The Table of Contents on this page indicates the sections covered in this manual. At the beginning of each individual section is a Table of Contents which gives the page number on which each major subject begins.

When reference is made in this manual to a brand name, number, or specific tool, an equivalent product may be used in place of the recommended item.

All information, illustrations, and specifications contained in this Manual are based on the latest product information available at the time of publication approval. The right is reserved to make changes at any time without notice.

Throttle Body Injection is not included in this manual. Unit repair information on TBI is included in the Service Manual.
SECTION 0A

GENERAL INFORMATION

CONTENTS

SUBJECT.. **PAGE**

Service Parts Identification Label .. .OA- 1
Vehicle Identification Plate .. .OA- 1
Certification Label .. .OA- 1
Engine Identification NumberOA- 2
Model ReferenceOA- 2
Metric FastenersOA- 2
Fastener Strength IdentificationOA- 3
Six Lobed Socket Head Fasteners .. .OA- 4
Prevailing Torque FastenersOA- 4
Conversion TableOA-10
Decimal and Metric EquivalentsOA-11

SERVICE PARTS IDENTIFICATION LABEL

The Truck Service Parts Identification Label is provided on all models (figure 1). It is located on the inside of the glove box door (or on an inner body panel for Forward Control models). The Label lists the VIN (Vehicle Identification Number), wheelbase, paint information and all Production options or Special Equipment on the vehicle when it was shipped from the factory. ALWAYS REFER TO THIS INFORMATION WHEN ORDERING PARTS.

VEHICLE IDENTIFICATION NUMBER

The VIN is the legal identifier of the vehicle. On all models except Forward Control, it is located on a plate which is attached to the left top of the instrument panel and can be seen through the windshield from the outside of the vehicle (figure 2). On Forward Control models, the plate is on the dash and toe panel. To find out the

CERTIFICATION LABEL

The Certification Label shows the GVWR, and the front and rear GAWRs, and the Payload Rating for your vehicle (figure 4).

Gross Vehicle Weight (GVW) is the weight of the originally equipped vehicle and all items added to it after it has left the factory. This would include bodies, winches, booms, etc.; the driver and all occupants; and the load the vehicle is carrying. The GVW must not exceed the GVWR. Also, the front and rear gross axle weights must not exceed the front and rear GAWRs.

The Payload Rating shown on the label is the maximum allowable cargo load (including the weight of the driver and all occupants) that the vehicle can carry based on all
Vehicle Identification Number

Figure 3—Vehicle Identification Number

The vehicle may also have a GCWR (Gross Combination Weight Rating). The GCW (Gross Combination Weight) is the total weight of the loaded tow vehicle (including passengers) and a loaded trailer. The tires on the vehicle must be the proper size and properly inflated for the load which you are carrying. The vehicle Certification Label shows the originally equipped tire size and recommended inflation pressures.

ENGINE IDENTIFICATION NUMBER

Refer to figures 5, 6 and 7 to determine the location of the engine I.D. number.

MODEL REFERENCE

Refer to figures 8 through 12 for determining vehicle model. C, R, and S models are two wheel drive. K, V, and T models are four wheel drive.

METRIC FASTENERS

Models are primarily dimensioned in the metric system. Many fasteners are metric and are very close in dimension to well-known customary fasteners in the inch system. It is most important that replacement fasteners be of the correct nominal diameter, thread pitch and strength.

Original equipment metric fasteners (except "beauty" bolts, such as exposed bumper bolts, and cross recess head screws) are identified by a number marking indicating the strength of the material in the fastener as outlined later. Metric cross recess screws are identified by a Posidriv or Type 1A shown in figure 13. Either a Phillips head or Type 1A cross recess screwdriver can be used in Posidriv recess screw heads, but Type 1A cross recess screwdrivers will perform better.
example, the customary 1/4-20 and 1/4-28 screws are replaced by the metric M6.0x1 screw which has nearly the same diameter and has 25.4 threads per inch. The thread pitch is in between the customary coarse and fine thread pitches.

Metric and customary thread notation differ slightly. The difference is shown in figure 14.

FASTENER STRENGTH IDENTIFICATION

Most commonly used metric fastener strength properly classes are 9.8 and 10.9 with the class identification embossed on the head of each bolt. Customary (inch) strength classes range from grade 2 to 8 with radial line identification embossed on each bolt head. Markings correspond to two lines less than the actual grade (i.e. grade 7 bolt will exhibit 5 embossed radial lines on the bolt head). Some metric nuts will be marked with single digit strength identification numbers on the nut face. Figure 6 shows the different strength markings.

When replacing metric fasteners, be careful to use bolts and nuts of the same strength or greater than the original fasteners (the same number marking or higher). It is likewise important to select replacement fasteners of the correct size. Correct replacement bolts metric fasteners available in the aftermarket parts channels were designed to metric standards of countries other than the United States, and may be of a lower strength, may not have the numbered head marking system, and may be of a different thread pitch. The metric fasteners used on GM
A prevailing torque nut is designed to develop an interference between the nut and bolt threads. This is most often accomplished by distortion of the top of an all-metal nut by using a nylon patch on the threads in the middle of the hex flat. A nylon insert may also be used as a method of interference between nut and bolt threads (figure 16).

A prevailing torque bolt is designed to develop an interference between bolt and nut threads, or the threads of a tapped hole. This is accomplished by distorting some of the threads or by using a nylon patch or adhesive (figure 16).

RECOMMENDATIONS FOR REUSE:
1. Clean, unrusted prevailing torque nuts and bolts may be reused as follows:
 a. Clean dirt and other foreign material off the nut or bolt.
 b. Inspect the nut or bolt to insure there are no cracks, elongation, or other signs of abuse of overtightening. (If there is any doubt, replace with a new prevailing torque fastener or equal or greater strength.)
 c. Assemble the parts and hand start the nut or bolt.
 d. Observe that, before fastener seats, it develops torque per the chart in figure 13 (if there is any doubt, replace with a new prevailing torque fastener of equal or greater strength).
 e. Tighten the fastener to the torque specified in the appropriate section of this manual.
2. Bolts and nuts which are rusty or damaged should be replaced with new parts or equal or greater strength.

Products are designed to new, international standards that may not yet be manufactured by some non-domestic bolt and nut suppliers. In general, except for special applications, the common sizes and pitches are:

- M6.0 x 1
- M8 x 1.25
- M10 x 1.5
- M12 x 1.75

SIX LOBED SOCKET HEAD FASTENERS

Six lobed socket head (Torx) fasteners are used in some applications on vehicles covered in this manual (figure 15). The door striker bolt is of this design.

Tools designed for these fasteners are available commercially. However, in some cases, if the correct tool is not available, a hex socket head wrench may be used.
Figure 8—RV Models
G VAN MODELS

RALLY (SPORTVAN) VANDURA (CHEVY VAN)

CUTAWAY VAN MAGNAVAN (HI-CUBE VAN)

P MODELS

VALUE VAN (STEP VAN) MOTOR HOME CHASSIS
(ALUMINUM)

VALUE VAN (STEP VAN) FORWARD CONTROL CHASSIS
(STEEL)

Figure 9—G and P Models
Figure 10—CK Models

Figure 11—ST Models
General Information

1. Customary Bolt — \(\frac{1}{4} \)-20
2. Metric Bolt — M6.0x1
 - A. \(\frac{1}{4} \)-inch
 - B. 6 mm
 - C. 20 Threads Per Inch
 - D. 1 Thread Per Millimeter (25.4 Threads Per Inch)

Figures

Figure 12—M Models

1. Grade 2 (GM 200-M)
2. Grade 5 (GM 280-M)
3. Grade 7 (GM 290-M)
4. Grade 8 (GM 300-M)
5. Manufacturer's Identification
6. Nut Strength Identification
7. Identification Marks (Posidriv Screw Head)

Figure 13—Bolt and Nut Identification

Figure 14—Thread Notation

Figure 15—Six Lobed Socket Head Fasteners
GENERAL INFORMATION OA-9

Figure 16—Torque Nuts and Bolt Chart

<table>
<thead>
<tr>
<th></th>
<th>6 & 6.3</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4, 5</td>
<td>N·m</td>
<td>0.4</td>
<td>0.8</td>
<td>1.4</td>
<td>2.2</td>
<td>3.0</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>In. Lbs</td>
<td>4.0</td>
<td>7.0</td>
<td>12</td>
<td>18</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>1, 2, 3, 6, 7, 8, 9</td>
<td>N·m</td>
<td>0.4</td>
<td>0.6</td>
<td>1.2</td>
<td>1.6</td>
<td>2.4</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>In. Lbs</td>
<td>4.0</td>
<td>5.0</td>
<td>10</td>
<td>14</td>
<td>20</td>
<td>28</td>
</tr>
</tbody>
</table>

	.250	.312	.375	.437	.500	.562	.625	.750	
4, 5	N·m	0.4	0.6	1.4	1.8	2.4	3.2	4.2	6.2
	In. Lbs	4.0	5.0	12	15	20	27	35	51
1, 2, 3, 6, 8, 9	N·m	0.4	0.6	1.0	1.4	1.8	2.6	3.4	5.2
	In. Lbs	4.0	5.0	9.0	12	15	22	28	43

- **A. Metric Sizes**
- **B. Inch Sizes**
- 1. Top Lock Type
- 2. Center Lock
- 3. Dry Adhesive Coating
- 4. Out Of Round Thread
- 5. Deformed Thread Profile
- 6. Nylon Strip Or Patch
- 7. Nylon Washer Insert
- 8. Nylon Patch
- 9. Nylon Insert

B-02406
Conversion Table

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to get equivalent number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCH</td>
<td>25.4</td>
<td>millimeters (mm)</td>
</tr>
<tr>
<td>FEET</td>
<td>0.3048</td>
<td>meters (m)</td>
</tr>
<tr>
<td>YARD</td>
<td>0.9144</td>
<td>meters</td>
</tr>
<tr>
<td>MILE</td>
<td>1.609</td>
<td>kilometers (km)</td>
</tr>
<tr>
<td>MOLE</td>
<td>6.022</td>
<td>Avogadro's number</td>
</tr>
</tbody>
</table>

Area

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to get equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inch²</td>
<td>645.2</td>
<td>millimetres² (mm²)</td>
</tr>
<tr>
<td>Foot²</td>
<td>0.0929</td>
<td>metres² (m²)</td>
</tr>
<tr>
<td>Yard²</td>
<td>0.8361</td>
<td>metres²</td>
</tr>
</tbody>
</table>

Volume

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to get equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inch³</td>
<td>16.387</td>
<td>millimetres³ (mm³)</td>
</tr>
<tr>
<td>Feet³</td>
<td>0.0283</td>
<td>metres³ (m³)</td>
</tr>
<tr>
<td>Yard³</td>
<td>0.7645</td>
<td>metres³</td>
</tr>
</tbody>
</table>

Mass

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to get equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pound</td>
<td>0.4536</td>
<td>kilograms (kg)</td>
</tr>
<tr>
<td>Ton</td>
<td>907.18</td>
<td>kilograms (kg)</td>
</tr>
<tr>
<td>Ton</td>
<td>1.000</td>
<td>tonne (t)</td>
</tr>
</tbody>
</table>

Force

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to get equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kilogram</td>
<td>9.807</td>
<td>newtons (N)</td>
</tr>
<tr>
<td>Ounce</td>
<td>0.2780</td>
<td>newtons</td>
</tr>
<tr>
<td>Pound</td>
<td>4.448</td>
<td>newtons</td>
</tr>
</tbody>
</table>

Temperature

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to get equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree Fahrenheit</td>
<td>(°F-32) ÷ 1.8 = °C</td>
<td></td>
</tr>
</tbody>
</table>

ACCELERATION

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to get equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foot/sec²</td>
<td>0.3048</td>
<td>meter/sec² (m/s²)</td>
</tr>
<tr>
<td>Inch/sec²</td>
<td>0.0254</td>
<td>meter/sec²</td>
</tr>
</tbody>
</table>

Torque

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to get equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pound-inch</td>
<td>0.11298</td>
<td>newton-meters (N·m)</td>
</tr>
<tr>
<td>Pound-foot</td>
<td>1.3558</td>
<td>newton-meters</td>
</tr>
</tbody>
</table>

Power

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to get equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horsepower</td>
<td>0.746</td>
<td>kilowatts (kW)</td>
</tr>
</tbody>
</table>

Pressure or Stress

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to get equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inches of water</td>
<td>0.2491</td>
<td>kilopascals (kPa)</td>
</tr>
<tr>
<td>Pounds/sq. in.</td>
<td>6.895</td>
<td>kilopascals</td>
</tr>
</tbody>
</table>

Energy or Work

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to get equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTU</td>
<td>1.055</td>
<td>joules (J)</td>
</tr>
<tr>
<td>Foot-pound</td>
<td>1.3558</td>
<td>joules</td>
</tr>
<tr>
<td>Kilowatt-hour</td>
<td>3.600,000</td>
<td>joules (J) or 3.6 x 10⁶ joules</td>
</tr>
</tbody>
</table>

Light

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to get equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foot candle</td>
<td>1.0764</td>
<td>lumens/m² (lm/m²)</td>
</tr>
</tbody>
</table>

Fuel Performance

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to get equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miles/gal</td>
<td>0.4251</td>
<td>kilometers/liter (km/l)</td>
</tr>
<tr>
<td>Gal/mile</td>
<td>2.3527</td>
<td>liter/kilometer (l/km)</td>
</tr>
</tbody>
</table>

Velocity

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to get equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miles/hour</td>
<td>1.6093</td>
<td>kilometers/hour (km/h)</td>
</tr>
<tr>
<td>Fractions</td>
<td>Decimal In.</td>
<td>Metric mm</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>1/64</td>
<td>0.015625</td>
<td>0.39688</td>
</tr>
<tr>
<td>1/32</td>
<td>0.03125</td>
<td>0.79375</td>
</tr>
<tr>
<td>3/64</td>
<td>0.046875</td>
<td>1.19062</td>
</tr>
<tr>
<td>1/16</td>
<td>0.0625</td>
<td>1.58750</td>
</tr>
<tr>
<td>5/64</td>
<td>0.078125</td>
<td>1.98437</td>
</tr>
<tr>
<td>3/32</td>
<td>0.09375</td>
<td>2.38125</td>
</tr>
<tr>
<td>7/64</td>
<td>0.109375</td>
<td>2.77812</td>
</tr>
<tr>
<td>1/8</td>
<td>0.125</td>
<td>3.1750</td>
</tr>
<tr>
<td>9/64</td>
<td>0.140625</td>
<td>3.57187</td>
</tr>
<tr>
<td>5/32</td>
<td>0.15625</td>
<td>3.96875</td>
</tr>
<tr>
<td>11/64</td>
<td>0.171875</td>
<td>4.36562</td>
</tr>
<tr>
<td>3/16</td>
<td>0.1875</td>
<td>4.76250</td>
</tr>
<tr>
<td>13/64</td>
<td>0.203125</td>
<td>5.15937</td>
</tr>
<tr>
<td>7/32</td>
<td>0.21875</td>
<td>5.55625</td>
</tr>
<tr>
<td>15/64</td>
<td>0.234375</td>
<td>5.95312</td>
</tr>
<tr>
<td>1/4</td>
<td>0.250</td>
<td>6.3500</td>
</tr>
<tr>
<td>17/64</td>
<td>0.265625</td>
<td>6.74687</td>
</tr>
<tr>
<td>9/32</td>
<td>0.28125</td>
<td>7.14375</td>
</tr>
<tr>
<td>19/64</td>
<td>0.296875</td>
<td>7.54062</td>
</tr>
<tr>
<td>5/16</td>
<td>0.3125</td>
<td>7.93750</td>
</tr>
<tr>
<td>21/64</td>
<td>0.328125</td>
<td>8.33437</td>
</tr>
<tr>
<td>11/32</td>
<td>0.34375</td>
<td>8.73125</td>
</tr>
<tr>
<td>23/64</td>
<td>0.359375</td>
<td>9.12812</td>
</tr>
<tr>
<td>3/8</td>
<td>0.375</td>
<td>9.52500</td>
</tr>
<tr>
<td>25/64</td>
<td>0.390625</td>
<td>9.92187</td>
</tr>
<tr>
<td>13/32</td>
<td>0.40625</td>
<td>10.31875</td>
</tr>
<tr>
<td>27/64</td>
<td>0.421875</td>
<td>10.71562</td>
</tr>
<tr>
<td>7/16</td>
<td>0.4375</td>
<td>11.11250</td>
</tr>
<tr>
<td>29/64</td>
<td>0.453125</td>
<td>11.50937</td>
</tr>
<tr>
<td>15/32</td>
<td>0.46875</td>
<td>11.90625</td>
</tr>
<tr>
<td>31/64</td>
<td>0.484375</td>
<td>12.30312</td>
</tr>
<tr>
<td>1/2</td>
<td>0.500</td>
<td>12.7000</td>
</tr>
</tbody>
</table>
DESCRIPTION

When servicing the Harrison A-6 compressor, prevent dirt or foreign material from getting on or into the compressor parts and system during disassembly or reassembly.

Keep tools and work area clean. Clean the compressor exterior before disassembly. Clean parts with trichloroethylene, naptha or Stoddard solvent, kerosene or equivalent. Dry with air.

Use a non-lint producing type cloth to clean each part.

Although certain service operations can be performed without removing the compressor from the vehicle, the operations described here are based on bench repair with the compressor removed from the vehicle. They have been prepared in sequence in order of accessibility of the components (figure 1).

For compressor removal and installation, refer to the proper truck service manual.

Do not kink or place excessive tension on lines or hoses.

After removing the compressor from the vehicle, drain and measure the refrigerant oil. Add new 525 viscosity refrigerant oil after repair. Refer to “Specifications.”

IDENTIFICATION

An identification label attached to the compressor provides the name of the manufacturer, model number and build code. If the label is removed or becomes dislodged during service operation, reattach it using an adhesive sealant such as Loctite 312 or equivalent.
Figure 1—Compressor Component View
MINOR REPAIR TO THE COMPRESSOR

Operations to the clutch plate and hub, pulley and bearing, and coil and housing are covered as "Minor" because they may be performed without purging the system.

Servicing the shaft seal and pressure relief valve are covered in "Major Repair Procedures" because the system must be purged of Refrigerant-12.

Illustrations used in describing these operations show the compressor removed from the vehicle to illustrate the various operations.

When servicing the compressor, remove the components that preliminary diagnosis indicates need servicing. Refer to figure 1 for part name and location.

Keep the work area, tools and parts clean. Use Piston Tray J 9402 (refer to "Special Tools") for parts removed and for replacement parts.

When a compressor is removed from the vehicle for servicing, drain and measure the amount of oil remaining in the compressor. After servicing, add new 525 viscosity refrigerant oil to the compressor.

CLUTCH PLATE AND HUB ASSEMBLY REPLACEMENT

Remove or Disconnect (Figures 1, 2 and 3)

Tools Required:
J 9396 Compressor Holding Fixture
J 9399 Compressor Shaft Nut Socket

Tools Required:
J 9401-A Hub Drive Plate Remover
J 25030 Clutch Hub Holding Tool

1. Shaft nut (1) with J 9399.
 • Hold the clutch plate and hub assembly (2) with J 25030 (figure 2).

2. Clutch plate and hub assembly (2).
 • Thread J 9401-A into the clutch plate and hub (2) (figure 3).
 • Hold the body of J 9401 with a winch and tighten the center screw into the remover body.

3. Shaft key (36).
 • Retain the shaft key (36) if usable.

Inspect
 • All parts and replace as necessary.

Install or Connect (Figures 1, 4 and 5)

Tools Required:
J 9399 Compressor Shaft Nut Socket
J 9480-B Hub and Drive Plate Assembly Installer
J 25030 Clutch Hub Holding Tool

1. Shaft key (36).
Allow the shaft key (36) to extend 4.5 mm (3/16-inch) out of the bottom of the hub keyway (figure 4).

The shaft key (36) is curved to give an interference fit in the groove.

Important
- Do not drive or pound on the clutch hub or the shaft (39). Internal damage to the compressor may result.

2. Clutch plate and hub assembly (2) (figure 4).
- Install the clutch plate and hub assembly (2) over the compressor shaft lining up the key slot on the hub with the keyway slot in the shaft.
- Install J 9480-B on the threaded end of the shaft (figure 5).
- Back off J 9480-B body to allow the center screw to be threaded against the end of the compressor shaft (39).
- Hold the center screw with a wrench and tighten the hex portion of J 9480-B body while pressing the hub onto the shaft (39). After tightening the body several turns, remove J 9480-B and check that the shaft key (36) is properly in place in the keyway.
- Air gap between contact surfaces of the clutch plate and hub assembly (2) and the pulley (6) should be 0.56-1.34 mm (0.022-0.057-inch).
- Remove J 9480-B.

Important
- Use J 9396 to hold the clutch plate and hub assembly (2).

3. Shaft nut (1).
- Use J 9399.
- Hand spin the pulley (6) to check for free rotation.

PULLEY AND BEARING ASSEMBLY REPLACEMENT

Tools Required:
- J 0435 Snap Ring Pliers
- J 8092 Driver Handle
- J 8433 Heavy Duty Pulley Puller
- J 9395 Pulley Puller Adapter
- J 9398-A Pulley Bearing Remover
- J 9481-A Pulley Bearing and Pulley Installer
- J 24092 Pulley Hub Adapter Set

1. Clutch plate and hub assembly (2).
2. Pulley bearing retainer (2) with J 6435 (figure 6).
3. Pulley (6).
Install J 9395 over the end of the compressor shaft (38) (figure 7).

Important
- Use J 9395 puller pilot to prevent internal damage to the compressor when removing the pulley. Do not use the pulley directly against the end of the shaft.
- Place J 8433 over J 9395 for the regular V-groove pulley.

Place J 24092 over J 9395 for the multi-groove pulley.
- Turn the screw on J 8433 to remove the pulley (6).

Important
- When using J 24092, the puller arms must extend around to the rear side of the pulley. Do not attempt to pull the pulley off by engaging the puller arms in a multi-groove pulley.

• Remove the retaining ring (3).
• Pulley (6) to J 21352 (figure 9).
• Drive the bearing (5) from the pulley (6) with J 9398 and J 8092.

Tools Required:
- J 6435 Snap Ring Pliers
- J 8092 Driver Handle

Install or Connect (Figures 1 and 10)
1B1-6 A-6 AIR CONDITIONING COMPRESSOR

Figure 10—Installing the Pulley Bearing

J 9481-A Pulley Bearing and Pulley Installer
1. Bearing (5) to the pulley (6) with J 8092 and J 9481-A (figure 10).
2. Retainer ring (4) to the pulley (6).
3. Pulley (6) and bearing (5) to shaft (38) with J 8092 and J 9481-A.
4. Retainer ring (4) to pulley (6) and bearing (5).
5. Pulley retainer ring (3) with J 0435.
6. Clutch plate and hub assembly (2).
 • Refer to "Clutch Rotor and Hub Assembly Replacement."

CLUTCH COIL AND HOUSING ASSEMBLY REPLACEMENT

++ Remove or Disconnect (Figure 1)

Tool Required:
J 6435 Snap Ring Pliers
1. Clutch plate and hub assembly (2).
2. Pulley (6).
 • Mark or scribe the location of the clutch coil (8) to terminal on the compressor front head (16).
3. Clutch coil assembly (8).
 • Coil housing retaining ring (7) with J 6435.
 • Using a large screwdriver or small pry bar, pry the clutch coil away from the front head. If necessary, hand impact a blow to the screwdriver handle or pry bar to break the adhesive bond of the clutch coil to the front head.

Clean
• Adhesive from the coil by scraping with a putty knife.
• Remove any adhesive around the three locator hole areas of the front head and around the three clutch coil locator protrusions at the rear of the clutch coil housing.
• Use a suitable solvent to clean the coil.

Figure 11—Adhesive Fill Guide

Important
• After applying Loctite Depend, Loctite Trim and Detail Adhesive or equivalent to the coil, install all the clutch parts to the compressor. Allow 30 minutes for the adhesive to set.

++ Install or Connect (Figures 11 and 12)

Tool Required:
J 6435 Snap Ring Pliers
1. Adhesive to the clutch coil (8) (figure 11).

Figure 12—Installing the Coil Housing
- Place the clutch coil "face down" and apply the adhesive in a circular bead around the three coil locator protrusions.

2. Clutch coil (8) to the front head (16) (figure 12).
- Align the coil and housing assembly on the compressor front head (16) so that the electrical terminals line up the marks scribed on the compressor.

3. Coil and housing retainer ring (7) with J 6435.

Clean
- Remove any excess adhesive.

4. Pulley and bearing assembly (5 and 6).
5. Clutch plate and hub assembly (2).

MAJOR REPAIR TO THE COMPRESSOR

Service repair procedures to the compressor shaft seal and pressure relief valve or disassembly of the internal compressor mechanism are considered "Major" since the refrigeration system must be purged of refrigerant before proceeding.

If servicing or replacing the internal cylinder and shaft assembly chain, measure and replace the oil with new 525 viscosity refrigerant oil.

Disassemble the compressor in a clean work area. Use clean tools. Disassembly procedures require proper service tools. Using inadequate equipment may damage the compressor.

Replacement parts are packaged and can be used without cleaning.

Piston shoe discs and shaft thrust races are "numbered." To determine size and dimension, refer to the chart in this section.

SHAFT SEAL REPLACEMENT

Remove or Disconnect (Figures 1, 13, 14 and 15)

Tools Required:
J 5403 Snap Ring Pliers
J 9392-01 Shaft Seal Remover and Installer
J 9553 Seal Remover
J 22974-A Compressor Shaft Oil Seal Protector
J 23128-A Compressor Shaft Seal Seat Remover and Installer

1. Clutch plate and hub assembly (2).

Clean
- The inside of the compressor around the shaft (38). Prevent dust and dirt from entering the compressor.

2. Sleeve retainer (10).
3. Absorbent felt sleeve (11).
4. Shaft seat retaining ring (12) with J 5403 (figure 13).
5. Shaft seat (13) (figure 14).
- Place J 22974-A over the end of the shaft (38) to prevent chipping the ceramic seat (13).
- Engage J 23128 into the recessed portion of the seat by turning J 23128 to the right (clockwise).
- Lift the seat (13) from the compressor with a rotary motion.
6. Shaft seal (14) (figure 15).
- Insert J 9392-01 over the compressor shaft (39).

Install or Connect (Figures 1, 13 through 16)

Tools Required:
J 5403 Snap Ring Pliers
J 9392-01 Shaft Seal Remover and Installer
J 9393-A Seal Seat Remover and Installer
J 9366 Compressor Shaft Nut Socket
J 9625-A Pressure Test Set with Schrader Valves
J 22974-A Shaft Seal Protector
J 23128-A Ceramic Seal Remover and Installer

- Engage the tabs on the seal (14) by twisting the J 9392-01 downward to the right.
- Engage the tabs and lift the seal (14) out of the shaft (39) cavity.

7. Seal (O-ring) (15) with J 9553-01.
Figure 14—Removing/Installing the Shaft Seal Seat and Seal

J 24340 Retainer Ring Pliers
J 33011 Seal Remover
1. Seal (O-ring) (15) with J 33011 (figure 15).
 • Dip the seal (15) into clean 525 viscosity refrigerant oil.
 • Insert J 33011 down into the compressor neck until the tool "bottoms."
 • Lower the movable slide of J 33011 into the lower groove.

Figure 15—Removing/Installing the Shaft Seal and Seal

Figure 16—Shaft and Seal Position and Correct Position Gaging Guide

• Rotate J 33011 to seat the seal (15).
• Remove J 33011.
2. Seal seat (14) (figure 15).
 • Coat the seal (14) with clean 525 viscosity refrigerant oil.
 • Mount the seal (14) to J 9392-01 by engaging the tabs of the seal with the tangs of J 9392-01.
 • Place J 22974 over the end of the compressor shaft (39).
 • Slide the seal (14) and J 22974 down onto the compressor shaft (38).
 • Twist J 9392-01 to the right (clockwise) while pushing the seal assembly down the shaft (38) until the seal assembly (14) engages the flats on the shaft and seat in place.
 • Disengage J 9392-01 by pressing downward and twisting to the left (counterclockwise).
3. Ceramic seal seat (13) (figure 14).
 • Seal (13) to J 23128.
Dip the seal (13) into clean 525 viscosity refrigerant oil.
Install J 23128 and the seal (13) over the compressor shaft (39).
Push the seal (13) into place with a rotary motion.

Important
- Do not dislodge the seal (O-ring) (15).

4. Seal shaft retainer ring (12) with J 5403 (figure 13).
- Place the flat side against the seal seat.
- Use the sleeve of J 9393-B to press the ring into its groove.

5. J 9625 to the rear head of the compressor:
- Gage charging lines or pressurize the suction side (low pressure side) of the compressor with refrigerant to equalize the pressure to the drum pressure.

6. Shaft nut (1) with J 9399.
- Place the compressor in a horizontal position with the oil sump down.
- Rotate the compressor shaft by hand.
- Leak test with J 23400.
- Replace shaft nut (1) with a new one.

7. New absorbent sleeve (11).
- Roll the material into a cylinder, overlapping the ends.
- Slip the sleeve into the compressor neck with the overlap toward the top of the compressor.
- With a screwdriver spread the sleeve ends of the sleeve butt at the top vertical centerline.

8. Sleeve retainer (10) with J 9393.
- Place the flange face against the front end of the sleeve.
- Press and tap with a mallet to set the retainer and sleeve into place. Place the retainer 0.7937 mm (0.03125-inch) from the face of the compressor neck (figure 16).

9. Clutch plate and hub assembly (2).
- Refer to "Clutch Plate and Hub Assembly Replacement."

Important
- Using improper procedures, pounding or collisions can damage the shaft seal and the axial plate. If the axial plate is out of position, the carbon face of the shaft seal may not contact the seal seat.

To check the position of the axial plate on the shaft, remove the clutch driven plate and measure the distance between the front head extension and the flat shoulder on the shaft with a wire gage. The clearance should be 0.66-1.9 mm (0.026-0.075-inch) (figure 16).

- If the shaft has been pushed back in the axial plate (measurement greater than 1.9 mm (0.075-inch), disassemble the compressor and replace the shaft and axial plate assembly, thrust races and thrust bearings.
- If there is too much or not enough air gap between the drive and driven plates, check for shaft dislocation. It will not be possible to service the compressor if the carbon seat is not seating against the seal seat.

PRESSURE RELIEF VALVE REPLACEMENT

The pressure relief valve is located at the rear of the compressor.

Remove or Disconnect (Figure 1)
1. Valve (56).
2. Seal (57).

Clean
- The valve cavity to remove any dust or dirt before installing a new seal.

Install or Connect (Figure 1)
1. Seal (57) to the compressor.
 - Dip the seal (57) in 525 viscosity refrigerant oil.
2. Valve (56) to the compressor.

Tighten
- Valve (56) to 19 N m (14 ft. lbs.)
COMPRESSOR DISASSEMBLY

Remove or Disconnect (Figures 1, 17 through 26)

Tools Required:
- J 9396 Compressor Holding Fixture
- J 9397 Compressing Fixture
- J 9402 Piston Assembly Tray
- J 21352-A Compressor Support Block

1. J 9396 to a vise.
2. Compressor to J 9396. Secure with thumb screws (figure 17).
3. Nuts (42) from the threaded studs.
4. Rear head (43) (figure 18).
 - Tap around the edge to remove the rear head (43).
5. Suction screen (47).
6. Gears (50 and 51).
 - Mark the face of the gears before removing.
7. Seal (52).
8. Rear discharge valve plate assembly (49) (figure 19).
 - Use two small screwdrivers under the reed retainers to remove the assembly.
 - Do not position the screwdrivers between the reeds and the reed seats.
9. Rear suction reed plate (48) (figure 20).
 - Do not pry up on the horse-shoe shaped reed valves.
10. Oil pick-up tube (37) with J 5239 (figure 21).
11. Seal (36).
12. Compressor to J 21352.

Loosen the compressor from J 9396.
Place J 21352 over the oil pump end of the shaft.
Holding the support block in position with one hand, lift the compressor from the holding fixture with the other hand.
Invert the compressor and place the shaft end up on the bench with the internal assembly support block resting on the bench.

Important
- To prevent damaging the shaft, do not tap on the end of the compressor shaft to remove the internal mechanism. If the mechanism will not slide out of the compressor shell, tap on the front head with a plastic hammer.

11. Front head assembly (16) from the shell (9).
 - Rest the compressor shell (9) on its side and push the fronthead assembly (16) through the shell (9).
12. Front seal (17).
 - Tap on the outside of the front head (16) with a plastic hammer to overcome the friction of the seal (17) between the fronthead (16) and the shell (9).
13. Front discharge valve plate (18).
15. Suction cross-over plate (46) (figure 22).
 - Pry with a screwdriver between the casting (29) and the cover.
 - Number the piston and the piston bores with the same numbers so the pistons can be installed in their bores (figure 23).
 - Separate the cylinders (29 and 42) with a block of wood and a mallet (figure 24).
 - Do not let the discharge cross-over tube (26) touch the axial plate (39).
 - Do not strike the shaft at either end to separate the upper and lower cylinder halves because the shaft (39) can be damaged.
17. Rear half (42) of the compressor from the pistons (30).
18. Front cylinder half (29) with the piston (38), shaft and axial plate (38) to J 9397.
19. Pistons (30), balls (31) and seats (33) in the order in which the pistons are marked.
 - Place parts in J 9402.
 - Place the pistons (32) in J 9402 with the notch in the casting web at the front end of the piston into the dimpled groove of the J 9402 (figure 25).
20. Rear thrust races (40) and thrust bearing (41) from the shaft (39) (figure 26).
21. Shaft (39) from the front cylinder half (29).
 - If necessary, bend the discharge cross-over tube (26) to remove the shaft (39).
22. Front thrust races (27) and thrust bearing (28).
1B1-12 A-6 AIR CONDITIONING COMPRESSOR

GAGING OPERATION

Install or Connect (Figures 27 through 31)

Tools Required:
- J 9396 Compressor Holding Fixture
- J 9397 Compressing Fixture
- J 9432 Needle Bearing Installer
- J 21352-A Compressor Support Block

23. Discharge crossover tube (26) from the cylinder half (29) with locking jaw pliers.
 - This is necessary on original factory equipment because the tube ends are swedged into the cylinder halves.
 - If previously serviced, the discharge crossover tubes (26) will have a seal and bushing at the end of the tube. Remove these tubes by hand.
A-6 AIR CONDITIONING COMPRESSOR 1B1-13

1. Needle bearing (21) to the front cylinder (29) with J 9432 (figure 27).
 • Support the cylinder half (29) on J 21352-A.
 • Insert needle bearing (21).
 • Insert J 9432 into the hub end (inner side) of the cylinder head (29) and drive the needle bearing into the cylinder.
 • Production compressors use \(\frac{3}{8} \) - and \(\frac{5}{8} \)-inch needle bearings. The bearings are interchangeable.
 • Remove cylinder half (29) from J 21352-A.

2. J 9397 on J 9396.

3. The front cylinder half (29) in J 9397 flat side down.
 • The front cylinder half (29) has a long slot extending out from the shaft hole. The "legs" of the front cylinder half (29) will point upward.

4. "Zero" thrust race (27), thrust bearing (28) and "zero" thrust race (27) to the front end of the shaft (38) (figure 28).
 • Lubricate the races (27) and the bearing (28) with petroleum jelly.

5. Threaded end of the shaft (39) through the needle bearing (21) in the front cylinder half (29) and allow the thrust race (27) and bearing (28) to rest on the hub of the cylinder.

6. Insert a thrust race on the rear end of the shaft (38) so that it rests on the hub of the axial plate.
 • Lubricate the races and bearing with petroleum jelly.

7. Place the balls (32) into the sockets of number one piston (figure 29).

Figure 27—Installing the Needle Bearing

1. Needle bearing (21) to the front cylinder (29) with J 9432 (figure 27).
 • Support the cylinder half (29) on J 21352-A.
 • Insert needle bearing (21).
 • Insert J 9432 into the hub end (inner side) of the cylinder head (29) and drive the needle bearing into the cylinder.
 • Production compressors use \(\frac{3}{8} \) - and \(\frac{5}{8} \)-inch needle bearings. The bearings are interchangeable.
 • Remove cylinder half (29) from J 21352-A.

2. J 9397 on J 9396.

3. The front cylinder half (29) in J 9397 flat side down.
 • The front cylinder half (29) has a long slot extending out from the shaft hole. The "legs" of the front cylinder half (29) will point upward.

4. "Zero" thrust race (27), thrust bearing (28) and "zero" thrust race (27) to the front end of the shaft (38) (figure 28).
 • Lubricate the races (27) and the bearing (28) with petroleum jelly.

5. Threaded end of the shaft (39) through the needle bearing (21) in the front cylinder half (29) and allow the thrust race (27) and bearing (28) to rest on the hub of the cylinder.

6. Insert a thrust race on the rear end of the shaft (38) so that it rests on the hub of the axial plate.
 • Lubricate the races and bearing with petroleum jelly.

7. Place the balls (32) into the sockets of number one piston (figure 29).

Figure 28—Installing the Rear Thrust Races and Bearing

8. Place the shoe discs (33) over the ball (32) in the front end of the piston.
 • Lubricate the cavity of the shoe disc with 525 refrigerant oil.

 • The front end of the piston (32) has an identifying notch in the casting web.

Figure 29—Installing the Front Shoe Disc

8. Place the shoe discs (33) over the ball (32) in the front end of the piston.
 • Lubricate the cavity of the shoe disc with 525 refrigerant oil.

 • The front end of the piston (32) has an identifying notch in the casting web.
Install the Piston during the Gaging Operation

- Do not install the shoe discs (34) on the rear of the piston (32).
- Rotate the shaft and axial plate (39) until the high point of the axial plate is over the No. 1 piston cylinder bore.
- Lift the axial shaft assembly (39) up a little out of front cylinder half (29).
- Hold the front thrust races and bearing ("zero" race, race bearing, "zero" race) against the axial plate hub.
- Position the No. 1 piston (32) over the No. 1 cylinder bore (notched end of the piston being on the bottom and the piston straddling the axial plate) and lower the shaft to allow No. 1 piston to drop into its bore (figure 30).
- Repeat step 11 for pistons Nos. 2 and 3.
- Install the rear cylinder half (42) on the pistons, aligning the cylinder with the discharge cross-over tube hole in the front cylinder.
- Tap the piston into place using a plastic mallet or piece of clean wood and a hammer (figure 31).
- Position the discharge cross-over tube opening between a pair of compressing fixture bolts to permit access for the feeler gage.
- Install the top plate to J 9397.

GAGING PROCEDURE

Tools Required:
- J 8001 Dial Indicator Set
- J 9397 Compressing Fixture
- J 9402 Piston Assembly Tray
- J 9661-01 Feeler Tension Gage Set

Two gaging procedures provide the running tolerances. The first procedure determines the size shoe discs to provide at each piston a 0.041-0.061 mm (0.0016-0.0024-inch) total preload between the seats and the axial plate at the tightest place through the 360 degree rotation of the axial plate. The bronze shoe discs are available in 0.013 mm (0.0005-inch) variations.

The second procedure, performed at the rear shaft thrust bearing and race pack, provides a 0.064-0.077 mm (0.0025-0.0030-inch) preload between the hub surfaces of the axial plate, and the front and rear hubs of the cylinder. Fourteen steel thrust races, including a basic "zero" race, are available in 0.013 mm (0.0005-inch) increments. Use J 9661-01 for gaging the shoe disc size. Use J 8001 to determine the thrust race size.

1. Measure the clearance between the rear ball of the No. 1 piston and axial plate in the following manner:
 a. Select a combination of oiled feeler gage leaves to fit snugly between the ball and axial plate.
 b. Attach J 9661-01 to the feeler gage. A distributor point checking scale may be used.
 c. Pull on the spring scale to slide the feeler gage stock out from between the ball and axial plate. Note the reading on spring scale as the
feeler gage is sliding out (figure 32). The reading should be between 1.1 and 2.2 N (4 and 8 ounces).

d. If the reading in step c above is under 1.1 N (4 ounces) or over 2.2 N (8 ounces), reduce or increase the thickness of the feeler gage leaves and repeat steps a through c to obtain a reading of 1.1 N to 2.2 N (4 to 8 ounces). Record the clearance between the ball and axial plate that results in the 1.1 N to 2.2 N (4 to 8 ounces) pull on the spring scale.

2. Rotate the shaft 120 degrees and repeat for the No. 2 cylinder.

- If the shaft is hard to rotate, install the shaft nut onto the shaft and turn the shaft with a wrench.

3. Rotate the shaft another 120 degrees and repeat for cylinder No. 3.

4. Select a numbered shoe disc corresponding to the minimum feeler gage reading recorded in the three checks:

<table>
<thead>
<tr>
<th>POSITION 1</th>
<th>POSITION 2</th>
<th>POSITION 3</th>
<th>SELECT SHOE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PISTON NO 1</td>
<td>019"</td>
<td>019"</td>
<td>019"</td>
</tr>
<tr>
<td>PISTON NO 2</td>
<td>020"</td>
<td>020"</td>
<td>020"</td>
</tr>
<tr>
<td>PISTON NO 3</td>
<td>021"</td>
<td>021"</td>
<td>022"</td>
</tr>
</tbody>
</table>

Figure 33—Service Shoes and Thrust Washers

- Place the shoe discs in J 9402 compartment with the discs corresponding to piston No. 1 and the rear ball pocket position.
- Shoe discs are available in 0.013 mm (0.0005-inch) variations. Eleven sizes are available for field servicing. Shoe discs are marked with the shoe size which corresponds to the last three digits of the part number (figure 33).
- After selecting the shoe size, the matched combination of the shoe disc to the rear ball spherical cavity in the piston must be kept in the proper relationship during disassembly after performing the gaging operation and the final assembly of the internal mechanism.

5. Repeat the gaging procedure for pistons Nos. 2 and 3.

6. Mount a dial indicator on the edge of J 9397 with J 8001.

7. Position the dial indicator on the rear of the shaft (39) and adjust to zero (figure 34).
From the bottom, apply full hand force at the end of the shaft a few times before reading the clearance. This will squeeze the oil out from between the mating parts. Now push upward and record the measurement. Dial indicator increments are 0.03 mm (0.001-inch); estimate the reading to the nearest 0.013 (0.0005-inch).

An alternate method is to use J 9661-01 in selecting a suitable feeler gage leaf until the result is a 1.1 N to 2.2 N (4 to 8 ounces) pull on the scale between the rear thrust bearing and upper (or outer rear) thrust race (figure 35). If the pull is just less than 1.1 N (4 ounces), add 0.013 mm (0.0005-inch) to the thickness of the feeler stock used to measure the clearance. If the pull on the scale reads just over 2.2 N (8 ounces), then subtract 0.013 mm (0.0005-inch) from the thickness of the feeler stock.

For either method used, select a thrust race with a "number" corresponding to TWO (2) FULL SIZES LARGER than the dial indicator or feeler gage measurement of the amount of end play shown. (If measurement is 0.18 mm (0.007-inch), select a No. 9 or 090 race). Fifteen thrust races are provided in increments of 0.013 mm (0.0005-inch) thickness and one ZERO gage thickness providing a total of 16 sizes. The thrust race "number" corresponds to the last three digits of the part number. Refer to figure 33.

Remove the nuts from the top plate of the J 9397. Remove the top plate.

Figure 35—Checking the Piston and Shaft End Play

10. Separate the cylinder halves while the unit is in the fixture.
 • If necessary, use a wood block and a mallet.
11. Remove the rear cylinder half; remove one piston at a time from the axial plate and front cylinder half.
 • Do not lose the relationship of the front ball and shoe disc and rear ball.
 • Transfer each of the piston, ball and shoe disc sets to J 9402.
12. Remove the rear outer "zero" thrust race (it will be on top) from the shaft and install the thrust race just selected in Steps 6 and 7 that is in J 9402.
 • The "zero" thrust race may be put aside for reuse in additional gaging or rebuilding operations.

PISTON RING REPLACEMENT

Remove or Disconnect (Figures 1, 36 through 39)

Tool Required:
J 24608 Teflon Piston Ring Installer
Piston rings (31).

• Slice through the ring with a knife while holding the blade flat with the piston surface.
• Do not damage the aluminum piston (32) or piston groove.

Clean

Clean the piston and piston ring grooves with a recommended cleaning solvent (trichloroethylene, naphtha, Stoddard solvent, kerosene, or equivalent) and blow the piston dry with dry air.

Install or Connect (Figures 1, 36 through 39)

1. Piston (32) to J 24608-2 (figure 36).
 • Set the piston on a clean, flat surface.
2. Piston ring (33) to J 24608-2.
 • Place the dished or dull side down and the glossy side up.
3. Piston ring (33) to piston (32) (figure 37).
• If the piston ring is off-positive in the groove, reposition by moving with a fingernail or a blunt-edge tool.
• J 24608-5 (installer) will keep the J 24608-2 (guide) inside when the piston ring is installed on the piston (32).
• Remove the guide from the installer and do not store the guide in the installer because the seal will be stretched and weakened during storage. This can cause the seal not to hold the ring installer segments tight enough to the J 24608-2 (guide) when installing the piston ring (33) to the piston (32).

4. Piston (32) to J 24608-6 (figure 38).
• Lubricate the piston ring (33) area with 525 viscosity refrigerant oil.
• Rotate the piston (32) and ring (33) into J 24608-6 at a slight angle until the piston is inserted against the center stop of J 23608-6.
NOTICE: Do not push the piston and ring assembly into J 24608-6 without positioning and rotating because the needle bearings of the ring sizer may damage the end of the piston.

- Rotate the piston and ring assembly in J 24608-6 several turns until the assembly rotates relatively free in the ring sizer.

5. Piston (32) to J 24608-1 (figure 39).
 - The piston (32) should pass through the ring gage with a two to eight pound force.
6. Repeat for the opposite end of the piston (32).
7. Lubricate both ends of the piston (32) with 525 viscosity refrigerant oil before installing the piston into the cylinder bore.

COMPRESSOR ASSEMBLY

![Figure 40—Installing No. 1 Piston](image)

Assemble the cylinder assembly after performing the "Gaging Procedure," choosing the correct shoe discs and thrust races and installing any piston rings. Install new seals supplied in the service kit.

Install or Connect (Figures 1, 40 through 51)

- Support the front half of the cylinder (29) on J 9397.
 1. Shaft and axial plate (38).
 - Place the shaft, threaded-end down, with the front bearing race pack (race and bearing) into the cylinder if this was not done at the end of the "Gaging Procedure."
 2. Balls (32) and shoe discs (33) to the pistons (30).
 - Apply a coat of petroleum jelly to the "numbered" shoe discs.
 3. Piston assembly (30) into the front cylinder half (29) (figure 40).
 - Rotate the axial plate (39) to place the high point above cylinder bore No. 1.

![Figure 41—Installing the Discharge Crossover Tube](image)

- Hold the front thrust bearing pack against the axial plate hub.
- Repeat for pistons Nos. 2 and 3.
4. Discharge the cross-over tube (26) (figure 41).
 - Face the flattened portion of the tube to the inside of the compressor to allow for axial plate clearance.
5. Rear cylinder half (42) over the shaft (39).
 - Rotate the shaft (39) to position the pistons in a stair-step arrangement.
 - Start the pistons into the cylinder bores.
6. Discharge cross-over tubes (26) into the rear half of the cylinder (29).
7. Rear cylinder half (42) over the locating dowel pins (45).
 - After aligning, tap the rear half of the cylinder with a mallet and wood block.
 - If necessary, clamp the cylinder in J 9397 to draw the halves together.
8. Suction cross-over cover (46) (figure 42).
 • Remove J 9397.
 • Compress the cover (46) to start it into the slot.
 • Press or top the cover (46) until the ends are flush.
9. Seal 925) and bushing (24) to the front end of the discharge cross-over tube (26) (figure 43).
 • Place the internal assembly on J 21352.
10. Dowel pins (20) to the front head (figure 44).
11. Front suction reed plate (19) to the front cylinder half (29) (figure 44).
 • Align the dowel pins (20), suction ports, oil return slot and discharge cross-over tube (26).
12. Front discharge valve plate (18) (figure 45).
 • Align the holes with the dowel pins (20) and the openings in the front suction reed plate (18). The front discharge plate (18) has a large hole in the center.
13. Front head (16) (figure 46).
 • Coat the sealing surfaces on the webs of the compressor front head casting with clean 525 viscosity refrigerant oil.
 • Determine the position of the front head (16) in relation to the dowel pins (20).
 • Mark the position of the dowel pins (20) on the sides of the front head (16) and on the sides of the internal assembly with a grease pencil.
 • Lower the front head (16).
14. Seal (17) to the front head (16) (figure 47).
 • Lubricate the seal (17) and groove with clean 525 viscosity refrigerant oil.

15. Shell (9) to the internal assembly (figure 48).
 • Coat the inside of the shell (9) with clean 525 viscosity refrigerant oil.
 • Position the shell (9) on the internal assembly. Rest the shell (9) on the seal.
 • With the flat side of a small screwdriver, position the seal (17) in a round, circle shape to the inside of the shell (9).
 • Slide the shell (9) down. Line up the oil sump with the oil intake tube hole.

16. New dowel pins (20) to the rear cylinder half.
 • Remove J 21352.
 • Install the compressor into J 9396.

17. Seal (43) to oil pick-up tube (44).

18. Oil pick-up tube (44) to the compressor (figure 49).
 • Lubricate the oil pick-up tube (44) with clean 525 viscosity refrigerant oil.
 • Place the oil pick-up tube (44) in the cavity.
 • Rotate the compressor assembly to align the tube (44) with the hole in the shell baffle.
19. Seal (31) and bushing (30) to the rear of the discharge cross-over tube (26).

20. Rear suction reed (48) over the dowel pins (45).
 - Place the slot toward the sump.

21. Rear discharge valve plate (49) over the dowel pins (45).
 - Place the reed retainer up.

22. Inner oil pump gear (50) over the shaft (39).
 - Line up the identification marks.

23. Outer oil pump gear (51) over the inner gear (figure 50).
 - Line up the identification marks.
 - Face the compressor oil sump and position the outer gear (51) so that it meshes with the inner gear (50) at the 9 o'clock position. The cavity between the gear teeth will be at the 3 o'clock position.

24. Seal (52) to the discharge valve plate (49).
 - Lubricate the seal (52), shell (9), discharge plate (49) and gears (50 and 51) with 525 viscosity refrigerant oil.

25. Suction screen (58) to the rear head (54).
• Lubricate the surface of the rear head (54) with 525 viscosity refrigerant oil.

26. Rear head (54) to the shell (9) (figure 51).
• Align the two lower threaded compressor mounting holes with the compressor sump.
• Do not let the suction screen (58) fall out of the rear head (54).
• If the rear head (54) will not slide down over the dowel pins (45), twist the front head (16) back and front by hand until the rear head (54) drops over the dowel pins (45).

Tighten
• Nuts (53) to 35 N·m (25 ft. lbs.).

27. Shaft seal (14).
• Invert the compressor in J 9396

28. Clutch coil (8).
29. Pulley (6).
30. Clutch (2).
31. Add the required amount of 525 viscosity refrigerant oil to the compressor.
32. Leak Test.
 Refer to “Leak Testing.”

Figure 51—Installing the Rear Head

LEAK TESTING

Tools Required:
J 5420 Straight Adapter
J 9396 Compressor Holding Fixture
J 9459 90 Degree Adapter
J 9625-A Pressure Test Set with Schrader Valves

1. Install J 9625 on the rear head of the compressor.
2. Attach a center hose of manifold gage set on to a charging station with a refrigerant drum standing in an upright position and open the valve on the drum.
3. Connect the charging station “high” and “low” pressure lines to the correct fittings on J 9625-A, using J 5420 (7/16-inch) gage adapters. Adapters are not necessary if the hoses are equipped with Schrader core depressors.
• Suction port of the compressor has a large internal opening. The discharge port has a small internal opening into the compressor.
4. Open the “low” pressure control, “high” pressure control and refrigerant control on charging station to allow refrigerant vapor to flow into the compressor.
5. With J 29547, check for leaks at the pressure relief valve, compressor shell to cylinder, compressor front head seal, rear head seal, oil charge port, and the compressor shaft seal. After checking, shut off the “low” pressure control and the “high” pressure control on the charging station.
6. If an external leak is present, repair and recheck.
7. Loosen the manifold gage hose connections to the gage adapters connected to the “low” and “high” sides and allow the vapor pressure to release slowly from the compressor.
8. Disconnect both of the gage adapters or hoses from J 9625-A.
9. Rotate the complete compressor assembly (not the crankshaft or drive plate hub) end to end several turns to distribute the oil to the cylinder and piston areas.
10. Install the shaft nut on the compressor crankshaft if the drive plate and clutch assembly are not installed.
11. Using a box-end wrench or socket and handle, rotate the compressor crankshaft several turns to ensure the piston assembly lubrication.
12. Connect the charging station “high” pressure line or a “high” pressure gage and J 5420 or J 9459 to the J 9625 high side connector.
13. Attach J 5420 or J 9459 to the suction or “low” pressure port on J 9625-A to open the Schrader-type valve to atmosphere.
• Gage adapters are not required to connect to the test plate if the hoses have built-in Schrader depressors.
• Oil will drain out of the compressor suction port adapter if the compressor is positioned with the suction port down.
14. Attach the compressor to J 9396 and clamp the fixture in a vise so that the compressor can be manually turned with a wrench.
15. Using a wrench, rotate the compressor crankshaft about 10 complete revolutions at a speed of about one revolution per second.

NOTICE: Turning the compressor at less than one revolution per second can result in a lower pump up pressure and disqualify a good pumping compressor.

16. Observe the reading on the "high" pressure gage at the completion of the tenth revolution of the compressor.
 - The pressure reading for a good pumping compressor should be 430 kPa (60 psi) or above.

17. After testing, release the air pressure from the "high" side and remove J 5420 or J 9459 and J 9625-A
18. Remove the oil charge screw and drain the oil sump.
19. Allow the compressor to drain for 10 minutes, then charge with the proper amount of oil. The new oil may be poured into the suction port. Torque the charge screw to 20 N m (15 ft. lbs.).
20. If more processing is required, install the shipping plate or J 9625 to keep air, dirt and moisture out of the compressor until installed.

SPECIFICATIONS

COMPRESSOR
- Type — Harrison A-6 compressor
- Displacement: 12.6 Cu. In.
- Rotation: Clockwise
- Belt Tension: (Refer to applicable service manual)
- Oil Capacity: 0.284 Kg (10 oz.)

COMPRESSOR CLUTCH COIL
- Ohms at 26°C (80°F): 3.85
- Amps at 26°C (80°F): 3.2 (max.) @ 12 volts
- Clutch: 0.022" to 0.057"

TORQUE SPECIFICATIONS
- Rear Head to Shell Stud Nuts: 34 N·m (25 ft. lbs.)
- Shaft Mounting Nut: 27 N·m (20 ft. lbs.)
- Pressure Relief Valve: 19 N·m (14 ft. lbs.)
- Oil Drain Screw: 20 N·m (15 ft. lbs.)
SPECIAL TOOLS

<table>
<thead>
<tr>
<th>No.</th>
<th>Tool</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>J 5139</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>J 5403</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>J 5453</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>J 6083</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>J 6271-01</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>J 9392-01</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>J 9393-A</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>J 9396</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>J 9397</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>J 9398-A</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>J 9399</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>J 9401-A</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>J 9402</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>J 9432</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>J 9459</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>J 9480-B</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>J 9553-01</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>J 9564-01</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>J 9625</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>J 21352</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>J 22974-A</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>J 23128-A</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>J 23500-01</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>J 23600-B</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>J 23640</td>
</tr>
</tbody>
</table>
1. Oil Pickup Tube Remover
2. Snap Ring Pliers
3. Goggles
4. Snap Ring Pliers
5. R-12 Dispensing Valve
6. Shaft Seal Remover & Installer
7. Seal Seat Remover and Installer
8. Compressor Holding Fixture
9. Compressing Fixture
10. Pulley Bearing Remover
11. 9/16-inch Nut Socket (Thin Walled)
12. Hub and Clutch Drive Plate Assembly Remover
13. Piston Tray
14. Needle Bearing Installer
15. 90° Elbow Adapter
16. Hub and Drive Plate Installer
17. O-ring Remover
18. Feeler Gage Set
19. Compressor Test Set
20. Compressor Support Block
21. Oil Seal Protector
22. Compressor Shaft Seal Installer and Remover
23. Portable Charging Station
24. Belt Tension Gage
25. Pocket Thermometer
26. Pulley Hub Puller Set
27. Oil Injector Line
28. Clutch Hub Holding Tool
29. Straight Adapter
30. Orifice Tube Extractor
31. A/C Powered Leak Detector
32. Battery Powered Leak Detector
33. Compressor Pulley Puller Kit
34. Driver Handle
35. O-ring Installer
SECTION 1B2
DA-6 AIR CONDITIONING COMPRESSOR

DESCRIPTION

The Harrison DA-6 compressor is a fixed displacement axial piston pump, with three double-ended pistons actuated by an axial (swash) plate shaft assembly (figure 1). The main parts are the front and rear cylinder, the shaft and axial swash plate, piston group, and valve mechanisms. The cylinders and heads provide an integral external shell.

The piston group of the compressor will not be serviced. If piston, bearing, ball shoe, shaft and axial plate, or cylinder repair is needed, replace the internal cylinder assembly. All clutch parts, valve mechanisms, and head assemblies are serviced, plus seals and gaskets.

Refrigerant oil, dispersed in the refrigerant vapor, lubricates the system.

The front head is shown with three integral mounting flange ears (figure 2). These ears have 19 mm flats cast to provide for a wrench to be used as a prying means when tensioning the compressor drive belt.
MINOR REPAIR TO THE COMPRESSOR

Illustrations show the compressor removed from the vehicle for easier viewing.
Remove only the parts that need servicing. Refer to figure 3 for part names and location.

CLUTCH PLATE AND HUB ASSEMBLY REPLACEMENT

Clean
- The compressor assembly with solvent and blow dry with dry air.

Remove or Disconnect (Figures 3, 4 and 5)

Tools Required:
- J 33026 Compressor Holding Fixture
- J 33027 Clutch Hub Holding Tool
- J 33022 6-Point 13 mm Socket
- J 33013 Hub and Drive Plate Remover and Installer
- Clamp J 33026 in a vise and attach the compressor to the holding fixture with thumb screws (figure 4).

1. Shaft nut (1) using J 33022 (figure 4).
- Hold the clutch plate and hub assembly (2) steady using J 33027.

2. Clutch plate and hub assembly (2).
- Thread J 33013-A into the clutch plate and hub assembly (2).
- Hold the body of J 33013-A with a wrench and tighten the center screw into the remover body (figure 5).

3. Shaft key (21).
- Retain shaft key (21) if usable.

Inspect
- All parts and replace as necessary.

Install or Connect (Figures 3, 6 and 7)

Tools Required:
- J 33026 Compressor Holding Fixture
- J 33027 Clutch Hub Holding Tool
- J 33022 6-Point 13 mm Socket
- J 33013-B Hub and Drive Plate Remover and Installer
- J 33023-A Puller Pilot

1. Shaft key (1).
- Allow the shaft key (21) to extend 3.2 mm (1/8-inch) out of the bottom of the hub keyway (figure 6).
- The shaft key is curved slightly to give an interference fit in the groove.

Important
- Do not drive or pound on the clutch hub or the shaft (20). Internal damage to the compressor may result.

2. Clutch plate and hub assembly (2) (figure 6).
- Make sure the contact surfaces of the clutch plate (2) and the pulley (5) are clean.
- Remove the forcing screw tip from J 33013-B and reverse the body direction on the center screw.
- Install J 33013-B with bearing (figure 7).
- Back off J 33013-B body enough to allow the center screw to be threaded against the end of the compressor shaft.
- Hold the center screw with a wrench and tighten the hex portion of J 33013-B body while pressing the hub onto the shaft. After tightening the body several turns, remove J 33013-B and check that the shaft key (21) is properly in place in the keyway, then install the clutch plate and hub assembly (2) to its final position.
- Measure the air gap between contact surfaces of the clutch plate and hub assembly (2) and the pulley (5). The gap should be 0.38-0.64 mm (0.015-0.025-inch) (figure 7).
- Remove J 33013-B.

PULLEY AND BEARING ASSEMBLY REPLACEMENT

Remove or Disconnect (Figures 3, 8, 9 10 and 11)

Tools Required:
- J 6983 Snap Ring Pliers
- J 8092 Driver Handle
- J 9398-A Pulley Bearing Remover
- J 33020 Pulley Puller

1. Clutch plate and hub assembly (2).

2. Pulley bearing retainer (3) using J 6083 (figure 8).

3. Pulley (5).
- Install J 33023-A to the front head (figure 9).
- Install J 33020 tangs into the inner circle of slots in the pulley (5) contact surface. Rotate J 33920 clockwise so the tangs will lock into the segments between the slots (figure 10).
- Hold J 33020 in place and tighten the puller screw against J 33023-A puller pilot to remove the pulley (5) (figures 10 and 11).

4. Pulley bearing (4) from the pulley (5) using J 9398-A and J 8092 (figure 11).
A. Important: Shaded parts are not serviceable and must be replaced as a kit.

1. Shaft Nut
2. Clutch Plate and Hub Assembly
3. Pulley Bearing Retainer
4. Pulley Bearing
5. Pulley
6. Clutch Coil Assembly
7. Through Bolts (6)
8. Shaft Seal Parts
9. Front Head
10. Head Gasket
11. Valve Plate (Discharge)
12. Suction Reed Plate
13. Cylinder Seal
14. Front Cylinder
15. Discharge Crossover Seal
16. Shaft Bearing (2)
17. Thrust Bearing and Races (2)
18. Axial Plate Shaft Assembly
19. Shaft Key
20. Cylinder Seal
21. Rear Cylinder
22. Cylinder Seal
23. Suction Reed Plate
24. Valve Plate (Discharge)
25. Head Gasket
26. Rear Head
27. Switch Seal
28. System Control Switch
29. Retainer Ring-Switch
30. High Pressure Relief Valve
31. Seal (O-ring)
Remove the forcing screw from J 33020 and with the puller tangs still in place in the pulley slots, turn the assembly upside down onto a flat surface (figure 11).

When removing the old pulley bearing (5) allow the staking to remain, then file away the old staked metal for proper fit when installing a new bearing (5) in the pulley bore.

Install or Connect (Figures 3, 12, 13, 14 and 15)

Tools Required:
- J 21352-A Compressor Support Block
- J 9481-A Pulley Bearing Installer
- J 33019 Bearing Staking Tool (with staking pin and retaining band)
- J 33017 Pulley and Bearing Assembly Installer
- J 33023-A Puller Pilot
- J 8433-1 Puller Bar
- J 33026 Compressor Holding Fixture
- J 6083 Snap Ring Pliers

1. Pulley (5) on J 21352-A.

NOTICE: Do not support the rotor by resting the pulley rim on a flat surface during bearing installation or the rotor face will be bent.

2. Pulley bearing (4) into the hub using J 8092, J 9481-A and J 21352-A (figure 12).
 - J 33019 in the pulley bore (figure 13).
2. Clutch Plate and Hub Assembly
 A. Air Gap 0.38-0.64 mm (.015-.025 inch)

Figure 7—Installing the Clutch Plate and Hub Assembly

- Seat the pulley and bearing assembly on J 21352-A to support to the hub under the staking pin location.

- Strike the staking pin with a hammer until a metal stake, similar to the original, is formed down to, but not touching the bearing.
 - Position the stake pin after striking.

3. Pulley (5) on the front head.
 - Position J 33017 and J 33023-A over the inner race of the bearing (figure 15).
 - Position J 8433-1 on J 33023-A and assemble the through bolts and washers through the puller bar slots and thread them into J 33026 (figure 15).
 - The thread of the through bolts should engage the full thickness of J 33026.
 - Tighten the center screw in J 8433-1 to force the pulley and bearing assembly onto the compressor front head (11) (figure 15).
 - Should J 33017 become misaligned with the inner race of the bearing, back off J 8433-1 and relocate center, then continue installation.

Figure 8—Removing the Pulley Rotor and Bearing Retaining Ring

Figure 9—Installing the Puller Pilot and Pulley Rotor Slot Location

- The staked metal should not contact the outer race of the bearing to prevent the possibility of bending the outer race.
 - Stake 3 places 120 degrees apart (figure 14).
Figure 13—Staking the Pulley Bearing in the Rotor Bore

4. Pulley bearing retainer (3) using J 6083 (figure 8).
5. Clutch plate and hub assembly (2).

CLUTCH COIL AND HOUSING ASSEMBLY REPLACEMENT

Remove or Disconnect (Figures 3 and 16)

Tools Required:
- J 8433-1 Puller Bar
- J 08433-3 Puller Screw
- J 33023-A Puller Pilot
- J 33025 Clutch Coil Puller Legs

1. Clutch plate and hub assembly (2).
2. Pulley (5).
 - Mark or scribe the location of the clutch coil (6) to terminal on the compressor front head (11).
3. Clutch coil assembly (6).
 - Install J 33023-A on the head (11) of the compressor.
 - Install J 8433-1 with J 33025 (figure 16).
5. Pulley (Rotor)

Figure 15—Installing the Pulley Bearing Assembly

- Tighten J 8433-1 forcing screw against J 33025-A.

Inspect
- Clutch coil assembly (6). Replace as necessary.

Install or Connect (Figures 3, 17, 18 and 19)
Tools Required:
 - J 8433-1 Puller Bar
 - J 33024 Clutch Coil Installer Adapter

6. Clutch Coil Assembly

A. Mark

Figure 17—Installing the Clutch Coil Assembly

Figure 16—Removing the Clutch Coil Assembly

- Drift Punch 3 mm (1/8 inch)
- Stake in Front Head (3 Places)

Figure 18—Staking the Clutch Coil Assembly to the Coil Head
J 33026 Compressor Holding Fixture
1. Compressor assembly on J 33026.
2. Clutch coil assembly (6) onto the front head (11) with the terminals positioned at the "marked" location.
 - J 33024 over the internal opening of the clutch coil assembly (6).
 - J 8433-1 with through bolts, washers and forcing screw over J 33024.
 - Thread through bolts into J 33026 to full fixture thickness (figure 17).
 - Be sure J 8433-1 and the clutch coil assembly (6) stay "in line" during installation.
 - When the clutch coil assembly (6) is seated on the front head (11), use a 3 mm (1/8-inch) diameter drift punch to stake the head (11) at 3 places, 120 degrees apart to assure the clutch coil assembly (6) remains in position (figure 18).
 - Stake size should be one half the area of the punch tip and 0.28-0.35 mm (0.010-0.015-inch) deep (figure 19).
3. Pulley (5).
4. Clutch plate and hub assembly (2).

MAJOR REPAIR TO THE COMPRESSOR

A. Steel Shell
B. Lip Seal

Figure 20—Compressor Shaft Seal

Replacement of the shaft seal assembly or the pressure relief valve will require the discharge of the vehicle’s refrigerating system (figure 20). Other than clutch repair procedures, the same holds true for any disassembly of the compressor. To discharge the refrigerant, refer to the vehicle service manual.

After servicing or repairing the compressor, always add the proper amount of new 525 viscosity refrigerant oil. Refer to "Specifications.

Keep the workbench and work area clean when servicing the compressor, and use proper, clean service tools.

NOTICE: Any attempt to use makeshift or inadequate service tools or equipment may result in damage and/or improper compressor operation.

All parts used for servicing the compressor internally are protected by a preservative and packaged in a manner which does not require cleaning, washing or flushing. The parts can be used in the internal assembly just as they are removed from the service package.

SHAFT SEAL REPLACEMENT

Remove or Disconnect (Figures 3, 21, 22 and 23)

Tools Required:
- J 5403 Snap Ring Pliers
- J 34614 Shaft Seal Protector
- J 23128-A Seal Remover and Installer
- J 9553-01 O-Ring Seal Remover

1. Clutch plate and hub assembly (2).
 - Install J 34614 over the threaded end of the shaft (20).
2. Shaft seal retainer ring using J 5403 (figure 21).
 - Clean the compressor neck area around the shaft (20), the exposed part of the shaft seal (8) and the O-ring seal groove.
 - Insert J 23128-A into the shaft lip seal, tighten and remove lip seal.
4. O-Ring seal using J 9553-01 (figure 23).

Inspect
- Make sure the compressor neck area is clean.
- All parts. Replace as necessary.

Install or Connect (Figures 3 and 24)

Tools Required:
- J 33011 O-Ring Seal Installer
- J 23128-A Seal Seat Remover and Installer
- J 34614 Shaft Seal Protector
Figure 21—Removing or Installing the Shaft Lip Seal Retaining Ring

J 5403 Snap Ring Pliers

1. O-ring seal using J 33011 (figure 24).
 • Insert J 33011 into the compressor neck until the installer "bottoms."
 • Lower the movable slide of J 33011, releasing the O-ring seal into the lower groove.

2. Shaft lip seal using J 23128-A (figure 22).
 • Dip the shaft lip seal in clean 525 viscosity refrigerant oil and install shaft lip seal on J 23128-A.
 • Bottom the shaft lip seal into the compressor neck area using J 23128-A.
 • Release and remove J 23128-A.

3. Shaft seal retainer ring using J 5403 (figure 21).
 • Install flat side of shaft seal retainer ring against the lip seal.
 • Remove J 34614.

Important

• Leak test the compressor.
• Refer to "Leak Testing."

Clean

• Shaft (20) and inside the compressor neck area.

4. Clutch plate and hub assembly (2).

Figure 22—Removing or Installing the Shaft Tip Seal

Figure 23—Removing the Shaft Seal Seat O-Ring

• Rotate J 33011 to seat the O-ring seal and remove J 33011.

Figure 24—Installing the Seal Seat O-Ring
PRESSURE RELIEF VALVE REPLACEMENT

Remove or Disconnect (Figures 3 and 25)
- Be sure the compressor has no charge.
 1. Pressure relief valve (32) (figure 25).
 2. O-ring seal (33).

Install or Connect (Figures 3 and 25)
- Lubricate the threads of the pressure relief valve (32) and new seal with 525 viscosity refrigerant oil.
 1. Pressure relief valve (32) with new seal.

Tighten
- Pressure relief valve (32) to 9 N m (84 in. lbs.).

Important
- Leak test the compressor.
- Refer to 'Leak Testing.'

COMPRESSOR DISASSEMBLY —INTERNAL CYLINDER AND SHAFT

Remove or Disconnect (Figures 3, 26, 27, 28 and 29)
- Mark the front head (11) alignment with cylinders (16) (23) and rear head (28) alignment.
 1. Clutch plate and hub assembly (2).
 2. Pulley (5).
 3. Clutch coil assembly (6).
 4. Shaft seal parts (8).
 - Note the compressor alignment marks and use them as a reference for compressor assembly (figure 26).
 5. Through bolts (7) and gaskets (figure 27).
 - Using a wood block, tap around the edge of the rear head (28) to ease removal.
 - Hand-support the compressor from below.
 - Remove compressor assembly from J 33026.
 6. Rear head (28) (figure 28).
DA-6 AIR CONDITIONING COMPRESSOR 1B2-11

Figure 29—Installing the O-Ring Seals on the Cylinder Seal Races

7. Head gasket (27).
8. Valve plate (26).
11. Cylinder (23).

Important
- Shaded parts shown in figure 3 are not serviceable. A replacement kit (gut pack) is available.
- Cylinders (23) (16), cylinder seal (22), discharge crossover seal (17), piston group, axial plate shaft assembly (20) and bearings replace as a kit.

15. Suction reed plate (14).
16. Valve plate (13).
17. Head gasket (12).
18. Front head (11).

Clean
- All parts.

Inspect
- All parts and replace as necessary.

COMPRESSOR ASSEMBLY—INTERNAL CYLINDER AND SHAFT

Figure 30—Positioning the J-33016 Guide Pins

- Place J 21352-A on the workbench or suitable flat work surface.
1. Rear head (28) onto J 21352-A.
 - Install J 33016 guide pins small diameter ends into the through bolt holes (figure 30).
2. Head gasket (27).
 - Over guide pins into head (28) (figure 31).

Important
- Locate the head gasket (27) to prevent the discharge valve reed retainer on the rear valve plate (26) from hitting the internal segment of the head gasket (27) (figure 31).

3. Valve plate (26).
 - Over the guide pins into position (figure 32).
4. Suction reed plate (25).
 - Over the guide pins into proper position (figure 33).
 - Be sure all three suction reed tips cover the suction ports in the rear valve plate (26).

5. Cylinder seal (24).
 - Lubricate a new cylinder seal (24) with clean 525 viscosity refrigerant oil and position the seal on the rear cylinder (23) (figure 29). Roll the cylinder seal into the groove. Cylinder (23) surface must be clean at the rear.
 - Apply refrigerant oil to the seal surface of the rear head to easy assembly.

6. Cylinder and shaft assembly (gut pack).
 - Shaded parts shown in figure 3 are not serviceable. A replacement kit (gut pack) is available for replacement.

Install or Connect (Figures 3, 30 through 38)

Tools Required:
- J 21352-A Support Block
- J 33016 Cylinder Alignment Rods
- J 33026 Compressor Holding Fixture
- Use new seals and gaskets.
Assemble cylinder and shaft assembly over the guide pins onto the rear head (28) (figure 34).

Using both hands, press the cylinder and shaft assembly down into the rear head (28).

Important
- Center cylinder seal (22) is not serviceable.

Figure 32—Installing the Rear Valve Plate
- A. Suction Crossover Openings
- B. Through Bolt Hole (6)
- C. Suction Port (3) in Valve Plate
- D. Discharge Crossover Port
- E. Discharge Ports (In Valve Plate)

Figure 31—Installing the Rear Head Gasket
- Assemble cylinder and shaft assembly over the guide pins onto the rear head (28) (figure 34).
- Using both hands, press the cylinder and shaft assembly down into the rear head (28).

7. Cylinder seal (15).

Figure 34—Installing the Front Head
- A. 12 o'clock Reference Position
- B. Discharge Crossover Cavity (Front)
- 15. Cylinder to Head Seal Installed
- 28. Rear Head

B-06727

B-06732

B-06731

B-06734
A. 12 o'clock Reference Position
B. Tips of Suction Reeds Must Locate Above Recess in Cylinder at Top
C. Discharge Crossover Opening

15. Cylinder Seal (Front)

Figure 35—Installing the Front Suction Reed Plate

- Lubricate a new cylinder to front head seal with clean 525 viscosity refrigerant oil and install in the front seal groove (figure 34).

8. Suction reed plate (14).
 - Over J 33016 guide pins (figure 35).
 - Check the alignment.

9. Valve plate (13).
 - Over J 33016 guide pins (figure 36).

10. Head gasket (12).
 - Over J 33016 guide pins (figure 37).

11. Front head (11).
 - Line up mark on front head (11) with the alignment marks on the compressor cylinders and assemble head over J 33016 guide pins (figure 26).

Important

- Front head (11) is now assembled in the “standard” position and may differ 120 degrees either direction. Assemble front head (11) according to location marked before removal.
- Using both hands, press down on front head (11) for installation over the seal (15) at the front of the cylinder (16).

12. Through bolts (7) with new gaskets.
 - Thread four of the through bolts (7) into the rear head (28) before removing J 33016 guide pins. Install two remaining through bolts (7) finger tight.
 - Mount the compressor on J 33026 (figure 38).
LEAK TESTING

Tools Required:
- J 9625-A Pressure Test Plate
- J 23500-01 Portable Charging Station
- J 33026 Compressor Holding Fixture
 - Be sure the compressor has no oil internally.
 1. Install J 9625-A on the rear head of compressor (figure 3).
 2. Install the center hose of the manifold gage set on J 23500-01 to a refrigerant drum standing in an upright position and open the valve on the drum.
 3. Install the charging station high and low pressure lines to corresponding fittings on J 9625-A using gage adapters or hoses equipped with valve depressors. Suction port (low side) of the compressor has large internal opening. Discharge port (high side) has a smaller internal opening into the compressor.
 - Open the low pressure control, high pressure control and the refrigerant control on the charging station to allow refrigerant vapor to flow into the compressor.
 - After leak check, shut off the low pressure control and the high pressure control on charging station.
 - If an external leak is present, perform the necessary correction and recheck to assure the correction.
 - If an external leak is present, perform the necessary correction and recheck to assure the correction.
 - Loosen the manifold gage hose connections to the gage adapters connected to the low and high sides and allow the vapor pressure to release from the compressor. If valve depressor type hoses are used, loosen the hose connections at gage manifold to release the vapor pressure from the compressor.
 - Disconnect both gage adapters or hoses from J 9625-A.
 - Add 0.085 kg (3 oz.) new 525 viscosity refrigerant oil to the compressor assembly. Rotate the complete compressor assembly (not the shaft or drive plate hub) slowly several turns to distribute oil to all cylinder and piston areas.
 - Install the shaft nut (1) on the compressor shaft (20) if the pulley assembly and clutch plate and hub assembly are not installed.
• Using a box-end wrench, or a socket and handle, rotate the compressor shaft (20) or clutch plate on the shaft (20) several turns to lubricate the pistons and cylinder walls.
• Connect the charging station high-pressure line, or a high-pressure gage and gage adapter to J 9625-A high-side connector.
• Attach an adapter or depressor-type hose to the suction or low-pressure port of J 9625-A to open the Schrader-type valve. Oil will drain out of the compressor suction port adapter if the compressor is positioned with the suction port downward.
• Attach the compressor to J 33026 fixture and mount the compressor in a vise so that the compressor will be in a horizontal position and the shaft (20) can be turned with a wrench.
• Rotate the compressor shaft (20) or drive plate hub six to eight complete revolutions at a speed of approximately one revolution per second. A slower rotation can result in a lower pump-up pressure and disqualify a good pumping compressor.

• Observe the reading on the high-pressure gage at the completion of the tenth revolution of the compressor shaft (20). The pressure reading for a good pumping compressor should be 890 kPa (100 psi) or above. A pressure reading of less than 620 kPa (90 psi) would indicate one or more suction and/or discharge valves leaking, an internal leak, or an inoperative valve. Disassemble the compressor and repair as necessary. Reassemble and repeat the pump-up test.
• Following the pressure pump-up test, release the air pressure from the high side and remove the gage adapters and J 9625-A test plate.
• Tilt the compressor to place the suction and discharge ports downward to allow the oil to drain from the compressor.
• Allow a 10-minute drain period and then charge the compressor with the proper amount of oil. Pour the new 525 viscosity refrigerant oil into the suction port.
• If further assembly or processing is required, install a shipping plate or test plate J 9625-A to protect the compressor from contamination.

SPECIFICATIONS

DA-6 COMPRESSOR

Type — Harrison DA-6 compressor ... 6 Cylinder Axial
Displacement .. 10.0 Cu. In.
Rotation .. Clockwise
Clutch Plate Air Gap .. 0.38-0.64 mm (0.015-0.025 inch)
Oil Capacity .. 0.227 Kg. (8 oz.)

CLUTCH COIL

Ohms (at 27°C–80°F) .. 3.56-3.89
Amps (at 27°C–80°F) ... 3.2 @ 12 Volts

TORQUE SPECIFICATIONS

Compressor Suction and Discharge Connector Bolt .. 24 N·m (18 Ft. Lbs.)
Through Bolts .. 9 N·m (84 In. Lbs.)
Shaft Nut .. 16 N·m (12 Ft. Lbs.)
Pressure Relief Valve .. 9 N·m (84 In. Lbs.)
SPECIAL TOOLS

<table>
<thead>
<tr>
<th>No.</th>
<th>Tool Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Snap Ring Pliers</td>
<td>J 5403</td>
</tr>
<tr>
<td>2</td>
<td>Snap Ring Pliers</td>
<td>J 6083</td>
</tr>
<tr>
<td>3</td>
<td>Driver Handle</td>
<td>J 8092</td>
</tr>
<tr>
<td>4</td>
<td>Puller Bar</td>
<td>J 8433-1</td>
</tr>
<tr>
<td>5</td>
<td>Forcing Screw</td>
<td>J 8433-3</td>
</tr>
<tr>
<td>6</td>
<td>Pulley Bearing Remover</td>
<td>J 9398</td>
</tr>
<tr>
<td>7</td>
<td>Pulley Bearing Installer</td>
<td>J 9481-A</td>
</tr>
<tr>
<td>8</td>
<td>O-ring Seal Remover</td>
<td>J 9553-01</td>
</tr>
<tr>
<td>9</td>
<td>Pressure Test Plate</td>
<td>J 9625-A</td>
</tr>
<tr>
<td>10</td>
<td>Seal Remover and Installer</td>
<td>J 23128-A</td>
</tr>
<tr>
<td>11</td>
<td>Support Block</td>
<td>J 21352-A</td>
</tr>
<tr>
<td>12</td>
<td>O-ring Seal Installer</td>
<td>J 33011</td>
</tr>
<tr>
<td>13</td>
<td>Hub and Drive Plate Remover and Installer</td>
<td>J 33013-B</td>
</tr>
<tr>
<td>14</td>
<td>Cylinder Alignment Rods</td>
<td>J 33016</td>
</tr>
<tr>
<td>15</td>
<td>Bearing Staking Tool</td>
<td>J 33017</td>
</tr>
<tr>
<td>16</td>
<td>Pulley Puller</td>
<td>J 33019</td>
</tr>
<tr>
<td>17</td>
<td>Clutch Hub Holding Tool</td>
<td>J 33020</td>
</tr>
<tr>
<td>18</td>
<td>O-ring Seal Installer</td>
<td>J 33022</td>
</tr>
<tr>
<td>19</td>
<td>Pressure Test Plate</td>
<td>J 33023-A</td>
</tr>
<tr>
<td>20</td>
<td>Seal Remover and Installer</td>
<td>J 33024</td>
</tr>
<tr>
<td>21</td>
<td>Support Block</td>
<td>J 33025</td>
</tr>
<tr>
<td>22</td>
<td>O-ring Seal Installer</td>
<td>J 33026</td>
</tr>
<tr>
<td>23</td>
<td>Hub and Drive Plate Remover and Installer</td>
<td>J 33027</td>
</tr>
<tr>
<td>24</td>
<td>Clutch Coil Puller Legs</td>
<td>J 33028</td>
</tr>
<tr>
<td>25</td>
<td>Clutch Coil Installer Adapter</td>
<td>J 33029</td>
</tr>
<tr>
<td>26</td>
<td>Compressor Holding Fixture</td>
<td>J 33030</td>
</tr>
<tr>
<td>27</td>
<td>Clutch Hub Holding Tool</td>
<td>J 33031</td>
</tr>
</tbody>
</table>
SECTION 1B3
R-4 AIR CONDITIONING COMPRESSOR

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>1B3-1</td>
</tr>
<tr>
<td>Minor Repair to the Compressor</td>
<td>1B3-2</td>
</tr>
<tr>
<td>Clutch Drive Hub Replacement</td>
<td>1B3-2</td>
</tr>
<tr>
<td>Clutch Rotor and/or Bearing Replacement — V-Groove Type</td>
<td>1B3-4</td>
</tr>
<tr>
<td>Clutch Rotor and/or Bearing Replacement — Poly-Groove Type</td>
<td>1B3-5</td>
</tr>
<tr>
<td>Clutch Coll and/or Pulley Rim Replacement — V-Groove Type</td>
<td>1B3-6</td>
</tr>
<tr>
<td>Clutch Coll and/or Pulley Rim Replacement — Poly-Groove Type</td>
<td>1B3-7</td>
</tr>
<tr>
<td>Major Repair to the Compressor</td>
<td>1B3-8</td>
</tr>
<tr>
<td>Shaft Seal Replacement</td>
<td>1B3-8</td>
</tr>
<tr>
<td>Pressure Relief Valve Replacement</td>
<td>1B3-8</td>
</tr>
<tr>
<td>High-Side High-Pressure Cut-Off Switch Replacement</td>
<td>1B3-9</td>
</tr>
<tr>
<td>Front Head and/or Seal Replacement</td>
<td>1B3-9</td>
</tr>
<tr>
<td>Main Bearing Replacement</td>
<td>1B3-9</td>
</tr>
<tr>
<td>Thrust and Belleville Washers Replacement</td>
<td>1B3-10</td>
</tr>
<tr>
<td>Shell and/or Seal Replacement</td>
<td>1B3-10</td>
</tr>
<tr>
<td>Discharge Value Plate and/or Retainer Replacement</td>
<td>1B3-11</td>
</tr>
<tr>
<td>Cylinder and Shaft Assembly Replacement</td>
<td>1B3-12</td>
</tr>
<tr>
<td>Leak Testing</td>
<td>1B3-12</td>
</tr>
<tr>
<td>Specifications</td>
<td>1B3-13</td>
</tr>
<tr>
<td>Special Tools</td>
<td>1B3-14</td>
</tr>
</tbody>
</table>

DESCRIPTION

The Harrison R-4 compressor is a four cylinder, radial opposed with 10.0 cubic-inch displacement.

Two belt-driven systems are available: V-groove and poly-groove. The drive system affects minor repair procedures.

Clean the compressor before servicing. Clean replacement parts with trichloroethane, naphtha, stoddard solvent, kerosene or equivalent. Blow dry with dry air. Use a non-lint producing cloth.

After removing the compressor from the vehicle, drain and measure the refrigerant oil. Add new 525 viscosity refrigerant oil after repair. Refer to "Specifications."

IDENTIFICATION

An identification label attached to the compressor provides the name of the manufacturer, model number and build code. If the label is removed or becomes dislodged during service operation, reattach it using an adhesive sealant such as Loctite 312 or equivalent.
MINOR REPAIR TO THE COMPRESSOR

Illustrations show the compressor removed from the vehicle for easier viewing. Refer to figure 1 for part names and location.

CLUTCH DRIVE HUB REPLACEMENT

- **Clean**
 - The compressor with solvent and blow dry with air.

- **Remove or Disconnect (Figures 1, 2, 3 and 4)**

 Tools Required:
 - J 9399 Thin Wall Socket
 - J 25008-A Holding Fixture
 - J 25030 Clutch Hub Holding Tool
 - J 34019 Clutch Plate and Hub Assembly Remover

- Clamp J 25008-A to the compressor (figure 2).
- Mount J 25008-A and the compressor in a vise.

1. Shaft Nut
2. Clutch Hub Key
3. Clutch Drive Hub
4. Retainer Ring
5. Rotor
6. Bearing
7. Coil
8. Pulley
9. Washer
10. Screw
11. Retainer Ring
12. Shaft Seal
13. Seal
14. Bolt
15. Front Head
16. Bearing
17. Seal
18. Shell
19. Seals
20. Thrust Washer
21. Belleville Washer
22. Cylinder Body and Shaft
23. Seal
24. Pressure Relief Valve
25. Seal
26. High Pressure Switch
27. Retainer
28. Cap
29. Seals
30. Retainer
31. Valve Plate
32. Retaining Strap
33. Piston and Reed Assembly

Figure 1—Compressor Component View

Figure 2—Compressor in J 25008-A Holding Fixture
Figure 3—Removing the Shaft Nut

- Hold the clutch plate and hub assembly (3) with J 25030.

2. Clutch drive hub (3) (figure 4).
- Thread J 34019 into the clutch plate and hub assembly (2).

Important
- Do not drive or pound on the clutch hub or the shaft. This may cause internal damage.
- Make sure the contact surfaces of the clutch plate and the pulley are clean.
- Align the shaft key with the shaft key way and place the clutch plate and hub assembly onto the compressor shaft.
- Hold the body of J 34019 with a wrench and turn the center screw into the remover body (figure 3).

3. Shaft key (2).
- Retain the shaft key (2) if usable.

Inspect
- All parts and replace if necessary.

Figure 3—Removing the Shaft Nut

Figure 4—Clutch Plate and Hub Removal

Figure 5—Installing the Shaft Key

Install or Connect (Figures 1, 3, 5 and 6)

Tools Required:
- J 9399 Thin Wall Socket
- J 9408-B Clutch Plate and Hub Installer
- J 25030 Clutch Hub Holding Tool

1. Shaft key (2) (figure 5).
- Allow the shaft key (21) to extend 4.8 mm (3/16-inch) out of the key way.
- The shaft key (2) is curved slightly to give an interference fit in the groove.

2. Clutch drive hub (3) (figure 6).
- Install J 9480-B.
- Hold the hex portion of J 9480-B with a wrench and tighten the center screw to press the hub onto the shaft until there is a 0.5-1.0 mm (0.20-.040-inch) air gap between the frictional surfaces of the clutch plate and clutch rotor.
- Remove J 9480-B.

2. Shaft nut (1) with J 9399 (figure 3).

Figure 4—Clutch Plate and Hub Removal

Figure 5—Installing the Shaft Key

Figure 6—Installing the Clutch Plate and Hub Assembly
Figure 7—Removing the Rotor and Bearing Assembly
Retainer Ring
- Use J 25030 to hold the clutch plate and hub assembly.

Figure 8—Installing the Rotor and Bearing Guide
Tools Required:
- J 6083 Snap Rings Pliers
- J 9398 Rotor Bearing Remover
- J 25031 Rotor and Bearing
- J 25031 Guide

CLUTCH ROTOR AND/OR BEARING REPLACEMENT — V-GROOVE TYPE

Remove or Disconnect (Figures 1, 7, 8, 9 and 10)

Tools Required:
- J 6083 Snap Rings Pliers
- J 9398 Rotor Bearing Remover
- J 25031 Rotor and Bearing
- J 8092 Driver Handle

1. Clutch drive hub (3).
2. Snap ring (4) with J 6083 (figure 7).
3. Rotor (6) and bearing (5) assembly.

Important
- If the clutch rotor and/or rotor bearing are to be replaced, bend the washers (9) away from the pulley rim mounting screws (10). Remove the six mounting screws (10) and washers (9).
- Install J 25031 guide over the compressor shaft (22) (figure 8).
- Place J 25031 down into the rotor until the puller legs engage the recessed edge of the rotor hub (figure 9).
- Tighten the puller screw against the puller guide and remove the clutch rotor and bearing.
R-4 AIR CONDITIONING COMPRESSOR 1B3-5

Figure 12—Staking the Rotor Bearing

- Apply Loctite 601 or equivalent to the threads.
- Hand spin the pulley to check for free rotation.

3. Bearing (6) from the clutch rotor (5) with J 8092 and J 9398-A (figure 10).
 • Place the clutch assembly face on wood blocks to remove the bearing.

Important
- It is not necessary to remove the staking at the rear of the rotor hub to remove the bearing. However, file away the old staked metal to provide a clearance for the new bearing.

