washers for wear, spalling, brinelling, or corrosion.
2. Shafts for wear, corrosion, cracks, or damage.
3. Gears for excessive wear, chipped teeth, spalling, cracks, or corrosion.
4. Case halves for cracks, porosity, damaged or warped mating surfaces, stripped or damaged threaded holes, and damaged bearing bores.
5. Bearing bores in the input gear, rear output shaft and rear retainers for damage.
6. Low range lock plate teeth for cracks, chipped teeth, or excessive wear.

ASSEMBLY

PLANETARY GEAR

Install or Connect (Figure 19, 20, and 37)
1. Inner thrust ring (23) on the planetary assembly (22).
2. Planetary assembly (22) into the annulus gear (25).
3. Outer thrust ring (23).
4. Snap ring (24).

MAINSHAFT

Install or Connect (Figures 19, 20, 38, and 39)
Tools Required:
 J-33828 Front Drive Sprocket Bearing Installer
 J-8092 Driver Handle
1. Front drive sprocket bearing (31) into the sprocket (32), using J-33828 and J-8092.

Figure 38—Drive Sprocket Front Bearing Installation

A. Shoulder up for front bearing.

Figure 39—Drive Sprocket Rear Bearing Installation

A. Rear bearing recessed in the bore.

• Press the bearing until the tool bottoms out. The bearing should be flush with the front surface.
2. Rear drive sprocket bearing (31) into the sprocket (32), using J-33828 and J-8092.
 • Reverse J-33828.
 • Press the bearing into the sprocket until the tool bottoms out. The rear bearing should be recessed after installation.
3. Thrust washer (33) on the main shaft (1).
4. Drive sprocket (32) on the main shaft.
5. Block ring (30) on the main shaft.
6. Synchronizer assembly (27) on the main shaft.
7. New snap ring (26) on the main shaft.
8. Pump gear (5). Tap the gear with a soft hammer to seat it on the main shaft.
9. Speedometer gear (6) on the main shaft.
TRANSFER CASE

- Bearings must be aligned with the bearing oil feed holes.

Install or Connect (Figures 19, 20, 40, 41, 42, 43, 44, 45 and 46)

Tools Required:
- J-8092 Driver Handle
- J-33830 Front Input Bearing Installer
- J-33826 Rear Output Bushing Installer
- J-33829 Pilot Bearing Installer
- J-33830 Front Input Bearing Installer
- J-33831 Input Seal Installer
- J-33832 Front Output Rear Bearing Installer
- J-33833 Output Main Bearing Installer
- J-33834 Front Output Seal Installer
- J-33835 Pump Housing Seal Installer
- J-33843 Extension Housing Seal Installer

1. Lock plate (40) in the transfer case.
 - Coat the case and the lock plate surfaces around the bolt holes with Locktite 515 or equivalent.

2. Lock plate retaining bolts (47).
 - Coat the case and the lock plate surfaces around the bolt holes with Locktite 515 or equivalent.

3. Input gear roller bearings (45) into the transfer case, using J-33830 and J-8092. Press the bearings until the tool bottoms in the bore.
4. Front output shaft rear bearing (20), using J-33832 and J-8092. Press the bearing until the tool bottoms in the case.
5. Front output shaft front bearing (54), using J-33833 and J-8092. Press the bearing until the tool bottoms in the bore.
6. Front output shaft bearing retaining snap ring (53) in the case.
7. Front output shaft seal (52), using J-33834.
8. Input main drive gear seal (46), using J-33831.
9. Spacer (75) on the shift sector shaft.
10. Shift sector (74) in the transfer case.
11. Oil seal (57).
12. Retainer (58).
13. Shifter lever (59).

- **Tighten**
 - Nut to 24 N·m (18 ft. lbs.).
15. Shift sector detent spring (61).

Figure 45—Rear Output Shaft Bearing Installation

15. Pilot bearing (35) into the input gear (37), using J-33829 and J-8092. Press the bearing until the tool bottoms out.
16. Input gear front thrust bearing (38 and 39) in the transfer case.
17. Input gear (37) in the transfer case.
18. Planetary gear thrust washer (34) on the input gear (37).
19. Range fork (66) on the planetary assembly.
20. Planetary assembly into the transfer case.
21. Mainshaft (1) into the transfer case.
 - Make sure the thrust washer is aligned with the input gear and planetary assembly before installing the mainshaft.
22. Mode fork (69) on the synchronizer sleeve (27). Rotate until the mode fork is aligned with the range fork.
23. Shift fork shaft (73). Slide the mode fork rail down through the range fork until the shaft is seated in the bore of the transfer case.
24. Drive chain (76) on the front output shaft (21) and the drive sprocket (32).
25. Front output shaft (21) in the transfer case. Slightly raise the mainshaft to seat the output shaft in the case.
26. Magnet into the pocket in the transfer case.
27. Rear case (2) on the front case (44).
 - Apply a 3 mm (1/8-inch) bead of Loctite 515 or equivalent to the mating surface of the front case.
 - Align the rear case to the front case aligning dowel pins.
28. Case bolts (17).
 - Install the two bolts with washers into the dowel pin holes.

- **Tighten**
 - Bolts to 31 N·m (23 ft. lbs.).
29. Output bearing (10) into the rear retainer (7), using J-33833 and J-8092. Press the bearing until its seated in the bore.
NEW PROCESS 208 TRANSFER CASE

DESCRIPTION

The Model 208 transfer case is an aluminum case, chain drive, four position unit providing four-wheel drive high and low ranges, a two-wheel high range, and a neutral position. The model 208 is a part-time four-wheel drive unit. Torque input in four-wheel high and low ranges is undifferentiated. The range positions on the Model 208 are selected by a floor mounted gearshift lever.

The model 208 case is a two-piece aluminum case containing front and rear output shaft, two drive sprockets, a shift mechanism and a planetary gear assembly. The drive sprockets are connected and operated by the drive chain. The planetary assembly which consists of a four pinion carrier and an annulus gear provide the four-wheel drive low range when engaged. Reduction ratio is 2.61:1 in this range.

IDENTIFICATION

An identification tag is attached to the rear half of the transfer case. This tag provides the transfer case model number, low range reduction ratio, and assembly number. The information on this tag is necessary for servicing information. If the tag is removed or becomes dislodged during service operations, it should be reattached using an adhesive sealant such as Loctite 312, or equivalent.