Install or Connect (Figures 11, 12 and 13)

Tools Required:
J 6083 External Snap Ring Pliers
J 8092 Drive Handle
J 9481-A Pulley Bearing and Pulley Installer

1. Bearing (6) to the rotor hub with J 8092 and J 9481-A (figure 11).
 • Place the rotor and hub assembly face down on a clean, flat surface.
 • Align the bearing with the hub bore.
 • Drive the bearing with J 8092 and J 9481-A.
 • Using a center punch with a 45 degree angle point, stake 1.1-1.4 mm (0.045-0.055-inch) deep the bearing in three places 120 degrees apart (figure 12).

2. Rotor (6) and bearing (5) assembly to the compressor with J 8092 (figure 13).
3. Retainer ring (4) with J 6083.
4. Pulley rim mounting screws (10) and washers (9).

CLUTCH ROTOR AND/OR BEARING REPLACEMENT — POLY-GROOVE TYPE

Remove or Disconnect (Figures 1, 7, 8, and 10)

Tools Required:
J 6083 Snap Ring Pliers
J 8092 Driver Handle
J 9398 Rotor Bearing Remover
J 9481-A Pulley Bearing and Pulley Installer

1. Rotor (5) and hub (3) assembly (figure 1).
2. Retaining ring (4) with J 6083 (figure 7).
3. Rotor (5) and bearing (6) assembly with J 25031 (figure 8).
 • Install the J 25031 guide over the shaft (39) end.
 • Install the J 25031 puller over the guide.
 • Engage the arms of J 25031 down into the recessed edge of the rotor hub (5).
 • Hold the arms of J 25031 and tighten the screw against the guide.
4. Bearing (6) from the rotor hub (5) with J 9398 and J 8092 (figure 10).
 • Place the rotor hub clutch face up on wooden blocks on a flat surface.
 • Drive the bearing out with J 9398 and J 8092.

Install or Connect (Figures 11 and 14)

Tools Required:
J 6083 Snap Ring Pliers
J 8092 Universal Handle
J 9481-A Pulley and Bearing Installer

1. Bearing to the rotor and hub assembly with J 8029 and J 9481-A (figure 11).
 • Place the pulley rotor and hub assembly face down on a flat surface.
1B3-6 R-4 AIR CONDITIONING COMPRESSOR

Figure 13—Installing the Rotor and Bearing Assembly — V-Groove Type

- Align the bearing to the pulley rotor and hub bore.
- Using a center punch with a 45 degree angle point, stake 1.1-1.4 mm (0.45-0.55 inch) deep in the places 120 degrees apart (figure 11).

2. Rotor (5) and bearing (6) assembly to the compressor with J 26271-A and J 8092 (figure 14).
- Position the pulley rotor and bearing assembly to the compressor.
- Drive with J 26271-A and J 8092.

3. Retainer ring (4) with J 6083.
4. Clutch drive hub (3).

CLUTCH COIL AND/OR PULLEY RIM REPLACEMENT — V-GROOVE DRIVE

udades or Disconnect (Figure 1)

Tool Required:
- J 25031 Rotor and Bearing Puller
1. Clutch drive hub (3).
2. Rotor (5) and bearing (6) assembly.
3. Pulley rim mounting screws (9) and washers (10).
4. Pulley rim (11).

Install or Connect (Figures 1, 14 and 15)

Tool Required:
- J 26271-A Rotor and Bearing Installer

Important

- Use new screws (10) and washers (9). Apply Loctite 601 or equivalent to the screw threads, but do not tighten.
- Before seating the assembly, place the clutch coil terminals in relation to the compressor. Align the three protrusions on the rear of the clutch coil with the locator holes in the front head.

Figure 14—Installing the Rotor and Bearing Assembly — Poly-Groove Type

- Clutch (7), pulley rim (8), clutch rotor (5) and bearing (6) (figure 15).

Figure 15—Clutch Coil, Pulley Rim, Rotor and Bearing Assembly
CLUTCH COIL AND/OR PULLEY RIM REPLACEMENT — POLY-GROOVE TYPE

Remove or Disconnect (Figures 1 and 16)

Tools Required:
- J 8433 Heavy Duty Pulley Puller
- J 24092 Clutch Coil Puller Legs
- J 25031 Rotor and Bearing Assembly Remover

1. Clutch drive hub (3).
2. Rotor (5) and bearing (6) assembly.
 - Mark the location of the clutch coil terminals on the compressor.
3. Clutch coil (7) from the front head (15) (figure 16).
 - Install J 25031 guide to the shaft (34).
 - Install J 24092 with J 8433.
 - Turn the screw in J 8433 to remove the clutch coil.

Install or Connect (Figures 1 and 16)

1. Clutch coil (7) to the front head (15).
 - Position the coil terminals as marked during removed.
2. Rotor (5) and bearing (6) to the compressor with J 26271.

 Important
 - Before seating the assembly, position the clutch coil terminals in the proper location to the compressor.
 - Align the three protrusions on the rear of the clutch coil housing with the locator holes in the front head.
3. Retainer ring (4).

Measure
- Clutch plate to clutch rotor gap is 0.5 to 1.0 mm (0.020 to 0.040-inches).
- Hand spin the pulley to check for free rotation.

Tighten
- Pulley rim mounting screws (10) to 11 N·m (100 in. lbs.).
- Bend the washers (9) to secure the screws (10).
MAJOR REPAIR TO THE COMPRESSOR

SHAFT SEAL REPLACEMENT

The shaft seal is designed to seep oil for lubrication. Replace the seal if a large leak is detected. Use J 29547 to determine refrigerant oil leakage.

If the seal needs replacing, remove the accumulator. Drain, measure and replace the refrigerant oil with new 525 viscosity refrigerant oil.

Remove or Disconnect (Figures 1, 17 and 18)

Tools Required:
- J 5403-A Internal Snap Ring Pliers
- J 22974-A Compressor Shaft Oil Seal Protector
- J 23128-A Ceramic Seal Remover and Installer
- J 34614 Shaft Seal Protector

1. Clutch drive hub (3).
2. Retainer ring (11).

Clean
- The inside of the compressor neck area.
 - Engage J 23138-A into the recessed portion of the seal by turning with a hand motion (figure 17).
 - Lift the seal with a rotary-pulling motion.
4. Seal (o-ring) (13) with J 9553-01 (figure 18).

Install or Connect (Figures 1 and 19)

Tools Required:
- J 33011 “O” Ring Installer
1. Seal (o-ring) (14) to the shaft (22) (figure 19).
 - Dip the seal in clean 525 viscosity refrigerant oil.
 - Seal (o-ring) to J 33011.
 - Insert J 33011 over the shaft and down until it reaches the bottom of the shaft.
 - Tower the slide on J 33011 to release the seal (o-ring) into its groove.

PRESSURE RELIEF VALVE REPLACEMENT

Remove or Disconnect (Figure 1)
1. Valve (24).
2. Seal (23).

Install or Connect (Figure 19)

13. Seal (O-ring) with J 33011 (figure 19).
Install or Connect (Figure 1)

1. Seal (23).
 • Dip the seal in clean 525 viscosity refrigerant oil before inserting it into the valve cavity.
2. Valve (24).
 • Valve (24) to 17 N·m (13 ft. lbs.).

HIGH-SIDE-HIGH PRESSURE CUT OFF SWITCH REPLACEMENT

Tools Required:
- J 5403 Snap Ring Pliers
- J 9553 O-Ring Remover

1. Protective cap (28).
2. Retainer ring (27) with J 5403.
3. Valve (26).
 • Remove any dirt from the valve cavity.

Install or Connect (Figure 1)

1. New seal (o-ring) (25) to the cavity.
 • Dip the new seal in clean 525 viscosity refrigerant oil.
2. Pressure relief valve (26).
3. Retainer ring (27) with J 5403-A.
 • Place the oil hole in the "UP" position when assembled to the compressor to correspond with the "UP" position of the compressor.

MAIN BEARING REPLACEMENT

Tools Required:
- J 24895 Bearing Installer
- J 24896 Bearing Remover

1. Rotor (5) and bearing (6) assembly.
2. Front head (15) and seal (17).
3. Bearing (16) from the front head (15) (figure 20).
 • Place the front head on two blocks.
 • Drive the bearing out of the front head with J 24896.

Install or Connect (Figures 1 and 21)

Tool Required:
- J 24895 Bearing Installer

1. Bearing (16) to the front head (15) (figure 21).
 • Place the bearing with the neck down on a flat surface (figure 21).
 • Drive the bearing into the front head with J 24896.
2. Front head (15) and seal (17) to the compressor.
3. Rotor (5) and bearing (6) assembly.
THRUST AND BELLEVILLE WASHERS REPLACEMENT

+++ Remove or Disconnect (Figures 1 and 22)
1. Rotor (5) and bearing (6) assembly.
2. Front head (15) and seal (17).
3. Two thrust washers (20) (figure 22).
4. Belleville washer (21).

--- Note the position of the washers.

+++ Install or Connect (Figures 1 and 22)
1. One new thrust washer (20).
 • Place the washer over the shaft with the washer tang pointing UP.
2. New Belleville washer (21).
 • Place the high center of the washer UP.
3. One new thrust washer (20).
 • Place the washer over the shaft with the washer tang pointing down.

++ Important
 • Lubricate the washers with clean 525 viscosity refrigerant oil.

++ SHELL AND/OR SEAL REPLACEMENT

+++ Remove or Disconnect (Figures 1, 23 and 24)
Tool Required:
J 25008-A
1. Clutch drive hub (3).
2. Rotor (5) and bearing (6) assembly.

++ Important
 • Do not loosen or remove the pulley rim mounting screws to remove the clutch rotor and bearing, clutch coil and pulley rim.
 • Pry the strap away from the cylinder and position it high enough to clear the cylinder when removing the shell.
4. Shell (18) (figure 24).
 • Remove J 25008-A from the compressor.
 • Reverse J 25008-A with the step block protrusions engaging the shell.
 • Install the medium length metric threaded mounting bolts through J 25008-A.
 • Thread the bolts finger tight on both sides into the compressor cylinder until the step of the J 25008-A protrusions contact the shell.
 • Alternately tighten each bolt 1/4-turn to push the shell free of the seals (19) on the cylinder.
 • If one screw requires more force to turn than the other, immediately turn the other screw to bring the screw threading sequence in-step or the shell will be cocked and be difficult to remove. Normal removal does not require much force on the wrench if the screws are kept in-step while turning. The shell can be removed by hand as soon as the shell is free.
C. Alternately Tighten the Screws 1/4 Turn

D. Tool Step Contacts the Compressor Shell

19. Seal 19

J 25008-A

Figure 24—Removing the Shell

of the shell to cylinder seals. Do not turn the screws any further than necessary to release the shell.

- Remove J 25008-A from the compressor.
- Reverse J 25008-A to hold the compressor by the opposite side using the compressor short-length screws with metric threads.

Clean

- Remove dirt and lint from the shell.

Inspect

- The shell for cracks or burrs that may damage the seals.

Install or Connect (Figures 1, 23 and 25)

1. Seals (19) to the front and rear of the shell (18).
 - Dip the seals (o-rings) in clean 525 viscosity refrigerant oil before installing.
 - Coat the seal grooves with clean 525 viscosity refrigerant oil.

2. Shell (18) to the cylinder (22) with J 25008-A (figure 25).
 - Rotate the retaining strap to its original location.
 - Alternately tighten each bolt 1/4-turn to push the shell over the seals.
 - If one screw requires more force to turn than the other, immediately turn the other screw to bring the screw threading sequence in-step or the shell will be cocked and made more difficult to install. Normal installation does not require much force on the wrench if the screws are kept in-step while turning.

3. Retaining strap (32).
 - After seating the shell against the stop, bend the strap into place.

4. Rotor (5) and bearing (6) assembly, clutch coil (7) and pulley rim with J 26271-A.

5. Clutch drive hub (3).

DISCHARGE VALVE PLATE AND/OR RETAINER REPLACEMENT

Remove or Disconnect (Figures 1, 26 and 27)

Tools Required:
- J 4245 Snap Ring Pliers
- J 25008-A Compressor Shell Remover, Installer and Holding Fixture

1. Clutch drive hub (3).
2. Rotor (5) and bearing (6) assembly.
3. Compressor shell (18).
4. Retainer ring (30) with J 4245 (figure 26).
5. Valve plate (31) (figure 27).

Install or Connect (Figures 1, 26 and 27)

1. Valve (31).
2. Retainer ring (30) with J 4245.
4. Rotor (5) and bearing (6).
5. Clutch drive hub (3).

CYLINDER AND SHAFT ASSEMBLY REPLACEMENT

Remove or Disconnect (Figure 1)
1. Clutch drive hub (3).
2. Rotor (5) and bearing (6).
4. Front head (15).
5. Thrust (20) and Belleville (21) washers.
7. Discharge plate (31).
8. High pressure cut-off switch (26).

Install or Connect (Figure 1)
1. Pressure relief valve (24).
2. High pressure cut-off switch (26).
3. Discharge reed (33) and plate (31).
4. Shell (18).
5. Thrust (20) and Belleville (21) washers.
6. Front head (15).
7. Shaft seal (12).
8. Rotor (5) and bearing (6) assembly.
9. Clutch drive hub (3).

LEAK TESTING

Tools Required:
- J 5420 Straight Fitting
- J 9625-A Pressure Test Set with Schrader Valve
- J 23500-01 Portable Charging Station

1. Install J 9625-A on the rear head of the compressor.
2. Install the center hose of the manifold gage set on the charging station to a refrigerant drum standing in an upright position and an open valve on the drum.
3. Install the charging station high and low pressure lines to the corresponding fittings on J 9526-A using J 5420 gage adapters or hoses equipped with valve depressors.
 - The suction port (low side) of the compressor has a large internal opening. The discharge port (high side) has a smaller internal opening into the compressor.
 - Open the low-pressure control, the high-pressure control and the refrigerant control on the charging station to allow refrigerant vapor to flow into the compressor.

Important
- Check for leaks at the pressure relief valve, compressor front and rear head seals, center cylinder seal, through bolt head gaskets and the compressor shaft seal. After checking, shut off the low pressure control and the high pressure control on the charging station.
- Loosen the manifold gage hose connections to the gage adapters connected to the low and high sides and allow the vapor pressure to release from the compressor.
- If valve depressor-type hoses are used, loosen the hose connections at the gage manifold to release the vapor from the compressor.

4. Disconnect J 5420 from J 9625-A.
5. Rotate the compressor (not the crank shaft or drive plate hub) to distribute oil to the cylinder and pistons.
6. Install a shaft nut on the compressor crankshaft if the drive plate and clutch assembly are not installed.
7. With a box-end wrench, or a socket and handle, rotate the compressor crankshafts or clutch drive plate on the crankshaft to lubricate the piston assembly and cylinder wall.
8. Connect the J 23500-01 Portable Charging Station high pressure line or a high pressure gage and J 5420 gage adapter to the J 9625 test plate high-side connector.
R-4 AIR CONDITIONING COMPRESSOR 1B3-13

Important
- Oil will drain out of the compressor suction port adapter if the compressor is placed with the suction port downward.

9. Attach the compressor to the J 25008-A holding fixture with metric mounting screws. Clamp the compressor holding fixture in a vise so that the compressor can be turned with a wrench.

10. With a wrench, rotate the compressor crankshaft or drive plate hub ten revolutions at a speed of one revolution per second.
 - Turning the compressor at less than one revolution per second can cause a lower pump-up pressure and disqualify a good pumping compressor.

11. Watch the reading on the high-pressure gage at the completion of the tenth revolution.
 - The reading for a good pumping compressor should be 344.75 kPa (50 psi).

12. After completing the pressure pump-up test, release the air pressure from the high side and remove J 5420 gage adapter and J 9625 test plate.

13. Tilt the compressor to place the suction and discharge ports downward.

14. Drain oil from the compressor. After 10 minutes, charge with the proper amount of oil. Pour the oil into the suction port.
 - If further assembly or processing is required, install a shipping plate or J 9625 to keep air, dirt and moisture out of the compressor unit it is installed.

SPECIFICATIONS

Type — Harrison R-4 compressor
- Cylinder Radial: 4
- Displacement: 10.0 Cu. In.
- Rotation: Clockwise
- Oil Capacity: 0.312 kg (11 oz.)

TORQUE SPECIFICATIONS

- Oil Drain Screw: 17 N·m (13 ft. lbs.)
- Cycling Pressure Switch: 10 N·m (75 ft. lbs.)
- Shaft Nut: 17 N·m (13 ft. lbs.)
- Pressure Relief Valve: 17 N·m (13 ft. lbs.)
- Front Head Bolts: 27 N·m (20 ft. lbs.)
- Rim Mounting Screws: 11 N·m (100 in. lbs.)
- Clutch Plate to Rotor Air Gap: 0.5-1.0 mm (0.020-0.040 inch)

- A reading of less than 310.275 kPa (45 psi) would indicate one or more suction and/or discharge valves are leaking, an internal leak and/or discharge valves leaking, an internal leak or an inoperative valve. Disassemble and check the compressor.

SPECIAL TOOLS

1. Snap Ring Pliers (#23 Internal)
2. Straight Connector
3. Snap Ring Pliers (#24 Internal)
4. Driver Handle
5. Compressor Pulley Puller
6. Seal Seat Remover and Installer
7. Rotor Bearing Remover
8. \(\frac{3}{16} \)-inch Thin Wall Socket
9. Hub and Drive Plate Assembly Installer
10. Pulley Bearing and Pulley Installer
11. O-ring Remover
12. Pressure Plate Connector
13. Seal Seat Remover and Installer
14. Pulley Hub Adapter Set (Used with J 8433)
15. Bearing Installer
16. Bearing Remover
17. Compressor Shell Remover, Installer and Holding Fixture
18. Clutch Hub Holding Tool
19. Rotor and Bearing Puller with Guide
20. Clutch Coil Puller
21. Rotor and Bearing Installer
22. Seal Seat O-ring Installer
23. Hub and Drive Plate Assembly Remover
24. Shaft Seal Protector
SECTION 1B4

DA-V5 AIR CONDITIONING COMPRESSOR

DESCRIPTION

When servicing the Harrison DA-V5 compressor, keep dirt and foreign material from getting on or into the compressor parts and system. Clean tools and a clean work area are important for proper service. The compressor connections and the outside of the compressor should be cleaned before any “on vehicle” repairs, or before removal of the compressor. The parts must be kept clean at all times and any parts to be reassembled should be cleaned with Trichloroethane, naptha, Stoddard solvent, kerosene or equivalent solvent and dried with dry air. Use only lint free cloths to wipe parts.

Drain the compressor and measure the amount of oil. Replace with new 525 viscosity refrigerant oil. Refer to “Specifications” (figures 1, 2, 3 and 4).

NOTICE: Remove the oil drain plug to make sure the compressor is drained completely of oil (figure 1).

THEORY OF OPERATION

The DA-V5 is a variable displacement compressor that can match the automotive air conditioning demand under all conditions without cycling. The basic compressor mechanism is a variable angle wobble-plate with five axially oriented cylinders. The center of control of the compressor displacement is a bellows actuated control valve located in the rear head of the compressor that senses compressor suction pressure. The wobble-plate angle and compressor displacement are controlled by the crankcase-suction pressure differential. When the AC capacity demand is high, the suction pressure will be above the control point; the valve will maintain a bleed from crankcase to suction; no crankcase-suction pressure differential; and the compressor will have maximum displacement. When the AC capacity demand is lower and the suction pressure reaches the control point, the valve will bleed discharge gas into the crankcase and close off a passage from the crankcase to the suction plenum. The angle of the wobble-plate is controlled by a force balance on the five pistons. A slight elevation of the crankcase-suction pressure differential creates a total force on the pistons resulting in a movement about the wobble-plate pivot pin that reduces the plate angle.

The crankcase-suction bleed is routed through the rotating wobble-plate for lubrication of the wobble-plate.
bearing. The rotation acts as an oil separator, which removes some of the oil from the crankcase suction bleed, rerouting it to the crankcase where it can lubricate the compressor mechanism.

Up to 0.113 kg (4 oz.) of oil can collect in the crankcase. Therefore, it is important when replacing a compressor that the oil in the old compressor crankcase be drained through the drain plug and measured (discard after recording amount).

All replacement compressors will be shipped from Harrison with 0.2268 kg (8 oz.) of oil in the crankcase. The oil must be drained and retained. Then replace the oil in the same amount as previously recorded from the old compressor. Refer to “Specifications.”

IDENTIFICATION

An identification label attached to the compressor provides the name of the manufacturer, model number and build code. If the label is removed or becomes dislodged during service operation, reattach it using an adhesive sealant such as Loctite 312 or equivalent.
2. High Pressure Relief Valve
3. High Side Low Pressure Valve
4. High Side Cut-Off Switch
5. Control Valve
21. Shaft Nut
22. Clutch Plate and Hub Assembly
23. Key
24. Pulley Bearing Retainer
25. Pulley Bearing
26. Pulley
27. Clutch Coil Assembly
28. Retainer
29. Seal
30. O-ring
31. Bolt
32. Gasket
33. Front Head
34. Shim
35. Washer
36. Belleville Washer
37. Seal
38. Shaft and Cylinder Body
39. Seal
40. Suction Reed
41. Valve Plate
42. Gasket
43. Rear Head
44. Seal
45. Retainer
46. Seal

Figure 4—Compressor Component View
MINOR REPAIR TO THE COMPRESSOR

Figure 6—Removing the Clutch Plate and Hub Assembly

Inspect
- All parts and replace as necessary.

Install or Connect (Figures 1, 7 and 8)

Tools Required:
- J 33013-B Hub and Drive Plate Remover and Installer
- J 33022 6-Point 13 mm Socket
- J 33027 Clutch Hub Holding Tool
- J 34992 Compressor Holding Fixture

Tools Required:
- J 33013-B Hub and Drive Plate Remover and Installer
- J 33022 6-Point 13 mm Socket
- J 33027 Clutch Hub Holding Tool
- J 34992 Compressor Holding Fixture

1. Shaft key (21).
 - Allow the shaft key (21) to extend 3.2 mm (1/8-inch) out of the bottom of the hub keyway (figure 7).
 - The shaft key (21) is curved slightly to give an interference fit in the groove.

2. Clutch plate and hub assembly (22).
 - Thread J 33013-B into the clutch plate and hub assembly (22).
 - Hold the body of J 33013-B with a wrench and tighten the center screw into the remover body (figure 6).

Important
- Do not drive or pound on the clutch hub or the shaft (38). Internal damage to the compressor may result.

1. Shaft nut (21) using J 33022 (figure 5).
2. Clutch plate and hub assembly (22).
 - Thread J 33013-B into the clutch plate and hub assembly (22).
 - Hold the body of J 33013-B with a wrench and tighten the center screw into the remover body (figure 6).
3. Shaft key (21).
 - Retain shaft key (21) if usable.

Clean
- The compressor assembly with solvent and blow dry with dry air.

Remove or Disconnect (Figures 1, 5, and 6)

Tools Required:
- J 33013-B Hub and Drive Plate Remover and Installer
- J 33022 6-Point 13 mm Socket
- J 33027 Clutch Hub Holding Tool
- J 34992 Compressor Holding Fixture

- Clamp J 34992 in a vise and attach the compressor to the holding fixture with thumb screws.
1. Shaft nut (21) using J 33022 (figure 5).
2. Clutch plate and hub assembly (22).
 - Thread J 33013-B into the clutch plate and hub assembly (22).
 - Hold the body of J 33013-B with a wrench and tighten the center screw into the remover body (figure 6).

2. Clutch plate and hub assembly (22) (figure 8).
 - Make sure the contact surfaces of the clutch plate (22) and the pulley (26) are clean.
 - Remove the forcing screw tip from J 33013-B and reverse the body direction on the center screw.
 - Install J 33013-B with bearing (B) (figure 8).
 - Back off J 33013-B body enough to allow the center screw to be threaded against the end of the compressor shaft (38).
 - Hold the center screw with a wrench and tighten the hex portion of J 33013-B body while pressing the hub onto the shaft (38). After tightening the body several turns, remove J 33013-B and check that the shaft key (21) is
PULLEY AND BEARING ASSEMBLY REPLACEMENT

Remove or Disconnect (Figures 4, 9, 10, 11 and 12)

Tools Required:
- J 6083 Snap Ring Pliers
- J 8092 Driver Handle
- J 9398-A Pulley Bearing Remover
- J 33020 Pulley Puller
- J 33023-A Puller Pilot

1. Clutch plate and hub assembly (22).
2. Pulley bearing retainer (24) using J 6083 (figure 9).
3. Pulley (26).
 - Install J 33023-A to the front head (figure 10).
 - Install J 33020 tangs into the inner circle of slots in the pulley (26) contact surface. Rotate J 33020 clockwise so the tangs will lock into the segments between the slots (figure 11).
 - Hold J 33020 in place and tighten the puller screw against J 33023-A puller pilot to remove the pulley (26) (figure 11).
4. Pulley bearing (25) from the pulley (26) using J 9398-A and J 8092 (figure 12).
 - Remove the forcing screw from J 33020 and with the puller tangs still in place in the pulley slots, turn the assembly upside down onto a flat surface (figure 12).
When removing the old pulley bearing (25) allow the staking to remain, then file away the old staked metal for proper fit when installing a new bearing (25) in the pulley bore.

Install or Connect (Figures 4, 13, 14, 15 and 16)

Tools Required:
- J 6083 Snap Ring Pliers
- J 8433-1 Puller Bar
- J 9481 Pulley Bearing Installer
- J 29886 Threaded Driver Handle
- J 33017 Pulley and Bearing Assembly Installer
- J 33019 Bearing Staking Tool (with staking pin and retaining band)
- J 33023-A Puller Pilot
- J 33026 Compressor Holding Fixture
- J 35372 Compressor Support Block

1. Pulley (26) on J 35372 (figure 13).

Figure 10—Installing the Pulley Rotor and Bearing Puller Guide

Figure 12—Removing the Bearing from the Pulley Rotor Assembly

Figure 11—Removing the Pulley Rotor and Bearing Assembly

Figure 13—Installing the Pulley Rotor Bearing
NOTICE: Do not support the rotor by resting the pulley rim on a flat surface during bearing installation or the rotor face will be bent.

2. Pulley bearing (25) into the hub using J 29886, J 9481-A and J 35372 (figure 13).
 • J 33019 in the pulley bore (figure 13).
 • Seat the pulley and bearing assembly on J 35372 to support to the hub under the staking pin location (figure 14).
 • Strike the staking pin with a hammer until a metal stake, similar to the original, is formed down to, but not touching the bearing.
 — Position the stake pin after striking.
 — The staked metal should not contact the outer race of the bearing to prevent the possibility of bending the outer race.
 — Stake 3 places 120 degrees apart (figure 15).

3. Pulley (26) on the front head.
 • Position J 33017 and J 33023 over the inner race of the bearing (figure 16).
 • Position J 8433-1 on J 33023 and assemble the through bolts and washers through the puller bar slots and thread them into J 33026 (figure 16).

4. Pulley bearing retainer (24) using J 6083 (figure 9).

5. Clutch plate and hub assembly (22).

CLUTCH COIL ASSEMBLY REPLACEMENT

Remove or Disconnect (Figures 4 and 17)

Tools Required:
J 8433-1 Puller Bar
J 8433-3 Puller Screw
J 33023-A Puller Pilot
J 33025 Clutch Coil Puller Legs

1. Clutch plate and hub assembly (22).
2. Pulley (26).
 • Mark or scribe the location of the clutch coil (27) to terminal on the compressor front head (33).
3. Clutch coil assembly (27).
 • Install J 33023-A on the head (33) of the compressor.
Install J 8433-1 with J 33025 (figure 17).

Tighten J 8433-3 forcing screw against J 33025.

Inspect
- Clutch coil assembly (27). Replace as necessary.

Install or Connect (Figures 4, 18, 19 and 20)

Tools Required:
- J 8433-1 Puller Bar
- J 33024 Clutch Coil Installer Adapter

1. Clutch coil assembly (27) onto the front head (33) with the terminals positioned at the “marked” location.
 - J 33024 over the internal opening of the clutch coil assembly (27) (figure 18).
 - J 8433-1 with through bolts, washers and forcing screw over J 33024.
 - Be sure J 8433-1 and the clutch coil assembly (27) stay “in line” during installation.
 - When the clutch coil assembly (27) is seated on the front head (33), use a 3 mm (1/8-inch) diameter drift punch to stake the head (33) at 3 places, 120 degrees apart to assure the clutch coil assembly (27) remains in position (figure 19).
 - Stake size should be one half the area of the punch tip and 0.28-0.35 mm (0.010-0.015-inch) deep (figure 20).

2. Pulley (24).
3. Clutch plate and hub assembly (22).

PRESSURE RELIEF VALVE REPLACEMENT

Remove or Disconnect (Figures 3 and 4)
- Be sure the compressor has no charge.

1. Pressure relief valve (2).

2. O-ring seal (46).

Figure 17—Removing the Clutch Coil Assembly

Figure 18—Installing the Clutch Coil Assembly

Figure 19—Staking the Clutch Coil to the Front Head
Install or Connect (Figures 3 and 4)

Lubricate the threads of the pressure relief valve (2) and new O-ring seal with 525 viscosity refrigerant oil.

Pressure relief valve (2) with new O-ring seal.

Tighten

Pressure relief valve (2) to 9 N m (84 in. lbs.).

Important

- Leak test the compressor.
- Refer to “Leak Testing.”

HIGH-SIDE PRESSURE AND HIGH-SIDE LOW-PRESSURE CUTOFF SWITCHES REPLACEMENT

Remove or Disconnect (Figures 3 and 4)

Tools Required:

J 9553-01 O-ring Remover

Retainers (44) from switches (3) and (4).

Switches (3) and (4).

O-ring seals (44) from the switch cavities with J 9553-01.

Clean

- Switch cavity and O-ring seal groove.

Install or Connect (Figures 3 and 4)

Tools Required:

J 5403 Snap Ring Pliers

Valve (5).

O-ring seal (44) to the switch cavity with J 33011.

Dip the O-ring seals into clean 525 refrigerant oil.

Switches (3) and (4).

Retainers (45).

CONTROL VALVE REPLACEMENT

Remove or Disconnect (Figures 3 and 4)

Tools Required:

J 5403 Snap Ring Pliers

J 9553-01 O-ring Seal Remover

Retainer ring with J 5403.

O-ring seal (44) with J 9553-01.

Valve (5).

Install or Connect (Figures 3 and 4)

Tools Required:

J 5403 Snap Ring Pliers

J 33011 O-ring Seal Installer

Valve (5).

O-ring seal (44) with J 33011.

Dip the seals into new clean 525 refrigerant oil.

Retainer (45) with J 5403.

MAJOR REPAIR TO THE COMPRESSOR

Replacement of the shaft seal assembly or the pressure relief valve will require the discharge of the vehicle’s refrigerating system (figure 21). Other than clutch repair procedures, the same holds true for any disassembly of the compressor. To discharge the refrigerant, refer to the vehicle service manual.

After servicing, add fresh 525 viscosity refrigerant oil equal to the amount drained from the compressor.

Keep the workbench and work area clean when servicing the compressor, and use proper, clean service tools.

NOTICE: Any attempt to use makeshift or inadequate service tools or equipment may result in damage and/or improper compressor operation.

All parts used for servicing the compressor internally are protected by a preservative and packaged in a manner which does not require cleaning, washing or flushing. The parts can be used in the internal assembly as they are removed from the service package.

SHAFT SEAL REPLACEMENT

Remove or Disconnect (Figures 4, 22, 23 and 24)

Tools Required:

J 5403 Snap Ring Pliers

J 9553-01 O-Ring Seal Remover
A. Steel Shell
B. Lip Seal

Figure 21—Compressor Shaft Seal Details

1. Clutch plate and hub assembly (22).
 - Install J 34614 over the threaded end of the shaft (38).
2. Shaft seal retainer ring using J 5403 (figure 22).
 - Clean the compressor neck area around the shaft (38), the exposed part of the shaft seal (29) and the O-ring seal groove.
 - Insert J 23128-A into the shaft lip seal, tighten and remove lip seal.

Inspect
- Make sure the compressor neck area is clean.
- All parts. Replace as necessary.

Install or Connect (Figures 4 and 25)

Tools Required:
- J 5403 Snap Ring Pliers
- J 23128-A Seal Seat Remover and Installer
- J 33011 O-Ring Seal Installer
- J 34614 Shaft Seal Protector

Figure 22—Removing or Installing the Shaft Seal Seat Retainer

Figure 23—Removing or Installing the Shaft Seal

- Dip the new O-ring seal in clean 525 viscosity refrigerant oil.
1. J 34614 onto the shaft (38).
2. O-ring seal using J 33011 (figure 25).
 - Insert J 33011 into the compressor neck until the installer “bottoms.”
 - Lower the movable slide of J 33011, releasing the O-ring seal into the lower groove.
 - Rotate J 33011 to seat the O-ring seal and remove J 33011.
DA-V5 AIR CONDITIONING COMPRESSOR 1B4-11

1. Dip the shaft lip seal in clean 525 viscosity refrigerant oil and install the shaft lip seal on J 23128-A.
2. Bottom the shaft lip seal into the compressor neck area using J 23128-A.
3. Shaft seal retainer ring using J 5403 (figure 21).
4. Install the flat side of the shaft seal retainer ring against the lip seal.
5. Remove J 34614.

Important
• Leak test the compressor.
• Refer to “Leak Testing.”

Clean
• Shaft (38) and inside the compressor neck area.

5. Clutch plate and hub assembly (22).

FRONT HEAD SEAL, REAR HEAD GASKET, REAR VALVE PLATE, SUCTION REED PLATE AND REAR HEAD SEAL REPLACEMENT

++ Remove or Disconnect (Figures 4 and 26)
1. Clutch drive and hub assembly (22).
2. Pulley (26) and bearing (25).
3. Clutch coil assembly (27).
4. Shaft seal (29).
5. Through bolts (31).
6. Front head (33) from the shaft and cylinder body (38).
 • Using a wood block, tap around the edge of the front head (33) to remove.
7. Rear head (43), head gasket (42), rear valve plate (41), suction reed plate and cylinder-to-rear head seal (39).
 • Using a wood block, tap around the edge of the rear head to remove (figure 26).

++ Install or Connect (Figures 4, 27 and 28)

Tools Required:
J 9625-A Pressure Test Set with Schrader Valve
J 33016 Cylinder Alignment Rods
J 35372 Support Block

• Use new seals and gaskets.
• Place the rear head on J 35372 with the control valve (5) facing the technician and at the upper left position (figure 27).
2. Gasket (42) (figure 28).
 • Place the elongated hole in the gasket over the rod at the upper left position.
3. Rear valve plate (41).
 • Place the elongated hole in the valve plate over the rod at the upper left position.
4. Suction reed plate (40).
 • Place the elongated hole in the plate over the rod at the upper left position.
5. Seals (39 and 37) to the shaft and cylinder body grooves (38).
 • Dip the seals into 525 viscosity refrigerant oil.
6. Shaft and cylinder body (38) to the rear head (43).
 • Locate the relief boss at the rod in the hole at the upper left position.
7. Belleville washer (35) and washers (36).
8. Shim (34).
9. Front head (33).
 • Locate the relief boss at the pin in the hole at the upper left position.
 • Remove J 33016 Cylinder Alignment Rod from the hole facing the technician.
10. Through bolts (31) and gaskets (32).

Tighten
• Bolts (31) alternately to 9 N m (80 in. lbs.).
11. Refrigerant oil to the compressor.
1B4-12 DA-V5 AIR CONDITIONING COMPRESSOR

A. Opening to Rear Suction Port
 (12 O’Clock Position Assembly Reference)
B. Through Bolt Hole (6)
C. Suction Pressure (Outside Cavity)
D. Discharge Pressure (Inner Cavity)
E. Opening to Rear Discharge Port
F. High Pressure Relief Valve
G. Drilled Opening into High Pressure Relief Valve Area
28. Rear Head

Figure 27—Positioning the J 33016 Guide Pins

Figure 28—Installing the Rear Head Gasket

12. Test plate J 9625-A
 • Leak test. Refer to “Leak Testing.”

LEAK TESTING

Tools Required:

J 9625-A Pressure Test Plate
J 23500-01 Portable Charging Station
J 34492 Compressor Holding Fixture

• Be sure the compressor has no oil internally.
1. Install J 9625-A on the rear head of the compressor.
2. Install the center hose of the manifold gage set on J 23500-01 to a refrigerant drum standing in an upright position and open the valve on the drum.
3. Install the charging station high and low pressure lines to the corresponding fittings on J 9625-A using gage adapters or hoses equipped with valve depressors. The suction port (low side) of the compressor has a large internal opening. The discharge port (high side) has a smaller internal opening into the compressor.
• Open the low pressure control, high pressure control and the refrigerant control on the charging station to allow the refrigerant vapor to flow into the compressor.

Important

• Check for leaks at the pressure relief valve (2), compressor front and rear head seals (37) (39), through bolt head gaskets (32) and compressor shaft seal (29).
• After the leak check, shut off the low pressure control and the high pressure control on charging station.
• If an external leak is present, perform the necessary correction and recheck for leaks.
• Loosen the manifold gage hose connections to the gage adapters connected to the low and high sides and allow the vapor pressure to release from the compressor. If valve depressor type hoses are used, loosen the hose connections at the gage manifold to release the vapor pressure from the compressor.
• Disconnect both gage adapters or hoses from J 9625-A.
• Add 0.085 kg (3 oz.) new 525 viscosity refrigerant oil to the compressor assembly. Rotate the complete compressor assembly (not the shaft or drive plate hub) slowly several turns to distribute oil to all cylinder and piston areas.
Install the shaft nut (21) on the compressor shaft (38) if the pulley assembly and clutch plate and hub assembly are not installed.

Using a box-end wrench, or a socket and handle, rotate the compressor shaft (38) several turns to lubricate the pistons and cylinder walls.

Connect the charging station high-pressure line, or a high-pressure gage and gage adapter to J 9625-A high-side connector.

Attach an adapter or depressor-type hose to the suction or low-pressure port of J 9625-A to open the Schrader-type valve. Oil will drain out of the compressor suction port adapter if the compressor is positioned with the suction port downward.

Attach the compressor to J 34992 fixture and mount the compressor in a vise so that the compressor will be in a horizontal position and the shaft (38) can be turned with a wrench.

Rotate the compressor shaft (38) or drive plate hub six to eight complete revolutions at a speed of approximately one revolution per second. A slower rotation can result in a lower pump-up pressure and disqualify a good pumping compressor.

Observe the reading on the high-pressure gage at the completion of the tenth revolution of the compressor shaft (38). The pressure reading for a good pumping compressor should be 690 kPa (100 psi) or above. A pressure reading of less than 620 kPa (90 psi) would indicate one or more suction and/or discharge valves leaking, an internal leak, or an inoperative valve. Disassemble the compressor and repair as necessary. Reassemble and repeat the pump-up test.

Following the pressure pump-up test, release the air pressure from the high side and remove the gage adapters and J 9625-A test plate.

Tilt the compressor to place the suction and discharge ports downward to allow oil to drain from the compressor.

Allow a 10-minute drain period and then charge the compressor with the proper amount of oil. Pour the new 525 viscosity refrigerant oil into the suction port.

If further assembly or processing is required, install a shipping plate or test plate J 9625-A to protect the compressor from contamination.

SPECIFICATIONS

Type — Harrison DA-V5

Displacement... 9.2 Cu. In.

Rotation.. Clockwise

525 Viscosity Compressor Oil (Full Charge). ... 0.226 8 kg (8 oz.)

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Component</th>
<th>Torque Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressor Suction and Discharge Connector Bolt</td>
<td>34 N·m (25 ft. lbs.)</td>
</tr>
<tr>
<td>Shaft Nut</td>
<td>17 N·m (12 ft. lbs.)</td>
</tr>
<tr>
<td>Pressure Relief Valve</td>
<td>9 N·m (80 in. lbs.)</td>
</tr>
<tr>
<td>Through Bolts</td>
<td>9 N·m (80 in. lbs.)</td>
</tr>
<tr>
<td>Oil Drain Plug</td>
<td>16 N·m (12 ft. lbs.)</td>
</tr>
</tbody>
</table>
1. J 5403 Snap Ring Pliers
2. J 6083 Snap Ring Pliers
3. J 8092 Driver Handle
4. J 8433-1 Puller Bar
5. J 8433-3 Forcing Screw
6. J 9398-A Pulley Bearing Remover
7. J 9481-A Pulley Bearing Installer
8. J 9553-01 O-ring Seal Remover
9. J 9625-A Pressure Test Plate
10. J 23128-A Seal Remover and Installer
11. J 29886 Support Block
12. J 33011 O-ring Seal Installer
13. J 33013-A Hub and Drive Plate Remover and Installer
14. J 33016 Cylinder Alignment Rod
15. J 33017 Pulley and Bearing Assembly Installer
16. J 33019 Bearing Staking Tool
17. J 33020 Pulley Puller
18. J 34614 Shaft Seal Protector
19. J 33022 5 Point 13 mm Socket
20. J 33023-A Puller Pilot
21. J 33024 Clutch Coil Installer Adapter
22. J 33025 Clutch Coil Puller Legs
23. J 34992 Compressor Holding Fixture
24. J 35372 Clutch Hub Holding Tool
DESCRIPTION

The Harrison HR-6 compressor is a fixed displacement axial piston pump, with three double-ended pistons actuated by an axial (swash) plate shaft assembly (figure 1). The main parts are the front and rear cylinder, the shaft and axial swash plate, piston group, and valve mechanisms. The cylinders and heads provide an integral external shell.

The piston group of the compressor is not serviceable. If piston, bearing, ball shoe, shaft and axial plate, or cylinder repair is needed, replace the internal cylinder assembly. All clutch parts, valve mechanisms, and head assemblies are serviceable, plus seals and gaskets.

Refrigerant oil, dispersed in the refrigerant vapor, lubricates the system.

Figure 1—HR-6 Compressor, V-Groove Pulley and Standard Mounting

Figure 2—HR-6 Front Head Assembly

The front head is shown with three integral mounting flange ears (figure 2). These ears have 19 mm flats cast to provide for a wrench to be used as a prying means when tensioning the compressor drive belt.

There are two clutch driver designs for the HR-6 compressor: The clutch driver without a torque cushion and the clutch driver having a thin torque cushion (figures 3 and 4).

Note: When servicing clutch drivers with a torque cushion, the clutch hub holding tool J 25030 is used in place of J 33027.
kerosene or equivalent solvent and dry with dry air. Use only lint free cloths to wipe parts.

Drain and measure the refrigerant oil. Add new 525 viscosity refrigerant oil to the compressor. Refer to "Specifications."

IDENTIFICATION
An identification label attached to the compressor provides the name of the manufacturer, model number and build code. If the label is removed or becomes dislodged during service operation, reattach it using an adhesive sealant such as Loctite 312 or equivalent.

Figure 3—HR-6 Clutch Driver Designs

Keep dirt or foreign material from getting on or into the compressor parts and system. Keep the work area and tools clean.

Keep the parts clean at all times. Clean assembled parts with Trichloroethane, naphtha, Stoddard solvent,

1. Shaft Nut
2. Clutch Plate and Hub Assembly
3. Pulley Bearing Retainer
4. Pulley Bearing
5. Pulley
6. Clutch Coil Assembly
7. Through Bolts (6)
8. Shaft Seal Parts
9. Front Head
10. Head Gasket
11. Valve Plate (Discharge)
12. Suction Reed Plate
13. Cylinder Seal
14. Front Cylinder
15. Shaft Bearing (2)
16. Thrust Bearing and Races (2)
17. Axial Plate Shaft Assembly
18. Shaft Key
19. Cylinder Seal
20. Rear Seal
21. Cylinder Seal
22. Valve Plate (Discharge)
23. Head Gasket
24. Rear Head
25. Switch Seal
26. System Control Switch
27. Retainer Ring-Switch
28. High Pressure Relief Valve
29. Seal (O-ring)
A. Important: Shaded parts are not serviceable and must be replaced as a kit.

Figure 4—HR-6 Component View
MINOR REPAIR TO THE COMPRESSOR

Illustrations show the compressor removed from the vehicle for easier viewing. Remove only the parts that need servicing. Refer to figure 3 for part names and location.

CLUTCH PLATE AND HUB ASSEMBLY REPLACEMENT

Clean

- The compressor assembly with solvent and blow dry with dry air.

Remove or Disconnect (Figures 4, 5 and 6)

Tools Required:
- J 33026 Compressor Holding Fixture
- J 33027 Clutch Hub Holding Tool
- J 33022 6-Point 13 mm Socket
- J 33013-B Hub and Drive Plate Remover and Installer

- Clamp J 33026 in a vise and attach the compressor to the holding fixture with thumb screws (figure 5).
1. Shaft nut (1) using J 33022 (figure 5).
 - Hold the clutch plate and hub assembly (2) steady using J 25630
2. Clutch plate and hub assembly (2).
 - Thread J 33013-B into the clutch plate and hub assembly (2).

Inspect

- All parts and replace as necessary.

Install or Connect (Figures 4, 7 and 8)

Tools Required:
- J 33026 Compressor Holding Fixture
- J 33027 Clutch Hub Holding Tool
- J 33022 6-Point 13 mm Socket
- J 33013-B Hub and Drive Plate Remover and Installer

1. Shaft key (1).
 - Allow the shaft key (21) to extend 3.2 mm (1/8-inch) out of the bottom of the hub keyway (figure 7).
 - The shaft key is curved slightly to give an interference fit in the groove.

Important

- Do not drive or pound on the clutch hub or the shaft (20). Internal damage to the compressor may result.
2. Clutch plate and hub assembly (2) (figure 8).
Figure 7—Positioning the Shaft Key, Clutch Plate, and Hub Assembly

- Make sure the contact surfaces of the clutch plate (2) and the pulley (5) are clean.
- Remove the forcing screw tip from J 33013-B and reverse the body direction on the center screw.
- Install J 33013-B with bearing (figure 8).
- Back off J 33013-B body enough to allow the center screw to be threaded against the end of the compressor shaft.
- Hold the center screw with a wrench and tighten the hex portion of J 33013-B body while pressing the hub onto the shaft. After tightening the body several turns, remove J 33013-B and check that the shaft key (21) is properly in place in the keyway, then install the clutch plate and hub assembly (2) to its final position.
- Measure the air gap between contact surfaces of the clutch plate and hub assembly (2) and the pulley (5). The gap should be 0.38-0.64 mm (0.015-0.025-inch) (figure 8).
- Remove J 33013-B.

inspect

- Position of the shaft (20) (even with or slightly above the clutch hub).
- Use J 33027 to hold the clutch plate and hub assembly (2).

Figure 8—Installing the Clutch Plate and Hub Assembly

Tighten

- Shaft nut (1) to 16 N·m (12 ft. lbs.) with J 33022.
 - Hand spin the pulley (5) to check for free rotation.
- Remove J 33026.

PULLEY AND BEARING ASSEMBLY REPLACEMENT

→ Remove or Disconnect (Figures 4, 9, 10, 11, and 12)

Tools Required:
- J 6983 Snap Ring Pliers
- J 8092 Driver Handle
- J 9398-A Pulley Bearing Remover
- J 33020 Pulley Puller
- J 33023-A Puller Pilot

1. Clutch plate and hub assembly (2).
2. Pulley bearing retainer (3) using J 6083 (figure 9).
3. Pulley (5).

- Install J 33023-A to the front head (figure 10).
- Install J 33020 tangs into the inner circle of slots in the pulley (5) contact surface. Rotate J 33020 clockwise so the tangs will lock into the segments between the slots (figure 11).
- Hold J 33020 in place and tighten the puller screw against J 33023-A puller pilot to remove the pulley (5) (figures 11 and 12).
4. Pulley bearing (4) from the pulley (5) using J 9398-A and J 29886 (figure 12).
 • Remove the forcing screw from J 33020 and with the puller tangs still in place in the pulley slots, turn the assembly upside down onto a flat surface (figure 12).
 • When removing the old pulley bearing (5) allow the staking to remain, then file away the old staked metal for proper fit when installing a new bearing (5) in the pulley bore.

Install or Connect (Figures 4, 13, 14, 15 and 16)

Tools Required:
- J 21352-A Compressor Support Block
- J 9481-A Pulley Bearing Installer
- J 33019 Bearing Staking Tool (with staking pin and retaining band)
- J 33017 Pulley and Bearing Assembly Installer
- J 33023-A Puller Pilot
- J 8433-1 Puller Bar
- J 33026 Compressor Holding Fixture
- J 6083 Snap Ring Pliers

1. Pulley (5) on J 21352-A.

NOTICE: Do not support the rotor by resting the pulley rim on a flat surface during bearing installation or the rotor face will be bent.

2. Pulley bearing (4) into the hub using J 29886, J 9481-A and J 21352-A (figure 13).

A. Pulley Puller J-33020 Engages in Inner Circle of Pulley Rotor Slots

Figure 9—Removing the Pulley Rotor and Bearing Retaining Ring

Figure 10—Installing the Puller Pilot and Pulley Rotor Slot Location

Figure 11—Installing J-33020 in the Pulley Rotor Slots

Figure 12—Removing the Pulley Bearing
1B5-6 HR-6 AIR CONDITIONING COMPRESSOR

• J 33019-1 in the pulley bore (figure 14).
• Seat the pulley and bearing assembly on J 21352-A to support to the hub under the staking pin location.
• Strike the staking pin with a hammer until a metal stake, similar to the original, is formed down to, but not touching the bearing.
 — Position the stake pin after striking.

3. Pulley (5) on the front head.
• Position J 33017 and J 33023-A over the inner race of the bearing (figure 16).
• Position J 8433-1 on J 33023-A and assemble the through bolts and washers through the puller bar slots and thread them into J 33026 (figure 16).
 — The thread of the through bolts should engage the full thickness of J 33026.
• Tighten the center screw in J 8433-1 to force the pulley and bearing assembly onto the compressor front head (11) (figure 16).
 — Should J 33017 become misaligned with the inner race of the bearing, back off J 8433-1 and relocate center, then continue installation.

4. Pulley bearing retainer (3) using J 6083 (figure 9).
5. Clutch plate and hub assembly (2).

CLUTCH COIL AND HOUSING ASSEMBLY REPLACEMENT

Remove or Disconnect (Figures 4 and 17)

Tools Required:
- J 8433-1 Puller Bar
- J 08433-3 Puller Screw
- J 33023-A Puller Pilot
- J 33025 Clutch Coil Puller Legs

1. Clutch plate and hub assembly (2).
2. Pulley (5).
 - Mark or scribe the location of the clutch coil (6) to terminal on the compressor front head (11).
3. Clutch coil assembly (6).
 - Install J 33023-A on the head (11) of the compressor.
 - Install J 8433-1 with J-33025 (figure 17).
 - Tighten J 8433-1 forcing screw against J 33025-A.

Inspect

- Clutch coil assembly (6). Replace as necessary.

Install or Connect (Figures 4, 18, 19 and 20)

Tools Required:
- J 8433-1 Puller Bar
- J 33024 Clutch Coil Installer Adapter
- J 33026 Compressor Holding Fixture

1. Compressor assembly on J 33026.
2. Clutch coil assembly (6) onto the front head (11) with the terminals positioned at the "marked" location.
 - J 33024 over the internal opening of the clutch coil assembly (6).
 - J 8433-1 with through bolts, washers and forcing screw over J 33024.
 - Thread through bolts into J 33026 to full fixture thickness (figure 18).
 - Be sure J 8433-1 and the clutch coil assembly (6) stay "in line" during installation.
 - When the clutch coil assembly (6) is seated on the front head (11), use a 3 mm (1/8-inch) diameter drift punch to stake the head (11) at 3 places, 120 degrees apart to assure the clutch coil assembly (6) remains in position (figure 19).
1B5-8 HR-6 AIR CONDITIONING COMPRESSOR

Figure 19—Staking the Clutch Coil Assembly to the Coil Head

- Stake size should be one half the area of the punch tip and 0.28-0.35 mm (0.010-0.015-inch) deep (figure 20).

3. Pulley (5).
4. Clutch plate and hub assembly (2).

MAJOR REPAIR TO THE COMPRESSOR

A. Steel Shell
B. Lip Seal

Figure 21—Compressor Shaft Seal

Replacement of the shaft seal assembly or the pressure relief valve will require the discharge of the vehicle's refrigerating system (figure 21). Other than clutch repair procedures, the same holds true for any disassembly of the compressor. To discharge the refrigerant, refer to the vehicle service manual.

After servicing or repairing the compressor, always add the proper amount of new 525 viscosity refrigerant oil. Refer to "Specifications."

Keep the workbench and work area clean when servicing the compressor, and use proper, clean service tools.

NOTICE: Any attempt to use makeshift or inadequate service tools or equipment may result in damage and/or improper compressor operation.

All parts used for servicing the compressor internally are protected by a preservative and packaged in a manner which does not require cleaning, washing or flushing. The parts can be used in the internal assembly just as they are removed from the service package.

SHAFT SEAL REPLACEMENT

Remove or Disconnect (Figures 4, 22, 23 and 24)

Tools Required:
J 5403 Snap Ring Pliers
J 34614 Shaft Seal Protector
J 23128-A Seal Remover and Installer
J 9553-01 O-Ring Seal Remover.

1. Clutch plate and hub assembly (2).
 - Install J 34614 over the threaded end of the shaft (20).

2. Shaft seal retainer ring using J 5403 (figure 22).
 - Clean the compressor neck area around the shaft (20), the exposed part of the shaft seal (8) and the O-ring seal groove.

Figure 22—Removing or Installing the Shaft Lip Seal Retaining Ring

- Insert J 23128-A into the shaft lip seal, tighten and remove lip seal.

4. O-Ring seal using J 9553-01 (figure 24).

Inspect
- Make sure the compressor neck area is clean.
- All parts. Replace as necessary.

Figure 23—Removing or Installing the Shaft Tip Seal

3. Pulley Bearing Retainer
5. Pulley

Figure 24—Removing the Shaft Seal Seat O-Ring

Install or Connect (Figures 4 and 25)

Tools Required:
- J 33011 O-Ring Seal Installer
- J 23128-A Seal Seat Remover and Installer
- J 34614 Shaft Seal Protector
- J 5403 Snap Ring Pliers
- Dip the new O-ring seal in clean 525 viscosity refrigerant oil.
- J 34614 onto the shaft (20).

1. O-ring seal using J 33011 (figure 25).
 - Insert J 33011 into the compressor neck until the installer “bottoms.”
 - Lower the movable slide of J 33011, releasing the O-ring seal into the lower groove.
 - Rotate J 33011 to seat the O-ring seal and remove J 33011.

2. Shaft lip seal using J 23128-A (figure 23).
 - Dip the shaft lip seal in clean 525 viscosity refrigerant oil and install shaft lip seal on J 23128-A.

Figure 25—Installing the Seal Seat O-Ring
1B5-10 HR-6 AIR CONDITIONING COMPRESSOR

Figure 26—HR-6 Compressor Rear Head Detail

- Bottom the shaft lip seal into the compressor neck area using J 23128-A.
- Release and remove J 23128-A.

3. Shaft seal retainer ring using J 5403 (figure 22).
 - Install flat side of shaft seal retainer ring against the lip seal.
 - Remove J 34614.

Important
- Leak test the compressor.
- Refer to "Leak Testing."

Clean
- Shaft (20) and inside the compressor neck area.

4. Clutch plate and hub assembly (2).

PRESSURE RELIEF VALVE REPLACEMENT

Remove or Disconnect (Figures 4 and 26)
- Be sure the compressor has no charge.
 1. Pressure relief valve (32).
 2. O-ring seal (33).

Install or Connect (Figures 4 and 26)
- Lubricate the threads of the pressure relief valve (32) and new seal with 525 viscosity refrigerant oil.
 1. Pressure relief valve (32) with new seal.

Tighten
- Pressure relief valve (32) to 9 N m (84 in. lbs.).

Important
- Leak test the compressor.
- Refer to "Leak Testing."

COMPRESSOR DISASSEMBLY
—INTERNAL CYLINDER AND SHAFT

Remove or Disconnect (Figures 4, 27, 28, 29 and 30)
- Mark the front head (11) alignment with cylinders (16) (23) and rear head (28) alignment.
 1. Clutch plate and hub assembly (2).
 2. Pulley (5).
 3. Clutch coil assembly (6).
 4. Shaft seal parts (8).
 - Note the compressor alignment marks and use them as a reference for compressor assembly (figure 27).
 5. Through bolts (7) and gaskets (figure 28).
 - Hand-support the compressor from below
 - Remove compressor assembly from J 33026.
 6. Rear head (28) (figure 29).
 - Using a wood block, tap around the edge of the rear head (28) to ease removal.
 - Mount the compressor on J 33026 front head (11) down (figure 30).
 7. Head gasket (27).

Figure 27—Compressor Alignment Marks

Figure 28—Installing the Through Bolts in the Front Head

Figure 28—Installing the Through Bolts in the Front Head

Figure 28—Installing the Through Bolts in the Front Head
Figure 29—Tapping the Rear Head or Front Head Free of the Cylinder

- Valve plate (26).
- Suction reed plate (25).
- Cylinder seal (24).
- Cylinder (23).

Important
- Shaded parts shown in figure 3 are not serviceable. A replacement kit (gut pack) is available.
- Cylinders (23) (16), cylinder seal (22), discharge crossover seal (17), piston group, axial plate shaft assembly (20) and bearings replace as a kit.

15. Suction reed plate (14).
16. Valve plate (13).
17. Head gasket (12).
18. Front head (11).

Figure 30—Installing the O-Ring Seals on the Cylinder Seal Races

- A. O-Ring Seal Seat Recess
- B. Thumb Screw
- 24. Cylinder Seal (Lubricated)
- 23. Rear Cylinder
- 11. Front Head

Important
- Locate the head gasket (27) to prevent the discharge valve reed retainer on the rear valve plate (26) from hitting the internal segment of the head gasket (27) (figure 32).

Figure 31—Positioning the J-33016 Guide Pins

- **Clean**
 - All parts.
- **Inspect**
 - All parts and replace as necessary.

COMPRESSOR ASSEMBLY —INTERNAL CYLINDER AND SHAFT

Install or Connect (Figures 4, 31 through 39)

Tools Required:
- J 21352-A Support Block
- J 33016 Cylinder Alignment Rods
- J 33026 Compressor Holding Fixture

- Use new seals and gaskets.
- Place J 21352-A on the workbench or suitable flat work surface.

1. Rear head (28) onto J 21352-A.
 - Install J 33016 guide pins small diameter ends into the through bolt holes (figure 31).

2. Head gasket (27).
 - Over guide pins into head (28) (figure 32).

- **Important**
 - Place J 21352-A on the workbench or suitable flat work surface.
1B5-12 HR-6 AIR CONDITIONING COMPRESSOR

3. Valve plate (26).
 - Over the guide pins into position (figure 33).
4. Suction reed plate (25).
 - Over the guide pins into proper position (figure 34).
 - Be sure all three suction reed tips cover the suction ports in the rear valve plate (26).
5. Cylinder seal (24).

Figure 32—Installing the Rear Head Gasket

A. Suction Crossover Openings
B. Through Bolt Hole (6)
C. Suction Port (3) in Valve Plate
D. Discharge Crossover Port
E. Discharge Ports (in Valve Plate)

B-06727

Figure 33—Installing the Rear Valve Plate

A. 12 o’clock Reference Position
B. 6 o’clock Reference Position
27. Head Gasket
28. Rear Head

B-06732

Figure 34—Installing the Reed Plate

- Lubricate a new cylinder seal (24) with clean 525 viscosity refrigerant oil and position the seal on the rear cylinder (23) (figure 30). Roll the cylinder seal into the groove. Cylinder (23) surface must be clean at the rear.
- Apply refrigerant oil to the seal surface of the rear head to easy assembly.
6. Cylinder and shaft assembly (gut pack).
 - Shaded parts shown in figure 3 are not serviceable. A replacement kit (gut pack) is available for replacement.
 - Assemble cylinder and shaft assembly over the guide pins onto the rear head (28) (figure 35).
 - Using both hands, press the cylinder and shaft assembly down into the rear head (28).

Important
- Center cylinder seal (22) is not serviceable.
7. Cylinder seal (15).
 - Lubricate a new cylinder to front head seal with clean 525 viscosity refrigerant oil and install in the front seal groove (figure 35).
8. Suction reed plate (14).
 - Over J 33016 guide pins (figure 36).
 - Check the alignment.
9. Valve plate (13).
 - Over J 33016 guide pins (figure 37).
10. Head gasket (12).
 - Over J 33016 guide pins (figure 38).
11. Front head (11).
HR-6 AIR CONDITIONING COMPRESSOR 1B5-13

Figure 35—Installing the Front Head
A. 12 o'clock Reference Position
B. Discharge Crossover Cavity (Front)
15. Cylinder to Head Seal Installed
28. Rear Head

Figure 36—Installing the Front Suction Reed Plate
A. 12 o'clock Reference Position
B. Suction Crossover Openings
C. Through Bolt Hole (6)
D. Discharge Crossover Opening
E. Discharge Valve Reed Retainers
F. Suction Intake Openings

Figure 37—Installing the Front Valve Plate

Figure 38—Installing the Seal to the Front Head
A. 12 o'clock Reference Position
B. Head Gasket
Important
• Front head (11) is now assembled in the "standard" position and may differ 120 degrees either direction. Assemble front head (11) according to location marked before removal.
• Using both hands, press down on front head (11) for installation over the seal (15) at the front of the cylinder (16).

12. Through bolts (7) with new gaskets
• Thread four of the through bolts (7) into the rear head (28) before removing J 33016 guide pins. Install two remaining through bolts (7) finger tight.
• Mount the compressor on J 33026 (figure 39).

Tighten
• Six through bolts (7) alternately to 9 N m (84 in. lbs.).

13. Shaft seal parts (8).

Important
• Add new 525 viscosity refrigerant oil.
• Refer to vehicle service manual for fill quantity.
• Place shaft nut (1) on the shaft (20) and rotate the compressor shaft (20) several times and remove nut (1).
• Leak test the compressor.
• Refer to "Leak Testing."

15. Pulley (5).
16. Clutch plate and hub assembly (2)

Tools Required:
J 9625-A Pressure Test Plate
J 23500-01 Portable Charging Station
J 33026 Compressor Holding Fixture

- Be sure the compressor has no oil internally.
1. Install J 9625-A on the rear head of compressor (figure 3).
2. Install the center hose of the manifold gage set on J 23500-01 to a refrigerant drum standing in an upright position and open the valve on the drum.
3. Install the charging station high and low pressure lines to corresponding fittings on J 9625-A using gage adapters or hoses equipped with valve depressors. Suction port (low side) of the compressor has large internal opening. Discharge port (high side) has a smaller internal opening into the compressor.
- Open the low pressure control, high pressure control and the refrigerant control on the charging station to allow refrigerant vapor to flow into the compressor.

Figure 39—Installing the Compressor to J-33026
- Line up mark on front head (11) with the alignment marks on the compressor cylinders and assemble head over J 33016 guide pins (figure 27).

LEAK TESTING

Important
• Check for leaks at pressure relief valve (32), compressor front and rear head seals (15) (24), center cylinder seal (22), through bolt head gaskets and compressor shaft seal.
• After leak check, shut off the low pressure control and the high pressure control on charging station.
• If an external leak is present, perform the necessary correction and recheck to assure the correction.
• If an external leak is present, perform the necessary correction and recheck to assure the correction.
• Loosen the manifold gage hose connections to the gage adapters connected to the low and high sides and allow the vapor pressure to release from the compressor. If valve depressor
type hoses are used, loosen the hose connections at gage manifold to release the vapor pressure from the compressor.

- Disconnect both gage adapters or hoses from J 9625-A.
- Add 0.085 kg (3 oz.) new 525 viscosity refrigerant oil to the compressor assembly. Rotate the complete compressor assembly (not the shaft or drive plate hub) slowly several turns to distribute oil to all cylinder and piston areas.
- Install the shaft nut (1) on the compressor shaft (20) if the pulley assembly and clutch plate and hub assembly are not installed.
- Using a box-end wrench, or a socket and handle, rotate the compressor shaft (20) or clutch plate on the shaft (20) several turns to lubricate the pistons and cylinder walls.
- Connect the charging station high-pressure line, or a high-pressure gage and gage adapter to J 9625-A high-side connector.
- Attach an adapter or depressor-type hose to the suction or low-pressure port of J 9625-A to open the Schrader-type valve. Oil will drain out of the compressor suction port adapter if the compressor is positioned with the suction port downward.
- Attach the compressor to J 33026 fixture and mount the compressor in a vise so that the compressor will be in a horizontal position and the shaft (20) can be turned with a wrench.
- Rotate the compressor shaft (20) or drive plate hub six to eight complete revolutions at a speed of approximately one revolution per second. A slower rotation can result in a lower pump-up pressure and disqualify a good pumping compressor.
- Observe the reading on the high-pressure gage at the completion of the tenth revolution of the compressor shaft (20). The pressure reading for a good pumping compressor should be 690 kPa (100 psi) or above. A pressure reading of less than 620 kPa (90 psi) would indicate one or more suction and/or discharge valves leaking, an internal leak, or an inoperative valve. Disassemble the compressor and repair as necessary. Reassemble and repeat the pump-up test.
- Following the pressure pump-up test, release the air pressure from the high side and remove the gage adapters and J 9625-A test plate.
- Tilt the compressor to place the suction and discharge ports downward to allow the oil to drain from the compressor.
- Allow a 10-minute drain period and then charge the compressor with the proper amount of oil. Pour the new 525 viscosity refrigerant oil into the suction port.
- If further assembly or processing is required, install a shipping plate or test plate J 9625-A to protect the compressor from contamination.

SPECIFICATIONS

HR-6 COMPRESSOR

Type — Harrison HR-6 ..6 Cylinder Axial
Displacement .. 10.0 Cu. In.
Rotation ..Clockwise
Clutch Plate Air Gap ...0.38-0.64 mm (0.015-0.025 inch)
Oil Capacity ..0.227 Kg. (8 oz.)

CLUTCH COIL

Ohms (at 27°C–80°F) ..3.56-3.89
Amps (at 27°C–80°F) ..3.2 @ 12 Volts

TORQUE SPECIFICATIONS

Compressor Suction and Discharge Connector Bolt .24 N·m (18 Ft. Lbs.)
Through Bolts ..9 N·m (84 In. Lbs.)
Shaft Nut ..16 N·m (12 Ft. Lbs.)
Pressure Relief Valve ...9 N·m (84 In. Lbs.)
SPECIAL TOOLS

1. Snap Ring Pliers
2. Snap Ring Pliers
3. Puller Bar
4. Forcing Screw
5. Pulley Bearing Remover
6. Pulley Bearing Installer
7. O-ring Seal Remover
8. Pressure Test Plate
9. Seal Remover and Installer
10. Support Block
11. Driver Handle
12. O-ring Seal Installer
13. Hub and Drive Plate Remover and Installer
14. Cylinder Alignment Rods
15. Pulley and Bearing Assembly Installer
16. Bearing Staking Tool
17. Pulley Puller
18. Shaft Seal Protector
19. 6 Point 13 mm Socket
20. Puller Pilot
21. Clutch Coil Installer Adapter
22. Clutch Coil Puller Legs
23. Compressor Holding Fixture
24. Clutch Hub Holding Tool
25. Clutch Hub Holding Tool
SECTION 3B2
MANUAL STEERING GEAR

NOTICE: These fasteners are important attaching parts in that they could affect the performance of vital components and systems, and/or could result in major repair expense. They must be replaced with one of the same part number or with an equivalent part if replacement becomes necessary. Do not use a replacement part of lesser quality or substitute design. Torque values must be used as specified during reassembly to assure proper retention of these parts.

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>3B2-1</td>
</tr>
<tr>
<td>Saginaw Model 525</td>
<td>3B2-2</td>
</tr>
<tr>
<td>Saginaw Model 535</td>
<td>3B2-6</td>
</tr>
<tr>
<td>Specifications</td>
<td>3B2-10</td>
</tr>
<tr>
<td>Adjustment</td>
<td>3B2-10</td>
</tr>
<tr>
<td>Fastener Torque</td>
<td>3B2-10</td>
</tr>
<tr>
<td>Special Tools</td>
<td>3B2-11</td>
</tr>
</tbody>
</table>

DESCRIPTION

The Saginaw steering gear is the recirculating ball nut and worm type. The worm is located on the lower end of the steering shaft. The ball nut is mounted on the worm and the steel balls act as a rolling thread between the worm and nut to provide a low friction drive between them.

Teeth on the ball nut engage teeth on the pitman shaft sector. The teeth on the ball nut are made so that a tighter fit exists between the ball nut and pitman shaft sector teeth when the front wheels are in the straight ahead position. The sector teeth are slightly tapered so that a proper preload may be obtained by moving the pitman shaft endways by means of a preload adjuster screw which extends through the gear housing side cover. The head of the preload adjuster and a selectively fitted shim fit snugly into a T-slot in the end of the pitman shaft, so that the screw also controls the end play of the shaft.

- The model 525 steering gear is used on G and P model vehicles. (figure 1).
- The model 535 steering gear is used on the CK, S, T and M model vehicles. (figure 5).

For visual identification the 535 gear has a four bolt side cover and the 525 gear has three bolts. The larger (535) gear has a 28.8 mm (1.137-in.) diameter wormshaft measured on the O.D. of the worm thread and a 31.7 mm (1.25-in.) diameter pitman shaft. The smaller (525) gear has a 26.2 mm (1.034-in.) diameter wormshaft and a 28.5 mm (1.125-in.) diameter pitman shaft.
1. REMOVE AND INSTALL WORM SHAFT SEAL GEAR ASSEMBLED

REMOVE
1. Wrap 0.1 mm to 0.2 mm (.005" to .008") shim stock around shaft and insert between shaft and seal. Pry seal out.

INSTALL
1. Install parts as shown.

NOTICE: Do not turn steering wheel hard against "stops" when linkage is disconnected.

2. REMOVE AND INSTALL PITMAN SHAFT AND SIDE COVER

REMOVE
1. Center steering gear.
2. Remove parts as shown.

INSTALL
1. Before installing turn preload adjuster screw counter-clockwise until it bottoms, then back screw off one half turn.
2. Install parts as shown

LUBRICATION
The steering gear requires .312 kg (11 oz) of lubricant GM4673M or equivalent.

Figure 2—Model 525 — Chart A
3B2-4 MANUAL STEERING GEAR

REMOVE
1. Loosen lock nut. Use punch against edge of slot.
2. Remove parts as shown.

INSTALL
1. Install parts as shown against edge of slot.

NOTICE: Use care that the ball nut does not run down to either end of the worm. Damage may be done to the ends of the ball guides if the ball nut is allowed to rotate until stopped at the end of the worm.

WORM BEARING ADJUSTER LOCKNUT

BRASS DRIFT

HOUSING

Tool A

Remove bearing cup from housing only if necessary.

WORM BEARING CUP

Reset lower bearing retainer with screwdriver.

LOWER WORM BEARING CUP

LOWER BEARING RETAINER

LOWER WORM BEARING ADJUSTER

BALL NUT

WORMSHAFT

BALL GUIDES & CLAMP

UPPER WORM BEARING

UPPER WORM BEARING CUP

(See below)

ASSEMBLE
1. Press cup into adjuster using Tool A.
2. Install parts as shown.

5. DISASSEMBLE AND ASSEMBLE WORMSHAFT AND BALL NUT

DISASSEMBLE
1. Disassemble parts as shown.
2. Clean and inspect all parts for excessive wear.

BALL NUT

WORMSHAFT

BALL GUIDES

BALL GUIDE CLAMP

BALL GUIDE CLAMP SCREWS

5.5 N·m (4 FT. LBS.)

NARROW END OF TOOTH

Installing Balls

Assemble wormshaft

Dimension A Measure land between ball grooves

<table>
<thead>
<tr>
<th>Dim A</th>
<th>Balls per Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>in</td>
</tr>
<tr>
<td>1.0</td>
<td>0.04</td>
</tr>
<tr>
<td>2.5</td>
<td>0.10</td>
</tr>
<tr>
<td>5.0</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Fig A

Figure 3—Model 525 — Chart B
6. ADJUST WORM BEARING PRELOAD

1. Tighten worm bearing adjuster until it bottoms then loosen one-quarter turn.

2. Carefully turn the wormshaft all the way to end of travel then turn back one-half turn.

3. Tighten adjuster plug until torque wrench reads 0.6 to 1.0 N·m (5 to 8 in lbs).

4. Tighten locknut using punch against edge of slot.

7. ADJUST "OVER CENTER" PRELOAD

A. Back off preload adjuster until it stops, then turn it in one full turn.

With gear at center of travel check torque to turn stub shaft (reading #1)

B. Turn adjuster in until torque to turn stub shaft is 0.5 to 1.2 N·m (4 to 10 in lbs) more than reading #1

Torque adjuster lock nut to 34 N·m (25 ft lbs). Prevent adjuster screw from turning while torquing lock nut.

Figure 4—Model 525 — Chart C — Adjustment
1. Worm Bearing Adjuster Locknut
2. Worm Bearing Adjuster
3. Lower Worm Bearing Cup
4. Lower Worm Bearing
5. Lower Bearing Retainer
6. Ball Nut
7. Worm Shaft
8. Upper Worm Bearing
9. Upper Worm Bearing Cup
10. Pitman Shaft Seal
11. Housing
12. Worm Shaft Seal
13. Side Cover Gasket
14. Pitman Shaft Needle Bearing
15. Pitman Shaft
16. Preload Adjuster
17. Preload Adjuster Shim
18. Side Cover
19. Preload Adjuster Nut
20. Side Cover Bolts
21. Ball Guide Clamp Screw
22. Ball Guide Clamp
23. Ball Guide
24. Balls
25. Lockwasher
26. Pitman Arm Nut
30. Top Studed Side Cover Bolt (Used on some models)

Figure 5—Steering Gear Components — Model 535
1. REMOVE AND INSTALL WORM SHAFT SEAL GEAR ASSEMBLED

REMOVE
1. Wrap 0.1 mm to 0.2 mm (.005" to .008") shim stock around shaft and insert between shaft and seal. Pry seal out.

INSTALL
1. Install parts as shown.

NOTICE: Do not turn steering wheel hard against "stops" when linkage is disconnected.

2. REMOVE AND INSTALL PITMAN SHAFT AND SIDE COVER

REMOVE
1. Center steering gear.
2. Remove parts as shown.

INSTALL
1. Before installing turn preload adjuster screw counterclockwise until it bottoms, then back screw off one half turn.
2. Install parts as shown.

Checking end clearance
If clearance is greater than .05 mm (.002") a steering gear lash adjuster kit is available

SIDE COVER BOLTS

PRELOAD ADJUSTER NUT
(If replacing gasket only, do not remove.)

SIDE COVER

SHIM

SIDE COVER GASKET

PITMAN SHAFT

HOUSING

PITMAN SHAFT SEAL

LUBRICATION
The steering gear requires 315 kg (11 oz) of lubricant GM4673M or equivalent.

FEELER GAUGE
(Select to get proper clearance)

F-04651
3. REMOVE AND INSTALL WORMSHAFT AND BALL NUT

REMOVE
1. Loosen lock nut. Use punch against edge of slot.
2. Remove parts as shown.

INSTALL
1. Install parts as shown.

NOTICE: Use care that the ball nut does not run down to either end of the worm. Damage may be done to the ends of the ball guides if the ball nut is allowed to rotate until stopped at the end of the worm.

4. DISASSEMBLE AND ASSEMBLE WORM BEARING ADJUSTER

DISASSEMBLE
1. Pry lower bearing retainer out with screwdriver.
2. Remove cup using J-29369-1 puller and slide hammer.

ASSEMBLE
1. Press cup into adjust using Tool A.
2. Install parts as shown.

5. DISASSEMBLE AND ASSEMBLE WORMSHAFT AND BALL NUT

DISASSEMBLE
1. Disassemble parts as shown.
2. Clean and inspect all parts for excessive wear.

ASSEMBLE
1. Assemble parts as shown.
2. Refer to figure 3 (fig. A) for number of balls used.

Figure 7—Model 535 — Chart B
6. REMOVE AND INSTALL PITMAN SHAFT SEALS AND BEARING

REMOVE
1. Clean end of housing thoroughly to prevent dirt from entering and be extremely careful not to score the housing bore.
2. Use screwdriver, pry seal from bore.

INSTALL
1. Install parts as shown.

HOUSING ASSEMBLY
Inspect for burrs.

PITMAN SHAFT SEAL

NEEDLE BEARING
Remove only if it needs replacing.

7. ADJUST WORM BEARING PRELOAD

1. Tighten worm bearing adjuster until it bottoms then loosen one-quarter turn.
2. Carefully turn the wormshaft all the way to end of travel then turn back one-half turn.
3. Tighten adjuster plug until torque wrench reads 0.6 to 1.0 N.m (6 to 8 in-lbs).
4. Tighten locknut using punch against edge of slot.

8. ADJUST "OVER CENTER" PRELOAD

A. Back off preload adjuster until it stops, then turn it in one full turn.

B. Turn adjuster in until torque to turn stub shaft is 0.5 to 1.2 N.m (4 to 10 in-lbs) more than reading #1.

With gear at center of travel, check torque to turn stub shaft. (reading #1)

Torque adjuster lock nut to 34 N.m (25 ft-lbs). Prevent adjuster screw from turning while torquing lock nut.

Figure 8—Model 535 — Chart C — Adjustment
SPECIFICATIONS

ADJUSTMENT

<table>
<thead>
<tr>
<th></th>
<th>TORQUE TO TURN WORM SHAFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worm Bearing</td>
<td>0.6-1.0 N·m 5-8 In. Lbs.</td>
</tr>
<tr>
<td>Over Center Preload</td>
<td>0.5-1.2 N·m 4-10 In. Lbs.</td>
</tr>
<tr>
<td>In excess of Worm Bearing Preload</td>
<td></td>
</tr>
<tr>
<td>Total Steering Gear Preload</td>
<td>1.8 N·m 16 In. Lbs.</td>
</tr>
</tbody>
</table>

FASTENER TORQUE

SAGINAW MODEL 525

<table>
<thead>
<tr>
<th>MANUAL STEERING GEAR</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear to Frame Bolts</td>
<td>95</td>
<td>70</td>
</tr>
<tr>
<td>Pitman Shaft Nut</td>
<td>251</td>
<td>185</td>
</tr>
<tr>
<td>Side Cover Bolts</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Pitman Shaft Adjusting Screw Locknut</td>
<td>34</td>
<td>25</td>
</tr>
<tr>
<td>Coupling Flange To Gear Pinch Bolt</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Coupling Clamp Nut (Starfire)</td>
<td>70</td>
<td>50</td>
</tr>
<tr>
<td>Clamp To Ball Nut Screw</td>
<td>5.5</td>
<td>4</td>
</tr>
</tbody>
</table>

SAGINAW MODEL 535

<table>
<thead>
<tr>
<th>MANUAL STEERING GEAR</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear to Frame Bolts</td>
<td>95</td>
<td>70</td>
</tr>
<tr>
<td>Side Cover Bolts</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td>Pitman Shaft Adjusting Screw Locknut</td>
<td>30</td>
<td>22</td>
</tr>
<tr>
<td>Clamp to Ball Nut Screw</td>
<td>5.5</td>
<td>4</td>
</tr>
</tbody>
</table>
SPECIAL TOOLS

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>J 29369-1</td>
<td>1. Worm Bearing Adjuster Cup Puller (Use with J-2619-01)</td>
</tr>
<tr>
<td>2.</td>
<td>J 6278</td>
<td>2. Pitman Shaft Bearing Remover</td>
</tr>
<tr>
<td>4.</td>
<td>J 35365</td>
<td>4. Worm Bearing Cup Installer</td>
</tr>
<tr>
<td>5.</td>
<td>J 8092</td>
<td>5. Treaded Universal Driver Handle ((\frac{3}{4}'' - 10) Thread)</td>
</tr>
</tbody>
</table>

TOOL A

A. Worm Bearing Cup Installer

F-05814

F-05905
SECTION 3B3

POWER STEERING

The following notice applies to one or more steps in the assembly procedure of components in this portion of the manual as indicated at appropriate locations by the terminology “NOTICE: Refer to Notice on page 3B3-1 of this Section.”

NOTICE: All steering fasteners are important attaching parts in that they could affect the performance of vital components and systems, and/or could result in major repair expense. They must be replaced with one of the same part number or with an equivalent part if replacement becomes necessary. Do not use a replacement part of lesser quality or substitute design. Torque values must be used as specified during reassembly to assure proper retention of this part.

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>3B3- 1</td>
</tr>
<tr>
<td>Saginaw Integral Power Steering—RV, G, P, ST, M</td>
<td>3B3- 3</td>
</tr>
<tr>
<td>Disassembly</td>
<td>3B3- 3</td>
</tr>
<tr>
<td>Cleaning and Inspection</td>
<td>3B3- 5</td>
</tr>
<tr>
<td>Assembly</td>
<td>3B3- 6</td>
</tr>
<tr>
<td>Saginaw Integral Power Steering Gear—CK (GMT 400)</td>
<td>3B3- 9</td>
</tr>
<tr>
<td>Saginaw Power Steering Pump—Model TC</td>
<td>3B3-15</td>
</tr>
<tr>
<td>Disassembly</td>
<td>3B3-15</td>
</tr>
<tr>
<td>Cleaning and Inspection</td>
<td>3B3-15</td>
</tr>
<tr>
<td>Assembly</td>
<td>3B3-15</td>
</tr>
<tr>
<td>Saginaw Power Steering Pump Model P</td>
<td>3B3-19</td>
</tr>
<tr>
<td>Disassembly</td>
<td>3B3-19</td>
</tr>
<tr>
<td>Cleaning and Inspection</td>
<td>3B3-19</td>
</tr>
<tr>
<td>Assembly</td>
<td>3B3-19</td>
</tr>
<tr>
<td>Saginaw Power Steering Pump Model CB</td>
<td>3B3-20</td>
</tr>
<tr>
<td>Component Repair</td>
<td>3B3-20</td>
</tr>
<tr>
<td>Hydraulic Pump Assembly</td>
<td>3B3-20</td>
</tr>
<tr>
<td>Specifications</td>
<td>3B3-24</td>
</tr>
<tr>
<td>Special Tools</td>
<td>3B3-25</td>
</tr>
</tbody>
</table>

DESCRIPTION

The hydraulic power steering system consists of a pump, an oil reservoir, a steering gear, a pressure hose, and a return hose.

The steering gear is made by Saginaw Division, General Motors. The steering gear is identified by a large S cast into the side of the housing. A building date is stamped in the cover. The building date is a four digit number. The first three digits are the Julian day of the year. The remaining digit is the last digit of the year.

The power steering pump is made by Saginaw Division, General Motors.

The power steering gear (figure 1) has a recirculating ball system which acts as a rolling thread between the wormshaft and the rack piston. The wormshaft is supported by a thrust bearing preload and two conical thrust races at the lower end, and a bearing assembly in the adjuster plug at the upper end. When the wormshaft is turned right, the rack piston moves up in gear. Turning the wormshaft left moves the rack piston down in gear. The rack piston teeth mesh with the sector, which is part of the pitman shaft. Turning the wormshaft turns the pitman shaft, which turns the wheels through the steering linkage.

The control valve in the steering gear directs the power steering fluid to either side of the rack piston. The rack piston converts the hydraulic pressure into a mechanical force. If the steering system becomes damaged and loses hydraulic pressure, the vehicle can be controlled manually.

The hydraulic pump is a vane-type design. There are two types, submerged and nonsubmerged. Submerged pump (P models) have a housing and internal parts that are inside the reservoir and operate submerged in oil. The nonsubmerged pump (TC models with or without reservoir) function the same as the submerged pump except that the reservoir is separate from the housing and internal parts.

There are two bore openings at the rear of the pump housing. The larger opening contains the cam ring, pressure plate, thrust plate, rotor and vane assembly, and end plate. The smaller opening contains the pressure line union, flow control valve, and spring. The flow control orifice is part of the pressure line union. The pressure relief valve inside the flow control valve limits the pump pressure.
3B3-2 POWER STEERING

Figure 1—Integral Steering Gear Components — RV, G, P, ST and M Vehicles
SAGINAW INTEGRAL POWER STEERING GEAR—RV, G, P, ST, M

Figure 2—Unseating the Retaining Ring

NOTICE: Repair the steering gear in a clean, dust-free location, using clean tools and equipment. Dirt or grit will damage the machined surfaces and result in leakage or damage to the steering gear assembly.

If broken components or foreign materials are found during disassembly of the gear the hydraulic system should be disassembled, inspected, cleaned and flushed before servicing is complete.

The ball nut and control rings (seals) generally need not be replaced unless cut or damaged. If cut or damaged, inspect all mating parts for burrs, cracks, scratches, or damage. Replace or repair as needed.

In some instances, "power steering fluid" will be specified to lubricate parts upon assembly. In these cases, GM Power Steering Fluid, part no. 1050017 or equivalent should be used. DO NOT use brake fluid, automatic transmission fluid, or other non-approved fluids.

DISASSEMBLY

Remove or Disconnect (Figures 2 through 12)

Tools Required:
J 4245 Internal Snap Ring Pliers
J 21552 Ball Retainer Tool
J 8524-1 Bearing Remover
J 7624 Spanner Wrench
J 7079-2 Driver
J 6278 Pitman Shaft Bearing Puller
J 21552 Rack Piston Arbor

1. Retaining Ring (220) (figure 2).
 • Pry retaining ring out of the housing groove with a screwdriver (figure 3).
2. Plug (219). Turn stud shaft (251) to the left only until the plug is forced out of the cylinder.
3. Seal (218).
4. Plug (215) from the rack piston (214) (figure 4).
5. Nut (227), bolt (226), side cover (225) and gasket (224). Turn adjuster screw (222) to the right until the side cover separates from the pitman shaft (221).
3B3-4 POWER STEERING

6. Pitman shaft (221). Turn the stub shaft (251) to the left until the pitman shaft teeth (221) and rack piston (214) disengage.

7. Retaining ring (205) with J 4245.

8. Washers (207) and seals (208) using a screwdriver.

10. Rack piston (214) and balls (213).
 - Insert tool J 21552 into the rack piston bore with the pilot of the tool seated into the end of the worm (248).
 - Hold the tool against the worm and turn the stub shaft to the left. The rack piston (214) will be forced onto the tool.
 - Hold the tool and pull the rack piston toward the handle until it is against the flange on the tool. This will prevent the end circuit balls from falling out.

11. Adjuster nut (245).

12. Adjuster plug (240) using J 7624 (figure 6).
 - Retaining ring (244) using J 4245.
 - Washer (243), seal (242) and bearing (241).

13. Valve (250) and wormshaft (248) as an assembly, with both races (246) and bearing (247).
 - Wormshaft (248) from valve assembly (figure 9).
 - Races (246) and bearing (247) from the wormshaft (248).
 - Seal (249).

14. Stub shaft (251) from valve body (250) (figure 10).
 - Hold the assembly and lightly tap the stub shaft against the bench until the shaft cap is free from the valve body.

Figure 6—Removing the Adjuster Plug

Figure 7—Removing the Bearing Retainer

Figure 8—Removing the Needle Bearing

Figure 9—Separating the Wormshaft from the Valve Assembly
Figure 10—Removing or Installing the Stub Shaft Assembly

- Pull the shaft assembly until the shaft cap clears the valve body by about 6 mm (1/4-inch).
- Valve spool (252) and seals (230) and (231) (figure 11).

15. Screws (210), clamp (211) and ball guide (212).
- Balls (213).

Important
- The following procedure should not be performed with the valve assembly in the gear housing.

CLEANING AND INSPECTION

Clean
- All parts with solvent and blow dry.

Inspect (Figure 1)

1. Pitman shaft and side cover.
 - Bearing. Needles should rotate freely using finger pressure. Replace the bearing and side cover (225) if necessary.
 - Bearing surfaces in the side cover (225) for scoring. Replace the side cover assembly if necessary.
 - Sealing and bearing surfaces of the pitman shaft (221) for roughness, nicks, or other damage. Replace the pitman shaft assembly if necessary.
 - Pitman shaft (221) for excessive wear or scoring. Check the sector gear teeth for wear. Replace the pitman shaft assembly if necessary.
 - Adjuster screw (222) threads for wear. The adjuster screw must be free to turn with no end play.

2. Rack piston.
 - Worm (248) and rack piston (214) grooves and all balls (213) for scoring. BOTH MUST BE REPLACED as a matched assembly.
 - Seal (216) and ring (217) for wear.
 - Ball return guide halves (212) for cracks and damaged.
 - Bearing (247) and races (246) for scoring and excessive wear.
 - Rack piston (214) teeth and external ground surfaces for scoring or excessive wear. If either condition exists, replace the rack piston (214) and worm (248).

3. Adjuster plug.
 - Spacer (235) for wear or cracks.
 - Races (236, 238) for wear or scoring.
 - Adjuster plug (240) threads for wear.
 - Bearing (237) for wear or scoring.
 - Needle bearing (241) for wear, pitting or scoring. Replace if necessary.

4. Valve and stub shaft.
 - Seals (231) and rings (232).
 - Shaft pin for wear or cracks. If excessively worn or broken, replace the complete valve and shaft assembly.
Figure 13—Installing the Balls into the Rack Piston

- Ground surface of the stub shaft (251). If a crocus cloth cannot clean the nicks or burrs, replace the entire valve assembly.
- Outside diameter of the valve spool and inside diameter of the valve body (250). If a crocus cloth cannot clean the nicks or burrs, replace the entire valve and shaft assembly.
- The small notch in the skirt of the valve for wear. If worn replace the complete valve assembly.
- Valve spool inside the valve body (250). The valve spool, when lubricated with steering fluid, must rotate freely without binding. If binding occurs, replace the complete valve and shaft assembly.

5. Steering gear hose connectors.
- Brass inverted flare connectors (229) for looseness.

ASSEMBLY

++ Install or Connect (Figures 1, 4, and 10 through 15)

Tools Required:
J 4245 Snap Ring Pliers
J 6217 Valve Connector
J 21552 Ball Retainer
J 22407 Bearing Installer
J 8092 Bearing Driver
J 7079 Bearing Remover and Installer
J 8524-1 Driver

Figure 14—Retaining the Balls in the Ball Guide

1. Connectors (229), using J 6217 (figure 12).
2. Balls (213), alternately by color, in the rack piston (214) (figure 13). Use J 21552 in the rack piston.
 - Lubricate the 24 balls with power steering fluid.
3. Balls (213), alternating by color, in the ball guide (212) (figure 14).
 - Retain the balls in the guide with petroleum jelly.
4. Ball guide (212), clamp (211) and screws (210) to the rack piston (214).
5. Stub shaft (251) into the valve body (250) (figure 10).
 - Lubricate the stub shaft (251) with power steering fluid.
6. Valve spool (252) and seals (230, 231) into the valve body (250).
 - Lubricate the valve spool (252) and seals (230, 231) with power steering fluid before assembling.
7. Valve body (250), seal (249), wormshaft (248), bearing races (246) and roller bearing (247).
Figure 16—Bottoming the Adjuster Plug

8. Seal (239) on the adjuster plug (240).
10. Seal (242), washer (243), and retaining ring (244) in the adjuster plug (240).