POWER FLOW

In all drive range positions input torque is transmitted to the transfer case gear train through the transfer case input gear.

In 2H range, torque flows from the input gear to the planetary assembly and annulus gear which rotates as a unit. Torque is transferred to the mainshaft through the planetary carrier which is splined to the mainshaft. Torque flow continues through the mainshaft and rear yoke which is splined to the mainshaft, and finally to the rear propeller shaft and axle. In 2H range, the sliding clutch remains in a neutral position and does not lock the drive sprocket to the mainshaft. As a result, torque is not transferred to the driven sprocket.

In 4H range, input torque from the input gear is transmitted through the planetary and annulus gear and through the mainshaft in exactly the same fashion as in 2H range. However, in 4H position, the sliding clutch is shifted forward and into engagement with the mainshaft clutch gear. This locks the drive sprocket to the mainshaft through the sliding clutch. Torque is not transmitted through the drive sprocket to the driven sprocket by the connecting drive chain. Since the front output shaft is splined to the driven sprocket, torque now flows through the front output shaft to the front propeller shaft and axle resulting in high range four-wheel drive.

In 4L range, the path of torque through the transfer case is exactly the same as in 4H range but with one major difference. In 4L range, the annulus gear is shifted forward and into engagement with the lock plate. Since the lock plate is fixed in the case, the annulus gear is held stationary and does not rotate. This causes the planetary pinions to rotate about the annulus gear internal teeth producing a gear reduction ratio of 2.61:1.
DISASSEMBLY

EXTERNAL COMPONENTS

Clean
- The transfer case exterior using a solvent and a stiff brush.

Remove or Disconnect (Figures 47, 48, 49, 50, 51, 52 and 53)

Tools Required:
- J-2619-01
- J-8092 Driver Handle
- J-26941 Front Output Shaft Rear Bearing Remover
- J-29168 Front Output Shaft Front Bearing Remover
- J-29170 Input Gear Front and Rear Bearing Remover
- J-29369-1 Input Drive Gear Pilot Bearing Remover

1. Fill plug (15).
2. Drain plug.
3. Front yoke nut (61). Discard.
4. Front yoke (63).
5. Yoke seal washer (62).
6. Indicator lamp switch (53) and washer.
7. Poppet screw (60).
8. Poppet screw spring (59).
9. Range section plunger (58).

MAINSHAFT EXTENSION

1. Extension bolts (14).
2. Mainshaft extension (9) and pump housing (6) as an assembly.
 - Tap the retainer from the case using a plastic mallet. Do not pry.
3. Pump housing (6) from the retainer (9).
4. Pump seal (5) from the housing. Discard the seal.
5. Speedometer drive gear (2) from the mainshaft (1).
6. Oil pump (7) from the mainshaft (1).
 - Note the position of the pump for assembly reference. The side facing the case interior has a recess in it.

INTERNAL COMPONENTS

1. Case bolts (4).
2. Rear case (3) from the front case (54).
 - Insert screwdrivers into the slots cast in the case ends and gently pry upward. Do not attempt to wedge the case halves apart at any point on the mating surfaces.
3. Front output shaft rear thrust bearing assembly (71, 70 and 69).
 - Note the position of the bearing and races for assembly reference.
4. Driven sprocket retainer ring (74).
5. Drive sprocket retainer ring (35).
6. Thrust washer (34).
7. Driver sprocket (33), driven sprocket (73) and drive chain (75) as an assembly.
 - Lift evenly on both sprockets to remove the assembly. The mainshaft roller bearings may drop out of the drive sprocket.
8. Front output shaft (72) and front thrust bearing assembly (69, 70, and 71).
10. Synchronizer (27), mode fork bushings (43 and 4), mode fork (44) and bracket (38) as an assembly. The synchronizer keys may fall free from the hub.
11. Shifter fork shaft (41).
12. Mainshaft (1) with the synchronizer hub and retainer ring (26) attached.
14. Thrust washer (23).
15. Annulus gear (22) and range fork (36) as an assembly.
 - Lift the fork to the left in order to disengage the fork lug from the range sector and lift the assembly out of the case.
16. Planetary thrust washer (21).
17. Planetary assembly (20).
18. Mainshaft thrust bearing (46) from the input gear (49).
19. Input gear (49).
 - Lift the gear straight up and out of the case.
20. Input gear thrust bearing (50) and race (51).
 - Note the position of the bearing and the race for assembly reference.
21. Range sector operating lever attaching nut (81) and washer (80).
22. Lever (79).
23. Sector shaft seal (68).
25. Range sector (52).
26. Front output shaft seal (65).
27. Input gear seal (56).
28. Lock plate attaching bolts.
29. Lock plate (19) from the case.