⚠️ Important
- The retainer projections must not extend beyond the washer (243) when the retainer ring (244) is seated. The washer must be free to rotate.
11. Wormshaft, valve assembly into the steering gear housing.
12. Adjuster plug (240) into the steering gear housing. Use spanner wrench J 7624.

Adjust (Figures 16 through 23)

Tools Required:
- J 7624 Spanner Wrench
- J 7754-01 Torque Wrench

1. Bearing preload:
 - Use tool J 7624. Turn the adjuster plug (240) to

Figure 17—Marking the Housing

Figure 18—Remarking the Housing

the left until the plug and bearing (237) are firmly bottomed — about 27 N·m (20 ft. lbs.) (figure 16).

Figure 19—Aligning the Adjuster Hole with the Second Mark

Figure 20—Pitman Shaft “Over-Center” Sector Adjustment
3B3-8 POWER STEERING

A. Install Pitman Shaft Bearing
B. Install Pitman Shaft Seals

Figure 21—Installing the Pitman Shaft Bearing and Seals

- Mark the housing in line with one of the holes in the adjuster plug (figure 17).
- Measure back (to the left) 13 mm (1/2-inch) and re-mark the housing (figure 18).

A. Torque Wrench
B. 12 Point Socket
227. Nut
222. Adjusting Screw
251. Stub Shaft

F-01869

Figure 22—Aligning the Over-Center Preload

- Rotate the adjuster to the left until the hole in the adjuster is in line with the second mark (figure 19).

NOTICE: Refer to “Notice” on page 3B-1 of this manual.

- Install the adjuster nut (245) and torque the nut to 108 N.m (80 ft. lbs.). Hold the adjuster plug to maintain alignment of the hole with the mark.
- Check the turning torque of the stub shaft, using J 7754-01 and a 12-point socket. The reading should be taken with the beam of the wrench near vertical while turning the wrench to the left at an even rate (figure 20). If the reading is less than 0.45 N.m (4 in. lbs.) or more than 1.15 N.m (10 in. lbs.), repeat the adjustment procedure.
- Lubricate the stub shaft (251) area outside the dust seal (206) with chassis lubricant or an all purpose grease.

2. Rack piston (214) using J 21552 (figure 4).
3. Bearing (209) using J 22407 and J 6219 (figure 21).
4. Washers (207) and seals (208) using J 6219 (figure 21).
5. Retaining ring (205).
6. Pitman shaft (221), gasket (224) and side cover (225).
7. Bolt (226) and nut (227).

Adjust (Figure 22)

Tool Required:
J 7754-01 Torque Wrench
- Pitman shaft preload (figure 22).
1. Attach tool J 7754-01 and a 12-point socket on the stub shaft splines.
2. Center the steering gear by turning the stub shaft (251) from right to left and counting the number of turns. Turn the shaft back halfway to the center position.
3. Check the combined ball and bearing preload by turning the torque wrench through the center of travel. Note the highest reading.
4. Tighten the adjusting screw (222) until the torque wrench reads 0.6 – 1.2 N.m (6–10 in. lbs.) higher than the reading noted in step “3.”
- The total reading should not exceed 2.25 N.m (20 in. lbs.) torque.

NOTICE: Refer to “Notice” on page 3B3–1 of this manual.

Tighten

- Nut (227) to 27 N.m (20 ft. lbs.).
5. Re-check the preload after tightening the nut (227).
6. Plug (215), seal (216), ring (217), and seal (218).
7. Plug (219) and retaining ring (220) (figure 23).
SAGINAW INTEGRAL POWER STEERING GEAR—CK (GMT 400)

NOTICE: Repair the steering gear in a clean, dust-free location, using clean tools and equipment. Dirt or grit will damage the machined surfaces and result in leakage or damage to the steering gear assembly.

If broken components or foreign materials are found during disassembly of the gear, the hydraulic system should be disassembled, inspected, cleaned and flushed before servicing is complete.

Service information is shown in figures 24, 25, 26, 27 and 28.

The ball nut and control rings (seals) generally need not be replaced unless cut or damaged. If cut or damaged, inspect all mating parts for burrs, cracks, scratches, or damage. Replace or repair as needed.

In some instances, “power steering fluid” will be specified to lubricate parts upon assembly. In these cases, GM Power Steering Fluid, part no. 1050017 or equivalent should be used. DO NOT use brake fluid, automatic transmission fluid, or other non-approved fluids.
1. REMOVE AND INSTALL PITMAN SHAFT SEALS

REMOVE
1. Clean exposed end of pitman shaft and end of housing after removing pitman arm
2. Remove retaining ring with snap ring pliers J-4245
3. Start engine and turn wheels fully to the left to force seals and washer out
4. Turn off engine
5. Inspect housing and shaft

INSTALL
1. Install parts as shown

- HOUSING ASSEMBLY
- Inspect for burrs
- PITMAN SHAFT SEAL
- SEAL BACK-UP WASHER
- RETAINING RING
- DUST SEAL
- BOOT
- PITMAN ARM
- LOCK WASHER
- NUT-Torque to 250 Newton Metres (180 Ft Lbs)

2. REMOVE AND INSTALL PITMAN SHAFT AND SIDE COVER

REMOVE
1. If pitman shaft and side cover are to be separated, remove preload adjuster nut
2. Rotate stub shaft to center gear, then remove parts as shown

INSTALL
1. Install parts as shown

- SIDE COVER BOLTS Torque to 60 Newton Metres (40 Ft Lbs)
- PRELOAD ADJUSTER NUT
- SIDE COVER GASKET SEAL
- PITMAN SHAFT GEAR
- STUB SHAFT
- HOUSING ASSEMBLY
- PITMAN SHAFT BOOT
- INSTALLER J-8219

3. REMOVE AND INSTALL HOUSING END PLUG

REMOVE
1. Remove parts as shown

INSTALL
1. Install parts as shown

- Open end of retaining ring to be approx 25 mm (1 inch) from access hole
- Retaining ring access hole (Use Punch)
- HOUSING END PLUG O-RING SEAL
- HOUSING END PLUG
- RETAINING RING

4. REMOVE AND INSTALL RACK PISTON

REMOVE
1. Remove parts as shown

INSTALL
1. Install parts as shown

- When installing rack, care should be taken not to cut teflon seal. Rack piston seal compressor J-7576 or J-8947 may be used to compress seal

- Insert ball retainer J-21552 Hold tool tightly against worm while turning stub shaft counter-clockwise. The rack-piston will be forced onto the tool. Remove the rack-piston and ball retainer from the gear housing together.

Figure 25—Removing and Installing the Pitman Shaft
5. REMOVE AND INSTALL ADJUSTER PLUG ASSEMBLY

REMOVE
1. Loosen lock nut. Use punch against edge of slots.
2. Remove adjuster plug using spanner wrench J-7624.

INSTALL
1. Install parts as shown.

NOTICE: When installing adjuster plug care should be taken not to cut seals.

6. DISASSEMBLE AND ASSEMBLE ADJUSTER PLUG ASSEMBLY

DISASSEMBLE
1. Disassemble parts as shown.

ASSEMBLE
1. Assemble parts as shown.

7. REMOVE AND INSTALL BEARING, WORM, AND VALVE ASSEMBLY

REMOVE
1. Grasp stub shaft and remove valve and worm assembly as a unit.

INSTALL
1. Install parts as shown.

NOTICE: When reassembling gear make sure angle of thrust races are as shown.

8. DISASSEMBLE AND ASSEMBLE VALVE

DISASSEMBLE
1. Disassemble parts as shown.

ASSEMBLE
1. Assemble parts as shown.

Figure 26—Removing and Installing the Adjuster Plug Assembly
9. DISASSEMBLE AND ASSEMBLE RACK PISTON

DISASSEMBLE
1. Disassemble parts as shown.
2. Clean and inspect all parts for excessive wear.

ASSEMBLE
1. Assemble parts as shown.

NOTICE: The black balls are smaller than the silver balls. The black and silver balls must be installed alternately into the rack-piston and return guide to maintain rack piston to worm gear preload.

TEFLON SEAL AND O' RING—If replaced lubricate new seal and O' ring with power steering fluid.

Lubricate balls with power steering fluid. Install balls through ball return guide hole while rotating worm counterclockwise.

WORM—Slide all the way into the rack-piston.

GUIDE—Alternately install remainder of balls and retain with grease at each end of guide.

CLAMP

SCREW—Tighten to 5 Newton Metres (4 Ft. Lbs.)

10. REMOVE AND INSTALL PITMAN SHAFT SEALS AND BEARING

REMOVE
1. Clean end of housing thoroughly to prevent dirt from entering and be extremely careful not to score the housing bore.
2. Use screwdriver to remove pitman shaft dust seal.
3. Remove retaining ring with snap ring pliers J-4245.
4. Using screwdriver, pry seals and washers from bore.

INSTALL
1. Coat seal lip and washer face with anhydrous calcium grease.
2. Install parts as shown.

HOUSING ASSEMBLY
Inspect for burrs.

INSTALLER J-8092

Install Pitman shaft bearing.

When tool bottoms on housing bearing is fully installed.

INSTALLER J-6219

Install Pitman shaft seals.

Figure 27—Removing and Installing the Rack Piston and Pitman Shaft Seals and Bearing
11. REMOVE AND INSTALL CHECK VALVE

REMOVE
1. Remove parts as shown.

INSTALL
1. Install parts as shown.

With small screwdriver, pry check valve from housing.

Care should be taken not to damage threads when prying on edge of housing.

Remove check valve.

Install check valve.

12. ADJUST THRUST BEARING PRELOAD

A. Before adjusting bearing preload, rotate the stub shaft back and forth to drain all oil from gear.

B. Using spanner wrench J-7624, tighten adjuster plug until thrust bearing is firmly bottomed, 27 Newton Metres (22 Ft. Lbs.)

C. Measure back counterclockwise 13mm (⅜") and place a second mark on housing.

D. Turn adjuster counterclockwise until mark on face of adjuster lines up with second mark on housing.

E. Using punch in notch tighten lock nut securely. Hold adjuster plug to maintain alignment of the marks.

13. PITMAN SHAFT "OVER-CENTER" SECTOR ADJUSTMENT

A. When gear is on center flat on stub shaft is normally on same side as, and parallel with, side cover.

B. Back off preload adjuster until it stops, then turn it in one full turn.

C. Turn adjuster in until torque to turn stub shaft is 0.6 to 1.2 Newton Metres (6 to 10 in. Lbs.) more than reading #1.

D. With gear at center of travel, check torque to turn stub shaft (reading #1).

E. Torque adjuster lock nut to 27 Newton Metres (20 Ft. Lbs.)

Prevent adjuster screw from turning while torquing lock nut.

Figure 28—Removing and Installing the Check Valve and Adjusting the Thrust Bearing Preload and Pitman Shaft “Over-Center” Sector
SAGINAW POWER STEERING PUMP—MODEL TC

CLEANING AND INSPECTION

Clean
- All parts with solvent and blow dry.

Inspect (Figure 39)
1. Rotating group components.
 - Vane (9) tips for scoring or wear.
 - Fit of vanes (9) in the rotor (10). The vanes must fit properly in the rotor slots, without sticking or excessive play.
 - Rotor slots for burrs and excessive wear at the thrust faces.
 - Inner surface of the pump ring (11) for scoring or wear.
 - Thrust plate (13) and pressure plate (7) for wear on the plate surfaces.
 - If heavy wear is present, or parts are faulty, replace the entire rotating group.
2. Bearing (18). If the bearing is rough or loose, replace it.
 - Seal (16) for leakage, cracking, or swelling. If so replace.
3. Driveshaft (17) for excessive burning or scoring.
 - Bearing bore for excessive scoring or burning.
4. Control valve (15). It must move smoothly in the valve bore.

ASSEMBLY

Install or Connect (Figures 29, 40 through 46)
1. Return tube (15) (figure 40) or reservoir (24) (figure 29) depending on model.
2. Sleeve (2) (figure 41).
3. Dowel pin (3) (figure 42).
4. O-ring seal (4).
5. Pressure plate spring (5).
6. O-ring seal (6) (figure 43).
7. Pressure plate (7). Mark top of pressure plate directly over the pin hole in the plate.
8. Dowel pin (8).

Important
- Lubricate the O-ring (12), pump ring (11), rotor (10), and vanes (9) with power steering fluid.
9. Vane (9). The rounded edge of the vanes face away from the rotor.
10. Rotor (10). Make sure the counterbore faces the driveshaft end of the housing (figure 44).
11. Pump ring (11). Make sure the identification marks face up (figure 45).
13. Thrust plate (13).
 - The dimples in the thrust plate should line up with the bolt holes in the housing and that the thrust plate engages the pump ring dowel pins.
A. Used On Some Models
1. Housing
2. Sleeve
3. Dowel Pin
4. O-Ring Seal
5. Pressure Plate Spring
6. O-Ring Seal
7. Pressure Plate
8. Dowel Pin
9. Vane
10. Rotor
11. Pump Ring
12. O-Ring Seal
13. Thrust Plate
14. Thrust Plate Retaining Ring
15. Return Tube
16. Drive Shaft Seal
17. Drive Shaft
18. Bearing
19. Retaining Ring
20. Flow Control Spring
21. Control Valve
22. O-Ring Seal
23. Fitting
24. Reservoir
25. O-Ring Seal
26. Clips
27. Capstick

Figure 29—Power Steering Pump Components — Model TC

- Use a press to compress the thrust plate (figure 46).
- Opening of ring (14) centered with bolt hole nearest to access hole.

15. Driveshaft seal (16).

Figure 30—Removing the Reservoir Clips

Figure 31—Removing the Reservoir
Figure 32—Removing the Fitting, Control Valve, Spring and Seal

- Use a suitable socket to press seal into housing until it bottoms (figure 35).

16. Bearing (18) onto the driveshaft (17) (figure 34).

Figure 33—Remove and Install Retaining Ring

- Slide the assembly into the housing while rotating the driveshaft so that the shaft serrations engage with the rotor.
17. Retaining ring (19). Use a suitable pair of snap ring pliers (figure 33).

Figure 34—Remove and Install Driveshaft Bearing

Figure 35—Remove and Install Driveshaft Seal

Figure 36—Removing the Retaining Ring

Figure 37—Removing the Thrust Plate
Figure 38—Pump Housing Components

Figure 39—Removing the Sleeve Assembly
- Make sure the beveled side of ring (19) is properly located.

18. Flow control spring (20).
19. Flow control valve (21).
20. O-ring seal (22).
22. Reservoir (24) (figure 31).
23. Clips (26) (figure 30).

Figure 40—Remove and Install Return Tube

Figure 41—Install Sleeve Assembly

Figure 42—Installation of the Pin, Seal and Pressure Plate Spring
SAGINAW POWER STEERING PUMP—MODEL P

DISASSEMBLY

++ Remove or Disconnect (Figure 47)
- Clean the exterior of the pump with solvent and crocus cloth.
 1. Bolt (71) and fitting (73).
 2. Reservoir (70) and seals (69).
 3. End plate retaining ring (68) using a screwdriver and punch.
 - End plate (67) and pressure plate spring (66).
 4. Control valve (58), control valve spring (59) and O-ring (60).
 5. Pressure plate (65). Tap lightly on the driveshaft with a rubber mallet.
 6. Pump ring (64) and vanes (63).
 - Shaft retaining ring (62), pump rotor (61) and thrust plate (56).
 7. Driveshaft (50).
 8. Seal (51) from the housing (53).
 - Dowel pins (55) and O-rings (54).
 - Seal (52).

CLEANING AND INSPECTION

onné Clean
- All parts with solvent and blow dry.

É Inspect (Figure 47)

 1. Rotating group components.
 - Vane (63) tips for scoring or wear.
 - Fit of vanes (63) in rotor (61) for sticking or excessive play.
 - Rotor slots for burrs and excessive wear at the thrust faces.
 - Inner surface of the pump ring (64) for scoring or wear.
 - Thrust plate (56) and pressure plate (65) for wear on plate surfaces.
 - If heavy wear is present, or parts are faulty, replace the entire rotating group.
 2. Seal (51) for leakage, cracking or swelling. If so, replace seal.
 3. Driveshaft (50) for excessive burning or scoring.
4. Control valve (58). It must move smoothly in the valve bore.

ASSEMBLY

Install or Connect (Figure 47)

Tool Required:
J-7728 Seal Installer

Important
- Lubricate the O-rings (54), pump ring (64), rotor (61) and vanes (63) with power steering fluid.
- Dowel pins (55) and O-rings (54).
- Seal (51) using J-7728.
- O-ring (52).

3. Driveshaft (50 and thrust plate (56).
 - Rotor (61). Make sure the counterbore faces the driveshaft end of the housing.
 - Vanes (63), the rounded edge faces away from the rotor.
 - Shaft retaining ring (62), pump ring (64) and pressure plate (65).
4. O-ring (60), control valve spring (59) and control valve (58).
5. Pressure plate spring (66) and end plate (67).
6. End plate retaining ring (68).
7. Bolt (71) and fitting (73).

SAGINAW POWER STEERING PUMP—MODEL CB

NOTICE: Repair the pump only in a clean, dust-free location, using clean tools and equipment. Dirt or grit will damage the machined surfaces and result in leakage or damage to the pump.

If broken components or foreign materials are found during disassembly of the pump, the hydraulic system should be disassembled, inspected, cleaned and flushed before servicing is complete.

Before beginning disassembly of the pump, remove the reservoir filler cap (when used) and drain the oil from the reservoir by inverting the pump so oil may drain out the
filler hole. After the oil is drained from the reservoir, replace the cap.

COMPONENT REPAIR

Clean
- Exterior of the pump with solvent.

CONTROL VALVE

Remove or Disconnect (Figure 48)
1. Pump from vehicle if necessary for access.
2. Fitting (7) and O-ring (6).
3. Control valve assembly (5).
4. Flow control spring (4).

Install or Connect
1. Flow control spring (4).
2. Control valve assembly (5).
3. O-ring (6) on fitting (7).
4. Fitting into the hydraulic pump housing assembly (2).

Tighten
- Fitting to 75 N·m (55 ft·lbs.).

DRIVE SHAFT SEAL

(Without Disassembly of Pump)

Remove or Disconnect (Figure 49)
Tool Required:
- J 7728 Seal Installation Tool
1. Pump from the vehicle if necessary for access.
- Protect the drive shaft (8) with shim stock.
- Use a small chisel to cut the drive shaft seal (3) and discard the seal.

Install or Connect (Figure 50)
- Lubricate the new drive seal (3) with power steering fluid.
1. Drive shaft seal (3) into housing (2) with J 7728.
3B3-22 POWER STEERING

RETURN TUBE

Important
- Plug the return tube (1) to prevent chips from entering the pump.

Remove or Disconnect (Figure 51)

1. Pump from the vehicle if necessary for access.
2. Damaged return tube (1) using, tap, nut, and washers.

Important
- Remove the plug and any chips before installing the return tube.

Install or Connect (Figure 52)

- Coat the end of the new return tube (1) using Locite solvent 75559 and Locite 290 adhesive, or equivalent.
- Press the return tube (1) into the housing (2) until bottomed.

HYDRAULIC PUMP ASSEMBLY

Disassemble

Remove or Disconnect (Figures 48 and 53)

1. Retaining ring (20) using a punch in the access hole.
2. Gently push on the drive shaft (8) to assist in removing end cover (19), O-ring (18), pressure plate spring (17), pump ring (11), pump vanes (12), and drive shaft sub assembly consisting of:
 - Pump rotor (13).
 - Thrust plate (10).
 - Drive shaft (8).
 - Shaft retaining ring (14).
3. O-ring (16) from housing (2).
4. Dowel pins (9).
5. Drive shaft seal (3).
6. Pressure plate (5), pressure plate spring (17), and O-ring (18) from the end cover (19).
7. Shaft retaining ring (14) from the drive shaft (8).

Cleaning and Inspection

Clean
- All parts in power steering fluid.
- Dry parts.

Inspect
- Pump ring (11), vanes (12), thrust plate (10), and drive shaft (8) for scoring, pitting or chatter marks.
- If noted, replace the appropriate parts.
Tool Required:
- J 7728 Seal Installation Tool

1. Drive shaft seal (3) into the pump housing (2) with tool J 7728.
2. Pump ring dowel pins (9) into the housing (2).
3. Thrust plate (10), the pump rotor (13) to the drive shaft (8).
4. New shaft retaining ring (14) onto the drive shaft (8).
5. Drive shaft sub assembly into the housing (2).
6. Vanes (12) into the pump rotor (13).
7. Pump ring (11) with holes positioned correctly onto the dowel pins (9) in the housing (2).
 - Lubricate new O-ring (16) with power steering fluid.
8. O-ring (16) into the groove in the housing (2).
9. Pressure plate (15).
10. Pressure plate spring (17).
 - Lubricate new O-ring (18) with power steering fluid.
11. O-ring (18) into the end cover (19).
 - Lubricate the outer edge of the end cover (19) with power steering fluid.
 - Press the end cover into the housing (2).
12. Retaining ring (20) into the groove in the housing (2) with the ring opening near the access hole in the housing.
3B3-24 POWER STEERING

SPECIFICATIONS

FASTENER TORQUE

<table>
<thead>
<tr>
<th>Component</th>
<th>Torque Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integral Power Steering Gear</td>
<td></td>
</tr>
<tr>
<td>Pitman Shaft Over Center Preload</td>
<td>0.6–1.2 Nm (6–10 in. lbs.)</td>
</tr>
<tr>
<td>Pitman Shaft Preload Adjuster Screw Jam Nut</td>
<td>27 Nm (20 in. lbs.)</td>
</tr>
<tr>
<td>Side Cover Bolts</td>
<td>60 N-m (40 ft. lbs.)</td>
</tr>
<tr>
<td>Pitman Shaft Nut</td>
<td>244 N-m (180 ft. lbs.)</td>
</tr>
<tr>
<td>Ball Return Guide Screws</td>
<td>5 N-m (4 ft. lbs.)</td>
</tr>
<tr>
<td>Integral Power Steering Gear—CK (GMT 400)</td>
<td></td>
</tr>
<tr>
<td>Pitman Shaft Nut</td>
<td>250 N-m (180 ft. lbs.)</td>
</tr>
<tr>
<td>Side Cover Bolts</td>
<td>60 N-m (40 ft. lbs.)</td>
</tr>
<tr>
<td>Ball Return Guide Screws</td>
<td>5 N-m (4 ft. lbs.)</td>
</tr>
<tr>
<td>Pitman Shaft Preload Adjuster Screw Jam Nut</td>
<td>27 N-m (20 ft. lbs.)</td>
</tr>
<tr>
<td>Power Steering Pump Model TC and P</td>
<td></td>
</tr>
<tr>
<td>Fitting</td>
<td>55 N-m (75 ft. lbs.)</td>
</tr>
<tr>
<td>Power Steering Pump Model CB</td>
<td></td>
</tr>
<tr>
<td>Fitting</td>
<td>55 N-m (75 ft. lbs.)</td>
</tr>
<tr>
<td>No.</td>
<td>Tool Description</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
</tr>
<tr>
<td>1.</td>
<td>Snap Ring Pliers</td>
</tr>
<tr>
<td>2.</td>
<td>Valve Connector Installer</td>
</tr>
<tr>
<td>3.</td>
<td>Ball Retainer</td>
</tr>
<tr>
<td>4.</td>
<td>Adjuster Plug Bearing Installer</td>
</tr>
<tr>
<td>5.</td>
<td>Driver</td>
</tr>
<tr>
<td>6.</td>
<td>Spanner Wrench</td>
</tr>
<tr>
<td>7.</td>
<td>Driver</td>
</tr>
<tr>
<td>8.</td>
<td>Pitman Shaft Bearing Puller</td>
</tr>
<tr>
<td>9.</td>
<td>Puller (Formerly J 6632)</td>
</tr>
<tr>
<td>10.</td>
<td>Seal Installer</td>
</tr>
<tr>
<td>11.</td>
<td>Rack Piston Seal Compressor</td>
</tr>
<tr>
<td>12.</td>
<td>Bearing Installer</td>
</tr>
<tr>
<td>13.</td>
<td>Seal Installer</td>
</tr>
</tbody>
</table>

1. Snap Ring Pliers
2. Valve Connector Installer
3. Ball Retainer
4. Adjuster Plug Bearing Installer
5. Driver
6. Spanner Wrench
7. Driver
8. Pitman Shaft Bearing Puller
9. Puller (Formerly J 6632)
10. Seal Installer
11. Rack Piston Seal Compressor
12. Bearing Installer
13. Seal Installer
SECTION 4B
REAR AXLE

CONTENTS

SUBJECT PAGE
7 1/2 and 7 5/8-inch Ring Gear Axles...4B1-1
8 1/2-inch Ring Gear Axle 4B2-1
9 1/2-inch Ring Gear Axle ... 4B3-1
10 1/2-inch Ring Gear Axle ... 4B4-1
9 3/4 and 10 1/2-inch Ring Gear Axle (Dana).. 4B5-1
12 Inch Ring Gear Axle (Rockwell)... 4B6-1
Locking Differentials ... 4B7-1

SECTION 4B1
7 1/2 AND 7 5/8-INCH RING GEAR AXLES

CONTENTS

SUBJECT PAGE
Description .. 4B1-1
Checking the Axle Before Disassembly .. 4B1-2
Disassembly of the Rear Axle ... 4B1-2
Cleaning ... 4B1-2
Inspection .. 4B1-4
Assembly of the Rear Axle ... 4B1-5
Gear Tooth Pattern Check .. 4B1-10
Adjustments Affecting Tooth Contact .. 4B1-10
Specifications ... 4B1-11
Special Tools .. 4B1-12

DESCRIPTION

The corporate 7 1/2 and 7 5/8-inch ring gear rear axle uses a conventional ring and pinion gear set to transmit the driving force of the engine to the rear wheels. This gear set transfers this driving force at a 90 degree angle from the propeller shaft to the drive shafts.

This axle is semi-floating. The axle shafts are supported at the wheel end of the shaft by a roller bearing that is pressed into the housing. The shafts are retained into the housing by retaining clips within the differential. The pinion gear is supported by two tapered roller bearings. The pinion depth is set by a shim pack located between the gear end of the pinion and the roller bearing that is pressed onto the pinion. The pinion bearing preload is set by crushing a collapsible spacer between the bearings which are pressed onto the differential case. Two bearing caps are used to hold the differential into the rear axle housing.

The differential is used to allow the wheels to turn at different rates of speed while the rear axle continues to transmit the driving force. This prevents tire scuffing when going around corners and prevents premature wear on internal axle parts.

The differential is sealed with a pinion seal, a seal at each axle shaft end, and by a gasket between the rear cover and the axle housing.

All corporate rear axles are identified by the part number on the right axle tube near the carrier. The carrier cover does not have a drain plug.
CHECKING THE AXLE BEFORE DISASSEMBLY

1. Inspect:
 - Remove the axle cover from the rear axle and drain the axle lubricant into a suitable container.
 - The ring gear backlash. Refer to "Backlash Adjustment" in this section. This information can be used to determine the cause of the axle problem. It will also help when setting up the shim packs for locating and preloading the differential case.
 - The case for metal chips and shavings. Determine where these chips and shavings come from, such as a broken gear or bearing cage.
 - Determine the cause of the axle problem before disassembly if possible.

DISASSEMBLY OF THE REAR AXLE

1. Remove or Disconnect (Figure 1):
 - Tools Required:
 - J 8107-2 Differential Side Bearing Remover Plug
 - J 22888 Side Bearing Remover
 - J 8614-01 Pinion Flange Remover
 - J 25320 Rear Pinion Bearing Remover
 - Place the rear axle in a suitable support.
 - The differential cover bolts (35) and the differential cover (34).
 - Drain the gear lubricant into a proper container.
 - Axle shafts (2). Refer to the proper service manual.
 - Outer wheel bearings and seals. Refer to the proper service manual.
 - Pinion shaft lock screw (30).
 - Pinion shaft (29).
 - Differential pinion and side gears (26).
 - Roll the pinion gears out of the case with the pinion thrust washers (27).
 - Remove the side gears and the side gear thrust washers (28). Mark the gears and the differential case as left and right.
 - Differential bearing cap bolts (32).
 - Differential bearing caps (31).
 - Mark the caps and the housing as left and right.
 - NOTICE: Be careful when prying the differential case out of the axle housing as not to damage the cover gasket surface. The differential case must be supported when it is being removed to prevent the case from falling and damaging the case.
 - Differential carrier (24).
 - Pry the case from the axle housing at the differential "window" (figure 2).
 - Bearing outer races (22), shims (21), and spacers (23).
 - Mark the races and the shims as left and right, and place them with the bearing caps.
 - Differential side bearings using J 8107-2 and J 22888 (figure 3).
 - The jaws of J 22888 must pull from beneath the bearing cone and not the cage.
 - Ring gear bolts (25).
 - Ring gear bolts use left-handed threads.
 - NOTICE: Do not pry the ring gear from the case. This will damage the ring gear and the differential case.
 - Ring gear (20) from the differential.
 - Drive the ring gear off with a brass drift if necessary.
 - Drive pinion bearing preload (figure 4).
 - The pinion assembly for looseness by moving it back and forth. (Looseness indicates excessive bearing wear).
 - Pinion flange nut (11) and washer (12) using J 8614-01 to hold the pinion flange.
 - Pinion flange using J 8614-01.
 - Pinion (20) from the axle housing.
 - Thread the pinion nut halfway onto the pinion.
 - Replace the differential cover (34) with two bolts (35) to keep the pinion from falling to the floor.
 - Drive the pinion out of the housing with a hammer and a soft drift.
 - Remove the cover (34) and the pinion (20).
 - Collapsible spacer (17) from the pinion (figure 5).
 - Outer seal (14) and outer pinion bearing (15).
 - Inner bearing (18) and shim (19) from the pinion.
 - Press the bearing off the pinion using J 25320 (figure 6).
 - Remove the shim.
 - Bearing cups (15) and (18) from the axle housing using a hammer and a punch in the slots provided for this purpose.
 - Work the cups out of the housing evenly, moving the punch back and forth between one side of the cup and the other.

CLEANING

Do not steam clean drive parts having ground and polished surfaces such as gears, bearings, and shafts. These parts should be cleaned in a suitable solvent. All parts should be disassembled before cleaning.

Parts should be thoroughly dried immediately after cleaning. Use soft, clean, lintless rags. Parts may be dried with compressed air. Do not allow the bearings to spin while drying them with compressed air.
1. Brake Drum
2. Axle Shaft
3. "C" Lock
4. Wheel Stud
5. Backing Plate Bolt
6. Brake Assembly
7. Axle Shaft Oil Seal
8. Axle Shaft Bearing
9. Axle Housing
10. Axle Air Vent
11. Pinion Nut
12. Washer
13. Pinion Flange
14. Pinion Oil Seal
15. Pinion Outer Bearing
16. Plug
17. Collapsible Spacer
18. Pinion Inner Bearing
19. Shim
20. Pinion and Ring Gear Set
21. Shim
22. Differential Side Bearing
23. Spacer
24. Differential Case
25. Ring Gear Bolt
26. Differential Gears
27. Pinion Thrust Washers
28. Side Gear Thrust Washers
29. Pinion Shaft
30. Pinion Shaft Lock Bolt
31. Bearing Cap
32. Bolt
33. Gasket
34. Cover
35. Bolt

Figure 1—Rear Axle Components
It is very important to carefully and thoroughly inspect all drive unit parts before reassembly. Thorough inspection of the drive parts for wear or stress and subsequent replacement of worn parts will eliminate costly drive component repair after reassembly.

AXLE HOUSING
- The carrier bore for nicks or burrs that would prevent the outer diameter of the pinion seal from sealing. Remove any burrs that are found.
- The bearing cup bores for nicks or burrs. Remove any burrs that are found.
- The housing for cracks. Replace the housing if any cracks are found.
- The housing for foreign material such as metal chips, dirt, or rust. Refer to "Cleaning" in this section.

DIFFERENTIAL
- Pinion gear shaft for unusual wear.
- Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
- Thrust washers for wear.
- The fit of the differential side gears in the differential case.
- The fit of the side gears on the axle shafts.
- Differential case for cracks and scoring.
- Replace all worn parts.

INSPECTION

![Figure 2—Removing the Differential Case](image1)

- Pry Bar

![Figure 3—Removing Differential Side Bearings](image2)

- J-22888
- J-8107-2
- A. Inch Pound Torque Wrench

![Figure 4—Checking Pinion Preload](image3)

- A. The opening in the tool must be supported.

![Figure 5—Pinion Collapsible Spacer](image4)

- 17. Collapsible Spacer
- 20. Pinion

![Figure 6—Removing the Pinion Rear Bearing](image5)

- J-25320
PINION AND RING GEAR

Inspect

- Pinion and ring gear teeth for cracking, chipping, scoring, or excessive wear.
- Pinion splines for wear.
- Pinion flange splines for wear.
- The fit of the pinion on the pinion flange.
- The sealing surface of the pinion flange for nicks, burrs, or rough tool marks which would cause damage to the seals' inside diameter and result in an oil leak.
- Replace all worn or broken parts.
- Ring and pinion gears are matched sets and are both replaced any time a replacement of either is necessary.

BEARINGS

Inspect

- Bearings visually and by feel.
- The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.
- The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.
- Bearing cups for wear, cracks, brinelling and scoring.
- Bearings and cups are only replaced as sets.
- If the rear axle was operated for an extended period of time with very loose bearings, the ring gear and drive pinion will also require replacement.
- Low mileage bearings may have minute scratches and pits on the rollers and the bearing cups from the initial pre-load. Do not replace a bearing for this reason.
- Bearing cups for cracks or chips.

SHIMS

Inspect

- Shims for cracks and chips. Damaged shims should be replaced with an equally sized service shim.

ASSEMBLY OF THE REAR AXLE

Install or Connect (Figures 1, 7 and 8)

Tools Required:
- J 7817 Front Pinion Bearing Cup Installer
- J 7818 Rear Pinion Bearing Cup Installer
- J 8092 Driver Handle
- Pinion bearing cups (15) and (18) using J 7817, J 7818 and J 8092.

PINION DEPTH ADJUSTMENT (Figure 9)

Tools Required:
- J 21777-40 Rear Pilot Washer
- J 21777-42 Front Pilot Washer
- J 21777-43 Stud Assembly — Bolt
- J 21777-45 Side Bearing Discs
- J 23597-1 Arbor
- J 23597-11 Gage Plate
- J 8001 Dial Indicator

Figure 7—Front Pinion Bearing Cup Installation

Figure 8—Rear Pinion Bearing Cup Installation

1. Clean all the gage parts.
2. Lubricate the front and rear pinion bearings with axle lubricant.
3. Place the bearings (15) and (18) into the pinion bearing cups.
5. Hold the stud stationary at the flats of the stud.

Figure 9—Pinion Depth Tools
Tighten

- Stud nut to 2.2 N m (20 in. lbs.).

6. Rotate the gage plate and bearings several complete revolutions to seat the bearings.

7. Tighten the stud nut until a torque of 1.6 to 2.2 N m (15 to 25 in. lbs.) is obtained to keep the gage plate in rotation.

8. Assembly J 21777-45, J 23597-11, and J 8001 to the differential bearing bores as shown in figure 9.
 - The bearing bores must be clean and burr free.

9. Install the side bearing caps and tighten the bolts finger tight.

10. Rotate the gage plate until the gaging areas are parallel with the disks.

11. Position the gage shaft assembly in the carrier so that the dial indicator rod is centered on the gage area of the gage block.

12. Set the dial indicator at zero. Push the indicator down on the indicator shaft until the needle rotates approximately ¾ of a turn to the right. Tighten the dial indicator in this position.

13. Rotate the gage shaft slowly back and forth until the dial indicator reads the greatest deflection (when the indicator needle is centered between moving to the left and to the right).

14. At the point of greatest deflection, set the dial indicator to zero. Repeat the rocking action of the gage shaft to verify the zero setting.

15. Rotate the gage shaft until the dial indicator rod does not touch the gage block.

16. Record the actual number on the dial indicator and not the number which represents how far the needle travels. This is the nominal pinion setting.

 EXAMPLE: If the indicator needle moved to the left 1.70 mm (0.067-inch) to a dial reading of 0.84 mm (0.033-inch) as shown in figure 10, record the dial reading of 0.84 mm (0.033-inch) not 1.70 mm (0.067-inch).

The dial indicator should be in the 0.50 to the 1.27 mm (0.020 to 0.050-inch) range.

17. Check the pinion face for a pinion adjustment mark. This mark indicates the best running position for the pinion from the nominal setting.

 - If the pinion is stamped with a plus number, add that many thousandths to the nominal setting. If the nominal setting is 0.033-inch and the pinion is marked +2, the correct shim depth would be 0.033-inch + 0.002-inch = 0.035-inch.

 - If the pinion is stamped with a minus number, subtract that many thousandths from the nominal setting. If the nominal setting is 0.033-inch and the pinion is marked -2, the correct shim depth would be 0.033-inch - 0.002-inch = 0.031-inch.

 - If the pinion has no plus or minus marked on the pinion, use the nominal pinion setting to select a shim.

18. Remove bearing caps (31) and depth gaging tools.

19. Install the correct pinion shim (19) according to this procedure to the pinion.

DIFFERENTIAL CASE ASSEMBLY

Install or Connect (Figure 1)

Tools Required:
- J 25299 Differential Side Bearing Installer
- J 8092 Driver Handle
- J 8107-2 Differential Side Bearing Remover Plug

- Lubricate all parts with rear axle lubricant.

1. Side gear thrust washers (28) to the side gears (26).

2. Side gears (28) to the differential case (24).
 - Place the side gears in place on the same side as removed.

3. Pinion gears (28) to the differential without the thrust washers (27).
 - Place one pinion gear onto the side gears and rotate the gears until the pinion is exactly opposite from the differential opening.
 - Place the second pinion gear onto the side gears so that the pinion gear holes line up.
 - Rotate the pinion gears into place, and verify that the pinion gears line up with the pinion shaft holes.

4. Pinion thrust washers (27).
 - Rotate the pinion gears toward the differential opening just enough to slide in the pinion thrust washers.

5. Pinion shaft.

6. Pinion shaft screw.
 - Check that the mating surfaces of the differential case and the ring gear are clean and burr free.

7. Ring gear (20) to the differential case (24) (figure 11).
 - Thread two left-hand threaded studs into the ring gear on opposite sides.
 - Place the ring gear onto the case, and align the studs with the holes in the case.

 - Tighten the ring gear bolts alternately in stages gradually pulling the ring gear onto the differential case.

Tighten

- The ring gear bolts in sequence to 120 N m (90 ft. lbs.)

9. Differential side bearings (22) using J 25299, J 8092, and J 8107-2 (figure 12).
 - Place J 8107-2 into the differential on the side opposite of bearing installation to protect the differential case.
 - Drive the bearing onto the case using J 25299 and J 8092.

10. Differential case (24) to the axle housing. Refer to "Side Bearing Pre-Load Adjustment" in this section.

SIDE BEARING PRE-LOAD ADJUSTMENT

- The side bearing pre-load adjustment must be made before installing the pinion.
- The case side bearing pre-load is adjusted by changing the thickness of both the left and right shims equally. This will maintain the original backlash.
A. Dial indicator and arbor positioned on the gage block.
B. Measurement after the arbor is moved off of the gage block.

Figure 10—Checking Pinion Depth

- Production shims are cast iron and are not to be reused. Measure the production shims and spacers one at a time, and add the measurements together to obtain the sizes of the left and right shim packs.
- Service spacers are 4.32 to 4.37 mm (0.170 to 0.172-inch) thick.
- Service shims are available from 1.02 mm to 2.54 mm (0.040 to 0.100-inch) in increments of 0.101 mm (0.004-inch).
- Be sure that the side bearing surfaces are clean and free of burrs.

1. Place the case with the bearing cups installed into the axle housing (figure 1).
 - Lubricate the axle bearings with axle lubricant.
2. Insert the service spacer between the bearing cup and the axle housing. Place the chamfered edge against the housing.
3. Install the left bearing cap and bearing cap bolts. Do not tighten the bolts.
4. Select one or two shims totaling the amount needed as shown in figure 13.
5. Install the shim(s) between the right bearing cup and the service shim.
 - The left bearing race and spacer must be against the left side of the housing.
6. Determine bearing pre-load by inserting progressively larger feeler gage sizes between the right service spacer and shim.
 - Push the feeler gage downward so that it contacts the shim at the top and bottom, and then contacts the axle housing.
 - Rotate the case while using the feeler gage. This will assure an accurate reading.
 - The weight of the case will cause a light drag. Do not mistake this drag for bearing preload.
 - Start with a thin feeler gage to obtain a feel for when preload begins. It will be necessary to work the case in or out and to the left in order to insert the feeler gage.
 - The point just before additional drag begins is the correct feeler gage thickness. This is the zero setting without preload.
7. Remove the left bearing cap and shim(s) from the axle housing. Measure the shims using a micrometer. The shim pack needed is the total of the shim(s) and the feeler gage. An additional pre-load of 0.10 mm (0.004-inch) will be added to each side of the differential case after the backlash adjustment is made.
9. Install the pinion. Refer to “Pinion Installation” in this section.

PINION INSTALLATION

Install or Connect

Tools Required:
 J 5590 Rear Pinion Bearing Cone Installer
 J 23911 Pinion Oil Seal Installer
 J 8614-01 Pinion Flange Remover
 - The bearing cups should have been installed in "Pinion Depth Adjustment," in this section.
 1. The pinion inner bearing (18) using J 5590 (figure 14).
Preload should be at or below 2.7 to 3.6 N·m (24 to 32 in. lbs.) on new bearings, or 1.0 to 1.4 N·m (8 to 12 in. lbs.) for used bearings.

- If the preload is below the preload given above, continue torquing the nut in small increments. Check the preload after each tightening. Each tightening increases the bearing preload by several pounds. If the bearing preload is exceeded, the pinion must be removed, and a new collapsible spacer installed.
- Once a preload of 2.7 to 3.6 N·m (24 to 32 in. lbs.) has been obtained, rotate the pinion several times to assure that the bearings have seated. Recheck the preload, and adjust if necessary.

BACKLASH ADJUSTMENT

1. Install the differential case, bearing cups, spacers, and shims as determined from the “Side Bearing Preload Adjustment” earlier in this section.
2. Rotate the case several times to seat the bearings.
3. Install a dial indicator to the case using a magnetic base.
4. Place the indicator stem at the heel end of a tooth (figure 16).
 - Set the dial indicator so that the stem is in line with the gear rotation and perpendicular to the tooth angle.
5. Install the differential bearing caps (31) and bolts (32).
 - The bolts to 75 N·m (55 ft. lbs.).
6. Check and record the backlash at three or four points around the ring gear.
 - The pinion must be held stationary when checking backlash.
 - The backlash should be the same at each point within 0.05 mm (0.002-inch). If the backlash varies more than 0.05 mm (0.002-inch), check for burrs, a distorted case flange, or uneven bolting conditions.
7. Backlash at the minimum lash point measured should be between 0.13 and 0.23 mm (0.005 and 0.009-inch) for all new gear sets.

8. If the backlash is not within specifications, move the ring gear in or out from the pinion by increasing the thickness of one shim, and decreasing the thickness of the other shim by the same amount. This will maintain the correct rear axle side bearing preload.
 - Moving 0.05 mm (0.002-inch) worth of shim from one side of the differential to the other will change the backlash adjustment by 0.03 mm (0.001-inch).
9. When the backlash is correctly adjusted, remove the bearing caps and the shim packs.
10. Select a shim 0.10 mm (0.004-inch) thicker than the one removed from the left side. Insert this shim between the spacer and the left bearing race (figure 17).
11. Install the left bearing cap and bolts.
 - Do not tighten.
12. Select a shim 0.10 mm (0.004-inch) thicker than the one removed from the right side. Insert the shim between the spacer and the right bearing race, and drive the shim into place (figure 17).
13. Install the right side bearing cap, and bolts.
 - All bearing cap bolts to 75 N·m (55 ft. lbs.).
14. Recheck the backlash and correct as necessary.

FINAL ASSEMBLY

1. Drive axles. Refer to the proper service manual.
2. A new cover gasket and the cover (34).
 - The cover bolts (35) to 27 N·m (20 ft. lbs.).
3. Axle housing to the vehicle. Refer to the proper service manual.
4. Lubricant to the rear axle.
4B1-10 7 1/2 AND 7 5/8-INCH RING GEAR AXLES

Figure 18—Gear Tooth Nomenclature

GEAR TOOTH PATTERN CHECK

Checking the ring gear to pinion tooth pattern is to be done only after setting up the axle according to the methods in this section. The pattern check is NEVER to be used as an initial check, or instead of checking pinion depth and backlash adjustments. This check is only to be used to verify the correct adjustment of the gear set after setup.

1. Wipe all oil out of the carrier, and carefully clean each tooth of the ring gear (figure 18).
2. Use gear marking compound 1052351 or equivalent and apply this mixture sparingly to all ring gear teeth, using a medium-stiff brush. When properly used, the area of pinion tooth contact will be visible when hand load is applied.
3. Tighten the bearing cap bolts to the specified torque.
4. Expand the brake shoes until a torque of 40 to 50 ft. lbs. is required to turn the pinion.
 A test made without loading the gears will not give a satisfactory pattern. Turn the pinion flange with a wrench so that the ring gear rotates one full revolution, then reverse the rotation so that the ring gear rotates one revolution in the opposite direction.
5. Observe the pattern on the ring gear teeth and compare this with figure 19.

ADJUSTMENTS AFFECTING TOOTH CONTACT

Two adjustments can be made which will affect tooth contact pattern: backlash, and the position of the drive pinion in the carrier. The effects of bearing preloads are not readily apparent on hand loaded tooth contact pattern tests; however, these adjustments should be within specifications before proceeding with backlash and drive pinion adjustments.

The position of the drive pinion is adjusted by increasing or decreasing the distance between the pinion head and the centerline of the ring gear. Decreasing the distance will move the pinion closer to the centerline of the ring gear. Increasing the distance will move the pinion farther away from the centerline of the ring gear.

Backlash is adjusted by means of the side bearing adjusting shims which move the entire case and ring gear assembly closer to, or farther from, the drive pinion. (The adjusting shims are also used to set side bearing preload).

If the thickness of the right shim is increased (along with decreasing the left shim thickness), backlash will increase.

The backlash will decrease if the left shim thickness is increased (along with a decrease in right shim thickness).
Figure 19—Gear Tooth Pattern

SPECIFICATIONS

7\slash{1}/2 AND 7\slash{5}/8-INCH RING GEAR AXLE

<table>
<thead>
<tr>
<th>FASTENER</th>
<th>N·m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Gear Bolts</td>
<td>120</td>
<td>90</td>
</tr>
<tr>
<td>Bearing Cap Bolts</td>
<td>75</td>
<td>55</td>
</tr>
<tr>
<td>Axle Cover Bolts</td>
<td>27</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPACER AND SHIM SIZES</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Side Bearing Spacer</td>
<td>.040-.044-inch</td>
</tr>
<tr>
<td></td>
<td>.046-.050-inch</td>
</tr>
<tr>
<td></td>
<td>.052-.056-inch</td>
</tr>
<tr>
<td></td>
<td>.058-.062-inch</td>
</tr>
<tr>
<td></td>
<td>.064-.070-inch</td>
</tr>
<tr>
<td></td>
<td>.072-.078-inch</td>
</tr>
<tr>
<td></td>
<td>.080-.086-inch</td>
</tr>
<tr>
<td></td>
<td>.088-.094-inch</td>
</tr>
<tr>
<td></td>
<td>.096-.100-inch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Differential Side Bearing Shim Kits</th>
<th>.0040-.0044-inch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.0046-.0050-inch</td>
</tr>
<tr>
<td></td>
<td>.0052-.0056-inch</td>
</tr>
<tr>
<td></td>
<td>.0058-.0062-inch</td>
</tr>
<tr>
<td></td>
<td>.0064-.0070-inch</td>
</tr>
<tr>
<td></td>
<td>.0072-.0078-inch</td>
</tr>
<tr>
<td></td>
<td>.0080-.0086-inch</td>
</tr>
<tr>
<td></td>
<td>.0088-.0094-inch</td>
</tr>
<tr>
<td></td>
<td>.0096-.100-inch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pinion Bearing Shim Kits</th>
<th>.0025-.0029-inch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.0030-.0034-inch</td>
</tr>
<tr>
<td></td>
<td>.0035-.0039-inch</td>
</tr>
<tr>
<td></td>
<td>.0040-.0045-inch</td>
</tr>
</tbody>
</table>

| Lubricant | 80W-90 GL-5 |
SPECIAL TOOLS

<table>
<thead>
<tr>
<th>No.</th>
<th>Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>J-7817</td>
</tr>
<tr>
<td>2.</td>
<td>J-7818</td>
</tr>
<tr>
<td>4.</td>
<td>J-8614-01</td>
</tr>
<tr>
<td>5.</td>
<td>J-22888</td>
</tr>
<tr>
<td>6.</td>
<td>J-5590</td>
</tr>
<tr>
<td>7.</td>
<td>J-23911</td>
</tr>
<tr>
<td>8.</td>
<td>J-25299</td>
</tr>
<tr>
<td>9.</td>
<td>J-25320</td>
</tr>
<tr>
<td>10.</td>
<td>J-8092</td>
</tr>
<tr>
<td>11.</td>
<td>J-8001</td>
</tr>
</tbody>
</table>

1. Front Pinion Bearing Cup Installer
2. Rear Pinion Bearing Cup Installer
3. Differential Side Bearing Remover Plug
4. Pinion Flange Remover
5. Side Bearing Remover
6. Rear Pinion Bearing Cone Installer
7. Pinion Oil Seal Installer
8. Differential Side Bearing Installer
9. Rear Pinion Bearing Remover
10. Driver Handle
11. Dial Indicator

Refer to Figure 9 for these tools:
J-21777-40 Rear Pilot Washer
J-21777-42 Front Pilot Washer
J-21777-43 Stud Assembly—Bolt
J-21777-45 Side Bearing Discs
J-23597-1 Arbor
J-23597-11 Gauge Plate
SECTION 4B2
81/2-INCH RING GEAR

DESCRIPTION

The corporate 81/2-inch ring gear rear axle uses a conventional ring gear and pinion gear set to transmit the driving force of the engine to the rear wheels. This gear set transfers this driving force at a 90 degree angle from the propeller shaft to the drive shafts.

This axle is semi-floating. The axle shafts are supported at the wheel end of the shaft by a roller bearing that is pressed into the housing. The shafts are retained into the housing by retaining clips within the differential. The pinion gear is supported by two tapered roller bearings. The pinion depth is set by a shim pack located between the gear end of the pinion and the roller bearing that is pressed onto the pinion. The pinion bearing preload is set by crushing a collapsible spacer between the bearings in the axle housing.

The ring gear is bolted onto the differential case with left-hand thread bolts.

The differential case is supported in the axle housing by two tapered roller bearings. The differential and ring gear are located in relationship to the pinion by using selective shims between the bearing and the axle housing. To move the ring gear, shims are deleted from one side and an equal amount are added to the other side. These shims are also used to preload the bearings which are pressed onto the differential case. Two bearing caps are used to hold the differential into the rear axle housing.

The differential is used to allow the wheels to turn at different rates of speed while the rear axle continues to transmit the driving force. This prevents tire scuffing when going around corners and prevents premature wear on internal axle parts.

The rear axle is sealed with a pinion seal, a seal at each axle shaft end, and by a gasket between the rear cover and the axle housing.

All corporate rear axles are identified by the part number on the right axle tube near the carrier. The carrier cover does not have a drain plug.

CHECKING THE AXLE BEFORE DISASSEMBLY

Inspect

• Remove the axle cover from the rear axle and drain the axle lubricant into a suitable container.

1. The ring gear backlash. Refer to "Backlash Adjustment" in this section. This information can be used to determine the cause of the axle problem. It will also help when setting up the shim packs for locating and preloading the differential case.

2. The case for metal chips and shavings. Determine where these chips and shavings come from, such as a broken gear or bearing cage.

• Determine the cause of the axle problem before disassembly if possible.

DISASSEMBLY OF THE REAR AXLE

Remove or Disconnect (Figure 1)

Tools Required:
J 8107-4 Differential Side Bearing Remover Plug
J 22888 Side Bearing Remover
J 8614-01 Pinion Flange Remover
J 8612-B Rear Pinion Bearing Cone Remover

• Place the rear axle in a suitable support.

1. The differential cover bolts (14) and the differential cover (12).
 • Drain the gear lubricant into a proper container.

2. Axle shafts (33). Refer to the proper service manual.

3. Rear axle seal (28) and bearing (27). Refer to the proper service manual.
1. Axle Housing
2. Air Vent
3. Plug
4. Collapsible Spacer
5. Inner Pinion Bearing
6. Shim
7. Ring and Pinion Gear Set
8. Differential Side Bearing
9. Shim Pack (including spacer)
10. Bearing Cap
11. Gasket
12. Cover
13. Brake Line Clip
14. Bolt
15. Pinion Shaft Lock Screw
16. Washer
17. Pinion Shaft
18. Bolt
19. Side Gear Thrust Washer
20. Pinion Thrust Washer
21. Pinion Gear
22. Side Gear
23. Ring Gear Bolt
24. Differential Case
25. Nut
26. Washer
27. Axle Shaft Bearing
28. Axle Shaft Seal
29. Brake Backing Plate
30. Bolt
31. Brake Drum
32. Wheel Stud
33. Axle Shaft
34. "C" Clip
35. Pinion Nut
36. Washer
37. Pinion Flange
38. Pinion Seal
39. Outer Pinion Bearing

Figure 1—Rear Axle Components
4. Pinion shaft lock screw (15).
5. Pinion shaft (17).
6. Differential pinion (21) and side gears (22).
 • Roll the pinion gears out of the case with the pinion thrust washers (20).
 • Remove the side gears and the side gear thrust washers (19). Mark the gears and the differential case as left and right.
7. Differential bearing cap bolts (18).
8. Differential bearing caps (10).
 • Mark the caps and the housing as left and right.

NOTICE: Be careful when prying the differential case out of the axle housing so as not to damage the cover gasket surface. The differential case must be supported when it is being removed to prevent the case from falling and damaging the case.

 • Pry the case from the axle housing at the differential "window" (figure 2).
10. Bearing outer races (8) and shims (9).
 • Mark the races and the shims as left and right, and place them with the bearing caps.
11. Differential side bearings (8) using J 8107-4 and J 22888 (figure 3).
 • The jaws of J 22888 must pull from beneath the bearing cone and not the cage. Use the slots provided for the puller.
12. Ring gear bolts (23).
 • Ring gear bolts use left-handed threads.

NOTICE: Do not pry the ring gear from the case. This will damage the ring gear and the differential case.

13. Ring gear (7) from the differential case.
 • Drive the ring gear off with a brass drift if necessary.
14. Pinion flange nut (35) and washer (36) using J 8614-01 to hold the pinion flange (figure 5).
15. Pinion flange using J 8614-01 (figure 6).
16. Pinion (7) from the axle housing.
 • Thread the pinion nut halfway onto the pinion.
 • Replace the differential cover (12) with two bolts (14) to keep the pinion from falling to the floor.
 • Drive the pinion out of the housing with a hammer and a soft drift (figure 7).
17. Collapsible spacer (4) from the pinion.
18. Outer pinion seal (38) and bearing (39).
19. Inner bearing (5) and shim (6) from the pinion.
 • Press the bearing off the pinion using J 8612-B (figure 8).
 • Remove the shim.

Figure 2—Prying the Differential Case

Figure 3—Removing Differential Side Bearing

Figure 4—Checking Pinion Preload
20. Bearing cups (5) and (39) from the axle housing using a hammer and a punch.
 - Work the cups out of the housing evenly, moving the punch back and forth between one side of the cup and the other. Use the slots provided for this purpose.

Do not steam clean drive parts having ground and polished surfaces such as gears, bearings, and shafts. These parts should be cleaned in a suitable solvent. All parts should be disassembled before cleaning.

Parts should be thoroughly dried immediately after cleaning. Use soft, clean, lintless rags. Parts may be dried with compressed air. Do not allow the bearings to spin while drying them with compressed air.

It is very important to carefully and thoroughly inspect all drive unit parts before reassembly.

Thorough inspection of the drive parts for wear or stress and subsequent replacement of worn parts will eliminate costly drive component repair after reassembly.

AXLE HOUSING

- Inspect
 - The carrier bore for nicks or burrs that would prevent the outer diameter of the pinion seal from sealing. Remove any burrs that are found.
 - The bearing cup bores for nicks or burrs. Remove any burrs that are found.
 - The housing for cracks. Replace the housing if any cracks are found.
 - The housing for foreign material such as metal chips, dirt, or rust. Refer to "Cleaning" in this section.

DIFFERENTIAL

- Inspect
 - Pinion gear shaft for unusual wear.
 - Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
 - Thrust washers for wear.
 - The fit of the differential side gears in the differential case.
• The fit of the side gears on the axle shafts.
• Differential case for cracks and scoring.
• Replace all worn parts.

PINION AND RING GEAR

Inspect
• Pinion and ring gear teeth for cracking, chipping, scoring, or excessive wear.
• Pinion splines for wear.
• Pinion flange splines for wear.
• The fit of the pinion on the pinion flange.
• The sealing surface of the pinion flange for nicks, burrs, or rough tool marks which would cause damage to the seals' inside diameter and result in an oil leak.
• Replace all worn or broken parts.
• Ring and pinion gears are matched sets and are both replaced any time a replacement of either is necessary.

BEARINGS

Inspect
• Bearings visually and by feel.
• The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.
• The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.
• Bearing cups for wear, cracks, brinelling and scoring.
• Bearings and cups are only replaced as sets.
• If the rear axle was operated for an extended period of time with very loose bearings, the ring gear and drive pinion will also require replacement.
• Low mileage bearings may have minute scratches and pits on the rollers and the bearing cups from the initial preload. Do not replace a bearing for this reason.
• Bearing caps for cracks or chips.

SHIMS

Inspect
• Shims for cracks and chips. Damaged shims should be replaced with an equally sized service shim.

ASSEMBLY OF THE REAR AXLE

Install or Connect
Tools Required:
J 8608 Rear Pinion Bearing Cup Installer
J 8611-01 Front Pinion Bearing Cup Installer
J 8092 Driver Handle
1. Front pinion bearing cup (39) using J 8611-01 and J 8092 (figure 9).
2. Rear pinion bearing cup (5) using J 8608 and J 8092 (figure 10).

PINION DEPTH ADJUSTMENT

Tools Required:
J 8001 Dial Indicator Gage Set
J 21777-1 Arbor
J 21777-29 Gage Plate
J 21777-35 Rear Pilot Washer
J 21777-42 Front Pilot Washer
J 21777-43 Stud Assembly — Bolt
J 21777-45 Side Bearing Disc
Clean all the gage parts.
Lubricate the front and rear pinion bearings with axle lubricant.
Place the bearings (39) and (5) into the pinion bearing cups.
Install J 21777-35, J 21777-42, J 21777-29 and J 21777-43 to the pinion bore (figure 11).
Hold the stud stationary at the flats of the stud.
1. Clean all the gage parts.
2. Lubricate the front and rear pinion bearings with axle lubricant.
3. Place the bearings (39) and (5) into the pinion bearing cups.
5. Hold the stud stationary at the flats of the stud.
Tighten
• Stud nut to 2.2 N.m (20 in. lbs.).
6. Rotate the gage plate and bearings several complete revolutions to seat the bearings.

Figure 9—Front Pinion Bearing Cup Installation
Figure 10—Rear Pinion Bearing Cup Installation
7. Tighten the stud nut until a torque of 1.6 to 2.2 Nm (15 to 25 in. lbs.) is obtained to keep the gage plate in rotation.

8. Assemble J 21777-45, J 21777-1 Arbor, and J 8001 to the differential bearing bore as shown in figure 12.
 - The bearing bores must be clean and burr free.

9. Install the side bearing caps, and tighten the bolts finger tight.

10. Rotate the gage plate until the proper gaging area is parallel with the disks.

11. Position the gage shaft assembly in the carrier so that the dial indicator rod is centered on the gage area of the gage block.

12. Set the dial indicator at zero. Push the indicator down on the indicator shaft until the needle rotates approximately 3/4 of a turn to the right. Tighten the dial indicator in this position.

13. Rotate the gage shaft slowly back and forth until the dial indicator reads the greatest deflection (when the indicator needle is centered between movement to the left and to the right).

14. At the point of greatest deflection, set the dial indicator to zero. Repeat the rocking action of the gage shaft to verify the zero setting.

15. Rotate the gage shaft until the dial indicator rod does not touch the gage block.

16. Record the actual number on the dial indicator and not the number which represents how far the needle travels. This is the nominal pinion setting.
 EXAMPLE: If the indicator needle moved to the left 1.70 mm (0.067-inch) to a dial reading of 0.84 mm (0.033-inch) as shown in figure 13, record the dial reading of 0.84 mm (0.033-inch) not 1.70 mm (0.067-inch).

17. Check the pinion face for a pinion adjustment mark. This mark indicates the best running position for the pinion from the nominal setting.
 - If the pinion is stamped with a plus number, add that many thousandths to the nominal setting. If the nominal setting is 0.033-inch and the pinion is marked +2, the correct shim depth would be 0.033-inch + 0.002-inch = 0.035-inch.
 - If the pinion is stamped with a minus number, subtract that many thousandths from the nominal setting. If the nominal setting is 0.033-inch and the pinion is marked -2, the correct shim depth would be 0.033-inch – 0.002-inch = 0.031-inch.
 - If the pinion has no plus or minus marked on the pinion, use the nominal pinion setting to select a shim.

18. Remove bearing caps (10) and depth gaging tools.

19. Install the correct pinion shim (6) to the pinion according to this procedure.

PINION INSTALLATION

Tools Required:
- J 8809-01 Rear Pinion Bearing Cone Installer
- J 22388 Pinion Oil Seal Installer
- J 8614-01 Pinion Flange Remover
- J 5590 Rear Pinion Bearing Cone Installer

- The bearing cups should have been installed in "Pinion Depth Adjustment" in this section.

1. The pinion inner bearing (5) using J 8609-01.
 - Press the bearing onto the pinion until the bearing cone seats on the pinion shims.

 - Lubricate the pinion bearings with axle lubricant.

3. Pinion (7) to the axle housing.

4. Outer pinion bearing (39) onto the pinion using J 5590.
 - Hold the pinion forward from inside the case while driving the bearing onto the pinion.

5. Pinion oil seal (38) using J 22388 (figure 14).

6. Pinion flange (37) to the pinion by tapping it with a rawhide hammer until a few threads show through the pinion flange.

7. Pinion washer (36) and a new nut (35) while holding the pinion flange with J 8614-01 (figure 15).
Tighten

- The nut until the pinion end play is just taken up. Rotate the pinion while tightening the nut to seat the bearings. Once there is no end play in the pinion, the preload torque should be rechecked.
- Remove J 8614-01. Using an inch-pound torque wrench, check the pinion preload by rotating the pinion with the wrench. Preload should be at or below 2.3 to 2.8 N·m (20 to 25 in. lbs.) on new bearings, or 1.1 to 1.7 N·m (10 to 15 in. lbs.) for used bearings (figure 16).
- If the preload torque is below the preload given above, continue torquing the nut in small increments. Check the preload after each tightening. Each tightening increases the bearing preload by several pounds. If the bearing preload is exceeded, the pinion will have to be removed, and a new collapsible spacer installed.
- Once the preload has been obtained, rotate the pinion several times to assure that the bearings have seated. Recheck the preload, and adjust if necessary.

8. Differential case. Refer to "Backlash Adjustment" in this section.
DIFFERENTIAL CASE ASSEMBLY

Install or Connect (Figure 1)

Tools Required:
- J 8107-4 Differential Side Bearing Remover Plug
- J 8092 Driver Handle
- J 22761 Differential Side Bearing Installer

1. Side gear thrust washers (19) to the side gears (22).
2. Side gears (22) to the differential case (24).
 - Place the side gears in place on the same side as removed.
3. Pinion gears (21) to the differential without the thrust washers (20).
 - Place one pinion gear onto the side gears so that the holes in the pinion gears are 180 degrees apart.
 - Rotate the pinion gears into place, and verify that the pinion gears line up with the pinion shaft holes.
4. Pinion thrust washers (20).
 - Rotate the pinion gears toward the differential opening just enough to slide in the pinion thrust washers.
 - Check that the mating surfaces of the differential case and the ring gear are clean and burr free.
5. Ring gear (7) to the differential case (24).
 - Thread two left-hand threaded studs into the ring gear on opposite sides (figure 17).
 - Place the ring gear onto the case, and align the holes in the case with the studs.
 - Press the ring gear onto the case far enough to start the bolts using J 8107-4 to protect the differential from the press ram (figure 18).
6. New ring gear bolts (23).
 - Tighten the ring gear bolts alternately in stages gradually pulling the ring gear onto the differential case.

SIDE BEARING PRE-LOAD ADJUSTMENT

1. The ring gear bolts in sequence to 80 N·m (60 ft. lbs.).
2. Differential side bearings (8) using J 22761, J 8107-4 and J 8092 (figure 19).
 - Place J 8107-4 into the differential on the side opposite of bearing installation to protect the differential case.
 - Drive the bearing onto the case using J 22761 and J 8092.
3. Differential case (24) to the axle housing. Refer to "Side Bearing Preload Adjustment" in this section.

- The differential side bearing preload is adjusted by changing the thickness of both the left and right shims equally. This will maintain the original backlash.
- Production shims are cast iron and are not to be reused.
- Service spacers are 0.170 to 0.172-inch thick.
• Service shims are available from 0.040 to 0.100-inch.
• Be sure that the side bearing surfaces are clean and free of burrs.

Tool Required:
J 22779 Side Bearing Backlash Gage

1. Place the differential case and the bearing cups into the axle housing.
 • Lubricate the axle bearings with axle lubricant.
 • Support the case to keep it from falling into the axle housing.
2. Install the strap from J 22779 on the left bearing with the cap bolts. Tighten the bolts snugly.
3. Push the ring gear towards the pinion.
 • Engage the ring gear with the pinion tightly, to a backlash of 0.000 to 0.001-inch.
4. Insert J 22779 between the axle housing and the left bearing cup (figure 20).
5. Move the tool back and forth in the bore while turning the adjusting nut to the right until a noticeable drag is produced (figure 21).
 • Tighten the lock bolt on the side of the tool.

Figure 19—Side Bearing Installation

6. Install a service spacer (9) and a service shim (9) between the right bearing cup and the axle housing.
7. Determine bearing preload by inserting progressively larger feeler gage sizes between the carrier and the service shim.
 • Push the feeler gage downward so that it contacts the shim at the top and bottom, and then contacts the axle housing.
 • The point just before additional drag begins is the correct feeler gage thickness. This is the zero setting without preload.
8. Remove the strap, J 22779, the service spacer, service shim, feeler gage, and differential case from the axle housing.
9. Measure J 22779 in three places using a micrometer. Average the readings (figure 22).
10. Add the dimensions of the right side service spacer, service shim, and the feeler gage.

Figure 20—Installing Side Bearing Gaging Tool

Figure 21—Measuring Side Bearing Shim Requirements

Figure 22—Measuring the Gage Plate Thickness
11. For an initial backlash setting, move the ring gear away from the pinion by subtracting 0.010-inch from the ring gear side shim pack and adding 0.010-inch to the shim pack on the opposite side.
12. To obtain the proper preload on the side bearings add 0.10 mm (0.004-inch) to the measurement of each shim pack.
13. Install the differential. Refer to "Backlash Adjustment" in this section.

BACKLASH ADJUSTMENT
1. Install the differential case, bearing cups, spacers, and shims as determined from the "Side Bearing Preload Adjustment" earlier in this section (figure 23).
 • Tap the final shim into position, using a soft faced hammer.
2. Rotate the case several times to seat the bearings.
3. Install a dial indicator to the case using a magnetic base.
4. Place the indicator stem at the heel end of a tooth.
 • Set the dial indicator so that the stem is in line with the gear rotation and perpendicular to the tooth angle (figure 24).
5. Install the differential caps (10) and bolts (18).

Tighten
• The bolts to 80 N m (60 ft. lbs.).
6. Check and record the backlash at three or four points around the ring gear.
 • The pinion must be held stationary when checking backlash.
 • The backlash should be the same at each point within 0.05 mm (0.002-inch). If the backlash varies more than 0.05 mm (0.002-inch), check for burrs, a distorted case flange, uneven bolting conditions, or foreign matter between the case and the ring gear.
7. Backlash at the minimum lash point measured should be between 0.13 and 0.23 mm (0.005 and 0.009-inch) for all new gear sets.

8. If the backlash is not within specifications, move the ring gear in or out from the pinion by increasing the thickness of one shim, and decreasing the thickness of the other shim by the same amount. This will maintain the correct rear axle side bearing preload.
 • Moving 0.003-inch worth of shim from one side of the differential to the other will change the backlash adjustment by 0.002-inch.
9. Recheck the backlash and correct as necessary.

FINAL ASSEMBLY
Install or Connect (Figure 1)
1. Drive axles. Refer to the proper service manual.
2. A new cover gasket and the cover (12).
Tighten
• The cover bolts (14) to 27 N m (20 ft. lbs.).
3. Axle housing to the vehicle. Refer to the proper service manual.
4. Lubricant to the rear axle.

GEAR TOOTH PATTERN CHECK
Checking the ring gear to pinion tooth pattern is to be done only after setting up the axle according to the methods in this section. The pattern check is NEVER to be used as an initial check, or instead of checking pinion depth and backlash adjustments. This check is only to be used to verify the correct adjustment of the gear set after setup.
1. Wipe all oil out of the carrier, and carefully clean each tooth of the ring gear (figure 25).
2. Use gear marking compound 1052351 or equivalent and apply this mixture sparingly to all ring gear teeth, using a medium-stiff brush. When properly used, the area of pinion tooth contact will be visible when hand load is applied.
3. Tighten the bearing cap bolts to the specified torque.
ADJUSTMENTS AFFECTING TOOTH CONTACT

Two adjustments can be made which will affect tooth contact pattern: backlash, and the position of the drive pinion in the carrier. The effects of bearing preloads are not readily apparent on hand loaded tooth contact pattern tests; however, these adjustments should be within specifications before proceeding with backlash and drive pinion adjustments.

The position of the drive pinion is adjusted by increasing or decreasing the distance between the pinion head and the centerline of the ring gear. Decreasing the distance will move the pinion closer to the centerline of the ring gear. Increasing the distance will move the pinion farther away from the centerline of the ring gear.

Backlash is adjusted by means of the side bearing adjusting shims which move the entire case and ring gear assembly closer to, or farther from, the drive pinion. (The adjusting shims are also used to set side bearing preload).

If the thickness of the right shim is increased (along with decreasing the left shim thickness), backlash will increase.

The backlash will decrease if the left shim thickness is increased (along with a decrease in right shim thickness).

4. Expand the brake shoes until a torque of 40 to 50 ft. lbs. is required to turn the pinion.

A test made without loading the gears will not give a satisfactory pattern. Turn the pinion flange with a wrench so that the ring gear rotates one full revolution, then reverse the rotation so that the ring gear rotates one revolution in the opposite direction.

5. Observe the pattern on the ring gear teeth and compare this with figure 26.

Figure 25—Gear Tooth Nomenclature

Figure 26—Gear Tooth Pattern
4B2-12 8 1/2-INCH RING GEAR

SPECIFICATIONS

8 1/2-INCH RING GEAR AXLE

<table>
<thead>
<tr>
<th>FASTENER</th>
<th>N·m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Gear Bolts</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>Bearing Cap Bolts</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>Axle Cover Bolts</td>
<td>27</td>
<td>20</td>
</tr>
</tbody>
</table>

SPACER AND SHIM SIZES

<table>
<thead>
<tr>
<th>SIZE</th>
<th>DIFFERENTIAL SIDE BEARING SPACER</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.170-inch</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIZE</th>
<th>DIFFERENTIAL SIDE BEARING SHIM KITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.064-0.070-inch</td>
<td></td>
</tr>
<tr>
<td>0.072-0.078-inch</td>
<td></td>
</tr>
<tr>
<td>0.080-0.086-inch</td>
<td></td>
</tr>
<tr>
<td>0.088-0.094-inch</td>
<td></td>
</tr>
<tr>
<td>0.096-0.100-inch</td>
<td></td>
</tr>
<tr>
<td>0.052-0.056-inch</td>
<td></td>
</tr>
<tr>
<td>0.056-0.063-inch</td>
<td></td>
</tr>
<tr>
<td>0.040-0.044-inch</td>
<td></td>
</tr>
<tr>
<td>0.046-0.050-inch</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIZE</th>
<th>PINION BEARING SHIM KITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.020-0.024-inch</td>
<td></td>
</tr>
<tr>
<td>0.025-0.029-inch</td>
<td></td>
</tr>
<tr>
<td>0.030-0.034-inch</td>
<td></td>
</tr>
<tr>
<td>0.035-0.039-inch</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIZE</th>
<th>LUBRICANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>.80W-90 GL-5</td>
<td></td>
</tr>
</tbody>
</table>
SPECIAL TOOLS

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Front Pinion Bearing Cup Installer</td>
<td>J-8611-01</td>
</tr>
<tr>
<td>2.</td>
<td>Rear Pinion Bearing Cone Remover</td>
<td>J-8612-B</td>
</tr>
<tr>
<td>3.</td>
<td>Driver Handle</td>
<td>J-8092</td>
</tr>
<tr>
<td>4.</td>
<td>Dial Indicator Set</td>
<td>J-8001</td>
</tr>
<tr>
<td>5.</td>
<td>Rear Pinion Bearing Cone Installer</td>
<td>J-8609-01</td>
</tr>
<tr>
<td>6.</td>
<td>Pinion Flange Remover</td>
<td>J-8614-01</td>
</tr>
<tr>
<td>7.</td>
<td>Differential Side Bearing Remover Plug</td>
<td>J-8107-4</td>
</tr>
<tr>
<td>8.</td>
<td>Rear Pinion Bearing Remover Plug</td>
<td>J-8608</td>
</tr>
<tr>
<td>9.</td>
<td>Pinion Oil Seal Installer</td>
<td>J-22888</td>
</tr>
<tr>
<td>10.</td>
<td>J-22399</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>J-22761</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Side Bearing Backlash Gauge</td>
<td>J-22779</td>
</tr>
<tr>
<td>13.</td>
<td>Rear Pinion Bearing Cone Installer</td>
<td>J-5590</td>
</tr>
<tr>
<td></td>
<td>Not Shown:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J-21777-1 Arbor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J-21777-29 Gauge Plate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J-21777-35 Rear Pilot Washer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J-21777-42 Front Pilot Washer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J-21777-43 Stud Assembly—Bolt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J-21777-45 Side Bearing Disc</td>
<td></td>
</tr>
</tbody>
</table>

F-04660
SECTION 4B3

9½-INCH RING GEAR

DESCRIPTION

The corporate 9½-inch ring gear rear axle uses a conventional ring and pinion gear set to transmit the driving force of the engine to the rear wheels. This gear set transfers this driving force at a 90 degree angle from the propeller shaft to the drive shafts.

This axle is semi-floating. The axle shafts are supported at the wheel end of the shaft by a roller bearing that is pressed into the housing. The shafts are retained into the housing by retaining clips within the differential. The pinion gear is supported by two tapered roller bearings. The pinion depth is set by a shim pack located between the gear end of the pinion and the roller bearing that is pressed onto the pinion. The pinion bearing preload is set by crushing a collapsible spacer between the bearings in the axle housing.

The ring gear is bolted onto the differential case with left-hand thread bolts.

The differential case is supported in the case by two tapered roller bearings. The differential and ring gear are located in relationship to the pinion by using selective shims between the bearing and the axle housing. To move the ring gear, shims are deleted from one side and an equal amount are added to the other side. The differential bearing preload is set by a threaded differential bearing adjusting nut located between the axle housing and the differential bearing cap. Two bearing caps are used to hold the differential into the rear axle housing.

The differential is used to allow the wheels to turn at different rates of speed while the rear axle continues to transmit the driving force. This prevents tire scuffing when going around corners and prevents premature wear on internal axle parts.

The rear axle is sealed with a pinion seal, a seal at each axle shaft end, and by RTV sealant between the rear cover and the axle housing.

All corporate rear axles are identified by the part number on the right axle tube near the carrier. The carrier cover does not have a drain plug.

CHECKING THE AXLE BEFORE DISASSEMBLY

Inspect

- Remove the axle cover from the rear axle and drain the axle lubricant into a suitable container.

1. The ring gear backlash. Refer to "Backlash Adjustment" in this section. This information can be used to determine the cause of the axle problem. It will also help when setting up the shim packs for locating and preloading the differential case.

2. The case for metal chips and shavings. Determine where these chips and shavings come from, such as a broken gear or bearing cage.

Determine the cause of the axle problem before disassembly if possible.

DISASSEMBLY OF THE REAR AXLE

Remove or Disconnect (Figure 1)

Tools Required:
- J 8107-3 Differential Side Bearing Remover Plug
- J 22888 Differential Side Bearing Remover
- J 8614-01 Pinion Flange Remover
- J 22910-01 Rear Pinion Bearing Cone Remover

- Place the rear axle in a suitable support.

1. The differential cover bolts (24) and the differential cover (25).
 - Drain the gear lubricant into a proper container.

2. Axle shafts (3). Refer to the proper service manual.

3. Outer wheel bearings (5) and seals (14). Refer to the proper service manual.
1. Brake Drum
2. Wheel Stud
3. Axle Shaft
4. Rear Axle Seal
5. Axle Shaft Bearing
6. Pinion Nut
7. Washer
8. Pinion Flange
9. Pinion Oil Seal
10. Pinion Front Bearing
11. Collapsible Spacer
12. Axle Housing
13. Pinion Rear Bearing
14. Shim
15. Ring and Pinion Gear Set
16. Adjusting Nut Lock
17. Bearing Adjusting Nut
18. Lock Bolt
19. Bearing Cap
20. Bolt
21. Shim Pack (including spacer)
22. Differential Side Bearing
23. Brake Line Clip
24. Bolt
25. Cover
26. Ring Gear Bolt
27. Differential Case
28. Pinion Shaft
29. Pinion Shaft Lock Screw
30. Pinion Thrust Washer
31. Pinion Gear
32. Side Gear Thrust Washer
33. Side Gear
34. Brake Backing Plate
35. Split Washer
36. Bolt
37. “C” Clip

Figure 1—Rear Axle Components

4. Pinion shaft lock screw (29).
5. Pinion shaft (28).
6. Differential pinion (31) and side gears (33).
 - Roll the pinion gears out of the case with the pinion thrust washer (30).
 - Remove the side gears and the side gear thrust washers (32). Mark the gears and the differential case as left and right.
7. Adjusting nut lock bolt (18).
8. Adjusting nut lock (16).
 - Loosen the adjusting nut (17).
 - Mark the caps and the housing as left and right.

NOTICE: Be careful when prying the differential case out of the axle housing so not to damage the cover gasket surface. The differential case must be supported when it is being removed to prevent the case from falling and damaging the case.

 - Pry the case from the axle housing at the differential “window” (figure 2).
12. Bearing outer races (21), shims (21) and bearing adjusting nut (17).
 - Mark the races and the shims as left and right, and place them with the bearing caps.
13. Differential side bearings using J 8107-3 and J 22888 (figure 3).
 - The jaws of J 22888 must pull from beneath the bearing cone and not the cage. Use the slots provided for this purpose.
14. Ring gear bolts (26).
 - Ring gear bolts use left handed threads.
NOTICE: Do not pry the ring gear from the case. This will damage the ring gear and the differential case.

15. Ring gear (15) from the differential.
 - Drive the ring gear off with a brass drift if necessary.

Inspect
 - Drive pinion bearing preload (figure 4).
 - Pinion assembly for looseness by moving it back and forth. (Looseness indicates excessive bearing wear).

16. Pinion flange nut (6) and washer (7) using J 8614-01 to hold the pinion flange (figure 5).
17. Pinion flange using J 8614-01 (figure 6).
18. Pinion (15) from the axle housing.
 - Thread the pinion nut halfway onto the pinion.
 - Replace the differential cover (34) with two bolts (35) to keep the pinion from falling to the floor.
Figure 7—Removing the Drive Pinion

- Drive the pinion out of the housing with a hammer and a soft drift (figure 7).
- Remove the cover (25) and the pinion (15).
19. Collapsible spacer (11) from the pinion.
20. Outer seal (9) and outer pinion bearing (10).
21. Inner bearing (13) and shim (14) from the pinion.
 - Press the bearing off the pinion using J 22912-01 (figure 8).
 - Remove the shim.
22. Bearing cups (10) and (13) from the axle housing using a hammer and a punch.
 - Work the cups out of the housing evenly, moving the punch back and forth between one side of the cup and the other.

CLEANING

Do not steam clean drive parts having ground and polished surfaces such as gears, bearings, and shafts. These parts should be cleaned in a suitable solvent. All parts should be disassembled before cleaning.

Parts should be thoroughly dried immediately after cleaning. Use soft, clean, lintless rags. Parts may be dried with compressed air. Do not allow the bearings to spin while drying them with compressed air.

Figure 8—Removing the Pinion Rear Bearing

INSPECTION

It is very important to carefully and thoroughly inspect all drive unit parts before reassembly.
Thorough inspection of the drive parts for wear or stress and subsequent replacement of worn parts will eliminate costly drive component repair after reassembly.

AXLE HOUSING

Inspect
- The carrier bore for nicks or burrs that would prevent the outer diameter of the pinion seal from sealing. Remove any burrs that are found.
- The bearing cup bores for nicks or burrs. Remove any burrs that are found.
- The housing for cracks. Replace the housing if any cracks are found.
- The housing for foreign material such as metal chips, dirt, or rust. Refer to “Cleaning” in this section.

DIFFERENTIAL

Inspect
- Pinion gear shaft for unusual wear.
- Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
- Thrust washers for wear.
- The fit of the differential side gears in the differential case.
- The fit of the side gears on the axle shafts.
- Differential case for cracks and scoring.
- Replace all worn parts.

PINION AND RING GEAR

Inspect
- Pinion and ring gear teeth for cracking, chipping, scoring, or excessive wear.
- Pinion splines for wear.
- Pinion flange splines for wear.
- The fit of the pinion on the pinion flange.
- The sealing surface of the pinion flange for nicks, burrs, or rough tool marks which would cause damage to the seals’ inside diameter and result in an oil leak.
- Replace all worn or broken parts.
- Ring and pinion gears are matched sets and are both replaced any time a replacement of either is necessary.

BEARINGS

Inspect
- Bearings visually and by feel.
- The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.
- The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.
- Bearing cups for wear, cracks, brinelling and scoring.
- Bearings and cups are only replaced as sets.
Figure 9—Front Pinion Bearing Cup Installation

- If the rear axle was operated for an extended period of time with very loose bearings, the ring gear and drive pinion will also require replacement.
- Low mileage bearings may have minute scratches and pits on the rollers and the bearing cups from the initial preload. Do not replace a bearing for this reason.
- Bearing caps for cracks or chips.

SHIMS

Inspect

- Shims for cracks and chips. Damaged shims should be replaced with an equally sized service shim.

ASSEMBLY OF THE REAR AXLE

Install or Connect (Figures 9 and 10)

Tools Required:
- J 7817 Front Pinion Bearing Cup Installer
- J 22306 Rear Pinion Bearing Cup Installer

1. Front pinion bearing cup (10) using J 7817 and J 8092.
2. Rear pinion bearing cup (13) using J 22306 and J 8092.

PINION DEPTH ADJUSTMENT

Tools Required:
- J 8001 Dial Indicator Gage Set
- J 21777-1 Arbor
- J 21777-8 Rear Pilot Washer
- J 21777-42 Front Pilot Washer
- J 21777-43 Stud Assembly — Bolt
- J 21777-85 Gage Plate
- J 21777-86 Side Bearing Disc

1. Clean all the gage parts.
2. Lubricate the front and rear pinion bearings with axle lubricant.
3. Place the bearings (10) and (13) into the pinion bearing cups.
4. Install J 21777-8, J 21777-42, J 21777-85 and J 21777-43 to the pinion bore (figure 11).
5. Hold the stud stationary at the flats of the stud.

Tighten

- Stud nut to 2.2 N·m (20 in. lbs.).
6. Rotate the gage plate and bearings several complete revolutions to seat the bearings.
7. Tighten the stud nut until a torque of 1.6 to 2.2 N·m (15 to 25 in. lbs.) is obtained to keep the gage plate in rotation.
8. Assemble J 21777-86, J 21777-1 Arbor, and J 8001 to the differential bearing bore as shown in figure 12.
 - The bearing bores must be clean and burr free.
9. Install the side bearing caps, and tighten the bolts finger tight.
10. Rotate the gage plate until the proper gaging area is parallel with the disks.
11. Position the gage shaft assembly in the carrier so that the dial indicator rod is centered on the gaging area of the gage block.
12. Set the dial indicator at zero. Push the indicator down on the indicator shaft until the needle rotates approximately ¾ of a turn to the right. Tighten the dial indicator in this position (figure 13).

13. Rotate the gage shaft slowly back and forth until the dial indicator reads the greatest deflection (when the indicator needle is centered between movement to the left and to the right).

14. At the point of greatest deflection, set the dial indicator to zero. Repeat the rocking action of the gage shaft to verify the zero setting.

15. Rotate the gage shaft until the dial indicator rod does not touch the gage block.

16. Record the actual number on the dial indicator and not the number which represents how far the needle travels. This is the nominal pinion setting.

EXAMPLE: If the indicator needle moved to the left 1.70 mm (0.067-inch) to a dial reading of 0.84 mm (0.033-inch) as shown in figure 13, record the dial reading of 0.84 mm (0.033-inch) not 1.70 mm (0.067-inch).

17. Check the pinion face for a pinion adjustment mark. This mark indicates the best running position for the pinion from the nominal setting.
- If the pinion is stamped with a plus number, add that many thousandths to the nominal setting. If the nominal setting is 0.033-inch and the pinion is marked +2, the correct shim depth would be 0.033-inch + 0.002-inch = 0.035-inch.
- If the pinion is stamped with a minus number, subtract that many thousandths from the nominal setting. If the nominal setting is 0.033-inch and the pinion is marked -2, the correct shim depth would be 0.033-inch - 0.002-inch = 0.031-inch.
- If the pinion has no plus or minus marked on the pinion, use the nominal pinion setting to select a shim.

18. Remove bearing caps (10) and depth gaging tools.

19. Install the correct pinion shim (6) to the pinion according to this procedure.
PINION INSTALLATION

Install or Connect

Tools Required:
- J 22388 Pinion Oil Seal Installer
- J 22804-1 Pinion Oil Seal Spacer
- J 5590 Rear Pinion Bearing Cone Installer

- The bearing cups should have been installed in “Pinion Depth Adjustment” in this section.

1. Install the pinion inner bearing (13) to the pinion.
 - Press the bearing onto the pinion until the bearing cone seats on the pinion shim(s) (figure 14).

2. Insert a new collapsible spacer (11).

3. Lubricate the pinion bearings with axle lubricant.

4. Install the pinion (15) to the axle housing.

5. Install the outer pinion bearing (10) onto the pinion using J 5590.
 - Hold the pinion forward from inside the case while driving the bearing onto the pinion.

6. Install the pinion oil seal (9) using J 22388 and J 22804-01 (figure 15).

7. Install the pinion flange (8) to the pinion by tapping it with a rawhide hammer until a few threads show through the pinion flange.

8. Install the pinion washer (7) and a new nut (6) while holding the pinion flange with J 8614-01 (figure 16).

Tighten

- Tighten the nut until the pinion end play is just taken up. Rotate the pinion while tightening the nut to seat the bearings. Once there is no end play in the pinion, the preload torque should be rechecked.

- Remove J 8614-01. Using an inch-pound torque wrench, check the pinion preload by rotating the pinion with the wrench. Preload should be at or below 2.3 to 2.8 N m (20 to 25 in. lbs.) on new bearings, or 1.1 to 1.7 N m (10 to 15 in. lbs.) for used bearings (figure 17).

- If the preload torque is below the preloads given above, continue torquing the nut in small increments. Check the preload after each
tightening. Each tightening increases the bearing preload by several pounds. If the bearing preload is exceeded, the pinion will have to be removed, and a new collapsible spacer installed.

- Once the preload has been obtained, rotate the pinion several times to assure that the bearings have seated. Recheck the preload, and adjust if necessary.

DIFFERENTIAL CASE ASSEMBLY

** Install or Connect (Figure 1)**

Tools Required:
- J 8107-3 Differential Side Bearing Removal Plug
- J 8092 Driver Handle
- J 29710 Differential Side Bearing Installer

- Lubricate all parts with rear axle lubricant.

1. Side gear thrust washers (32) to the side gears (33).
2. Side gears (33) to the differential case (27).
 - Place the side gears in place on the same side as removed.
3. Pinion gears (31) to the differential without the thrust washers (30).
 - Place the pinion gears onto the side gears so that the holes in the pinion gears are 180 degrees apart.
 - Rotate the pinion gears into place, and verify that the pinion gears line up with the pinion shaft holes.
4. Pinion thrust washers (30).
 - Rotate the pinion gears toward the differential opening just enough to slide in the pinion thrust washers.
 - Check that the mating surfaces of the differential case and the ring gear are clean and burr free.
5. Ring gear (15) to the differential case (27).
 - Thread two left-hand threaded studs into the ring gear on opposite sides.
 - Place the ring gear onto the case, and align the holes in the case with the studs (figure 18).
 - Press the ring gear onto the case far enough to start the bolts using J 8107-3 to protect the differential from the press ram (figure 19).
6. New ring gear bolts (26).
 - Tighten the ring gear bolts alternately in stages gradually pulling the ring gear onto the differential case.