FRONT AND REAR BEARINGS

1. Mainshaft rear bearing (8) from mainshaft extension (9). Use a brass drift and mallet.
2. Rear seal (12). Use a brass drift.
3. Front output shaft front bearing (66), using J-8092 and J-29168.
4. Front output shaft rear bearing (76), using J-26941 and J-2619-01.
5. Input gear front/rear bearing (57), using J-8092 and J-29170.
Figure 47—New Process 208 Transfer Case
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Main Driveshaft</td>
</tr>
<tr>
<td>2.</td>
<td>Speedometer Drive Gear</td>
</tr>
<tr>
<td>3.</td>
<td>Rear Housing</td>
</tr>
<tr>
<td>4.</td>
<td>Bolt</td>
</tr>
<tr>
<td>5.</td>
<td>Oil Pump Seal</td>
</tr>
<tr>
<td>6.</td>
<td>Oil Pump Housing</td>
</tr>
<tr>
<td>7.</td>
<td>Oil Pump Gear</td>
</tr>
<tr>
<td>8.</td>
<td>Main Shaft Rear Bearing</td>
</tr>
<tr>
<td>9.</td>
<td>Main Shaft Extension</td>
</tr>
<tr>
<td>10.</td>
<td>Vent Pipe</td>
</tr>
<tr>
<td>11.</td>
<td>Main Shaft Extension Bushing</td>
</tr>
<tr>
<td>12.</td>
<td>Main Shaft Extension Seal</td>
</tr>
<tr>
<td>13.</td>
<td>Indicator Switch Wire Clip</td>
</tr>
<tr>
<td>14.</td>
<td>Bolt</td>
</tr>
<tr>
<td>15.</td>
<td>Oil Fill Plug</td>
</tr>
<tr>
<td>16.</td>
<td>Alignment Dowel</td>
</tr>
<tr>
<td>17.</td>
<td>Dowel Washer</td>
</tr>
<tr>
<td>18.</td>
<td>Bolt</td>
</tr>
<tr>
<td>19.</td>
<td>Low Range Lock Plate</td>
</tr>
<tr>
<td>20.</td>
<td>Planetary Gears Carrier</td>
</tr>
<tr>
<td>21.</td>
<td>Planetary Gear Thrust Washer</td>
</tr>
<tr>
<td>22.</td>
<td>Annulus Gear</td>
</tr>
<tr>
<td>23.</td>
<td>Annulus Gear Thrust Washer</td>
</tr>
<tr>
<td>24.</td>
<td>Range Fork Center Pad</td>
</tr>
<tr>
<td>25.</td>
<td>Annulus Gear Retainer Ring</td>
</tr>
<tr>
<td>26.</td>
<td>Synchronizer Retainer Ring</td>
</tr>
<tr>
<td>27.</td>
<td>Synchronizer</td>
</tr>
<tr>
<td>28.</td>
<td>Synchronizer Strut Spring</td>
</tr>
<tr>
<td>29.</td>
<td>Synchronizer Shift Strut</td>
</tr>
<tr>
<td>30.</td>
<td>Synchronizer Stop Ring</td>
</tr>
<tr>
<td>31.</td>
<td>Sprocket Roller Spacer</td>
</tr>
<tr>
<td>32.</td>
<td>Sprocket Roller</td>
</tr>
<tr>
<td>33.</td>
<td>Sprocket</td>
</tr>
<tr>
<td>34.</td>
<td>Drive Sprocket Thrust Washer</td>
</tr>
<tr>
<td>35.</td>
<td>Drive Sprocket Retainer Ring</td>
</tr>
<tr>
<td>36.</td>
<td>Range Fork</td>
</tr>
<tr>
<td>37.</td>
<td>Range Fork Shift Pin</td>
</tr>
<tr>
<td>38.</td>
<td>Mode Fork and Spring Retainer</td>
</tr>
<tr>
<td>39.</td>
<td>Mode Fork Shifter Spring</td>
</tr>
<tr>
<td>40.</td>
<td>Mode Fork Spring Cup</td>
</tr>
<tr>
<td>41.</td>
<td>Shifter Fork Shaft</td>
</tr>
<tr>
<td>42.</td>
<td>Fork End Pad</td>
</tr>
<tr>
<td>43.</td>
<td>Mode Fork Center Pad</td>
</tr>
<tr>
<td>44.</td>
<td>Mode Fork</td>
</tr>
<tr>
<td>45.</td>
<td>Mode Fork Shifter Pin</td>
</tr>
<tr>
<td>46.</td>
<td>Input Drive Gear Thrust Bearing</td>
</tr>
<tr>
<td>47.</td>
<td>Input Drive Gear Pilot Bearing</td>
</tr>
<tr>
<td>48.</td>
<td>Input Drive Gear Plug</td>
</tr>
<tr>
<td>49.</td>
<td>Input Drive Gear</td>
</tr>
<tr>
<td>50.</td>
<td>Input Drive Gear Thrust Bearing</td>
</tr>
<tr>
<td>51.</td>
<td>Input Drive Gear Thrust Washer</td>
</tr>
<tr>
<td>52.</td>
<td>Range Sector, with Shaft</td>
</tr>
<tr>
<td>53.</td>
<td>Indicator Lamp Switch</td>
</tr>
<tr>
<td>54.</td>
<td>Front Housing</td>
</tr>
<tr>
<td>55.</td>
<td>Bolt</td>
</tr>
<tr>
<td>56.</td>
<td>Input Drive Gear Seal</td>
</tr>
<tr>
<td>57.</td>
<td>Input Drive Gear Bearing</td>
</tr>
<tr>
<td>58.</td>
<td>Range Sector Plunger</td>
</tr>
<tr>
<td>59.</td>
<td>Poppet Screw Spring</td>
</tr>
<tr>
<td>60.</td>
<td>Poppet Screw</td>
</tr>
<tr>
<td>61.</td>
<td>Front Output Yoke Nut</td>
</tr>
<tr>
<td>62.</td>
<td>Front Output Yoke Seal Washer</td>
</tr>
<tr>
<td>63.</td>
<td>Yoke</td>
</tr>
<tr>
<td>64.</td>
<td>Yoke Deflector</td>
</tr>
<tr>
<td>65.</td>
<td>Front Output Shaft Seal</td>
</tr>
<tr>
<td>66.</td>
<td>Front Output Shaft Bearing</td>
</tr>
<tr>
<td>67.</td>
<td>Range Sector Shaft Oil Seal</td>
</tr>
<tr>
<td>68.</td>
<td>Sector and Shaft Retainer</td>
</tr>
<tr>
<td>69.</td>
<td>Outer Thrust Washer</td>
</tr>
<tr>
<td>70.</td>
<td>Thrust Bearing</td>
</tr>
<tr>
<td>71.</td>
<td>Inner Thrust Washer</td>
</tr>
<tr>
<td>72.</td>
<td>Front Output Shaft Sprocket</td>
</tr>
<tr>
<td>73.</td>
<td>Sprocket</td>
</tr>
<tr>
<td>74.</td>
<td>Driven Sprocket Retainer Ring</td>
</tr>
<tr>
<td>75.</td>
<td>Drive Chain</td>
</tr>
<tr>
<td>76.</td>
<td>Front Output Shaft Pilot Bearing</td>
</tr>
<tr>
<td>77.</td>
<td>Annulus Gear Hub Bushing</td>
</tr>
<tr>
<td>78.</td>
<td>Dowel Pin</td>
</tr>
<tr>
<td>79.</td>
<td>Lever</td>
</tr>
<tr>
<td>80.</td>
<td>Washer</td>
</tr>
<tr>
<td>81.</td>
<td>Nut</td>
</tr>
</tbody>
</table>

Figure 48—New Process 208 Transfer Case

Figure 49—Sprocket and Chain Removal

Figure 50—Front Output Shaft Front Bearing Removal

Figure 51—Front Output Shaft Rear Bearing Removal
CLEANING AND INSPECTION

Clean
1. Bearings.
 • Remove all old lubricant and dirt.
2. Shafts.
3. Sprockets.
4. Chain.
5. Oil feed ports and channels in each case half. Apply compressed air to each oil feed port and channel in order to remove any obstructions or cleaning solvent residue.