Tighten

- The ring gear bolts in sequence to 145 Nm (105 ft. lbs.).
7. Differential side bearings (22) using J 29710, J 8107-3 and J 8092 (figure 20).
 - Place J 8107-3 into the differential on the side opposite of bearing installation to protect the differential case.
 - Drive the bearing onto the case using J 29710 and J 8092.
SIDE BEARING PRELOAD ADJUSTMENT
- The differential side bearing preload is adjusted by an adjusting nut in the differential bearing bore. The bore and the bearing cap provide the mating threads for the bearing nut.
- The differential must be initially preloaded in order to determine the backlash of the gear set. After the backlash has been set, the final bearing preload is set.

Install or Connect
Tool Required:
J 24429 Side Bearing Backlash Spanner
Wrench
1. The bearing cups (22) to the differential bearings in their original locations.
2. Differential assembly to the axle housing.
3. Bearing shims (21).
 - Push the case away from the pinion towards the axle housing.
4. Adjusting nut (17).
 - Tighten the adjusting nut using J 24429.
 - Turn the pinion to seat the bearings.
 - Back off the adjusting nut.
5. Bearing caps (19) and bolts (20) in their original positions.
 - Assemble the caps loosely.
 - Turn the adjusting nut until the nut contacts the shim. Then tighten the nut three additional slots (figure 21).
6. Adjusting nut lock (16) and lock bolt (18).
7. Adjust the side bearing preload. Refer to "Side Bearing Preload Adjustment" earlier in this section.

BACKLASH ADJUSTMENT
1. Install a dial indicator to the case using a magnetic base.
2. Place the indicator stem at the heel end of a tooth.
 - Set the dial indicator so that the stem is in line with the gear rotation and perpendicular to the tooth angle.
3. Check and record the backlash at three or four points around the ring gear (figure 22).
 - The pinion must be held stationary when checking backlash.
 - The backlash should be the same at each point within 0.05 mm (0.002-inch). If the backlash varies more than 0.05 mm (0.002-inch), check for burrs, a distorted case flange, uneven bolting conditions, or foreign matter between the case and the ring gear.
4. Backlash at the minimum lash point measured should be between 0.125-0.200 mm ± 0.050 mm (0.005-0.008-inch ± 0.002-inch).
5. If the reading is too high, increase the shim pack between the differential flange side of the case and the axle housing (opposite the adjusting nut side).
6. If the reading is too low, decrease the shim pack between the differential flange side of the case and the axle housing (opposite the adjusting nut side).
7. Adjust the side bearing preload. Refer to "Side Bearing Preload Adjustment" earlier in this section.

FINAL ASSEMBLY
Install or Connect (Figure 1)
1. Drive axles. Refer to the proper service manual.
2. RTV to the axle housing cover.
3. Cover (25) and bolts (24) to the axle housing.
 - The cover bolts (24) to 27 N m (20 ft. lbs.).
4. Axle housing to the vehicle. Refer to the proper service manual.
5. Lubricant to the rear axle.
Backlash is adjusted by means of the side bearing adjusting shims which move the entire case and ring gear assembly closer to, or farther from, the drive pinion. (The adjusting shims are also used to set side bearing preload).

If the thickness of the right shim is increased (along with decreasing the left shim thickness), backlash will increase.

The backlash will decrease if the left shim thickness is increased (along with a decrease in right shim thickness).

Figure 23—Gear Tooth Nomenclature

GEAR TOOTH PATTERN CHECK

Checking the ring gear to pinion tooth pattern is to be done only after setting up the axle according to the methods in this section. The pattern check is NEVER to be used as an initial check, or instead of checking pinion depth and backlash adjustments. This check is only to be used to verify the correct adjustment of the gear set after setup.

1. Wipe all oil out of the carrier, and carefully clean each tooth of the ring gear (figure 23).
2. Use gear marking compound 1052351 or equivalent and apply this mixture sparingly to all ring gear teeth, using a medium-stiff brush. When properly used, the area of pinion tooth contact will be visible when hand load is applied.
3. Tighten the bearing cap bolts to the specified torque.
4. Expand the brake shoes until a torque of 40 to 50 ft. lbs. is required to turn the pinion.
 A test made without loading the gears will not give a satisfactory pattern. Turn the pinion flange with a wrench so that the ring gear rotates one full revolution, then reverse the rotation so that the ring gear rotates one revolution in the opposite direction.
5. Observe the pattern on the ring gear teeth and compare this with figure 24.

ADJUSTMENTS AFFECTING TOOTH CONTACT

Two adjustments can be made which will affect tooth contact pattern: backlash, and the position of the drive pinion in the carrier. The effects of bearing preloads are not readily apparent on hand loaded tooth contact pattern tests; however, these adjustments should be within specifications before proceeding with backlash and drive pinion adjustments.

The position of the drive pinion is adjusted by increasing or decreasing the distance between the pinion head and the centerline of the ring gear. Decreasing the distance will move the pinion closer to the centerline of the ring gear. Increasing the distance will move the pinion farther away from the centerline of the ring gear.
9\frac{1}{2}-INCH RING GEAR 4B3-11

Figure 24—Gear Tooth Pattern
SPECIFICATIONS

9 1/2-INCH RING GEAR AXLE

FASTENER

<table>
<thead>
<tr>
<th>Description</th>
<th>N·m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Gear Bolts</td>
<td>145</td>
<td>105</td>
</tr>
<tr>
<td>Bearing Cap Bolts</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>Axle Cover Bolts</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Adjusting Nut Lock Bolt</td>
<td>30</td>
<td>22</td>
</tr>
</tbody>
</table>

SPACER AND SHIM SIZES

<table>
<thead>
<tr>
<th>Description</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Side Bearing Spacer</td>
<td>0.170-inch (0.040-0.044\text{-inch})</td>
</tr>
<tr>
<td>Differential Side Bearing Shim Kits</td>
<td></td>
</tr>
<tr>
<td>5.59 mm (0.220\text{-inch})</td>
<td></td>
</tr>
<tr>
<td>5.64 mm (0.222\text{-inch})</td>
<td></td>
</tr>
<tr>
<td>5.69 mm (0.224\text{-inch})</td>
<td></td>
</tr>
<tr>
<td>5.74 mm (0.226\text{-inch})</td>
<td></td>
</tr>
<tr>
<td>5.79 mm (0.228\text{-inch})</td>
<td></td>
</tr>
<tr>
<td>5.84 mm (0.230\text{-inch})</td>
<td></td>
</tr>
<tr>
<td>5.89 mm (0.232\text{-inch})</td>
<td></td>
</tr>
<tr>
<td>5.94 mm (0.234\text{-inch})</td>
<td></td>
</tr>
<tr>
<td>5.99 mm (0.236\text{-inch})</td>
<td></td>
</tr>
<tr>
<td>6.05 mm (0.238\text{-inch})</td>
<td></td>
</tr>
<tr>
<td>6.10 mm (0.240\text{-inch})</td>
<td></td>
</tr>
<tr>
<td>6.15 mm (0.242\text{-inch})</td>
<td></td>
</tr>
<tr>
<td>6.20 mm (0.244\text{-inch})</td>
<td></td>
</tr>
<tr>
<td>6.25 mm (0.246\text{-inch})</td>
<td></td>
</tr>
<tr>
<td>6.30 mm (0.248\text{-inch})</td>
<td></td>
</tr>
<tr>
<td>6.35 mm (0.250\text{-inch})</td>
<td></td>
</tr>
<tr>
<td>6.40 mm (0.252\text{-inch})</td>
<td></td>
</tr>
<tr>
<td>6.45 mm (0.254\text{-inch})</td>
<td></td>
</tr>
<tr>
<td>6.50 mm (0.256\text{-inch})</td>
<td></td>
</tr>
<tr>
<td>6.55 mm (0.258\text{-inch})</td>
<td></td>
</tr>
<tr>
<td>Pinion Bearing Shim Kit</td>
<td>(0.508-0.5842\text{ mm (0.020-0.023-inch)})</td>
</tr>
<tr>
<td></td>
<td>(0.6096-0.7112\text{ mm (0.024-0.028-inch)})</td>
</tr>
<tr>
<td></td>
<td>(0.7366-0.8382\text{ mm (0.029-0.033-inch)})</td>
</tr>
<tr>
<td></td>
<td>(0.8636-0.9398\text{ mm (0.034-0.037-inch)})</td>
</tr>
</tbody>
</table>

Lubricant

- .80W-90 GL-5

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Pinion Oil Seal Spacer</td>
<td>8.</td>
<td>J-22804-1</td>
</tr>
<tr>
<td>4.</td>
<td>Rear Pinion Bearing Cone Remover</td>
<td>10.</td>
<td>J-22912-01</td>
</tr>
<tr>
<td>5.</td>
<td>Rear Pinion Bearing Cone Installer</td>
<td>11.</td>
<td>J-5590</td>
</tr>
<tr>
<td></td>
<td>Driver Handle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Dial Indicator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Differential Side Bearing Installer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Side Bearing Remover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Rear Pinion Bearing Cone Installer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Pinion Oil Seal Installer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Pinion Flange Remover</td>
<td></td>
<td>J-8614-01</td>
</tr>
<tr>
<td>14.</td>
<td>J-22306 Rear Pinion Bearing Cup Installer (Not Illustrated)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Refer to Figure 53 for these tools:
- J-21777-1 Arbor
- J-21777-8 Rear Pilot Washer
- J-21777-42 Front Pilot Washer
- J-21777-43 Stud Assembly — Bolt
- J-21777-85 Gauge Plate
- J-21777-86 Side Bearing Disc

F-04661
4B3-14 9\(\frac{1}{2}\) -INCH RING GEAR
SECTION 4B4
10 1/2-INCH RING GEAR

DESCRIPTION

The corporate 10 1/2-inch ring gear rear axle uses a conventional ring and pinion gear set to transmit the driving force of the engine to the rear wheels. This gear set transfers this driving force at a 90 degree angle from the propeller shaft to the drive shafts.

This axle is full-floating. The axle shaft is supported at the wheel ends by the wheel hubs. The bolts that attach the shaft to the hub, support the axle at the hub. The splined end of the shaft is supported by the differential.

The pinion gear is supported in a pinion cage by three bearings: a pinion front bearing, a pinion rear bearing, and pilot bearing. The pinion cage is separate from the axle housing. Selective shims are used between the pinion cage and the axle housing to set the pinion depth. The pinion bearing preload is set by crushing a collapsible spacer between the front and rear bearings in the pinion cage.

The ring gear is bolted onto the differential case with left-hand thread bolts.

The differential case is supported in the case by two tapered roller bearings. The differential and ring gear are located in relationship to the pinion by using two different bearing adjusting nuts. These allow the differential to be moved from side to side by adjusting the nuts in or out. The differential side bearing preload is accomplished by tightening the differential bearing adjusting nuts after the ring gear backlash has been set. Two bearing caps are used to hold the differential into the rear axle housing as well as to supply half of the threads for the bearing adjusting nuts.

The differential is used to allow the wheels to turn at different rates of speed while the rear axle continues to transmit the driving force. This prevents tire scuffing when going around corners and prevents premature wear on internal axle parts.

The rear axle is sealed with a pinion seal, a gasket at each axle shaft end, and by a gasket between the rear cover and the axle housing.

All corporate rear axles are identified by the part number on the right axle tube near the carrier. The carrier cover does not have a drain plug.

CHECKING THE AXLE BEFORE DISASSEMBLY

Inspect

Remove the axle cover from the rear axle and drain the axle lubricant into a suitable container.

1. Ring gear backlash. Refer to “Backlash Adjustment” in this section. This information can be used to determine the cause of the axle problem. It will also help when setting up the shim packs for locating and preloading the differential case.

2. Case for metal chips and shavings. Determine where these chips and shavings come from; such as a broken gear or bearing cage.

Determine the cause of the axle problem before disassembly if possible.
DISASSEMBLY OF THE REAR AXLE

++ Remove or Disconnect (Figure 1)

Tools Required:
- J 8107 Side Bearing Remover Plug
- J 22888 Differential Side Bearing Remover
- J 8614-01 Pinion Flange Remover
- J 22912-01 Rear Pinion Cone Remover

1. Place the rear axle in a suitable support.
2. Differential cover bolts (25) and the differential cover (24).
3. Drain the gear lubricant into a proper container.
4. Axle shafts (47). Refer to the proper service manual.
5. Adjusting nut lock bolts (22).
6. Adjusting nut lock (21).
7. Differential bearing cap bolts (28) and washers (27).
9. Mark the caps and the housing as left and right.
10. Adjusting nuts (19) and bearing cups (18).
11. Mark the nuts and cups as left and right.
14. The jaws of J 22888 must pull from beneath the bearing cone and not the cage.
15. Scribe a mark across the differential case.
16. Ring gear bolts (36) and washers (35).

NOTICE: Do not pry the ring gear from the case. This will damage the ring gear and the differential case.

18. Ring gear (14) from the differential.
19. Drive the ring gear off with a brass drift if necessary.
20. Case halves.
21. Differential side gears (29) and thrust washers (30).
22. Mark the gears and the case halves as left and right.
24. Differential pinion gears (32) and thrust washers (31) from the spider (33).

CLEANING

Do not steam clean drive parts having ground and polished surfaces such as gears, bearings, and shafts. These parts should be cleaned in a suitable solvent. All parts should be disassembled before cleaning.

Parts should be thoroughly dried immediately after cleaning. Use soft, clean, lintless rags. Parts may be dried with compressed air. Do not allow the bearings to spin while drying them with compressed air.

INSPECTION

It is very important to carefully and thoroughly inspect all drive unit parts before reassembly.

Thorough inspection of the drive parts for wear or stress and subsequent replacement of worn parts will eliminate costly drive component repair after reassembly.

AXLE HOUSING

Inspect

- The carrier bore for nicks or burrs that would prevent the outer diameter of the pinion seal from sealing. Remove any burrs that are found.
- The bearing cup bores for nicks or burrs. Remove any burrs that are found.
- The housing for cracks. Replace the housing if any cracks are found.
- The housing for foreign material such as metal chips, dirt, or rust. Refer to "Cleaning" in this section.

DIFFERENTIAL

Inspect

- Pinion gear shaft for unusual wear
- Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
- Thrust washers for wear.
- The fit of the differential side gears in the differential case.
- The fit of the side gears on the axle shafts.
- Differential case for cracks and scoring.
- Replace all worn parts.
10 1/2-INCH RING GEAR 4B4-3

Figure 1—Rear Axle Components
Figure 2—Removing the Differential Side Bearings

Figure 3—Checking Pinion Preload

Figure 4—Removing the Pinion Cage

Figure 5—Drive Pinion Nut Removal

Figure 6—Removing the Pinion Flange

Figure 7—Pressing the Drive Pinion from the Cage
PINION AND RING GEAR
Inspect
- Pinion and ring gear teeth for cracking, chipping, scoring, or excessive wear.
- Pinion splines for wear.
- Pinion flange splines for wear.
- The fit of the pinion on the pinion flange.
- The sealing surface of the pinion flange for nicks, burrs, or rough tool marks which would cause damage to the seals' inside diameter and result in an oil leak.
- Replace all worn or broken parts.
- Ring and pinion gears are matched sets and are both replaced any time a replacement of either is necessary.

BEARINGS
Inspect
- Bearings visually and by feel.
- The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.
- The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.
- Bearing cups for wear, cracks, brinelling and scoring.
- Bearings and cups are only replaced as sets.
- If the rear axle was operated for an extended period of time with very loose bearings, the ring gear and drive pinion will also require replacement.
- Low mileage bearings may have minute scratches and pits on the rollers and the bearing cups from the initial preload. Do not replace a bearing for this reason.
- Bearing caps for cracks or chips.

SHIMS
Inspect
- Shims for cracks and chips. Damaged shims should be replaced with an equally sized service shim.

ASSEMBLY OF THE REAR AXLE

PINION ASSEMBLY
Installs or Connect (Figure 1)
Tools Required:
J 24433 Rear Pinion Bearing Cone Installer
J 8092 Driver Handle
J 8608 Outer Pinion Bearing Cup Installer
J 8614-01 Pinion Flange Holder
- Lubricate all parts with axle lubricant.
1. Pinion rear bearing (13) onto the pinion.
- Press the bearing onto the pinion using J 24433 (figure 10).
2. Outer pinion bearing cup (6) using J 8608 and J 8092.
3. Inner pinion bearing cup (13) using J 24432 and J 8092.
4. A new collapsible spacer (12) to the pinion.
5. Pinion (14) into the pinion gage (10).
6. Pinion outer bearing (6) onto the pinion.
 • Press the bearing onto the pinion.
7. Pinion oil seal (5) using J 24434 and J 8092.
8. Pinion flange oil deflector (4) and pinion flange (3) to the pinion splines.
9. Washer (2) and a new pinion nut (1).
• Place the pinion cage assembly into the vice.
10. Flange holder J 8614-01 to the pinion flange.

Tighten (Figure 11)
- The nut until the pinion end play is just taken up. Rotate the pinion while tightening in order to seat the bearings. Once there is no end play in the pinion, the preload torque should be checked.
- Remove J 8614-01. Using an inch-pound torque wrench, check the pinion preload by rotating the pinion with the wrench. Preload should be at or below 2.8 to 4.0 N m (25 to 35 in. lbs.) for new bearings, or 0.56 to 1.7 N m (5-15 in. lbs.) for used bearings (figure 12).
- If the preload torque is below the preloads given above, continue torquing the nut in small increments. Check the preload after each tightening. Each tightening increases the bearing preload by several pounds. If the bearing preload is exceeded, the pinion will have to be removed, and a new collapsible spacer installed.
- Once the preload has been obtained, rotate the pinion several times to assure that the bearings have seated. Recheck the preload, and adjust if necessary.
11. Pinion cage (10) to the axle housing. Refer to “Pinion Installation” in this section.

PINION INSTALLATION

++ Install or Connect

Tools Required:
- J 34943 Pinion Pilot Bearing Installer
- J 6092 Driver Handle
- J 8092 Driver Handle

1. Pinion pilot bearing (15) using J 34943 and J 8092 (figure 13).
 - Bolt the guide plate to the axle housing.
 - Place the bearing (15) onto the guide.
 - Drive the bearing into the housing. The part number of the bearing must face the pinion flange.
 - Measure the pinion bearing shims (11). If a new pinion and ring gear set is installed, the pinion bearing shim pack must be adjusted.
 - Examine the heads of the new and old drive pinions. Compare these codes, and adjust the pinion bearing shim pack accordingly. The chart in figure 14, shows the proper adjustment to be made to the shim pack.
 - Pinion service shims are available in sizes from 0.006 to 0.024-inch.
 - If the original pinion is being used, the original pinion shims should also be used.
2. Pinion bearing shims (11) to the pinion cage.
 - The shims, housing, and cage must be clean.
3. The pinion cage (10) to the axle housing (figure 15).
4. Cage bolts (7).

Tighten
- The bolts to 88 N m (65 ft. lbs.).

DIFFERENTIAL CASE ASSEMBLY

++ Install or Connect (Figure 1)

Tools Required:
- J 24429 Side Bearing Adjustment Spanner
- J 8092 Driver Handle
- J 8107 Side Bearing Puller Plug

1. Differential pinion gears (32) and thrust washers (31) to the spider (33).
Figure 14—Pinion Depth Codes

<table>
<thead>
<tr>
<th>CODE NUMBER ON ORIGINAL PINION</th>
</tr>
</thead>
<tbody>
<tr>
<td>+2</td>
</tr>
<tr>
<td>+2</td>
</tr>
<tr>
<td>+1</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>-1</td>
</tr>
<tr>
<td>-2</td>
</tr>
</tbody>
</table>

Figure 13—Installing the Pilot Bearing

Figure 15—Installing the Pinion Cage

Figure 16—Ring Gear to Case Installation

2. Differential side gears (29) and thrust washers (30) to the differential case halves in their original locations.

3. Differential spider (33) to the differential.

4. The case halves:
 - Align the scribe marks on the case halves.
 - Check that the mating surfaces of the differential case and the ring gear are clean and burr free.

5. Ring gear (14) to the differential (figure 16):
 - Thread two left-hand threaded studs into the ring gear on opposite sides.
 - Place the ring gear onto the case, and align the holes in the case with the studs.
 - Press the ring gear onto the case far enough to start the bolts using J 8107 to protect the differential from the press ram.

6. New ring gear bolts (36):
 - Tighten the ring gear bolts alternately in stages gradually pulling the ring gear onto the differential case.
Tighten
- The ring gear bolts in sequence to 163 N·m (120 ft·lbs).

7. Differential side bearings (18) using J 24429 and J 8092 (figure 17).
 - Place J 8107 into the differential on the side opposite of bearing installation to protect the differential case.
 - Drive the bearing onto the case using J 24429 and J 8092.

8. Differential case (34) to the axle housing. Refer to “Side Bearing Preload Adjustment” in this section.

SIDE BEARING PRELOAD ADJUSTMENT
- The differential side bearing preload is adjusted by two adjusting nuts in the differential bearing bore. The bore and the bearing cap provide the mating threads for the bearing nut.
- The differential must be initially preloaded in order to determine the backlash of the gear set. After the backlash has been set, the final bearing preload is set.

Install or Connect (Figure 18)
Tool Required:
J 24429 Side Bearing Backlash Spanner Wrench
1. The bearing cups (20) to the differential bearings in their original locations.
2. Differential assembly to the axle housing.
3. Adjusting nuts (19).
4. Bearing caps (20) and bolts (28) in their original positions.
 - Assembly the caps loosely.
 - Loosen the right side adjusting nut, and tighten the left side nut using J 24429 until the ring gear contacts the drive pinion. Do not force the gears into contact. This is the zero lash point.
 - Back off the left adjusting nut approximately two slots to obtain the initial backlash adjustment.
5. Adjusting nut lock (21) and lock bolt (22) to the left nut.

BACKLASH ADJUSTMENT
1. Install a dial indicator to the case using a magnetic base (figure 19).
2. Place the indicator stem at the heel end of a tooth.
 - Set the dial indicator so that the stem is in line with the gear rotation and perpendicular to the tooth angle.
3. Check and record the backlash at three or four points around the ring gear.
 - The pinion must be held stationary when checking backlash.
 - The backlash should be the same at each point within 0.05 mm (0.002-inch). If the backlash varies more than 0.05 (0.002-inch), check for burrs, a distorted case flange, uneven bolting conditions, or foreign matter between the case and the ring gear.
4. The backlash at the minimum lash point measured should be between 0.125-0.200 mm (0.005-0.008-inch). The maximum acceptable reading is 0.076-0.203 mm (0.003-0.008-inch).
5. If the reading is too high, remove the adjusting nut locks, and loosen the right nut one slot, and tighten the left nut one slot (figure 18).
6. If the reading is too low, remove the adjusting nut locks, and loosen the left nut one slot, and tighten the right nut one slot.
- The side bearing preload will remain set, as long as the adjusting nut is tightened an equal amount to the nut which was loosened.

FINAL ASSEMBLY

Install or Connect (Figure 1)
1. Drive axles. Refer to the proper service manual.
2. Cover gasket (23) and cover (24) to the housing.
3. Cover bolts (25).
4. Axle housing to the vehicle. Refer to the proper service manual.
5. Lubricant to the rear axle.

GEAR TOOTH PATTERN CHECK

Checking the ring gear to pinion tooth pattern is to be done only after setting up the axle according to the methods in this section. The pattern check is NEVER to be used as an initial check, or instead of checking pinion depth and backlash adjustments. This check is only to be used to verify the correct adjustment of the gear set after setup.

1. Wipe all oil out of the carrier, and carefully clean each tooth of the ring gear (figure 20).
2. Use gear marking compound 1052351 or equivalent and apply this mixture sparingly to all ring gear teeth, using a medium-stiff brush. When properly used, the area of pinion tooth contact will be visible when hand load is applied.
3. Tighten the bearing cap bolts to the specified torque.

ADJUSTMENTS AFFECTING TOOTH CONTACT

Two adjustments can be made which will affect tooth contact pattern: backlash, and the position of the drive pinion in the carrier. The effects of bearing preloads are not readily apparent on hand loaded tooth contact pattern tests; however, these adjustments should be within specifications before proceeding with backlash and drive pinion adjustments.

The position of the drive pinion is adjusted by increasing or decreasing the distance between the pinion head and the centerline of the ring gear. The shim is used in the rear axle to compensate for manufacturing tolerances. Decreasing the distance will move the pinion closer to the centerline of the ring gear. Increasing the distance will move the pinion farther away from the centerline of the ring gear.

Backlash is adjusted by means of the side bearing adjusting shims and/or adjusting nuts, which move the entire case and ring gear assembly closer to, or farther from, the drive pinion. (The adjusting shims are also used to set side bearing preload.)

If the thickness of the right shim is increased (along with decreasing the left shim thickness), backlash will increase.

The backlash will decrease if the left shim thickness is increased (along with a decrease in right shim thickness).
Figure 21—Gear Tooth Pattern
SPECIFICATIONS

10\(\frac{1}{2}\)-INCH RING GEAR AXLE (CORPORATE)

<table>
<thead>
<tr>
<th>FASTENER</th>
<th>N·m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Gear Bolts</td>
<td>163</td>
<td>120</td>
</tr>
<tr>
<td>Bearing Cap Bolts</td>
<td>183</td>
<td>135</td>
</tr>
<tr>
<td>Axle Cover Bolts</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Adjusting Nut Lock Bolts</td>
<td>30</td>
<td>22</td>
</tr>
</tbody>
</table>

SPACER AND SHIM SIZES

<table>
<thead>
<tr>
<th>SIZE</th>
<th>Pinion Bearing Shims</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.006-inch</td>
<td></td>
</tr>
<tr>
<td>0.007-inch</td>
<td></td>
</tr>
<tr>
<td>0.008-inch</td>
<td></td>
</tr>
<tr>
<td>0.009-inch</td>
<td></td>
</tr>
<tr>
<td>0.010-inch</td>
<td></td>
</tr>
<tr>
<td>0.011-inch</td>
<td></td>
</tr>
<tr>
<td>0.012-inch</td>
<td></td>
</tr>
<tr>
<td>0.013-inch</td>
<td></td>
</tr>
<tr>
<td>0.014-inch</td>
<td></td>
</tr>
<tr>
<td>0.015-inch</td>
<td></td>
</tr>
<tr>
<td>0.016-inch</td>
<td></td>
</tr>
<tr>
<td>0.017-inch</td>
<td></td>
</tr>
<tr>
<td>0.018-inch</td>
<td></td>
</tr>
<tr>
<td>0.019-inch</td>
<td></td>
</tr>
<tr>
<td>0.020-inch</td>
<td></td>
</tr>
<tr>
<td>0.021-inch</td>
<td></td>
</tr>
<tr>
<td>0.022-inch</td>
<td></td>
</tr>
<tr>
<td>0.023-inch</td>
<td></td>
</tr>
<tr>
<td>0.024-inch</td>
<td></td>
</tr>
</tbody>
</table>

Lubricant

80W-90 GL-5
SPECIAL TOOLS

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Tool Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pinion Flange Remover</td>
<td>J-8614-01</td>
</tr>
<tr>
<td>2.</td>
<td>Side Bearing Remover</td>
<td>J-22888</td>
</tr>
<tr>
<td>3.</td>
<td>Rear Pinion Bearing Cup Installer</td>
<td>J-8608</td>
</tr>
<tr>
<td>4.</td>
<td>Driver Handle</td>
<td>J-8092</td>
</tr>
<tr>
<td>5.</td>
<td>Rear Pinion Bearing Cone Installer</td>
<td>J-24433</td>
</tr>
<tr>
<td>6.</td>
<td>Side Bearing Adjustment Spanner</td>
<td>J-24429</td>
</tr>
<tr>
<td>7.</td>
<td>Rear Pinion Bearing Cone Remover</td>
<td>J-22912-01</td>
</tr>
<tr>
<td>8.</td>
<td>Pinion Pilot Bearing Installer (Not Illustrated)</td>
<td></td>
</tr>
</tbody>
</table>

Special Tools
SECTION 4B5

DANA REAR AXLES

SUBJECT PAGE

93/4-Inch Ring Gear ... 4B5-1
Description .. 4B5- 1
Checking the Axle Before Disassembly 4B5- 1
Disassembly of the Rear Axle .. 4B5- 2
Cleaning ... 4B5- 2
Inspection ... 4B5- 2
Assembly of the Rear Axle .. 4B5- 7
101/2-Inch Ring Gear .. 4B5-13
Description .. 4B5-13
Checking the Axle Before Disassembly 4B5-15
Disassembly of the Rear Axle .. 4B5-15
Cleaning .. 4B5-18
Inspection ... 4B5-18
Assembly of the Rear Axle .. 4B5-19
Specifications .. 4B5-27
Special Tools ... 4B5-28

93/4-INCH RING GEAR

DESCRIPTION

The Dana 93/4-inch ring gear rear axle uses a conventional ring and pinion gear set to transmit the driving force of the engine to the rear wheels. This gear set transfers this driving force at a 90 degree angle from the propeller shaft to the drive shafts.

This axle is full-floating. The axle shaft is supported at the wheel ends by the wheel hubs. The bolts that attach the shaft to the hub, support the axle at the hub. The splined end of the shaft is supported by the differential.

The pinion gear is supported by two tapered roller bearings. The pinion depth is set by a shim pack between the inner pinion bearing cup and the rear axle housing. The pinion bearing preload is set by a shim pack at the front of the axle housing between the bearing cone and the pinion gear.

The ring gear is bolted onto the differential case with right-hand thread bolts.

The differential case is supported in the case by two tapered roller bearings. The differential and ring gear are located in relationship to the pinion by using selective shims between the bearings and the differential case. To move the ring gear, shims are deleted from one side and an equal amount are added to the other side. Differential side bearing preload is set by the axle housing. (The axle housing is spread to remove the differential from the housing). When the spreader is removed, the housing sets the bearing preload.

Two bearing caps are used to hold the differential into the rear axle housing.

The differential is used to allow the wheels to turn at different rates of speed while the rear axle continues to transmit the driving force. This prevents tire scuffing when going around corners and prevents premature wear on internal axle parts.

The rear axle is sealed with a pinion seal, a hub seal, and RTV between the differential cover and the rear axle housing.

All Dana axles are identified by the part number on the right axle tube next to the manufacturing date which is next to the carrier. The model number is cast on the ear of the carrier. The carrier cover does not have a drain plug.

CHECK THE AXLE BEFORE DISASSEMBLY

Inspect

- Remove the axle cover from the rear axle and drain the axle lubricant into a suitable container.

1. The ring gear backlash. Refer to “Backlash Adjustment” in this section. This information can be used to determine the cause of the axle problem. It will also help when setting up the shim packs for locating and preloading the differential case.

2. The case for metal chips and shavings. Determine where these chips and shavings come from, such as a broken gear or bearing cage.
DANA REAR AXLES

- Determine the cause of the axle problem before disassembly if possible.

DISASSEMBLY OF THE REAR AXLE

Remove or Disconnect (Figure 1)

Tools Required:
- J 24385-01 Differential Housing Spreader
- J 29721 Differential Side Bearing Remover
- J 29721-70 Side Bearing Adapter
- J 8107-3 Side Bearing Puller Plug
- J 8614-01 Pinion Flange Holder

- Place the rear axle in a suitable support.
- The differential cover bolts (17) and the differential cover (14) (Figure 2).
- Drain the gear lubricant into a proper container.
- Axle shafts (38). Refer to the proper service manual.
- Bearing cap bolts (19) (Figure 3).
- Bearing caps (18).
- The mating letters are stamped on the caps and the axle housing. The caps are to be reassembled exactly as removed.
- Assemble J 24385-01 to the differential housing as shown in Figure 4.
- Assemble the dial indicator as shown in Figure 4.
- Preset the gage at least 0.020-inch, and then rotate the gage housing to zero the dial.

NOTICE: Do not spread the differential carrier more than 0.38 mm (0.015-inch). Over-spreading the carrier can damage or distort the carrier.

- Spread the carrier while examining the dial indicator. Do not spread the carrier more than 0.38 mm (0.015-inch).
- Differential case (22) from the carrier (1) using two pry bars (Figure 5).
- The spreader J 24385-01 from the carrier (1).
- Bearing cups (20).
- Mark the cups as left and right, and place them with the proper bearing cups.
- Differential side bearings (20) using J 29721, J 29721-70, and J 8107-3 (Figure 6).
- Mark the bearings as left and right, and place them with the proper bearing caps and cups.
- Differential shims (21).
- Mark the shims as left or right.
- Ring gear bolts (23).
- Place shop towels over the vise jaws. Put the differential case in the vise (Figure 7).

NOTICE: Do not pry the ring gear from the case, this will damage the ring gear and the differential case.

- Ring gear (2) from the differential case using a rawhide hammer.
- Ring gear (2) from the vise.
- Put the differential case in the vise.

- Lock pin (29) from the differential using a hammer and a punch (Figure 8).
- Pinion shaft (28) using a hammer and a brass drift (Figure 9).
- Differential pinion gears (24) and thrust washers (26).
- Rotate the side gears until the pinion gears are in the opening of the differential (Figure 10).
- Differential side gears (25) and thrust washers (27).
- Mark the gears and washers as left and right.
- Replace the carrier cover (14) using two bolts (17) to keep the pinion from falling to the floor.

Inspect

- Drive pinion bearing preload (Figure 11).
- For looseness of the pinion assembly by moving it back and forth. (Looseness indicates excessive bearing wear).
- Pinion nut (12) and washer (11) using J 8614-01 to hold the pinion (Figure 12).
- Pinion flange (10) using J 8614-01 (Figure 13).
- Pinion (2) from the carrier using a rawhide hammer to tap the pinion (Figure 14).
- Carrier cover (14) and the pinion (2).
- Pinion preload shims (6).
- Keep the shims together on the bench.
- Pinion seal (9).
- Pinion outer bearing (7) and oil slinger (8).
- Bearing cups (3) and (7) from the axle housing using a hammer and a punch (Figure 15).
- Work the cups out of the housing evenly, moving the punch back and forth between one side of the cup and the other.
- Pinion adjusting shims (4) and baffle (5).
- Keep the shims together on the bench.
- Pinion inner bearing (3) using J 29721 and J 29721-70 (Figure 16).

CLEANING

Do not steam clean drive parts having ground and polished surfaces such as gears, bearings, and shafts. These parts should be cleaned in a suitable solvent. All parts should be disassembled before cleaning.

Parts should be thoroughly dried immediately after cleaning. Use soft, clean, lintless rags. Parts may be dried with compressed air. Do not allow the bearings to spin while drying them with compressed air.

INSPECTION

It is very important to carefully and thoroughly inspect all drive unit parts before reassembly.

Thorough inspection of the drive parts for wear or stress and subsequent replacement of worn parts will eliminate costly drive component repair after reassembly.
Figure 1—Rear Axle Components

1. Axle Housing
2. Ring Gear and Pinion Set
3. Inner Pinion Bearing
4. Shims
5. Preload Shims
6. Bearing
7. Slinger
8. Pinion Oil Seal
9. Pinion Flange
10. Pinion Flange
11. Washer
12. Pinion Nut
13. Cover
14. Plug
15. Bolt
16. Slinger
17. Bolt
18. Bearing Cap
19. Bolt
20. Bearing
21. Shim
22. Differential Case
23. Ring Gear Bolt
24. Pinion Gear
25. Side Gear
26. Pinion Thrust Washer
27. Side Gear Thrust Washer
28. Pinion Shaft
29. Roll Pin
30. ID Tag
Figure 2—Removing the Axle Cover
Figure 3—Removing the Bearing Cap
Figure 4—Spreading the Differential Case
Figure 5—Removing the Differential
Figure 6—Removing the Differential Side Bearings
Figure 7—Removing the Ring Gear
Figure 8—Removing the Lock Pin

Figure 10—Removing the Pinion Gears

Figure 11—Checking the Pinion Preload

Figure 12—Drive Pinion Nut Removal

Figure 9—Removing the Pinion Shaft

Figure 13—Pinion Flange Removal
AXLE HOUSING
Inspect
- The carrier bore for nicks or burrs that would prevent the outer diameter of the pinion seal from sealing. Remove any burrs that are found.
- The bearing cup bores for nicks or burrs. Remove any burrs that are found.
- The housing for cracks. Replace the housing if any cracks are found.
- The housing for foreign material such as metal chips, dirt, or rust. Refer to “Cleaning” in this section.

DIFFERENTIAL
Inspect
- Pinion gear shaft for unusual wear.
- Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
- Thrust washers for wear.
- The fit of the differential side gears in the differential case.
- The fit of the side gears on the axle shafts.
- Differential case for cracks and scoring.
- Replace all worn parts.

PINION AND RING GEAR
Inspect
- Pinion and ring gear teeth for cracking, chipping, scoring, or excessive wear.
- Pinion splines for wear.
- Pinion flange splines for wear.
- The fit of the pinion on the pinion flange.
- The sealing surface of the pinion flange for nicks, burrs, or rough tool marks which would cause damage to the seals’ inside diameter and result in an oil leak.
- Replace all worn or broken parts.
- Ring and pinion gears are matched sets and are both replaced any time a replacement of either is necessary.

BEARINGS
Inspect
- Bearings visually and by feel.
- The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.
- The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.
- Bearing cups for wear, cracks, brinelling and scoring.
- Bearings and cups are only replaced as sets.
- If the rear axle was operated for an extended period of time with very loose bearings, the ring gear and drive pinion will also require replacement.
- Low mileage bearings may have minute scratches and pits on the rollers and the bearing cups from the initial preload. Do not replace a bearing for this reason.
- Bearing caps for cracks or chips.
Inspect
- Shims for cracks and chips. Damaged shims should be replaced with an equally sized service shim.

ASSEMBLY OF THE REAR AXLE

PINION ASSEMBLY

DIFFERENTIAL CASE ASSEMBLY

1. Lubricate all parts with rear axle lubricant.
2. Side gears (25) to the differential case.
 - Place the side gears in place on the same side as removed (Figure 17).
3. Pinion gears (24) to the differential without the thrust washers (26).
 - Place the pinion gears onto the side gears so that the holes in the pinion gears are 180 degrees apart.
 - Rotate the pinion gears into place, and verify that the pinion gears line up with the pinion shaft holes.
4. New pinion thrust washers (26).
5. Pinion shaft (28).
 - Press the ring gear onto the case, and align the holes in the case with the studs.
8. New ring gear bolts (23) (figure 19).
 - Tighten the ring gear bolts alternately in stages gradually pulling the ring gear onto the differential case.
9. Master differential bearings D-117 (Miller Tools) to the differential (figure 20).
 - Refer to “Determining Total Shim Pack Size” in this section.

DETERMINING TOTAL DIFFERENTIAL SHIM PACK SIZE

1. Assemble the differential case (22) to the axle housing. The pinion must not be installed.
2. Mount a dial indicator having a minimum travel of 0.200-inch with a magnetic base on the ring gear bolt side of the housing (figure 21).
3. Force the differential assembly as far as possible in the direction towards the indicator.
4. Preload the dial indicator one half of its travel. Place the tip of the indicator on a flat surface on the differential, just next to a ring gear bolt. Mark this location with a piece of chalk.
5. Zero the dial indicator.
6. Force the differential assembly in the opposite direction as far as it will go. Repeat this step until the same reading is obtained. Record the number of thousandths that the dial indicator traveled, not the reading on the dial. This will be the measurement of the shim pack without the bearing preload (which will be added later).
7. Remove the dial indicator from the axle.
8. Remove the differential case from the axle housing.
 • Do not remove the master bearings from the differential.

PINION DEPTH ADJUSTMENT

Tools Required:
- D-120 Master Pinion Block (Miller)
- D-116-1 Pinion Height Block (Miller)
- D-116-2 Master Discs (Miller)
- D-115-3 Arbor (Miller)
- D-115 Scooter Gage (Miller)

1. Clean the carrier bores and all the tools. The pinion bore must be free of nicks and dirt.
2. Install D-120 to the pinion bore (figure 22).
4. Install the arbor and discs into the axle housing (figure 23).
5. Install D-116-1 onto D-120 and against the arbor (figure 24).
6. Place D-115 onto the height block (figure 25).
 • Place the gage on the lower step of the height block. Push the gage down on the height block. While applying pressure, set the dial indicator at zero.
7. Slide the gage over the arbor (figure 26).
8. Record the reading at the point of greatest deflection (when the dial indicator needle is centered between movement to the left and to the right).
 - This reading indicates the amount of shims needed for a nominal pinion setting. The pinion marking may change the pinion depth by adding or deleting shims from the nominal pinion setting.
 - A positive (+) pinion marking indicates that the distance between the ring gear centerline and the pinion head must increase by the number of thousandths marked on the pinion. This means that the shim pack will decrease by the same number of thousandths.
 - A negative (-) pinion marking indicates that the distance between the ring gear centerline and the pinion head must decrease by the number of thousandths marked on the pinion. This means that the shim pack will increase by the same number of thousandths.
 - A pinion etched zero (0) will use the nominal setting as determined in this procedure.

9. Measure each shim separately with a micrometer and add them together to obtain the total shim pack thickness. If a baffle (5) or slinger is used, these must also be measured and included in the shim pack (figure 27).

PINION INSTALLATION

Install or Connect
Tools Required:
- J 7818 Front Pinion Bearing Cup Installer
- J 5590 Rear Pinion Bearing Cone Installer
- D-111 Cup Installer (Miller)
- C-4171 Handle (Miller)
- J 8092 Handle
- J 8614-01 Pinion Flange Remover

1. Place the required amount of shims (and baffle if used) in the inner bearing bore.
Drive the inner bearing cup into the axle assembly using D-111 and C-4171. The cup must be seated on the shims (figure 28).

Drive the outer bearing cup into the axle assembly using J 7818 and J 8092 (figure 29).

Inner bearing cone (and slinger if used) on pinion. Drive the bearing onto the pinion shaft using J 5590 (figure 30).

Pinion into the axle housing.

Outer pinion bearing (7) (and slinger if used).

Do not assemble the preload shims or pinion oil seal at this time.

Pinion flange (10).

Washer (11) and pinion nut (12).

Tighten

- The nut (12) while holding the pinion with J 8614-01. Tighten the nut until it requires a torque of 1.13 N·m (10 in. lbs.) to rotate the pinion (figure 31). Rotate the pinion several times to seat the bearings and assure a more accurate reading pinion depth setting.

- Place the discs and arbor into the differential bearing bore.

- Place the pinion height block on top of the pinion.

- Set the dial indicator at zero (0) and slide the scooter gage across the arbor (figure 32).

- The indicator will turn to the right or to the left at the point of greatest deflection, depending on the pinion marking.

- The needle will move to the left if the pinion is marked (+).

- The needle will move to the right if the pinion is marked (−).

- If the indicator reading is within 0.05 mm (0.002-inch) of the pinion marking, the pinion is correctly set. If the pinion depth does not meet specifications, change the shim pack by the amount the indicator needle is from the pinion marking.
Figure 32—Checking the Pinion Depth Setting

- Remove the pinion nut (12), washer (11), pinion flange (10), slinger (8) and bearing cone (7).
10. Preload shims (6).
 - Install the shims that were removed, or measure the old shims and replace them with new shims if necessary.
11. Outer bearing (7) and slinger (8).
 - Apply a light coat of axle lubricant to the pinion seal lip.
12. Outer pinion oil seal (9) using D-163 (National) sealer installer (figure 33).
13. Pinion flange (10).
14. Washer (11) and a new pinion nut (12).

Tighten (Figures 34 and 35)

- The nut (12) while holding the pinion with J 8614-01. Tighten the nut until it requires a torque of 2.26-4.53 N·m (20-40 in. lbs.) to rotate the pinion.
- Remove shims to increase the preload.
- Add shims to decrease the preload.

Figure 33—Installing the Pinion Seal

Figure 34—Tightening the Pinion Nut

ASSEMBLING THE DIFFERENTIAL TO THE AXLE HOUSING

Tools Required:
- J 23690 Differential Side Bearing Installer
- J 8092 Driver Handle
- J 24385-01 Differential Carrier Spreader

1. Assemble the differential case (22) with master bearings installed to the axle housing. The pinion must be installed.
2. Mount a dial indicator having a minimum travel of 0.200-inch with a magnetic base on the ring gear bolt side of the housing (figure 36).
3. Place the indicator tip on the chalk mark made earlier.
4. Force the ring gear into mesh with the pinion. Rock the ring gear to allow the teeth of the gears to mesh.
5. While the force is still applied to the differential case, set the dial indicator to zero.
6. Force the differential case away from the pinion gear to obtain an indicator reading. Repeat this action until a consistent reading is obtained. This will be the size of the left shim pack.
7. Remove the indicator and the differential case from the carrier.
8. Remove the master bearings from the differential case.
9. Using the total shim pack size determined earlier, (Refer to “Determining Total Differential Shim Pack Size” in this section) subtract the reading found in step 6 from the total reading. The reading found in step 6 will be the shim size on the ring gear side. The remaining portion of the shim pack will be used on the side opposite the ring gear. Add an additional 0.38 mm (0.015-inch) of shims to the side opposite the ring gear to preload the bearings.
10. Place the proper shims on the differential side bearing hub (ring gear side) and drive the differential bearing onto the hub using J 23690 and J 8092 (figure 37).
11. Place the proper shims on the differential side bearing hub (opposite the ring gear) and drive the differential bearing onto the hub using J 23690 and J 8092.
12. Assemble J 24385-01 to the axle housing as shown in figure 38.
13. Assemble the dial indicator as shown in figure 38. Preset the gage at least 0.020-inch, and then rotate the indicator housing to zero the dial.

NOTICE: Do not spread the differential carrier more than 0.38 mm (0.015-inch). Over-spreading the carrier can damage or distort the carrier.

14. Spread the carrier while examining the dial indicator.
15. Remove the dial indicator.
16. Place the bearing cups (20) onto the bearings.
17. Install the differential assembly into the carrier.
 • Use a rawhide hammer to seat the differential assembly in the axle housing (figure 39).
18. Remove the spreader.
19. Install the bearing caps (18) in their original positions.
20. Install the bearing cap bolts (19).
CHECKING BACKLASH
1. Mount a dial indicator with a magnetic base to the axle housing as shown in figure 40.
2. Place the indicator tip at the heel end of the tooth.
3. Check the backlash at three equally spaced points. The backlash should be 0.13-0.23 mm (0.005-0.009-inch). The measurement must not vary more than 0.05 mm (0.002-inch) between the points checked.
4. High backlash is corrected by moving the ring gear closer to the pinion.
5. Low backlash is corrected by moving the ring gear away from the pinion.

6. To adjust the backlash, the differential case must be removed from the housing, then the differential bearings removed, and the proper number of shims moved from one side to the other.

FINAL ASSEMBLY
1. Drive axles. Refer to the proper service manual.
2. RTV to the axle cover.
3. Axle cover (14) to the housing (figure 41).

Tighten
• The cover bolts (17) to 47 N m (35 ft. lbs.).
4. Axle housing to the vehicle. Refer to the proper service manual.
5. Lubricant to the rear axle (after the RTV has cured).

10½-INCH RING GEAR

DESCRIPTION
The Dana 10½-inch ring gear rear axle uses a conventional ring and pinion gear set to transmit the driving force of the engine to the rear wheels. The gear set transfers this driving force at a 90 degree angle from the propeller shaft to the drive shafts.

This axle is full-floating. The axle shaft is supported at the wheel ends by the wheel hubs. The bolts that attach the shaft to the hub, support the axle at the hub. The splined end of the shaft is supported by the differential.

The pinion gear is supported by two tapered roller bearings. The pinion depth is set by a shim pack between the inner pinion bearing cup and the rear axle housing. The pinion bearing preload is set by a shim pack at the front of the axle housing between the yoke and the pinion gear.

The ring gear is bolted onto the differential case with right-hand thread bolts.

The differential case is supported in the case by two tapered roller bearings. The differential and ring gear are located in relationship to the pinion by using selective shims between the bearings and the differential case. To move the ring gear, shims are deleted from one side and an equal amount are added to the other side. Differential side bearing preload is set by the differential shim packs.

Two bearing caps are used to hold the differential into the rear axle housing.

The differential is used to allow the wheels to turn at different rates of speed while the rear axle continues to transmit the driving force. This prevents tire scuffing when going around corners and prevents premature wear on internal axle parts.

The rear axle is sealed with a pinion seal, a hub seal, and a gasket between the differential cover and the rear axle housing.

Two models of the Dana 10½-inch are covered here: the B or U Model, and the Heavy Duty Model.
Figure 42—Rear Axle Components
All Dana axles are identified by the part number on the right axle tube next to the carrier. The model number is cast on the carrier. The carrier cover does not have a drain plug. There is a fill plug on the cover.

CHECK THE AXLE BEFORE DISASSEMBLY

Inspect

- Remove the axle cover from the rear axle and drain the axle lubricant into a suitable container.
- The ring gear backlash. Refer to "Backlash Adjustment" in this section. This information can be used to determine the cause of the axle problem. It will also help when setting up the shim packs for locating and preloading the differential case.
- The case for metal chips and shavings. Determine where these chips and shavings come from, such as a broken gear or bearing case.
- Determine the cause of the axle problem before disassembly if possible.

DISASSEMBLY OF THE REAR AXLE

Remove or Disconnect (Figure 42)

Tools Required:
- J 24385-01 Differential Housing Spreader
- J 29721 Differential Side Bearing Remover
- J 29721-70 Side Bearing Adapters
- J 8107-3 Side Bearing Puller Plug
- D-166 Differential Case Holding Fixture
- J 8614-01 Pinion Flange Holder

- Place the axle in a suitable support.
- The differential cover bolts (17) and the differential cover (14) (figure 43).
 - Drain the gear lubricant into a proper container.
- Axle shafts (40). Refer to the proper service manual.

DISASSEMBLY OF THE REAR AXLE

3. Bearing cap bolts (19) (figure 44).
 - The mating letters are stamped on the caps and the axle housing. The caps are to be reassembled exactly as removed.
 - Assemble J 24385-01 to the differential housing as shown in figure 45.
 - Assemble the dial indicator as shown in figure 45. Preset the gage at least 0.020-inch, and then rotate the gage housing to zero the dial.

NOTICE: Do not spread the differential carrier more than 0.38 mm (0.015-inch). Over-spread the carrier can damage or distort the carrier.

- Spread the carrier while examining the dial indicator. Do not spread the carrier more than 0.38 mm (0.015-inch).
- Differential case (22) from the carrier (1) using two pry bars (figure 46).
- The spreader J 24385-01 from the carrier (1).
7. Bearing cups (20).
 • Mark the cups as left and right, and place them with the proper bearing caps.
8. Differential side bearings (20) using J 29721, J 29721-70, and J 8107-3 (figure 47).
 • Mark the bearings as left and right, and place them with the proper bearing caps and cups.
 • Mark the shims as left or right.
10. Ring gear bolts (23).
 • Place shop towels over the vise jaws. Put the differential case in the vise (figure 48).
 NOTICE: Do not pry the ring gear from the case, this will damage the ring gear and the differential case.
11. Ring gear (2) from the differential case using a rawhide hammer.
 • Ring gear (2) from the vise.
 • Put the differential case on D-166 (Miller tool) and put the holding fixture into the vise.
12. Lock pin (29) from the differential using a hammer and a punch (figure 49).
 • Turn the differential over on D-166.
13. Pinion shaft (28) using a hammer and a brass drift (figure 50).
14. Differential pinion gears (24) and thrust washers (26).
 • Rotate the side gears until the pinion gears are in the opening of the differential (figure 51).
15. Differential side gears (25) and thrust washers (27).
 • Mark the gears and washers as left and right.
 • Replace the carrier cover (14) using two bolts (17) to keep the pinion from falling to the floor.
16. Pinion nut (12) and washer (11) using J 8614-01 to hold the pinion (figure 53).
17. Pinion flange (10) using J 8614-01 (figure 54).
18. Pinion (2) from the carrier using a rawhide hammer to tap the pinion (figure 55).
19. Carrier cover (14) and the pinion (2).
20. Pinion preload shims (6).
 • Keep the shims together on the bench.
21. Pinion seal (9).
22. Pinion outer bearing (7) and oil slinger (8).
23. Bearing cups (3) and (7) from the axle housing using a hammer and a punch (figure 56).
 • Work the cups out of the housing evenly, moving the punch back and forth between one side of the cup and the other.
24. Pinion adjusting shims (4) and baffle (5).
 • Keep the shims together on the bench.
25. Pinion inner bearing (3) using J 29721 and J 29721-70 (figure 57).
CLEANING

Do not steam clean drive parts having ground and polished surfaces such as gears, bearings, and shafts. These parts should be cleaned in a suitable solvent. All parts should be disassembled before cleaning.

Parts should be thoroughly dried immediately after cleaning. Use soft, clean, lintless rags. Parts may be dried with compressed air. Do not allow the bearings to spin while drying them with compressed air.

INSPECTION

It is very important to carefully and thoroughly inspect all drive unit parts before reassembly.

Thorough inspection of the drive parts for wear or stress and subsequent replacement of worn parts will eliminate costly drive component repair after reassembly.

AXLE HOUSING

Inspect

- The carrier bore for nicks or burrs that would prevent the outer diameter of the pinion seal from sealing. Remove any burrs that are found.
- The bearing cup bores for nicks or burrs. Remove any burrs that are found.
- The housing for cracks. Replace the housing if any cracks are found.
- The housing for foreign material such as metal chips, dirt, or rust. Refer to "Cleaning" in this section.

DIFFERENTIAL

Inspect

- Pinion gear shaft for unusual wear.
- Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
- Thrust washers for wear.
- The fit of the differential side gears in the differential case.
- The fit of the side gears on the axle shafts.
- Differential case for cracks and scoring.
- Replace all worn parts.

PINION AND RING GEAR

Inspect

- Pinion and ring gear teeth for cracking, chipping, scoring, or excessive wear.
- Pinion splines for wear.
- Pinion flange splines for wear.
- The fit of the pinion on the pinion flange.
- The sealing surface of the pinion flange for nicks, burrs, or rough tool marks which would cause damage to the seals' inside diameter and result in an oil leak.
- Replace all worn or broken parts.
- Ring and pinion gears are matched sets and are both replaced any time a replacement of either is necessary.
Bearing Inspect
- Bearings visually and by feel.
- The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.
- The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.
- Bearing cups for wear, cracks, brinelling and scoring.
- Bearings and cups are only replaced as sets.
- If the rear axle was operated for an extended period of time with very loose bearings, the ring gear and drive pinion will also require replacement.
- Low mileage bearings may have minute scratches and pits on the rollers and the bearing cups from the initial preload. Do not replace a bearing for this reason.
- Bearing caps for cracks or chips.

Shim Inspect
- Shims for cracks and chips. Damaged shims should be replaced with an equally sized service shim.

Assembly of the Rear Axle

Differential Case Assembly
Install or Connect (Figure 42)
- Tools Required:
 - D-136 Master Differential Bearings (Miller) H.D.
 - D-117 Master Differential Bearings (Miller)
- Lubricate all parts with rear axle lubricant.
1. New side gear thrust washers (27) to the side gears (25).
2. Side gears (25) to the differential case.
 - Place the side gears in place on the same side as removed (figure 58).
3. Pinion gears (24) to the differential without the thrust washers (26).
 - Place the pinion gears onto the side gears so that the holes in the pinion gears are 180 degrees apart.
 - Rotate the pinion gears into place, and verify that the pinion gears line up with the pinion shaft holes.
4. New pinion thrust washers (26).
 - Rotate the pinion gears toward the differential opening just enough to slide in the pinion thrust washers.
5. Pinion shaft (28).
 - Align the lock pin holes in the case and the shaft.
 - Peen metal from the case over the lock pin.
 - Check that the mating surfaces of the differential case and the ring gear are clean and burr free.
7. Ring gear (2) to the differential case (22).
 - Thread two studs into the ring gear on opposite sides.
 - Press the ring gear onto the case, and align the holes in the case with the studs.
8. New ring gear bolts (23) (figure 60).
 - Tighten the ring gear bolts alternately in stages gradually pulling the ring gear onto the differential case.
 - Refer to "Determining Total Shim Pack Size" in this section.
Figure 60—Installing the Ring Gear Bolts

DETERMINING TOTAL DIFFERENTIAL SHIM
PACK SIZE — B OR U MODEL

1. Assemble the differential case (22) to the axle housing. The pinion must not be installed.
2. Mount a dial indicator having a minimum travel of 0.200-inch with a magnetic base on the ring gear bolt side of the housing (figure 62).
3. Force the differential assembly as far as possible in the direction towards the indicator.
4. Preload the dial indicator one half of its travel. Place the tip of the indicator on a flat surface on the differential, just next to a ring gear bolt. Mark this location with a piece of chalk.
5. Zero the dial indicator, while still forcing the differential towards the dial indicator.
6. Force the differential assembly in the opposite direction as far as it will go. Repeat this step until the same reading is obtained. Record the number of thousandths that the dial indicator traveled, not the reading on the dial. This will be the measurement of the shim pack without the bearing preload (which will be added later).
7. Remove the dial indicator from the axle.
8. Remove the differential case from the axle housing.
 • Do not remove the master bearings from the differential.

DETERMINING TOTAL DIFFERENTIAL SHIM
PACK SIZE — HEAVY DUTY MODEL

1. Assemble the differential case (22) to the axle housing. The pinion must not be installed.
2. Mount a dial indicator having a minimum travel of 0.200-inch with a magnetic base on the ring gear bolt side of the housing (figure 62).
3. Install the outboard spacer between the master bearing and the axle housing on the ring gear side.
4. Force the differential assembly as far as possible in the direction towards the indicator.
5. Preload the dial indicator one half of its travel. Place the tip of the indicator on a flat surface on the differential, just next to a ring gear bolt. Mark this location with a piece of chalk.
6. Zero the dial indicator, while still forcing the differential towards the indicator.
7. Force the differential assembly in the opposite direction as far as it will go. Repeat this step until the same reading is obtained. Record the number of thousandths that the dial indicator traveled, not the reading on the dial. This reading plus the spacer measurement will be the thickness of the spacer and shims required.
8. Remove the dial indicator from the axle.
9. Remove the differential case from the axle housing.
10. Remove the spacer (43) from the housing.
 • Do not remove the master bearings from the differential.

PINION DEPTH ADJUSTMENT

Tools Required:
- D-120 Master Pinion Block (Miller) (60 and 70U)
- D-137 Master Pinion Block (70B and 70 H.D.)
- D-116-1 Pinion Height Block (Miller)
- D-116-2 Master Discs (Miller)
- D-115-3 Arbor (Miller)
DANA REAR AXLES 4B5-21

1. Clean the carrier bores and all the tools. The pinion bore must be free of nicks and dirt.
2. Install D-120 or D-137 to the pinion bore (figure 63).
3. Place D-116-2 onto D-115-3 (figure 64).
4. Install the arbor and discs into the axle housing.
5. Install D-116-1 onto D-120 and against the arbor (figure 65).
6. Place D-115 onto the height block (figure 66).
 - Place the gage on the upper step of the height block. Push the gage down on the height block. While applying pressure, set the dial indicator at zero.
7. Slide the gage over the arbor (figure 67).
8. Record the reading at the point of greatest deflection (when the dial indicator needle is centered between movement to the left and to the right).

Figure 63—Master Pinion Block

D-115 Scooter Gage (Miller)

Figure 64—Arbor and Discs

Figure 65—Pinion Height Block

Figure 66—Scooter Gage on the Height Block

Figure 67—Scooter Gage on the Arbor
• This reading indicates the amount of shims needed for a nominal pinion setting. The pinion marking may change the pinion depth by adding or deleting shims from the nominal pinion setting.

• A positive (+) pinion marking indicates that the distance between the ring gear centerline and the pinion head must increase by the number of thousandths marked on the pinion. This means that the shim pack will decrease by the same number of thousandths.

• A negative (-) pinion marking indicates that the distance between the ring gear centerline and the pinion head must decrease by the number of thousandths marked on the pinion. This means that the shim pack will increase by the same number of thousandths.

• A pinion etched zero (0) will use the nominal setting as determined in this procedure.

9. Measure each shim separately with a micrometer and add them together to obtain the total shim pack thickness. If a baffle (5) or slinger is used, these must also be measured and included in the shim pack (figure 68).

PINION INSTALLATION

 peppers Install or Connect

Tools Required:
- J 7818 Front Pinion Bearing Cup Installer
- J 5590 Rear Pinion Bearing Cone Installer
- C-4204 Cup Installer (Miller)
- C-4171 Handle (Miller)
- J 8092 Handle
- J 8614-01 Pinion Flange Remover
- D-116-1 Pinion Height Block
- D-116-2 Arbor Discs
- D-115-3 Arbor
- D-115-2 Scooter Gage Block

1. Place the required amount of shims (and baffle if used) in the inner bearing bore.

2. Drive the inner bearing cup into the axle assembly using C-4204 and C-4171. The cup must be seated on the shims (figure 69).

3. Drive the outer bearing cup into the axle assembly using J 7818 and J 8092 (figure 70).

4. Inner bearing cone (and slinger if used) on pinion. Drive the bearing onto the pinion shaft using J 5590 (figure 71).

 - If installing a new bearing, be certain that it is the same width as the old bearing.

5. Pinion into the axle housing.

6. Outer pinion bearing (7) (and slinger if used).

 - Do not assemble the preload shims or pinion oil seal at this time.

7. Pinion flange (10).

8. Washer (11) and pinion nut (12).

Tighten

 - The nut (12) while holding the pinion with J 8614-01. Tighten the nut until it requires a torque of 1.13 N-m (10 in. lbs.) to rotate the
Figure 71—Installing the Inner Bearing

pinion (figure 72). Rotate the pinion several times to seat the bearings and assure a more accurate reading pinion depth setting.

 • Place the discs and arbor into the differential bearing bore.
 • Place the pinion height block on top of the pinion.
 • Set the dial indicator at zero (0) and slide the scooter gage across the arbor (figure 73).
 • The indicator will turn to the right or to the left at the point of greatest deflection, depending on the pinion marking.
 • The needle will move to the left if the pinion is marked (+).
 • The needle will move to the right if the pinion is marked (–).
 • If the indicator reading is within 0.05 mm (0.002-inch) of the pinion marking, the pinion is correctly set. If the pinion depth does not meet

Figure 72—Checking the Pinion Preload

specifications, change the shim pack by the amount the indicator needle is from the pinion marking.

• Remove the pinion nut (12), washer (11), pinion flange (10), slinger (8) and bearing cone (7).

10. Preload shims (6).
 • Install the shims that were removed, or measure the old shims and replace them with new shims if necessary.

11. Outer bearing (7) and slinger (8).

12. Outer pinion oil seal (9) using D-163 (National) sealer installer (figure 74).

13. Pinion flange (10).

14. Washer (11) and a new pinion nut (12).

Figure 73—Checking the Pinion Depth Setting

Tighten (Figures 75 and 76)

• The nut (12) while holding the pinion with J 8614-01. Tighten the nut until it requires a torque of 2.26-4.53 N m (20-40 in. lbs.) to rotate the pinion.

Figure 74—Installing the Pinion Seal
Figure 75—Tightening the Pinion Nut

- Remove shims to increase the preload.
- Add shims to decrease the preload.

ASSEMBLING THE DIFFERENTIAL TO THE AXLE HOUSING — B OR U MODEL

Tools Required:
- J 23690 Differential Side Bearing Installer
- J 8092 Driver Handle
- J 24385-01 Differential Carrier Spreader

1. Assemble the differential case (22) with master bearings installed to the axle housing. The pinion must be installed.

2. Mount a dial indicator having a minimum travel of 0.200-inch with a magnetic base on the ring gear bolt side of the housing (figure 77).

3. Place the indicator tip on the chalk mark made earlier.

4. Force the ring gear into mesh with the pinion. Rock the ring gear to allow the teeth of the gears to mesh.

5. With the force still applied to the differential case, set the dial indicator to zero.

Figure 76—Checking Pinion Preload

6. Force the differential case away from the pinion gear to obtain an indicator reading. Repeat this action until a consistent reading is obtained.

7. Remove the indicator and the differential case from the carrier.

8. Remove the master bearings from the differential case.

9. Using the total shim pack size determined earlier, (Refer to “Determining Total Differential Shim Pack Size” in this section) subtract the reading found in step 6 from the total reading. The reading found in step 6 will be the shim size on the ring gear side. The remaining portion of the shim pack will be used on the side opposite the ring gear. Add an additional 0.38 mm (0.015-inch) of shims to the side opposite the ring gear to preload the bearings.

10. Place the proper shims on the differential side bearing hub (ring gear side) and drive the differential bearing onto the hub using J 23690 and J 8092 (figure 78).

- If installing a new bearing, be certain that it is the same width as the old bearing.

Figure 77—Measuring Differential Movement

Figure 78—Installing the Differential Bearings
11. Place the proper shims on the differential side bearing hub (opposite the ring gear) and drive the differential bearing onto the hub using J 23690 and J 8092.
 - If installing a new bearing, be certain that it is the same width as the old bearing.

12. Assemble J 24385-01 to the axle housing as shown in figure 79.

13. Assemble the dial indicator as shown in figure 79. Preset the gage at least 0.020-inch, and then rotate the indicator housing to zero the dial.

 NOTICE: Do not spread the differential carrier more than 0.38 mm (0.015-inch). Over-spreading the carrier can damage or distort the carrier.

14. Spread the carrier while examining the dial indicator.

15. Remove the dial indicator.

16. Place the bearing cups (20) onto the bearings.

17. Install the differential assembly into the carrier
 - Use a rawhide hammer to seat the differential assembly in the axle housing (figure 80).

18. Remove the spreader.

19. Install the bearing caps (18) in their original positions.

20. Install the bearing cap bolts (19).

 Tighten
 - The bearing cap bolts (19) to 115 N·m (85 ft. lbs.).

ASSEMBLING THE DIFFERENTIAL TO THE AXLE HOUSING — HEAVY DUTY MODELS

Tools Required:
- J 23690 Differential Side Bearing Installer
- J 8092 Driver Handle
- J 24385-01 Differential Carrier Spreader
- C-4205 Preload Shim Installer
- C-4171 Universal Handle

Figure 79—Mounting the Carrier Spreader

Figure 80—Installing the Differential Case

Figure 81—Measuring Backlash

Figure 82—Installing the Axle Cover
1. Assemble the differential case (22) with master bearings installed to the axle housing. The pinion must be installed.
2. Install the spacer (used before) between the master bearing and the axle housing.
3. Mount a dial indicator having a minimum travel of 0.200-inch with a magnetic base on the ring gear bolt side of the housing (figure 77).
4. Place the indicator tip on the chalk mark made earlier.
5. Force the ring gear into mesh with the pinion. Rock the ring gear to allow the teeth of the gears to mesh.
6. With the force still applied to the differential case, set the dial indicator to zero.
7. Force the differential case away from the pinion gear to obtain an indicator reading. Repeat this action until a consistent reading is obtained.
8. Remove the indicator and the differential case from the carrier.
9. Remove the master bearings from the differential case.
10. Using the total shim pack size determined earlier, (refer to "Determining Total Differential Shim Pack Size" in this section) subtract the reading found in step 7 from the total reading. The reading found in step 7 will be the shim size on the ring gear side. The remaining portion of the shim pack will be used on the side opposite the ring gear. Add an additional 0.015-inch worth of shim for differential bearing preload and backlash.
11. Place the proper shims on the differential side bearing hub (ring gear side) and drive the differential bearing onto the hub using J 23690 and J 8092 (figure 78).
 • If installing a new bearing, be certain that it is the same width as the old bearing.
12. Determine the proper size of the shim pack by subtracting the spacer size from the remaining amount of shims necessary (determined in step 10).
13. Place the proper shims on the differential side bearing hub (ring gear side) and drive the differential bearing onto the hub using J 23690 and J 8092.
 • If installing a new bearing, be certain that it is the same width as the old bearing.
14. Assemble J 24385-01 to the axle housing as shown in figure 79.
15. Assemble the dial indicator as shown in figure 161. Preset the gage at least 0.020-inch, and then rotate the indicator housing to zero the dial.

NOTICE: Do not spread the differential carrier more than 0.38 mm (0.015-inch). Over-spreading the carrier can damage or distort the carrier.

16. Spread the carrier while examining the dial indicator.
17. Remove the dial indicator.
18. Place the bearing cups (20) onto the bearings.
19. Install the differential assembly into the carrier (figure 80).
20. Drive the outboard spacers (43) into the proper sides using C-4205 and C-4171.
21. Remove the spreader.
22. Install the bearing caps (18) in their original positions.
23. Install the bearing cap bolts (19).
 • The bearing cap bolts (19) to 115 N m (85 ft. lbs.).

CHECKING BACKLASH
1. Mount a dial indicator with a magnetic base to the axle housing as shown in figure 81.
2. Place the indicator tip at the heel end of the tooth.
3. Check the backlash at three equally spaced points. The backlash should be 0.13-0.23 mm (0.005-0.009-inch). The measurement must not vary more than 0.05 mm (0.002-inch) between the points checked.
4. High backlash is corrected by moving the ring gear closer to the pinion.
5. Low backlash is corrected by moving the ring gear away from the pinion.
6. To adjust the backlash, the differential case must be removed from the housing, then the differential bearings removed, and the proper number of shims moved from one side to the other.

FINAL ASSEMBLY

++ Install or Connect
1. Drive axles. Refer to the proper service manual.
2. RTV to the axle cover.
3. Axle cover (14) to the housing (figure 82).
 • The cover bolts (17) to 47 N m (35 ft. lbs.).
4. Axle housing to the vehicle. Refer to the proper service manual.
5. Lubricant to the rear axle after the RTV has cured.
SPECIFICATIONS

9 3/4-INCH RING GEAR AXLE

<table>
<thead>
<tr>
<th>FASTENER</th>
<th>N·m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Gear Bolts</td>
<td>150</td>
<td>110</td>
</tr>
<tr>
<td>Bearing Cap Bolts</td>
<td>115</td>
<td>85</td>
</tr>
<tr>
<td>Axle Cover Bolts</td>
<td>47</td>
<td>35</td>
</tr>
<tr>
<td>Differential Bearing Adjusting Shim</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outer Pinion Bearing Shim</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner Pinion Bearing Shim</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubricant</td>
<td></td>
<td>80W-90 GL-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIZE</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer Pinion Bearing Shim</td>
<td>0.003-inch</td>
<td></td>
</tr>
<tr>
<td>Inner Pinion Bearing Shim</td>
<td>0.005-inch</td>
<td></td>
</tr>
<tr>
<td>Differential Bearing Adjusting Shim</td>
<td>0.003-inch</td>
<td></td>
</tr>
</tbody>
</table>

10 1/2-INCH RING GEAR AXLE

<table>
<thead>
<tr>
<th>FASTENER</th>
<th>N·m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Gear Bolts</td>
<td>142</td>
<td>105</td>
</tr>
<tr>
<td>Bearing Cap Bolts</td>
<td>115</td>
<td>85</td>
</tr>
<tr>
<td>Axle Cover Bolts</td>
<td>47</td>
<td>35</td>
</tr>
<tr>
<td>Lubricant</td>
<td></td>
<td>80W-90 GL-5</td>
</tr>
<tr>
<td>Inner Pinion Bearing Cup and Cone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outer Pinion Bearing Shim</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner Pinion Bearing Shim</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIZE</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer Pinion Bearing Shim</td>
<td>0.003-inch</td>
<td></td>
</tr>
<tr>
<td>Inner Pinion Bearing Shim</td>
<td>0.005-inch</td>
<td></td>
</tr>
<tr>
<td>Differential Bearing Adjusting Shim</td>
<td>0.003-inch</td>
<td></td>
</tr>
</tbody>
</table>

SHIM SIZES

<table>
<thead>
<tr>
<th>FASTENER</th>
<th>N·m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Bearing Adjusting Shim</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outer Pinion Bearing Shim</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner Pinion Bearing Shim</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIZE</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer Pinion Bearing Shim</td>
<td>0.003-inch</td>
<td></td>
</tr>
<tr>
<td>Inner Pinion Bearing Shim</td>
<td>0.005-inch</td>
<td></td>
</tr>
<tr>
<td>Differential Bearing Adjusting Shim</td>
<td>0.003-inch</td>
<td></td>
</tr>
</tbody>
</table>

Inner Pinion Bearing Cup and Cone

- B and H.D. Models: 1.4375-inch wide
- U Model: 1.1875-inch wide

Differential Bearing Cup and Cone

- B and U Models: 1.0000-inch wide
- H.D. Model: 1.1875-inch wide
SPECIAL TOOLS

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>D-116-2</td>
<td>D-115-3</td>
<td>D-116-1</td>
<td>D-115</td>
<td>D-117</td>
<td>D-120</td>
<td>D-111</td>
<td>C-4171</td>
<td>J-8107-03</td>
<td>J-7818</td>
</tr>
<tr>
<td>J-8092</td>
<td>J-5590</td>
<td>J-8614-01</td>
<td>J-23690</td>
<td>J-29721</td>
<td>J-24385-01</td>
<td>J-29721-70</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Master Discs (Miller)
2. Arbor (Miller)
3. Pinion Height Block (Miller)
4. Scooter Gage (Miller)
5. Master Pinion Bearings (Miller)
6. Master Pinion Block (Miller)
7. Cup Installer (Miller)
8. Handle (Miller)
9. Differential Side Bearing Removal Plug
10. Rear Pinion Bearing Cup Installer
11. Driver Handle
12. Rear Pinion Bearing Cone Installer
13. Pinion Flange Remover
14. Differential side Bearing Installer
15. Differential Side Bearing Remover
16. Differential Carrier Spreader
17. Side Bearing Adapters
SPECIAL TOOLS

1. Master Discs (Miller)
2. Arbor (Miller)
3. Pinion Height Block (Miller)
4. Scooter Gage (Miller)
5. Master Pinion Bearings (Miller)
6. Master Pinion Block (Miller)
7. Cup Installer (Miller)
8. Handle (Miller)
9. Preload Shim Installer (Miller)

10. Differential Side Bearing Remover Plug
11. Driver Handle
12. Front Pinion Bearing Cup Installer
13. Front Pinion Bearing Cone Installer
14. Pinion Flange Remover
15. Differential Side Bearing Installer
16. Differential Side Bearing Remover
17. Differential Carrier Spreader
18. Side Bearing Adapters

F-04664
SEC.TION 4B6
12-INCH RING GEAR (ROCKWELL)

DESCRIPTION

The Rockwell 12-inch ring gear rear axle uses a conventional ring and pinion gear set to transmit the driving force of the engine to the rear wheels. This gear set transfers this driving force at a 90 degree angle from the propeller shaft to the drive shafts.

This axle is full-floating. The axle shaft is supported at the wheel ends by the wheel hubs. The rear axle shaft is held into the rear axle by an axle cap bolted to the hub. The splined end of the shaft is supported by the differential.

This axle uses a differential carrier, separate from the axle housing. This differential carrier holds the entire drive gear set, the differential bearings and adjusting nuts, and the differential bearing caps. The pinion cage is bolted to the differential cage.

The pinion gear is supported in a pinion cage by three bearings: a pinion front bearing, a pinion inner bearing, and a pinion rear or pilot bearing. The pinion cage is separate from the axle housing. Selective shims are used between the pinion cage and the axle housing to set the pinion depth.

The ring gear is bolted onto the differential case with right-hand thread bolts.

The differential case is supported in the case by two tapered roller bearings. The differential and ring gear are located in relationship to the pinion by using two differential bearing adjusting nuts. These allow the differential to be moved from side to side by adjusting the nuts in or out. The differential side bearing preload is accomplished by tightening the differential bearing adjusting nuts after the ring gear backlash has been set. Two bearing caps are used to hold the differential into the differential carrier as well as to supply half of the threads for the bearing adjusting nuts.

The differential is used to allow the wheels to turn at different rates of speed while the rear axle continues to transmit the driving force. This prevents tire scuffing when going around corners and prevents premature wear on internal axle parts.

The rear axle is sealed with a pinion seal, a gasket at each axle shaft end, and by a gasket between the rear axle housing and the differential carrier.

The Rockwell axle is identified by the model number on the carrier. This axle has a separate carrier, an overhanging pinion, and incorporates disk brakes.

DISASSEMBLY OF THE REAR AXLE

Remove or Disconnect (Figures 1 and 2)

Tools Required:
- J 22912 Split Type Puller Plate
- J 7804-01 Pinion Flange Puller
- J 22912 Rear Pinion Bearing Remover
- J 3453 Pinion Flange Holding Bar

- Drain the axle lubricant from the housing.

1. Axle shafts. Refer to the proper service manual.
2. Carrier to housing bolts (47) and washers (45).
 - Loosen but do not remove the two upper bolts to keep the carrier from falling.
3. Carrier (46) from the axle housing.
 - Using a roller jack, support the carrier, and remove it from the axle housing.
 - Use a rawhide hammer to break the carrier loose from the housing.
 - Remove the two upper bolts (47).
 - Place the carrier in a suitable holding fixture (figure 3).

DISASSEMBLY OF THE REAR AXLE

DS-ASSEMBLY OOF THE REAR AXLE

Remove or Disconnect (Figures 1 and 2)

Tools Required:
- J 22912 Split Type Puller Plate
- J 7804-01 Pinion Flange Puller
- J 22912 Rear Pinion Bearing Remover
- J 3453 Pinion Flange Holding Bar

- Drain the axle lubricant from the housing.

1. Axle shafts. Refer to the proper service manual.
2. Carrier to housing bolts (47) and washers (45).
 - Loosen but do not remove the two upper bolts to keep the carrier from falling.
3. Carrier (46) from the axle housing.
 - Using a roller jack, support the carrier, and remove it from the axle housing.
 - Use a rawhide hammer to break the carrier loose from the housing.
 - Remove the two upper bolts (47).
 - Place the carrier in a suitable holding fixture (figure 3).
Figure 1—Rear Axle Components
+ Loosen the jam nut (49) and back off the thrust block adjusting screw (48) (figure 4).
+ Center punch one differential carrier leg and bearing cap to identify the cap for reassembly (figure 5).
4. Bearing cap bolts (23).
5. Bearing caps (25) (figure 6).
6. Adjusting nuts (32).
7. Differential and gear assembly (36) from the carrier (figure 7).
+ Scribe a mark across the differential case halves.
8. Differential case bolts (44).
9. The top case half (36) (figure 8).
10. Side gears (43) and thrust washers (38) (figure 9).
11. Pinion gears (41) and thrust washers (42).
13. Ring gear nuts (34), washers (35), and bolts (39).
14. Ring gear (37) from the differential case.
15. Differential side bearings (33) using J 22912 and an arbor press (figure 10).
+ Mark the bearings as left and right.
4B6-4 12-INCH RING GEAR (ROCKWELL)

Figure 5—Punching the Carrier Leg

Figure 6—Removing the Bearing Cap

Figure 7—Removing the Differential

Figure 8—Differential Case Halves

Figure 9—Differential Components

Figure 10—Removing the Differential Side Bearing
16. Pinion shaft nut (62) and washer (61) using J 3453 to hold the pinion yoke (figure 11).
17. Pinion yoke (60) using J 7804-01 (figure 12).
18. Pinion cage (54) from the carrier by using bolts in the puller holes of the cage. Thread the bolts in to push the cage away from the carrier (figure 13).
19. Shim pack (50) from the cage.
 • Wire the shims together.
20. Pinion gear (37) from the cage by pressing it out in an arbor press.
21. Pinion oil seal (58) from the pinion cage.
22. Outer bearing (57) from the cage.
23. Inner bearing (53) from the pinion using J 22912 and an arbor press (figure 14).
24. Pilot bearing retaining ring (51).
25. Pilot bearing (52) from the pinion gear (37) using J 22912.

CLEANING

Do not steam clean drive parts having ground and polished surfaces such as gears, bearings, and shafts. These parts should be cleaned in a suitable solvent. All parts should be disassembled before cleaning.

Parts should be thoroughly dried immediately after cleaning. Use soft, clean, lintless rags. Parts may be dried with compressed air. Do not allow the bearings to spin while drying them with compressed air.

INSPECTION

It is very important to carefully and thoroughly inspect all drive unit parts before reassembly.

Through inspection of the drive parts for wear or stress and subsequent replacement of worn parts will eliminate costly drive component repair after reassembly.
4B6-6 12-INCH RING GEAR (ROCKWELL)

AXLE HOUSING

- **Inspect**
 - The carrier bore for nicks or burrs that would prevent the outer diameter of the pinion seal from sealing. Remove any burrs that are found.
 - The bearing cup bores for nicks or burrs. Remove any burrs that are found.
 - The housing for cracks. Replace the housing if any cracks are found.
 - The housing for foreign material such as metal chips, dirt, or rust. Refer to “Cleaning” in this section.

DIFFERENTIAL

- **Inspect**
 - Pinion gear shaft for unusual wear.
 - Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
 - Thrust washers for wear.
 - The fit of the differential side gears in the differential case.
 - The fit of the side gears on the axle shafts.
 - Differential case for cracks and scoring.
 - Replace all worn parts.

PINION AND RING GEAR

- **Inspect**
 - Pinion and ring gear teeth for cracking, chipping, scoring, or excessive wear.
 - Pinion splines for wear.
 - Pinion flange splines for wear.
 - The fit of the pinion on the pinion flange.
 - The sealing surface of the pinion flange for nicks, burrs, or rough tool marks which would cause damage to the seals' inside diameter and result in an oil leak.
 - Pinion cages for cracks, imperfections, corrosion, pits and grooves.
 - Replace all worn or broken parts.
 - Ring and pinion gears are matched sets and are both replaced any time a replacement of either is necessary.

BEARINGS

- **Inspect**
 - Bearings visually and by feel. The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.
 - The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.
 - Bearing cups for wear, cracks, brinelling and scoring.
 - Bearings and cups are only replaced as sets.
 - If the rear axle was operated for an extended period of time with very loose bearings, the ring gear and drive pinion will also require replacement.
 - Low mileage bearings may have minutes scratches and pits on the rollers and the bearing cups from the initial preload. Do not replace a bearing for this reason.

ASSEMBLY OF THE REAR AXLE

PINION ASSEMBLY

- **Install or Connect (Figures 1 and 2)**

 Tools Required:
 - J 23723 Bearing Installer
 - J 3453 Flange Holding Bar
 - J 3154-04 Seal Installer

 - Lubricate all parts with axle lubricant.
 - Pinion rear bearing (57) onto the pinion.
 - Press the bearing onto the pinion using J 23723.
 - Pinion pilot bearing (52) onto the pinion.
 - Press the bearing onto the pinion.
 - Bearing lock ring (51).
 - The ring must seat in the pinion ring land.
 - Pinion (37) into the cage (54).
 - Spacer over the pinion shaft.
 - Pinion front bearing (57).
 - Press the bearing onto the pinion using J 23723.
 - Rotate the cage several times to initially seat the bearings.
 - Place the pinion assembly in a press, and apply a load of 11 tons.
 - Wrap a soft wire around the cage and pull on the line with a pound scale. Measure the rotating torque, not the starting torque (figure 15).
 - The rotating torque should be 5 to 15 in. lbs. To determine the inch pounds:
 - Determine the diameter of the pinion cage in inches.

Figure 15—Measuring the Preload Torque

- Bearing caps for cracks or chips.

SHIMS

- **Inspect**

 Shims for cracks and chips. Damaged shims should be replaced with an equally sized service shim.
12-INCH RING GEAR (ROCKWELL) 4B6-7

Figure 16—Installing the Pinion Flange

— Divide the diameter by 2 to find the radius in inches.
— Multiply the radius by the number of pounds on the scale.
• Use a thinner spacer to increase bearing preload.
• Use a thicker spacer to decrease bearing preload.
7. Pinion flange (60) to the pinion (figure 16)
• Press the flange onto the pinion.
8. Pinion washer (61) and nut (62) using J 3453 to hold the pinion (figure 17).

Figure 17—Installing the Pinion Nut

12. Pinion washer (61) and a new nut (62) using J 3453 to hold the pinion (figure 17).

Figure 18—Removing the Pinion Nut

12. Pinion washer (61) and a new nut (62) using J 3453 to hold the pinion (figure 17).

Tighten

• Nut (62) to 325 N m (240 ft. lbs.).

PINION INSTALLATION

Install or Connect

• Measure the pinion bearing shims (50). If a new pinion and ring gear set is installed, the pinion bearing shim pack must be adjusted.
• Examine the heads of the new and old drive pinions. Compare these codes, and adjust the pinion bearing shim pack accordingly. The chart in figure 20 shows the proper adjustment to be made to the shim pack.
• If the original pinion is being used, the original pinion shims should also be used.
 1. Pinion bearing shims (50) to the pinion cage.
 • The shims, housing, and cage must be clean.
 2. The pinion cage (54) to the axle housing.

Figure 19—Installing the Seal

Figure 18—Removing the Pinion Nut

Figure 17—Installing the Pinion Nut

Figure 16—Installing the Pinion Flange
3. Cage bolts (56).

Tighten
- Bolts to 48 N·m (35 ft·lbs).

DIFFERENTIAL CASE ASSEMBLY

Install or Connect
- Lubricate all parts with rear axle lubricant.

1. Differential pinion gears (41) and thrust washers (42) to the spider (40) (figure 21).
2. Differential side gears (43) and thrust washers (38) to the differential case halves in their original locations.
3. Differential spider (40) to the differential.
4. The case halves (figure 22).
 - Align the scribe marks on the case halves.
5. Case bolts (44).

8. Differential side bearings (33).

Figure 20—Differential Components

Figure 21—Differential Pinion Gears and Thrust Washers

Figure 22—Installing the Case Halves

Figure 23—Checking the Bearing Cup Fit

Tighten
- Bolts (44) to 61 N·m (45 ft·lbs).
- Check that the mating surfaces of the differential case and the ring gear are clean and burr free.
- The ring gear must be heated before assembly to the differential case. Heat the ring gear in water to 160° — 180° F for 10 minutes before assembly.

6. Ring gear (37) to the differential.
 - Thread two studs into the ring gear on opposite sides.
 - Place the ring gear onto the case, and align the holes in the case with the studs.
7. New ring gear bolts (44).
 - Tighten the ring gear bolts alternately in stages gradually pulling the ring gear onto the differential case.
8. Differential side bearings (33).

Figure 24—Installing the Bearing Cup
- Press the bearings on using a suitable tool.

DIFFERENTIAL INSTALLATION

Install or Connect
1. Bearing cups (33) to the carrier (36)
2. Adjusting nuts (32)
3. Bearing caps (25)
4. Cap bolts (23)

 Tighten
- Bolts to 176 N·m (130 ft. lbs.)
- The bearing cups must have a hand fit in the bearing bores: If the fit is too tight, rework the bore with emery cloth, until a hand fit is obtained (figure 23).

Remove or Disconnect
1. Cap bolts (23)
2. Bearing caps (25)
3. Adjusting nuts (32)
4. Bearing cups (33)

Install or Connect
- Lubricate all parts with axle lubricant.
1. Bearing cups (33) onto the bearings.
2. Differential assembly (36) to the carrier.
3. Bearing adjusting nuts (32)
 - Turn the nuts hand-tight against the bearing cups.
4. Bearing caps (25) (figure 24)
 - Tap lightly into position.
5. Cap bolts (23)

 Tighten
- Bolts to 176 N·m (130 ft. lbs.)

CHECKING RING GEAR RUN OUT

Measure
1. Ring gear run out.
 - Mount a dial indicator to the carrier. The dial indicator stem should rest on the back face of the ring gear.
 - Loosen the adjusting nut opposite the ring gear enough to notice end play on the indicator.
 - Tighten the same adjusting nut just enough to have 0.000-inch end play on the indicator.
 - Rotate the gear, and check for run out. If the run out exceeds 0.008-inch, remove the differential, and determine the cause.

BACKLASH ADJUSTMENT
- The differential side bearing preload is adjusted by two adjusting nuts in the differential bearing bore. The bore and the bearing cap provide the mating threads for the bearing nut.
- The differential must be initially preloaded in order to determine the backlash of the gear set. After the backlash has been set, the final bearing preload is set.

Adjust
1. The bearing preload by tightening the adjusting nuts (32) one notch each from 0.000 end play. Refer to “Checking Ring Gear Run Out” (figure 25).
 - Mount a dial indicator to the carrier (46). Place the stem of the indicator onto the toe end of a tooth (figure 26).
2. Backlash by moving the ring gear toward or away from the pinion.
 - If setting up the original ring and pinion gear set, use the backlash reading obtained earlier.
 - Set the backlash to 0.005 - 0.015-inch for new gear sets.
 - If the backlash is too high, move the ring gear toward the pinion.
 - If the backlash is too low, move the ring gear away from the pinion.
FINAL ASSEMBLY

Install or Connect
1. Carrier (46) to the axle housing. Refer to the proper service manual.

SPECIFICATIONS

12-INCH RING GEAR AXLE (ROCKWELL)

<table>
<thead>
<tr>
<th>FASTENER</th>
<th>N·m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piston Nut</td>
<td>325</td>
<td>240</td>
</tr>
<tr>
<td>Pinion Cage Bolts</td>
<td>48</td>
<td>35</td>
</tr>
<tr>
<td>Case Half Bolts</td>
<td>61</td>
<td>45</td>
</tr>
<tr>
<td>Ring Gear Bolts</td>
<td>136</td>
<td>100</td>
</tr>
<tr>
<td>Bearing Cap Bolts</td>
<td>176</td>
<td>130</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SHIM SIZES</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive Pinion Bearing Retainer Shim</td>
<td>0.003-inch 0.005-inch</td>
</tr>
<tr>
<td>Outer Pinion Bearing Shim</td>
<td>0.005-inch 0.010-inch 0.030-inch</td>
</tr>
<tr>
<td>Inner Pinion Bearing Shim</td>
<td>0.003-inch 0.005-inch 0.010-inch</td>
</tr>
<tr>
<td>Drive Pinion Bearing Spacer</td>
<td>0.172-inch 0.173-inch 0.174-inch 0.175-inch 0.176-inch 0.177-inch 0.183-inch 0.189-inch 0.195-inch 0.201-inch</td>
</tr>
<tr>
<td>Lubricant</td>
<td>80W-90 GL-5</td>
</tr>
</tbody>
</table>
SPECIAL TOOLS

<table>
<thead>
<tr>
<th></th>
<th>Tool Code</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>J-23723-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Seal Installer Set
2. Flange Holding Bar
3. Differential Side Bearing Installer
4. Yoke Remover
5. Rear Pinion Bearing Cone Remover

Special Tools
SECTION 4B7

LOCKING DIFFERENTIAL

CONTENTS

SUBJECT	PAGE
Locking Differentials | 4B7-1
7 1/2, 7 5/8, 8 1/2 and 9 1/2-inch Ring Gear | 4B7-1
10 1/2-Inch Ring Gear | 4B7-5
Specifications | 4B7-9
Special Tools | 4B7-10

LOCKING DIFFERENTIALS

7 1/2, 7 5/8, 8 1/2 AND 9 1/2-INCH RING GEAR

DISASSEMBLY OF THE DIFFERENTIAL

Remove or Disconnect (Figure 1)

Tools Required:
- J 26252 Governor Remover
- Governor bushing (4) using J 26252 (figure 2).
- The C-clips that hold the latching bracket in place on the bracket shaft.
 - Move the bracket down the shaft.
- Latching bracket bushing (5) using J 26252.
- Latching bracket (11), shaft, and spring from the case.
- Governor assembly (11) from the case.
- Stop pin (2). (9 1/2-inch only.)
- Lockscrew (3).
- Pinion shaft (18).
- Differential pinion gears (7) and pinion thrust washers (6).
 - Roll the gears out of the case by rotating one of the side gears.
- Thrust block (17).
- Right side gear (10).
- Right disc pack (9) and side thrust washer.
- Left side gear (21), cam plate (16), and disc pack (12) as an assembly (cam unit).
- Side gear thrust washer (13).