Inspect
1. Bearings and thrust washers for wear, spalling, brinneling, or corrosion.
2. Gear teeth for excessive wear or damage, spalling, cracks, or corrosion.
3. Gear splines for excessive wear, spalling, cracks, twist or corrosion.
4. Shaft splines for excessive wear, spalling, cracks, distortion or corrosion.
5. Retainer rings for excessive wear, distortion or damage.
6. Case halves for damaged or warped mating surfaces, cracks, porosity, or damaged threaded holes.
7. Lock plate teeth for cracks, chips, spalling, or excessive wear.
8. Lock plate hub for cracks or distortion.

ASSEMBLY

FRONT AND REAR BEARINGS

Install or Connect (Figures 47, 48, 54, 55, 56, 57, 58, 59 and 60)

Tools Required:
- J-8092 Driver Handle
- J-29174 Mainshaft Bearing Installer
- J-29169 Input Gear Bearing Installer
- J-29163 Front Output Shaft Rear Bearing Installer
- J-29167 Front Output Shaft Front Bearing Installer
- J-29162 Extension Oil Sealer Installer

1. Input drive gear pilot bearing (47), using J-8092 and J-29174.
 • Check that the oil feed hole is not covered.
2. Input gear rear bearing (57), using J-8092 and J-29169.
3. Input gear front bearing (57), using J-8092 and J-29169.
4. Front output shaft pilot bearing (76), using J-8092 and J-29163.
 • Check that the oil feed hole is not covered.
 • The bearing is seated flush with the edge of the case bore to allow room for the thrust bearing assembly.
5. Front output shaft front bearing (66), using J-8092 and J-29167.
6. Mainshaft rear bearing (8), using J-7818.
 • The shielded side of the bearing faces the interior of the case.
INTERNAL COMPONENTS

1. Lock plate (19).
 - Coat the case and the lock plate surfaces around the bolt holes with Loctite 515 sealant, or equivalent.
 - Position the new lock plate in the case.
 - Align the bolt holes.

2. Lock plate attaching bolts.
 - Coat the new lock plate attaching bolts with Loctite 271 sealant, or equivalent.
 - Tighten
 - Bolts to 41 N·m (30 ft. lbs.).
 - Input gear race (51) in the front case.
 - Thrust bearing (50).
 - Input gear (49).
 - Mainshaft thrust bearing (46) in the input gear (49).
 - Range sector (52).
 - Range sector shaft oil seal (67).
 - Range sector shaft retainer (68).

10. Operating lever (79) on the range sector shaft.
11. Shaft washer (80).
12. Lock nut (81).
 - Tighten
 - Nut to 24 N·m (18 ft. lbs.).
13. Planetary assembly (20) over the input gear (49). Be sure the planetary is fully seated and meshed with the gear.
15. Pads (42, 24) in the range fork (36).
16. Range fork (36) in the annulus gear (22).
17. Annulus gear (22) over the planetary assembly (20).
 - The range fork lug should be fully inserted in the range sector slot.
18. Annulus gear retainer ring (25).
Figure 58—Rear Output Bearing Installation

- Align the shaft bores in the case and range fork.
- Install the shift shaft.

20. Mainshaft (1). The mainshaft thrust bearing (46) must be properly seated in the input gear before installing the mainshaft.

21. Synchronizer (27) and the mode fork (44) as an assembly. Position the synchronizer keys before installing the synchronizer.

22. Synchronizer stop ring (30).

23. Sprocket roller spacer (31).

- Coat the mainshaft with petroleum jelly.

24. First row of bearing rollers (32), 60 rollers in the row.

25. Sprocket roller spacer (31).

27. Sprocket roller spacer (31).

28. Front output shaft front thrust bearing assembly (69, 70, 71) in the front case.

Figure 60—Input Gear, Mainshaft Thrust Bearing, and Planetary Gear Installation

- The installation sequence is: thick race, thrust bearing, and thin race. The thick race is next to the case.

29. Front output shaft (72).

30. Sprockets (73, 33) and the drive chain as an assembly.

- Position the sprockets in the chain.
- Align the sprockets with the shafts.
- Install the assembly. The drive sprocket is installed with the tooth side of the sprocket facing the case interior.

31. Drive sprocket thrust washer (34).

32. Sprocket retainer ring (35).

33. Driven sprocket retainer ring (74).

34. Front output shaft rear thrust bearing assembly (69, 70, 71) on the front output shaft.

- The sequence is thin race, thrust bearing, thick race. The thick race is next to the housing.

35. Oil pump gear (7) on the mainshaft. Be sure the recessed side of the pump faces downward toward the case interior.

36. Speedometer drive gear (2) on the mainshaft.

37. Magnet in the front case.

38. Spring (39) on the shift shaft (41).

39. Retainer (38) on the shaft shaft (41).

40. Loctite 515 sealant, or equivalent, to the mating surface of the front case.

41. Rear case (3) on the front case (54). The front output shaft rear thrust bearing assembly should be seated in the rear case.

42. Case bolts (4).

- Align the case bolt holes and alignment dowels before installing the bolts.
- Install flat washers (17) on the two bolts (18) installed at the opposite ends of the case.

\[\text{Tighten} \]

- The bolts alternately and evenly to 31 N-m (23 ft. lbs.).
MAINSHAFT EXTENSION

1. Pump seal (5).
2. Petroleum jelly to the pump housing tabs.
3. Pump housing (6) in the main shaft extension (9).
4. Loctite 515 sealant, or equivalent, to the mating surface of the main shaft extension (9).
5. Main shaft extension (9).
 - Align the extension and case index marks before installing the extension.
 - Bolts to 31 N·m (23 ft. lbs.).
 - Coat the seal lip with petroleum jelly before installing the seal.