CAM UNIT DISASSEMBLY - 7 1/2 AND 8 1/2-INCH

Remove or Disconnect (Figures 1 and 3)

Tools Required:
- J 22912-01 Bearing Remover
- Measure and record the overall length of the gear assembly from the front of the gear to the back of the thrust sleeve (14) including the side gear washer (13).
- Guide clips (20).
- Thrust sleeve (14) using J 22910-01.
 - Press the sleeve from the side gear (figure 4).
- Lock plates.
- Wave spring.
- Cam plate (16).
- Cam side gear (21).

CLEANING AND INSPECTION

Clean
- All parts with solvent.

Inspect
- All parts for excessive wear and breakage.
- Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
- Thrust washer for wear.
- The fit of the side gears on the axle shafts.
- Differential case for cracks and scoring.
- Thrust sleeve for excessive wear. Do not replace the thrust sleeve unless necessary. Inspect the side gear bore for scoring. If scoring is present, replace the entire differential.
- Replace parts as necessary.
4B7-2 LOCKING DIFFERENTIALS

Figure 1—Differential Components

Figure 2—Removing the Governor Bushings

Figure 3—Removing the Retaining Ring
Install or Connect

1. Cam plate (16) to the cam side gear (21).
2. Wave spring.
3. Clutch plates ($7\frac{1}{2}$ - $7\frac{3}{8}$ - 8 plates, $8\frac{1}{2}$ - 10 plates.
 - Alternate the plates as shown in figure 2.
4. Snap ring.
5. Guide clips (20) to the plates.
 - Use grease in the clips to hold them in place on the plates.

CAM UNIT ASSEMBLY - 9\text{\small{1/2}}-INCH

Install or Connect

1. Cam plate (16) to the cam side gear (21).
2. Wave spring.
3. Clutch plates.
 - Alternate the plates as shown in figure 1.
4. Thrust sleeve (14).
 - Press the thrust sleeve flush with the side gear disc splines.
5. Guide clips (20) to the plates.
 - Use grease in the clips to hold them in place on the plates.
 - If the side gear or thrust sleeve has been replaced, measure and record the overall length of the gear assembly from the front of the gear to the back of the thrust sleeve (14) including the side gear washer (13).
 - Compare this reading with the reading obtained earlier in this section.
 - If the new reading is more than 0.003-inch higher or lower than the original, select a thrust washer that will return the reading closest to the original reading.

ADJUSTMENT OF THE DIFFERENTIAL

- If it is necessary to replace the cam gear, the right side gear, or the thrust block, the entire differential must be adjusted. The differential is adjusted by using selective thickness thrust washers behind each side gear, and a selective thickness thrust block between the side gears.
- It is important to build up the differential properly, as the proper clearances between parts is necessary for the proper operation of the units.
- There are three adjustments to be made:
 1. Left side gear backlash.
 2. Right side gear backlash.
 3. Thrust block clearance.

Left Side Gear Backlash Adjustment

1. Install the cam unit and thrust washer (13) to the flange end of the case.
2. Place the pinion gears (7) and thrust washers into the differential.
 - Align them with the pinion shaft hole.
3. Press down the side gear, and install the pinion shaft (18) and lock screw (3).
 - If the side gear cannot be pressed down far enough to install the pinion shaft replace the thrust washer with a thinner washer.
4. Rotate the pinion gear closest to the lock screw so that one of the teeth is pointing downward (perpendicular to the ring gear flange).
5. Insert a large tapered tool such as a screwdriver firmly between the side gear and the pinion shaft.
6. Mount a dial indicator to the ring gear flange, and place the stem of the indicator on one of the teeth on the pinion gear closest to the lock screw (figure 5).
7. Pull the pinion gear firmly into its seat, and rotate the gear back and forth while reading the dial indicator. Record the reading.
8. Repeat steps 4 - 7 on the opposite pinion gear.
9. The backlash should be between 0.254 and 0.457 mm (0.010 and 0.018-inch).
10. If the backlash is too high, use a thicker thrust washer.
11. If the backlash is too low, use a thinner thrust washer.

Right Side Gear Backlash Adjustment

1. Assemble the clutch plates.
 * Alternate the plates as shown in figure 1.
2. Assemble the guide clips (19) to the plates.
 * Use grease in the clips to hold them in place on the plates.
3. Install the thrust washer (8), clutch plate assembly (9), and right side gear to the differential.
4. Place the pinion gears (7) and thrust washers (6) into the differential.
 * Align them with the pinion shaft hole.
5. Press down the side gear, and install the pinion shaft (18) and lock screw (3).
 * If the side gear cannot be pressed down far enough to install the pinion shaft, replace the thrust washer with a thinner washer.
6. Rotate the pinion gear closest to the lock screw so that one of the teeth is pointing downward (perpendicular to the ring gear flange).
7. Insert a large tapered tool such as a screwdriver firmly between the side gear and the pinion shaft.
8. Mount a dial indicator to the ring gear flange, and place the stem of the indicator on one of the teeth on the pinion gear closest to the lock screw (figure 5).
9. Pull the pinion gear firmly into its seat, and rotate the gear back and forth while reading the dial indicator. Record the reading.
10. Repeat steps 6 through 9 on the opposite pinion gear.
11. The backlash should be between 0.051 and 0.243 mm (0.002 - 0.010-inch).
12. If the backlash is too high, use a thicker thrust washer.
13. If the backlash is too low, use a thinner thrust washer.

Thrust Block Clearance Adjustment

Install or Connect

1. Left thrust washer (13) to the differential.
2. Cam unit to the differential.
3. Right thrust washer (8) to the differential.
4. Right clutch plates with guide clips to the differential.
 * Assemble alternatively as shown in figure 1.
5. Right side gear (10) to the differential.
6. Thrust block (17), thrust washer (6), and pinion gear (7).
 * Place the pinion gears into the differential 180 degrees apart.
 * Rotate the gears and thrust block into position.

Measure

1. Remove the telescoping gage.
2. Measure the telescoping gage with a micrometer.
3. Measure the original thrust block at the outer corner with a micrometer (figure 7).
 * If the thrust block thickness is not 0.000 to 0.006-inch less than the side gear spread, adjust the clearance by:
LOCKING DIFFERENTIALS 4B7-5

DISASSEMBLY OF THE DIFFERENTIAL

Tools Required:
J 22912-01
1. The ring gear and differential side bearings. Refer to "Disassembly of the Rear Axle" under the "10 1/2-Inch Ring Gear" heading.
 — Set the unit on the right side case half.
3. Case halves (figure 10).
 — Pry the halves apart at the yoke hole location.
 — Hold the side gear in the left side case half.
4. Governor assembly (48).
5. Latching bracket assembly (43).
7. Left side clutch pack and guide clips (47).
8. Left thrust washer (45).
9. Reaction blocks (41), pinion yoke (42), pinion gears (39), and pinion thrust washers (38).
10. Right cam unit from the differential.
11. Right thrust washer (36).
 • Measure and record the overall length of the gear assembly from the front of the gear to the back of the thrust sleeve (35) including the side gear washer (36).
12. Thrust sleeve (35) using J 22912-01.
 • Press the sleeve from the side gear (figure 11).
13. Clutch plates.
15. Wave spring.
16. Cam plate (33).
17. Cam side gear (40)

CLEANING AND INSPECTION

Clean
• All parts with solvent.

Inspect
• All parts for excessive wear and breakage.
• Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
• Thrust washers for wear.
• The fit of the side gears on the axle shafts.
• Differential case for cracks and scoring.
• Thrust sleeve for excessive wear. Do not replace the thrust sleeve unless necessary. Inspect the side gear bore for scoring. If scoring is present, replace the entire differential.
• If any damage to the differential case is found, the entire differential must be replaced.
• Replace parts as necessary.

CAM UNIT ASSEMBLY

Install or Connect (Figure 9)
1. Cam plate (33) to the cam side gear (40).
2. Wave spring.
3. Clutch plates.
 • Alternate the plates, and position the wave spring as shown in figure 12.
4. Thrust sleeve (35).
 • Press the thrust sleeve flush with the side gear disc spline.
5. Guide clips (34) to the plates.
 • Use grease in the clips to hold them in place on the plates.
 • If the side gear or thrust sleeve has been replaced, measure and record the overall length of the gear to the back of the thrust sleeve (35) including the side gear thrust washer (36).
 • Compare this reading with the reading obtained earlier in this section.
 • If the new reading is more than 0.003-inch higher or lower than the original, select a thrust washer that will return the reading closest to the original reading.
ADJUSTMENT OF THE DIFFERENTIAL

- If it is necessary to replace the cam gear, the right hand side gear, or the reaction blocks, the entire differential must be adjusted. The differential is adjusted by using selective thickness thrust washers behind each side gear, and selective thickness reaction blocks between the side gears.

- It is important to build up the differential properly. The proper clearance between parts is necessary for the proper operation of the unit.
There are three adjustments to be made:
(1) Left side gear backlash.
(2) Right side gear backlash.
(3) Thrust block clearance.

Right Side Gear Backlash Adjustment
1. Install the cam unit and thrust washer (36) to the right case half.
2. Clamp the cam unit in place using a set of washers, nut, and a bolt long enough to hold the cam unit in place (figure 13).
3. Place the pinion gears and thrust washers on the pinion yoke.
4. Install the yoke firmly to the differential case half (figure 14).
5. Loosen the nut, and index one pinion gear tooth to point downward (perpendicular to the case half face). Tighten the nut.
6. Mount a dial indicator on the case half face using a magnetic base (figure 15).
7. Place the stem of the dial indicator on the pinion gear tooth.

Figure 11—Removing the Thrust Sleeve

Figure 12—Cam Unit Components

Figure 13—Clamping the Cam Unit In Place

Figure 14—Installing the Pinion Yoke

Figure 15—Measuring Backlash
8. Pull the pinion gear firmly into its seat, and rotate the gear back and forth while reading the dial indicator. Record the reading.
 • Do not unseat the pinion yoke. This will make the backlash reading inaccurate.
9. Repeat steps 5 - 8 on the other 2 pinions. Record the readings.
10. The backlash should be between 0.254 and 0.457 mm (0.010 and 0.018-inch).
11. If the backlash is too high, use a thicker thrust washer.
12. If the backlash is too low, use a thinner thrust washer.

Left Side Gear Backlash Adjustment
1. Assemble the clutch plates.
 • Alternate the plates as shown in figure 12.
2. Assemble the guide clips (47) to the plates.
 • Use grease in the clips to hold them in place on the plates.
3. Install the thrust washer (45), clutch plate assembly (44), and left side gear to the differential.
4. Clamp the side gear in place using a set of washers, a nut, and a bolt long enough to hold the side gear in place (figure 13).
5. Place the pinion gears and thrust washers on the pinion yoke.
6. Install the yoke firmly to the differential case half.
7. Loosen the nut, and index one pinion gear tooth to point downward (perpendicular to the case half face). Tighten the nut.
8. Mount a dial indicator on the case half face using a magnetic base (figure 15).
9. Place the stem of the dial indicator on the pinion gear tooth.
10. Pull the pinion gear firmly into its seat, and rotate the gear back and forth while reading the dial indicator. Record the reading.
 • Do not unseat the pinion yoke. This will make the backlash reading inaccurate.
11. Repeat steps 7 - 10 on the other 2 pinions. Record the readings.
12. The backlash should be between 0.051 and 0.254 mm (0.002 and 0.010-inch).
13. If the backlash is too high, use a thicker thrust washer.
14. If the backlash is too low, use a thinner thrust washer.

Reaction Block Clearance Adjustment
1. Left thrust washer, plates and side gear. Bolt them into position. Refer to “Left Side Gear Backlash Adjustment”.
2. Right thrust washer and cam assembly. Bolt them into position. Refer to “Right Side Gear Backlash Adjustment”.
 • Measure the distance from the side gear face to the case half face (figure 16).
 • The thickness of the straight edge must be subtracted from the reading.
 • Add the measurement of both sides together. This is the side gear spread.

ASSEMBLY OF THE DIFFERENTIAL
1. Right thrust washer.
2. Right cam unit. Refer to “Cam Unit Assembly”.
3. Reaction blocks (41), pinion yoke (42), pinion gears (39), and pinion thrust washers (38).
4. Left thrust washer (45).
 • Assemble the plates as shown in figure 9 and 12.
LOCKING DIFFERENTIALS 4B7-9

5. Left side gear (46)
6. Latching bracket assembly (43).
7. Governor assembly (48).
 • The straight end of the latching bracket spring must be over and outside the governor assembly shaft.
8. Case halves (31) together.
 • Hold the side gear in the left side case half.
10. The ring gear and differential side bearings. Refer to "Assembly of the Rear Axle" under the "10 1/2-Inch Ring Gear" heading.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>FASTENER</th>
<th>DIFFERENTIAL LOCKSCREW</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 1/2, 7 3/8, and 8 1/2-inch</td>
<td></td>
</tr>
<tr>
<td>9 1/2-inch</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>N·m</td>
<td>FT. LBS.</td>
</tr>
<tr>
<td>36</td>
<td>27</td>
</tr>
<tr>
<td>50</td>
<td>37</td>
</tr>
</tbody>
</table>

THRUSt BLOCK SIZES

<table>
<thead>
<tr>
<th>Color Code</th>
<th>7 1/2-, 7 3/8-Inch</th>
<th>8 1/2-Inch</th>
<th>9 1/2-Inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purple</td>
<td>1.260-inch</td>
<td>1.322-inch</td>
<td>1.598-inch</td>
</tr>
<tr>
<td>White</td>
<td>1.264-inch</td>
<td>1.326-inch</td>
<td>1.602-inch</td>
</tr>
<tr>
<td>Brown</td>
<td>1.268-inch</td>
<td>1.330-inch</td>
<td>1.606-inch</td>
</tr>
<tr>
<td>Yellow</td>
<td>1.272-inch</td>
<td>1.334-inch</td>
<td>1.610-inch</td>
</tr>
<tr>
<td>Orange</td>
<td>1.276-inch</td>
<td>1.338-inch</td>
<td>1.614-inch</td>
</tr>
<tr>
<td>Pink</td>
<td>1.280-inch</td>
<td>1.342-inch</td>
<td>1.618-inch</td>
</tr>
<tr>
<td>Green</td>
<td>1.284-inch</td>
<td>1.346-inch</td>
<td>1.622-inch</td>
</tr>
<tr>
<td>Blue</td>
<td>1.288-inch</td>
<td>1.350-inch</td>
<td>1.626-inch</td>
</tr>
<tr>
<td>Black</td>
<td>1.288-inch</td>
<td>1.350-inch</td>
<td>1.630-inch</td>
</tr>
</tbody>
</table>

REACTION BLOCK SIZES — 10 1/2- INCH

<table>
<thead>
<tr>
<th>0.675-inch</th>
<th>0.672-inch</th>
<th>0.669-inch</th>
<th>0.666-inch</th>
</tr>
</thead>
</table>

RIGHT HAND SIDE GEAR THRUST WASHER

<table>
<thead>
<tr>
<th>7 1/2, 7 3/8, 8 1/2 and 9 1/2 Inch Axles</th>
<th>10 1/2 Inch Axles</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10-inch</td>
<td>0.027-inch</td>
</tr>
<tr>
<td>0.15-inch</td>
<td>0.032-inch</td>
</tr>
<tr>
<td>0.20-inch</td>
<td>0.037-inch</td>
</tr>
<tr>
<td>0.25-inch</td>
<td>0.040-inch</td>
</tr>
<tr>
<td>0.30-inch</td>
<td>0.042-inch</td>
</tr>
<tr>
<td>0.35-inch</td>
<td>0.044-inch</td>
</tr>
<tr>
<td>0.40-inch</td>
<td>0.048-inch</td>
</tr>
<tr>
<td>0.45-inch</td>
<td>0.052-inch</td>
</tr>
</tbody>
</table>

LEFT HAND SIDE GEAR THRUST WASHER

<table>
<thead>
<tr>
<th>7 1/2-, 7 3/8-Inch</th>
<th>8 1/2-Inch</th>
<th>9 1/2-Inch</th>
<th>10 1/2-Inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.022-inch</td>
<td>0.022-inch</td>
<td>0.022-inch</td>
<td>0.022-inch</td>
</tr>
<tr>
<td>0.027-inch</td>
<td>0.027-inch</td>
<td>0.027-inch</td>
<td>0.027-inch</td>
</tr>
<tr>
<td>0.032-inch</td>
<td>0.032-inch</td>
<td>0.032-inch</td>
<td>0.032-inch</td>
</tr>
<tr>
<td>0.036-inch</td>
<td>0.036-inch</td>
<td>0.036-inch</td>
<td>0.036-inch</td>
</tr>
<tr>
<td>0.040-inch</td>
<td>0.040-inch</td>
<td>0.040-inch</td>
<td>0.040-inch</td>
</tr>
<tr>
<td>0.044-inch</td>
<td>0.044-inch</td>
<td>0.044-inch</td>
<td>0.044-inch</td>
</tr>
<tr>
<td>0.048-inch</td>
<td>0.048-inch</td>
<td>0.048-inch</td>
<td>0.048-inch</td>
</tr>
<tr>
<td>0.052-inch</td>
<td>0.052-inch</td>
<td>0.052-inch</td>
<td>0.052-inch</td>
</tr>
</tbody>
</table>

Lubricant: .. 80w90 GL-5
(Do not use limited slip additive.)
1. Rear Pinion Bearing Cone Remover
2. Locking Differential Governor Remover
SECTION 4C
FRONT AXLE

DESCRIPTION

The GM 8 1/2-inch ring gear front axle uses a conventional ring gear and pinion gear set to transmit the driving force of the engine to the wheels. This gear set transfers this driving force at a 90 degree angle from the propeller shaft to the drive shafts.

This axle is full-floating. The shafts are retained in the housing by retaining clips in the hubs.

The pinion gear is supported by two tapered roller bearings. The pinion depth is set by a shim pack located between the gear end of the pinion and the roller bearing that is pressed onto the pinion. The pinion bearing preload is set by crushing a collapsible spacer between the bearings in the axle housing.

The ring gear is bolted onto the differential case with left-hand thread bolts.

The differential case is supported in the axle housing by two tapered roller bearings. The differential and ring gear are located in relationship to the pinion by using selective shims between the bearing and the axle housing. To move the ring gear, shims are deleted from one side and an equal amount area added to the other side. These shims are also used to preload the bearings.
which are pressed onto the differential case. Two bearing caps are used to hold the differential into the front axle housing.

The differential is used to allow the wheels to turn at different rates of speed while the front axle continues to transmit the driving force. This prevents tire scuffing when going around corners and prevents premature wear on internal axle parts.

The front axle is sealed with a pinion seal, a seal at each axle shaft, and by a gasket between the front cover and the axle housing.

All GM front axles are identified by the part number on the right axle tube near the carrier. The carrier cover does not have a drain plug.

DISASSEMBLY OF AXLE

INSPECTION

Perform the following checks before disassembling the axle.

1. Remove the axle cover from the axle and drain the axle lubricant into a suitable container.
2. Check the ring gear backlash. Refer to “Backlash Adjustment.” This information can be used to determine the cause of the axle problem. It will also help when setting up the shim packs for locating and preloading the differential case.
3. Inspect the case for metal chips. Determine where the metal chips come from, such as a broken gear or bearing cage.
4. Determine the cause of the axle problem before disassembly if possible.

DISASSEMBLY

Tools Required:
- J 8107-4 Differential Side Bearing Remover Plug
- J 22888 Differential Side Bearing Remover
- J 8614-01 Pinion Flange Remover
- J 8612-B Rear Pinion Bearing Cone Remover
- J 8612-B Rear Pinion Bearing Cone Remover

1. Differential cover bolts (14) and differential cover (12).
3. Pinion shaft lock screw (15).
4. Pinion shaft (17).
5. Differential pinion (21) and side gears (22).
6. Differential bearing cap bolts (18)
7. Differential bearing caps (10).
8. Differential carrier (24)
9. Bearing outer races (8) and shims (9).
11. Ring gear bolts (23).
12. Ring gear (7) from the differential case.
13. Pinion flange nut (35) and washer (36) using J 8614-01 to hold the pinion flange.
15. Pinion (7) from the axle housing.
16. Collapsible spacer (4) from the pinion.
17. Outer pinion seal (38) and bearing (39).
18. Inner bearing (5) and shim (6) from the pinion.
19. Bearing cups (5) and (39) from the axle housing.

NOTICE: Be careful when prying the differential case out of the axle housing so as not to damage the cover gasket surface. The differential case must be supported when it is being removed to prevent the case from falling and damaging the case.

8. Differential carrier (24)
 • Pry the case from the axle housing at the differential “window” (figure 2).

9. Bearing outer races (8) and shims (9).
 • Mark the races and the shims as left and right, and place them with the bearing caps.

10. Differential side bearings (8) using J 8107-4 and J 22888 (figure 3).
 • The jaws of J 22888 must pull from beneath the bearing cone and not the case.

11. Ring gear bolts (23).
 • Ring gear bolts use left-hand threads.

NOTICE: Do not pry the ring gear from the case. This will damage the ring gear and the differential case.

12. Ring gear (7) from the differential case.
 • Drive the ring gear off with a brass drift.

13. Pinion flange nut (35) and washer (36) using J 8614-01 to hold the pinion flange (figure 5).
14. Pinion flange using J 8614-01 (figure 6).
15. Pinion (7) from the axle housing.
 • Thread the pinion nut halfway onto the pinion.
 • Replace the differential cover (12) with two bolts (14) to keep the pinion from falling to the floor.
 • Drive the pinion out of the housing with a hammer and a soft drift (figure 7).

16. Collapsible spacer (4) from the pinion.
17. Outer pinion seal (38) and bearing (39).
18. Inner bearing (5) and shim (6) from the pinion.
 • Press the bearing off the pinion using J 8612-B (figure 8).
 • Remove the shim.
19. Bearing cups (5) and (39) from the axle housing using a hammer and a punch.
1. Axle Housing
2. Air Vent
4. Collapsible Spacer
5. Inner Pinion Bearing
6. Shim
7. Ring and Pinion Gear Set
8. Differential Side Bearing
9. Shim Pack (including spacer)
10. Bearing Cap
11. Gasket
12. Cover
14. Bolt
15. Pinion Shaft Lock Screw
17. Pinion Shaft
18. Bolt
19. Side Gear Thrust Washer
20. Pinion Thrust Washer
21. Pinion Gear
22. Side Gear
23. Ring Gear Bolt
24. Differential Case
28. Axle Shaft Seal
35. Pinion Nut
36. Washer
37. Pinion Flange
38. Pinion Seal
39. Outer Pinion Bearing

Figure 1—Front Axle Components

Figure 2—Prying the Differential Case from the Axle Housing

Figure 3—Differential Side Bearing Removal
Figure 7—Removing the Drive Pinion

• Work the cups out of the housing evenly, moving the punch back and forth between one side of the cup and the other.

20. Axle seals.

Figure 8—Removing Drive Pinion Rear Bearing

Figure 4—Checking Pinion Bearing Preload

Figure 5—Pinion Flange Nut Removal

Figure 6—Pinion Flange Removal
CLEANING AND INSPECTION

CLEANING

- Do not steam clean drive parts having ground and polished surfaces such as gears, bearings, and shafts. These parts should be cleaned in a suitable solvent. All parts should be disassembled before cleaning.
- Parts should be thoroughly dried immediately after cleaning. Use soft, clean, lintless rags. Parts may be dried with compressed air. Do not allow the bearings to spin while drying them with compressed air.

INSPECTION

It is very important to carefully and thoroughly inspect all drive unit parts before assembly. Through inspection of the drive parts for wear or stress and subsequent replacement of worn parts will eliminate costly drive component repair after reassembly.

AXLE HOUSING

Inspect

- Carrier bore for nicks or burrs that would prevent the outer diameter of the pinion seal from sealing. Remove any burrs that are found.
- Bearing cup surfaces for nicks or burrs. Remove any burrs that are found.
- Housing for cracks. Replace the housing if any cracks are found.
- Housing for foreign material such as metal chips, dirt, or rust. Refer to "Cleaning" in this section.

DIFFERENTIAL

Inspect

- Pinion gear shaft for unusual wear.
- Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
- Thrust washers for wear.
- Fit of the differential side gears in the differential case.
- Fit of the side gears on the axle shafts.
- Differential case for cracks and scoring.
- Replace all worn parts.

PINION AND RING GEAR

Inspect

- Pinion and ring gear teeth for cracking, chipping, scoring, or excessive wear.
- Pinion splines for wear.
- Pinion flange splines for wear.
- Fit of the pinion on the pinion flange.
- Sealing surface of the pinion flange for nicks, burrs, or rough tool marks which would cause damage to the seals' inside diameter and result in an oil leak.
- Replace all worn or broken parts.
- Ring and pinion gears are matched sets and are both replaced any time a replacement of either is necessary.

BEARINGS

Inspect

- Bearings visually and by feel. The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.
- The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.
- Bearing cups for wear, cracks, brinelling and scoring.
- Bearings and cups are only replaced as sets.
- If the front axle was operated for an extended period of time with very loose bearings, the ring gear and drive pinion will also require replacement.
- Low mileage bearings may have minute scratches and pits on the rollers and the bearing cups from the initial preload. Do not replace a bearing for this reason.
- Bearing caps for cracks or chips.

SHIMS

Inspect

- Shims for cracks and chips. Damaged shims should be replaced with an equally sized service shim.
Important
• Lubricate all seal lips, gears, and bearing surfaces with axle lubricant prior to assembly.

PINION BEARING CUP INSTALLATION

Install or Connect
Tools Required:
J 8608 Rear Pinion Bearing Cup Installer
J 8611-01 Front Pinion Bearing Cup Installer
J 8092 Driver Handle
1. Front pinion bearing cup using J 8611-01 and J 8092 (figure 9).
2. Rear pinion bearing cup using J 8608 and J 8092 (figure 10).

PINION DEPTH ADJUSTMENT

Tools Required:
J 8001 Dial Indicator Set
J 21777-1 Arbor
J 21777-29 Plate
J 21777-35 Rear Pilot Washer
J 21777-42 Front Pilot Washer
J 21777-43 Stud Assembly - Bolt
J 21777-45 Side Bearing Disc
1. Clean all the gage parts.
2. Lubricate the front and rear pinion bearings with axle lubricant.
3. Place the bearings (5) and (39) into the pinion bearing cups.
5. Hold the stud stationary at the flats of the stud. Tighten the stud nut to 2.2 N·m (20 in. lbs.).
6. Rotate the gage plate and bearings several complete revolutions to seat the bearings.
7. Tighten the stud nut until a torque of 1.6 to 2.8 N·m (15 to 25 in lbs.) is obtained to keep the gage plate in rotation.
8. Assemble J 21777-45, J 21777-1 Arbor, and J 8001 to the differential bearing bore as shown in figure 12.
• The bearing bores must be clean and burr free.
9. Install the side bearing caps, and tighten the bolts finger tight.
10. Rotate the gage plate until the proper gaging area is parallel with the disks.
11. Position the gage shaft assembly in the carrier so that the dial indicator rod is centered on the gaging area of the gage block.
12. Set the dial indicator at zero. Push the indicator down on the indicator shaft until the needle rotates 3/4 of a turn to the right. Tighten the dial indicator in this position.
13. Rotate the gage shaft slowly back and forth until the dial indicator reads the greatest deflection (when the indicator needle is centered between movement to the left and to the right).

14. At the point of greatest deflection, set the dial indicator to zero. Repeat the rocking action of the gage shaft to verify the zero setting.

15. Rotate the gage shaft until the dial indicator rod does not touch the gage block.

16. Record the actual number on the dial indicator and not the number which represents how far the needle travels. This is the nominal pinion setting.

Example: If the indicator needle moved to the left 1.70 mm (0.067-inch) to a dial reading of 0.84 mm (0.033-inch) as shown in figure 13, record the dial reading of 0.84 mm (0.033-inch) not 1.70 mm (0.067-inch).

17. Check the pinion face for a pinion adjustment mark. This mark indicates the best running position for the pinion from the nominal setting.

- If the pinion is stamped with a plus number, add that many thousandths to the nominal setting. If the nominal setting is 0.033-inch and the pinion is marked +2, the correct shim depth would be 0.033-inch + 0.002-inch = 0.035-inch.

- If the pinion is stamped with a minus number, subtract that many thousandths from the nominal setting. If the nominal setting is 0.033-inch and the pinion is marked -2, the correct shim depth would be 0.033-inch - 0.002-inch = 0.031-inch.

- If the pinion has no plus or minus marked on the pinion, use the nominal pinion setting to select a shim.

18. Remove bearing caps and depth gaging tools.

19. Install the correct pinion shim to the pinion according to this procedure.
Lubricate all parts with rear axle lubricant.

1. Axle seals.
2. Side gear thrust washers (19) to the side gears (22).
3. Side gears (22) to the differential case (24).
 - Place the side gears in place on the same side as removed.
4. Pinion gears (21) to the differential without the thrust washers (20).
 - Place the pinion gears onto the side gears so that the holes in the pinion gears are 180 degrees apart.
 - Rotate the pinion gears into place, and verify that the pinion gears line up with the pinion shaft holes.
5. Pinion thrust washers (20).
6. Ring gear (7) to the differential case (24).
 - Rotate the pinion gears toward the differential opening just enough to slide in the pinion thrust washers.
 - Check that the mating surfaces of the differential case and the ring gear are clean and burr free.
 - Thread two left-hand threaded studs into the ring gear on opposite sides (figure 17)
 - Place the ring gear onto the case, and align the holes in the case with the studs.

J 22761 Differential Side Bearing Installer

Figure 13—Checking Pinion Depth

Figure 14—Installing the Pinion Oil Seal

Figure 15—Installing the Pinion Flange
Figure 16—Checking Pinion Bearing Preload

- Press the ring gear onto the case far enough to start the bolts using J 8107-4 to protect the differential from the press ram (figure 18).

7. New ring gear bolts (23).
- Tighten the ring gear bolts alternately in stages gradually pulling the ring gear onto the differential case.

Figure 18—Installing the Ring Gear

SIDE BEARING PRELOAD ADJUSTMENT

Tool Required:
J 22779 Side Bearing Backlash Gage

- The differential side bearing preload is adjusted by changing the thickness of both the left and right shims equally. This will maintain the original backlash.
- Production shims are cast iron and are not to be reused.
- Service spacers are available from 4.32 to 4.37 mm (0.170 to 0.172-inch) thick.
- Service shims are available in kits from 0.040 to 0.070-inch.
- Be sure that the side bearing surfaces are clean and free of burrs.

1. Place the differential case and the bearing cups into the axle housing.
- Lubricate the axle bearings with axle lubricant.
Figure 20—Installing Side Bearing Gaging Tools

- Support the case to keep it from falling into the axle housing.
2. Install the strap from J 22779 on the left bearing with the cap bolts. Tighten the bolts snuggly.
3. Push the ring gear towards the pinion.
 - Engage the ring gear with the pinion tightly to obtain a backlash of .000 mm to 0.0254 mm (0.00 to 0.001-inch).
4. Insert J 22779 between the axle housing and the left bearing cup (figure 20).
5. Move the tool back and forth in the bore while turning the adjusting nut to the right until a noticeable drag is produced (figure 21).
 - Tighten the lock bolts on the side of the tool.
 - Leave the tool in place.
6. Install a service spacer (9) and a service shim (9) between the right bearing cup and the axle housing.
7. Determine bearing preload by inserting progressively larger feeler gage sizes between the carrier and the service shim.

Figure 21—Measuring Side Bearing Shim Requirements

- Push the feeler gage downward so that it contacts the shim at the top and bottom, and then contacts the axle housing.
- The point just before additional drag begins is the correct feeler gage thickness. This is the zero setting without preload.
8. Remove the strap, J 22779, the service spacer, service shim, feeler gage, and differential case from the axle housing.
9. Measure J 22779 in three places using a micrometer. Average the readings (figure 22).
10. Add the dimensions of the service spacer, service shim, and the feeler gage.
11. For an initial backlash setting, move the ring gear away from the pinion by subtracting 0.010-inch from the ring gear side shim pack and adding 0.010-inch to the shim pack on the opposite side.
12. To obtain the proper preload on the side bearings add 0.10 mm (0.004-inch) to the measurement of each shim pack.
13. Install the differential. Refer to “Backlash Adjustment” in this section.

BACKLASH ADJUSTMENT

1. Install the differential case, bearing cups, spacers, and shims as determined from the “Side Bearing Preload Adjustment” earlier in this section (figure 23).
 - Tap the final shim into position, using a soft faced hammer.
2. Rotate the case several times to seat the bearings.
3. Install a dial indicator to the case using a magnetic base.
4. Place the indicator stem at the heel end of a tooth.
 - Set the dial indicator so that the stem is in line with the gear rotation and at a right angle to the tooth angle (figure 24).
5. Install the differential caps (10) and bolts (18).
Tighten

- The bolts to 80 N·m (60 ft·lbs.)

6. Check and record the backlash at three or four points around the ring gear.
- The pinion must be held stationary when checking backlash.
- The backlash should be the same at each point within 0.05 mm (0.002-inch). If the backlash varies more than 0.05 mm (0.002-inch), check for burrs, a distorted case flange, uneven bolting conditions, or foreign matter between the case and the ring gear.

7. The backlash at the minimum lash point measured should be between 0.13 and 0.23 mm (0.005 and 0.009) for all new gear sets, 0.08 and 0.28 mm (0.003 and 0.011-inch) for used gear sets.

8. If the backlash is not within specifications, move the ring gear in or out from the pinion by increasing the thickness of one shim, and decreasing the thickness of the other shim by the same amount. This will maintain the correct front axle side bearing preload.
- Moving 0.003-inch worth of shims from one side of the differential to the other will change the backlash adjustment by approximately 0.002-inch.

9. Recheck the backlash and correct as necessary.

GEAR TOOTH CONTACT PATTERN CHECK

Before final assembly of the differential, a gear tooth contact pattern check should be performed.

It should be noted that a gear tooth contact pattern check is NOT a substitute for adjusting pinion depth and backlash as previously outlined. It is a final check to verify the correct running position of the ring gear and the drive pinion. Gear sets which are not positioned properly may be noisy, or have a short life, or both. With a pattern check, the best contact between the ring gear and the drive pinion for low noise level and long life can be assured.

GEAR TOOTH TERMS

The side of the ring gear tooth which curves outward, or is convex, is referred to as the “drive” side. The concave side is the “coast” side. The end of the tooth nearest center of ring gear is referred to as the “toe” end. The end of the tooth farthest away from the center is the “heel” end. The toe end of tooth is smaller than the heel end. (figure 25).

TEST

1. Wipe oil out of carrier and carefully clean each tooth of the ring gear.
2. Use gear marking compound and apply this mixture sparingly to all ring gear teeth using a medium stiff brush. When properly used, the area of pinion tooth contact will be visible when hand load is applied.
3. Tighten the bearing cap bolts to specifications.
4. Apply a load until a torque of 54-70 N\(\cdot\)m (40-50 ft. lbs.) is required to turn the pinion.

A test made without loading the gears will not give a satisfactory pattern. Turn the companion flange with a wrench so that the ring gear rotates one full revolution then reverse the rotation so that the ring gear rotates one revolution in the opposite direction. Excessive turning of the ring gear is not recommended.

5. Observe the pattern on the ring gear teeth and compare with figure 26.

ADJUSTMENTS AFFECTING TOOTH CONTACT

Two adjustments can be made which will affect the tooth contact pattern. These are backlash and the position of the drive pinion (pinion depth) in the carrier. The effects of bearing preloads are not easily seen on hand loaded teeth pattern tests; however, these adjustments should be within specifications before proceeding with the backlash and the drive pinion adjustments.

It may be necessary to adjust both pinion depth and the backlash to obtain the correct pattern.

The position of the drive pinion is adjusted by increasing or decreasing the shim thickness between the pinion head and the inner race of the rear bearing. The shim is used in the differential to compensate for manufacturing tolerances. Increasing the shim thickness will move the pinion closer to the centerline of the ring gear. Decreasing the shim thickness will move the pinion farther away from the centerline of the ring gear.

Backlash is adjusted by means of the side bearing adjusting shims which moves the entire case and ring gear assembly closer to, or farther from the drive pinion. (The adjusting shims are also used to set side bearing preload). To increase backlash, increase the right shim and decrease the left shim an equal amount. To decrease backlash decrease the right shim and increase the left shim an equal amount.

It is important that the contact pattern be centrally located up and down on the face of the ring gear teeth.

FINAL ASSEMBLY

Install or Connect (Figure 1)

2. New cover gasket and the cover (12).

Tighten

- Cover bolts (14) to 27 N\(\cdot\)m (20 ft. lbs.)
SPECIFICATIONS 8\(1/2\) INCH RING GEAR FRONT AXLE

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Fastener</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Gear Bolts</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>Bearing Cap Bolts</td>
<td>87</td>
<td>60</td>
</tr>
<tr>
<td>Axle Cover Bolts</td>
<td>27</td>
<td>20</td>
</tr>
</tbody>
</table>

AVAILABLE SHIM AND SPACER SIZES

Differential Side Bearing Spacer	0.170-inch - 0.172-inch
Differential Side Bearing Kits	0.064 - 0.070-inch
	0.040 - 0.044-inch
	0.046 - 0.050-inch
	0.052 - 0.056-inch
	0.058 - 0.063-inch
	0.072 - 0.078-inch
	0.080 - 0.086-inch
	0.088 - 0.094-inch
	0.096 - 0.100-inch
Pinion Bearing Shim Kits	0.020 - 0.024-inch
	0.025 - 0.029-inch
	0.030 - 0.034-inch
	0.035 - 0.039-inch

PINION PRELOAD AND BACKLASH

Pinion Preload (New Bearings)	2.2-2.8 N·m (20-25 in. lbs.)
(Used Bearings)	1.1-1.6 N·m (10-15 in. lbs.)
Backlash (New Gears)	0.13-0.23 mm (0.005-0.009-in.)
Backlash (Used Gears)	0.08-0.28 mm (0.003-0.011-in.)
SPECIAL TOOLS

<table>
<thead>
<tr>
<th>No.</th>
<th>Tool Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Front Pinion Bearing Cup Installer</td>
<td>J 8611-01</td>
</tr>
<tr>
<td>2.</td>
<td>Rear Pinion Bearing Cone Remover</td>
<td>J 8612-B</td>
</tr>
<tr>
<td>3.</td>
<td>Driver Handle</td>
<td>J 8092</td>
</tr>
<tr>
<td>4.</td>
<td>Dial Indicator Set</td>
<td>J 8001</td>
</tr>
<tr>
<td>5.</td>
<td>Rear Pinion Bearing Cone Installer</td>
<td>J 8609-01</td>
</tr>
<tr>
<td>6.</td>
<td>Pinion Flange Remover</td>
<td>J 8614-01</td>
</tr>
<tr>
<td>7.</td>
<td>Differential Side Bearing Remover Plug</td>
<td>J 8107-4</td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td>J 8608</td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td>J 22888</td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td>J 22399</td>
</tr>
<tr>
<td>11.</td>
<td></td>
<td>J 22761</td>
</tr>
<tr>
<td>12.</td>
<td></td>
<td>J 22779</td>
</tr>
<tr>
<td>13.</td>
<td></td>
<td>J 5590</td>
</tr>
</tbody>
</table>

- **11.** Differential Side Bearing Installer
- **12.** Side Bearing Backlash Gauge
- **13.** Rear Pinion Bearing Cone Installer

Not Shown:
- J-21777-1 Arbor
- J-21777-29 Gauge Plate
- J-21777-35 Rear Pilot Washer
- J-21777-42 Front Pilot Washer
- J-21777-43 Stud Assembly—Bolt
- J-21777-45 Side Bearing Disc
DESCRIPTION

The Dana 9 3/4-inch ring gear front axle uses a conventional ring and pinion gear set to transmit the driving force of the engine to the front wheels. This gear set transfers this driving force at a 90 degree angle from the propeller shaft to the drive shafts.

The pinion gear is supported by two tapered roller bearings. The pinion depth is set by a shim pack between the inner pinion bearing cup and the front axle housing. The pinion bearing preload is set by a shim pack at the front of the axle housing between the yoke and the pinion gear.

The ring gear is bolted onto the differential case with left-hand thread bolts.

The differential case is supported in the case by two tapered roller bearings. The differential and ring gear are located in relationship to the pinion by using selective shims between the bearings and the differential case. To move the ring gear, shims are deleted from one side and an equal amount are added to the other side. Differential side bearing preload is set by the axle housing. (The axle housing is spread to remove the differential from the housing.) When the spreader is removed, the housing sets the bearing preload.

Two bearing caps are used to hold the differential into the front axle housing.

The differential is used to allow the wheels to turn at different rates of speed while the front axle continues to transmit the driving force. This prevents tire scuffing when going around corners and prevents premature wear on internal axle parts.

The front axle is sealed with a pinion seal, an axle seal, and RTV sealer between the differential cover and front axle housing.

All Dana axles are identified by the part number located on the right axle tube next to the manufacturing date which is next to the carrier. The carrier cover does not have a drain plug. Oil is drained by removing the cover.
Perform the following checks before disassembling the axle.
1. Remove the axle cover from the axle and drain the axle lubricant into a suitable container.
2. Check the ring gear backlash. Refer to "Backlash Adjustment." This information can be used to determine the cause of the axle problem. It will also help when setting up the shim packs for locating and preloading the differential case.
3. Inspect the case for metal chips. Determine where the metal chips come from, such as a broken gear or bearing cage.
4. Determine the cause of the axle problem before disassembly if possible.

DISASSEMBLY

Remove or Disconnect (Figure 1)

Tools Required:
- J 24385-01 Differential Housing Spreader
- J 29721 Differential Side Bearing Remover
- J 29721-70 Side Bearing Adapters
- J 8107-3 Side Bearing Puller Plug
- J 8614-10 Pinion Flange Holder

- Place the axle in a suitable support.
1. The differential cover bolts (17) and the differential cover (14) (figure 2).
- Drain the gear lubricant into a proper container.
3. Bearing cap bolts (19) (figure 3).
 - The mating letters are stamped on the caps and the axle housing. The caps are to be reassembled exactly as removed.
 - Assemble J 24385-01 to the differential housing as shown in figure 4.
 - Assemble the dial indicator as shown in figure 4.
 - Preset the gage at least 0.50 mm (0.020-inch), and then rotate the gage housing to zero the dial.
- Mark the bearings as left and right, and place them with the proper bearing caps and cups.

NOTICE: Do not spread the differential carrier more than 0.38 mm (0.015-inch). Over-spreading the carrier can damage or distort the carrier.

- Spread the carrier while examining the dial indicator. Do not spread the carrier more than 0.38 mm (0.015-inch).

5. Differential case (22) from the carrier (1) using two pry bars (figure 5).
6. The spreader J 24385-01 from the carrier (1).
7. Bearing cups (20).
 - Mark the cups as left and right, and place them with the proper bearing caps.
8. Differential side bearings (20) using J 29721, and J 29721-70 and J 8107-3 (figure 6).

 - Mark the shims as left or right.
10. Ring gear bolts (23), and discard.

Inspect
- Drive pinion bearing preload (figure 11).
- Pinion assembly for looseness by moving it back and forth. (Looseness indicates excessive bearing wear.)

11. Ring gear (2) from the differential case using a rawhide hammer.
- Ring gear (2) from the vise.
12. Lock pin (29) from two differential using a hammer and a punch (figure 8).
13. Pinion shaft (28) using a hammer and a brass drift (figure 9).
14. Differential pinion gears (24) and thrust washers (26).
 - Rotate the side gears until the pinion gears are in the opening of the differential (figure 10).
15. Differential side gears (25) and thrust washers (27).
 - Mark the gears and washers as left and right.
 - Replace the carrier cover (14) using two bolts (17) to keep the pinion from falling to the floor.

16. Pinion nut (12) and washer (11) using J 8614-01 to hold the pinion (figure 12).
17. Pinion flange (10) using J 8614-01 (figure 13).
18. Pinion (2) from the carrier using a rawhide hammer to tap the pinion (figure 14).
19. Carrier cover (14) and the pinion (2).
20. Pinion preload shims (6).
 - Keep the shims together on the bench.
21. Pinion seal (9).
22. Pinion outer bearing (7) and oil slinger (8).
23. Bearing cups (3) and (7) from the axle housing using a hammer or a punch (figure 15).
 - Work the cups out of the housing evenly, moving the punch back and forth between one side of the cup and the other.
24. Pinion adjusting shims (4) and baffle (5).
 - Keep the shims together on the bench.
25. Pinion inner bearing (3) using J 29721 and J 29721-70 (figure 16).
Figure 1—Front Axle Components

1. Axle Housing
2. Ring Gear and Pinion Set
3. Inner Pinion Bearing
4. Shims
5. Baffle
6. Preload Shims
7. Bearing
8. Thrust Washer
9. Pinion Oil Seal
10. Pinion Flange
11. Washer
12. Pinion Nut
13. Cover
14. Spacer
15. Plug
16. Bolt
17. Bearing Cap
18. Bolt
19. Bolt
20. Bearing
21. Shim
22. Differential Case
23. Ring Gear Bolt
24. Pinion Gear
25. Side Gear
26. Pinion Thrust Washer
27. Side Gear Thrust Washer
28. Pinion Shaft
29. Roll Pin
30. Slinger
41. Axle Seal
Figure 2—Removing the Axle Cover

Figure 3—Removing the Bearing Cap

Figure 4—Spreading the Differential Case

Figure 5—Removing the Differential

Figure 6—Removing the Differential Side Bearings

Figure 7—Removing the Ring Gear
Figure 8—Removing the Lock Pin

Figure 9—Removing the Pinion Shaft

Figure 10—Removing the Pinion Gears

Figure 11—Checking the Pinion Preload

Figure 12—Drive Pinion Nut Removal

Figure 13—Pinion Flange Removal
Figure 14—Removing the Pinion

Figure 15—Removing the Bearing Cups

Figure 16—Removing the Pinion Inner Bearing
Cleansing and Inspection

Cleaning
Do not steam clean drive parts having ground and polished surfaces such as gears, bearings, and shafts. These parts should be cleaned in a suitable solvent. All parts should be disassembled before cleaning.

Parts should be thoroughly dried immediately after cleaning. Use soft, clean, lintless rags. Parts may be dried with compressed air. Do not allow the bearings to spin while drying them with compressed air.

It is very important to carefully and thoroughly inspect all drive unit parts before reassembly. Thorough inspection of the drive parts for wear or stress and subsequent replacement of worn parts will eliminate costly drive component repair after reassembly.

Inspection

Axle Housing

- The carrier bore for nicks or burrs that would prevent the outer diameter of the pinion seal from sealing. Remove any burrs that are found.
- The bearing cup surfaces for nicks or burrs. Remove any burrs that are found.
- The housing for cracks. Replace the housing if any cracks are found.
- The housing for foreign material such as metal chips, dirt, or rust. Clean as necessary, as outlined previously.

Differential

- Pinion gear shaft for unusual wear.
- Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
- Thrust washers for wear.
- The fit of the differential side gears in the differential case.
- The fit of the side gears on the axle shafts.
- Differential case for cracks and scoring.
- Replace all worn parts.

Pinion and Ring Gear

- Pinion and ring gear teeth for cracking, chipping, scoring, or excessive wear.
- Pinion splines for wear.
- Pinion flange splines for wear.
- The fit of the pinion on the pinion flange.
- The sealing surface of the pinion flange for nicks, burrs, or rough tool marks which would cause damage to the seals' inside diameter and result in an oil leak.
- Replace all worn or broken parts.
- Ring and pinion gears are matched sets and are both replaced any time a replacement of either is necessary.

Bearings

- Bearings visually and by feel. The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.
- The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.
- Bearing cups for wear, cracks, brinelling and scoring.
- If the rear axle was operated for an extended period of time with very loose bearings, the ring gear and drive pinion will also require replacement.
- Low mileage bearings may have minute scratches and pits on the rollers and the bearing cups from the initial preload. Do not replace a bearing for this reason.
- Bearing caps for cracks or chips.
- Bearings and cups are only replaced as sets.

Shims

- Shims for cracks and chips. Worn or damaged shims should be replaced with an equally sized service shim.
ASSEMBLY OF AXLE

Important
- Lubricate all seal lips, bearings, gears, and bearing surfaces with axle lubricant prior to assembly.

DIFFERENTIAL CASE ASSEMBLY

Install or Connect (Figure 1)
Tool Required:
D-160, Axle Shaft Seal Installer (Miller)
• Lubricate all parts with front axle lubricant.
1. Axle shaft seals, using D-160 (figure 17).
2. New side gear thrust washer (27) to the side gears (25).
3. Side gears (25) to the differential case.
 • Place the side gears in place on the same side as removed (figure 18).
4. Pinion gears (24) to the differential without the thrust washers (26).
 • Place the pinion gears onto the side gears so that the holes in the pinion gears are 180 degrees apart.
 • Rotate the pinion gears into place, and verify that the pinion gears line up with the pinion shaft holes.
5. New pinion thrust washers (26).
 • Rotate the pinion gears toward the differential opening just enough to slide in the pinion thrust washers.
6. Pinion shaft (28).
 • Align the lock pin holes in the case and the shaft.
7. Lock pin (29) (figure 19).
 • Peen metal from the case over the lock pin.
 • Check that the mating surfaces of the differential case and the ring gear are clean and burr free.
8. Ring gear (2) to the differential case (22).
 • Thread two studs into the ring gear on opposite sides.
 • Press the ring gear onto the case, and align the holes in the case with the studs.

Important
- Always use new bolts at assembly.
- Always use the correct service bolts. Do not attempt to use a substitute bolt.
- Tighten the ring gear bolts alternately in stages gradually pulling the ring gear onto the differential case.

Tighten
- The ring gear bolts in sequence to 142-156 N m (105 - 115 ft. lbs.)
10. Master differential bearings D-117 to the differential (figure 21).
DETERMINING TOTAL DIFFERENTIAL SHIM PACK SIZE

1. Assemble the differential case (22) to the axle housing. The pinion must not be installed.
2. Mount a dial indicator having a minimum travel of 5 mm (0.200-inch) with a magnetic base on the ring gear bolt side of the housing (figure 22).
3. Force the differential assembly as far as possible in the direction towards the indicator.
4. Preload the dial indicator one half of its travel. Place the tip of the indicator on a flat surface of the differential, just next to a ring gear bolt. Mark this location with a piece of chalk.
5. Zero the dial indicator.
6. Force the differential assembly in the opposite direction as far as it will go. Repeat this step until the same reading is obtained. Record the number of thousandths that the dial indicator traveled, not the reading on the dial. This will be the measurement of the shim pack without the bearing preload (which will be added later).
7. Remove the dial indicator from the axle.
8. Remove the differential case from the axle housing.
 • Do not remove the master bearings from the differential.

PINION DEPTH ADJUSTMENT

Tools Required:
- D-120 Master Pinion Block (Miller)
- D-116-1 Pinion Height Block (Miller)
- D-116-2 Master Discs (Miller)
- D-115-3 Arbor (Miller)
- D-115 Scooter Gage (Miller)

1. Clean the carrier bores and all the tools. The pinion bore must be free of nicks and dirt.
2. Install D-120 to the pinion bore (figure 23).
4. Install the arbor and discs into the axle housing (figure 24).
5. Install D-116-1 onto D-120 and against the arbor (figure 25).
6. Place D-115 onto the height block (figure 26).
 • Place the gage on the lower step of the height block. Push the gage down on the height block. While applying pressure, set the dial indicator at zero.
7. Slide the gage over the arbor (figure 27).
8. Record the reading at the point of greatest deflection (when the dial indicator needle is centered between movement to the left and to the right).
This reading indicates the amount of shims needed for a nominal pinion setting. The pinion marking may change the pinion depth by adding or deleting shims from the nominal pinion setting.

- A positive (+) pinion marking indicates that the distance between the ring gear centerline and the pinion head must increase by the number of thousandths marked on the pinion. This means that the shim pack will decrease by the same number of thousandths.

- A negative (-) pinion marking indicates that the distance between the ring gear centerline and the pinion head must decrease by the number of thousandths marked on the pinion. This means that the shim pack will increase by the same number of thousandths.

- A pinion etched zero (0) will use the nominal setting as determined in this procedure.
93/4-INCH RING GEAR FRONT AXLE 4C2-11

Figure 28—Measuring the Shims

9. Measure each shim separately with a micrometer and add them together to obtain the total shim pack thickness. If a baffle (5) or slinger is used, these must also be measured and included in the shim pack (figure 28).

PINION INSTALLATION

++ Install or Connect

Tools Required:

<table>
<thead>
<tr>
<th>Item</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>J 7818 Front Pinion Bearing Cup Installer</td>
<td></td>
</tr>
<tr>
<td>J 5590 Rear Pinion Bearing Cone Installer</td>
<td></td>
</tr>
<tr>
<td>D-111 Rear Cup Installer (Miller)</td>
<td></td>
</tr>
<tr>
<td>C-4171 Handle (Miller)</td>
<td></td>
</tr>
<tr>
<td>J 8092 Handle</td>
<td></td>
</tr>
<tr>
<td>J 8614-01 Pinion Flange Remover</td>
<td></td>
</tr>
<tr>
<td>D-116-1 Pinion Height Block (Miller)</td>
<td></td>
</tr>
<tr>
<td>D-116-2 Master Disc (Miller)</td>
<td></td>
</tr>
<tr>
<td>D-115-3 Master Disc (Miller)</td>
<td></td>
</tr>
<tr>
<td>D-115 Scooter Gage (Miller)</td>
<td></td>
</tr>
<tr>
<td>D-163 Seal Installer (Miller)</td>
<td></td>
</tr>
</tbody>
</table>

1. Place the required amount of shims (and baffle if used) in the inner bearing bore.
2. Drive the inner bearing cup into the axle assembly using D-111 and C-4171. The cup must be seated on the shims (figure 29).
3. Drive the outer bearing cup into the axle assembly using J 7818 and J 8092 (figure 30).
4. Inner bearing cone (and slinger if used) on the pinion. Drive the bearing onto the pinion shaft using J 5590 (figure 31).
5. Pinion into the axle housing.
6. Outer pinion bearing (7) and thrust washer (8).
- Do not assemble the preload shims or pinion oil seal at this time.
7. Pinion flange (10).
8. Washer (11) and pinion nut (12).

Tighten

- The nut (12) while holding the pinion with J 8614-01. Tighten the nut until it requires a
torque of 1.13 N·m (10 in. lbs) to rotate the pinion (figure 32). Rotate the pinion several times to seat the bearings and assure a more accurate reading pinion depth setting.

 - Place the discs and arbor into the differential bearing bore.
 - Place the pinion height block on top of the pinion.
 - Set the dial indicator at zero and slide the scooter gage across the arbor (figure 33).
 - The indicator will turn to the right or to the left at the point of greatest deflection, depending on the pinion marking.
 - The needle will move to the left if the pinion is marked (+).
 - The needle will move to the right if the pinion is marked (−).
 - If the indicator reading is within 0.05 mm (0.002-inch) of the pinion marking, the pinion is correctly set. If the pinion depth does not meet specifications, change the shim pack by the amount the indicator needle is from the pinion marking.

10. Preload shims (6).
 - Install the shims that were removed, or measure the old shims and replace them with new shims if necessary.

11. Outer bearing (7) and slinger (8).
 - Apply a light coat of axle lubricant to the pinion seal lip.

12. Outer pinion oil seal (9) using D-163 (figure 34).
13. Pinion flange (10).
14. Washer (11) and a new pinion nut (12).

Tighten (Figure 35 and 36)
 - The nut (12) while holding the pinion with J 8614-01. Tighten the nut until it requires a torque of 2.26 - 4.53 N·m (20 - 40 in. lbs.) to rotate the pinion.
 - Remove shims to decrease the preload.
ASSEMBLING THE DIFFERENTIAL TO THE AXLE HOUSING

Tools Required:
- J 23690 Differential Side Bearing Installer
- J 8092 Driver Handle
- J 24385-01 Differential Carrier Spreader

1. Assemble the differential case (22) with master bearings installed to the axle housing. The pinion must be installed.
2. Mount a dial indicator having a minimum travel of 5 mm (0.200-inch) with a magnetic base on the ring gear bolt side of the housing (figure 37).
3. Place the indicator tip on the chalk mark made earlier.
4. Force the ring gear into mesh with the pinion. Rock the ring gear to allow the teeth of the gears to mesh.
5. With the force still applied to the differential case, set the dial indicator to zero.
6. Force the differential case away from the pinion gear to obtain an indicator reading. Repeat this action until a consistent reading is obtained. This will be the size of the left shim pack.
7. Remove the indicator and the differential case from the carrier.
8. Remove the master bearings from the differential case.
9. Using the total shim pack size determined earlier, (Refer to “Determining Total Differential Shim Pack Size” in this section) subtract the reading found in step 6 from the total reading. The reading found in step 6 will be the shim size on the ring gear side. The remaining portion of the shim pack will be used on the side opposite the ring gear. Add an additional 0.38 mm (0.015-inch) of shims to the side opposite the ring gear to preload the bearings.
10. Place the proper shims on the differential side bearing hub (ring gear side) and drive the differential bearing onto the hub using J 23690 and J 8092 (figure 38).
11. Place the proper shims on the differential side bearing hub (opposite the ring gear) and drive the differential bearing onto the hub using J 23690 and J 8092 (figure 38).
12. Assemble J 24385-01 to the axle housing as shown in figure 39.
13. Assemble the dial indicator as shown in figure 39. Preset the gage at least 5 mm (0.020-inch), and then rotate the indicator housing to zero the dial.

NOTICE: Do not spread the differential carrier more than 0.38 mm (0.015-inch). Over-spread the carrier can damage or distort the carrier.

14. Spread the carrier while examining the dial indicator.
15. Remove the dial indicator.
16. Place the bearing cups (20) onto the bearings.
17. Install the differential assembly into the carrier.
4C2-14 9\(^{3}/4\)-INCH RING GEAR FRONT AXLE

Figure 39—Mounting the Carrier Spreader

- Use a rawhide hammer to seat the differential assembly in the axle housing (figure 40).

18. Remove the spreader.
19. Install the bearing caps (18) in their original positions.
20. Install the bearing cap bolts (19).

Tighten

- Bearing cap bolts (19) to 115 N m (85 ft. lbs.).

CHECKING BACKLASH

1. Mount a dial indicator with a magnetic base to the axle housing as shown in figure 41.
2. Place the indicator tip at the heel end of the tooth.
3. Check the backlash at three equally spaced points. The backlash should be 0.13 - 0.23 mm (0.005 - 0.009-inch). The measurement must not vary more than 0.05 mm (0.002-inch) between the points checked.
4. High backlash is corrected by moving the ring gear closer to the pinion.
5. Low backlash is corrected by moving the ring gear away from the pinion.
6. To adjust the backlash, the differential case must be removed from the housing, then the differential bearings removed, and the proper number of shims moved from one side to the other.

FINAL ASSEMBLY

Install or Connect (Figure 1)

1. Drive axles, as outlined in the proper Light Duty Truck Service Manual.
2. Axle cover (14) to the housing.
 - Make sure the sealing surfaces on the cover and housing are clean and free of grease and oil.
 - Apply a bead of RTV sealer (GM part no. 1052366 or equivalent) to the cover, inboard of the bolt holes. Install the cover while the sealer is still wet.
3. Cover bolts (17).

Tighten

- Bolts to 47 N m (35 ft. lbs.).
SPECIFICATIONS

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Fastener</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Gear Bolts</td>
<td>150</td>
<td>110</td>
</tr>
<tr>
<td>Bearing Cap Bolts</td>
<td>115</td>
<td>85</td>
</tr>
<tr>
<td>Axle Cover Bolts</td>
<td>47</td>
<td>35</td>
</tr>
</tbody>
</table>

AVAILABLE SHIM SIZES

- Differential Bearing Adjusting Shim
 - 0.003-inch
 - 0.005-inch
 - 0.010-inch
 - 0.030-inch

- Outer Pinion Bearing Shim
 - 0.003-inch
 - 0.005-inch
 - 0.010-inch
 - 0.030-inch

- Inner Pinion Bearing Shim
 - 0.003-inch
 - 0.005-inch
 - 0.010-inch

PINION PRELOAD AND BACKLASH

- Pinion Preload: 2.26-4.53 N·m (20-40 in. lbs.)
- Backlash: 0.13-0.23 mm (0.005-0.009 in.)
4C2-16 9³/₄-INCH RING GEAR FRONT AXLE

SPECIAL TOOLS

<table>
<thead>
<tr>
<th>No.</th>
<th>Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D-116-2</td>
<td>Master Discs (Miller)</td>
</tr>
<tr>
<td>2</td>
<td>D-115-3</td>
<td>Arbor (Miller)</td>
</tr>
<tr>
<td>3</td>
<td>D-116-1</td>
<td>Pinion Height Block (Miller)</td>
</tr>
<tr>
<td>4</td>
<td>D-115</td>
<td>Scooter Gage (Miller)</td>
</tr>
<tr>
<td>5</td>
<td>D-117</td>
<td>Master Pinion Bearings (Miller)</td>
</tr>
<tr>
<td>6</td>
<td>D-120</td>
<td>Master Pinion Block (Miller)</td>
</tr>
<tr>
<td>7</td>
<td>D-111</td>
<td>Cup Installer (Miller)</td>
</tr>
<tr>
<td>8</td>
<td>C-4171</td>
<td>Handle (Miller)</td>
</tr>
<tr>
<td>9</td>
<td>J-8092</td>
<td>Differential Side Bearing Removal Plug</td>
</tr>
<tr>
<td>10</td>
<td>J-8107-03</td>
<td>Rear Pinion Bearing Cup Installer</td>
</tr>
<tr>
<td>11</td>
<td>J-5590</td>
<td>Driver Handle</td>
</tr>
<tr>
<td>12</td>
<td>J-8614-01</td>
<td>Rear Pinion Bearing Cone Installer</td>
</tr>
<tr>
<td>13</td>
<td>J-23690</td>
<td>Pinion Flange Remover</td>
</tr>
<tr>
<td>14</td>
<td>J-29721</td>
<td>Differential side Bearing Installer</td>
</tr>
<tr>
<td>15</td>
<td>J-29721-70</td>
<td>Differential Side Bearing Remover</td>
</tr>
<tr>
<td>16</td>
<td>J-24385-01</td>
<td>Differential Carrier Spreader</td>
</tr>
<tr>
<td>17</td>
<td>J-7818</td>
<td>Side Bearing Adapters</td>
</tr>
</tbody>
</table>

F-04663
The axle used on T model vehicles has a center disconnect feature which allows shifting into and out of four wheel drive when the vehicle is in motion under most conditions.

The axle uses a conventional ring gear and pinion gear set to transmit the driving force of the engine to the wheels. This gear set transfers this driving force at a 90 degree angle from the propeller shaft to the drive shafts.

The pinion gear is supported by two tapered roller bearings. The pinion depth is set by a shim pack located between the gear end of the pinion and the roller bearing that is pressed onto the pinion. The pinion bearing preload is set by crushing a collapsible spacer between the pinion bearings in the axle housing.

The ring gear is bolted onto the differential case with left-hand thread bolts.

The differential case is supported in the axle housing by two tapered roller bearings. The differential and ring gear are located in relationship to the pinion by using threaded adjusters.

The differential is used to allow the wheels to turn at different rates of speed while the front axle continues to transmit the driving force. This prevents tire scuffing when going around corners and prevents premature wear on internal axle parts.

The axle identification number is located on a tag attached to the right axle tube.
INSPECTION

Perform the following checks before disassembling the axle.
1. Remove the fill plug from the axle and drain the axle lubricant into a suitable container.
2. Check the ring gear backlash. Refer to "Backlash Adjustment." This information can be used to determine the cause of the axle problem. It will also help when setting up the shim packs for locating and pre-loading the differential case.
3. Inspect the case and oil for metal chips. Determine where the metal chips come from, such as a broken gear or bearing cage.
4. Determine the cause of the axle problem before disassembly if possible.

DISASSEMBLY

Disassemble (Figure 1 through 15)

Tools Required:
- J 8614-01 Pinion Flange Remover
- J 21551 Bearing Remover
- J 22912-01 Pinion Bearing Cone Remover
- J 29307 Slide Hammer
- J 33791 Bushing Remover
- J 33792 Side Bearing Adjuster Wrench
- J 33837 Pinion Bearing Cup Remover Kit
- J 34011 Output Shaft Pilot Bearing Remover
- Bolts (6), shift cable housing (11), and spring (14).
- Tube (5) and thrust washer (7).
- Spring (16) and shift shaft and fork (17).
- Shaft (1) with deflector (2).
- Clamp the axle tube (5) in a vise. Clamp ONLY on the mounting flange.
- Strike the inside of the shaft flange with a brass hammer to dislodge the shaft.
- Carrier connector (9) with retaining ring (8).
- Right seal (3) and bearing (4), using J 29369-2 and J 29307 (figure 3).
- Seal (15) from the tube (5). Pry out with a screwdriver.
- Thrust washer (20).
- Sleeve (22) and output shaft (23).
- Differential pilot bearing (21) from the output shaft, using J 34011 (figure 4).
- Washer (24).
- Shaft (59), and deflector (2).
- Pry with a screwdriver between the shaft flange and carrier head while striking the flange with a soft face hammer (figure 5).
- Bolts (58) and cover (57).
- Left seal (3).
- Bolts (28).
- Separate the carrier case (29).
- Insert a screwdriver into the slots provided and pry to separate the case (figure 6).
- Differential case (35).
- Bolts (18) and lock tabs (19) from the side bearing adjuster sleeves (32) (figure 7).
- Bearing cups (33) and sleeves (32) from the case.
 - Turn the sleeves (32) using J 33792 until the cups are pushed out of the case (figure 8).
- Bearings (30) from the sleeves (32). Use J 21551 (figure 9).
- Pinion flange nut (46) and washer (45) using J 8614-01 (figure 10).
 - Mount the left carrier case half in J 33837-1 (figure 11).
- Flange (44) and deflector (43) using J 33837-1 and J 33837-3 (figure 11).
- Pinion (37), with spacer (40), pinion bearing (39) and shim (38).
- Spacer (40) from the pinion.
- Bearing (39) from the pinion. Use J 22912-01 and a press (figure 12).
- Shim (38).
- Bearing and cup (41) and seal (42), using J 33837-1, J 33837-3, and J 33837-6.
 - Insert J 33837-6 into the pinion bore.
 - Thread the forcing screw (J 33837-3) into J 33837-6.
 - Turn the forcing screw to pull the parts from the case.
- Inner bearing cup by pushing it out using J 33837-1, J 33837-3, and J 33837-6 (figure 13).
- Bolt (36) and shaft (52) from the differential case (35).
- Differential pinion gears (56) and thrust washers (55).
- Side gears (54) and thrust washers (53).
 - Mark the side gears and case so they can be installed in their original location.
- Bolts (34).
- Ring gear (37).
 - Do not pry between the ring gear and the case. Drive the gear off with a brass drift and hammer.
- Side bearings (33), using J 22912-01 (31) (figure 14).
- Bushings (48). Use J 33791 (figure 15).
Figure 1—Axle Components
Figure 2—Axle Components

Figure 3—Removing the Axle Tube Bearing and Seal

Figure 4—Removing the Output Shaft Pilot bearing

Figure 5—Removing the Axle Shaft
Figure 6—Separating the Carrier Case Halves

Figure 7—Removing the Lock Tabs

Figure 8—Removing the Side Bearing Cup

Figure 9—Remove the Sleeve Bearing

Figure 10—Removing the Pinion Nut
Figure 11—Remove the Pinion Flange

Figure 12—Removing the Pinion Bearing

Figure 13—Removing the Inner Pinion Bearing Cup

Figure 14—Removing the Differential Side Bearings

Figure 15—Replacing the Case Bushings
CLEANING AND INSPECTION

CLEANING

Do not steam clean drive parts having ground and polished surfaces such as gears, bearings, and shafts. These parts should be cleaned in a suitable solvent. All parts should be disassembled before cleaning.

Parts should be thoroughly dried immediately after cleaning. Use soft, clean, lintless rags. Parts may be dried with compressed air. Do not allow the bearings to spin while drying them with compressed air.

INSPECTION

It is very important to carefully and thoroughly inspect all drive unit parts before assembly.

Thorough inspection of the drive parts for wear or stress and subsequent replacement of worn parts will eliminate costly drive component repair after reassembly.

AXLE HOUSING

Inspect

- Carrier bore for nicks or burrs that would prevent the outer diameter of the pinion seal from sealing. Remove any burrs that are found.
- Bearing cup surfaces for nicks or burrs. Remove any burrs that are found.
- Housing for cracks. Replace the housing if any cracks are found.
- Housing for foreign material such as metal chips, dirt, or rust. Refer to “Cleaning” in this section.

DIFFERENTIAL

Inspect

- Pinion gear shaft for unusual wear.
- Pinion gear and side gear teeth for wear, cracks, scoring, spalling.
- Thrust washers for wear.
- The fit of the differential side gears in the differential case.
- Fit of the side gear on the axle shafts.
- Differential case for cracks and scoring.
- Replace all worn parts.

PINION AND RING GEAR

Inspect

- Pinion and ring gear teeth for cracking, chipping, scoring, or excessive wear.
- Pinion splines for wear.
- Pinion flanges splines for wear.
- Fit of the pinion on the pinion flange.
- Sealing surface of the pinion flange for nicks, burrs, or rough tool marks which would cause damage to the seals' inside diameter and result in an oil leak.
- Replace all worn or broken parts.
- Ring and pinion gears are matched sets and are both replaced any time a replacement of either is necessary.

BEARINGS

Inspect

- Bearings visually and by feel. The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.
- The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.
- Bearing cups for wear, cracks, brinelling and scoring.
- Bearings and cups are only replaced as sets.
- If the front axle was operated for an extended period of time with very loose bearings, the ring gear and drive pinion will also require replacement.
- Low mileage bearings may have minute scratches and pits on the rollers and the bearing cups from the initial preload. Do not replace a bearing for this reason.
- Bearing caps for cracks or chips.

THRUST WASHERS, SHIMS AND ADJUSTER SLEEVES

Inspect

- Shims and thrust washers for cracks and chips. Damaged shims should be replaced with an equally sized service shim.
- Adjuster sleeves for damaged threads. Replace if required.

SHIFT MECHANISM

Inspect (Figures 1 and 2)

- Carrier connector (9) for damaged splines and teeth. Replace as required.
- Shift fork (17) for wear, scoring, and damage to thrust surfaces. Replace if needed.
- Sleeve (22) and inner output shaft (23) for damaged splines and teeth. Replace if necessary.
- Spring (16) for breakage.
Important
- Lubricant all the seal lips, bearings, gears, and bearing surfaces with axle lubricant prior to assembly.

DIFFERENTIAL CASE ASSEMBLY

Install or Connect (Figures 1, 2 and 16)

Tool Required:
- J 33790 Side Bearing Installer

1. Thrust washers (53) and side gears (54) into the differential case (35).
 - If the same gears and washers are being used, install them on the same side as they were removed from.

2. Pinion gears (56).
 - Position one pinion gear (56) between the side gears and rotate the gears until the pinion gear is directly opposite the opening in the case.
 - Place the other pinion gear (56) between the side gears, making sure the hole in both pinion gears line up.

3. Thrust washers (55).
 - Rotate the pinion gears toward the opening just enough to permit the sliding in of the thrust washers.

4. Shaft (52) and bolt (36).

5. Ring gear (37) onto the differential case (35).

Important
- Always install new bolts. Never reuse the old bolts.

Tighten
- Bolts (34) alternating in progressive steps to 80 N·m (60 ft. lbs.).

7. Side bearings (33), using J 33790 (figure 16).

PINION BEARING CUP INSTALLATION

Install or Connect (Figures 1, 2, 17 and 18)

Tool Required:
- J 33837 Pinion Bearing Remover and Installer

1. Bearing cup (41) into the case using J 33837-1, J 33837-3, and J 33837-4 (figure 17).

2. Bearing cup (39) into the case using J 33837-1, J 33837-3, and J 33837-4 (figure 18).
PINION DEPTH ADJUSTMENT

Tools Required:
- J 33838 Pinion Depth Setting Gage
- J 29763 Dial Indicator

1. Refer to figure 1.
2. Pinion depth is adjusted by selecting a shim (38) of the proper thickness.
3. Lubricate the inner and outer pinion bearings liberally with axle lubricant.
4. Hold the pinion bearings in position and install J 33838 and J 29763 (figure 19). Set the dial indicator at ZERO, then position it in J 33838. Push the dial indicator downward until the needle rotates approximately three turns to the right.
5. Tighten the dial indicator in this position.
6. Set the button of J 33838 on the differential bearing bore (figure 19).
7. Rotate the tool slowly back and forth until the dial indicator reads the lowest point of the bore. Set the dial indicator to ZERO. Repeat the rocking action of the tool to verify the ZERO setting.
8. After the ZERO setting is obtained and verified, move the tool button out of the differential side bearing bore (figure 19). Record the dial indicator reading.
9. The dial indicator reading is equal to the required shim size. Example: If the dial indicator reads 0.84 mm in step 8, a 0.84 mm shim is required.
10. Remove the tools and bearing cones.

PINION INSTALLATION

Install or Connect (Figure 1, 2, 10, 20 and 21)

Tools Required:
- J 33785 Bearing Installer
- J 8614-01 Pinion Flange Remover
- J 33792 Seal Installer

1. Shim (38) to the pinion gear (37).
 • The shim must be of the proper size, as selected previously.
2. Bearing (39) onto the pinion gear (37) using J 33785 (figure 20).
3. New spacer (40) onto the pinion gear (37).
4. Bearing (41) into the case.
5. Seal (42) into the case using J 33782 (figure 21).
6. Pinion gear, with bearing and spacer, to the case.
7. Deflector (43), flange (44), washer (45) and nut (46).
 • Apply PST sealant (GM part number 1052080 or equivalent) to the pinion gear threads and on both sides of the washer.
 • Tighten nut (46) until no end play is detectable while holding the flange (44) with J 8614-01 (figure 10).
 • No further tightening should be attempted until bearing preload has been checked.

Measure
- Pinion bearing preload: Use an inch pound torque wrench (figure 22). The correct preload is 1.7-2.8 N m (15-25 in. lbs.).

1. Rotate the pinion with the torque wrench and observe the reading.
2. If the preload torque is below specifications, continue torquing the pinion nut in small increments. Check the preload after each tightening. Each tightening increases the bearing preload by several inch pounds. If the bearing preload is exceeded, the pinion will have to be removed, and a new collapsible spacer installed.
3. Once the preload has been obtained rotate the pinion several times to make sure that the bearings have seated. Recheck the preload, and adjust if necessary.

DIFFERENTIAL ASSEMBLY INSTALLATION

Install or Connect (Figures 1, 2, 23, 24 and 25)

Tools Required:
- J 33788 Bearing Installer
- J 23423-A Bearing Cup Installer
- J 33792 Side Bearing Adjuster Wrench

1. Bearings (30) into the sleeves (32) using J 33788 (figure 23).
2. Sleeves (32) into the carrier case (29). Thread in all the way.
3. Side bearing cups (33) into the carrier case (29) using J 23423-A.
4. Differential assembly to the carrier case.
 • Place the differential case assembly (35) into the carrier case half which contains the pinion gear.
 • Turn the left sleeve (32) in toward the differential case using J 33792 until backlash is felt between the ring and pinion gear.
5. Carrier case halves (29). Do not use any sealer at this time.
 • If the carrier halves do not make complete contact, back out the right hand adjusting sleeve (32). Use J 33792 (figure 24).
6. Four bolts (28) (figure 25).

Tighten
- Bolts (28) to 50N m (37 ft. lbs.).

ADJUSTING BACKLASH

Tools Required:
- J 33792 Side Bearing Adjuster Wrench
- J 34047 Dial Indicator Adapter
- J 25025-1 Dial Indicator Stand
- J 8001-1 Dial Indicator Clamp

1. Refer to figures 1 and 2.
2. Tighten the left sleeve (32) to 140 N m (100 ft. lbs.). Use J 33792 (figure 24).
3. Tighten the right sleeve (32) to 140 N m (100 ft. lbs.). Use J 33792 (figure 24).
4. Mark the location of the adjusting sleeves in relation to the carrier halves (figure 26), so the notches in the adjusting sleeves can be counted when turned.
5. Turn the right adjusting sleeve OUT two notches using J 33792.
A. Button Located in Bearing Bore
B. Button Moved Out of Bearing Bore

Figure 19—Measuring Pinion Depth
6. Turn the left adjusting sleeve IN one notch using J 33792.
7. Rotate the pinion several times to seat the bearings.
8. Install J 34047, J 25025-1 and J 8001-1 (figure 27).
9. Place the indicator stem at the heel end of a tooth.
10. Check and record the backlash at three or four points around the ring gear:
 • The pinion must be held stationary when checking backlash.
 • The backlash should be the same at each point within 0.05 mm (0.002-inch). If the backlash varies more than 0.05 mm (0.002-inch), check for burrs, a distorted case flange, uneven bolting conditions, or foreign matter between the case and the ring gear.
 • Gear backlash should be between 0.08-0.25 mm (0.003-0.010-inch) with a preferred specification of 0.13-0.18 mm (0.005-0.007-inch).
 • If the backlash is incorrect, adjust the sleeves as necessary. Always maintain the "one notch" preload on the side bearings. EXAMPLE: If it is necessary to turn the RIGHT sleeve IN one notch, the LEFT sleeve must be turned OUT one notch.

10. When the backlash is correct, mark the position of the sleeves so they can be kept in the same location.

MEASURING BACKLASH (ALTERNATE METHOD)
1. Use this method if the tools specified previously are not available.
2. If the specified tools are not available, it is possible to read backlash at the pinion flange as follows:
3. Install a dial indicator so the button contacts the outer edge of the pinion flange. The plunger must be at a right angle to the pinion flange (figure 28).
4. Move the pinion flange through its free play while holding the differential carrier. Record the dial indicator reading.
5. DIVIDE THE DIAL INDICATOR READING BY 2 to obtain the actual backlash when using this method. Example: A dial indicator reading of 0.16 mm means that there is actually 0.08 mm backlash.
6. Follow the steps for adjusting backlash outlined previously.
Before final assembly of the differential, a gear tooth contact pattern check should be performed.

It should be noted that a gear tooth contact pattern check is NOT a substitute for adjusting pinion depth and backlash as previously outlined. It is a method to verify the correct running position of the ring gear and the drive pinion. Gear sets which are not positioned properly may be noisy, or have a short life, or both. With a pattern check, the best contact between the ring gear and the drive pinion for low noise level and long life can be assured.

GEAR TOOTH NOMENCLATURE

The side of the ring gear tooth which curves outward, or is convex, is referred to as the “drive” side. The concave side is the “coast” side. The end of the tooth nearest the center of ring gear is referred to as the “toe” end. The end of the tooth farthest away from the center is the “heel” end. The toe end of the tooth is smaller than the heel end, (figure 29).

TEST

1. Wipe oil out of carrier and carefully clean each tooth of the ring gear.
2. Use gear marking compound and apply this mixture sparingly to all ring gear teeth using a medium stiff brush. When properly used, the area of pinion tooth contact will be visible when hand load is applied.
3. Apply a load until a torque of 54-70 N·m (40-50 ft. lbs.) is required to turn the pinion. A test make without loading the gears will not give a satisfactory pattern. Turn the companion flange with a wrench so that the ring gear rotates one full revolution then reverse the rotation so that the ring gear rotates one revolution in the opposite direction. Excessive turning of the ring gear is not recommended.
4. Observe the pattern on the ring gear teeth and compare with figure 30.

ADJUSTMENTS AFFECTING TOOTH CONTACT

Two adjustments can be made which will affect the tooth contact pattern. These are backlash and the position of the drive pinion (pinion depth) in the carrier. The effects of bearing preloads are not easily seen on hand loaded teeth pattern tests. These adjustments should be within specifications before proceeding with the backlash and the drive pinion adjustments.

It may be necessary to adjust both pinion depth and the backlash to obtain the correct pattern.

The position of the drive pinion is adjusted by increasing or decreasing the shim thickness between the pinion head and the inner race of the rear bearing. The shim is used in the differential to compensate for manufacturing tolerances. Increasing the shim thickness will move the pinion closer to the center line of the ring gear.

Backlash is adjusted by means of the side bearing adjusting sleeves which move the entire case and ring gear assembly closer to, or farther from the drive pinion. (The adjusting sleeves are also used to set side bearing preload.) To increase backlash, turn the left sleeve in and turn the right sleeve out an identical amount. To decrease backlash, turn the right sleeve in and turn the left sleeve out an identical amount.

It is important that the contact pattern be centrally located up and down on the face of the ring gear teeth.

FINAL ASSEMBLY

++ Remove or Disconnect (Figures 1, 2 and 25)

1. Four case bolts (figure 25).
2. Right carrier case half.

Clean

- Sealing surfaces on the carrier case halves. Remove all oil and grease. Use a chlorinated solvent, such as carburetor cleaner.

++ Install or Connect (Figure 1, 2 and 31 through 34)

Tools Required:
- J 33844 Bearing Installer
- J 33893 Axle Seal Installer
- J 33799 Shift Housing Seal Installer
- J 33842 Differential Pilot Bearing Installer
- J 33791 Case Bushing Installer

- Apply a bead of sealer (GM part number 1052357 [Loctite 514] or equivalent) to one carrier case surface.
1. Right carrier case (29).
2. Bolts (28).

Tighten

- Bolts to 47 N·m (35 ft. lbs.).
- Make sure the sleeves (32) are in the proper position, as marked previously.
3. Bolts (18) and locks (19).
Figure 30—Gear Tooth Contact Pattern

Tighten
- Bolts to 8.0 N-m (70 in. lbs.).

4. Left seal (3) to the cover (57). Fully support the seal bore area of the cover while installing the seal.

Clean
- All oil and grease from the cover and carrier sealing surfaces. Use carburetor cleaner or equivalent.
- Apply sealer (GM part no 1052357 [Loctite 514] or equivalent) to the cover.

5. Cover (57) and bolts (58).

Tighten
- Bolts to 25 N-m (18 ft. lbs.).

6. Shaft (59) with deflector (2). Tap into place.
11. Washer (24) to the output shaft (23).
12. Output shaft to the carrier assembly.
13. Sleeve (22).
14. Thrust washer (20). Use grease to hold it in place.
15. Spring (16) and shift shaft and fork (17).
16. Thrust washer (7). Use grease to hold it in place. Align the notch and tab (figure 34).
17. Shaft (1) to the tube (5).
18. Carrier connector (9) with retainer (8). Tap into place.

- Remove all oil and grease from the tube and carrier gasket surfaces. Use carburetor cleaner or equivalent.
- Apply sealer (GM part not 1052357 [Loctite 514] or equivalent) to the carrier.

19. Tube assembly (5) to the carrier.

20. Two upper bolts (6). Leave finger tight.

21. Shift cable housing (11) and remaining bolts (6).

Figure 31—Installing the Shaft Seal
T TRUCK FRONT AXLE 4C3-15

Figure 32—Installing the Shift Housing Seal

Figure 34—Installing the Thrust Washer

• Bolts to 47 N·m (35 ft. lbs.).

Tool Required:
J 33798 Engagement Tool

Inspect (Figure 35)

- Operation of the shift mechanism. Insert J 33798 into the shift fork. Turn the axle shaft while engaging and disengaging the shift mechanism with the tool. The mechanism should operate smoothly. If not, remove the tube and check for damaged or improperly installed parts.

Figure 33—Installing the Differential Pilot Bearing
4C3-16 T TRUCK FRONT AXLE

Figure 35—Checking the Shift Mechanism

SPECIFICATIONS

<table>
<thead>
<tr>
<th>TORQUE SPECIFICATIONS</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
<th>In. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable Housing and Tube Attaching Bolts</td>
<td>25</td>
<td>18</td>
<td>—</td>
</tr>
<tr>
<td>Left Hand Output Shaft Cover Bolts</td>
<td>25</td>
<td>18</td>
<td>—</td>
</tr>
<tr>
<td>Carrier Case Bolts</td>
<td>47</td>
<td>35</td>
<td>—</td>
</tr>
<tr>
<td>Adjusting Sleeve Lock Bolts</td>
<td>8.0</td>
<td>71</td>
<td>—</td>
</tr>
<tr>
<td>Differential Ring Gear Bolts</td>
<td>80</td>
<td>60</td>
<td>—</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AVAILABLE SHIM SIZES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinion Shim Kits</td>
<td>0.53-0.64 mm</td>
</tr>
<tr>
<td></td>
<td>0.66-0.79 mm</td>
</tr>
<tr>
<td></td>
<td>0.81-0.94 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PINION PRELOAD AND BACKLASH</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinion Preload</td>
<td>1.7-2.8 N·m (15-25 in. lbs.)</td>
</tr>
<tr>
<td>Backlash (preferred)</td>
<td>0.08-0.25 mm (0.003-0.010-inch)</td>
</tr>
<tr>
<td>(preferred)</td>
<td>0.13-0.18 mm (0.005-0.007-inch)</td>
</tr>
</tbody>
</table>
SPECIAL TOOLS

<table>
<thead>
<tr>
<th></th>
<th>Tool Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>J-21551</td>
<td>Output Shaft Bearing Remover</td>
</tr>
<tr>
<td>2</td>
<td>J-29763</td>
<td>Dial Indicator</td>
</tr>
<tr>
<td>3</td>
<td>J-33782</td>
<td>Pinion Oil Seal Installer</td>
</tr>
<tr>
<td>4</td>
<td>J-33785</td>
<td>Pinion Bearing Installer</td>
</tr>
<tr>
<td>5</td>
<td>J-33788</td>
<td>Output Shaft Bearing Installer</td>
</tr>
<tr>
<td>6</td>
<td>J-33790</td>
<td>Differential Side Bearing Installer</td>
</tr>
<tr>
<td>7</td>
<td>J-33792</td>
<td>Side Bearing Adjuster Wrench</td>
</tr>
<tr>
<td>8</td>
<td>J-22912-01</td>
<td>Differential Side Bearing Remover</td>
</tr>
<tr>
<td>9</td>
<td>J-33799</td>
<td>Axle Lock Cable Seal Installer</td>
</tr>
<tr>
<td>10</td>
<td>J-33837</td>
<td>Pinion Bearing Cup Remover and Installer</td>
</tr>
<tr>
<td>11</td>
<td>J-33838</td>
<td>Pinion Shim Setting Gage</td>
</tr>
<tr>
<td>12</td>
<td>J-33837</td>
<td>Output Shaft Pilot Bearing Installer</td>
</tr>
<tr>
<td>13</td>
<td>J-33842</td>
<td>Axle Tube Bearing Installer</td>
</tr>
<tr>
<td>14</td>
<td>J-33844</td>
<td>Output Shaft Seal Installer</td>
</tr>
<tr>
<td>15</td>
<td>J-33893</td>
<td>Output Shaft Pilot Bearing Remover</td>
</tr>
<tr>
<td>16</td>
<td>J-34011</td>
<td>Countershaft Roller Bearing Remover</td>
</tr>
<tr>
<td>17</td>
<td>J-29369-2</td>
<td>Pinion Flange Remover</td>
</tr>
<tr>
<td>18</td>
<td>J-23423-A</td>
<td>Bearing Cup Installer</td>
</tr>
</tbody>
</table>

F-01831
SPECIAL TOOLS

1. Slide Hammer
2. Bushing Remover
3. Dial Indicator Set
4. Dial Indicator
5. Dial Indicator Stand (Part of J 25025-B)
6. Engagement Tool
SECTION 4C4
K TRUCK FRONT AXLE

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>4C4-1</td>
</tr>
<tr>
<td>Disassembly of Axle</td>
<td>4C4-2</td>
</tr>
<tr>
<td>Inspection</td>
<td>4C4-2</td>
</tr>
<tr>
<td>Cleaning and Inspection</td>
<td>4C4-6</td>
</tr>
<tr>
<td>Cleaning</td>
<td>4C4-8</td>
</tr>
<tr>
<td>Inspection</td>
<td>4C4-8</td>
</tr>
<tr>
<td>Assembly of Axle</td>
<td>4C4-9</td>
</tr>
<tr>
<td>Pinion Bearing Cup Installation</td>
<td>4C4-9</td>
</tr>
<tr>
<td>Pinion Depth Adjustment</td>
<td>4C4-10</td>
</tr>
<tr>
<td>Pinion Installation</td>
<td>4C4-10</td>
</tr>
<tr>
<td>Differential Case Assembly</td>
<td>4C4-12</td>
</tr>
<tr>
<td>Adjusting Backlash</td>
<td>4C4-13</td>
</tr>
<tr>
<td>Gear Tooth Contact Pattern Check</td>
<td>4C4-14</td>
</tr>
<tr>
<td>Carrier Case Assembly</td>
<td>4C4-15</td>
</tr>
<tr>
<td>Axle Tube Assembly</td>
<td>4C4-16</td>
</tr>
<tr>
<td>Final Assembly</td>
<td>4C4-17</td>
</tr>
<tr>
<td>Specifications</td>
<td>4C4-20</td>
</tr>
<tr>
<td>Special Tools</td>
<td>4C4-21</td>
</tr>
</tbody>
</table>

DESCRIPTION

The axle used on K model vehicles has a center disconnect feature which allows shifting into and out of four wheel drive when the vehicle is in motion under most conditions. The axle is shifted by a thermal actuator solenoid.

The axle uses a conventional ring gear and pinion gear set to transmit the driving force of the engines to the wheels. This gear set transfers this driving force at a 90 degree angle from the propeller shaft to the drive shafts.

The pinion gear is supported by two tapered roller bearings. The pinion depth is set by a shim located between the gear end of the pinion and the roller bearing that is pressed onto the pinion. The pinion bearing preload is set by crushing a collapsible spacer between the pinion bearings in the axle housing.

The ring gear is bolted onto the differential case with left-hand thread bolts.

The differential case is supported in the axle housing by two tapered roller bearings. The differential and ring gear are located in relationship to the pinion by using threaded adjusters.

The differential is used to allow the wheels to turn at different rates of speed while the front axle continues to transmit the driving force. This prevents tire scuffing when going around corners and prevents premature wear on internal axle parts.

The axle identification number is located on a tag attached to the right axle tube.

The axle is produced with 8 1/4-inch and 9 1/4-inch ring gears. The 8 1/4-inch ring gear is used on K15-25 models; the 9 1/4-inch ring gear is used on K35 models.

DISASSEMBLY OF AXLE

INSPECTION

Perform the following checks before disassembling the axle.

1. Remove the drain plug from the axle and drain the axle lubricant into a suitable container.

2. Check the ring gear backlash. Refer to "Adjusting Backlash." This information can be used to determine the cause of the axle problem. It will also help when setting up the shim packs for locating and preloading the differential case.

3. Inspect the case for metal chips. Determine where the metal chips come from, such as a broken gear or bearing cage.

4. Determine the cause of the axle problem before disassembly if possible.

DISASSEMBLY

Remove or Disconnect (Figures 1 through 19)

Tools Required:

- J 29369-1 Bearing Remover (K15-25 Models)
- J 29369-2 Bearing Remover (K35 Models)
Figure 1—Front Axle Components (K15-25 Models)
1. Shaft 38. Shim
2. Deflector 39. Bearing
3. Seal 40. Spacer
4. Bearing 41. Bearing
5. Tube 42. Seal
6. Bolt 43. Deflector
7. Thrust Washer 44. Flange
8. Retaining Ring 45. Washer
9. Carrier Connector 46. Nut
10. Solenoid 48. Bushing
11. Indicator Switch 51. Lock
12. Spring 52. Shaft
13. Shift Shaft 53. Thrust Washer
14. Shim 54. Side Gear
15. Differential Pilot Bearing 55. Thrust Washer
17. Output Shaft 58. Bolt
18. Plug 59. Shaft
19. Washer 60. Vent Plug
20. Pin
21. Bolt
22. Carrier Case
23. Bearing
24. Insert
25. Sleeve
26. Side Bearing
27. Bolt
28. Carrier Case
29. Ring and Pinion Gears

Figure 2—Front Axle Components (K15-25 Models)

J 29307 Slide Hammer
J 34011 Pilot Bearing Remover
J 36599 Adjusting Sleeve Wrench
J 36615 Adjuster Plug Wrench (K35 Models)
J 8614-01 Pinion Remover
J 36598 Holding Fixture and Pinion Service Tool
J 8612-B Pinion Bearing Remover (K15-25 Models)
J 36606 Pinion Bearing Remover (K35 Models)
J 22888-D Side Bearing Puller
J 8107-2 Side Bearing Puller Pilot (K15-25 Models)
J 36597 Side Bearing Puller Pilot (K35 Models)
J 36616 Bushing Replacer

K TRUCK FRONT AXLE 4C4-3

5. Sleeve (22), shift fork (18) and shaft (17) and spring (16).
7. Carrier connector (9) with retainer ring (8) (K15-25 models).
 • Clamp the tube (5) in a vise. Clamp only on the mounting flange.
 • Strike the inside of the shaft (1) flange with a brass hammer to dislodge the carrier connector.
8. Snap ring (12) and washer (11) and thrust washer (7) (K35 models) (figure 5).
9. Shaft (1) with deflector (2).
10. Seal (3) and bearing (4). Use J 29369-1 (K15-25 models) or J 29369-2 (K35 models) with J 29307 (figure 6).
11. Output shaft (23).
13. Shaft (59) with deflector (2). Pry on the shaft flange on one side while tapping with a soft faced hammer on the other side (figure 8).
17. Right side carrier half (29). Tap on the cast lugs provided.
18. Differential assembly.
 • Pry up on the locks (51) (right side only on K35).
19. Bolt (64) and lock (63) (K35 models).
20. Sleeves (32) and side bearing (33) cups (right side only on K35).
 • Turn the sleeve(s) to push the bearing cup(s) out of the bore(s). Use J 36599 (figure 9).
21. Adjuster plug (61) with side bearing cup (33) and O-ring (62) (K35 models). Use J 36615 (figure 10).
23. Washer (45).
24. Flange (44) with deflector (43). Use J 8614-01 (figure 12).
 • Mount the left carrier case in J 36598. Be sure to use the adapter plate (J 36598-6) for K15-25 models.
25. Pinion (37) with shim (38), bearing cone (39), and spacer (40). Use J 36598 (figure 13).
26. Spacer (40) from the pinion.
27. Pinion bearing (39). Use J 8612-B (K15-25 models) or J 36606 (K35 models) and a press (figure 14).
28. Shim (38).
29. Seal (42), and bearing cup and cone (41). Use J 36598 (figure 15).
31. Side bearings (33). Use J 22888-D and J 8107-2 (K15-25 models) or J 36597 (K35 models) (figure 17).
32. Ring gear bolts (34).
 • Ring gear bolts have left-handed threads.

NOTICE: Do not pry the ring gear from the case. This will damage the ring gear and the differential case.

33. Ring gear (37) from the differential case.
 • Drive the ring gear off with a brass drift.
34. Roll pin (36) (K15-25 models). Drive out with a drift and hammer (figure 18).
Figure 3—Front Axle Components (K35 Models)
K TRUCK FRONT AXLE 4C4-5

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Shaft</td>
<td>38. Shim</td>
</tr>
<tr>
<td>2. Deflector</td>
<td>39. Bearing</td>
</tr>
<tr>
<td>3. Seal</td>
<td>40. Spacer</td>
</tr>
<tr>
<td>4. Bearing</td>
<td>41. Bearing</td>
</tr>
<tr>
<td>5. Tube</td>
<td>42. Seal</td>
</tr>
<tr>
<td>6. Bolt</td>
<td>43. Deflector</td>
</tr>
<tr>
<td>7. Thrust Washer</td>
<td>44. Flange</td>
</tr>
<tr>
<td>8. Solenoid</td>
<td>45. Washer</td>
</tr>
<tr>
<td>9. Washer</td>
<td>46. Nut</td>
</tr>
<tr>
<td>10. Snap Ring</td>
<td>47. Bushing</td>
</tr>
<tr>
<td>11. Indicator Switch</td>
<td>48. Bushing</td>
</tr>
<tr>
<td>12. Shift Shaft</td>
<td>49. Flange</td>
</tr>
<tr>
<td>13. Spring</td>
<td>50. Shaft</td>
</tr>
<tr>
<td>14. Shift Shaft</td>
<td>51. Lock</td>
</tr>
<tr>
<td>15. Shift Shaft</td>
<td>52. Shaft</td>
</tr>
<tr>
<td>16. Shift Shaft</td>
<td>53. Thrust Washer</td>
</tr>
<tr>
<td>17. Shift Shaft</td>
<td>54. Side Gear</td>
</tr>
<tr>
<td>18. Fork</td>
<td>55. Thrust Washer</td>
</tr>
<tr>
<td>19. Fork</td>
<td>56. Differential Pinion Gear</td>
</tr>
<tr>
<td>20. Fork</td>
<td>57. Differential Pinion Gear</td>
</tr>
<tr>
<td>22. Sleeve</td>
<td>59. Shaft</td>
</tr>
<tr>
<td>23. Output Shaft</td>
<td>60. Vent Plug</td>
</tr>
<tr>
<td>24. Bolt</td>
<td>61. Adjuster Plug</td>
</tr>
<tr>
<td>25. Plug</td>
<td>62. O-Ring</td>
</tr>
<tr>
<td>26. Washer</td>
<td>63. Lock</td>
</tr>
<tr>
<td>27. Pin</td>
<td>64. Bolt</td>
</tr>
<tr>
<td>28. Bolt</td>
<td>65. Bolt</td>
</tr>
<tr>
<td>29. Carrier Case</td>
<td>66. Bolt</td>
</tr>
<tr>
<td>30. Bearing</td>
<td>67. Bolt</td>
</tr>
<tr>
<td>31. Insert</td>
<td>68. Bolt</td>
</tr>
<tr>
<td>32. Sleeve</td>
<td>69. Bolt</td>
</tr>
<tr>
<td>33. Side Bearing</td>
<td>70. Bolt</td>
</tr>
<tr>
<td>34. Bolt</td>
<td>71. Bolt</td>
</tr>
<tr>
<td>35. Differential Case</td>
<td>72. Bolt</td>
</tr>
<tr>
<td>36. Differential Case</td>
<td>73. Bolt</td>
</tr>
<tr>
<td>37. Ring and Pinion Gears</td>
<td>74. Bolt</td>
</tr>
</tbody>
</table>

Figure 4—Front Axle Components (K35 Models)

35. Bolt (24) (K35 models).
36. Shaft (52).
37. Differential pinion gears (56) and side gears (54).
 - Roll the pinion gears out of the case with the pinion thrust washers (55).
 - Remove the side gears and the side gear thrust washers (53). Mark the gears and the differential case as left and right.
38. Vent plug (60). Use a 6-point deep socket.

Figure 5—Removing the Snap Ring (K35 Models)

Figure 6—Removing the Axle Bearing
Figure 7—Removing the Pilot Bearing

Figure 8—Removing the Left Shaft

Figure 9—Turning the Adjuster Sleeve

Figure 10—Turning the Adjuster Plug (K35 Models)

Figure 11—Removing the Pinion Nut
Figure 12—Removing the Pinion Flange

Figure 13—Removing the Pinion

Figure 14—Removing the Pinion Bearing

Figure 15—Removing the Outer Pinion Bearing and Seal

Figure 16—Removing the Inner Bearing Cup

Figure 17—Removing the Side Bearings
CLEANING AND INSPECTION

CLEANING

- Do not steam clean drive parts having ground and polished surfaces such as gears, bearings, and shafts. These parts should be cleaned in a suitable solvent. All parts should be disassembled before cleaning.
- Parts should be thoroughly dried immediately after cleaning. Use soft, clean, lintless rags. Parts may be dried with compressed air. Do not allow the bearings to spin while drying them with compressed air.

INSPECTION

It is very important to carefully and thoroughly inspect all drive unit parts before assembly.

Through inspection of the parts for wear or stress and replacement of worn parts will help prevent costly drive component repair after reassembly.

AXLE HOUSING

Inspect

- Carrier bore for nicks or burrs that would prevent the outer diameter of the pinion seal from sealing. Remove any burrs that are found.

DIFFERENTIAL

Inspect

- Pinion gear shaft for unusual wear.
- Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
- Thrust washers for wear.
- Fit of the differential side gears in the differential case.
- Fit of the side gears on the axle shafts.
- Differential case for cracks and scoring.

PINION AND RING GEAR

Inspect

- Pinion and ring gear teeth for cracking, chipping, scoring, or excessive wear.
- Pinion splines for wear.
- Pinion flange splines for wear.
- Fit of the pinion on the pinion flange.
• Sealing surface of the pinion flange for nicks, burrs, or rough tool marks which would cause damage to the seals' inside diameter and result in an oil leak.
• Replace all worn or broken parts.
• Ring and pinion gears are matched sets and are both replaced any time a replacement of either is necessary.

BEARINGS

Inspect
• Bearings visually and by feel. The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.
• The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.
• Bearing cups for wear, cracks, broninelling and scoring.
• Bearings and cups are only replaced as sets.
• If the axle was operated for an extended period of time with very loose bearings, the ring gear and drive pinion will also require replacement.
• Low mileage bearings may have minute scratces and pits on the rollers and the bearing cups from the initial preload. Do not replace a bearing for this reason.
• Bearing caps for cracks or chips.

SHIMS, THRUST WASHERS AND ADJUSTER SLEEVES

Inspect
• Shims and thrust washers for cracks and chips. Damaged shims should be replaced with an equally sized service shim.
• Adjuster sleeves for damaged threads. Replace if required.

SHIFT MECHANISM

Inspect (Figures 1 through 4)
• Carrier connector (9) (if used) for damaged splines and teeth. Replace as required.
• Shift fork (17) for wear, scoring, and damage to thrust surfaces. Replace if needed.
• Sleeve (22) and inner output shaft (23) for damaged splines and teeth. Replace if necessary.
• Spring (16) for breakage.
• Solenoid (13) and indicator switch (13) for damage and frayed wiring.

SOLENOID CHECK

• Apply 12 volt battery voltage to the solenoid terminals. The plunger should extend within several seconds.
• Disconnect the solenoid from the power source. The plunger should retract within several seconds.
• If the solenoid does not operate as specified, it should be replaced.

ASSEMBLY OF AXLE

Important
• Apply axle lubricant to all bearings, seal lips, gears, thrust washers, and bearing surfaces at assembly.

PINION BEARING CUP INSTALLATION

Install or Connect (Figures 1 through 4, 20, and 21)

Tool Required:
J 36598 Holding Fixture and Pinion Service Tool

Mount the left carrier case in J 36598. Use the J 36598-6 adapter plate for K15-25 models. Tighten the attaching bolts securely.
1. Outer bearing cup (40). Use the forcing screw and J 36598-3 (K15-25) or J 36598-4 (K35) (figure 20).
2. Inner bearing cup (39).
 • Remove J 36598-3 or J 36598-4 from the forcing screw.
 • Place pilot J 36598-15 in the pinion seal bore.
 • Extend the forcing screw through the pinion bore.
 • Install J 36598-3 (K15-25 models) or J 36598-4 (K35 models) on the forcing screw (figure 21).

![Figure 20—Installing the Outer Pinion Bearing Cup](image)

• Rotate the forcing screw until the installer is snug against the bearing cup. Rotate the tool several times to make sure the bearing cup is not cocked in the bore.
• Pull the bearing cup into place with the forcing screw (figure 21).
PINION DEPTH ADJUSTMENT

Tools Required:
- J 36601 Pinion Depth Setting Gage
- J 29763 Dial Indicator
1. Refer to figures 1 through 4 and 22.
2. Pinion depth is adjusted by selecting a shim (38) of the proper thickness.
3. Lubricate the pinion bearings liberally with axle lubricant.
5. Install the pinion bearings and hold them in place.
6. Insert the threaded rod of J 36601 through the pinion bearings.
7. Install the proper pilot, washer, and nut.
8. Tighten the nut while holding the threaded rod with a wrench to adjust bearing preload. Adjust the nut to obtain a preload of 10-15 in. lbs. Measure an inch pound torque wrench. Rotate the shaft several times to make sure the bearings have seated, then measure again.
9. Push the dial indicator downward until the needle rotates about three turns.
10. Tighten the dial indicator in this position.
11. Set the button of J 36601 on the differential bearing bore (figure 22).
12. Rotate the tool slowly back and forth until the dial indicator reads the lowest point of the bore. Set the dial indicator to ZERO. Repeat the rocking action of the tool to verify the ZERO setting.
13. After the ZERO setting is obtained and verified, grasp the gaging arm by the flats and move the tool button out of the differential side bearing bore (figure 22). Record the dial indicator reading.
14. The dial indicator reading is equal to the required shim size. Example: If the dial indicator reads 0.508 mm in step 8, a 0.508 shim is required. Available shim sizes are listed in "Specifications."
15. Remove the tool and bearing cones.

Differential Case Assembly

Install or Connect (Figures 1 through 4, and 6)
Tools Required:
- J 22761 Side Bearing Installer (K15-25 Models)
- J 29710 Side Bearing Installer (K35 Models)
1. Thrust washers (53) and side gears (54) into the differential case (35).
 - If the same gears and washers are being used, install them on the same side as they were removed from.
Figure 22—Measuring Pinion Depth
2. Pinion gears (56).
 - Position one pinion gear (56) between the side gears and rotate the gears until the pinion gear is directly opposite the opening in the case.
 - Place the other pinion gear (56) between the side gears, making sure the hole in both pinion gears line up.
3. Thrust washers (55).

3. Thrust washers (55).

4. Shaft (52) and pin (36) (K15-25 models) or bolt (24) (K35 models).
5. Ring gear (37) onto the differential case (35).
6. Bolts (34). The bolts have left hand threads.

- Important
 - Always install new bolts. Never reuse the old bolts.

- Tighten
 - Bolts (34) alternating in progressive steps to 120 N m (88 ft. lbs.).

7. Side bearings (33), using J 22761 (K15-25 models) or J 29710 (K35 models) and J 8092 (figure 26).

DIFFERENTIAL ASSEMBLY INSTALLATION

Install or Connect (Figures 1 through 4 and 27 through 30)

Tools Required:
- J 36612 Bearing Installer (K15-25 Models)
- J 36613 Bearing Installer (K35 Models)
- J 8092 Driver Handle
- J 36599 Sleeve Adjusting Wrench
- J 36615 Adjuster Plug Wrench (K35 Models)
- J 36603 Side Bearing Cup Installer

1. Bearings (30) to the sleeves (32) and/or adjuster plug (61) (K35 models). Use J 8092 and J 36612 (K15-25 models) or J 36613 (K35 models) (figure 27).
2. New O-ring (62) to the adjuster plug (61) (K35 models).
3. Sleeves (32) and/or adjuster plug (61) to the carrier case (29).
 - K35 models: Use J 36599 for the right sleeve (figure 28). Use J 36615 for the adjuster plug (figure 29).
4. Side bearing cups (33). Use J 36603 with J 8092 (figure 30).
5. Differential assembly to the carrier case half.
 • Place the differential assembly into the carrier case half which contains the pinion gear.
6. Carrier case halves. Do not use sealer at this time.
 • If the carrier halves do not make complete contact, back out the right sleeve (32). Use J 36599 (figure 28).
7. Bolts (28). Tighten to 47 N·m (35 ft. lbs.).

ADJUSTING BACKLASH

Tools Required:
- J 34047 Dial Indicator Set
- J 8001 Dial Indicator Set
- J 34047-3 Dial Indicator Adapter

1. Refer to figures 1 through 4.
2. Tighten the right sleeve (32) to 140 N·m (100 ft. lbs.). Use J 36599 (figure 28).
3. Tighten the left sleeve (32) (K15-25 models) or adjuster plug (61) (K35 models) to 140 N·m (100 ft. lbs.).
 • Use J 36599 (K15-25 models) (figure 28).
 • Use J 36615 (K35 models) (figure 29).
4. Mark the location of the adjusting sleeves in relation to the carrier halves, so the notches in the adjusting sleeves can be counted when turned.
5. Turn the right sleeve OUT two notches.
6. Turn the left sleeve (K15-25 models) or adjuster plug (K35 models) IN one notch.
4C4-14 K TRUCK FRONT AXLE

Figure 31—Measuring Backlash at the Ring Gear

7. Rotate the pinion several times to seat the bearings.
8. Install J 34047-3 into the filler plug hole. Install J 34047-1 and J 8001-1 as shown in figure 31.
9. Place the indicator stem at the heel end of a tooth.
10. Check and record the backlash at three or four points around the ring gear:
 - The pinion must be held stationary when checking backlash.
 - The backlash should be the same at each point within 0.05 mm (0.002-inch). If the backlash varies more than 0.05 mm (0.002-inch), check for burrs, a distorted case flange, uneven bolting conditions, or foreign matter between the case and the ring gear.
 - Gear backlash should be between 0.08-0.25 mm (0.003-0.010 inch) with a preferred specification of 0.13-0.18 mm (0.005-0.007-inch).
 - If the backlash is incorrect, adjust the sleeves as necessary. Always maintain the “one notch” preload on the side bearings. Example: If it is necessary to turn the RIGHT sleeve IN one notch, the LEFT sleeve must be turned OUT one notch.
 - To increase backlash, turn the left sleeve in, and turn the right sleeve out an identical amount. To decrease backlash, turn the right sleeve in and turn the left sleeve out an identical amount.
 - Changing the sleeves one notch will change backlash about 0.08 mm (0.003-inch).

Figure 32—Measuring Backlash at the Pinion Flange

MEASURING BACKLASH (ALTERNATE METHOD)

1. Use this method if the tools specified previously are not available.
2. If the specified tools are not available, it is possible to read backlash at the pinion flange, as follows:
3. Install a dial indicator so the button contacts the outer edge of the pinion flange. The plunger must be at a right angle to the pinion flange (figure 32).
4. Move the pinion flange through its free play while holding the differential carrier. Record the dial indicator reading.
5. DIVIDE THE DIAL INDICATOR READING BY 2 to obtain the actual backlash when using this method. Example: A dial indicator reading of 0.16 mm means that there is actually 0.08 mm backlash.
6. Follow the steps for adjusting backlash outlined previously.

GEAR TOOTH CONTACT PATTERN CHECK

Before final assembly of the differential, a gear tooth contact pattern check should be performed.

It should be noted that a gear tooth contact pattern check is NOT a substitute for adjusting pinion depth and backlash as previously outlined. It is a final check to verify the correct running position of the ring gear and the drive pinion. Gear sets which are not positioned properly may be noisy, or have a short life, or both. With a pattern
check, the best contact between the ring gear and the drive pinion for low noise level and long life can be assured.

GEAR TOOTH TERMS
The side of the ring gear tooth which curves outward, or is convex, is referred to as the “drive” side. The concave side is the “coast” side. The end of the tooth nearest center of ring gear is referred to as the “toe” end. The end of the tooth farthest away from the center is the “heel” end. The toe end of the tooth is smaller than the heel end (figure 33).

TEST
1. Wipe oil out of carrier and carefully clean each tooth of the ring gear.
2. Apply gear marking compound sparingly to all ring gear teeth using a medium stiff brush. When properly used, the area of pinion tooth contact will be visible when hand load is applied.
3. Apply a load until a torque of 54-70 N·m (40-50 ft. lbs.) is required to turn the pinion.
 A test made without loading the gears will not give a satisfactory pattern. Turn the companion flange with a wrench so that the ring gear rotates one full revolution then reverse the rotation so that the ring gear rotates one revolution in the opposite direction. Excessive turning of the ring gear is not recommended.
4. Observe the pattern on the ring gear teeth and compare with figure 34.

ADJUSTMENTS AFFECTING TOOTH CONTACT
Two adjustments can be made which will affect the tooth contact pattern. These are backlash and the position of the drive pinion (pinion depth) in the carrier. The effects of bearing preloads are not easily seen on hand loaded teeth pattern tests. These adjustments should be within specifications before proceeding with the backlash and the drive pinion adjustments.

It may be necessary to adjust both pinion depth and the backlash to obtain the correct pattern.

CARRIER CASE ASSEMBLY

Install or Connect (Figures 1 through 4)
- Bend the lock (51) over the sleeves (32). (Right side only on K35 models).
- Bolt (64) and lock (63) (K35 models).

Remove or Disconnect (Figures 1 through 4)
1. Bolts (28).
2. Right carrier case half.

Clean
- Carrier case and axle tube sealing surfaces.
- Remove all grease and oil. Use carburetor cleaner or equivalent.

Install or Connect (Figures 1 through 4, 19, and 35).
Tools Required:
- J 36600 Output Shaft Seal Installer (K15-25)
- J 22833 Output-Shaft Seal Installer (K35).
- J 33842 Pilot Bearing Installer
- J 36616 Bushing Replacer Set
- Apply a bead of sealer (GM part no. 1052942 [Loctite 518] or equivalent) to one carrier case half sealing surface.
1. Right carrier case half (29).
2. Bolts (28).

Tighten
- Bolts (28) to 47 N·m (35 ft. lbs.).
3. Left seal (3). Use J 36600 (K15-25 models) or J 22833 (K35 models). Drive into place with a soft faced hammer.
4. Shaft (59) with deflector (2). Drive in place with a brass hammer.
5. Bearing (21) to the output shaft (23). Use J 33842 (figure 35).
6. Output shaft (23) to the carrier.
7. Vent plug (60). Use a small amount of sealer (GM part no. 1052942 [Loctite 518] or equivalent) on the threads.
AXLE TUBE ASSEMBLY

ASSEMBLY
++ Install or Connect (Figures 1 through 4 and 36)

Tools Required:
- J 36609 Bearing Installer
- J 36600 Seal Installer (K15-25 Models)
- J 22833 Seal Installer (K35 Models)

2. Seal (3). Use J 36600 (K15-25 models) or J 22833 (K35 models) (figure 36).
3. Shaft (1) with deflector (2) to the axle tube.
4. Washer (7). Align the tabs with the slots in the tube.
5. Gear (9) with retaining ring (8) (K15-25 models). Drive gear into place with a plastic hammer.
6. Washer (11) and new snap ring (12) (K35 models). Make sure the snap ring seats properly in the groove.
OUTPUT SHAFT SHIM SELECTION
• Refer to figures 1 through 4.
• It is necessary to select the proper size output shaft shim (20) if any of the following components were replaced:
 — Shaft (1).
 — Tube (5).
 — Output shaft (23).
 — Carrier case (29).
 — Ring and pinion gears (37).
 — Differential case (35).
 — Bearings (33).
 — Carrier connector (9) (K15-25 models).

Preferred Method:
 Tool Required:
 J 34672 Depth Gage (or equivalent)
 1. Refer to figures 37 and 38.
 2. Push on the inner end of the shaft (1), and move the shaft outboard as far as it will go. The shaft must be in this position when measuring dimension “A”.
 3. Measure dimension “A”. Use J 34672 or equivalent (figure 38).
 • K15-25: Tube flange machined surface to inner surface of connector (9).
 • K35: Tube flange machined surface to inner surface of axle shaft shoulder.
 4. Measure dimension “B.”
 • Carrier machined surface to outer surface of output shaft (23).
 5. Subtract dimension “A” from dimension “B.”
 6. The correct shim size will be one size smaller than the figure obtained in step 5. Examples:
 • If the figure obtained in step 5 was 3.53 mm, use a 3.30 mm shim.
 • If the figure obtained in step 5 was 3.30 mm, use a 2.70 mm shim (K15-25 models) or 2.80 mm shim (K35 models).
 7. Shims are available in the following sizes:
 • K15-25 models: 1.27 mm, 1.78 mm, 2.29 mm, 2.70 mm, 3.30 mm, 3.81 mm.
 • K35 models: 1.80 mm, 2.30 mm, 2.80 mm, 3.30 mm, 3.80 mm, 4.30 mm, 4.80 mm.

Alternate Method
Use ONLY if proper tools for calculating the shim size are not available.

Install or Connect (Figures 1 through 4)
 1. Original shim (20) to the shaft (1). Use grease to hold it in place.
 2. Assembled axle tube and shaft to the carrier. Use no sealer at this time.
 3. Bolts (6). Tighten to 40 N-m (30 ft. lbs.).

Measure (Figure 39)
 Tool Required:
 J 8001 Dial Indicator (or equivalent)
 • Shaft (1) end play.
 1. Install a dial indicator (J 8001 or equivalent) on the axle tube end. The plunger of the indicator must be at a right angle to the axle flange (figure 39).

2. Move the shaft (1) back and forth and read the end play. Correct end play is 0.03-0.051 mm (0.001-0.020-inch).
3. If end play is incorrect, install a thicker or thinner shim as needed to bring end play into the specified range.

Remove or Disconnect (Figures 1 through 4)
 1. Bolts (6).
 2. Axle tube assembly.

FINAL ASSEMBLY

Clean (Figures 1 through 4)
• Sealing surfaces of the tube (5) and carrier assembly. Remove all oil and grease. Use carburetor cleaner or equivalent.

Install or Connect (Figures 1 through 4)
 1. Shim (20), as selected previously, to the output shaft (23). Use grease to hold it in place.
 2. Shift fork (18), shaft (17), sleeve (22), and spring (16) to the carrier case.
 3. Apply a bead of sealer (GM part no. 1052942 [Loctite 518] or equivalent) to the tube (5) sealing surface.
 4. Assembled tube (5) to the carrier assembly.
 5. Bolts (6).

Tighten
• Bolts (6) to 40 N-m (30 ft. lbs.).

Inspect (Figure 40)
• Shift mechanism operation. Insert a drift into the actuator hole in the axle tube. Rotate the axle flange while moving the shift fork with the drift. The shift mechanism should work smoothly, without bind.
 5. Solenoid (10). Apply sealer (GM part no. 1052942 [Loctite 518] or equivalent) to the threads. Tighten to 22 N-m (16 ft. lbs.).
 6. Switch (13). Apply sealer (GM part no. 1052942 [Loctite 518] or equivalent) to the threads. Tighten to 5.0 N-m (45 in. lbs.).
 7. Axle lubricant, as specified in the proper Truck Service Manual.
 8. Drain and fill plugs (25) with sealing washers (26). Tighten to 33 N-m (24 ft. lbs.).
C. Measure with Axle Shaft Forced Outboard
1. Shaft
5. Tube
9. Carrier Connector
23. Output Shaft
29. Carrier Case

Figure 37—Measuring to Calculate Shim Size
Figure 38—Measuring to Calculate Shim Size

Figure 39—Measuring Axle Shaft End Play

Figure 40—Checking the Shift Mechanism
4C4-20 K TRUCK FRONT AXLE

SPECIFICATIONS

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>FASTENER</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
<th>In. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Gear Bolts</td>
<td>120</td>
<td>88</td>
<td>—</td>
</tr>
<tr>
<td>Carrier Case Bolts</td>
<td>47</td>
<td>35</td>
<td>—</td>
</tr>
<tr>
<td>Axle Tube Bolts</td>
<td>40</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Actuator</td>
<td>22</td>
<td>16</td>
<td>—</td>
</tr>
<tr>
<td>Front Axle Switch</td>
<td>5.0</td>
<td>—</td>
<td>45</td>
</tr>
<tr>
<td>Drain and Fill Plugs</td>
<td>33</td>
<td>24</td>
<td>—</td>
</tr>
</tbody>
</table>

AVAILABLE SHIM SIZES

Pinion Shaft Shims
(K15-25 Models) ... 0.020-0.024-inch
0.025-0.029-inch
0.030-0.034-inch
0.035-0.039-inch
(K35 Models) .. 0.508-0.5842 mm
0.6096-0.7112 mm
0.7366-0.8382 mm
0.8386-0.9398 mm

Output Shaft Shims
K15-25 Models .. 1.27, 1.78, 2.29, 2.70, 3.30, 3.81 mm
K35 Models .. 1.80, 2.30, 2.80, 3.30, 3.80, 4.30, 4.80 mm

PINION PRELOAD AND BACKLASH

Pinion Preload ... 1.7-2.8 N·m (15-25 in. lbs.)
Backlash (Preferred) .. 0.08-0.25 mm (0.003-0.010-in.)
(Preferred) ... 0.13-0.18 mm (0.005-0.007-in.)
Special Tools

<table>
<thead>
<tr>
<th></th>
<th>Tool Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Slide Hammer</td>
</tr>
<tr>
<td>2</td>
<td>Output Shaft Bearing Installer (K15-25)</td>
</tr>
<tr>
<td>3</td>
<td>Output Shaft Bearing Installer (K35)</td>
</tr>
<tr>
<td>4</td>
<td>Driver Handle</td>
</tr>
<tr>
<td>5</td>
<td>Side Bearing Remover Pilot (K15-25)</td>
</tr>
<tr>
<td>6</td>
<td>Side Bearing Remover Pilot (K35)</td>
</tr>
<tr>
<td>7</td>
<td>Pinion Bearing Remover (K15-25 Models)</td>
</tr>
<tr>
<td>8</td>
<td>Pinion Bearing Remover (K35 Models)</td>
</tr>
<tr>
<td>9</td>
<td>Pinion Flange Remover</td>
</tr>
<tr>
<td>10</td>
<td>Case Bushing Replacer</td>
</tr>
<tr>
<td>11</td>
<td>Differential Side Bearing Installer (K15-25 Models)</td>
</tr>
<tr>
<td>12</td>
<td>Differential Side Bearing Installer (K35 Models)</td>
</tr>
<tr>
<td>13</td>
<td>Differential Side Bearing Installer</td>
</tr>
<tr>
<td>14</td>
<td>Axle Tube Bearing Installer</td>
</tr>
<tr>
<td>15</td>
<td>Axle Tube Bearing and Seal Remover (K15-25 Models)</td>
</tr>
<tr>
<td>16</td>
<td>Axle Tube Bearing and Seal Remover (K35 Models)</td>
</tr>
<tr>
<td>17</td>
<td>Differential Pilot Bearing Installer</td>
</tr>
<tr>
<td>18</td>
<td>Differential Pilot Bearing Remover</td>
</tr>
<tr>
<td>19</td>
<td>Pinion Bearing Installer (K15-25 Models)</td>
</tr>
<tr>
<td>20</td>
<td>Pinion Bearing Installer (K35 Models)</td>
</tr>
<tr>
<td>21</td>
<td>Pinion Seal Installer</td>
</tr>
<tr>
<td>22</td>
<td>Axle Seal Installer (K15-25 Models)</td>
</tr>
<tr>
<td>23</td>
<td>Axle Seal Installer (K35 Models)</td>
</tr>
<tr>
<td>24</td>
<td>Holding Fixture and Pinion Service Tool</td>
</tr>
<tr>
<td>25</td>
<td>Dial Indicator Adapter</td>
</tr>
<tr>
<td>26</td>
<td>Side Bearing Adjuster Wrench</td>
</tr>
<tr>
<td>27</td>
<td>Pinion Setting Gage</td>
</tr>
<tr>
<td>28</td>
<td>Dial Indicator</td>
</tr>
<tr>
<td>29</td>
<td>Depth Gage</td>
</tr>
<tr>
<td>30</td>
<td>Side Bearing Adjuster Wrench</td>
</tr>
<tr>
<td>31</td>
<td>Dial Indicator Set</td>
</tr>
</tbody>
</table>
SECTION 5

BRAKES

The following notice applies to one or more steps in the assembly procedure of components in this portion of the manual as indicated at appropriate locations by the terminology NOTICE: See ‘Notice’ on page 5-1 of this section.

NOTICE: This fastener is an important attaching part in that it could affect the performance of vital components and systems, and/or could result in major repair expense, it must be replaced with one of the same part number or with an equivalent part if replacement becomes necessary. Do not use a replacement part of lesser quality or substitute design. Torque values must be used as specified during reassembly to assure proper retention of this part.

CONTENTS

SUBJECT PAGE
Hydraulic Booster .. 5-1
Bendix Hydro-Boost ... 5-1
Master Cylinders .. 5-4
 Composite Master Cylinder .. 5-4
 Cast Iron Master Cylinder .. 5-4
 Bendix Master Cylinder .. 5-6
Vacuum Boosters .. 5-9
 Single Diaphragm Vacuum Booster ... 5-9
 Tandem Diaphragm Vacuum Booster ... 5-11
Specifications .. 5-14
Special Tools .. 5-15

HYDRAULIC BOOSTER

BENDIX HYRDO-BOOST

Remove or Disconnect (Figure 1)

Bendix Hydro Boost Model has identifying information stamped into the housing near the inlet line.

CAUTION: The accumulator contains compressed gas. Always use proper tools and follow recommended procedures or personal injury may result. Do not apply heat to accumulator. Do not attempt to repair an inoperative accumulator, always replace with a new accumulator. Dispose of an inoperative accumulator by drilling a 1/16-inch diameter hole through the end of the accumulator can opposite the “O” ring.

Tools Required:
 J 26889 Accumulator Compressor
 • Place J 26889 over the end of the accumulator and install a nut onto the stud (figure 2).
 • Depress the accumulator with a C-clamp.
 • Insert a punch into the hole on the housing.
 1. Retainer (1).
 • Release the C-clamp.
 • Remove J 26889.
 2. Accumulator (2) and O-ring (3).
 3. Retainer (4).
 4. Plug (5), O-ring (6) and spring (7) (figure 3).

 5. Retainer (26).
 6. Output pushrod (28), baffle (27), piston return spring (25) and retainer (24).
 8. Nut (18) and bracket (17).
 9. Bolts (9).
 10. Seals (14 and 15).
 11. Piston assembly (22) and seal (23).
 12. Spool valve (13).
 14. Return line fitting (12) and seal (10).

Clean
 • All the parts with power steering fluid.

Inspect
 • Spool valve and spool valve bore for corrosion, nicks and scoring. If found, replace the complete booster. Discoloration of the spool or bore is not harmful and is no cause for replacement.
 • Housing and cover sealing surface for corrosion, or nicks.
 • Tube seat in the housing for burrs, nicks or corrosion. Replace if needed (figures 5 and 6).
Install or Connect (Figure 1)

Tools Required:
- J 26889 Accumulator Compressor
- J 24551-A Seal Protector
- J 25083 Seal Protector

NOTICE: For steps 8 and 9 see “Notice” on page 5-1 of this section.

- Lubricate all the seals and metal friction points with power steering fluid.

1. Seal (10) and return line fitting (12).
2. Accumulator valve (11).
3. Spool valve (13).
4. Seal (23) and piston assembly (22) by using J 24551-A or J 25083 (figure 7).
 - Lubricate the tool with clean power steering fluid.
5. Seal (14) onto the piston assembly (22).
6. Seal (15) onto the housing (8).
7. Cover (16).
8. Bolts (9).

Figure 1—Hydro-Boost Components

Figure 2—Removing the Accumulator

A. Nut
B. C-clamp

Figure 3—Removing the Plug and Spring

4. Retainer
5. Plug
6. O-Ring
7. Spring
Tighten
- Bolts to 30 N·m (22 ft·lbs.).
9. Bracket (17) and nut (18).

Tighten
- Nut to 149 N·m (110 ft·lbs.).

11. Output pushrod (28), baffle (27), piston return spring (25) and retainer (24) by using J 24551-A or J 25083 (figure 8).
12. Retainer (26).
13. Spring (7), O-ring (6) and plug (5) (figure 3).
15. O-ring (3) and accumulator (2) by using J 26889 and a C-clamp (figure 2).
- Depress the accumulator (2).
16. Retainer (1).
- Release the C-clamp.
- Remove J 26889.
17. Jam nut from the repair kit onto the pedal rod.
18. Eyelet onto the pedal rod.

Adjust
- Eyelet to the required length. Refer to BRAKES (SEC. 5) in the 1988 Light Duty Truck Service Manual.
MASTER CYLINDERS

COMPOSITE MASTER CYLINDER

The Delco-Moraine Composite Master Cylinder has identifying information stamped into the front outlet tube. The first and second digits are the build code. The third digit indicates the year it was built (a 5 means 1985 or a 6 means 1987). The last digits indicate the day it was built (271 means it was the 271st day of the production year).

NOTICE: Do not hone the master cylinder bore. When the brake master cylinder is overhauled, it is recommended that the cylinder body be replaced rather than "cleaned up" by honing the bore. The master cylinder has a hard, highly polished "bearingized" surface, which is produced by diamond boring followed by ball or roller burnishing under heavy pressure. Honing will destroy this surface which will cause rapid wear of rubber cups.

NOTICE: Do not use kerosene, gasoline, or any other unapproved solvents for cleaning or flushing master cylinder and components. The use of these as solvents or any other with a trace of mineral oil will damage rubber parts.

< Remove or Disconnect (Figures 9 and 10)
1. Cover (1).
2. Diaphragm (2).
 • Drain all the brake fluid from the reservoir.
3. Reservoir (3) and grommets (4) (figure 11).
 • Clamp the mounting flange of the cylinder in a vise and pry the reservoir off with a bar.
4. Snap ring (11).
5. Primary piston assembly (12).

CAUTION: In the following step if air pressure is used to remove the secondary piston, place the open end of the cylinder bore approximately 25 mm (1-inch) from a padded workbench or other surface to catch the piston when it comes out of the bore. Apply low air pressure very carefully to ease the piston out of the bore. Never point the open end of the bore at anyone when applying air pressure. The piston may come out of the bore with considerable force and cause personal injury.

6. Secondary piston (9).
 • With the rear port plugged apply a small amount of air pressure to the front port.
7. Seals (8 and 10).
8. Spring retainer (7) and spring (6).

Clean
• All the metal parts in denatured alcohol.
• All the rubber parts in clean brake fluid.
• Stained or discolored cylinder bore with crocus cloth.

Install or Connect (Figures 9 and 10)
• Lubricate the grommets, seals, and cylinder bore with clean brake fluid.
1. Spring (6) and spring retainer (7).
2. Seals (8 and 10) onto the secondary piston (9).
3. Secondary piston (9).
4. Primary piston assembly (12).
5. Snap ring (11).
 • The primary piston must be compressed when installing the snap ring.
7. Reservoir (3) (figures 12 and 13).
 • Press on the body while using a rocking motion.
8. Diaphragm (2) into the cover (1).
9. Cover (1).

CAST IRON MASTER CYLINDER

The Delco-Moraine Cast Iron Master Cylinder has identifying information stamped into the front outlet tube. The first and second digits are the build code. The third digit indicates the year it was built (a 5 means 1985 or a 7 means 1987). The last digits indicate the day it was built (271 means it was the 271st day of the production year).

NOTICE: Do not hone the master cylinder bore. When the brake master cylinder is overhauled, it is recommended that the cylinder body be replaced rather than "cleaned up" by honing the bore. The master cylinder has a hard, highly polished "bearingized" surface, which is produced by diamond boring followed by ball or roller burnishing under heavy pressure. Honing will destroy this surface which will cause rapid wear of rubber cups.

NOTICE: Do not use kerosene, gasoline, or any other unapproved solvents for cleaning or flushing master cylinder and components. The use of these as solvents or any other with a trace of mineral oil, will damage rubber parts.

< Remove or Disconnect (Figure 14)
1. Cover (22).
2. Diaphragm (23).
 • Drain all the brake fluid from the reservoir.
3. Snap ring (31).
4. Primary piston assembly (30) (figure 15).
CAUTION: In the following step if air pressure is used to remove the secondary piston, place the open end of the cylinder bore approximately 25 mm (1-inch) from a padded workbench or other surface to catch the piston when it comes out of the bore. Apply low air pressure very carefully to ease the piston out of the bore. Never point the open end of the bore at anyone when applying air pressure. The piston may come out of the bore with considerable force and cause personal injury.

5. Secondary piston (28).
 - With the rear port plugged apply a small amount of air pressure to the front port.
7. Spring retainer (26) and primary seal (27).
8. Spring (25).
9. Tube seats (if necessary) (figure 17).
 - Thread a self-tapping screw into the tube seat and remove with locking jaw pliers.

Clean
- All the metal parts in denatured alcohol.
- All the rubber parts in clean brake fluid.
- Stained or discolored cylinder bore with crocus cloth.

Inspect
- Diaphragm for cuts, cracks, or a swollen condition.
- Cylinder bore for scoring or corrosion. If corrosion is present, replace the cylinder. Do not attempt to hone the bore.

Install or Connect (Figure 14)
- Lubricate all the seals and cylinder bore with clean brake fluid.
 1. Spring (25).
 2. Primary seal (27) and spring retainer (26) onto the secondary piston (28) (figure 16).
 3. Secondary seals (29) onto the secondary piston (28).
1. Cover
2. Diaphragm
3. Reservoir
4. Grommet
5. Quick Take-Up Valve
6. Spring
7. Spring Retainer
8. Primary Seal
9. Secondary Piston
10. Secondary Seal
11. Snap Ring
12. Primary Piston Assembly
13. Body

Figure 10—Composite Master Cylinder Components

5. Primary piston assembly (30).
 - The primary piston must be compressed to install the snap ring.
7. Diaphragm (23) into the cover (22).
8. Cover (22).

Figure 11—Removing the Reservoir

9. Tube seats (if removed).
 - Seat the tube seats with a spare brake tube nut (figure 18).

Figure 12—Installing the Reservoir

Figure 13—Installing the Reservoir

BENDIX MASTER CYLINDER

The Bendix Master Cylinder has identifying information stamped into the front surface of the body. The first digit indicates the plant where it was built. The second digit indicates the year it was built (a 5 means 1985 or a 6 means 1986). The last digits indicate the day it was built (271 means the 271st day of the production year).

NOTICE: Do not hone the master cylinder bore. When the brake master cylinder is overhauled, it is recommended that the cylinder body be replaced rather than "cleaned up" by honing the bore. The master cylinder has a hard, highly polished "bearingized" surface, which is produced by diamond boring followed by ball or roller burnishing under heavy pressure. Honing will destroy this surface which will cause rapid wear of rubber cups.

NOTICE: Do not use kerosene, gasoline, or any other unapproved solvents for cleaning or flushing master cylinder and components. The use of these as solvents or any other with a trace of mineral oil will damage rubber parts.
Remove or Disconnect (Figure 19)

1. Cover (41).
2. Diaphragm (42).
 - Drain all the brake fluid from the reservoir.
3. Bolts (54) and reservoir (44).
4. O-ring (55) and compensating valve seals (45).
5. Valve poppets (46) and springs (47).
 - Depress the primary piston with a smooth rounded end tool.
6. Snap ring (52).
7. Primary piston assembly (51) and piston return spring (50).

CAUTION: In the following step if air pressure is used to remove the secondary piston, place the open end of the cylinder bore approximately 25 mm (1-inch) from a padded workbench or other surface to catch the piston when it comes out of the bore. Apply low air pressure very carefully to ease the piston out of the bore. Never point the open end of the bore at anyone when applying air pressure. The piston may come out of the bore with considerable force and cause personal injury.

8. Secondary piston assembly (49).
 - With the front port plugged, apply a small amount of air pressure to the front compensating valve port.

Clean

- All the metal parts in denatured alcohol.
- All the rubber parts in clean brake fluid.
Figure 15—Cast Iron Master Cylinder Components

- A stained or discolored cylinder bore with crocus cloth.

Inspect
- Diaphragm for cuts, cracks, or a swollen condition.
- Cylinder bore for scoring or corrosion. If corrosion is present, replace the cylinder. Do not attempt to hone the bore.

Install or Connect (Figure 19)
- Lubricate all the seals and cylinder bore with clean brake fluid.
 1. Secondary spring (48).
 2. Secondary piston assembly (49).
 3. Piston return spring (50).

Notice: See "Notice" on page 5-1 of this section.

4. Primary piston assembly (51) and snap ring (52).
 - The primary piston must be depressed to install the snap ring.
5. O-ring (55) and springs (47).
6. Valve poppets (46) and compensating valve seals (45).
 - Depress and hold the primary piston assembly with a smooth rounded end tool.
7. Reservoir (44).
8. Bolts (54).
9. Diaphragm (42) into the cover (41).
10. Cover (41).

Figure 16—Secondary Piston Assembly

24. Body
25. Spring
28. Secondary Piston
30. Primary Piston Assembly
31. Snap Ring

Figure 17—Removing Tube Seats

4. Primary piston assembly (51) and snap ring (52).
 - The primary piston must be depressed to install the snap ring.
5. O-ring (55) and springs (47).
6. Valve poppets (46) and compensating valve seals (45).
 - Depress and hold the primary piston assembly with a smooth rounded end tool.
7. Reservoir (44).

NOTICE: See "Notice" on page 5-1 of this section.
8. Bolts (54).

Tighten
- Bolts to 18 N·m (13 ft. lbs.).
9. Diaphragm (42) into the cover (41).
10. Cover (41).

Figure 18—Installing Tube Seats

24. Body
25. Spring
28. Secondary Piston
30. Primary Piston Assembly
31. Snap Ring
VACUUM BOOSTERS

Delco-Moraine Vacuum Boosters have a build date on a small paper label glued onto the front housing. The first digit indicates the year it was built (a 5 means 1985 or a 6 means 1986). The last digits indicate the day it was built (271 means the 271st day of production year).

SINGLE DIAPHRAGM VACUUM BOOSTER

\[\text{\textbf{Remove or Disconnect (Figure 20)}} \]

Tool Required:
J 23456 Power Brake Booster Disassembly and Reassembly Fixture

1. Boot (1) and silencer (2).
2. Vacuum check valve (3) and grommet (4).
3. Front housing seal (5).
 - Scribe a mark across the front and rear housings to aid in assembly.
 - Use J 23456 to apply force in a counter clockwise direction to unlock the housings (figure 21).
4. Return spring (9) and power piston group.
5. Power piston bearing (6) from the rear housing (7).
6. Reaction body retainer (25).
7. Piston rod (10) and reaction retainer (11).
8. Filter (12) using an awl or similar tool.

\[\text{\textbf{Inspect}} \]

- Grasp the outside edge of the diaphragm support (15) and diaphragm (14). Hold the pushrod (19) down against a hard surface.
- Use a slight force or impact to dislodge the diaphragm retainer (13).

10. Diaphragm (14) from the diaphragm support (15).

\[\text{\textbf{Clean}} \]

- All parts in clean denatured alcohol.
 - Do not immerse the power piston and pushrod assembly in alcohol.
- Dry with unlubricated compressed air.
1. Boot
2. Silencer
3. Vacuum check Valve
4. Grommet
5. Front Housing Seal
6. Power Piston Bearing
7. Rear Housing
8. Front Housing
9. Return Spring
10. Piston Rod (Gaged)
11. Reaction Retainer
12. Filter
13. Diaphragm Retainer
14. Diaphragm
15. Diaphragm Support
16. Power Piston and Pushrod Assembly
19. Pushrod
25. Reaction Body Retainer

Install or Connect (Figure 20)

Tools Required:
- J 23456 Power Brake Booster Disassembly and Reassembly Tool
- J 28458 Power Piston Seal Protector
- J 22647 Pushrod Height Gage

1. Diaphragm (14) into the diaphragm support (15).
 - Lubricate the inside diameter of the diaphragm lip with a thin layer of silicone grease.
2. Diaphragm and diaphragm support onto the power piston and pushrod assembly.
3. New diaphragm retainer (13) (figure 22).
 - Seat the retainer using J 28458.
4. Filter (12), reaction retainer (11) and piston rod (10).
5. Reaction body retainer (25).
6. Power piston bearing (6) into the rear housing.
 - Lubricate the inside and outside of the bearing with silicone grease.
7. Power piston group into the rear housing (7).
8. Return spring (9).
9. Front housing to the rear housing.
 - Align the marks made during disassembly.
 - Use J 23456 to apply force in a clockwise direction to lock the front and rear housings.
 - Stake the housing at two tabs 180 degrees apart (figure 23).
 - Do not stake a tab that has previously been staked.
 - Assembly can be aided by connecting a vacuum source to the booster.
10. Grommet (4) and vacuum check valve (3).

Figure 20—Single Diaphragm Vacuum Booster Components

Figure 21—Unlocking and Locking Booster

Figure 22—Installing the Diaphragm Retainer
Figure 24—Gaging the Piston Rod

11. Front housing seal (5).
 12. Silencer (2) and boot (1).
 - Gage the piston rod using J 22647 (figure 24). If not within limits, obtain a service adjustable piston rod.

TANDEM DIAPHRAGM VACUUM BOOSTER

12. Secondary diaphragm (20) from the secondary support plate (21).
13. Reaction body retainer (24).
15. Reaction disc (22) and reaction piston (23) from the reaction body (25).
16. Air valve spring (26) and reaction bumper (27) from the end of the air valve pushrod (32).
17. Retaining ring (28) from the air valve pushrod assembly (32).
18. Air valve pushrod assembly (32) by inserting a screwdriver through the pushrod eyelet and pulling it straight out.
 - Considerable force will be required.
19. Filter (29), retainer (30) and O-ring (31) from the air valve pushrod assembly (32).

Inspect
- All parts for corrosion, nicks, cracks, cuts, scoring, distortion or excessive wear. Replace parts as necessary.
- Use crocus cloth to polish away minor corrosion of the housings or diaphragm support.

Clean
- All parts in clean denatured alcohol.
 - Do not immerse the power piston and pushrod assembly in alcohol.
- Dry with unlubricated compressed air.

Install or Connect (Figure 25)
Tools Required:
J 23456 Power Brake Booster Disassembly and Reassembly Fixture
1. Lubricated O-ring (31) onto the air valve pushrod assembly (32).
2. Air valve pushrod assembly (32) into the power piston (41).
3. Retainer (30) and seat.
4. Filter (29) over the pushrod eyelet and into the power piston (41) (figure 27).
5. Retaining ring (28) onto the air valve pushrod assembly (32).
6. Reaction bumper (27) and air valve spring (26).
7. Reaction piston (23) and reaction disc (22) into the reaction body (25).
8. Reaction body (25).
9. Reaction body retainer (24).
10. Secondary diaphragm (20) and support plate (21) over the power piston assembly (41) and pushrod (32) (figure 28).

- Use J 28458 as a guide to protect the power piston.

11. Secondary piston bearing (18) into the housing divider (19) with the flat surface of the bearing on the same side as the six raised lugs on the divider.
12. Secondary piston bearing (18) and housing divider (19) over the power piston assembly (41) and pushrod (32). Use J 28458 as a guide (figure 29).
13. Primary diaphragm (16) into the primary support plate (17).

- Fold the primary diaphragm (16) up, away from the primary support plate (17).
14. Primary diaphragm (16) and support plate (21) over the power piston assembly (41) and pushrod (32).

- Fold the primary diaphragm (16) back into position and pull the outside edge of the diaphragm over the formed flange of the housing divider (19).
10. Check that the beads on the secondary diaphragm (20) are seated evenly around the complete circumference.

16. New diaphragm retainer (15) and seat using J 28458.

17. Silencer (14), reaction retainer (13) and piston rod (12).

- Lubricate the inside and outside diameters of primary piston bearing (8) with silicone grease.

18. Primary piston bearing (8) into the rear housing (9).

19. Power piston group (38) into the rear housing (9).

20. Return spring (11).

- Align the scribe marks on housings (9 and 10).

- Lock the front and rear housings using J 23456 (figure 21).

- Stake the housing after locking. Stake two tabs 180 degrees apart (figure 23).

- Do not stake a tab that has been previously staked.

- Assembly can be aided by connecting a vacuum source to the booster.

- Lubricate the inside and outside diameters of the grommet (4) and front housing seal (7) with a thin layer of silicone grease.

21. Grommet (4) and vacuum check valve (3).

22. Front housing seal (7).

23. Silencer (2) and boot (1).

- Gage the piston rod (figure 24).
5-14 BRAKES

Figure 28—Assembling the Secondary Diaphragm and Support

Figure 29—Assembling the Housing Divider

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydro-Boost Housing to Cover Bolts</td>
<td>30</td>
<td>22</td>
</tr>
<tr>
<td>Hydro-Boost Nut</td>
<td>149</td>
<td>110</td>
</tr>
</tbody>
</table>
SPECIAL TOOLS

1. Power Brake Push Rod Height Gage
2. Piston Seal Protector
3. Piston Seal Protector
4. Power Brake Booster Disassembly and Reassembly Tool
5. Accumulator Piston
6. Valve Connector Seat Installer
7. Power Piston Seal Protector
GENERAL ENGINE MECHANICAL

SUBJECT

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Information</td>
<td>6A-1</td>
</tr>
<tr>
<td>Statement on Cleanliness and Care</td>
<td>6A-1</td>
</tr>
<tr>
<td>Use of RTV Sealer and Anaerobic Gasket Eliminator</td>
<td>6A-2</td>
</tr>
<tr>
<td>Replacing Engine Gaskets</td>
<td>6A-2</td>
</tr>
<tr>
<td>Cylinder Bores, Pistons, Rings, and Connecting Rods</td>
<td>6A-2</td>
</tr>
<tr>
<td>Measuring Cylinder Bore Taper and Out-of-Round (All Models)</td>
<td>6A-2</td>
</tr>
<tr>
<td>Cylinder Bore Reconditioning (2.5 L Engines)</td>
<td>6A-3</td>
</tr>
<tr>
<td>Cylinder Bore Reconditioning (2.8 L Engines)</td>
<td>6A-4</td>
</tr>
<tr>
<td>Cylinder Bore Reconditioning (All Except 2.5 L and 2.8 L Engines)</td>
<td>6A-4</td>
</tr>
<tr>
<td>Boring</td>
<td>6A-4</td>
</tr>
<tr>
<td>Honing</td>
<td>6A-5</td>
</tr>
<tr>
<td>Piston and Connecting Rod Assemblies</td>
<td>6A-5</td>
</tr>
<tr>
<td>Piston Selection (2.5 L and 2.8 L Engines)</td>
<td>6A-8</td>
</tr>
<tr>
<td>Piston Selection (All Except 2.5 L and 2.8 L Engines)</td>
<td>6A-8</td>
</tr>
<tr>
<td>Camshaft Bearings</td>
<td>6A-12</td>
</tr>
<tr>
<td>Camshaft Bearing Replacement (2.5 L and 6.2 L Engines)</td>
<td>6A-12</td>
</tr>
<tr>
<td>Camshaft Bearing Replacement (All Except 2.5 L and 6.2 L Engines)</td>
<td>6A-12</td>
</tr>
<tr>
<td>Hydraulic Lifters</td>
<td>6A-13</td>
</tr>
<tr>
<td>Inspection Before Disassembly</td>
<td>6A-13</td>
</tr>
<tr>
<td>Hydraulic Lifter Overhaul</td>
<td>6A-13</td>
</tr>
<tr>
<td>Valve Lifter Leak-Down Rate Test (Flat Type Lifters Only)</td>
<td>6A-15</td>
</tr>
<tr>
<td>Cylinder Head</td>
<td>6A-16</td>
</tr>
<tr>
<td>Disassembly</td>
<td>6A-16</td>
</tr>
<tr>
<td>Cleaning and Inspection</td>
<td>6A-16</td>
</tr>
<tr>
<td>Repair</td>
<td>6A-17</td>
</tr>
<tr>
<td>Assembly</td>
<td>6A-18</td>
</tr>
<tr>
<td>Measuring Main Bearing Clearance</td>
<td>6A-19</td>
</tr>
<tr>
<td>Measuring Connecting Rod Bearing Clearance</td>
<td>6A-20</td>
</tr>
<tr>
<td>Special Tools</td>
<td>6A-22</td>
</tr>
</tbody>
</table>
STATEMENT ON CLEANLINESS AND CARE

• An engine is a combination of many machined, honed, polished and lapped surfaces with very fine tolerances.

• Whenever valve train components, cylinder head, cylinder, crankshaft, or connecting rod components are removed for service, they should be retained in order. At the time of installation, they should be installed in the same locations and with the same mating surfaces as when removed.

• Any time air cleaner, carburetor, or TBI unit is removed, the intake opening must be covered. If a diesel engine is being serviced, the recommended cover (J 29664-2) should be used. This will protect against the entrance of foreign material which could follow the intake passage into the cylinder and cause extensive damage when the engine is started.

• When any internal engine parts are serviced, care and cleanliness are important. A liberal coating of engine oil should be applied to friction areas during assembly to protect and lubricate the surfaces on initial operation. Throughout this section, it should be understood that proper cleaning and protection of machined surfaces and friction areas is part of the repair procedure. This is considered standard shop practice even if not specifically stated.

• On diesel engines, whenever the fuel injection pump or lines are removed or disconnected, care must be taken to prevent the entry of dirt into the pump, lines, and injectors. The entry of even small amounts of dirt or other foreign material into the fuel injection system may cause serious damage.

USE OF RTV SEALER AND ANAEROBIC GASKET ELIMINATOR

Two types of sealer are commonly used in engines covered by this manual. These are RTV sealer and anaerobic “gasket eliminator” sealer.

It is important that these sealers be applied properly and in the proper place to prevent oil leaks. THE TWO TYPES OF SEALER ARE NOT INTERCHANGEABLE. Use the sealer recommended in the procedure.

• RTV (room temperature vulcanizing) sealer is used where a non-rigid part is assembled to a rigid part. Common examples are oil pans and rocker arm covers.

• Anaerobic gasket eliminator hardens in the absence of air. This sealer is used where two rigid parts (such as castings) are assembled together. When two rigid parts are disassembled and no sealer or gasket is readily noticeable, the parts were probably assembled using gasket eliminator.

USING RTV SEALER

1. Do not use RTV when extreme temperatures are expected, such as exhaust manifold, head gasket or where gasket eliminator is specified.

2. When separating components sealed with RTV, use a rubber mallet and “bump” the part sideways to shear the RTV sealer. “Bumping” should be done at bends or reinforced areas to prevent distortion of parts. RTV is weaker in shear (lateral) strength than in tensile (vertical) strength. Attempting to pry or pull components apart may result in damage to the part.

3. Surfaces to be resealed must be clean and dry. Remove all traces of oil and RTV. Clean with a chlorinated solvent such as carburetor spray cleaner. Do not use petroleum cleaners such as mineral spirits; they leave a film onto which RTV will not stick.

4. Apply RTV to one of the clean surfaces. Use a bead size as specified in the procedure. Run the bead to the inside of any bolt holes. Do not allow the sealer in any blind threaded holes, as it may prevent the bolt from seating properly or cause damage when the bolt is tightened.

5. Assemble while RTV is still wet (within 3 minutes). Do not wait for RTV to skin over.

6. Torque bolts to specifications. Do not over-torque.

USING ANAEROBIC GASKET ELIMINATOR

1. Clean surfaces to be resealed with a chlorinated solvent to remove all oil, grease and old material.

2. Apply a continuous bead of gasket eliminator to one flange.

3. Spread bead evenly with your finger to get a uniform coating on the complete flange.

4. Assemble parts in the normal manner and torque immediately to specifications.

Important

• Anaerobic sealed joints that are partially torqued and allowed to cure more than five minutes may result in incorrect shimming of the joint.

REPLACING ENGINE GASKETS

CAUTION: Composite type gaskets are used in some areas of the engine assembly. These gaskets have a thin metal core. Use caution when removing or handling composite gaskets to help avoid personal injury.
MEASURING CYLINDER BORE TAPER AND OUT-OF-ROUND (ALL MODELS)

Tool Required:
J 8087 Cylinder Bore Gage
(or equivalent)

• If one or more cylinder bores are rough, scored or worn beyond limits, it will be necessary to smooth or true up such bores to fit new pistons.
• No attempt should be made to cut down oversize pistons to fit cylinder bores as this will destroy the surface treatment and affect the weight. The smallest possible oversize service pistons should be used and the cylinder bores should be honed to size for proper clearances.

1. Refer to "Specifications" in the proper section for tolerances.
2. Set the gage so that the thrust pin must be forced in about 7 mm (1/4-inch) to enter the gage in the cylinder bore.
3. Center the gage in the cylinder and turn the dial to "0."
4. Carefully work the gage up and down the cylinder to determine taper and turn it to different points around the cylinder wall to determine the out-of-round condition (figure 1). Measure the bore both parallel to and at right angles to the engine centerline. Measure at the top, middle and bottom of the bore and note the readings.
5. Recondition the cylinder bore as necessary, as outlined later.

CYLINDER BORE RECONDITIONING (2.5 L ENGINES)

1. Measure the cylinder bore for out of round and taper as outlined previously.
2. Refer to figure 2. Measure dimension "A" at 13 mm (1/2-inch) below the head gasket surface. Measure dimension "B" at 100 mm (4-inches) below the head gasket surface.

Cylinder bores can be measured by setting the cylinder gage dial at zero in the cylinder at the point of desired measurement. Lock the dial indicator at zero before removing from the cylinder, and measure across the gage contact points with outside micrometer, with the gage at the same zero setting when removed from the cylinder (figure 3).

3. If dimension "A" is larger than dimension "B" by 0.13 mm (0.005-inch), the cylinder should be bored for oversized piston and rings.

4. Fine vertical scratches made by ring ends will not, by themselves, cause excessive oil consumption; therefore, honing to remove them is unnecessary.
5. If the bore is glazed but otherwise serviceable, break the glaze lightly with a hone and replace the piston rings. Refer to "Honing." Make sure the honing stones are clean, sharp and straight. Move the hone slowly up and down to produce a 45 degree cross-hatch pattern. Clean the bore thoroughly with soap and water. Dry and rub in clean engine oil, then remeasure.

Figure 1—Checking the Cylinder Bore

Figure 2—Typical Wear Pattern
6. If honing is not required, the cylinder bores should be cleaned with a hot water and detergent wash. Apply clean engine oil to the bore after cleaning.

CYLINDER BORE RECONDITIONING (2.8 L ENGINES)

1. Measure the cylinder bore for out of round and taper as outlined previously.
2. Refer to figure 2. Measure for wear at the top of the bore (point "A"), and at the bottom (point "B").

Cylinder bores can be measured by setting the cylinder gage dial at zero in the cylinder at the point of desired measurement. Lock the dial indicator at zero before removing from the cylinder, and measure across the gage contact points with outside micrometer, with the gage at the same zero setting when removed from the cylinder (figure 3).

3. If the cylinders are found to exceed the specified out-of-round or taper, honing or boring will be necessary. Any cylinders that were found to have less than 0.13 mm (0.005-inch) wear or taper may not entirely clean up when fitted to a high limit piston. If it is desired to entirely clean up the bore in these cases, it will be necessary to rebore for an oversize piston. If more than 0.13 mm (0.005-inch) taper or wear, they should be bored and honed to the smallest oversize that will permit complete resurfacing of all cylinders.

4. Fine vertical scratches made by ring ends will not, by themselves, cause excessive oil consumption; therefore, honing to remove them is unnecessary.
5. If the bore is glazed but otherwise serviceable, break the glaze lightly with a hone and replace the piston rings. Make sure the honing stones are clean, sharp and straight. Move the hone slowly up and down to produce a 45 to 65 degree cross-hatch pattern. Clean the bore thoroughly with soap and water. Dry and rub in clean engine oil, then re-measure.

6. If honing is not required, the cylinder bores should be cleaned with a hot water and detergent wash. Apply clean engine oil to the bore after cleaning.

BORING

1. Before the honing or reboring operation is started, measure all new pistons with the micrometer contacting at points exactly 90 degrees from the piston pin centerline. Some pistons must be measured at a specified distance from the piston crown. Refer to the proper section for additional instructions. Then select the smallest piston for the first fitting. The slight variation usually found between pistons in a set may provide for correction in case the first piston is fitted too free.
2. Before using any type of boring bar, the top of the cylinder block should be filed to remove any dirt or burrs. This is very important. If not checked, the
boring bar may be tilted which would result in the rebored cylinder wall not being at right angles to the crankshaft.

3. The instructions furnished by the manufacturer of the equipment being used should be carefully followed.

4. When reboring cylinders, all crankshaft bearing caps must be in place and tightened to the proper torque to avoid distortion of bores in the final assembly. Always be sure the crankshaft is out of the way of the boring cutter when boring each cylinder. Crankshaft bearings and other internal parts must be covered or taped to protect them during the boring or honing operation.

5. When taking the final cut with a boring bar, leave 0.03 mm (0.001-inch) on the diameter for finish honing to give the required position to the cylinder clearance specifications. (The honing or boring operation must be done carefully so that the specified clearance between pistons, rings, and cylinder bores is maintained.)

Important

- Refer to the proper section for additional information.

HONING

1. When the cylinders are to be honed, follow the hone manufacturer's recommendations for the use of the hone and cleaning and lubrication during honing. Use only clean, sharp stones of the proper grade for the amount of material to be removed. Dull, dirty stones cut unevenly and generate excessive heat. When using coarse or medium grade stones use care to leave sufficient metal so that all stone marks may be removed with the fine stones used for finishing to provide proper clearance.

2. Occasionally during the honing operation, the cylinder bore should be thoroughly cleaned and the piston selected for the individual cylinder check for correct fit.

3. When honing to eliminate taper in the cylinder, full strokes of the hone in the cylinder should be made in addition to checking measurement at the top, middle and bottom of the bore repeatedly.

NOTICE: Handle the pistons with care and do **not attempt to force them through the cylinder until the cylinder has been honed to the correct size as the piston can be distorted through careless handling.**

4. When finish honing a cylinder bore to fit a piston, the hone should be moved up and down at a sufficient speed to obtain very fine uniform surface finish marks in a cross-hatch pattern of the specified angle.
 - 2.5 L: 45 degrees
 - 2.8 L: 20 to 32 degrees
 - All others: 45 to 65 degrees

5. The finish marks should be clean but not sharp, free from imbedded particles and torn or folded metal.

6. By measuring the piston to be installed at the sizing point specified in the proper section, and adding the average of the clearance specification, the finish honed cylinder measurement can be determined. It is important that both the block and piston be measured at normal room temperature.

7. It is of the greatest importance that refinished cylinder bores are trued up to have the less than the specified out-of-round or taper. Each bore must be final honed to remove all stone or cutter marks and provide a smooth surface.

8. Refer to "Specifications" in the proper section for piston to bore clearance tolerances.

9. After final honing and before the piston is checked for fit, clean the bores with hot water and detergent. Scrub with a stiff bristle brush and rinse thoroughly with hot water. It is essential that a good cleaning operation be performed. If any of the abrasive material is allowed to remain in the cylinder bores, it will wear the new rings and cylinder bores in addition to the bearings lubricated by the contaminated oil. After washing, the dry bore should then be brushed clean with a power-driven fiber brush.

10. Permanently mark the piston for the cylinder to which it has been fitted.

11. Apply clean engine oil to each bore to prevent rusting.

PISTON AND CONNECTING ROD ASSEMBLIES

DISASSEMBLY (ALL EXCEPT 6.2 L ENGINES)

- **Remove or Disconnect (Figures 4, 5 and 6)**

 Tools Required:
 - J 25220 Ring Expander (or equivalent)
 - J 24086 Piston Pin Remover and Installer

 1. Piston rings. Use J 25220 (or equivalent) (figure 5). In most cases the rings should be discarded and replaced with new ones at assembly.

 2. Connecting rod bearing inserts. If the inserts are to be reused, place them in a rack so they may be reinstalled in their original connecting rod and cap.

 3. Piston pin (figure 6).

 - Place the piston/connecting rod on support fixture J 24086-20. Make sure the connecting rod is fully supported. Use J 24086-900 and J 24086-280 for 2.8 L pistons.
 - Place remover J 24086-8 (J 24086-88A for 2.8 L pistons) on the support fixture.
 - Press out the piston pin.

DISASSEMBLY (6.2 L ENGINES)

- **Disassemble (Figures 5 and 7)**

 Tool Required:
 - J 25220 Ring Expander (or equivalent)

 1. Piston rings. Use J 25220 (figure 5).
2. Connecting rod bearing inserts. If the inserts are to be reused, place them in a rack so they can be installed in their original connecting rod and cap.

4. Piston pin. Slide the pin from the piston.

5. Piston from the connecting rod.
CLEANING AND INSPECTION

Clean

- Piston.
 - Remove all varnish and carbon deposits. DO NOT USE A WIRE BRUSH.
 - Remove the carbon from the ring grooves. Use a ring groove cleaning tool.
 - Oil control ring groove holes.

Inspect

- Piston pin bore in the piston and connecting rod. Check for scuffing, burrs, etc.
- Piston for scratches, wear, etc.
- Connecting rod for cranks, nicks, etc. If a suitable jig is available, check the connecting rod for a bent or twisted condition.
- Piston.
 - Ring land for cracking, wear, etc.
 - Ring grooves for burrs, nicks, etc.
 - Skirts and pin bosses for cracking.
 - Skirts for scuffing.
- Connecting rod bearing inserts for scratches or deep pitting.

MEASURING PISTON PIN TO PISTON CLEARANCE (ALL EXCEPT 6.2 L)

Measure (Figures 8 and 9)

1. Piston pin diameter (figure 8). Check against “Specifications.”
2. Piston pin to piston clearance.
 • Measure the piston pin hole diameter (figure 9).
 • Subtract the piston pin diameter from the piston pin hole diameter to obtain the clearance.
 • Replace the piston and piston pin if the clearance exceeds specifications. The piston and piston pin are a matched set and are not available separately.

MEASURING PISTON PIN TO PISTON PIN BUSHING CLEARANCE (6.2 L ENGINES)

Clean

- Piston pin and bushing. The parts must be free of oil and dirt.
PISTON SELECTION

(2.5 L AND 2.8 L ENGINES)

Refer to the proper section.

PISTON SELECTION

(ALL EXCEPT 2.5 L AND 2.8 L ENGINES)

1. Check the used piston to cylinder bore clearance.

 Measure (Figures 11 and 12)
 - Cylinder bore diameter. Use a telescoping bore gage, located 65 mm (2 1/2-inches) below the top of the cylinder bore (figure 11).
 - Piston diameter. Measure the piston skirt at a right angle to the piston pin, at the centerline of the piston pin (figure 12).
 - Subtract the piston diameter from the cylinder bore diameter to determine piston to bore clearance.

 • Refer to "Specifications" in the proper section. Determine if the piston clearance is in the acceptable range.

2. If the used piston is not acceptable, determine if a new piston can fit the cylinder bore.

3. If a new piston does not bring the clearance within tolerances, the cylinder bore must be reconditioned.

4. Mark the piston to identify the cylinder for which it was fitted.

ASSEMBLY

Assembling the Piston and Connecting Rod

(All except 6.2 L Engines)

Tool Required:
J 24086 Piston Pin Remover and Installer Set

1. Piston and connecting rod.
 - The piston and connecting rod must be installed in the proper position.
 - 2.5 L Engines: The raised notch side of the connecting rod must be opposite the notch in the piston crown.
 - 2.8 L Engines: The bevel on the connecting rod should face the outside of the engine.
 - 4.8 L Engines: The flat side of the piston crown depression and the connecting rod bearing tang slot must be on the same side.
 - All Others: The valve cutouts in the piston crown must be opposite the connecting rod bearing tangs.
 - Lubricate the piston pin holes in the piston and connecting rod with engine oil.
 - Install the pin guide (item E, figure 13) to hold the piston and connecting rod together. Be sure to use the proper pin guide. Refer to the instructions supplied with the tool.
 - Lock the adjuster in place with the lock ring.

NOTICE: After the installer hub bottoms on the support assembly, do not exceed 35 000 kPa (5,000 psi) pressure, as this could cause damage to the tool.

 - Place the adjuster in the support fixture. Press the piston pin into place (until the adjustable installer bottoms in the support fixture).
The piston must be installed with the piston crown indent on the same side as the connecting rod bearing tang slots (figure 14).

2. Piston pin. Apply engine oil to the pin and push into place.

Inspect
- Snap rings for proper assembly. Rotate the snap rings to make sure that they are seated in their grooves.

Installing the Piston Rings (All Except 6.2 L)
Measure (Figures 4 and 16)
- Ring end gap as follows:
 1. Select rings comparable in size to the piston being used.
 2. Slip the compressing ring in the cylinder bore; then press the ring down into the cylinder bore about 7 mm (1/4-inch) above ring travel. Be sure the ring is square with the cylinder wall.
 3. Measure the space or gap between the ends of the ring with a feeler gage (figure 16).
 4. Refer to “Specifications” in the proper section for correct gap.
 5. If the gap between the ends of the ring is not as specified, remove the ring and try another for fit.

Assembling the Piston and Connecting Rod (6.2 L Engines)

Assemble (Figures 7, 14, and 15)

Tool Required
J 29134-A Piston Pin Clip Installer
1. Piston to the connecting rod.
Inspect (Figures 17)

- Ring fit as follows:
 1. Fit each compression ring to the piston on which it is going to be used.
 2. Slip the outer surface of the top and second compression ring into the respective piston ring groove (figure 17), to make sure that the ring is free. If binding occurs at any point, the cause should be determined. If binding is caused by the ring groove, correct by depressing the groove with a fine cut file. If the binding is caused by a distorted ring, check a new ring.

Assemble (Figures 4 and 5)

Tool Required:
- J 25220 Ring Expander (or equivalent)

- All compression rings are marked on the upper side of the ring. When installing the compression rings, make sure the MARKED SIDE IS TOWARD THE TOP OF THE PISTON.
Figure 18—Measuring Ring Clearance

- The oil control rings are three piece types, consisting of two rails and an expander.
 1. Expander.
 2. Lower rail.
 3. Upper rail.
 4. Upper compression ring. Use J 25220 (figure 5).
 5. Lower compression ring. Use J 25220 (figure 5).

Flex all rings to make sure the rings are free. If binding occurs at any point the cause should be determined. If binding is caused by the ring groove, correct by dressing the groove with a fine cut file. If binding is caused by a distorted ring, check a new ring.

Measure (Figure 18)

- Ring clearance. Use a feeler gage as shown in figure 18. Compare with "Specifications" in the proper section.

Installing the Piston Rings (6.2 L Engines)

- All compression rings are marked on the upper side of the ring. When installing the compression rings, make sure the MARKED SIDE IS TOWARD THE TOP OF THE PISTON.
CAMSHAFT BEARINGS

CAMSHAFT BEARING REPLACEMENT (2.5 L AND 6.2 L ENGINES)

Refer to the proper section.

CAMSHAFT BEARING REPLACEMENT (ALL EXCEPT 2.5 L AND 6.2 L ENGINES)

Inspect
- Camshaft bearings for scratches, pits, or loose fit in their bores. Replace the camshaft bearings if necessary.

Disassemble (Figures 19 and 20)
Tool Required
J 6098-01 Camshaft Bearing Remover and Installer
1. Rear camshaft plug or cap.
2. Inner camshaft bearings. Use J 6098-01 (figure 19).
 - Insert the pilot into the front camshaft bearing bore.
 - Slide the puller screw, with the nut and washer, through the pilot.
 - Insert the bearing tool into the inner camshaft bearing bore, with the shoulder of the tool against the bearing.
 - Hold the puller screw with a wrench. Turn the nut with a second wrench to pull the camshaft bearing from its bore.
 - Repeat this procedure to remove the remaining inner camshaft bearings. Note that the rear inner bearing must be removed with the pilot fitted into the rear camshaft bearing.
3. Outer camshaft bearing. Use J 6098-01 (figure 20).

Assemble (Figures 19, 20, and 21)
Tool Required
J 6098-01 Camshaft Bearing Remover and Installer
- The outer camshaft bearings must be installed first. These bearings serve as guides for the pilot, and help center the inner bearings during the installation process.
- Be sure to fit the correct cam bearing into the bore. The cam bearing bores vary in size.

Clean
- Camshaft bearing bores in the block.

A. Checking oil hole alignment with brass rod. Make rod as shown using 3/32" rod about 762 mm (30") long.

Figure 19—Removing or Installing the Inner Camshaft Bearings

Figure 20—Removing or Installing the Outer Camshaft Bearings

Figure 21—Checking Camshaft Bearing Oil Hole Alignment (Typical)
GENERAL ENGINE MECHANICAL 6A-13

1. Outer camshaft bearings. Drive the bearings into place using J 6098-01 (figure 20).

⚠️ Important
- Make sure the camshaft bearing hole (or holes) align with the oil hole (or holes) in the block. On some engines, the oil holes may be difficult to see. If so, use a piece of 2 mm (3/32-inch) rod as shown in figure 21 to check alignment.

2. Inner camshaft bearing. Use tool J 6098-01 (figure 19).
- Assemble the tool with the pilot engaged in the front bearing and the pilot flange against the front face of the block.
- Slide the puller screw, with nut and washer, through the pilot.
- Place the new bearing on the bearing tool. Hold the bearing tool and bearing against the bearing bore. Align the bearing oil hole with the oil hole in the block.
- Thread the puller screw into the bearing tool enough to hold the tool and bearing in place.
- Holding the puller screw with a wrench, turn the nut with a second wrench to pull the camshaft bearing into place.
- Remove the puller screw, pilot, and bearing tool.

⚠️ Important
- Make sure the camshaft bearing hole (or holes) align with the oil hole (or holes) in the block. If it is difficult to see the alignment, use a piece of brass rod as described in step 1.

3. Camshaft rear plug or cap.
- All engines except 2.8 L engines:
 - Coat a new camshaft plug with sealer (Loctite #592 or equivalent).
 - Install the plug flush to 0.80 mm (1/32-inch) deep.
- 2.8 L engines:
 - Clean all RTV from the cap and block.
 - Apply a 3 mm (Vs-inch) bead of RTV sealant (GM part no. 1052366 or equivalent) to the machined groove on the block.
 - Install the cap while the RTV is still wet.
 - Install the retaining bolts and tighten.

HYDRAULIC LIFTERS

Two types of hydraulic lifters are used in engines covered by this manual – flat type and roller type. Service procedures are similar for both types.

Hydraulic lifters are serviced only as an assembly. No internal parts are available. Service is limited to a disassembly, cleaning and test operation. It is understood that most technicians discard any suspicious valve lifters. This information is offered for those who may wish to overhaul and test valve lifters.

⚠️ Important
- Whenever the camshaft needs to be replaced, a new set of hydraulic lifters must also be installed (except 2.5 L engines).

INSPECTION BEFORE DISASSEMBLY

inspect (figures 22, 23, and 24)
- Lifter body (221) for scuffing and scoring. If the lifter body wall is worn or damaged, the mating hydraulic lifter bore in the cylinder block should also be checked.
- Check the fit of each valve lifter in its mating bore in the block. If the clearance is excessive, try a new lifter.
- Push rod seat. If worn, inspect the pushrod. Replace the pushrod, if worn.
- Lifter foot (flat type lifters). The lifter foot must be smooth and slightly convex. If worn, pitted, or damaged the mating camshaft lobe should also be checked.
- Roller (roller type lifters) for:
 - Freedom of movement. Free-up or replace the lifter.
 - Flat spots. Replace the lifter, if worn.
 - Pitting, replace the lifter if pitted.
 - Missing or broken needle bearings.

HYDRAULIC LIFTER OVERHAUL

Disassemble (figures 21 through 26)
1. Retainer (figure 25).
 - Push the pushrod seat (228) down, using a pushrod.
 - Pry out the retainer with a screwdriver.
2. Pushrod seat (228).
4. Plunger (226) and plunger spring (222).
 - If the plunger is stuck, turn the lifter body upside down and tap it on a flat surface.
5. Check ball retainer (223), check ball spring (224), and check ball (225). Pry the check ball retainer from the plunger, using a small screwdriver (figure 26).
Clean
- All parts in CLEAN solvent. Remove all gum and varnish deposits.

Inspect (Figures 22, 23, and 24)
- Plunger (226) for scoring and wear.
- Pushrod seat (228). If worn or rough, also check the mating pushrod.

Important
- Do not attempt re-conditioning by taking parts from other unserviceable lifters.

Assemble (Figures 22, 23, 24, 27, and 28)
- Absolute cleanliness is necessary when assembling the hydraulic lifters. Use only
clean, lint-free shop rags. Work with clean hands, on a clean work surface.

1. Check ball (225) to the small hole in the bottom of the plunger (226).
2. Check ball spring (225) to the check ball retainer (223).
3. Check ball retainer (223) with check ball spring (224) to the plunger (226). Make sure the spring rests on the ball. Carefully press the retainer into position in the plunger with the blade of a small screwdriver (figure 27). Make sure it seats tightly against the plunger.
4. Plunger spring (222) to the check ball retainer (223).
5. Lifter body (221) to the plunger (226).
 • Slide the lifter body over the plunger, being careful to line up the oil feed holes in the lifter body and plunger.
 • Invert the assembly (open end up).
 • Fill the assembly with SAE 10 oil.

VALVE LIFTER LEAK-DOWN RATE TEST (FLAT TYPE LIFTERS ONLY)

Tool Required:
J 5790 Hydraulic Lifter Leakdown Tester

Tool J 5790 (figure 29) is available for very accurately checking the leakdown rate of the overhauled valve lifters. This tool applies a measured load to the valve lifter, and measures the amount of valve lifter travel under load. Instructions for use are furnished with the tool, along with a supply of special test oil.

1. Fill tester cup to approximately one inch from top with the special fluid which is available from tester manufacturer.
2. Swing the weight arm out of the way, raise the arm, and position the lifter into the boss in the center of the tester cup.

3. Adjust the ram (with the weight arm clear of the ram) so that the point is positioned on the set line (marked "S"). Tighten the jam nut to maintain the setting.

4. Operate the lifter through full travel of the plunger by pumping the weight arm to fill the lifter with test fluid and force out air.

 Important
 - Lifter must be completely submerged at all times.
 - Continue pumping for several strokes after definite resistance is felt.

5. Raise the weight arm to allow the plunger spring to expand fully; lower the arm onto the ram and commence turning the crank slowly (1 revolution every 2 seconds).

6. Time indicator travel from the lower line (first line above the set line) to the line marked 0.094 or \(\frac{3}{32} \)-inch, while rotating the cup with crank. The lifter is satisfactory if the rate is between 12 and 90 seconds.

CYLINDER HEAD

DISASSEMBLY

- Valves and components. Refer to the proper section.

CLEANING AND INSPECTION

- **Clean (Figures 30 and 31)**
 - Tools Required:
 - J 8089 Wire Brush
 - J 8101 Valve Guide Cleaning Tool
 - Carbon from the combustion chambers. Use J 8089 (figure 30).
 - Valve guides. Use J 8101 (figure 31).
 - Valve stems and heads on a wire wheel.
 - Carbon and old gasket from the cylinder head gasket surface.

- **Inspect**
 - Cylinder head for cracks in the exhaust ports, combustion chambers, or external cracks to the coolant chamber. Gasket surfaces should be free of damage.
 - Valves for burning, pitting, or warpage. Grind or replace as needed. Refer to "Valve Grinding." Check the valve stems for scoring or excessive wear. Stems must not be bent.

- Rocker arm studs (if used) for wear, damage or improper fit.

- Valve seats for pitting or other damage. Grind or reface as needed.

- Rotators (if used). The rotators should rotate smoothly, without bind.

- **Measure (Figures 32, 33, and 34)**
 - Tools Required:
 - J 8001 Dial Indicator (or equivalent)
 - J 8056 Valve Spring Tester
 - Valve stem to guide bore clearance.
 - Excessive valve stem to guide bore clearance will cause excessive oil consumption and may cause valve breakage. Insufficient clearance will result in noisy and sticky functioning of the valve and disturb engines smoothness.
 - Clamp a Dial Indicator J 8001 (or equivalent) on one side of the cylinder head rocker arm cover gasket rail (figure 32).
 - Locate the indicator so that movement of the valve stem from side to side (crosswise to the head) will cause a direct movement of the indicator stem. The indicator stem must contact the side of the valve stem just above the valve guide bore.
 - Drop the valve head about 1.6 mm (\(\frac{1}{32} \)-inch) off the valve seat.
• Move the stem of the valve from side to side using light pressure to obtain a clearance reading. If clearance exceeds specifications, it will be necessary to ream valve guide bores for oversize valves as outlined later in this manual.

— Valve spring tension. Use J 8056 or equivalent (figure 33).
 • Compress the springs, with dampers removed, to the specified height and check against the specifications chart. Springs should be replaced if not within 44 N (10 lbs.) of the specified load.

— Valve spring length (figure 34). Replace the spring if the length is not as specified.

VALVE GRINDING

Valves that are pitted must be refaced to the proper angle. Valve stems which show excessive wear, or valves that are warped excessively must be replaced. When a valve head which is warped excessively is refaced, a knife edge will be ground on part or all of the valve head due to the amount of metal that must be removed to completely
reface. Knife edges lead to breakage, burning or preignition due to heat localizing on this knife edge. If the edge of the valve head is less than 0.80 mm (1/32-inch) after grinding (figure 35), replace the valve.

Several different types of equipment are available for refacing valves. The recommendation of the manufacturer of the equipment being used should be carefully followed to attain proper results.

Refer to "Specifications" in the proper section for valve face angle specifications.

VALVE SEAT GRINDING

Reconditioning the valve seats is very important, because the seating of the valves must be perfect for the engine to deliver the power and performance built into it.

Another important factor is the cooling of the valve head. Good contact between each valve and its seat will insure that heat will be properly carried away.

Several different types of equipment are available for reseating valve seats. The recommendations of the manufacturer of the equipment being used should be carefully followed to attain proper results.

NOTICE: Valve seats on 2.5 L and 6.2 L engines are induction hardened. Excessive removal of stock may result in damage to the valve seats.

4.8 L, small block, and 7.4 L engines are equipped with hardened, non-replaceable valve seat inserts.

REAMING VALVE GUIDES

The valve guides used in engines covered by this manual are simply holes bores into the cylinder head. The valve guides are therefore not replaceable.

If the valve stem to bore clearance as measured previously in this manual is excessive, the valve guides should be reamed and a valve with an oversize stem installed.

Available oversize valves are as follows. Nominal dimensions are given.

— 2.5 L:
 — Intake: 0.08 mm (0.003-inch), 0.13 mm (0.005-inch).
 — Exhaust: 0.08 mm (0.003-inch).

— 2.8 L, 4.8 L, 5.0 L, 5.7 L, 7.4 L:
 — Intake and exhaust: 0.08 mm (0.003-inch), 0.38 mm (0.015-inch), 0.76 mm (0.030-inch).

— 4.3 L:
 — Intake: 0.08 mm (0.003-inch), 0.38 mm (0.015-inch), 0.76 mm (0.030-inch).
 — Exhaust: 0.08 mm (0.003-inch), 0.38 mm (0.015-inch).

— 6.2 L:
 — Intake and exhaust: 0.08 mm (0.003-inch), 0.38 mm (0.015-inch).

Select a reamer which will provide a straight, clean bore through the guide's entire length (figure 36).

Reamer availability is as follows. Sizes given are nominal.

- All engines except 6.2 L and 7.4 L:
 — J 5830-1: 0.08 mm (0.003-inch) oversize.
 — J 6621: 0.13 mm (0.005-inch) oversize.
 — J 5830-2: 0.38 mm (0.015-inch) oversize.
 — J 5830-3: 0.76 mm (0.030-inch) oversize.
 — These reamers (except J 6621) also available in Reamer Set J 5830-02.

- 6.2 L and 7.4 L engines:
 — J 7049-1: 0.08 mm (0.003-inch) oversize.
 — J 7049-2: 0.38 mm (0.015-inch) oversize.
 — J 7049-3: 0.76 mm (0.030-inch) oversize.
 — These reamers also available in Reamer Set J 7049.

ASSEMBLY

- Assemble
 - Valves and components. Refer to the proper section.
MEASURING MAIN BEARING CLEARANCE

Main bearings are of the precision insert type and do not use shims for adjustment. If clearances are found to be excessive, new upper and lower inserts will be required.

The simplest, most accurate way to measure main bearing clearance is with the use of gaging plastic. This wax-like material compresses evenly between the bearing and journal surfaces without damaging them. Proceed as follows:

Clean
- All oil from the crankshaft journal and main bearing inserts.

Install or Connect (Figure 37)
- Refer to the proper section for additional information.
 1. Main bearing inserts and crankshaft, as outlined in the proper section.
 2. Gaging plastic.
 - Begin with the rear main bearing.
 - Wipe the oil from the crankshaft journal and the lower main bearing insert.

- Place a piece of gaging plastic the full width of the lower bearing insert (parallel to the crankshaft) on the journal (figure 37). Do not rotate...
Figure 38—Measuring the Gaging Plastic

2. On the edge of the gaging plastic envelope there is a graduated scale. Without removing the gaging plastic, measure its compressed width (at the widest point) with the graduations on the gaging plastic envelope (figure 38).