EXTERNAL COMPONENTS

1. Washer on the indicator switch (53).
2. Indicator switch (53).
 - Switch to 24 N·m (18 ft. lbs.).
3. Loctite 515 sealant to the poppet screw (60).
4. Range sector plunger (58), spring (59), and screw (60).
 - Bolts to 31 N·m (23 ft. lbs.).
5. Drain plug and gasket.
 - Plug to 24 N·m (18 ft. lbs.).
6. Front case output shaft oil seal (65) in the shaft bore.
7. Front yoke seal washer (62).
8. Front yoke (63).
9. Yoke nut (61).
 - Nut to 163 N·m (120 ft. lbs.).
10. 10 pints of Dexron II into the transfer case.
11. Fill plug (15).
 - Plug to 24 N·m (18 ft. lbs.).

NEW PROCESS 241 TRANSFER CASE

DESCRIPTION

The Model 241 transfer case is an aluminum case, chain drive, four position unit providing four-wheel drive high and low ranges, a two-wheel high range, and a neutral position. The model 208 is a part-time four-wheel drive unit. Torque input in four-wheel high and low ranges is undifferentiated. The range positions on the Model 241 are selected by a floor mounted gearshift lever.

The case is a two-piece aluminum case containing front and rear output shaft, two drive sprockets, a shift mechanism and a planetary gear assembly. The drive sprockets are connected and operated by the drive chain. The planetary assembly which consists of a four pinion carrier and an annulus gear provide the four-wheel drive low range when engaged. Reduction ratio is 2.72:1 in this range (figures 61, 62 and 63).

IDENTIFICATION

An identification tag is attached to the rear half of the transfer case. This tag provides the transfer case model number, low range reduction ratio, and assembly number. The information on this tag is necessary for servicing information. If the tag is removed or becomes dislodged during service operations, it should be reattached using an adhesive sealant such as Loctite 312, or equivalent.

POWER FLOW

In all drive range positions input torque is transmitted to the transfer case gear train through the transfer case input gear.

In 2H range, torque flows from the input gear to the planetary assembly and annulus gear. Torque is transferred to the main shaft through the planetary carrier which is splined to the main shaft. Torque flow continues through the main shaft which is splined to the main shaft, and finally to the rear propeller shaft and axle. In 2H range, the sliding clutch remains in a neutral position and does not lock the drive sprocket to the main shaft. As a result, torque is not transferred to the driven sprocket.

In 4H range, input torque from the input gear is transmitted through the planetary and annulus gear and through the main shaft in exactly the same fashion as in 2H range. However, in 4H position, the sliding clutch is shifted forward and into engagement with the main shaft clutch gear. This locks the drive sprocket to the main shaft through the sliding clutch. Torque is not transmitted through the drive sprocket to the driven sprocket by the connecting drive chain. Since the front output shaft is splined to the driven sprocket, torque now flows through the front output shaft to the front propeller shaft and axle resulting in high range four-wheel drive.

In 4L range, the path of torque through the transfer case is exactly the same as in 4H range but with one major difference. In 4L range, the annulus gear is shifted forward and into engagement with the lock plate. Since the lock plate is fixed in the case, the annulus gear is held stationary and does not rotate. This causes the planetary pinions to rotate about the annulus gear internal teeth producing a gear reduction ratio of 2.72:1.
24. Front Output Flange
27. Shift Lever Nut
28. Shift Lever
41. Input Gear
43. Bearing Retainer Plate
88. Detent Shift Lamp Switch

Figure 61—Front View — 241 Transfer Case

4. Rear Extension
5. Bolt
57. Rear Case Half
65. Bolt
66. Speedo Gear Switch
67. Drain Plug
68. Fill Plug

Figure 62—Rear View — 241 Transfer Case
<table>
<thead>
<tr>
<th>Number</th>
<th>Part Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Main Driveshaft</td>
</tr>
<tr>
<td>2</td>
<td>Oil Seal</td>
</tr>
<tr>
<td>3</td>
<td>Bushing</td>
</tr>
<tr>
<td>4</td>
<td>Rear Extension</td>
</tr>
<tr>
<td>5</td>
<td>Bolt</td>
</tr>
<tr>
<td>6</td>
<td>Pump Housing</td>
</tr>
<tr>
<td>7</td>
<td>Inner Rotor</td>
</tr>
<tr>
<td>8</td>
<td>Outer Rotor</td>
</tr>
<tr>
<td>9</td>
<td>Rear Pump Housing</td>
</tr>
<tr>
<td>10</td>
<td>Front Pump Housing</td>
</tr>
<tr>
<td>11</td>
<td>Oil Seal</td>
</tr>
<tr>
<td>12</td>
<td>Oil Pump Tube</td>
</tr>
<tr>
<td>13</td>
<td>Needle Bearing</td>
</tr>
<tr>
<td>14</td>
<td>Mainshaft Drive Sprocket</td>
</tr>
<tr>
<td>15</td>
<td>Retainer</td>
</tr>
<tr>
<td>16</td>
<td>Driven Socket</td>
</tr>
<tr>
<td>17</td>
<td>Bolt</td>
</tr>
<tr>
<td>18</td>
<td>Chain</td>
</tr>
<tr>
<td>19</td>
<td>Front Output Shaft</td>
</tr>
<tr>
<td>20</td>
<td>Retainer</td>
</tr>
<tr>
<td>21</td>
<td>Front Output Bearing</td>
</tr>
<tr>
<td>22</td>
<td>Oil Seal</td>
</tr>
<tr>
<td>23</td>
<td>Front Output Flange Guard</td>
</tr>
<tr>
<td>24</td>
<td>Front Output Flange</td>
</tr>
<tr>
<td>25</td>
<td>Washer</td>
</tr>
<tr>
<td>26</td>
<td>Flange Nut</td>
</tr>
<tr>
<td>27</td>
<td>Shift Lever Nut</td>
</tr>
<tr>
<td>28</td>
<td>Shift Lever</td>
</tr>
<tr>
<td>29</td>
<td>Front Case Half</td>
</tr>
<tr>
<td>30</td>
<td>Retainer</td>
</tr>
<tr>
<td>31</td>
<td>Annulus Gear</td>
</tr>
<tr>
<td>32</td>
<td>Thrust Washer</td>
</tr>
<tr>
<td>33</td>
<td>Carrier Washer</td>
</tr>
<tr>
<td>34</td>
<td>Retainer</td>
</tr>
<tr>
<td>35</td>
<td>Input Bearing</td>
</tr>
<tr>
<td>36</td>
<td>Retainer</td>
</tr>
<tr>
<td>37</td>
<td>Oil Seal</td>
</tr>
<tr>
<td>38</td>
<td>Retainer</td>
</tr>
<tr>
<td>39</td>
<td>Metal Plug</td>
</tr>
<tr>
<td>40</td>
<td>Needle Bearing</td>
</tr>
<tr>
<td>41</td>
<td>Input Gear</td>
</tr>
<tr>
<td>42</td>
<td>Screw</td>
</tr>
<tr>
<td>43</td>
<td>Bearing Retainer Plate</td>
</tr>
<tr>
<td>44</td>
<td>Shaft Pinion</td>
</tr>
<tr>
<td>45</td>
<td>Plant Pinion</td>
</tr>
<tr>
<td>46</td>
<td>Roller Separator</td>
</tr>
<tr>
<td>47</td>
<td>Roller Pinion</td>
</tr>
<tr>
<td>48</td>
<td>Pinion Thrust Washer</td>
</tr>
<tr>
<td>49</td>
<td>Planetary Assembly Carrier</td>
</tr>
<tr>
<td>50</td>
<td>Range Shift Hub</td>
</tr>
<tr>
<td>51</td>
<td>Retainer</td>
</tr>
<tr>
<td>52</td>
<td>Spring</td>
</tr>
<tr>
<td>53</td>
<td>Synchronizer Sleeve</td>
</tr>
<tr>
<td>54</td>
<td>Synchronizer Strut</td>
</tr>
<tr>
<td>55</td>
<td>Synchronizer Hub</td>
</tr>
<tr>
<td>56</td>
<td>Synchronizer Ring</td>
</tr>
<tr>
<td>57</td>
<td>Rear Case Half</td>
</tr>
<tr>
<td>58</td>
<td>Oil Pump Screw</td>
</tr>
<tr>
<td>59</td>
<td>Retainer</td>
</tr>
<tr>
<td>60</td>
<td>Speed Gear</td>
</tr>
<tr>
<td>61</td>
<td>Retainer</td>
</tr>
<tr>
<td>62</td>
<td>Bearing</td>
</tr>
<tr>
<td>63</td>
<td>Retainer</td>
</tr>
</tbody>
</table>
DISASSEMBLY

3. Speedometer pick-up switch (66) and seal.
4. Poppet screw, spring (72) and range selection plunger (71) (figure 64).

MAINSHAFT EXTENSION AND OIL PUMP HOUSING

Remove or Disconnect (Figure 63)
1. Mainshaft extension housing (4) and bolts (5).
2. Bearing retainer (63) from the mainshaft.
3. Pump housing bolts (65) and pump housing (6).
4. Retainer (61), speedometer gear (60) and retainer (59).
5. Rear case half (57) from the front case half (29).
 • Bolts (17).
 • Separate case halves. Insert screwdrivers into the slots cast in the case ends and pry apart. Do not attempt to wedge the case halves apart at any point on the mating surfaces.

INTERNAL COMPONENTS

Remove or Disconnect (Figures 63 through 69)
1. Fork shift spring.
2. Oil pump pick-up tube (11) and magnetic washer (72) (figure 65).
3. Retainer (15) from the driven sprocket (16).
4. Mainshaft (1), chain (18) and driven sprocket (16) as a unit from the front case half (57) (figure 66).
5. Retainer (51).
 • Synchronizer assembly.
 • Synchronizer sleeve (53).
 • Synchronizer thrust washer (54).
 • Synchronizer hub (55).
 • Synchronizer ring (56).
6. Range fork (81), range selector (82), mode fork (85) and range shift hub (50) (figure 67).
 • Shift lever nut (27), washer and shift lever (28).
7. Input shaft bearing retainer (43) and seal (38).
8. Bearing retainer (36).
9. Bearing (35) and planetary assembly (44).
 • Bearing (35) from the input gear (41) with J-22912-1.
10. Retainer (34).
11. Carrier lock ring (33).
12. Thrust washer (32).
13. Needle bearing (40) from the input gear (41).
 • Insert J-29369-1 and adapter with J-2619-5 (figure 68).
 • With J-2619-5 hammer the bearing from the input gear.
14. Drive sprocket (14) from the main drive shaft (1).
15. Needle bearings (13) from the drive sprocket (14).
 • Insert J-29369-2 and adapter with J-2619-5.
 • With J-2619-5 hammer the bearing from the drive sprocket (14).
16. Retainer (20).
17. Bearing (21).

EXTERNAL COMPONENTS

Clean
• The transfer case exterior using a solvent and a stiff brush.

Remove or Disconnect (Figures 63 and 64)
Tools Required:
J-2619-5 Slide Hammer
J-8092 Driver Handle
J-22912-1 Bearing Remover
J-29369-1 Needle Bearing Remover
J-29369-2 Needle Bearing Remover
J-33832 Bearing Installer and Remover
1. Front output flange (24) from the front output shaft (19).
 • Nut (26) and washer (25).
2. Indicator lamp switch (88) and seal.
Figure 65—Pump Housing Installation

9. Rear Pump Housing
10. Front Pump Housing
11. Oil Pump Tube
57. Rear Case Half

71. Oil Filter
72. Magnetic Washer

Figure 66—Range Fork and Shaft Assembly

81. Range Fork
82. Range Selector
Figure 67—Mode Fork Assembly

- Use J-33832 and J-8092 to drive the bearing from the case.

18. Seal (2) from the mainshaft extension housing (4) and seal (37) from the front input bearing retainer.

19. Needle bearing (13) from the rear case half (57).
 - Insert J-293692 into the needle bearing.
 - With J-2619-5 hammer the bearing from the case (figure 69).

Figure 68—Input Gear Bearing Removed

Figure 69—Front Output Shaft Rear Bearing Removal
CLEANING AND INSPECTION

Clean
1. Bearings.
 • Remove all old lubricant and dirt.
2. Shafts.
3. Sprockets.
4. Chain.
5. Oil feed ports and channels in each case half. Apply compressed air to each oil feed port and channel in order to remove any obstructions or cleaning solvent residue.