3. If the flattened gaging plastic tapers toward the middle or ends, there is a difference in clearance indicating taper, low spot or other irregularity of the bearing or journal. Be sure to measure the journal with a micrometer if the flattened gaging plastic indicates more than 0.001-inch (0.0005-inch on 2.5 L engines) difference.

4. Normally main bearing journals wear evenly and are not out-of-round. However, if a bearing is being fitted to an out-of-round journal, be sure to fit to the maximum diameter of the journal. If the bearing is fitted to the minimum diameter and the journal is excessively out-of-round, interference between the bearing and the journal will result in rapid bearing failure.

5. If the bearing clearance is within specifications, the bearing is satisfactory. If the clearance is not within specifications, replace the bearing. Always replace both upper and lower inserts as a unit.

6. A standard or undersize bearing may produce the proper clearance. Refer to the proper section for bearing availability. If not, it will be necessary to re-grind the crankshaft journal for use with the next undersize bearing. Do not grind rolled fillet crankshafts, such as used on 2.5 L, 2.8 L, and 6.2 L engines. After selecting the new bearing, recheck the clearance.

7. Remove the flattened gaging plastic.

8. Perform the preceding steps on the remaining main bearings.

MEASURING CONNECTING ROD BEARING CLEARANCE

Connecting rod bearings are of the precision insert type and do not use shims for adjustment. DO NOT FILE RODS OR ROD CAPS. If clearances are found to be excessive, a new bearing (both upper and lower halves) will be required.

The simplest, most accurate way to measure connecting rod bearing clearance is with the use of gaging plastic. This wax-like material compresses evenly between the bearing and journal surfaces with damaging them. Proceed as follows.

Clean

1. All oil from the crankshaft journal and the connecting rod bearing inserts.

Install or Connect (Figure 39)

1. Refer to the proper section for additional information on connecting rod bearing sizing.

2. A piece of gaging plastic the length of the bearing (parallel to the crankshaft) on the journal (figure 39). The plastic gage should be positioned in the middle of the upper and lower bearing insert. (Bearings are eccentric and false readings could occur if placed elsewhere.)

Important

1. If a bearing is being fitted to an out-of-round crankpin, be sure to fit the maximum diameter of the crankpin. If the bearing is fitted to the minimum diameter and the crankpin is exces-
sively out-of-round, interference between the bearing and the crankpin will result in rapid bearing failure.

3. Connecting rod cap with the lower connecting rod bearing insert. DO NOT TURN THE CRANKSHAFT WITH THE GAGING PLASTIC INSTALLED.

4. Connecting rod cap nuts.

Tighten
- Nuts to "Specifications." Refer to the proper section.

Important
- The gaging plastic will be found sticking either to the journal or lower connecting rod bearing insert. Do not remove it at this time.

Measure (Figure 40)
- Gaging plastic at its widest point, using the scale at the gaging plastic envelope (figure 40).
- If the clearance exceeds specifications, select a new, correct size, connecting rod bearing and remeasure the clearance.
- A standard or undersize bearing may produce the proper clearance. Refer to the proper section for bearing availability.
- Do not attempt to use shims or file the bearing to obtain the needed clearance.
- If clearance cannot be brought to within specifications, recondition or replace the crankshaft. (Do not recondition a rolled fillet crankshaft, such as used on 2.5 L, 2.8 L, and 6.2 L engines.)

Remove or Disconnect
- Gaging plastic.
SPECIAL TOOLS

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>J 8087</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>J 25220</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>J 24086</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>J 29134-A</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>J 6098-01</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>J 29664</td>
<td></td>
</tr>
</tbody>
</table>

1. Cylinder Bore Gage
2. Ring Expander
3. Piston Pin Replacer Set
4. Piston Pin Clip Installer
5. Camshaft Bearing Replacer
6. Hydraulic Lifter Leakdown Tester
7. Wire Brush
8. Valve Guide Cleaning Tool
9. Dial Indicator
10. Valve Spring Tester
11. Intake Opening Cover
12. 0.13 mm (0.005-inch) Oversize Valve Guide Reamer (2.5 L Engines)
13. Valve Guide Reamer Set (All Engines Except 6.2 L and 7.4 L). Consists of:
 - J-5830-1: 0.08 mm (0.003-inch) oversize
 - J-5830-2: 0.38 mm (0.015-inch) oversize
 - J-5830-3: 0.76 mm (0.030-inch) oversize
14. Valve Guide Reamer Set (6.2 L and 7.4 L Engines). Consists of:
 - J-7049-1: 0.08 mm (0.003-inch) oversize
 - J-7049-2: 0.38 mm (0.015-inch) oversize
 - J-7049-3: 0.76 mm (0.030-inch) oversize
SECTION 6A1

2.5 LITER L4 ENGINE

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>6A1-2</td>
</tr>
<tr>
<td>Engine Lubrication</td>
<td>6A1-2</td>
</tr>
<tr>
<td>Disassembly of the Engine</td>
<td>6A1-2</td>
</tr>
<tr>
<td>Tools and Shop Equipment</td>
<td>6A1-4</td>
</tr>
<tr>
<td>Accessory Removal</td>
<td>6A1-4</td>
</tr>
<tr>
<td>Cleaning</td>
<td>6A1-4</td>
</tr>
<tr>
<td>Parts Identification</td>
<td>6A1-4</td>
</tr>
<tr>
<td>Draining the Engine</td>
<td>6A1-4</td>
</tr>
<tr>
<td>Intake Manifold Removal</td>
<td>6A1-6</td>
</tr>
<tr>
<td>Exhaust Manifold Removal</td>
<td>6A1-6</td>
</tr>
<tr>
<td>Thermostat Housing Removal</td>
<td>6A1-6</td>
</tr>
<tr>
<td>Water Pump Removal</td>
<td>6A1-6</td>
</tr>
<tr>
<td>Oil Pump Removal</td>
<td>6A1-9</td>
</tr>
<tr>
<td>Valve Train Component Removal</td>
<td>6A1-9</td>
</tr>
<tr>
<td>Cylinder Head Removal</td>
<td>6A1-10</td>
</tr>
<tr>
<td>Crankshaft Pulley Hub Removal</td>
<td>6A1-10</td>
</tr>
<tr>
<td>Oil Pan Removal</td>
<td>6A1-10</td>
</tr>
<tr>
<td>Oil Pump Driveshaft Removal</td>
<td>6A1-11</td>
</tr>
<tr>
<td>Oil Pump Removal</td>
<td>6A1-11</td>
</tr>
<tr>
<td>Front Cover Removal</td>
<td>6A1-11</td>
</tr>
<tr>
<td>Piston and Connecting Rod Removal</td>
<td>6A1-11</td>
</tr>
<tr>
<td>Flywheel Removal</td>
<td>6A1-12</td>
</tr>
<tr>
<td>Crankshaft Removal</td>
<td>6A1-13</td>
</tr>
<tr>
<td>Crankshaft Rear Oil Seal Removal (Without Removing Crankshaft)</td>
<td>6A1-13</td>
</tr>
<tr>
<td>Main Bearing Removal (Without Removing the Crankshaft)</td>
<td>6A1-13</td>
</tr>
<tr>
<td>Camshaft Removal</td>
<td>6A1-13</td>
</tr>
<tr>
<td>Cleaning, Inspection, and Repair</td>
<td>6A1-13</td>
</tr>
<tr>
<td>Block</td>
<td>6A1-13</td>
</tr>
<tr>
<td>Cylinder Bores</td>
<td>6A1-14</td>
</tr>
<tr>
<td>Piston and Connecting Rod Assemblies</td>
<td>6A1-15</td>
</tr>
<tr>
<td>Piston Selection</td>
<td>6A1-15</td>
</tr>
<tr>
<td>Intake and Exhaust Manifold</td>
<td>6A1-15</td>
</tr>
<tr>
<td>Camshaft</td>
<td>6A1-16</td>
</tr>
<tr>
<td>Camshaft Bearings</td>
<td>6A1-17</td>
</tr>
<tr>
<td>Front Cover</td>
<td>6A1-17</td>
</tr>
<tr>
<td>Water Pump</td>
<td>6A1-18</td>
</tr>
<tr>
<td>Oil Pan and Rocker Arm Covers</td>
<td>6A1-18</td>
</tr>
<tr>
<td>Oil Pump</td>
<td>6A1-18</td>
</tr>
<tr>
<td>Valve Train Components</td>
<td>6A1-19</td>
</tr>
<tr>
<td>Cylinder Head</td>
<td>6A1-19</td>
</tr>
<tr>
<td>Thermostat and Housing</td>
<td>6A1-21</td>
</tr>
<tr>
<td>Crankshaft and Bearings</td>
<td>6A1-21</td>
</tr>
<tr>
<td>Assembly of Engine</td>
<td>6A1-22</td>
</tr>
<tr>
<td>Prior to Assembly</td>
<td>6A1-22</td>
</tr>
<tr>
<td>Crankshaft and Main Bearing Installation</td>
<td>6A1-22</td>
</tr>
<tr>
<td>Crankshaft Rear Oil Seal and Retainer Installation</td>
<td>6A1-23</td>
</tr>
<tr>
<td>Main Bearing Installation (Without Removing the Crankshaft)</td>
<td>6A1-24</td>
</tr>
<tr>
<td>Camshaft Installation</td>
<td>6A1-24</td>
</tr>
<tr>
<td>Front Cover Installation</td>
<td>6A1-24</td>
</tr>
<tr>
<td>Crankshaft Pulley Hub Installation</td>
<td>6A1-25</td>
</tr>
<tr>
<td>Piston and Connecting Rod Installation</td>
<td>6A1-25</td>
</tr>
<tr>
<td>Oil Pump Installation</td>
<td>6A1-26</td>
</tr>
</tbody>
</table>
DESCRIPTION

The GM 2.5 L engine is an inline four cylinder, overhead valve, with cast iron block and head. The crankshaft is supported by five main bearings, with crankshaft thrust taken at the number five (rear) bearing. The camshaft is supported by three bearings and is gear driven. The valve train consists of roller type hydraulic lifters, pushrods, and ball pivot type rocker arms. The valve guides are integral in the cylinder head.

The connecting rods have precision insert type crankpin bearings. The piston pins are a press fit in the connecting rods. The pistons are cast aluminum alloy. The piston pins are a floating fit in the pistons.

For engine identification information, refer to GENERAL INFORMATION (SEC. 0A).

ENGINE LUBRICATION

The oil pump is gear driven from the camshaft (figure 1). Oil is drawn from the oil pan through a pickup screen and tube. A bypass valve in the pickup screen insures adequate oil flow if the screen becomes restricted. The gear type oil pump has a pressure regulator valve which controls lubrication system pressure by bypassing excess oil back to the oil pan sump.

Pressurized oil from the oil pump flows to the full flow filter. A bypass valve allows oil to bypass the filter if it becomes clogged or restricted. Oil then flows into an oil passage which runs along the right side of the block and intersects the lifter bosses. Oil from this passage is then routed to the crankshaft main bearings and camshaft bearings through smaller drilled passages. Oil is supplied to the connecting rod bearings by holes drilled in the crankshaft. Oil is supplied to the rocker arms through holes in the hydraulic lifters which feed oil up the pushrods to the rocker arms. The oil is metered by discs under the pushrod seat.

Many internal engine parts have no direct oil feed and are supplied by either gravity or splash from other direct feed components. Timing gears are lubricated by oil which is supplied through a passage from the front of the camshaft to a calibrated nozzle above the crankshaft gear.
Figure 1—Engine Lubrication Diagram

A. Oil Pump Drive Gear Oiling
B. Oil Pressure Sending Unit
C. Splash Oiling
D. Full Flow Oil Filter
E. Filter Bypass System
TOOLS AND SHOP EQUIPMENT

A clean, well lit work area should be available. Other necessary aids include: a suitable parts cleaning tank, compressed air supply, trays to keep parts and fasteners organized, and an adequate set of hand tools.

An approved engine repair stand will aid the work and help prevent personal injury or damage to engine compartments.

Special tool are illustrated throughout this section, and are listed at its end. These tools (or their equivalents) are specially designed to quickly and safely accomplish the operations for which they are intended. The use of these tools will also minimize possible damage to engine components.

Some precision measuring tools are required for inspection of certain critical components. Torque wrenches will be necessary for correct assembly of various parts.

ACCESSORY REMOVAL

This manual assumes that the engine accessories have been removed. These accessories may include one or more of the following:

- Hydraulic Pump
- Generator
- Distributor
- Cooling Fan
- TBI Unit
- Oil Filter

It is beyond the scope of this section to detail the many different accessory installations. Refer to the proper Truck Service Manual for this information.

Diagrams of emission and vacuum hose routings, wiring harness routings, accessory drive belt layout, etc., should be made before removing accessories.

CLEANING

Remove the engine accessories before cleaning to provide better access to engine exterior surfaces. After removing the TBI unit, distributor, fuel pump, oil filter, etc., cover the openings with tape to prevent the entry of water, solvent, and dirt.

Methods used to clean the engine will depend on the aids which are available. Steam cleaning, pressure washing, or solvent cleaning are some acceptable methods. Allow the engine to dry before beginning the work.

It is important that the engine be as clean as possible to prevent dirt from entering critical areas during disassembly.

PARTS IDENTIFICATION

Refer to figure 2 through 5.

DRAINING THE ENGINE

- Remove or Disconnect (Figure 5)
 - Oil drain plug (73). Allow the oil to drain.
 - Oil filter.

- Install or Connect (Figure 5)
 1. Oil drain plug (73).

- Tighten
 - Oil pan drain plug to 34 N·m (25 ft. lbs.).
Figure 3—Cylinder Head, Manifolds, and Components
6A1-6 2.5 LITER L4 ENGINE

<table>
<thead>
<tr>
<th>No.</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>Push Rod Cover</td>
</tr>
<tr>
<td>51</td>
<td>Piston and Pin</td>
</tr>
<tr>
<td>52</td>
<td>Piston Rings</td>
</tr>
<tr>
<td>53</td>
<td>Connecting Rod</td>
</tr>
<tr>
<td>54</td>
<td>Connecting Rod Bolt</td>
</tr>
<tr>
<td>55</td>
<td>Connecting Rod Bearings</td>
</tr>
<tr>
<td>56</td>
<td>Connecting Rod Nut</td>
</tr>
<tr>
<td>57</td>
<td>Oil Level Indicator</td>
</tr>
<tr>
<td>58</td>
<td>Oil Level Indicator Tube</td>
</tr>
<tr>
<td>59</td>
<td>Seal</td>
</tr>
<tr>
<td>60</td>
<td>Guide Retainer Stud</td>
</tr>
<tr>
<td>61</td>
<td>Plug</td>
</tr>
<tr>
<td>62</td>
<td>Plug</td>
</tr>
<tr>
<td>63</td>
<td>Pin</td>
</tr>
<tr>
<td>64</td>
<td>Block Drain Bolt</td>
</tr>
<tr>
<td>65</td>
<td>Timing Indicator Stud</td>
</tr>
<tr>
<td>66</td>
<td>Bolt</td>
</tr>
<tr>
<td>67</td>
<td>Flywheel</td>
</tr>
<tr>
<td>68</td>
<td>Spacer</td>
</tr>
<tr>
<td>69</td>
<td>Clutch Pilot Bearing</td>
</tr>
<tr>
<td>70</td>
<td>Crankshaft Insert</td>
</tr>
<tr>
<td>71</td>
<td>Crankshaft Rear Oil Seal</td>
</tr>
<tr>
<td>72</td>
<td>Crankshaft Rear Bearing</td>
</tr>
<tr>
<td>73</td>
<td>Oil Pan Drain Screw</td>
</tr>
<tr>
<td>74</td>
<td>Gasket</td>
</tr>
<tr>
<td>75</td>
<td>Bolt</td>
</tr>
<tr>
<td>76</td>
<td>Oil Pan</td>
</tr>
<tr>
<td>77</td>
<td>Oil Pump</td>
</tr>
<tr>
<td>78</td>
<td>Nut</td>
</tr>
<tr>
<td>79</td>
<td>Pin</td>
</tr>
<tr>
<td>80</td>
<td>Spring</td>
</tr>
<tr>
<td>81</td>
<td>Bolt</td>
</tr>
<tr>
<td>82</td>
<td>Oil Pump Cover</td>
</tr>
<tr>
<td>83</td>
<td>Oil Pump Cover Gasket</td>
</tr>
<tr>
<td>84</td>
<td>Bolt</td>
</tr>
<tr>
<td>85</td>
<td>Oil Pressure Regulator Valve</td>
</tr>
<tr>
<td>86</td>
<td>Crankshaft Bearings</td>
</tr>
<tr>
<td>87</td>
<td>Crankshaft Gear</td>
</tr>
<tr>
<td>88</td>
<td>Crankshaft</td>
</tr>
<tr>
<td>89</td>
<td>Key</td>
</tr>
<tr>
<td>90</td>
<td>Timing Indicator</td>
</tr>
<tr>
<td>91</td>
<td>Oil Pump Shaft Lower Bearing</td>
</tr>
<tr>
<td>92</td>
<td>Plug</td>
</tr>
<tr>
<td>93</td>
<td>Timing Gear Oil Nozzle</td>
</tr>
<tr>
<td>94</td>
<td>Bolt</td>
</tr>
<tr>
<td>95</td>
<td>Crankshaft Pulley</td>
</tr>
<tr>
<td>96</td>
<td>Bolt</td>
</tr>
<tr>
<td>97</td>
<td>Crankshaft and Power Steering Pulley</td>
</tr>
<tr>
<td>98</td>
<td>Bolt</td>
</tr>
<tr>
<td>99</td>
<td>Washer</td>
</tr>
<tr>
<td>100</td>
<td>Crankshaft Pulley Hub</td>
</tr>
<tr>
<td>101</td>
<td>Front Cover Seal</td>
</tr>
<tr>
<td>102</td>
<td>Front Cover</td>
</tr>
<tr>
<td>103</td>
<td>Screw</td>
</tr>
<tr>
<td>104</td>
<td>Camshaft Gear</td>
</tr>
<tr>
<td>105</td>
<td>Camshaft Thrust Bearing</td>
</tr>
<tr>
<td>106</td>
<td>Camshaft Gear Spaceing Ring</td>
</tr>
<tr>
<td>107</td>
<td>Key</td>
</tr>
<tr>
<td>108</td>
<td>Camshaft</td>
</tr>
<tr>
<td>109</td>
<td>Camshaft Bearing</td>
</tr>
<tr>
<td>110</td>
<td>Bolt</td>
</tr>
<tr>
<td>111</td>
<td>Coolant Pump</td>
</tr>
<tr>
<td>112</td>
<td>Gasket</td>
</tr>
<tr>
<td>113</td>
<td>Oil Pump Shaft Upper Bearing</td>
</tr>
<tr>
<td>114</td>
<td>Oil Pump Drive Shaft Gear</td>
</tr>
<tr>
<td>115</td>
<td>Oil Pump Drive Shaft</td>
</tr>
<tr>
<td>116</td>
<td>Connecting Rod Cap</td>
</tr>
<tr>
<td>117</td>
<td>Bolt</td>
</tr>
<tr>
<td>118</td>
<td>Oil Pump Drive Shaft Cover Plate</td>
</tr>
<tr>
<td>119</td>
<td>Block</td>
</tr>
<tr>
<td>120</td>
<td>Cylinder Head Dowel Pin</td>
</tr>
<tr>
<td>121</td>
<td>Hydraulic Roller Lifter</td>
</tr>
<tr>
<td>122</td>
<td>Valve Lifter Guide</td>
</tr>
<tr>
<td>123</td>
<td>Lifter Guide Retainer</td>
</tr>
<tr>
<td>124</td>
<td>Main Bearing Cap</td>
</tr>
<tr>
<td>125</td>
<td>Bolt</td>
</tr>
<tr>
<td>126</td>
<td>Rear Main Bearing Cap</td>
</tr>
</tbody>
</table>

INTAKE MANIFOLD REMOVAL

++ Remove or Disconnect (Figure 6)
1. Vacuum lines and electrical connectors, as needed.
2. Intake manifold bolts and washers.
3. Intake manifold.
4. Gasket.

EXHAUST MANIFOLD REMOVAL

++ Remove or Disconnect (Figure 7)
1. Thermae heat stove pipe at the exhaust manifold.
2. Oxygen sensor wire. Remove the oxygen sensor only if the exhaust manifold is to be replaced.
3. Exhaust manifold bolts and washers.
4. Exhaust manifold and gasket.

THERMOSTAT HOUSING REMOVAL

++ Remove or Disconnect (Figure 5)
1. Thermostat bypass hose.
2. Thermostat housing bolts.
3. Thermostat housing and gasket.

WATER PUMP REMOVAL

++ Remove or Disconnect (Figure 8)
1. Fan and fan clutch.
2. Water pump pulley.
4. Water pump.
5. Gasket.
Figure 5—Block and Components
37. Washer
38. Bolt
42. Stud
43. Intake Manifold
44. Gasket

Figure 6—Intake Manifold Components

2. Bolt
3. Stud
5. Exhaust Manifold
7. Gasket

Figure 7—Exhaust Manifold Components
VALVE TRAIN COMPONENT REMOVAL

Tools Required:
- J 34144-A Rocker Arm Cover Remover
- J 3049 Valve Remover (Plier Type)

Remove or Disconnect (Figures 2, 3, 9, 10, 11, and 12)

1. Rocker arm cover bolts.

2. Rocker arm cover. Use J 34144-A (figure 9).

3. Bolts (31), balls (32), rocker arms (33), pushrods (47) and pushrod guides (45).
 - Every effort should be made to ensure these mating parts are installed in their original locations during assembly. A simple valve train component organizer rack can be made from a piece of wood, as shown in figure 10.

4. Pushrod cover nuts, studs, and the cover (50).
 - Unscrew the four nuts from the cover attaching studs, reverse two of the nuts so the washers face outward and screw them back onto the inner two studs. Assemble the two remaining nuts to the same two inner studs with washers facing inward. Using a small wrench on the inner nut, on each stud, jam the two nuts tightly together. Again, using the small wrench on the inner nut, unscrew the studs until the cover breaks loose.
 - After breaking the cover loose, remove the jammed nuts from each stud. Remove the cover from the studs.

5. Retainers (123).

 - Remove the valve lifters one at a time and place them in the organizer rack. The valve lifters must be installed in the same bore from which they were removed.
 - A stuck valve lifter can be removed using J 3049.
CYLINDER HEAD REMOVAL

❖ Remove or Disconnect (Figure 13)

1. Bolts (25 and 27).

2. Cylinder head (24). Use care when handling the cylinder head to prevent damage to the gasket surfaces.

3. Gasket (17).

CRANKSHAFT PULLEY HUB REMOVAL

❖ Remove or Disconnect (Figure 5 and 14)

1. Bolt (98) and washer (99).

2. Pulleys (96 and 97) and hub (100).
89. Key
94. Bolt
95. Crankshaft Pulley
96. Bolt
97. Crankshaft and Power Steering Pulley
98. Bolt
99. Washer
100. Crankshaft Pulley Hub

Figure 14—Timing Gear Cover and Components

OIL PAN REMOVAL

Remove or Disconnect (Figure 5)
1. Bolts (75).
2. Oil pan (76).

• If the rocker arm cover adheres to the block, try to shear the sealant from the block by bumping the end of the oil pan with a rubber mallet. If the cover will not come loose, carefully pry until loose. DO NOT DISTORT THE SEALING FLANGE.

OIL PUMP DRIVESHAFT REMOVAL

Remove or Disconnect (Figures 5 and 15)
1. Bolts (117).
2. Plate (118).
3. Bearing (113).
4. Shaft and gear assembly (115 and 114).

OIL PUMP REMOVAL

Remove or Disconnect (Figure 5)
1. Bolts (84) and nut (78) at oil screen bracket.
2. Oil pump (77).

FRONT COVER REMOVAL

Remove or Disconnect (Figures 5 and 14)
1. Timing gear cover bolts (94).
2. Timing gear cover (102).

• If the timing gear cover adheres to the cylinder head, carefully pry it loose. DO NOT DISTORT THE SEALING FLANGE.

PISTON AND CONNECTING ROD REMOVAL

Remove or Disconnect (Figures 5, 16 and 17)
1. Ridge (or deposits) at the top of the cylinder as follows:
 • Turn the crankshaft until one piston is at the bottom of its stroke. Place a soft cloth on top of the piston.

Figure 15—Oil Pump Drive Shaft
Using the manufacturer’s directions, install a ridge reamer into the top of the cylinder. Perform the cutting operation.

After the ridge and/or deposits are removed, remove the ridge reamer. Turn the crankshaft until the piston is at the top of its stroke. Remove the cloth and the cuttings.

Repeat this procedure for each piston.

2. Connecting rod caps (116) as follows: Take note of the arrangement of the connecting rod (53) markings, to insure proper reassembly. Use a silver pencil to mark the parts if necessary.

To avoid mismatching the connecting rods and connecting rod caps, remove only one connecting rod cap at a time. Place the piston at the bottom of its stroke.

Remove the nuts (56).

Remove the connecting rod cap.

Install two sections of 10 mm (3/8-inch) rubber hose over the connecting rod studs. This will prevent the connecting rod studs from scratching the bore or crankshaft journal during the removal process.

3. Connecting rod (53) and piston (51) from the block.

Push the connecting rod and piston from the block being careful not to let the connecting rod contact the cylinder bore.

Loosely assemble the connecting rod cap (116) onto the connecting rod.

Take note of, or mark the connecting rod and piston assembly and the cylinder bore to assure that each assembly is returned to its original bore.

Repeat this procedure on the remaining connecting rod assemblies.

FLYWHEEL REMOVAL

1. Flywheel bolts (66).
2. Flywheel (67).
3. Spacer (68).

CRANKSHAFT REMOVAL

The main bearings and rear oil seal can be replaced without removing the crankshaft, as outlined later in this section.

Remove or Disconnect (Figures 5, 18 and 19)

- Check the main bearing caps (124 and 126) location markings. The main bearing caps are numbered 1 through 5 from the front to the rear of the engine. The caps must be returned to their original locations during engine assembly.
1. Crankshaft timing gear (87).
2. Bolts (125).
3. Main bearing caps (124 and 126).
4. Crankshaft (88). Lift the crankshaft straight up, taking care to avoid damage to the crankshaft journals and thrust flange surfaces.
5. Seal (71).
6. Main bearing inserts (figure 19).

- If the main bearing inserts are to be reused, mark them to insure they are installed in their original positions before removal.
CRANKSHAFT REAR OIL SEAL REMOVAL (WITHOUT REMOVING CRANKSHAFT)

Remove or Disconnect (Figure 5)

NOTICE: Care must be taken not to damage the crankshaft outside diameter surface with the pry tool.

1. Rear crankshaft oil seal.
 - Pry the seal out with a screwdriver. Take care not to scratch the crankshaft.

MAIN BEARING REMOVAL (WITHOUT REMOVING THE CRANKSHAFT)

Remove or Disconnect

Tool Required:
- J 8080 Main Bearing Remover/Installer

1. Main bearing caps (124 and 126).
 - Check the main bearing caps for location markings. Mark the caps if necessary. The caps must be returned to their original locations during assembly.
2. Lower main bearing inserts (86) from the main bearing caps.
3. Upper main bearing inserts (86).
 - Insert J 8080 into the crankshaft oil hole.
 - Rotate the crankshaft to “turn” the bearing out of the block.

CAMSHAFT REMOVAL

Remove or Disconnect (Figures 5, 20 and 21)

- Turn the camshaft (108) until the bolts (103) are visible through the holes in the camshaft gear (104).
 1. Bolts (103).
 2. Camshaft (108). Pull the camshaft out of the block. Support the camshaft carefully when removing to prevent damage to the camshaft bearings.
CLEANING, INSPECTION, AND REPAIR

A solvent tank, large enough to hold the larger engine parts, will be needed along with various bristle brushes and a gasket scraper. A source of compressed air will be helpful in the cleaning operations.

Precision measuring tools will be required for the inspection procedure. These include: micrometers, cylinder bore gage, feeler gages, dial indicator set, etc. The inspection work, performed with the proper method and tools, is most important. The rebuilt engine cannot be expected to perform properly if parts worn beyond acceptable limits are reused.

BLOCK

Clean (Figure 5)

1. Block (119) in solvent.
2. Block gasket surfaces.
3. Cylinder bores.
4. Oil galleries and passages.
5. Scale deposits from the coolant passages.

Inspect

1. All expansion plugs for looseness or leakage.
2. Valve lifter bores for deep scratches and varnish deposits.
3. Block for cracks, especially in the following areas:
 - Cylinder walls.
 - Coolant jackets.
 - Main bearing webs.
 - Engine mount bosses.
4. Main bearing bores and main bearing caps (124 and 126).
 - All main bearing bores should be round and have a uniform inside diameter at all of the bearing supports.
 - The area where the main bearing inserts (86 and 72) contact the main bearing bore should be smooth.

Measure (Figure 22)

- Head gasket surface distortion. Use a straight edge and a feeler gage to check for flatness of the milled surface at the top of the cylinder block. The surface
2.5 LITER L4 ENGINE 6A1-15

Figure 22—Checking the Block Gasket Surface

must be flat within 0.10 mm (0.004-inch) to assure that the gasket will provide a tight seal between the cylinder head and the block.

CYLINDER BORES

For information regarding cylinder bore measuring and reconditioning, refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

PISTON AND CONNECTING ROD ASSEMBLIES

For information regarding disassembly, cleaning and inspection and assembly of piston and connecting rod assemblies, refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

For piston selection information, refer to “Piston Selection” in this section.

PISTON SELECTION

In order to select the proper piston for each bore, it is necessary to measure the outside diameter of the piston and the inside diameter of the bore. Once the diameters have been measured, the difference between the bore diameter and the piston diameter will be the piston to bore clearance.

1. Check the used piston to cylinder bore clearance.

 Measure (Figures 23 and 24)
 - Cylinder bore diameter using a telescoping bore gage. Measure the bore parallel to the crankshaft at the gaging point which is 57.15 mm (2.25-inch) from the top of the cylinder bore. By measuring at this point, the smallest bore diameter will be obtained.
 - Piston diameter with a micrometer. Measure the piston skirt at a right angle to the piston pin, at the centerline of the piston pin, which is 46.037 mm (1 13/16-inch) from the piston crown. By measuring at this point, the largest piston diameter will be obtained.

 • Subtract the piston diameter from the cylinder bore diameter to determine the piston to bore clearance.
 • Refer to “Specifications” at the end of this section to determine if the piston clearance is in the acceptable range.

2. If the used piston is not acceptable, determine if a new piston can fit the cylinder bore.
3. If a new piston does not bring the clearance within tolerances, the cylinder bore must be reconditioned.
4. Mark the piston to identify the cylinder for which it was fitted.
INTAKE AND EXHAUST MANIFOLDS

Clean
- Old pieces of gasket from the gasket surfaces.

Inspect
- Manifolds for cracks, broken flanges, etc.
- Gasket surfaces for heavy scratches.

CAMSHAFT

Inspect (Figure 5)
- Camshaft lobes and journals for scratches, pitting, scoring, and wear.
- Timing gear for damaged or missing teeth.

Measure (Figures 25 through 27)
- Camshaft runout. Mount the camshaft between centers or in V-blocks. Using tool J 7872 (or equivalent), check the intermediate camshaft journals. If runout exceeds 0.020-inch, the camshaft is excessively bent and should be replaced, along with the camshaft bearings.
- Camshaft journal out of round. Use a micrometer. If the journals are more than 0.001-inch out of round, replace the camshaft.
- Camshaft journal diameter. Use a micrometer. The proper diameter is 1.869-inch.
- Thrust plate (105) to camshaft (108) clearance. This clearance governs camshaft end play. Use a feeler gage. The proper clearance is 0.0015-inch to 0.0050-inch. If the clearance is less than 0.0015-inch replace the spacer ring (106). If the clearance is more than 0.0050-inch, replace the thrust plate (105).

Disassemble (Figure 28)
1. Gear (104) from the camshaft.
 - Place the camshaft gear in a press. Support the camshaft gear. DO NOT support the thrust plate.
A. Arbor Press
B. Press Tool
104. Camshaft Gear
105. Thrust Plate
108. Camshaft

Figure 29—Installing the Camshaft Gear

NOTICE: The thrust plate must be positioned so that the woodruff key (107) does not damage it during the removal operation.

- Press the camshaft (108) out of the camshaft gear.
2. Thrust plate (105).

Assemble (Figure 29)
- Support the camshaft on the back of the front journal in an arbor press using press plate adapters.
- Lubricate the thrust plate with engine oil.
1. Woodruff key (107).
2. Spacer (106).
3. Thrust plate (105).
 • Make sure that the timing mark is to the outside.
 • Press the camshaft gear onto the camshaft until it bottoms on the spacer (106).
 • Remove the camshaft from the press.

Measure (Figure 27)
- Camshaft to thrust plate clearance using a feeler gage. The correct clearance is 0.0015-inch to 0.0050-inch.

CAMSHAFT BEARINGS

Remove or Disconnect (Figure 30)

Tool Required:
J 33049 Universal Camshaft Bearing Remover and Installer
1. Expansion plug.
 • Drive out the plug from inside the block at the rear camshaft bearing.
2. Front and rear bearings (109) using J 33049.
 • Drive the bearings towards the center of the block.
3. Center bearing using J 33049.
 • Drive the bearing towards the rear of the engine.

Install or Connect (Figure 30)

Tool Required:
J 33049 Universal Camshaft Bearing Remover and Installer
1. Center bearing using J 33049.
 • Install the bearing from the front of the engine.
 • Make sure that the oil holes in the bearing are aligned with the oil holes in the block.
2. Rear bearing (109) and expansion plug.
 • Drive the bearing in from the rear of the engine.
 • Make sure that the oil holes in the bearing are aligned with the oil holes in the block.
 • Drive the expansion plug into the block from the rear of the engine.
3. Front bearing (109).
 • Drive the bearing into the block, and approximately 3.18 mm (1/8-inch) past the front surface of the block. This uncovers the timing gear oil nozzle hole.

FRONT COVER

Clean
- Old RTV sealant from the sealing flange.

Inspect
- Front cover for cracks, large dents, etc.
- Sealing flange for straightness.

Disassemble (Figure 5)
- Seal (101). Pry the seal out with a screwdriver.

Assemble (Figure 31)

Tool Required:
J 34995 Crankshaft Front Cover Oil Seal Installer
- New seal (101) using tool J 34995.
 • Support the inside of the front cover around the seal bore area.

Figure 30—Removing or Installing Camshaft Bearings
Figure 31—Installing the Front Crankshaft Seal

- Press the seal into place. The open end of the seal faces inside the front cover.
- Lubricate the seal lips with grease.

WATER PUMP

Clean
- Old gasket from the gasket surface.

Important
- Do not immerse the pump in solvent. The solvent may enter the pump's permanently lubricated bearings, dissolve the bearings' lubricant supply, and cause premature bearing failure.

Inspect
- Water pump shaft for roughness and end play. If the shaft does not turn smoothly, or if there is excessive end play, replace the water pump.
- Water pump body at the drain hole. If there is evidence of coolant leakage, the water pump shaft seal is leaking, and the water pump should be replaced.

OIL PAN AND ROCKER ARM COVER

Clean
- Parts in solvent. Remove all sludge and varnish.
- Old RTV sealant from the sealing flange.

Inspect
- Gasket flanges for bending or damage.
- Oil pan for rock damage or cracks.
- Drain plug threads for stripping.

OIL PUMP

Disassemble (Figure 32)
1. Cover screws (81).
2. Cover (82).
3. Gasket (83).
- Mark the gear teeth so the pump gears can be installed with the same gear teeth indexed.
4. Drive gear and shaft (128).
5. Idler gear (127).
7. Spring (80).
8. Pressure relief valve (85).
- Do not remove the pickup screen and pipe unless replacement is required.
- The pickup pipe is a press fit in the pump body.
- Do not try to remove the screen from the pipe. The pickup screen and pipe is serviced as an assembly only.

Clean
- All parts in clean solvent and blow dry with compressed air.

Inspect
- Pump body (77) and cover (82) for cracks or other damage.
- Gears (127 and 128) for wear.
2.5 LITER L4 ENGINE 6A1-19

Drive gear and shaft (128) for looseness in the pump body (77).
Inside of the cover (82) for wear that would permit oil to leak past the ends of the gears.
The pump gears and body are not serviced separately.
Pressure relief valve (85) for fit. The regulator valve should slide freely in its bore without sticking or binding.

Assemble (Figures 32 and 33)

Tool Required:
J 21882 Oil Suction Pipe Installer
1. Pressure relief valve (85).
2. Spring (80).
3. Spring retaining pin (79).
4. Drive gear and shaft (128).
5. Idler gear (127) in the pump body (77) with the smooth side of the gear toward the pump cover opening. Index the marks made during disassembly.
7. Cover (82) and screws (81).

Tighten
- Screws to 14 N·m (10 ft. lbs.).
- Turn the driveshaft by hand to check for smooth operation.

NOTICE: Be careful of twisting, shearing or collapsing the pipe while installing in the pump.

VALVE TRAIN COMPONENTS

PUSHRODS, PUSHROD GUIDES, ROCKER ARMS AND BALLS

Clean
- Parts in solvent. Blow dry with compressed air.
- Make sure the oil passages in the pushrods are clear.

Inspect (Figures 3 and 10)
- Rocker arms (33) and balls (32) at their mating surfaces. These surfaces should be smooth and free from scoring or other damage.
- Rocker arm (33) areas which contact the valve stems, and the sockets which contact the pushrods (47). These areas should be smooth and free of damage and wear.
- Pushrods (47) for bending. Roll the pushrod on a flat surface to determine if it is bent. Replace if necessary.
- Ends of the pushrods (47) for scoring or roughness.

VALVE LIFTERS

For information regarding valve lifters refer to GENERAL ENGINE MECHANICAL (SEC. 6A) of this manual.

CYLINDER HEAD

Information regarding cylinder head disassembly and assembly is covered under this procedure. For information regarding cleaning and inspection, and measuring of the cylinder head as well as valve measuring and grinding and valve guide reconditioning, refer to GENERAL ENGINE MECHANICAL (SEC. 6A) in this manual.
18. Intake Valve
19. Exhaust Valve
28. Valve Spring Cap
29. Valve Stem Oil Seal
30. Valve Keepers
34. Valve Stem Oil Shield
35. Valve Spring (with damper)
36. Valve Stem Seal

Figure 34—Valves and Components

Disassemble (Figures 34 and 35)

Tool Required:
J 8062 Valve Spring Compressor
1. Valve keepers (30).
 • Compress the valve spring using J 8062.
 • Remove the valve keepers.
 • Remove the tool.
2. Cap (28).
3. Valve spring (35) and shield (34).
4. Valve stem oil seals (29).
5. Valves (18 and 19). Place them in a rack so they can be returned to their original position at assembly.
6. Valve stem seal (36).

For information on cylinder head measuring and reconditioning, refer to GENERAL ENGINE MECHANICAL (SEC. 6A) in this manual.

Assemble (Figures 34, 35 and 36)

Tools Required:
J 8062 Valve Spring Compressor
J 22330 Valve Stem Seal Checker and Tester
1. New valve stem seals (36).
 • Lubricate the seal in order to aid in assembly.
2. Valves (18 and 19).
 • Lubricate the valve stems with engine oil.
 • Insert the valves into the proper ports.
3. Valve spring (35) and shield (34).
5. Valve keepers (30).

Figure 34—Valves and Components

Figure 35—Compressing the Valve Springs

- Compress the valve springs using J 8062. Compress the spring enough so the lower valve stem groove can be clearly seen.
- Push a new valve stem oil seal (29) onto the valve stem. The seal is to be installed on the lower groove of the stem. Make sure the seal is flat and not twisted.
- Apply grease to the area of the upper valve stem groove. Assemble the two valve keepers, using the grease to hold the keepers in place.

Figure 36—Measuring Valve Spring Installed Height
Make sure that the keepers seat properly in the groove.

- Repeat the preceding steps on the remaining valves.
- Check each valve seal using J 22330. Wet the suction cup portion of the tool lightly with engine oil. Place the suction cup over the valve stem cover and push the tool down to create a vacuum. If the vacuum remains at the tool, the seal is properly installed. If a vacuum cannot be obtained, or if the seal will not hold a vacuum, it may have been damaged or improperly installed.

Measure

- Valve spring installed height.
 - Use a narrow, thin scale. A cutaway scale may be helpful.
 - Measure from the valve shim or spring seat to the top of the valve cap.
 - If this measurement exceeds the figure given in "Specifications," install valve spring seat shims of sufficient thickness (between the spring and cylinder head) to give the desired measurement. Never shim the spring to give an installed height under the specified figure.

THERMOSTAT AND HOUSING

The thermostat is located in a housing bolted to the front of the cylinder head.

A thermostat consists of a restriction valve controlled by a thermostatic element. The restriction valve cranks or just starts to open at a predetermined temperature and continues to open as the engine coolant temperature increases. To assure proper cooling and engine warm-up it is important that the correct thermostat be used. Refer to the proper Truck Service Manual for the correct thermostat application.

Disassemble (Figure 3)

1. Bolts (8 and 9).
2. Water outlet (10).
3. Thermostat (12).
4. Gasket (11).

Inspect (Figure 3)

- Water outlet (10) and housing (13) for cracks or damage.

Assemble (Figure 3)

1. Thermostat (12).
2. Gasket (11).
3. Water outlet (10).
4. Bolts (8 and 9).

Tighten

- Bolts (8 and 9) to 23 N m (17 ft. lbs.).
6A1-22 2.5 LITER L4 ENGINE

- Mount the crankshaft in V-blocks or between centers.
- Use a dial indicator as shown.
- If the main bearing journals are misaligned, the crankshaft is bent and must be replaced along with the main bearings.

Figure 38—Checking Crankshaft Runout

ASSEMBLY OF ENGINE

PRIOR TO ASSEMBLY

The importance of cleanliness during the assembly procedure cannot be overstressed. Dirt will cause premature wear of the rebuilt engine.

Lubricate all moving parts lightly with engine oil or engine assembly lubricant (unless specified otherwise) during assembly. This will provide initial lubrication when the engine is started.

CRANKSHAFT AND MAIN BEARING INSTALLATION

Service bearing inserts are available in standard size and 0.001-inch undersize.

Install or Connect (Figures 5 and 39)

1. Upper main bearing inserts (86 and 72) to the block.
 - If any previously used or undersized bearings are used, make absolutely certain that they are fitted to the proper journal.
2. Crankshaft (88). Take care not to damage the thrust areas.
3. Lower bearing inserts (86 and 72) to the bearing caps.

Measure

- Main bearing clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) in this manual.
3. Engine oil to the lower main bearing inserts.

4. Main bearing caps (except the rear cap) with the selected lower main bearing inserts (86 and 72). Be sure to put the main bearing cap in their original positions, with the arrows facing the front of the engine.
5. Bolts (125). Make sure the special bolt, which retains the oil pump pickup tube and screen is installed in the proper position. (#4 main bearing cap, camshaft side hole.)

Tighten

- Main bearing cap bolts to 95 N m (70 ft. lbs.).
6. Rear main bearing cap to the block.
7. Rear main bearing cap bolts. Tighten the bolts temporarily to 14 N m (10 ft. lbs.).

Measure (Figure 40)

- Crankshaft end play, as follows:
 - Tap the end of the crankshaft first rearward then forward with a lead hammer. This will line up the rear main bearing and crankshaft thrust surfaces.
 - Tighten the rear main bearing cap bolts to 95 N m (70 ft. lbs.).
 - With the crankshaft forced forward, measure at the front end of the rear main bearing with a feeler gage. The proper clearance is 0.09 - 0.20 mm (0.0035 - 0.0085-inch).

Inspect

- Crankshaft for binding. Try turning the crankshaft to check for binding. If the crankshaft does not turn freely, loosen the main bearing cap bolts, one pair at a time, until the tight bearing is located. Burrs on the
2.5 LITER L4 ENGINE 6A1-23

Figure 39—Crankshaft and Bearing Components

Figure 40—Measuring Crankshaft End Play

Figure 41—Installing the Rear Crankshaft Oil Seal

Crankshaft Rear Oil Seal Installation

Install or Connect (Figures 5 and 41)

Tool Required:
- J 34924-A Seal Installer

1. Lubricate the seal inside diameter with engine oil.
2. Slide the seal over the mandrel of the tool, until the dust lip (back of seal), mates squarely against the collar.
3. Lubricate the seal outside diameter with engine oil.
4. Position the tool with the seal in place against the crankshaft. Align the dowel with the alignment hole in the crankshaft. Tighten the screws firmly.
5. Turn the T-handle of the tool until the collar seats firmly against the crankcase. This will insure that the seal is seated properly.
6. Loosen the T-handle fully. Loosen the screws and remove the tool.

bearing cap, foreign matter between the insert and the block or the bearing cap, or a faulty insert could cause a lack of clearance at the bearing.
MAIN BEARING INSTALLATION (WITHOUT REMOVING THE CRANKSHAFT)

Install or Connect (Figures 5 and 42)

Tool Required:
- J 8080 Main Bearing Remover/Installer

1. Upper main bearing inserts.
 - Insert tool J 8080 into a crankshaft main bearing hole.
 - Apply engine oil to the proper sized inserts.
 - Insert the plain end of the insert (without the bearing tang) of the insert between the crankshaft and the notched side of the block.
 - Rotate the crankshaft to "roll" the insert into the block.
 - Remove the tool.

2. Lower main bearing inserts to the main bearing caps.
 - Make sure the inserts are of the proper size.
 - Apply engine oil to the inserts.

Measure
- Main bearing clearance and crankshaft end play. Refer to "Crankshaft and Main Bearing Installation" in this section.

CAMSHAFT INSTALLATION

Install or Connect (Figure 3, 43, and 44)

- Coat the camshaft lobes with Engine Oil Supplement (GM part number 1051396) or equivalent. Coat the bearing journals with engine oil.

1. Camshaft (108) into the block (119). Take care not to damage the camshaft bearings (109).

CAMSHAFT INSTALLATION (CONTINUE)

FRONT COVER INSTALLATION

Install or Connect (Figures 5, 45 and 46)

Tool Required:
- J 34995 Crankshaft Front Cover Oil Seal Installer

1. Tool J 34995 into the front cover seal.
 - Apply a 10 mm (3/8-inch) wide by 5 mm (3/16-inch) thick bead of RTV sealer to the oil pan at the timing gear cover sealing surface.
 - Apply a 6 mm (1/4-inch) by 3 mm (1/8-inch) thick bead of RTV to the timing gear cover at the block sealing surface. Refer to figure 45.

NOTICE: The correct tool must be used to align the timing gear cover so that the front crankshaft seal is properly centered around the crankshaft. The seal must be centered to prevent damage during hub installation.

2. Timing gear cover, with J 34995 in place, to the block.
CRANKSHAFT PULLEY HUB INSTALLATION

Install or Connect (Figures 5 and 47)
1. Crankshaft pulley and hub. Slide the hub on the crankshaft until it bottoms against the crankshaft gear.
2. Bolt (98) and washer (99).

Tighten
- Hub retaining bolt to 220 N·m (160 ft. lbs.).

PISTON AND CONNECTING ROD INSTALLATION

Install or Connect (Figures 5, 48 and 49)

Tool Required:
- J 8037 Piston Ring Compressor

1. Connecting rod bearing inserts (55)
 - Be certain that the inserts are the proper size.
 - Install the bearing inserts in the connecting rod and connecting rod cap.
 - Lubricate the bearings with engine oil.

2. Piston and connecting rod to the proper bore.
 - With the connecting rod cap removed, install two sections of 10 mm (3/8-inch) rubber hose over the connecting rod studs.
 - Locate the piston ring end gaps as shown in figure 48. Lubricate the piston and rings with engine oil.
 - Without disturbing the ring end gap location, install J 8037 over the piston.
 - The piston must be installed so that the notch in the piston faces the front of the engine.
 - Place the piston in its matching bore. Using light blows with a hammer handle, tap the piston down into its bore. At the same time, guide the connecting rod into position on the crankpin. Hold the ring compressor against the block until all the rings have entered the cylinder bore.

CONNECTING ROD BEARING SELECTION

Service bearings are available in standard size and 0.001-inch undersize for use with new and used standard sized crankshafts. The 2.5 L engine is designed with a rolled fillet on the crankshaft journal to increase crankshaft strength. Do not grind a crankshaft with a rolled fillet. Undersize bearings other than 0.001-inch undersize are not available.

Measure
- Connecting rod bearing clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).
FINAL ASSEMBLY

Install or Connect (Figure 5)

- Apply engine oil to the connecting rod bearing inserts (55) and crankshaft journal.

1. Connecting rod cap (116) with the lower connecting rod bearing insert (55).

2. Nuts (56).

Tighten

- Nuts (56) to 44 N·m (32 ft. lbs.).

Measure (Figure 50)

- Connecting rod side clearance. Use a feeler gage between the connecting rod and the crankshaft. The correct clearance is 0.15–0.60 mm (0.006–0.022-inch).

OIL PUMP INSTALLATION

Install or Connect (Figure 5)

1. Oil pump.
 - Align the oil pump shaft with the tang on the oil pump driveshaft.
 - Position the oil pump over the oil pump driveshaft lower bushing. No gasket is used. The oil pump should slide easily into place.
2.5 LITER L4 ENGINE 6A1-27

OIL PUMP DRIVESHAFT INSTALLATION

Install or Connect (Figures 5 and 52)
1. Shaft and gear assembly (115 and 114). Turn the shaft until it indexes the oil pump shaft pilot properly in the oil pump body.
2. Bearing (113).
3. Plate (118). Apply RTV to the plate as shown in figure 52.

Tighten
- Oil pan bolts to 10.0 N·m (90 in. lbs.).
- Bolts to 14 N·m (120 in. lbs.).

CYLINDER HEAD INSTALLATION

Install or Connect (Figures 3 and 53)
1. Head gasket to the block. Install over the dowel pins.
2. Cylinder head. Carefully guide the head into place over the dowel pins. This may require an assistant.
3. Cylinder head bolts. Refer to figure 53.

A. 7.5 mm (1/8-inch) Wide x 2.5 mm (1/32-inch) Thick
B. 4 mm (5/32-inch) Wide x 2.5 mm (1/32-inch) Thick
C. 3 mm (1/8-inch) Bead In Areas Shown
D. Front Of Engine
76. Oil Pan
119. Block
126. Rear Main Bearing Cap

Figure 51—Applying RTV to the Oil Pan and Block
• Cylinder head bolts should be washed in solvent and dry at the time of installation. All residual oil should be wiped from the cylinder head mating surfaces.

• Coat the threads of bolt 9 with sealing compound (Part Number 1052080 or equivalent).

• Apply a light coat of engine oil to the threads and underside of the bolt heads of bolts 1 through 8.

\[\text{Tighten}\]

1. All head bolts to 25 N-m (18 ft. lbs.) in the specified sequence (refer to figure 53).

2. All head bolts except number 9 to 35 N-m (26 ft. lbs.). Number 9 bolt should be tightened to 25 N-m (18 ft. lbs.). Tighten the bolts in the specified sequence.

• Draw a line across the head of each bolt with a marking crayon to mark the position of each bolt.

3. All bolts, 90 degrees (1/4 turn). Tighten the bolts in the specified sequence.

Figure 52—Oil Pump Drive Shaft

- A. Forward
- B. Apply A 15 mm (5/8-inch) Bead Of RTV As Shown
- 113. Bearing
- 114. Gear
- 115. Shaft
- 117. Bolt
- 118. Plate

Figure 53—Cylinder Head Installation

- A. Apply Sealing Compound To Threads On This Bolt
- B. Mounting Surfaces Of Block Asm., Head Asm. And Both Sides Of Gasket Must Be Free Of Oil And Foreign Material
- C. Forward
- D. Dowel Pins
VALVE TRAIN COMPONENT INSTALLATION

Install or Connect (Figures 3, 5, 54, 55 and 56)

- Lubricate the hydraulic lifters (121) with Engine Oil Supplement (GM part number 1051398) or equivalent.
 1. Hydraulic lifters (121) into their mating bores in the block.
 2. Hydraulic lifter guides (122).
 3. Retainers (123) and studs (60).

 Tighten
 - Studs (60) to 10.0 N·m (90 in. lbs.).
 4. Pushrod cover (50).
 - Apply a 5mm (3/16-inch) bead of RTV sealant to the pushrod cover as shown in figure 56.
 5. Pushrod cover nuts.
 6. Pushrods (47). Seat the pushrods into the sockets of the hydraulic lifters.
 - Coat the mating surfaces of the rocker arms (33) and balls (32) with a molybdenum disulfide grease.
 7. Rocker arms (33).

 Tighten
 - Bolts to 30 N·m (22 ft. lbs.). DO NOT OVERTIGHTEN.
 - Apply a 5 mm (3/16-inch) bead of RTV sealant to the rocker arm cover, inboard of the bolt holes.
 10. Rocker arm cover to the cylinder head. Install the cover while the RTV is still wet (within 10 minutes).
 11. Rocker arm cover bolts.

WATER PUMP INSTALLATION

Install or Connect (Figure 57 and 58)

1. Gasket.
2. Water pump.
4. Water pump pulley.
INTAKE MANIFOLD INSTALLATION

Install or Connect (Figure 59)
1. Gasket.
 - Apply sealant to the bolts indicated in figure 59.
2. Intake manifold.
3. Intake manifold bolts and washers.

Tighten
- Intake manifold bolts to 34 N·m (25 ft. lbs.).
4. Vacuum lines and electrical connectors, as needed.

EXHAUST MANIFOLD INSTALLATION

Install or Connect (Figure 60)
1. Exhaust manifold and a new gasket.
2. Exhaust manifold bolts and washers.

Tighten
- Exhaust manifold bolts. Use the tightening sequence and the specifications shown in figure 60.
3. Oxygen sensor wire.
4. Thermae heat stove pipe.

FLYWHEEL INSTALLATION

Install or Connect (Figure 5)
1. Spacer (68).
2. Flywheel (67).

Tighten
- Flywheel bolts (66).
 - Automatic transmissions: 75 N·m (55 ft. lbs.).
 - Manual transmissions: 90 N·m (65 ft. lbs.).

ENGINE ACCESSORY INSTALLATION

Install the engine accessories (distributor, TBI unit oil filter, generator, etc.) as directed in the proper Truck Service Manual. Connect all vacuum hoses and electrical equipment the same way as removed.

ENGINE SETUP AND TESTING

1. After overhaul, the engine should be tested before installing it in the vehicle. If a suitable test stand is not available, the following procedure can be used after the engine is installed in the vehicle.
Tightening Sequence
Tighten bolts in number sequence as shown. Or, "A" group bolts can be tightened first, then "B" group bolts.

Torque Specifications
"A" Group Bolts: 50 N·m (36 Ft. Lbs.)
"B" Group Bolts: 43 N·m (32 Ft. Lbs.)
6A1-32 2.5 LITER L4 ENGINE

2. Fill the crankcase with the proper quantity and grade of oil. Refer to the proper Truck Service Manual or Owner’s and Driver’s Manual for this information. Fill the cooling system with the proper coolant.

3. With the ignition “OFF” or disconnected, crank the engine several times. Listen for any unusual noises or evidence that any parts are binding.

4. Start the engine and listen for unusual noises. Run the engine at about 1000 rpm until the engine is at operating temperature.

5. Listen for improperly adjusted valves or sticking lifters, or other unusual noises.

6. Check for oil and coolant leaks while the engine is running.

7. Using the proper Truck Service Manual or Emission Control Label for specifications, adjust the ignition timing and idle rpm.
SPECIFICATIONS

ENGINE SPECIFICATIONS

All Specifications are in INCHES unless otherwise noted.

<table>
<thead>
<tr>
<th>GENERAL DATA:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>L-4</td>
</tr>
<tr>
<td>Displacement</td>
<td>2.5L</td>
</tr>
<tr>
<td>RPO</td>
<td>LN8</td>
</tr>
<tr>
<td>Bore</td>
<td>4.00</td>
</tr>
<tr>
<td>Stroke</td>
<td>3.00</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>8.3:1</td>
</tr>
<tr>
<td>Firing Order</td>
<td>1-3-4-2</td>
</tr>
<tr>
<td>Oil Pressure</td>
<td>36-41 psi @ 2000 RPM</td>
</tr>
</tbody>
</table>

CYLINDER BORE:

<table>
<thead>
<tr>
<th>Diameter</th>
<th>4.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out Of Round</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Taper—Thrust Side</td>
<td>0.005 (Maximum)</td>
</tr>
</tbody>
</table>

PISTON:

| Clearance | 0.0014–0.0022 |

PISTON RING:

<table>
<thead>
<tr>
<th>Compression Groove Clearance</th>
<th>Top</th>
<th>0.002–0.003</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Second</td>
<td>0.001–0.003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compression Gap</th>
<th>Top</th>
<th>0.010–0.020</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Second</td>
<td>0.010–0.020</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oil Groove Clearance</th>
<th>0.015–0.055</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gap</td>
<td>0.020–0.060</td>
</tr>
</tbody>
</table>

PISTON PIN:

<table>
<thead>
<tr>
<th>Diameter</th>
<th>0.938–0.942</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearance in Piston</td>
<td>0.0002–0.0004</td>
</tr>
<tr>
<td>Fit In Rod</td>
<td>Press</td>
</tr>
</tbody>
</table>

OIL PUMP:

<table>
<thead>
<tr>
<th>Gear Lash</th>
<th>0.009–0.015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear Pocket Depth</td>
<td>0.995–0.998</td>
</tr>
<tr>
<td>Gear Pocket Diameter</td>
<td>1.503–1.506</td>
</tr>
<tr>
<td>Gear Length</td>
<td>0.999–1.002</td>
</tr>
<tr>
<td>Gear Diameter</td>
<td>1.496–1.500</td>
</tr>
<tr>
<td>Gear Side Clearance</td>
<td>0.004 (Maximum)</td>
</tr>
<tr>
<td>End Clearance</td>
<td>0.002–0.005</td>
</tr>
</tbody>
</table>
CRANKSHAFT:

<table>
<thead>
<tr>
<th>Component</th>
<th>Diameter</th>
<th>Taper</th>
<th>Out of Round</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Journal</td>
<td>2.300</td>
<td>0.0005</td>
<td>0.0005</td>
</tr>
<tr>
<td>Main Bearing Clearance</td>
<td>0.0005–0.0022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crankshaft End Play</td>
<td>0.0035–0.0085</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crankpin</td>
<td>2.000</td>
<td>0.0005</td>
<td>0.0005</td>
</tr>
<tr>
<td>Rod Bearing Clearance</td>
<td>0.0005–0.0026</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rod Side Clearance</td>
<td>0.006–0.002</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAMSHAFT:

<table>
<thead>
<tr>
<th>Component</th>
<th>Diameter</th>
<th>Taper</th>
<th>Out of Round</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lobe Lift (Intake and Exhaust)</td>
<td>0.398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End Play</td>
<td>0.015–0.0050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Journal Diameter</td>
<td>1.869</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Journal Clearance</td>
<td>0.0007–0.0027</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VALVE SYSTEM:

<table>
<thead>
<tr>
<th>Component</th>
<th>Intake</th>
<th>Exhaust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifter Type</td>
<td>Hydraulic</td>
<td></td>
</tr>
<tr>
<td>Lifter Leak — Down Rate</td>
<td>12–90 Seconds with 50 lb. load</td>
<td></td>
</tr>
<tr>
<td>Lifter Body Diameter</td>
<td>0.8420–0.8427</td>
<td></td>
</tr>
<tr>
<td>Lifter Bore Diameter</td>
<td>0.8435–0.8445</td>
<td></td>
</tr>
<tr>
<td>Lifter Clearance in Bore</td>
<td>0.0025</td>
<td></td>
</tr>
<tr>
<td>Plunger Travel</td>
<td>0.125</td>
<td></td>
</tr>
<tr>
<td>Pushrod Length</td>
<td>8.299</td>
<td></td>
</tr>
<tr>
<td>Valve Lash</td>
<td>NOT ADJUSTABLE</td>
<td></td>
</tr>
<tr>
<td>Rocker Arm Ratio</td>
<td>1.75:1</td>
<td></td>
</tr>
<tr>
<td>Face Angle (Intake & Exhaust)</td>
<td>45°</td>
<td></td>
</tr>
<tr>
<td>Seat Angle (Intake & Exhaust)</td>
<td>46°</td>
<td></td>
</tr>
<tr>
<td>Seat Runout (Intake & Exhaust)</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Seat Width</td>
<td>Intake 0.035–0.075</td>
<td>Exhaust 0.058–0.097</td>
</tr>
<tr>
<td>Stem Clearance</td>
<td>Intake 0.0010–0.0025</td>
<td>Exhaust 0.0013–0.0030</td>
</tr>
<tr>
<td>Stem Diameter</td>
<td>Intake 0.3133–0.3138</td>
<td>Exhaust 0.3128–0.3135</td>
</tr>
<tr>
<td>Valve Spring</td>
<td>Free Length 1.78</td>
<td></td>
</tr>
<tr>
<td>Valve Spring Pressure</td>
<td>Closed 71–78 lbs. @ 1.440</td>
<td></td>
</tr>
<tr>
<td>Valve Spring N @ mm</td>
<td>Open 158–170 lbs. @ 1.040</td>
<td></td>
</tr>
<tr>
<td>Valve Spring Installed Height</td>
<td>1.440</td>
<td></td>
</tr>
</tbody>
</table>
SPECIFICATIONS (CONT.)

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>N·m</th>
<th>Ft. Lbs</th>
<th>In. Lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Bearing Cap Bolts</td>
<td>95</td>
<td>70</td>
<td>—</td>
</tr>
<tr>
<td>Connecting Rod Nuts</td>
<td>44</td>
<td>32</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pan Bolts (All)</td>
<td>10.0</td>
<td>— 90</td>
<td></td>
</tr>
<tr>
<td>Oil Pump to Block Bolts</td>
<td>44</td>
<td>32</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pickup Tube Nut</td>
<td>30</td>
<td>22</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pump Cover Bolts</td>
<td>14.0</td>
<td>— 120</td>
<td></td>
</tr>
<tr>
<td>Pushrod Cover Nuts</td>
<td>10.0</td>
<td>— 90</td>
<td></td>
</tr>
<tr>
<td>Crankshaft Pulley to Hub Bolts</td>
<td>34</td>
<td>25</td>
<td>—</td>
</tr>
<tr>
<td>Crankshaft Pulley Hub to Crankshaft Bolt</td>
<td>220</td>
<td>160</td>
<td>—</td>
</tr>
<tr>
<td>Flywheel Bolts (Automatic)</td>
<td>75</td>
<td>55</td>
<td>—</td>
</tr>
<tr>
<td>Flywheel Bolts (Manual)</td>
<td>90</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Intake Manifold Bolts</td>
<td>34</td>
<td>25</td>
<td>—</td>
</tr>
<tr>
<td>Exhaust Manifold Bolts (Front and Rear Exhaust Tubes)</td>
<td>43</td>
<td>32</td>
<td>—</td>
</tr>
<tr>
<td>(Center Exhaust Tube)</td>
<td>50</td>
<td>36</td>
<td>—</td>
</tr>
<tr>
<td>Distributor Clamp Bolt</td>
<td>17</td>
<td>13</td>
<td>—</td>
</tr>
<tr>
<td>Water Outlet Housing Bolts</td>
<td>27</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Thermostat Housing Bolts</td>
<td>27</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Water Pump</td>
<td>34</td>
<td>25</td>
<td>—</td>
</tr>
<tr>
<td>Timing Gear Cover Bolts</td>
<td>10.0</td>
<td>— 90</td>
<td></td>
</tr>
<tr>
<td>Rocker Arm Bolts</td>
<td>30</td>
<td>22</td>
<td>—</td>
</tr>
<tr>
<td>Cylinder Head Bolts – See Text</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Camshaft Thrust Plate Bolts</td>
<td>10.0</td>
<td>— 90</td>
<td></td>
</tr>
<tr>
<td>Rocker Arm Cover Bolts</td>
<td>5.0</td>
<td>— 48</td>
<td></td>
</tr>
<tr>
<td>Hydraulic Lifter Retainer Stud</td>
<td>10.0</td>
<td>— 90</td>
<td></td>
</tr>
</tbody>
</table>
1. Piston Ring Compressor
2. Front Crankshaft Seal Installer
3. Main Bearing Replacer
4. Valve Spring Compressor
5. Cam Bearing Replacer
6. Oil Pump Pickup Tube Installer
7. Rocker Arm Cover Remover
8. Rear Crankshaft Oil Seal Installer
9. Valve Seal Checker
10. Hydraulic Lifter Remover
11. Dial Indicator
SECTION 6A2

2.8 LITER V-6

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>6A2-2</td>
</tr>
<tr>
<td>Engine Lubrication</td>
<td>6A2-2</td>
</tr>
<tr>
<td>Disassembly</td>
<td></td>
</tr>
<tr>
<td>Tools and Shop Equipment</td>
<td>6A2-6</td>
</tr>
<tr>
<td>Accessory Removal</td>
<td>6A2-6</td>
</tr>
<tr>
<td>Cleaning</td>
<td>6A2-6</td>
</tr>
<tr>
<td>Draining the Engine</td>
<td>6A2-7</td>
</tr>
<tr>
<td>Air Injection Tube Removal</td>
<td>6A2-7</td>
</tr>
<tr>
<td>EGR Valve Removal</td>
<td>6A2-7</td>
</tr>
<tr>
<td>Exhaust Manifold Removal</td>
<td>6A2-7</td>
</tr>
<tr>
<td>Rocker Arm Cover Removal</td>
<td>6A2-8</td>
</tr>
<tr>
<td>Intake Manifold Removal</td>
<td>6A2-7</td>
</tr>
<tr>
<td>Valve Train Component Removal</td>
<td>6A2-7</td>
</tr>
<tr>
<td>Cylinder Head Removal</td>
<td>6A2-8</td>
</tr>
<tr>
<td>Torsional Damper Removal</td>
<td>6A2-8</td>
</tr>
<tr>
<td>Front Cover and Water Pump Removal</td>
<td>6A2-9</td>
</tr>
<tr>
<td>Oil Pan Removal</td>
<td>6A2-9</td>
</tr>
<tr>
<td>Oil Pump Removal</td>
<td>6A2-9</td>
</tr>
<tr>
<td>Timing Chain and Camshaft Sprocket Removal</td>
<td>6A2-9</td>
</tr>
<tr>
<td>Camshaft Removal</td>
<td>6A2-10</td>
</tr>
<tr>
<td>Piston and Connecting Rod Removal</td>
<td>6A2-10</td>
</tr>
<tr>
<td>Flywheel Removal</td>
<td>6A2-11</td>
</tr>
<tr>
<td>Crankshaft Removal</td>
<td>6A2-11</td>
</tr>
<tr>
<td>Main Bearing Removal (Without Removing Crankshaft)</td>
<td>6A2-11</td>
</tr>
<tr>
<td>Cleaning, Inspection, and Repair</td>
<td>6A2-12</td>
</tr>
<tr>
<td>Block</td>
<td>6A2-12</td>
</tr>
<tr>
<td>Piston and Connecting Rod Assemblies</td>
<td>6A2-13</td>
</tr>
<tr>
<td>Intake and Exhaust Manifolds</td>
<td>6A2-13</td>
</tr>
<tr>
<td>Camshaft</td>
<td>6A2-14</td>
</tr>
<tr>
<td>Camshaft Bearings</td>
<td>6A2-14</td>
</tr>
<tr>
<td>Timing Chain and Sprockets</td>
<td>6A2-14</td>
</tr>
<tr>
<td>Front Cover</td>
<td>6A2-14</td>
</tr>
<tr>
<td>Water Pump</td>
<td>6A2-15</td>
</tr>
<tr>
<td>Oil Pan and Rocker Arm Covers</td>
<td>6A2-15</td>
</tr>
<tr>
<td>Oil Pump</td>
<td>6A2-15</td>
</tr>
<tr>
<td>Valve Train Components</td>
<td>6A2-16</td>
</tr>
<tr>
<td>Hydraulic Lifters</td>
<td>6A2-16</td>
</tr>
<tr>
<td>Cylinder Head</td>
<td>6A2-16</td>
</tr>
<tr>
<td>Thermostat and Water Outlet</td>
<td>6A2-18</td>
</tr>
<tr>
<td>Crankshaft and Bearings</td>
<td>6A2-18</td>
</tr>
<tr>
<td>Assembly of Engine</td>
<td></td>
</tr>
<tr>
<td>Prior to Assembly</td>
<td>6A2-19</td>
</tr>
<tr>
<td>Crankshaft and Main Bearing Installation</td>
<td>6A2-19</td>
</tr>
<tr>
<td>Rear Crankshaft Oil Seal Installation</td>
<td>6A2-20</td>
</tr>
<tr>
<td>Camshaft, Timing Chain and Sprocket Installation</td>
<td>6A2-21</td>
</tr>
<tr>
<td>Front Cover and Water Pump Installation</td>
<td>6A2-21</td>
</tr>
</tbody>
</table>
CONTENTS (CONTINUED)

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly of Engine (Continued)</td>
<td></td>
</tr>
<tr>
<td>Torsional Damper Installation</td>
<td>6A2-21</td>
</tr>
<tr>
<td>Piston and Connecting Rod Installation</td>
<td>6A2-22</td>
</tr>
<tr>
<td>Oil Pump Installation</td>
<td>6A2-23</td>
</tr>
<tr>
<td>Oil Pan Installation</td>
<td>6A2-23</td>
</tr>
<tr>
<td>Cylinder Head Installation</td>
<td>6A2-23</td>
</tr>
<tr>
<td>Valve Train Component Installation</td>
<td>6A2-24</td>
</tr>
<tr>
<td>Valve Adjustment</td>
<td>6A2-25</td>
</tr>
<tr>
<td>Intake Manifold Installation</td>
<td>6A2-25</td>
</tr>
<tr>
<td>Rocker Arm Cover Installation</td>
<td>6A2-25</td>
</tr>
<tr>
<td>Exhaust Manifold Installation</td>
<td>6A2-26</td>
</tr>
<tr>
<td>EGR Valve Installation</td>
<td>6A2-26</td>
</tr>
<tr>
<td>Air Injection Tube Installation</td>
<td>6A2-27</td>
</tr>
<tr>
<td>Flywheel Installation</td>
<td>6A2-27</td>
</tr>
<tr>
<td>Engine Accessory Installation</td>
<td>6A2-27</td>
</tr>
<tr>
<td>Engine Set-Up and Testing</td>
<td>6A2-27</td>
</tr>
<tr>
<td>Specifications</td>
<td>6A2-28</td>
</tr>
<tr>
<td>Special Tools</td>
<td>6A2-31</td>
</tr>
</tbody>
</table>

DESCRIPTION

GM 2.8L engines are 60-degree V6 type, overhead valve, water cooled, with cast iron block and heads.

The crankshaft is supported by four precision insert main bearings, with crankshaft thrust taken at the number three bearing.

The camshaft is supported by four plain type bearings and is chain driven. Motion from the camshaft is transmitted to the valves by hydraulic lifters, pushrods, and ball type rocker arms. The valve guides are integral in the cylinder head.

The connecting rods are forged steel, with precision insert type crankpin bearings. The piston pins are a press fit in the connecting rods.

The pistons are cast aluminum alloy. The piston pins are a floating fit in the piston.

For Engine Identification, refer to GENERAL INFORMATION (SEC. 0A) in this manual.

ENGINE LUBRICATION

Lubrication schematics are shown in figures 1 through 4. The gear type oil pump is driven from the distributor shaft, which is gear driven from the camshaft. Oil is drawn into the oil pump through a pickup screen and pipe.

Pressurized oil is routed to the oil filter. In case of excessive oil pressure, a bypass valve is provided. From the filter, oil is routed to the main oil gallery which supplies the left bank valve lifters with oil. From the left gallery, oil is directed to the camshaft bearings and the right oil gallery.

Oil flows from the hydraulic lifters through the hollow pushrods to the rocker arms. Oil from the overhead drains back to the crankcase through oil drain holes.

The timing chain is drip fed from the front camshaft bearing. The pistons and piston pins are lubricated by oil splash.
Figure 1—Engine Lubrication Diagram
A. Typical For Front And Rear Oiling
From Left Bank To Right Bank

Figure 2—Engine Lubrication Diagram
A. Lubrication Begins
B. 189° Duration Of Lubrication
C. End Of Lubrication
D. Lubrication Ends 154° BTDC
E. Cylinders 2, 4 And 6
F. 190° Duration Of Lubrication
G. Lubrication Ends 134° BTDC
H. For Cylinders 1, 3 And 5
J. Views Showing Intermittent Oiling Of
 Connecting Rod Bearing Through Groove
 On Upper Half Of Main Bearings

Figure 3—Engine Lubrication Diagram
A clean, well lit work area should be available. Other necessary equipment includes: A suitable parts cleaning tank, compressed air supply, trays to keep parts and fasteners organized, and an adequate set of hand tools.

An approved engine repair stand will aid the work and help prevent personal injury or damage to engine components.

Special tools are illustrated throughout this section, and are listed at its end. These tools (or their equivalents) are specially designed to quickly and safely accomplish the operations for which they are intended. The use of these tools will also minimize possible damage to engine components.

Some precision measuring tools are required for inspection of certain critical components. Torque wrenches will be necessary for correct assembly of various parts.

This manual assumes that the engine accessories have been removed. These accessories may include one or more of the following:
- Hydraulic Pump
- AIR Pump
- Generator
- Air Conditioning Compressor
- Cooling Fan
- Distributor
- TBI Unit

It is beyond the scope of this section to detail the many different accessory installations. Refer to the proper Truck Service Manual for this information.

Diagrams of emission and vacuum hose routings, wiring harness routing, accessory drive belt layout, etc., should be made before removing accessories.
Cleansing

Remove the engine accessories before cleaning, to provide better access to engine exterior surfaces. After removing the TBI unit, distributor, etc., cover the openings with tape to prevent the entry of water, solvent, and dirt.

Methods used to clean the engine will depend on the aids which are available. Steam cleaning, pressure washing, or solvent cleaning are some acceptable methods. Allow the engine to dry before beginning the work.

It is important that the engine be as clean as possible to prevent dirt from entering critical areas during disassembly.

Draining the Engine

Remove or Disconnect

1. Oil pan plug and allow the oil pan to drain.
2. Oil filter.
3. Block drains and allow the coolant to drain.

Install or Connect

1. Oil pan drain plug and washer.
2. Block drain plugs.

Tighten

- Block drain plug to 12 N·m (9 ft. lbs.)

Air Injection Tube Removal

Remove or Disconnect (Figure 5)

1. Nut (75).
2. Air injection tube from the manifold.

EGR Valve Removal

Remove or Disconnect (Figure 6)

1. Bolts (80).
2. EGR valve (81).
3. Gasket (82).

Exhaust Manifold Removal

Remove or Disconnect (Figure 7)

1. Oil dipstick tube.
2. Bolts or studs.
3. Exhaust manifold.

Rocker Arm Cover Removal

Remove or Disconnect (Figure 8)

1. Rocker arm cover nuts (1) and reinforcements (2).
2. Rocker arm cover and gasket.
 - If the cover sticks to the head, bump the end of the cover. If the cover still does not come loose, carefully pry until loose. DO NOT DISTORT THE SEALING FLANGE.

Intake Manifold Removal

Remove or Disconnect

1. Intake manifold bolts.
2. Intake manifold.
 - Pull the intake manifold up.
 - Do not attempt to loosen the manifold by prying under the gasket surface with any tool.
VALVE TRAIN COMPONENT REMOVAL

Remove or Disconnect (Figure 9)

Tools Required:
- J 3049, Hydraulic Lifter Remover (Plier Type)
- J 9290-01, Hydraulic Lifter Remover (Slide Hammer Type)

1. Nuts (6), balls (8), rocker arms (7), and pushrods (9).
 - Every effort should be made to insure that these mating parts are installed in their original locations during assembly. A simple valve train organizer can be made from a piece of wood.

2. Lifters (10).
 - Remove the lifters one at a time and place them in an organizer rack. The lifters must be installed into the same bore from which they were removed.
 - A stuck lifter can be removed using J 3049 (figure 10) or J 9290-01 (figure 11).

CYLINDER HEAD REMOVAL

Remove or Disconnect

1. Bolts.
2. Cylinder heads.
 - Use care when handling the cylinder heads to prevent damage to rocker arm studs or gasket sealing surface.

TORSIONAL DAMPER REMOVAL

NOTICE: The inertial weight section of the torsional damper is assembled to the hub with a rubber sleeve. The removal and installation procedures must be followed (with proper tools) or movement of the inertia weight section of the hub will destroy the tuning of the torsional damper and the engine timing reference.

The torsional damper has three timing notches on the inertia ring. The number one cylinder timing reference mark will be identified by a dab of white paint. If a new damper assembly is installed, mark the new assembly in
the same place for future reference. Number one cylinder reference is the first clockwise mark from the keyway when viewing the engine from the front.

Remove or Disconnect

Tool Required:
J 23523-E or J 24420-B, Puller
1. Torsional damper retaining bolt.
2. Drive pulley from the damper.
3. Damper using J 23523-E or J 24420-B.

Remove or Disconnect

1. Water pump.
2. Front cover bolts.
3. Front cover.
4. Gasket.

Remove or Disconnect

1. Bolts and studs from the oil pan.
2. Oil pan.

Remove or Disconnect (Figure 12)

1. Bolt (40).
2. Pump (41).
3. Shaft (42).

Remove or Disconnect

1. Chain damper.
2. Sprocket to camshaft bolts.
3. Camshaft sprocket and chain.
 • If the sprocket does not come off easily, a light blow on the lower edge of the sprocket (with a plastic mallet only) should dislodge the sprocket.
CAMSHAFT REMOVAL

\[+\] Remove or Disconnect (Figure 13)
- Camshaft by pulling lightly and turning.

\[\text{Important}\]
- All camshaft bearing journals are the same diameter and care must be exercised in removing the camshaft to avoid bearing damage.

PISTON AND CONNECTING ROD REMOVAL

\[+\] Remove or Disconnect
1. Ridge or deposits from the upper end of the cylinder bores.
 - Turn the crankshaft until the piston is at BDC.
 - Place a cloth on top of the piston.
 - Perform the cutting operation with a ridge reamer (figure 14).
 - Turn the crankshaft until the piston is at TDC.
 - Remove the cloth and cuttings.
 - Use a silver pencil or quick drying paint to mark the cylinder number on all pistons, connecting rods, and caps. Starting at the front of the crankcase, the cylinders in the right bank are numbered 1-3-5 and the left bank is numbered 2-4-6.
2. Connecting rod cap and bearing.
3. Connecting rod and piston (figure 15).
 - Install guide hose over the threads of the rod studs to prevent damage to the bearing journal and rod studs.
Figure 15—Replacing the Piston and Connecting Rod (Typical)

FLYWHEEL REMOVAL

Remove or Disconnect

1. Bolts.
2. Retainer (automatic transmission only).
3. Flywheel.

CRANKSHAFT REMOVAL

Remove or Disconnect (Figure 16)

- Check the main bearing clearance before removing the crankshaft. Refer to “Crankshaft and Main Bearing Installation” later in this section.
- The main bearings and rear oil seal can be replaced without removing the crankshaft as outlined later in this section.

1. Bolts (85).
2. Main bearing caps (86).
3. Crankshaft from the cylinder block.
 - Lift the crankshaft straight up, taking care to avoid damage to the crankshaft journals and thrust flange surfaces.

Figure 16—Crankshaft Installation

MAIN BEARING REMOVAL

(WITHOUT REMOVING CRANKSHAFT)

Remove or Disconnect

Tool Required:

- J 8080, Main Bearing Remover/Installer

1. Main bearing caps.
 - Check the main bearing caps for location markings. Mark the caps if necessary. The caps must be returned to their original locations during assembly.
2. Lower main bearing inserts from the main bearing caps.
3. Upper main bearing inserts.
 - Insert J 8080 into the crankshaft oil hole (figure 17).
 - Rotate the crankshaft to turn the bearing insert out of the block.
A solvent tank, large enough to hold the larger engine parts, will be needed along with various bristle brushes and a gasket scraper. A source of compressed air will be helpful in the cleaning operations.

Precision measuring tools will be required for the inspection procedure. These include: micrometers, cylinder bore gage, feeler gages, dial indicator set, etc. The inspection work, performed with the proper method and tools, is most important. The rebuilt engine cannot be expected to perform properly if parts worn beyond acceptable limits are reused.

BLOCK

Clean
1. Block in solvent.
2. Block gasket surfaces.
3. Cylinder bores.
4. Oil galleries and passages.
 - Remove the oil gallery plugs.
5. Scale deposits from the coolant passages.

Inspect
1. All expansion plugs for lack of fit or leakage.
2. Valve lifter bores for deep scratches and varnish deposits.
3. Block for cracks.
 - Cylinder walls.
 - Coolant jackets.
 - Main bearing webs.
 - Engine mount bosses.
4. Main bearing bores and main bearing caps.
 - All main bearing bores should be rounded and uniform in ID at all bearing supports.
 - The area where the main bearing inserts contact the main bearing bore should be smooth.
 - If a main bearing cap is damaged and requires replacement, replace it.

5. Deck surface for flatness. Use a straightedge and feeler gage. Minor irregularities may be carefully machined. If more than 0.25 mm (0.010-inch) must be removed, replace the block.

6. Oil pan rail and timing cover attaching area for nicks. Minor irregularities may be cleaned up with a flat file.

7. Transmission case mating surface.

Important
- If the transmission case mounting surface is not flat, a broken flexplate may result.

CYLINDER BORES

Inspect
- Cylinder bores for scoring or other damage.

Measure
- Cylinder bore taper and out-of-round. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

Cylinder Bore Reconditioning
Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).
PISTON AND CONNECTING ROD ASSEMBLIES

Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) and perform the following:

❖ Disassemble
 • Components as required.

❖ Clean
 • Components as outlined.

❖ Inspect
 • Components as outlined.

❖ Measure
 • Piston pin diameter and clearance.
 • Piston to bore clearance, and fit the pistons.

1. Remove rings from the pistons to be fitted.
 • It is not necessary to remove the connecting rods from the pistons.
 • If an excessive amount of varnish or carbon appears as a ridge at the top of the cylinder, remove it by scraping or sanding.

2. Wipe the bores and pistons clean. Select a piston and rod assembly for the bore to be fitted and position it down into the bore with the top of the piston down. The piston should slide freely through the bore by its own weight when the piston skirt is 12 to 25 mm from the top of the block. Use care to make sure the piston is not damaged when it slides through the bore. If the piston does not slide through the bore, it is too tight and another piston should be selected. Mark the proper piston and bore for assembly.

3. After a piston has been selected which will slide freely through the bore, determine if it is too loose.
 • Place a feeler gage (0.060 mm for used pistons, 0.050 mm for new pistons) at least 150 mm long and not over 12 mm wide into the bore with the selected piston. Hold the feeler gage to the top of the bore. If the piston hangs on the feeler gage and does not fall free, the piston is correctly fitted to the bore. If the piston slides freely through the bore, it is too small and a larger piston is required. Mark the proper piston and bore for assembly.

4. When checking more than one bore, it is possible that a piston that does not fit one bore will fit another.

❖ Assemble
 • Components as outlined.

Figure 18—Checking Manifold Flange Alignment

❖ Important
 • Each connecting rod and bearing cap should be marked, beginning at the front of the engine. Cylinders 2, 4 and 6 are at the left bank and, 1, 3 and 5 are the right bank. The numbers on the connecting rod and bearing cap must be on the same side when installed in the cylinder bore. If a connecting rod is ever transposed from block or cylinder to another, new connecting rod bearings should be fitted and the connecting rod should be numbered to correspond with the new cylinder number.

❖ Measure
 • Ring end gap and ring clearance.

❖ Inspect
 • Ring fit.

INTAKE AND EXHAUST MANIFOLDS

❖ Clean
 • Old pieces of gasket from the gasket surfaces.
 • Excessive carbon build-up in the exhaust passages of the intake manifold.
 • Scale and deposits from the coolant passages of the intake manifold.
 • EGR passage of excessive carbon deposits.

❖ Inspect (Figure 18)
 • Manifolds for cracks, broken flanges, and gasket surface damage.
 • Alignment of manifold flanges. Use a straight edge and feeler gage. If the flanges are out of alignment by more than 0.1 mm (0.005-inch), the manifold is warped and should be replaced.
CAMSHAFT

Important
• Whenever the camshaft needs to be replaced, a new set of lifters must also be installed.

Inspect
• Camshaft lobes and journals for scratches, pitting, scoring, and wear.

Measure
• Camshaft journal diameter (figure 19). The proper diameter is listed in "Specifications."

CAMSHAFT BEARINGS
Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) for replacement procedures.

TIMING CHAIN AND SPROCKETS

Inspect
• Sprockets for chipped teeth and wear.
• Timing chain for damage.
• It should be noted that excessively worn sprockets will rapidly wear a new chain. Likewise, an excessively worn chain will rapidly wear a new set of sprockets.
• Timing chain for wear.
 — If the chain can be pulled out more than 9.5 mm (7/64-inch), from the damper, replace the chain.

CRANKSHAFT SPROCKET REPLACEMENT

Remove or Disconnect (Figure 20)
Tool Required:
• J 5825-A Crankshaft Sprocket Puller
1. Crankshaft sprocket using J 5825-A.
2. Key (if necessary).

FRONT COVER

Clean
• Old gasket from the gasket surfaces.

Inspect
• Timing tab marker for damage.
• Front cover for damage, dents, or cracks.

Remove or Disconnect
• Oil seal from the front cover.
 — Pry the seal out with a large screw driver.
Install or Connect

Tool Required:
- J 35468, Seal Installer
- New seal so that the open end of the seal is toward the inside of the cover:
 - Drive the seal into position with J 35468.
 - Support the cover at the seal area.
- Lubricate the seal with engine oil before installing the torsional damper.

WATER PUMP

Clean
- Old gasket from the gasket surface.

Important
- Do not immerse the pump in solvent. The solvent may enter the pump’s permanently lubricated bearings, dissolve the bearings’ lubricant supply, and cause premature bearing failure.

Inspect
- Water pump shaft for roughness and end play. If the shaft does not turn smoothly, or if there is excessive end play, replace the water pump.
- Water pump body at the drain hole. If there is evidence of coolant leakage, the water pump shaft seal is leaking and the water pump should be replaced.

OIL PAN AND ROCKER ARM COVERS

Clean
- Parts in solvent. Remove all sludge and varnish.
- Old gaskets from the gasket surfaces.

Inspect
- Gasket flanges for bending or damage.
- Rubber grommets and parts on the rocker arm cover for deterioration.
- Oil pan for rock damage or cracks.
- Oil pan baffle for lack of fit.
- Drain plug threads for stripping.

OIL PUMP

Remove or Disconnect (Figure 21)
1. Pump cover attaching bolts (186) and the pump cover (182).
- Mark the gear teeth so the pump gears can be installed with the same gear teeth indexed.
2. Idler gear (189), drive gear (181) and shaft (103) from the pump body.
3. Pressure relief valve retaining pin (185).
4. Pressure relief valve spring (184).
5. Pressure relief valve (183).

Inspect (Figure 21)
- Pump body (180) and cover (182) for cracks or other damage.
- Gears (181 and 188) for wear.
- Drive gear and shaft (181) for lack of fit in the pump body (180).
- Inside of the cover (182) for wear that would permit oil to leak past the ends of the gears. The pump gears, cover, and body are not serviced separately. If the parts are damaged or worn, replace the entire oil pump assembly.
- Pick-up screen and pipe (187) for damage to the screen, pipe or relief grommet.
- Pressure relief valve (183) for fit. The regulator valve should slide freely in its bore without sticking or binding.

Install or Connect (Figure 21)
Tool Required:
- J 21882, Pick-Up Tube and Screen Installer
1. Pressure regulator valve.
2. Spring.
3. Spring retaining pin.
4. Drive gear and shaft.
5. Idler gear.
- Index the marks made during disassembly.
6. Cover and screws.
Tighten

- Screws to 9.0 N-m (80 in. lbs.).
- Turn the drive shaft by hand to check for smooth operation.

NOTICE: Be careful of twisting, shearing or collapsing the pipe while installing in the pump.

7. Pick-up screen and pipe (if removed) (figure 22).
 - If the pick-up screen and pipe assembly was removed, it should be replaced with a new part. Loss of press fit condition could result in an air leak and loss of oil pressure.
 - Mount the oil pump in a soft jawed vise.
 - Apply sealer to the end of the pipe.
 - Tap the pick-up screen and pipe into place, using J 21882 and a hammer.
 - The pump screen must be parallel with the bottom of the oil pan when installed.

8. Oil pump drive shaft (103) and connector (104).

VALVE TRAIN COMPONENTS

PUSHRODS, ROCKER ARMS, BALLS, AND NUTS

Clean

- Parts in solvent. Blow dry with compressed air.
- Make sure the oil passages in the pushrods are clear.

Inspect

- Rocker arms and balls at their mating surfaces. These surfaces should be smooth and free from scoring or other damage.
- Rocker arm areas which contact the valve stems and the sockets which contact the pushrods. These areas should be smooth and free of damage and wear.
- Rocker arm nuts.

- Pushrods for bending. Roll the pushrod on a flat surface to determine if it is bent. Replace if necessary.
- Pushrod ends for scoring or roughness.

HYDRAULIC LIFTERS

Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

CYLINDER HEAD

DISASSEMBLY

- Remove or Disconnect (Figures 23 and 24)

 Tool Required:
 - J 8062, Valve Spring Compressor

 1. Valve keepers (22).
 - Compress the springs with J 8062 (figure 24).
 - Remove the keepers.
 - Remove J 8062.

 2. Caps (23), oil shedder (24), and springs.

 3. O-ring seals (26) and seals (25) (if used).

 4. Valves (20 and 21).
 - Place the valves in a rack so they can be returned to their original position at assembly.

CLEANING AND INSPECTION OF COMPONENTS

Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) and perform the following.

Clean

- Components as outlined.

Inspect

- Components as outlined.

Measure

- Valve stem clearance.
- Valve spring tension and free length.
Other information outlined includes:
- Valve and seat grinding.
ROCKER ARM STUD AND PUSHROD GUIDE REPLACEMENT
The rocker arm studs are threaded in place.

Remove or Disconnect (Figure 25)
1. Rocker arm studs (90) using a deep socket.
2. Pushrod guide (91).

Install or Connect
1. Pushrod guide (91).
2. Rocker arm studs (90) using a deep socket.

Tighten
- Rocker arm studs to 65 N·m (48 ft. lbs.).