Inspect
1. Bearings and thrust washers for wear, spalling, brinelling, or corrosion.

2. Gear teeth for excessive wear or damage, spalling, cracks, or corrosion.
3. Gear splines for excessive wear, spalling, cracks, twist or corrosion.
4. Shaft splines for excessive wear, spalling, cracks, distortion or corrosion.
5. Retainer rings for excessive wear, distortion or damage.
6. Case halves for damaged or warped mating surfaces, cracks, porosity, or damaged threaded holes.
7. Lock plate teeth for cracks, chips, spalling, or excessive wear.
8. Lock plate hub for cracks or distortion.

ASSEMBLY

J-36371 Front and Rear Output Shaft l Shaft Bearing Installer
J-36372 Input Gear Roller Bearing Installer
J-36373 Input Gear Ball Bearing Installer

1. Needle bearing (13) to the main shaft drive sprocket (14) (figure 70).
 • Use J-36370 and J-8092 to drive the needle bearings into the sprocket.
2. Needle bearing (13) to the rear case half (57).
 • Use J-36372 and J-8092 to drive the needle bearing into the rear case half.
3. Needle bearing (40) to the input gear (41).
 • Use J-36373 and J-8092 to drive the needle bearing into the input gear (41).
4. Bearing (21) to the front case half (29).
 • Use J-36371 to install the bearing.
5. Bearing (62) to the oil pump housing (6).
 • Use J-36371 to install the bearing (figures 73 and 74).
6. Bearing (35) to the input gear (41).
 • Thrust washer (32).
 • Carrier lock ring (33).
 • Retainer (34).
 • Bearing (35) to the input gear (41) with J-36372.

INTERNAL COMPONENTS

Install or Connect (Figures 63, 66 and 67)

1. Input gear (41), bearing (35) and planetary assembly into the annulus ring (30).
 • Use a hammer and a brass drift to seat the bearing.
2. Retainer (36) to the input shaft bearing (35).
3. Retainer (37) to the input gear (41).
4. Input shaft bearing retainer, seal (38) and bolts (42).

BEARING REPLACEMENT

Install or Connect (Figures 70 through 74)

Tools Required:
J-8029 Driver Handle
J-36370 Drive Sprocket Needle Bearing Installer
Tighten
- Bolts (42) to 19 N·m (14 ft. lbs).
5. Range shift hub (50), mode fork (85), range selector (82) and range fork (81).
- Shift lever (28), washer and nut (27).

Tighten
- Nut (27) to 27 N·m (20 ft. lbs.).
6. Drive sprocket (14) and needle bearings (13) to the main drive shaft (1).

7. Synchronizer assembly.
- Synchronizer ring (56).
- Synchronizer hub (55).
- Synchronizer thrust washer (54).
- Synchronizer sleeve (53).
8. Retainer (51).
9. Mainshaft (1), chain (18) and driven sprocket (16) as a unit into the front case half (57).
10. Retainer (15) to the driven sprocket (16).
11. Fork shift spring.

OIL PUMP HOUSING AND MAINSHAFT EXTENSION

Install or Connect (Figures 63 and 65)
1. Oil pump pick-up (11), filter and magnetic washer (72) to the rear case half.
2. Rear case half (57) to the front case half (29).
 - Apply a bead of Loctite 515 sealant or equivalent to the mating surfaces.
 - Bolts (17).

Tighten
- Bolts (17) to 31 N·m (23 ft. lbs.).
3. Retainer (59), speedometer gear (60) and retainer (61).
4. Pump housing (6) and bolts (65).
 - Apply a bead of Loctite 515 sealant or equivalent to the mating surfaces.

Tighten
- Bolts (65) to 41 N·m (30 ft. lbs.).
5. Bearing retainer (63) to the main shaft (1).
6. Mainshaft extension housing (4) and bolts (5).
 - Apply a bead of Loctite 515 sealant or equivalent to the mating surfaces.

Tighten
- Bolts (5) to 31 N·m (23 ft. lbs.).
EXTERNAL COMPONENTS

Install or Connect (Figures 61, 62 and 64)

1. Range selector plunger (71), spring (72) and poppet screw.
2. Speedometer pick-up switch (66) and seal.

 Tighten
 - Switch to 31 N·m (23 ft. lbs.).
3. Indicator lamp switch (61) and seal.

 Tighten
 - Switch to 24 N·m (17 ft. lbs.).
4. Front output flange (24), washer (25) and nut (26).

 Tighten
 - Nut (26) to 149 N·m (110 ft. lbs.).
SPECIFICATIONS

NEW PROCESS 205 TRANSFER CASE

<table>
<thead>
<tr>
<th>Item</th>
<th>N·m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idler Gear End Play</td>
<td>0.025-0.051</td>
<td>0.001-0.002</td>
</tr>
<tr>
<td>Rear Output Shaft End Play</td>
<td>0.055-0.056</td>
<td>0.002-0.027</td>
</tr>
<tr>
<td>Idler Gear Lock Nut</td>
<td>202</td>
<td>150</td>
</tr>
<tr>
<td>Idler Shaft Cover Bolts</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Front Output Shaft Front Bearing Retainer Bolts</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Front Output Rear Bearing Retainer Bolts</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Front Output Yoke Lock Nut</td>
<td>202</td>
<td>150</td>
</tr>
<tr>
<td>Retainer Housing Bolts</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Seal Retainer Bolts</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Lubricant: Dexron® II</td>
<td></td>
<td>5.2 Pints</td>
</tr>
</tbody>
</table>

NEW PROCESS 207 TRANSFER CASE

<table>
<thead>
<tr>
<th>Item</th>
<th>N·m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolt—Locking Plate to Transfer Case</td>
<td>34</td>
<td>25</td>
</tr>
<tr>
<td>Nut — Front Output Yoke</td>
<td>150</td>
<td>110</td>
</tr>
<tr>
<td>Switch — Vacuum</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Nut — Shift Lever</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>Bolt — Transfer Case</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Bolt — Rear Retainer</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>Bolt — Extension Housing</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Plug — Drain, Fill</td>
<td>47</td>
<td>35</td>
</tr>
<tr>
<td>Bolt — Adapter to Transfer Case</td>
<td>33</td>
<td>24</td>
</tr>
<tr>
<td>Bolt — Shift Bracket</td>
<td>75</td>
<td>55</td>
</tr>
<tr>
<td>Bolt — Shift Lever Pivot</td>
<td>130</td>
<td>96</td>
</tr>
<tr>
<td>Bolt — Shift Lever Adjusting</td>
<td>41</td>
<td>30</td>
</tr>
<tr>
<td>Lubricant: Dexron® II</td>
<td></td>
<td>4.6 Pints</td>
</tr>
</tbody>
</table>

NEW PROCESS 208 TRANSFER CASE

<table>
<thead>
<tr>
<th>Item</th>
<th>N·m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lock Plate Retaining Bolt</td>
<td>41</td>
<td>30</td>
</tr>
<tr>
<td>Range Sector Shaft Retaining Nut</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>Transfer Case Bolts</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>Extension Bolts</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Indicator Switch</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Poppet Screw</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>Drain Plug</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Front Yoke Nut</td>
<td>163</td>
<td>120</td>
</tr>
<tr>
<td>Fill Plug</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>Lubricant: Dexron® II</td>
<td></td>
<td>10 Pints</td>
</tr>
</tbody>
</table>

NEW PROCESS 241 TRANSFER CASE

<table>
<thead>
<tr>
<th>Item</th>
<th>N·m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Shaft Retainer Bolts</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>Shift Selector Lever Nut</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Shift Selector Light Switch</td>
<td>24</td>
<td>17</td>
</tr>
<tr>
<td>Case Half Bolts</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Pump Housing Bolts</td>
<td>41</td>
<td>30</td>
</tr>
<tr>
<td>Mainshaft Extension Housing Bolts</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Speedometer Pick-up Switch</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Front Propeller Shaft Flange Bolts</td>
<td>149</td>
<td>110</td>
</tr>
<tr>
<td>Lubricant: Dexron® II</td>
<td></td>
<td>4.6 Pints</td>
</tr>
<tr>
<td></td>
<td>SPECIAL TOOLS</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>1.0</td>
<td>J-2619-5</td>
<td>16</td>
</tr>
<tr>
<td>2.0</td>
<td>J-8092</td>
<td>17</td>
</tr>
<tr>
<td>3.0</td>
<td>J-9276-21</td>
<td>18</td>
</tr>
<tr>
<td>4.0</td>
<td>J-21359</td>
<td>19</td>
</tr>
<tr>
<td>5.0</td>
<td>J-22836</td>
<td>20</td>
</tr>
<tr>
<td>6.0</td>
<td>J-22875</td>
<td>21</td>
</tr>
<tr>
<td>7.0</td>
<td>J-22912-1</td>
<td>22</td>
</tr>
<tr>
<td>8.0</td>
<td>J-26941</td>
<td>23</td>
</tr>
<tr>
<td>9.0</td>
<td>J-23429</td>
<td>24</td>
</tr>
<tr>
<td>10.0</td>
<td>J-23431</td>
<td>25</td>
</tr>
<tr>
<td>11.0</td>
<td>J-23432</td>
<td>26</td>
</tr>
<tr>
<td>12.0</td>
<td>J-29162</td>
<td>27</td>
</tr>
<tr>
<td>13.0</td>
<td>J-29163</td>
<td>28</td>
</tr>
<tr>
<td>14.0</td>
<td>J-29167</td>
<td>29</td>
</tr>
<tr>
<td>15.0</td>
<td>J-29168</td>
<td>30</td>
</tr>
</tbody>
</table>
7D-38 TRANSFER CASE

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Slide Hammer</td>
<td>J-33841</td>
</tr>
<tr>
<td>32</td>
<td>Driver Hammer</td>
<td>J-33843</td>
</tr>
<tr>
<td>33</td>
<td>Slide Hammer Adapter</td>
<td>J-36370</td>
</tr>
<tr>
<td>34</td>
<td>Seal Installer</td>
<td>J-36371</td>
</tr>
<tr>
<td>35</td>
<td>Bearing Installer</td>
<td>J-37372</td>
</tr>
<tr>
<td>36</td>
<td>Bearing Installer</td>
<td>J-36373</td>
</tr>
<tr>
<td>1.</td>
<td>Slide Hammer</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Driver Hammer</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Slide Hammer Adapter</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Seal Installer</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Seal Installer</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Bearing Installer</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Bearing Remover</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Needle Bearing Remover</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Gear Shaft Remover</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Bearing Installer</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Internal Snap Ring Pliers</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Seal Installer</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Rear Retainer Seal Installer</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Front Output Shaft Front Bearing Installer</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Front Output Shaft Front Bearing Remover</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Input Gear Bearing Installer</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Input Gear Bearing Remover</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Output Shaft Bearing Remover</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Output Shaft Bearing Remover</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Mainshaft Bearing Installer</td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>Bearing Cup Puller Bridge</td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>Rear Output Bushing Installer</td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>and Mainshaft Sprocket Bearing Remover</td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>Mainshaft Sprocket Bearing Installer</td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td>Pilot Bearing Installer</td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td>Front Input Bearing Installer</td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td>Input Seal Installer</td>
<td></td>
</tr>
<tr>
<td>28.</td>
<td>Output Main Bearing Installer</td>
<td></td>
</tr>
<tr>
<td>29.</td>
<td>Pump Housing Seal Installer</td>
<td></td>
</tr>
<tr>
<td>30.</td>
<td>Rear Output Bushing Remover</td>
<td></td>
</tr>
<tr>
<td>31.</td>
<td>Front Input Bearing Remover</td>
<td></td>
</tr>
<tr>
<td>32.</td>
<td>Mainshaft Sprocket Bearing Installer</td>
<td></td>
</tr>
<tr>
<td>33.</td>
<td>Extension Housing Seal Installer</td>
<td></td>
</tr>
<tr>
<td>34.</td>
<td>Drive Sprocket Needle Bearing Installer</td>
<td></td>
</tr>
<tr>
<td>35.</td>
<td>Front and Rear Output Shaft Bearing Installer</td>
<td></td>
</tr>
<tr>
<td>36.</td>
<td>Input Gear Roller Bearing Installer</td>
<td></td>
</tr>
<tr>
<td>37.</td>
<td>Input Gear Ball Bearing Installer</td>
<td></td>
</tr>
</tbody>
</table>