ASSEMBLY

Install or Connect (Figures 23 and 24)

Tool Required:
- J 8062, Valve Spring Compressor

1. Valves (20 and 21).
 - Lubricate the valve stems with engine oil.
 - Insert the valves into the proper seats.
2. Seals (25) (intake only).
 - Install the seals over the valve stems and seat them against the head.
4. Oil shedder (24).
5. Caps (23).
6. O-ring seals (26) and valve keepers (22).
A. Grind out this portion.

Figure 26—Scale for Checking Valve Spring Installed Height

- Compress the valve spring using J 8062 (figure 24). Compress the spring enough so the lower valve stem groove can be seen clearly.
- Push a new O-ring seal (26) onto the valve stem. The seal is to be installed on the stem's lower groove. Make sure the seal is flat and not twisted.
- Apply a small amount of grease to the area of the upper valve stem groove. Assemble the two valve keepers using the grease to hold the keys in place. Make sure the keepers seat properly in the groove.
- Release the compressor tool. Make sure the valve keepers stay in place.
- Repeat the preceding steps on the remaining valves.

Measure
- Valve spring installed height of each valve spring as follows:
 1. Use a narrow thin scale. A cutaway scale (figure 26) may be helpful.
 2. Measure from the top of the spring damper "feet" to the bottom of the oil shedder on the exhaust valve or to the bottom of the valve cap on the intake valve.
 3. If this measurement exceeds the figure given in "Specifications," install valve spring seat shims approximately 0.75 mm (0.03-inch) thickness (between the spring and cylinder head). NEVER shim the spring so as to give an installed height under the specified figure.

THERMOSTAT AND WATER OUTLET

Remove or Disconnect (Figure 27)
1. Bolts.
2. Water outlet.
4. Thermostat.

Inspect
- Water outlet for cracks.

Install or Connect (Figure 27)
1. Thermostat.
2. New gasket.
3. Water outlet.
4. Bolts.

Tighten
- Bolts for 21 Nm (15 ft. lbs.).

CRANKSHAFT AND BEARINGS

CLEANING AND INSPECTION

Clean
- Crankshaft with solvent.
 - Do not scratch the bearing journals.
 - Blow all sludge from the oil passages with compressed air.
- Main bearing inserts. Wipe free of oil with a soft cloth.

Inspect
- Crankshaft for cracks. Use the magnaflux method, if available.
- Crankpins, main bearing journals and thrust surfaces for scoring, nicks, or damage caused by lack of lubrication.
- Main bearing inserts for scoring or other damage. In general, the lower inserts (except the #1 bearing) show greater wear and the most distress from fatigue. If the lower insert shows evidence of wear or damage, both the upper and lower inserts must be replaced.

Measure
- Main bearing and connecting rod journal diameters (figure 28). Compare with "Specifications." Replace the crankshaft if necessary.
- Main bearing and connecting rod journals for taper and out-of-round (figure 28). If the journals are tapered or out-of-round more than 0.005 mm, replace the crankshaft.
• Crankshaft run-out.
 • Mount the crankshaft in V-blocks or between centers.
 • Use a dial indicator.
 • If the main journals are misaligned more than 0.025 mm, the crankshaft is bent and must be replaced, along with the main bearing.

Figure 28—Measuring the Crankshaft Journals

ASSEMBLY OF ENGINE

PRIOR TO ASSEMBLY

The importance of cleanliness during the assembly procedure cannot be overstressed. Dirt will cause premature wear of the rebuilt engine.

Lubricate all moving parts lightly with engine oil or engine assembly lubricant (unless specified otherwise) during assembly. This will provide initial lubrication when the engine is started.

CRANKSHAFT AND MAIN BEARING INSTALLATION

Main bearings are of the precision insert type and do not use shims for adjustment. If clearances are excessive, a new bearing plus both upper and lower inserts will be required. Service main bearings are available in standard size, 0.016, and 0.032 mm undersize. Service rod bearings are available in standard size and 0.026 mm undersize.

Selective fitting of both rod and main bearing inserts is necessary in production to obtain close tolerances. For this reason you may find one half of a standard insert with one half of a 0.032 mm undersize insert which will decrease the clearance 0.016 mm from using a full standard bearing.

Install or Connect

1. Upper main bearing inserts to the block.

Important
 • If any undersized bearings are used, make sure they are fitted to the proper journals.

2. Crankshaft.

3. Lower main bearing inserts to the main bearing caps.

Figure 29—Applying Sealer to Rear Main Bearing Cap

A. Anaerobic Sealant (GM Part No. 1052756 or Equivalent)
B. RTV Sealant (GM Part No. 1052942 or Equivalent)

Measure
 • Main bearing clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).
 • Apply engine oil to the main bearing inserts.
 • New O-ring (if used) into the rear main bearing cap.
 • Thin coat of anaerobic sealant (GM Part No. 1052756 or equivalent) to the rear main bearing cap (figure 29).
 • Do not allow sealer on the crankshaft or the seal.
 • A small amount of RTV sealant (GM Part No. 1052942 or equivalent) to the rear 4 mm of the rear bearing cap sealing surface (figure 29).
 • Do not allow sealer on the crankshaft or the seal.
Main bearing caps with arrows pointing toward the front of the engine.

Main bearing cap bolts.

<table>
<thead>
<tr>
<th>Tighten</th>
</tr>
</thead>
<tbody>
<tr>
<td>- All main bearing caps EXCEPT NUMBER THREE CAP to 95 N m (70 ft. lbs.).</td>
</tr>
<tr>
<td>- Number three main bearing cap to 15 N-m (11 ft. lbs.). Then tap the end of the crankshaft rearward and then forward with a lead hammer to line up the rear main bearing and crankshaft thrust surfaces.</td>
</tr>
<tr>
<td>- All main bearing caps to 95 N m (70 ft. lbs.).</td>
</tr>
</tbody>
</table>

Measure (Figure 30)

Crankshaft end play.

1. Tap the end the crankshaft first rearward then forward with a lead hammer. This will line up the rear main bearing and crankshaft thrust surfaces.

2. With the crankshaft forced forward, measure at the front end of the number three main bearing with a feeler gage (figure 30). The proper clearance is 0.06 to 0.21 mm.

Inspect

- Crankshaft for binding. Try turning the crankshaft to check for binding. If the crankshaft does not turn freely, loosen the main bearing cap bolts, one pair at a time, until the tight bearing is located. Burrs on the bearing cap, foreign matter between the insert and the block or the bearing cap, or a faulty insert could cause a lack of clearance at the bearing.

Figure 30—Measuring Crankshaft End Play

Figure 31—Installing the Crankshaft Oil Seal

REAR CRANKSHAFT OIL SEAL INSTALLATION

Install or Connect

Tool Required:

J 34686, Seal Installer

1. Light coat of oil to the inside diameter of the new seal.

2. New seal over the mandril of J 34686 until the dust lip (back of the seal) bottoms against the collar of the tool (figure 31).

3. J 34686 to the crankshaft by hand or torque the attaching screws to 4 N m (3 ft. lbs.).
 - Align the dowel pin of J 34686 with the dowel pin hole in the crankshaft.

4. Light coat of oil to the outside diameter of the seal.

5. Seal into the bore.
 - Turn the "T" handle of the tool so the collar pushes the seal into the bore.
 - Turn the handle until the collar of the tool is tight against the cylinder block to seat the seal properly.
 - Loosen the "T" handle until it comes to a stop.
 - Remove the attaching screws.
Figure 32—Replacing the Camshaft

CAMSHAFT, TIMING CHAIN AND SPROCKET INSTALLATION

1. Camshaft.
 - **Important**
 - All camshaft bearing journals are the same diameter and care must be exercised in installing the camshaft to avoid bearing damage.

2. Timing chain onto the sprocket.
 - Lubricate the thrust surface with “Molykote” or equivalent.

3. Sprocket onto the camshaft.
 - Hold the sprocket vertically with the chain hanging down and align the marks on the camshaft and crankshaft sprockets.
 - Align the dowel in the camshaft with the dowel hole in the sprocket.

4. Bolts (30).
 - Draw the camshaft sprocket onto the camshaft using the mounting bolts.

 Tighten
 - Bolts (30) to 23 N·m (17 ft. lbs.).

5. Chain damper (31).

 Tighten
 - Bolts (32) to 21 N·m (15 ft. lbs.).

FRONT COVER AND WATER PUMP INSTALLATION

1. Install or Connect (Figures 32 and 33)
 - Coat the camshaft lobes and journals with a high quality engine oil supplement (GM Engine Oil Supplement or equivalent).
 - When a new camshaft is installed, install new oil and filter. It is also recommended that all valve lifters be replaced to insure durability of the camshaft lobes and lifter feet.

 Important
 - Make sure all sealing surfaces are clean.
 - Take care not to damage sealing surfaces.
 - Lightly coat both sides of the lower 5 mm of the gasket with anaerobic sealant (GM Part No. 1052080 or equivalent).

2. Front cover.

3. Water pump.

4. Bolts and stud.

 Tighten
 - Bolts and stud to specification.

TORSIONAL DAMPER INSTALLATION

NOTICE: The inertial weight section of the torsional damper is assembled to the hub with a rubber sleeve. The installation procedure must be followed (with proper tools) or movement of the inertia weight section of the hub will destroy the tuning of the torsional damper and the engine timing reference.

Figure 33—Camshaft Timing Marks
The torsional damper has three timing notches on the inertia ring. The number one cylinder timing reference mark will be identified by a dab of white paint. If a new damper assembly is installed, mark the new assembly in the same place for future reference. Number one cylinder reference is the first clockwise mark from the keyway when viewing the engine from the front.

Install or Connect

Tool Required:
- J 29113, Torsional Damper Installer

1. Engine oil to the front cover seal contact area on the damper.
2. Sealant (GM Part No. 1052366 or equivalent) on the key and the keyway.
3. Damper over the key on the crankshaft.
4. Pull the damper onto the crankshaft.
 - Install J 29113 into the crankshaft so at least 6 mm (1/4-inch) of thread is engaged.
 - Pull damper into position and remove J 29113 from the damper.
5. Torsional damper retaining bolt.

Tighten

- Bolt to 95 N·m (75 ft. lbs.).
6. Drive pulley to the damper.

PISTON AND CONNECTING ROD INSTALLATION

CONNECTING ROD BEARING SELECTION

Connecting rod bearings are of the precision insert type and do not use shims for adjustment. DO NOT FILE RODS OR ROD CAPS. If clearances are excessive install a new bearing. Service bearings are available in standard size and 0.013 mm and 0.026 mm undersize for use with new and used standard size crankshafts.

Install or Connect

Tool Required:
- J 8037, Ring Compressor

1. Lubricate the cylinder walls lightly with engine oil.
2. Make sure the piston is installed in the proper cylinder with the notch forward.
3. Connecting rod bearing inserts.
 - Be certain that the inserts are of the proper size.
 - Install the inserts in the connecting rod and connecting rod cap.
4. Piston and connecting rod to the proper bore.
 - Install guide hose over the threads of the rod studs to prevent damage to the bearing journal and rod studs.
 - Locate the ring end gaps as shown in figure 34.
 - Lubricate the piston and rings with engine oil.
 - Without disturbing the ring end gap location, install J 8037 over the piston.
 - Use a hammer handle to tap the piston down into its matching bore (figure 35).
 - The notch in the piston crown must face the front of the engine.

![Figure 34—Piston Ring End Gap Location](image)

- While tapping the piston into its bore, guide the connecting rod into position on the crankpin. Hold the ring compressor against the block until all rings have entered the cylinder bore.

Important

- Each connecting rod and bearing cap should be marked, beginning at the front of the engine. Cylinders 2, 4, and 6 are the left bank and, 1, 3, and 5 are the right bank. The
numbers on the connecting rod and bearing cap must be on the same side when installed in the cylinder bore. If a connecting rod is ever transposed from one block or cylinder to another, new connecting rod bearings should be fitted and the connecting rod should be numbered to correspond with the new cylinder number.

3. Connecting rod cap with bearing insert.

Measure
- Connecting rod bearing clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

Tighten
- Connecting rod cap nuts to 53 N·m (39 ft. lbs.).

Measure
- Connecting rod side clearance (figure 36). The proper clearance is 0.16 to 0.64 mm.

OIL PUMP INSTALLATION

Install or Connect (Figure 37)
1. Pump and shaft with retainer to the rear main bearing cap.
 • Align the top end of the hexagon extension shaft with the hexagon socket on the lower end of the distributor drive gear.
2. Bolt (40).

Tighten
- Bolt to 41 N·m (30 ft. lbs.).

OIL PAN INSTALLATION

Clean
- Sealing surfaces on the engine and oil pan.

Install or Connect (Figure 38)

NOTICE: Before installing the oil pan, check that the sealing surfaces on the pan, cylinder case, and front cover are clean and free of oil. Make sure that all RTV is removed from blind attaching holes.

1. Gasket.
 • Apply sealer (GM Part No. 1052914 or equivalent) to the area shown in figure 38.
2. Oil pan to the cylinder block.
3. Reinforcement (37), nuts, bolts, and studs.

Tighten
- Bolts (36) to 25 N·m (18 ft. lbs.).
- Bolts and studs (35) and nuts (38) to 10 N·m (7 ft. lbs.).
Tighten

- All bolts to 55 N·m (40 ft. lbs.), using the sequence shown in figure 39.
- In sequence, tighten all bolts an additional 90 degrees (¼-turn).

VALVE TRAIN COMPONENT INSTALLATION

If lifter replacement is necessary, use new lifters with a narrow flat along the lower ⅛ of the body length. This provides additional oil to the cam lobe and lifter surfaces.

Important

- Replace all hydraulic lifters if a new camshaft was installed.

Install or Connect (Figure 40)

- Lubricate the hydraulic lifter bodies and feet with Engine Oil Supplement (GM Part No. 1051396 or equivalent).

1. Hydraulic lifters (10) to the block.
2. Pushrods (9).
 - Seat the pushrods into the socket in the hydraulic lifters.
 - Coat the mating surfaces of the rocker arms (7) and balls (8) with "Molykote" or equivalent.
3. Rocker arms.
4. Balls (8).
5. Nuts (6).
VALVE ADJUSTMENT

1. Crank the engine until the mark on the torsional damper lines up with the "O" mark on the timing tab and the engine in the number one firing position. This may be determined by placing fingers on the number one valve as the mark on the damper comes near the "O" mark on the timing tab. If the rocker arms are not moving, the engine is in the number one firing position. If the rocker arms move as the mark comes up to the timing tab, the engine is in the number four firing position and should be turned over one more time to reach the number one position.

2. With the engine in the number one firing position as determined above, the following valves may be adjusted:
 - Exhaust: 1, 2, 3
 - Intake: 1, 5, 6

 (Even numbered cylinders are in the left bank; odd numbered cylinders are in the right bank, when viewed from the rear of the engine).

3. Back out the adjusting nut until lash is felt at the pushrod then turn in the adjusting nut until all lash is removed. This can be determined by rotating the pushrod while turning the adjusting nut (figure 41). When the play has been removed, turn the adjusting nut in one and one-half additional turns (to center the lifter plunger).

4. Crank the engine one revolution until the timing tab "O" mark and vibration damper mark are again in alignment. This is the number four firing position. The following valves may be adjusted:
 - Exhaust: 4, 5, 6
 - Intake: 2, 3, 4

INTAKE MANIFOLD INSTALLATION

Install or Connect (Figure 42)
1. RTV to the front and rear sealing surfaces on the block. Apply a 5 mm (5/32-inch) bead of RTV (part number 1052917 or equivalent) to the front and rear of the block as shown.
 - Make sure that no oil or water is present on the surfaces to be sealed.

2. Gaskets to the cylinder head.
 - Gaskets are marked Right Side or Left Side. Use them only as indicated to maintain design efficiency of the engine.
 - Hold the gaskets in place by extending the bead of RTV 6 mm (1/4-inch) from the block sealing surfaces up onto the gasket ends.
 - The new gaskets will have to be cut where indicated to install behind the pushrods. Cut only the areas where necessary.

3. Intake manifold.
 - Make sure the areas between the case ridges and the intake manifold are completely sealed.

4. Intake manifold bolts and nuts.
 - Nuts and bolts to 31 N·m (23 ft. lbs.) in the sequence shown in figure 42. Then re-torque in the same sequence.

ROCKER ARM COVER INSTALLATION

Clean
- All traces of old gasket from the rocker arm cover and cylinder head.

Inspect
- Rocker arm cover sealing surfaces for distortion. Replace if necessary.

Install or Connect (Figure 43)
1. Rocker arm cover and gasket.
 - Apply a 5 mm (5/32-inch) dab of RTV sealant (GM Part No. 1052917 or equivalent) at the point where the inlet manifold meets the head.

2. Rocker arm cover nuts and reinforcements.
 - Nuts to 8 N·m (6 ft. lbs.).
EXHAUST MANIFOLD INSTALLATION

1. **Clean**
 - Mating surfaces of the manifold and cylinder head.

2. **Install or Connect (Figure 44)**
 1. Manifold.
 2. Bolts and studs.

3. **Tighten**
 - Bolts to 34 N·m (25 ft. lbs.).

EGR VALVE INSTALLATION

2. **Install or Connect (Figure 6)**
 1. Gasket (82).
 2. EGR valve (81).
 3. Bolts (80).

4. **Tighten**
 - Bolts to 25 N·m (18 ft. lbs.).
Figure 44—Exhaust Manifold Installation

AIR INJECTION TUBE INSTALLATION

Install or Connect (Figure 5)

1. Air injection tube (76).
2. Nut (75).

Tighten

- Air injection tube to 34 N·m (25 ft. lbs.).
- Nuts (75) to 25 N·m (18 ft. lbs.).

FLYWHEEL INSTALLATION

Install or Connect

1. Flywheel.
2. Retainer (automatic transmission only).

Tighten

- Bolts to 70 N·m (52 ft. lbs.).

ENGINE ACCESSORY INSTALLATION

Install the engine accessories (distributor, TBI unit, oil filter, generator, etc.) as directed in the proper Truck Service Manual. Connect all vacuum hoses and electrical equipment the same way as removed.

ENGINE SET-UP AND TESTING

1. After overhaul, the engine should be tested before installation in the vehicle. If a suitable test stand is not available, the following procedure can be used after the engine is installed in the vehicle.
2. Fill the crankcase with the proper quantity and grade of oil.
SPECIFICATIONS

ENGINE SPECIFICATIONS

All Specifications are in MILLIMETERS unless otherwise noted.

<table>
<thead>
<tr>
<th>GENERAL DATA:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Displacement</td>
</tr>
<tr>
<td>RPO</td>
</tr>
<tr>
<td>Bore</td>
</tr>
<tr>
<td>Stroke</td>
</tr>
<tr>
<td>Compression Ratio</td>
</tr>
<tr>
<td>Firing Order</td>
</tr>
<tr>
<td>Oil Pressure</td>
</tr>
<tr>
<td>(10 psi at 500 RPM; 30-55 psi at 2000 RPM)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CYLINDER BORE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
</tr>
<tr>
<td>Out Of Round</td>
</tr>
<tr>
<td>Taper—Thrust Side</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PISTON:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PISTON RING:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groove Clearance</td>
</tr>
<tr>
<td>Top</td>
</tr>
<tr>
<td>Second</td>
</tr>
<tr>
<td>Gap</td>
</tr>
<tr>
<td>Top</td>
</tr>
<tr>
<td>Second</td>
</tr>
<tr>
<td>Oil Groove Clearance</td>
</tr>
<tr>
<td>Gap</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PISTON PIN:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
</tr>
<tr>
<td>Clearance</td>
</tr>
<tr>
<td>Fit In Rod</td>
</tr>
</tbody>
</table>

F-05523
SPECIFICATIONS

ENGINE SPECIFICATIONS (CONT.)

All specifications are in MILLIMETERS unless otherwise noted.

CRANKSHAFT

<table>
<thead>
<tr>
<th>Main Journal</th>
<th>Diameter - 3 Dots</th>
<th>67.241-67.249</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diameter - 2 Dots</td>
<td>67.249-67.257</td>
</tr>
<tr>
<td></td>
<td>Diameter - 1 Dot</td>
<td>67.257-67.265</td>
</tr>
<tr>
<td>Taper</td>
<td>None</td>
<td>0.005 (Maximum)</td>
</tr>
<tr>
<td>Out of Round</td>
<td>None</td>
<td>0.005 (Maximum)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Main Bearing Clearance</th>
<th>0.041-0.081</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crankshaft End Play</td>
<td>0.06-0.21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crankpin</th>
<th>Diameter — 2 Dots</th>
<th>50.758-50.771</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diameter — 1 Dot</td>
<td>50.771-50.784</td>
</tr>
<tr>
<td>Taper</td>
<td>None</td>
<td>0.005 (Maximum)</td>
</tr>
<tr>
<td>Out of Round</td>
<td>None</td>
<td>0.005 (Maximum)</td>
</tr>
</tbody>
</table>

| Rod Bearing Clearance | 0.035-0.095 |
| Rod Side Clearance | 0.16-0.64 |

CAMSHAFT:

<table>
<thead>
<tr>
<th>Lift</th>
<th>Intake</th>
<th>6.65</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exhaust</td>
<td>6.94</td>
</tr>
</tbody>
</table>

| Journal Diameter | 47.44-47.49 |
| Journal Clearance| 0.026-0.101 |

VALVE SYSTEM:

<table>
<thead>
<tr>
<th>Lifter</th>
<th>Hydraulic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocker Arm Ratio</td>
<td>1.50:1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valve Lash</th>
<th>Intake</th>
<th>One And One Half Turns Down From Zero Lash</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exhaust</td>
<td></td>
</tr>
</tbody>
</table>

Face Angle (Intake & Exhaust)	45°	
Seat Angle (Intake & Exhaust)	46°	
Seat Runout (Intake & Exhaust)	0.05	
Seat Width	Intake	1.25-1.50
	Exhaust	1.60-1.90
Stem Clearance	0.026-0.068	

<table>
<thead>
<tr>
<th>Valve Spring</th>
<th>Free Length</th>
<th>48.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>Closed</td>
<td>391 @ 40</td>
</tr>
<tr>
<td>N @ mm</td>
<td>Open</td>
<td>867 @ 30</td>
</tr>
<tr>
<td>Installed height</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valve Spring</th>
<th>Free Length</th>
<th>47.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approx. # of Coils</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

F-05525
SPECIFICATIONS (CONT.)

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocker Arm Cover Bolts</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Intake Manifold Bolts</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Exhaust Manifold Bolts</td>
<td>34</td>
<td>25</td>
</tr>
<tr>
<td>Cylinder Head Bolts</td>
<td>95</td>
<td>70</td>
</tr>
<tr>
<td>Torsional Damper Bolt</td>
<td>95</td>
<td>70</td>
</tr>
<tr>
<td>Timing Chain Damper</td>
<td>21</td>
<td>15</td>
</tr>
<tr>
<td>Front Cover Bolt</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>Oil Pan Bolts (Rear Two)</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>Oil Pan Bolts, Studs and Nuts</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Oil Pump Bolt</td>
<td>41</td>
<td>30</td>
</tr>
<tr>
<td>Camshaft Sprocket Bolts</td>
<td>23</td>
<td>17</td>
</tr>
<tr>
<td>Connecting Rod Cap Nuts</td>
<td>53</td>
<td>39</td>
</tr>
<tr>
<td>Oil Filter Adapter</td>
<td>85</td>
<td>63</td>
</tr>
<tr>
<td>Main Bearing Cap Bolts</td>
<td>95</td>
<td>70</td>
</tr>
<tr>
<td>Flywheel Bolts</td>
<td>70</td>
<td>52</td>
</tr>
<tr>
<td>Spark Plugs</td>
<td>30</td>
<td>22</td>
</tr>
<tr>
<td>Water Outlet Bolts</td>
<td>21</td>
<td>15</td>
</tr>
<tr>
<td>Water Pump Nut</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Water Pump Bolt (M6 x 1.0)</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Water Pump Bolts (M8 x 1.25)</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>EGR Valve</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>Oil Pump Cover Screws</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Rocker Arm Studs</td>
<td>65</td>
<td>48</td>
</tr>
<tr>
<td>Air Injection Tube</td>
<td>34</td>
<td>25</td>
</tr>
<tr>
<td>Air Injection Tube Nut</td>
<td>25</td>
<td>18</td>
</tr>
</tbody>
</table>
SPECIAL TOOLS

1. Hydraulic Lifter Remover (Plier Type)
2. Crankshaft Sprocket Installer
3. Crankshaft Sprocket Puller
4. Valve Spring Compressor
5. Ring Compressor
6. Main Bearing Remover/Installer
7. Pick-up Tube and Screen Installer
8. Hydraulic Lifter Remover (Slide Hammer Type)
9. Puller
10. Puller
11. Torsional Damper Installer
12. Seal Installer
13. Seal Installer

F-04357
6A2-32 2.8 LITER V-6
SUBJECT PAGE

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>6A3-2</td>
</tr>
<tr>
<td>Engine Lubrication</td>
<td>6A3-2</td>
</tr>
<tr>
<td>Disassembly</td>
<td>6A3-5</td>
</tr>
<tr>
<td>Tools and Shop Equipment</td>
<td>6A3-5</td>
</tr>
<tr>
<td>Accessory Removal</td>
<td>6A3-5</td>
</tr>
<tr>
<td>Cleaning</td>
<td>6A3-5</td>
</tr>
<tr>
<td>Draining The Engine</td>
<td>6A3-5</td>
</tr>
<tr>
<td>EGR Valve Removal</td>
<td>6A3-5</td>
</tr>
<tr>
<td>Exhaust Manifold Removal</td>
<td>6A3-5</td>
</tr>
<tr>
<td>Rocker Arm Cover Removal</td>
<td>6A3-6</td>
</tr>
<tr>
<td>Intake Manifold Removal</td>
<td>6A3-6</td>
</tr>
<tr>
<td>Valve Train Component Removal</td>
<td>6A3-6</td>
</tr>
<tr>
<td>Cylinder Head Removal</td>
<td>6A3-7</td>
</tr>
<tr>
<td>Torsional Damper Removal</td>
<td>6A3-7</td>
</tr>
<tr>
<td>Oil Pan Removal</td>
<td>6A3-7</td>
</tr>
<tr>
<td>Front Cover Removal</td>
<td>6A3-7</td>
</tr>
<tr>
<td>Camshaft Removal</td>
<td>6A3-7</td>
</tr>
<tr>
<td>Piston and Connecting Rod Removal</td>
<td>6A3-7</td>
</tr>
<tr>
<td>Flywheel Removal</td>
<td>6A3-8</td>
</tr>
<tr>
<td>Rear Crankshaft Oil Seal Removal</td>
<td>6A3-9</td>
</tr>
<tr>
<td>Rear Crankshaft Oil Seal Retainer Removal</td>
<td>6A3-9</td>
</tr>
<tr>
<td>Crankshaft Removal</td>
<td>6A3-9</td>
</tr>
<tr>
<td>Main Bearing Removal (Without Removing Crankshaft)</td>
<td>6A3-10</td>
</tr>
<tr>
<td>Cleaning, Inspection, and Repair</td>
<td>6A3-10</td>
</tr>
<tr>
<td>Block</td>
<td>6A3-10</td>
</tr>
<tr>
<td>Piston and Connecting Rod Assembly</td>
<td>6A3-10</td>
</tr>
<tr>
<td>Intake and Exhaust Manifolds</td>
<td>6A3-11</td>
</tr>
<tr>
<td>Camshaft</td>
<td>6A3-11</td>
</tr>
<tr>
<td>Camshaft Bearings</td>
<td>6A3-11</td>
</tr>
<tr>
<td>Timing Chain and Sprockets</td>
<td>6A3-11</td>
</tr>
<tr>
<td>Front Cover</td>
<td>6A3-12</td>
</tr>
<tr>
<td>Water Pump</td>
<td>6A3-12</td>
</tr>
<tr>
<td>Oil Pan and Rocker Arm Covers</td>
<td>6A3-12</td>
</tr>
<tr>
<td>Oil Pump</td>
<td>6A3-12</td>
</tr>
<tr>
<td>Valve Train Components</td>
<td>6A3-13</td>
</tr>
<tr>
<td>Hydraulic Lifters</td>
<td>6A3-13</td>
</tr>
<tr>
<td>Cylinder Head</td>
<td>6A3-13</td>
</tr>
<tr>
<td>Thermostat and Water Outlet</td>
<td>6A3-16</td>
</tr>
<tr>
<td>Crankshaft and Bearings</td>
<td>6A3-16</td>
</tr>
<tr>
<td>Assembly of Engine</td>
<td>6A3-17</td>
</tr>
<tr>
<td>Prior to Assembly</td>
<td>6A3-17</td>
</tr>
<tr>
<td>Crankshaft and Main Bearing Installation</td>
<td>6A3-17</td>
</tr>
<tr>
<td>Rear Crankshaft Oil Seal Retainer Installation</td>
<td>6A3-17</td>
</tr>
<tr>
<td>Rear Crankshaft Oil Seal Installation</td>
<td>6A3-18</td>
</tr>
<tr>
<td>Camshaft, Timing Chain and Sprocket Installation</td>
<td>6A3-18</td>
</tr>
</tbody>
</table>
DESCRIPTION

GM 4.3L engines are 90-degree V6 type, overhead valve, water cooled, with cast iron block and heads.

The crankshaft is supported by four precision insert main bearings, with crankshaft thrust taken at the number four (rear) bearing.

The camshaft is supported by four plain type bearings and is chain driven. Motion from the camshaft is transmitted to the valves by hydraulic lifters, pushrods, and ball type rocker arms. The valve guides are integral in the cylinder head.

The connecting rods are forged steel, with precision insert type crankpin bearings. The piston pins are a press fit in the connecting rods.

The pistons are cast aluminum alloy. The piston pins are a floating fit in the piston.

For identification, refer to GENERAL INFORMATION (SEC. OB).

ENGINE LUBRICATION

Lubrication schematics are shown in figures 1 and 2. The gear type oil pump is driven from the distributor shaft, which is gear driven from the camshaft. Oil is drawn into the oil pump through a pickup screen and pipe.

Pressurized oil is routed to the oil filter. In case of excessive oil pressure, a bypass valve is provided. Filtered oil flows into the main gallery and then to the camshaft and crankshaft bearings. The valve lifter oil gallery supplies oil to the valve lifters. Oil flows from the hydraulic lifters through the hollow pushrods to the rocker arms. Oil from the overhead drains back to the crankcase through oil drain holes.

The timing chain is drip fed from the front camshaft bearing. The pistons and piston pins are lubricated by oil splash.
Figure 1—Engine Lubrication Diagram
Figure 2—Engine Lubrication Diagram

A. Regulator Valve (Shown In Open Position)
B. Suction
C. Oil Pressure Switch
D. Valve Lifter Gallery
E. Main Oil Gallery
F. Bypass Valve
DISASSEMBLY

Cooling Fan
Distributor
Carburetor
TBI Unit

It is beyond the scope of this section to detail the many different accessory installations. Refer to the proper Truck Service Manual for this information.

Diagrams of emission and vacuum hose routings, wiring harness routing, accessory drive belt layout, etc., should be made before removing accessories.

CLEANING

Remove the engine accessories before cleaning, to provide better access to engine exterior surfaces. After removing the carburetor, TBI unit, distributor, fuel pump, etc., cover the openings with tape to prevent the entry of water, solvent and dirt.

Methods used to clean the engine will depend on the aids which are available. Steam cleaning, pressure washing, or solvent cleaning are some acceptable methods. Allow the engine to dry before beginning the work.

It is important that the engine be as clean as possible to prevent dirt from entering critical areas during disassembly.

DRAINING THE ENGINE

Remove or Disconnect
1. Oil pan plug and allow the oil pan to drain.
2. Oil filter.
3. Block drains and allow the coolant to drain.

Install or Connect
1. Oil pan plug and washer.
2. Block drain plugs.

 Tighten
* Block drain plugs to 14 N·m (10 ft. lbs.).

EGR VALVE REMOVAL

Remove or Disconnect
1. Bolts.
2. EGR valve.

EXHAUST MANIFOLD REMOVAL

Remove or Disconnect
1. Exhaust manifold bolts, washers, and tab washers.
2. Heat shield (if equipped).
3. Exhaust manifold.

ACCESSORY REMOVAL

This manual assumes that the engine accessories have been removed. These accessories may include one or more of the following:
- Hydraulic Pump
- AIR Pump
- Generator
- Air Conditioning Compressor

Figure 3—Rocker Arm Cover Installation

TOOLS AND SHOP EQUIPMENT

A clean, well lit work area should be available. Other necessary equipment includes: A suitable parts cleaning tank, compressed air supply, trays to keep parts and fasteners organized, and an adequate set of hand tools.

An approved engine repair stand will aid the work and help prevent personal injury or damage to engine components.

Special tools are illustrated throughout this section, and are listed at its end. These tools (or their equivalents) are specially designed to quickly and safely accomplish the operations for which they are intended. The use of these tools will also minimize possible damage to engine components.

Some precision measuring tools are required for inspection of certain critical components. Torque wrenches will be necessary for correct assembly of various parts.
ROCKER ARM COVER REMOVAL

去除或断开（图3）
1. 摇臂盖的螺栓。
2. 摇臂盖和密封圈。

INTAKE MANIFOLD REMOVAL

去除或断开
1. 进气歧管的螺栓。
2. 进气歧管和密封圈。

VALVE TRAIN COMPONENT REMOVAL

去除或断开（图4）
1. 摇臂螺母、球、摇臂和推杆。

重要
- 将使用的部件按顺序保存，以便能够重新安装在相同的位置。
2. 螺栓（40）。
3. 螺栓（41）与限制器（46）。
4. 液压挺柱。
 - 按顺序从它们被移除的同一气缸孔中安装挺柱。
CYLINDER HEAD REMOVAL

Remove or Disconnect
1. Spark plugs.
2. Cylinder head bolts.
3. Cylinder heads.
4. Head gaskets.

TORSIONAL DAMPER REMOVAL

Remove or Disconnect (Figure 5)
Tool Required:
J 23523-E, Torsional Damper Puller and Installer
1. Torsional damper bolt.
2. Torsional damper using J 23523-E.
3. Crankshaft key (if necessary).

OIL PAN REMOVAL

Remove or Disconnect (Figure 6)
1. Oil pan bolts, nuts, and reinforcements.
2. Oil pan and gasket.

OIL PUMP REMOVAL

Remove or Disconnect
1. Oil pump to main bearing cap bolt.
2. Oil pump.

FRONT COVER REMOVAL

Remove or Disconnect
1. Front cover bolts and reinforcements.
2. Front cover.
3. Front cover to block gasket.

CAMSHAFT REMOVAL

Remove or Disconnect (Figures 7 and 8)
1. Camshaft sprocket bolts.
2. Camshaft sprocket and timing chain. The sprocket is a light interference fit on the camshaft. Tap the sprocket on its lower edge to loosen it.
3. Screws (88) and thrust plate (87).

- Install two or three 9/16-18 inch bolts 100-125 mm (4-5 inches) long into the camshaft threaded holes. Use these bolts to handle the camshaft (figure 8).
- Pull the camshaft from the block. Use care to prevent damage to the camshaft bearings.
PISTON AND CONNECTING ROD REMOVAL

++ Remove or Disconnect (Figures 9 and 10)

Tool Required:
J 5239, Guide Set.

1. Ridge or deposits from the upper end of the cylinder bores.
 • Turn the crankshaft until the piston is at BDC.
 • Place a cloth on top of the piston.
 • Perform the cutting operation with a ridge reamer (figure 9).
 • Turn the crankshaft until the piston is at TDC.
 • Remove the cloth and cuttings.
 • Mark the cylinder number on all pistons, connecting rods, and caps. Starting at the front, the cylinders on the left bank are numbered 1-3-5 and the right bank is numbered 2-4-6.

2. Connecting rod cap. Check the connecting rod and cap for identification marks. Mark the parts if required. The connecting rod and cap must be kept together as mating parts.

3. Connecting rod and piston.
 • Attach J 5239 to the connecting rod bolts (figure 10).
 • Use the long guide rod of J 5239 to push the connecting rod and piston out of the bore.

Figure 7—Camshaft and Components

Figure 8—Replacing the Camshaft

Figure 9—Removing the Cylinder Ridge
FLYWHEEL REMOVAL

++ Remove or Disconnect
1. Flywheel bolts.
2. Flywheel.

REAR CRANKSHAFT OIL SEAL REMOVAL

++ Remove or Disconnect

NOTICE: Care should be taken when removing the rear crankshaft oil seal so as not to nick the crankshaft sealing surface.

- Rear crankshaft oil seal. Insert a screwdriver into the notches provided in the seal retainer and pry the seal out (figure 11).

REAR CRANKSHAFT OIL SEAL RETAINER REMOVAL

++ Remove or Disconnect (Figure 12)
1. Screws (81).
2. Seal retainer (82).
3. Gasket (84).

CRANKSHAFT REMOVAL

++ Remove or Disconnect
- Check the main bearing clearance before removing the crankshaft. Refer to “Crankshaft and Main Bearing Installation” later in this section.
- The main bearings and rear oil seal can be replaced without removing the crankshaft as outlined later in this section.

1. Main bearing cap bolts.
2. Main bearing caps.
3. Crankshaft from the cylinder block.
 - Lift the crankshaft straight up, taking care to avoid damage to the crankshaft journals and thrust flange surfaces.
MAIN BEARING REMOVAL
(WITHOUT REMOVING CRANKSHAFT)

++ Remove or Disconnect
Tool Required:
J 8080, Main Bearing Remover/Installer
1. Main bearing caps.
 • Check the main bearing caps for location markings. Mark the caps if necessary. The caps must be returned to their original locations during assembly.
2. Lower main bearing inserts from the main bearing caps.
3. Upper main bearing inserts.
 • Insert J 8080 into the crankshaft oil hole (figure 13).
 • Rotate the crankshaft to turn the bearing insert out of the block.

CLEANING, INSPECTION, AND REPAIR

A solvent tank, large enough to hold the larger engine parts, will be needed along with various bristle brushes and a gasket scraper. A source of compressed air will be helpful in the cleaning operations.

Precision measuring tools will be required for the inspection procedure. These include: micrometers, cylinder bore gages, feeler gages, dial indicator set, etc. The inspection work, performed with the proper method and tools, is most important. The rebuilt engine cannot be expected to perform properly if parts worn beyond acceptable limits are reused.

BLOCK

Clean
1. Block in solvent.
2. Block gasket surfaces.
3. Cylinder bores.
4. Oil galleries and passages.
5. Scale deposits from the coolant passages.

Inspect
1. All expansion plugs for lack of fit or leakage.
2. Valve lifter bores for deep scratches and varnish deposits.
3. Block for cracks.
 • Cylinder walls.
 • Coolant jackets.
 • Main bearing webs.
 • Engine mount bosses.
4. Main bearing bores and main bearing caps.
 • All main bearing bores should be rounded and uniform in ID at all bearing supports.
 • The area where the main bearing inserts contact the main bearing bore should be smooth.
 — If a main bearing cap is damaged and requires replacement, replace it.
5. Head gasket surface for flatness. Use a straightedge and feeler gage. Minor irregularities may be carefully machined. If more than 0.25 mm (0.010-inch) must be removed, replace the block.
6. Oil pan rail and timing cover attaching area for nicks. Minor irregularities may be cleaned up with a flat file.

CYLINDER BORE

Inspect
• Cylinder bores for scoring or other damage.

Measure
• Cylinder bore taper and out-of-round. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

CYLINDER BORE RECONDITIONING
Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

PISTON AND CONNECTING ROD ASSEMBLY

Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) and perform the following:

Disassemble
• Components as required.

Clean
• Components as outlined.

Inspect
• Components as outlined.
Measure
- Piston pin diameter and clearance.
- Piston to bore clearance, and fit pistons as outlined.

Assemble
- Components as outlined.

Important
- Each connecting rod and bearing cap should be marked, beginning at the front of the engine. Cylinders 1, 3 and 5 are at the left bank, and 2, 4 and 6 are the right bank. The numbers on the connecting rod and bearing cap must be on the same side when installed in the cylinder bore. If a connecting rod is ever transposed from block or cylinder to another, new connecting rod bearings should be fitted and the connecting rod should be numbered to correspond with the new cylinder number.

Measure
- Ring end gap and ring clearance.

Inspect
- Ring fit.

INTAKE AND EXHAUST MANIFOLDS

Clean
- Old pieces of gasket from the gasket surfaces.
- Excessive carbon build-up in the exhaust passages of the intake manifold.
- Scale and deposits from the coolant passages of the intake manifold.
- EGR passage of excessive carbon deposits.

Inspect (Figure 14)
- Manifolds for cracks, broken flanges, and gasket surface damage.

CAMSHAFT

Important
- Whenever the camshaft needs to be replaced, a new set of lifters must also be installed.

Inspect
- Camshaft lobes and journals for scratches, pitting, scoring, and wear.

Measure
- Camshaft journal diameter (figure 15). The proper diameter is listed in "Specifications."

CAMSHAFT BEARINGS
Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) for replacement procedures.

TIMING CHAIN AND SPROCKETS

Inspect
- Sprockets for chipped teeth and wear.
- Timing chain for damage.
- It should be noted that excessively worn sprockets will rapidly wear a new chain. Likewise, an excessively worn chain will rapidly wear a new set of sprockets.

CRANKSHAFT SPROCKET REPLACEMENT

Remove or Disconnect (Figure 16)
Tool Required:
- J 5825-A Crankshaft Sprocket Puller
 1. Crankshaft sprocket using J 5825-A.
 2. Key (if necessary).
Install or Connect
Tool Required:
J 35468, Seal Installer
• New seal so that the open end of the seal is toward the inside of the cover.
 — Drive the seal into position with J 35468.
 — Support the cover at the seal area.
• Lubricate the seal with engine oil before installing the torsional damper.

WATER PUMP

Clean
• Old gasket from the gasket surface.

Important
• Do not immerse the pump in solvent. The solvent may enter the pump's permanently lubricated bearings, dissolve the bearings, lubricant supply, and cause premature bearing failure.

Inspect
• Water pump shaft for roughness and end play. If the shaft does not turn smoothly, or if there is excessive end play, replace the water pump.
• Water pump body at the drain hole. If there is evidence of coolant leakage, the water pump shaft seal is leaking and the water pump should be replaced.

OIL PAN AND ROCKER ARM COVERS

Clean
• Parts in solvent. Remove all sludge and varnish.
• Old gaskets from the gasket surfaces.

Inspect
• Gasket flanges for bending or damage.
• Rubber grommets and parts on the rocker arm cover for deterioration.
• Oil pan for rock damage or cracks.
• Oil pan baffle for lack of fit.
• Drain plug threads for stripping.

OIL PUMP

Remove or Disconnect (Figure 17)
1. Pump cover attaching bolts (9) and the pump cover (5).
• Mark the teeth so the pump gears can be installed with the same gear teeth indexed.
2. Idler gear (4), drive gear (3), and shaft and retainer (1) from the pump body.
3. Pressure relief valve retaining pin (8).
4. Spring (7) and pressure relief valve (6).
5. Pickup screen and pipe.
 • Do not remove the pickup screen and pipe unless replacement is required.
4.3 LITER V-6 6A3-13

Figure 17—Oil Pump Components

1. Shaft Extension
2. Pump Body
3. Drive Gear and Shaft
4. Idler Gear
5. Pump Cover
6. Pressure Regulator Valve
7. Pressure Regulator Spring
8. Retaining Pin
9. Screws
10. Pickup Screen and Pipe

Figure 17—Oil Pump Components

- The pickup pipe is a press fit in the pump body.
- Do not try to remove the screen from the pipe. The pickup screen and pipe is serviced as an assembly only.

Clean
- All parts in clean solvent and blow dry with compressed air.

Inspect (Figure 17)
- Pump body (2) and cover (5) for cracks or other damage.
- Gears (3 and 4) for wear.
- Drive gear and shaft (3) for lack of fit in the pump body (2).
- Inside of the cover (5) for wear that would permit oil to leak past the ends of the gears. The pump gears, cover, and body are not serviced separately. If the parts are damaged or worn, replace the entire oil pump assembly.
- Pickup screen and pipe (10) for damage to the screen, pipe or relief grommet.
- Pressure relief valve (6) for fit. The regulator valve should slide freely in its bore without sticking or binding.

Install or Connect (Figure 17)

Tool Required:
- J 21882, Pickup Tube and Screen Installer
1. Pressure regulator valve.
2. Spring.
3. Spring retaining pin.
4. Drive gear and shaft.
5. Idler gear.
 - Index the marks made during disassembly.
6. Cover and screws.

Tighten
- Screws to 5.0 N-m (84 in. lbs.).
- Turn the drive shaft by hand to check for smooth operation.

NOTICE: Be careful of twisting, shearing or collapsing the pipe while installing the pump.

7. Pickup screen and pipe (if removed) (figure 18).
 - If the pickup screen and pipe assembly was removed, it should be replaced with a new part. Loss of press fit condition could result in an air leak and loss of oil pressure.
 - Mount the oil pump in a soft jawed vise.
 - Apply sealer to the end of the pipe.
 - Tap the pickup screen and pipe into place, using J 21882 and a hammer.
 - The pump screen must be parallel with the bottom of the oil pan when installed.

8. Oil pump drive shaft and connector (1).

VALVE TRAIN COMPONENTS

PUSHRODS, ROCKER ARMS, BALLS, AND NUTS

Clean
- Parts in solvent. Blow dry with compressed air.
- Make sure the oil passages in the pushrods are clear.

Inspect
- Rocker arms and balls at their mating surfaces. These surfaces should be smooth and free from scoring or other damage.
- Rocker arm areas which contact the valve stems and the sockets which contact the pushrods. These areas should be smooth and free of damage and wear.
- Rocker arm nuts.
- Pushrods for bending. Roll the pushrod on a flat surface to determine if it is bent. Replace if necessary.
- Pushrod ends for scoring or roughness.

HYDRAULIC LIFTERS
Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

CYLINDER HEAD

Remove or Disconnect (Figures 19 and 20)

Tool Required:
- J 8062, Valve Spring Compressor
1. Valve keepers (20).
 - Compress the springs with J 8062 (figure 20).
 - Remove the keepers.
 - Remove J 8062.
2. Cap (21), shield (22), seal (24), and damper (25), and spring (26) (intake valve).
3. Rotator (28), shield (22), seal (24), and damper (25), and spring (26) (exhaust valve).
4. O-ring seals (23).
5. Valves (27 and 29).
 - Place the valves in a rack so they can be returned to their original position at assembly.
CLEANING AND INSPECTION OF COMPONENTS
Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) and perform the following.

Clean
- Components as outlined.

Inspect
- Components as outlined.

Measure
- Valve stem clearance.
- Valve spring tension and free length.
Other information outlined includes:
- Valve and seat grinding.
- Valve guide reaming.

ROCKER ARM STUD REPLACEMENT

Remove or Disconnect (Figure 21)
Tool Required:
J 5802-01, Rocker Arm Stud Remover

Figure 18—Installing the Oil Pump Screen

Figure 19—Valves and Components

Figure 20—Compressing the Valve Springs

Figure 21—Removing the Rocker Arm Stud
Rocker arm stud.
• Place J 5802-01 over the rocker arm stud.
• Install a nut and flat washer.
• Turn the nut to remove the stud.

Install or Connect (Figure 22)

Tools Required:
- J 5715, Reamer (0.003-inch oversize)
- J 6036, Reamer (0.013-inch oversize)
- J 6880, Rocker Arm Stud Installer

NOTICE: Do not attempt to install an oversize rocker arm stud without reaming the stud hole as this could damage the cylinder head.

• Ream the hole to the proper size for the replacement oversize rocker arm stud. Use J 5715 for 0.003-inch oversize studs; J 6036 for 0.013-inch oversize stud (figure 23).
• Coat lower end (press-fit area) of rocker arm stud with hypoid axle lubricant.
• Rocker arm stud. Use J 6880 (figure 22). Stud is installed to proper depth when the tool bottoms on the cylinder head.

ASSEMBLY

Install or Connect (Figures 19, 20, and 24)

Tools Required:
- J 8062, Valve Spring Compressor
- J 23738-A, Vacuum Pump

Figure 23—Reaming the Rocker Arm Stud Bore

1. Valves (27 and 29).
 • Lubricate the valve stems with engine oil.
 • Insert the valves into the proper seats.
2. Seal (24) (intake valve only).
 • Install the seal over the valve stem and seat it against the head.
3. Springs and dampers.
4. Shields (22).
5. Cap (21) or rotator (28).
6. O-ring seals (23) and valve keepers (20).

Figure 24—Checking the Valve Seals
• Compress the valve spring using J 8062 (figure 20). Compress the spring enough so the lower valve stem groove can be seen clearly.
• Push a new O-ring seal (23) onto the valve stem. The seal is to be installed on the stem's lower groove. Make sure the seal is flat and not twisted.
• Apply a small amount of grease to the area of the upper valve stem groove. Assemble the two valve keepers using the grease to hold the keys in place. Make sure the keepers seat properly in the groove.
• Release the compressor tool. Make sure the valve keepers stay in place.
• Repeat the preceding steps on the remaining valves.
• Check each O-ring seal for leakage (figure 24).
 • Place the suction cup supplied with J 23738-A over the shield.
 • Connect J 23738-A to the suction cup and apply a vacuum. Watch the vacuum pump gage. No air should be able to leak past the seal. If the seal will not hold a vacuum, it may have been damaged or improperly installed.

Measure
• Valve spring installed height of each spring as follows.
 1. Use a narrow thin scale. A cutaway scale may be helpful.
 2. Measure from the top of the shim or the spring to the top of the shield.
 3. If this measurement exceeds the figure given in “Specifications,” install valve spring seat shims approximately 1.6 mm (1/16-inch) thick (between the spring and cylinder head). NEVER shim the spring so as to give an installed height under the specified figure.

THERMOSTAT AND WATER OUTLET

Remove or Disconnect
1. Bolts.
2. Water outlet.
4. Thermostat.

Inspect
• Water outlet for cracks.

Install or Connect
1. Thermostat.
2. New gasket.
3. Water outlet.
4. Bolts.

Tighten
• Bolts to 28 N·m (21 ft. lbs.).

CRANKSHAFT AND BEARINGS

Clean
• Crankshaft with solvent.
 — Do not scratch the bearing journals.
 — Blow all sludge from the oil passages with compressed air.
• Main bearing inserts. Wipe free of oil with a soft cloth.

Inspect
• Crankshaft for cracks. Use the magnaflux method, if available.
• Crankpins, main bearing journals and thrust surfaces for scoring, nicks, or damage caused by lack of lubrication.
• Main bearing inserts for scoring or other damage. In general, the lower inserts (except the #1 bearing), show greater wear and the most distress from fatigue. If, upon inspection, the lower insert is suitable for use, it can be assumed that the upper insert is also satisfactory. If the lower insert shows evidence of wear or damage, both the upper and lower inserts must be replaced.

Measure
• Main bearing and connecting rod journal diameters (figure 25). Compare with “Specifications.” Grind or replace the crankshaft if necessary.
• Main bearing and connecting rod journals for taper and out-of-round (figure 25). If the journals are tapered more than 0.001-inch or out-of-round more than 0.002-inch, grind or replace the crankshaft.
• Crankshaft run-out.
 • Mount the crankshaft in V-blocks or between centers.
 • Use a dial indicator.
 • If the main journals are misaligned, the crankshaft is bent and must be replaced, along with the main bearing.
ASSEMBLY OF ENGINE

PRIOR TO ASSEMBLY

The importance of cleanliness during the assembly procedure cannot be overstressed. Dirt will cause premature wear of the rebuilt engine.

Lubricate all moving parts lightly with engine oil or engine assembly lubricant (unless specified otherwise) during assembly. This will provide initial lubrication when the engine is started.

CRANKSHAFT AND MAIN BEARING INSTALLATION

Main bearings are of the precision insert type and do not use shims for adjustment. If clearances are excessive, a new bearing plus both upper and lower inserts will be required. Service bearings are available in standard size and 0.001-inch, 0.002-inch, 0.009-inch, 0.010-inch, and 0.020-inch undersize.

Selective fitting of both rod and main bearing inserts is necessary in production to obtain close tolerances. For this reason you may find one half of a standard insert with one half of a 0.001-inch undersize insert which will decrease the clearance 0.0005-inch from using a full standard bearing.

Some engines may have rear main bearings that are 0.008-inch wider than standard across the thrust faces.

• The crankshaft on these engines can be identified by " .008" stamped on the rear counterweight.
• If the rear main bearings are replaced, they must have the proper distance between thrust faces to obtain proper crankshaft end play.

Install or Connect

1. Upper main bearing inserts to the block.
 • If any undersized bearings are used, make sure they are fitted to the proper journals.

2. Crankshaft.

3. Lower main bearing inserts to the main bearing caps.
 • Main bearing clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).
 • Apply engine oil to the main bearing inserts.

4. Main bearing caps (except rear cap) and bolts to the block.
 • Main bearing cap bolts to 100 N m (75 ft. lbs.).

5. Rear main bearing cap.
 • Apply engine oil to the bearing inserts.

6. Rear main bearing cap bolts.
 • Bolts to 14 N m (10 ft. lbs.).

REAR CRANKSHAFT OIL SEAL RETAINER INSTALLATION

Clean

• Gasket surfaces on the block and seal retainer.

Install or Connect (Figure 27)

1. New gasket (84) to the block.
 • It is not necessary to use sealant to hold the gasket in place.
A. Rear of Block
80. Screw
81. Nut
82. Retainer
83. Stud
84. Gasket

Figure 27—Rear Crankshaft Oil Seal Retainer Installation

2. Seal retainer (82).
3. Screws (80) and nuts (81).

 Tighten
- Screws and nuts to 15.3 N·m (135 in. lbs.).

REAR CRANKSHAFT OIL SEAL INSTALLATION

Install or Connect (Figure 28)

Tool Required:
J 35621 Seal Installer
- Rear crankshaft oil seal.
 - Lubricate the inner and outer diameter of the seal with engine oil.
 - Install the seal on J 35621.
 - Position J 35621 against the crankshaft. Thread the attaching screws into the tapped holes in the crankshaft.

 Tighten
- Screws to 11.9 N·m (105 in. lbs.).

FRONT COVER INSTALLATION

Install or Connect
1. Front cover gasket to the front cover.
 - Use gasket cement to hold the gasket in place.
2. Front cover to the engine.
3. Front cover bolts and reinforcements.

 Tighten
- Front cover to block bolts to 13.6 N·m (120 in. lbs.).

TORSIONAL DAMPER INSTALLATION

Install or Connect (Figure 32)

Tool Required:
J 23523-E, Torsional Damper Puller and Installer
1. Crankshaft key (if removed).
Figure 29—Camshaft and Components

NOTICE: The inertia weight section of the torsional damper is assembled to the hub with rubber type material. The correct installation procedures (with the proper tool) must be followed or movement of the inertia weight section of the hub will destroy the tuning of the torsional damper.

2. Stud (item A, figure 32) to the crankshaft. Thread the stud fully into the tapped hole in the crankshaft.

Figure 30—Installing the Camshaft

Figure 31—Timing Marks

Figure 32—Installing the Torsional Damper
D. Oil Ring Spacer Gap
 (Tang In Hole Or Slot With Arc)

E. Top Compression Ring Gap

Figure 33—Piston Ring End Gap Locations

3. Torsional damper over the end of the stud. Align the keyway in the torsional damper shaft with the crankshaft key.
4. Bearing, washer and nut (figure 28).
 • Turn the nut to pull the vibration damper into place.
 • Remove the tool.
5. Torsional damper bolt and washer.

Tighten
 • Bolt to 95 N m (70 ft. lbs.).

PISTON AND CONNECTING ROD INSTALLATION

CONNECTING ROD BEARING SELECTION
Connecting rod bearings are of the precision insert type and do not use shims for adjustment. DO NOT FILE RODS OR ROD CAPS. If clearances are excessive install a new bearing. Service bearings are available in standard size and 0.0014 mm undersize for use with new and used standard size crankshafts.

Install or Connect (Figures 33 through 35)

Tools Required:
 J 5239, Connecting Rod Guide Set
 J 8037, Ring Compressor

• Lubricate the cylinder walls lightly with engine oil.
• Make sure the piston is installed in the matching cylinder.
1. Connecting rod bearings.
 • Be certain that the bearing inserts are of the proper size.
 • Install the bearing inserts in the connecting rod and connecting rod cap.
 • Lubricate the bearings with engine oil.
2. Piston and connecting rod to the proper bore.
 • With the connecting rod cap removed, install J 5239 onto the connecting rod studs.
Locate the piston ring end gaps as shown in figure 33. Lubricate the piston and rings with engine oil.

Without disturbing the ring end gap location, install J 8037 over the piston (figure 34).

The piston must be installed so that the notch in the piston faces the front of the engine (figure 33).

Place the piston in its matching bore. The connecting rod bearing tang slots must be on the side opposite the camshaft. Using light blows with a hammer handle, tap the piston down into its bore (figure 34). At the same time, from beneath the vehicle guide the connecting rod to the crankpin with J 5239 (figure 35). Hold the ring compressor against the block until all rings have entered the cylinder bore.

Remove J 5239 from the connecting rod bolts.

Important

Each connecting rod and bearing cap should be marked, beginning at the front of the engine. Cylinders 1, 3 and 5 are at the left bank and 2, 4 and 6 are the right bank. The numbers on the connecting rod and bearing cap must be on the same side when installed in the cylinder bore. If a connecting rod is ever transposed from one block or cylinder to another, new connecting rod bearings should be fitted and the connecting rod should be numbered to correspond with the new cylinder number.

3. Connecting rod cap with bearing insert.

Measure

• Connecting rod bearing clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

Tighten

• Connecting rod cap nuts to 60 N m (45 ft. lbs.).

Measure

• Connecting rod side clearance (figure 36). The proper clearance is 0.006 to 0.014-inch.

OIL PUMP INSTALLATION

Install or Connect

1. Oil pump to the engine.
 • Align the slot in the oil pump shaft with the tang on the distributor shaft.
 • The oil pump should slide easily into place.
 • No gasket is used.
2. Oil pump to main bearing cap bolt.

Tighten

• Oil pump to main bearing cap bolt to 90 N·m (65 ft. lbs.).

OIL PAN INSTALLATION

Install or Connect (Figure 37)

• Apply PST sealant (GM part number 1052080 or equivalent) to the front cover to block joint and to the rear crankshaft retainer seal to block joint. Apply the sealant about 25 mm (1-inch) in both directions from each of the four corners (figure 37).
1. Oil pan gasket to the oil pan.
2. Oil pan to the engine.
3. Oil pan reinforcements, bolts and nuts.

Tighten

• Bolts to 11.3 N·m (100 in. lbs.).
• Nuts to 22.6 N·m (200 in. lbs.).

CYLINDER HEAD INSTALLATION

Clean

• Gasket surfaces on the block and cylinder head.

Install or Connect (Figure 38)

1. Head gasket.
 • If a steel gasket is used, coat both sides of the gasket with sealer. Spread the sealer thin and even.
 • Do not use sealer on composition steel-asbestos gaskets.
 • Place the gasket over the block dowel pins with the head up.
2. Cylinder head. Carefully guide the cylinder head into place over the dowel pins and gasket.
3. Cylinder head bolts. Coat threads of the cylinder head bolts with sealing compound (GM part number 1052080 or equivalent) and install finger-tight.

Tighten

• Cylinder head bolts, a little at a time, using the sequence shown in figure 38. The proper torque is 90 N·m (65 ft. lbs.).
Figure 37—Oil Pan Installation

A-Forward
B-Sealant
70. Gasket
71. Reinforcement
VALVE TRAIN COMPONENT INSTALLATION

Important
- Replace all hydraulic lifters if a new camshaft was installed.

Install or Connect (Figure 39)
- Lubricate the hydraulic lifter bodies and feet with Engine Oil Supplement (GM Part No. 1051396 or equivalent).
 1. Hydraulic lifters to the block.
 2. Restrictors (46) and retainer (41) with bolts (40).

 Tighten
 - Bolts (40) to 16.4 N·m (145 in. lbs.).

 3. Pushrods.
 - Seat the pushrods into the socket in the hydraulic lifters.
 - Coat the mating surfaces of the rocker arms and balls with "Molykote" or equivalent.

 4. Rocker arms.
 5. Balls.

VALVE ADJUSTMENT

1. Crank the engine until the mark on the torsional damper lines up with the "O" mark on the timing tab and the engine in the number one firing position. This may be determined by placing fingers on the number one valve as the mark on the damper comes near the "O" mark on the timing tab. If the rocker arms are not moving, the engine is in the number one firing position. If the rocker arms move as the mark comes up to the timing tab, the engine is in the number four firing position and should be turned over one more time to reach the number one position.

2. With the engine in the number one firing position as determined above, the following valves may be adjusted:
 - Exhaust: 1, 5, 6.
 - Intake: 1, 2, 3.

(Even numbered cylinders are in the right bank; odd numbered cylinders are in the left bank, when viewed from the rear of the engine).

3. Back out the adjusting nut until lash is felt at the pushrod then turn in the adjusting nut until all lash is removed. This can be determined by rotating the pushrod while turning the adjusting nut. When the play has been removed, turn the adjusting nut in one full additional turn (to center the lifter plunger).

4. Crank the engine one revolution until the timing tab "O" mark and torsional damper mark are again in alignment. This is the number four firing position.

The following valves may be adjusted:
 - Exhaust: 2, 3, 4.
 - Intake: 4, 5, 6.

INTAKE MANIFOLD INSTALLATION

Install or Connect (Figures 40 and 41)

1. Gaskets to the cylinder head with the port blocking plates facing the rear of the engine.

2. RTV to the front and rear sealing surfaces on the block. Apply a 5 mm (3/32-inch) bead of RTV (GM Part No. 1052366 or equivalent) to the front and rear of the block as shown in figure 40. Extend the bead 13 mm (1/2-inch) up each cylinder head to seal and retain the gaskets.

3. Intake manifold to the engine.

4. Intake manifold bolts.

ROCKER ARM COVER INSTALLATION

Install or Connect (Figure 42)

1. Rocker arm cover and new gasket.

2. Rocker arm cover bolts and washers.

EXHAUST MANIFOLD INSTALLATION

Install or Connect (Figure 43)

1. Exhaust manifold.

2. Heat shield (if removed).

3. Exhaust manifold bolts, washers, and tab washers.
• Bolts on front and rear exhaust tubes to 28 N m (20 ft. lbs.).

• Bend the tab washers over the heads of all bolts.

EGR VALVE INSTALLATION

→→ Install or Connect
1. New gasket.
2. EGR valve.

🔍 Tighten
• Bolts to 31 N m (23 ft. lbs.).

FLYWHEEL INSTALLATION

Toggle Install or Connect
1. Flywheel.
2. Flywheel bolts.

🔍 Tighten
• Bolts to 100 N m (75 ft. lbs.).

ENGINE ACCESSORY INSTALLATION

Install the engine accessories (distributor, carburetor, oil filter, generator, etc.) as directed in the proper Truck Service Manual. Connect all vacuum hoses and electrical equipment the same way as removed.
ENGINE SET-UP AND TESTING

1. After overhaul, the engine should be tested before installation in the vehicle. If a suitable test stand is not available, the following procedure can be used after the engine is installed in the vehicle.
2. Fill the crankcase with the proper quantity and grade of oil.

Important
- If a new camshaft or hydraulic lifters were...
6A3-26 4.3 LITER V-6

3. Fill the cooling system with the proper coolant.
4. With the ignition "OFF," or disconnected, crank the engine several times. Listen for any unusual noises or evidence that any parts are binding.
5. Start the engine and listen for unusual noises.
6. Run the engine at about 1000 rpm until the engine is at operating temperature.
7. Listen for improperly adjusted valves or sticking lifters, and other unusual noises.
8. Check for oil and coolant leaks while the engine is running.
9. Using the proper Truck Service Manual or Emission Control Label for specifications, adjust the ignition timing, idle rpm and mixture, and governor settings, if so equipped.
SPECIFICATIONS

ENGINE SPECIFICATIONS

All Specifications are in INCHES unless otherwise noted.

<table>
<thead>
<tr>
<th>GENERAL DATA:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>V6</td>
</tr>
<tr>
<td>Displacement</td>
<td>4.3L (262 Cu. In.)</td>
</tr>
<tr>
<td>RPO</td>
<td>LB4</td>
</tr>
<tr>
<td>Bore</td>
<td>4.00</td>
</tr>
<tr>
<td>Stroke</td>
<td>3.48</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>9:1</td>
</tr>
<tr>
<td>Firing Order</td>
<td>1 - 6 - 5 - 4 - 3 - 2</td>
</tr>
<tr>
<td>Oil Pressure</td>
<td>10 psi @ 500 RPM; 30-35 psi @ 2000 RPM</td>
</tr>
<tr>
<td>CYLINDER BORE:</td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td>3.9995-4.0025</td>
</tr>
<tr>
<td>Out Of Round Production</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Out Of Round Service</td>
<td>0.002 (Maximum)</td>
</tr>
<tr>
<td>Taper Production</td>
<td>0.0005 (Maximum)</td>
</tr>
<tr>
<td>Taper Thrust Side Service</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Taper Relief Side Service</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>CYLINDER BORE:</td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td>3.9995-4.0025</td>
</tr>
<tr>
<td>Out Of Round Production</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Out Of Round Service</td>
<td>0.002 (Maximum)</td>
</tr>
<tr>
<td>Taper Production</td>
<td>0.0005 (Maximum)</td>
</tr>
<tr>
<td>Taper Thrust Side Service</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Taper Relief Side Service</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>CYLINDER BORE:</td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td>3.9995-4.0025</td>
</tr>
<tr>
<td>Out Of Round Production</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Out Of Round Service</td>
<td>0.002 (Maximum)</td>
</tr>
<tr>
<td>Taper Production</td>
<td>0.0005 (Maximum)</td>
</tr>
<tr>
<td>Taper Thrust Side Service</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Taper Relief Side Service</td>
<td>0.001 (Maximum)</td>
</tr>
</tbody>
</table>

PISTON:

<table>
<thead>
<tr>
<th>Production</th>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production</td>
<td>0.0007-0.0017</td>
</tr>
<tr>
<td>Service</td>
<td>0.0027 (Maximum)</td>
</tr>
</tbody>
</table>

PISTON RING:

<table>
<thead>
<tr>
<th>Compression</th>
<th>Groove Clearance</th>
<th>Production</th>
<th>Top</th>
<th>2nd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Production</td>
<td>Top</td>
<td>0.0012-0.0032</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Service Limit</td>
<td>Hi Limit Production + 0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gap</td>
<td>Production</td>
<td>Top</td>
<td>0.010-0.020</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Service Limit</td>
<td>Hi Limit Production + 0.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil</td>
<td>Groove Clearance</td>
<td>Production</td>
<td>0.002-0.007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Service Limit</td>
<td>Hi Limit Production + 0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gap</td>
<td>Production</td>
<td>Service Limit</td>
<td>Hi Production + 0.010</td>
<td></td>
</tr>
</tbody>
</table>

PISTON PIN:

Diameter	0.9270-0.09273
Clearinage	0.0002-0.0007
In Piston	0.001 (Maximum)
Fit In Rod	0.0008-0.0016 Interference
SPECIFICATIONS

ENGINE SPECIFICATIONS (CONT.)

All specifications are in INCHES unless otherwise noted.

<table>
<thead>
<tr>
<th>DISPLACEMENT:</th>
<th>4.3L</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRANKSHAFT:</td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td></td>
</tr>
<tr>
<td>#1</td>
<td>2.4484-2.4493</td>
</tr>
<tr>
<td>#2, #3</td>
<td>2.4481-2.4490</td>
</tr>
<tr>
<td>#4</td>
<td>2.4479-2.4488</td>
</tr>
<tr>
<td>Taper</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>0.0002 (Maximum)</td>
</tr>
<tr>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Out Of Round</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>0.0002 (Maximum)</td>
</tr>
<tr>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Main Journal</td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td></td>
</tr>
<tr>
<td>#1</td>
<td>0.0008-0.0020</td>
</tr>
<tr>
<td>#2, #3</td>
<td>0.0011-0.0023</td>
</tr>
<tr>
<td>#4</td>
<td>0.0017-0.0032</td>
</tr>
<tr>
<td>Bearing</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>0.0010-0.0015</td>
</tr>
<tr>
<td>Service Limit</td>
<td>0.0010-0.0025</td>
</tr>
<tr>
<td>Crankpin</td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td>2.2487-2.2497</td>
</tr>
<tr>
<td>Taper</td>
<td>0.0005</td>
</tr>
<tr>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Crankshaft End Play</td>
<td>0.002-0.006</td>
</tr>
<tr>
<td>Rod Bearing</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>0.0013-0.0035</td>
</tr>
<tr>
<td>Service Limit</td>
<td>0.0030</td>
</tr>
<tr>
<td>CAMSHAFT:</td>
<td></td>
</tr>
<tr>
<td>Lobe Intake</td>
<td>0.357</td>
</tr>
<tr>
<td>Lift + 0.002</td>
<td>0.390</td>
</tr>
<tr>
<td>Journal Diameter</td>
<td>1.8682-1.8692</td>
</tr>
<tr>
<td>Camshaft End Play</td>
<td>0.004-0.012</td>
</tr>
<tr>
<td>VALVE SYSTEM:</td>
<td></td>
</tr>
<tr>
<td>Lifter</td>
<td>Hydraulic</td>
</tr>
<tr>
<td>Rocker Arm Ratio</td>
<td>1.50:1</td>
</tr>
<tr>
<td>Valve Lash</td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>One Turn Down From Zero Lash</td>
</tr>
<tr>
<td>Exhaust</td>
<td></td>
</tr>
<tr>
<td>Face Angle (Intake & Exhaust)</td>
<td>45°</td>
</tr>
<tr>
<td>Seat Angle (Intake & Exhaust)</td>
<td>46°</td>
</tr>
<tr>
<td>Seat Runout (Intake & Exhaust)</td>
<td>0.002 (Maximum)</td>
</tr>
<tr>
<td>Seat Width</td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>7/32 - 1/16</td>
</tr>
<tr>
<td>Exhaust</td>
<td>1/16 - 3/32</td>
</tr>
<tr>
<td>Valve Spring (Outer)</td>
<td>2.03</td>
</tr>
<tr>
<td>Pressure</td>
<td></td>
</tr>
<tr>
<td>Closed</td>
<td>76-84 lbs. @ 1.70-in.</td>
</tr>
<tr>
<td>Open</td>
<td>194-206 lbs. @ 1.25-in.</td>
</tr>
<tr>
<td>Installed Height</td>
<td></td>
</tr>
<tr>
<td>+ 1/32"</td>
<td>1"</td>
</tr>
<tr>
<td>Valve Spring Damper</td>
<td>1.86</td>
</tr>
<tr>
<td>Approx. # of Coils</td>
<td>4</td>
</tr>
</tbody>
</table>

B-07912
SPECIFICATIONS (CONTINUED)

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>N·m</th>
<th>FT. LBS.</th>
<th>IN. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocker Arm Cover Bolts</td>
<td>10.2</td>
<td>—</td>
<td>90</td>
</tr>
<tr>
<td>Intake Manifold Bolts</td>
<td>48</td>
<td>35</td>
<td>—</td>
</tr>
<tr>
<td>Exhaust Manifold Bolts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Center Two Bolts</td>
<td>36</td>
<td>26</td>
<td>—</td>
</tr>
<tr>
<td>All Others</td>
<td>28</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Cylinder Head Bolts</td>
<td>90</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Torsional Damper Bolt</td>
<td>95</td>
<td>70</td>
<td>—</td>
</tr>
<tr>
<td>Front Cover Bolts</td>
<td>13.6</td>
<td>—</td>
<td>120</td>
</tr>
<tr>
<td>Oil Pan Nuts</td>
<td>22.6</td>
<td>—</td>
<td>200</td>
</tr>
<tr>
<td>Oil Pan Bolts</td>
<td>11.3</td>
<td>—</td>
<td>100</td>
</tr>
<tr>
<td>Oil Pump Bolt</td>
<td>90</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Rear Crankshaft Oil Seal Retainer Screws and Nuts</td>
<td>15.3</td>
<td>—</td>
<td>135</td>
</tr>
<tr>
<td>Camshaft Sprocket Bolts</td>
<td>28</td>
<td>21</td>
<td>—</td>
</tr>
<tr>
<td>Connecting Rod Cap Nuts</td>
<td>60</td>
<td>45</td>
<td>—</td>
</tr>
<tr>
<td>Oil Filter Adapter Bolts</td>
<td>20</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>Main Bearing Cap Bolts</td>
<td>110</td>
<td>80</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pump Cover Bolts</td>
<td>9.0</td>
<td>—</td>
<td>80</td>
</tr>
<tr>
<td>Flywheel Bolts</td>
<td>100</td>
<td>75</td>
<td>—</td>
</tr>
<tr>
<td>Spark Plugs</td>
<td>30</td>
<td>22</td>
<td>—</td>
</tr>
<tr>
<td>Water Outlet Bolts</td>
<td>28</td>
<td>21</td>
<td>—</td>
</tr>
<tr>
<td>Water Pump Bolts</td>
<td>40</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Flywheel Housing Bolts</td>
<td>44</td>
<td>32</td>
<td>—</td>
</tr>
<tr>
<td>Hydraulic Lifter Restrictor Retainer Bolts</td>
<td>16.4</td>
<td>—</td>
<td>145</td>
</tr>
<tr>
<td>Oil Pan Studs to Oil Seal Retainer or Crankcase</td>
<td>1.7</td>
<td>—</td>
<td>15</td>
</tr>
<tr>
<td>Camshaft Thrust Plate</td>
<td>11.9</td>
<td>—</td>
<td>105</td>
</tr>
</tbody>
</table>
SPECIAL TOOLS

1. Torsional Damper Remover and Installer
2. Valve Spring Compressor
3. Crankshaft Seal Installer
4. Main Bearing Replacer
5. Piston Ring Compressor
6. Guide Set
7. Vacuum Pump
8. Stud Remover
9. Reamer (0.003-inch oversize)
10. Reamer (0.013-inch oversize)
11. Stud Installer
12. Crankshaft Gear Puller
13. Crankshaft Gear Installer
14. Rear Crankshaft Seal Installer
SECTION 6A4

4.8 LITER L6

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>.6A4-2</td>
</tr>
<tr>
<td>Disassembly</td>
<td>.6A4-4</td>
</tr>
<tr>
<td>Tools and Shop Equipment</td>
<td>.6A4-4</td>
</tr>
<tr>
<td>Accessory Removal</td>
<td>.6A4-4</td>
</tr>
<tr>
<td>Cleaning</td>
<td>.6A4-4</td>
</tr>
<tr>
<td>Parts Identification</td>
<td>.6A4-4</td>
</tr>
<tr>
<td>Draining the Engine</td>
<td>.6A4-8</td>
</tr>
<tr>
<td>Air Manifold and Injection Tube Removal</td>
<td>.6A4-8</td>
</tr>
<tr>
<td>Manifold Removal</td>
<td>.6A4-8</td>
</tr>
<tr>
<td>Thermostat Housing Removal</td>
<td>.6A4-9</td>
</tr>
<tr>
<td>Water Pump Removal</td>
<td>.6A4-9</td>
</tr>
<tr>
<td>Valve Train Component Removal</td>
<td>.6A4-9</td>
</tr>
<tr>
<td>Cylinder Head Removal</td>
<td>.6A4-10</td>
</tr>
<tr>
<td>Torsional Damper Removal</td>
<td>.6A4-10</td>
</tr>
<tr>
<td>Oil Pan Removal</td>
<td>.6A4-10</td>
</tr>
<tr>
<td>Oil Pump Removal</td>
<td>.6A4-10</td>
</tr>
<tr>
<td>Timing Gear Cover Removal</td>
<td>.6A4-11</td>
</tr>
<tr>
<td>Piston and Connecting Rod Removal</td>
<td>.6A4-11</td>
</tr>
<tr>
<td>Flywheel Removal</td>
<td>.6A4-11</td>
</tr>
<tr>
<td>Crankshaft Removal</td>
<td>.6A4-12</td>
</tr>
<tr>
<td>Crankshaft Rear Oil Seal Removal (Without Removing Crankshaft)</td>
<td>.6A4-12</td>
</tr>
<tr>
<td>Main Bearing Removal (Without Removing Crankshaft)</td>
<td>.6A4-12</td>
</tr>
<tr>
<td>Camshaft Removal</td>
<td>.6A4-13</td>
</tr>
<tr>
<td>Cleaning, Inspection, and Repair</td>
<td>.6A4-14</td>
</tr>
<tr>
<td>Block</td>
<td>.6A4-14</td>
</tr>
<tr>
<td>Main Bearing Cap Replacement</td>
<td>.6A4-14</td>
</tr>
<tr>
<td>Cylinder Bores</td>
<td>.6A4-15</td>
</tr>
<tr>
<td>Piston and Connecting Rod Assemblies</td>
<td>.6A4-15</td>
</tr>
<tr>
<td>Intake and Exhaust Manifolds</td>
<td>.6A4-15</td>
</tr>
<tr>
<td>Camshaft</td>
<td>.6A4-16</td>
</tr>
<tr>
<td>Camshaft Bearings</td>
<td>.6A4-17</td>
</tr>
<tr>
<td>Timing Gear Cover</td>
<td>.6A4-17</td>
</tr>
<tr>
<td>Water Pump</td>
<td>.6A4-17</td>
</tr>
<tr>
<td>Oil Pan and Rocker Arm Cover</td>
<td>.6A4-18</td>
</tr>
<tr>
<td>Oil Pump</td>
<td>.6A4-18</td>
</tr>
<tr>
<td>Valve Train Components</td>
<td>.6A4-19</td>
</tr>
<tr>
<td>Cylinder Head</td>
<td>.6A4-19</td>
</tr>
<tr>
<td>Thermostat and Housing</td>
<td>.6A4-21</td>
</tr>
<tr>
<td>Torsional Damper</td>
<td>.6A4-22</td>
</tr>
<tr>
<td>Crankshaft and Bearings</td>
<td>.6A4-22</td>
</tr>
<tr>
<td>Oil Filter Relief Valve Replacement</td>
<td>.6A4-23</td>
</tr>
<tr>
<td>Assembly of Engine</td>
<td>.6A4-23</td>
</tr>
<tr>
<td>Prior to Assembly</td>
<td>.6A4-23</td>
</tr>
<tr>
<td>Crankshaft Rear Oil Seal Installation</td>
<td>.6A4-23</td>
</tr>
<tr>
<td>Main Bearing Installation (With Crankshaft Installed)</td>
<td>.6A4-25</td>
</tr>
<tr>
<td>Crankshaft and Main Bearing Installation</td>
<td>.6A4-25</td>
</tr>
<tr>
<td>Camshaft Installation</td>
<td>.6A4-26</td>
</tr>
<tr>
<td>Timing Gear Cover Installation</td>
<td>.6A4-26</td>
</tr>
<tr>
<td>Torsional Damper Installation</td>
<td>.6A4-27</td>
</tr>
<tr>
<td>Piston and Connecting Rod Installation</td>
<td>.6A4-27</td>
</tr>
<tr>
<td>Oil Pump Installation</td>
<td>.6A4-28</td>
</tr>
</tbody>
</table>
DESCRIPTION

The connecting rods are forged steel, with precision insert type crankpin bearings. The piston pins are a press fit in the connecting rods.

The pistons are case aluminum alloy. The piston pins are a floating fit in the pistons.

Lubrication schematics are shown in figures 1 and 2. The gear type oil pump is driven through an extension shaft from the distributor drive shaft, which is gear driven from the camshaft. Oil is drawn into the oil pump through a pickup screen and pipe (figure 2). Pressurized oil is routed to the oil filter. In case of excessive backpressure at the oil filter, a bypass valve is provided. This valve will allow oil flow to the main oil gallery at the right side of the block (figure 1). This gallery supplies oil to the camshaft bearings, hydraulic lifters, and main bearings. The connecting rods are supplied oil from the main bearings by means of drilled passages in the crankshaft. The valve train is supplied with oil by the hydraulic lifters. Oil is pumped from the lifters through the hollow pushrods to the rocker arms. Oil drains back to the crankcase through oil drain holes and the pushrod holes. The piston, piston pin, and timing gears are lubricated by oil splash.

For engine identification, refer to GENERAL INFORMATION (SEC. 6A).
A. Oil Pressure Sending Unit
B. Distributor Shaft Oiling
C. Splash Oiling
D. Filter Bypass System
E. Full Flow Oil Filter

Figure 2—Lubrication Diagram (Front View)
DISASSEMBLY

1. Oil Cap	21. Pushrod
2. Clip	22. Bolt
3. Screw	23. Bolt
4. Reinforcement	24. Washer
5. PCV Valve	25. Bracket
7. Rocker Arm Cover	27. Gasket
9. Grommet	29. Washer
11. Nut	31. Intake Manifold
12. Ball	32. Nut
13. Rocker Arm	33. Head Gasket
14. Rocker Arm Stud	34. Clamp
15. Valve Key	35. Bolt
16. O-ring Seal	36. Gasket
17. Rotator	37. Exhaust Manifold
18. Shield	38. Stud
20. Valve Spring	40. Washer
	41. Stud
	42. Intake Valve
	43. Exhaust Valve
	44. Switch
	45. Plug
	46. Clamp
	47. Hose
	48. Nipple
	49. Gasket
	50. Housing
	51. Bolt
	52. Thermostat
	53. Gasket
	54. Water Outlet
	55. Bolt
	56. Stud
	57. Washer
	58. Bracket
	59. Stud

Figure 3—Cylinder Head, Manifolds, and Components

TOOLS AND SHOP EQUIPMENT

A clean, well lit work area should be available. Other necessary aids include: A suitable parts cleaning tank, compressed air supply, trays to keep parts and fasteners organized, and an adequate set of hand tools.

An approved engine repair stand will aid the work and help prevent personal injury or damage to engine compartments.

Special tools are illustrated throughout this section, and are listed at its end. These tools (or their equivalents) are specially designed to quickly and safely accomplish the operations for which they are intended. The use of these tools will also minimize possible damage to engine components.

Some precision measuring tools are required for inspection of certain critical components. Torque wrenches will be necessary for correct assembly of various parts.

ACCESSORY REMOVAL

This manual assumes that the engine accessories have been removed. These accessories may include one or more of the following:

- Hydraulic Pump
- Generator
- Distributor
- AIR Pump
- Cooling Fan
- Carburetor

It is beyond the score of this manual to detail the many different accessory installations. Refer to the proper Truck Service Manual for this information.

Diagrams of emission and vacuum hose routings, wiring harness routings, accessory drive belt layout, etc., should be made before removing accessories.

CLEANING

Remove the engine accessories before cleaning to provide better access to engine exterior surfaces. After removing the carburetor, distributor, fuel pump, oil filter, etc., cover the openings with tape to prevent the entry of water, solvent, and dirt.

Methods used to clean the engine will depend on the aids which are available. Steam cleaning, pressure washing, or solvent cleaning are some acceptable methods. Allow the engine to dry before beginning the work.

It is important that the engine be as clean as possible to prevent dirt from entering critical areas during disassembly.

PARTS IDENTIFICATION

Refer to figures 3 through 6.
Figure 4—Cylinder Head, Manifolds, and Components
Figure 5—Block and Components
<table>
<thead>
<tr>
<th>Item Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>Screw</td>
</tr>
<tr>
<td>94</td>
<td>Camshaft Gear</td>
</tr>
<tr>
<td>95</td>
<td>Thrust Plate</td>
</tr>
<tr>
<td>96</td>
<td>Key</td>
</tr>
<tr>
<td>97</td>
<td>Spacer</td>
</tr>
<tr>
<td>98</td>
<td>Outer Camshaft Bearing</td>
</tr>
<tr>
<td>99</td>
<td>Inner Camshaft Bearing</td>
</tr>
<tr>
<td>100</td>
<td>Hydraulic Lifter</td>
</tr>
<tr>
<td>101</td>
<td>Top Compression Ring</td>
</tr>
<tr>
<td>102</td>
<td>Second Compression Ring</td>
</tr>
<tr>
<td>103</td>
<td>Rail</td>
</tr>
<tr>
<td>104</td>
<td>Expander</td>
</tr>
<tr>
<td>105</td>
<td>Oil Control Ring</td>
</tr>
<tr>
<td>106</td>
<td>Piston Pin</td>
</tr>
<tr>
<td>107</td>
<td>Piston</td>
</tr>
<tr>
<td>108</td>
<td>Connecting Rod</td>
</tr>
<tr>
<td>109</td>
<td>Connecting Rod Stud</td>
</tr>
<tr>
<td>110</td>
<td>Connecting Rod Cap</td>
</tr>
<tr>
<td>111</td>
<td>Nut</td>
</tr>
<tr>
<td>112</td>
<td>Upper Connecting Rod Bearing Insert</td>
</tr>
<tr>
<td>113</td>
<td>Lower Connecting Rod Bearing Insert</td>
</tr>
<tr>
<td>114</td>
<td>Gasket</td>
</tr>
<tr>
<td>115</td>
<td>Block</td>
</tr>
<tr>
<td>116</td>
<td>Plug</td>
</tr>
<tr>
<td>117</td>
<td>Rear Camshaft Plug</td>
</tr>
<tr>
<td>118</td>
<td>Flywheel</td>
</tr>
<tr>
<td>119</td>
<td>Flywheel Housing</td>
</tr>
<tr>
<td>120</td>
<td>Bolt</td>
</tr>
<tr>
<td>121</td>
<td>Dowel</td>
</tr>
<tr>
<td>122</td>
<td>Bolt</td>
</tr>
<tr>
<td>123</td>
<td>Plug</td>
</tr>
<tr>
<td>124</td>
<td>Dowel</td>
</tr>
<tr>
<td>125</td>
<td>Extention</td>
</tr>
<tr>
<td>126</td>
<td>Inspection Cover</td>
</tr>
<tr>
<td>127</td>
<td>Bolt</td>
</tr>
<tr>
<td>128</td>
<td>Bolt</td>
</tr>
<tr>
<td>129</td>
<td>Plug</td>
</tr>
<tr>
<td>130</td>
<td>Upper Main Bearing Inserts</td>
</tr>
<tr>
<td>131</td>
<td>Drain Plug</td>
</tr>
<tr>
<td>132</td>
<td>Upper Seal Half</td>
</tr>
<tr>
<td>133</td>
<td>Upper Rear Main Bearing Insert</td>
</tr>
<tr>
<td>134</td>
<td>Dowel Pin</td>
</tr>
<tr>
<td>135</td>
<td>Lower Seal Half</td>
</tr>
<tr>
<td>136</td>
<td>Lower Rear Main Bearing Insert</td>
</tr>
<tr>
<td>137</td>
<td>Rear Main Bearing Cap</td>
</tr>
<tr>
<td>138</td>
<td>Bolt</td>
</tr>
<tr>
<td>139</td>
<td>Bolt (Special)</td>
</tr>
<tr>
<td>140</td>
<td>Screen</td>
</tr>
<tr>
<td>141</td>
<td>Rear Oil Pan Seal</td>
</tr>
<tr>
<td>142</td>
<td>Gasket</td>
</tr>
<tr>
<td>143</td>
<td>Washer</td>
</tr>
<tr>
<td>144</td>
<td>Drain Plug</td>
</tr>
<tr>
<td>145</td>
<td>Bolt</td>
</tr>
<tr>
<td>146</td>
<td>Oil Pan</td>
</tr>
<tr>
<td>147</td>
<td>Front Oil Pan Seal</td>
</tr>
<tr>
<td>148</td>
<td>Bolt</td>
</tr>
<tr>
<td>149</td>
<td>Nut</td>
</tr>
<tr>
<td>150</td>
<td>Bolt</td>
</tr>
<tr>
<td>151</td>
<td>Oil Pump</td>
</tr>
<tr>
<td>152</td>
<td>Main Bearing Caps</td>
</tr>
<tr>
<td>153</td>
<td>Lower Main Bearing Inserts</td>
</tr>
<tr>
<td>154</td>
<td>Crankshaft</td>
</tr>
<tr>
<td>155</td>
<td>Crankshaft Gear</td>
</tr>
<tr>
<td>156</td>
<td>Key</td>
</tr>
<tr>
<td>157</td>
<td>Timing Gear Cover</td>
</tr>
<tr>
<td>158</td>
<td>Seal</td>
</tr>
<tr>
<td>159</td>
<td>Washer</td>
</tr>
<tr>
<td>160</td>
<td>Bolt</td>
</tr>
<tr>
<td>161</td>
<td>Washer</td>
</tr>
<tr>
<td>162</td>
<td>Torsional Damper</td>
</tr>
<tr>
<td>163</td>
<td>Key</td>
</tr>
<tr>
<td>164</td>
<td>Bolt</td>
</tr>
<tr>
<td>165</td>
<td>Plug</td>
</tr>
<tr>
<td>166</td>
<td>Gasket</td>
</tr>
<tr>
<td>167</td>
<td>Nipple</td>
</tr>
<tr>
<td>168</td>
<td>Plug</td>
</tr>
<tr>
<td>169</td>
<td>Gasket</td>
</tr>
<tr>
<td>170</td>
<td>Bolt</td>
</tr>
<tr>
<td>171</td>
<td>Water Pump</td>
</tr>
<tr>
<td>172</td>
<td>Nipple</td>
</tr>
<tr>
<td>173</td>
<td>Connector</td>
</tr>
<tr>
<td>174</td>
<td>Oil Filter</td>
</tr>
<tr>
<td>175</td>
<td>Bolt</td>
</tr>
<tr>
<td>176</td>
<td>Fuel Pump</td>
</tr>
<tr>
<td>177</td>
<td>Gasket</td>
</tr>
<tr>
<td>178</td>
<td>Bolt</td>
</tr>
<tr>
<td>179</td>
<td>Pushrod Cover</td>
</tr>
<tr>
<td>180</td>
<td>Dipstick Tube</td>
</tr>
<tr>
<td>181</td>
<td>Dipstick</td>
</tr>
<tr>
<td>182</td>
<td>Camshaft</td>
</tr>
</tbody>
</table>

Figure 6—Block and Components
DRAINING THE ENGINE

Remove or Disconnect (Figure 5)
- Oil pan drain plug (144). Allow the oil to drain.
- Oil filter (174).
- Block drain plug (131). Allow the coolant to drain.

Install or Connect (Figure 5)
- Oil pan drain plug (144) and washer (143).

Tighten
- Oil pan drain plug (144) to 24 N·m (18 ft. lbs.).
- Block drain plug (31).

Tighten
- Block drain plug (131) to 12.7 N·m (112 in. lbs.).

AIR MANIFOLD AND INJECTION TUBE REMOVAL

Remove or Disconnect (Figures 7 and 8)
1. Air manifold (182).
 • Unscrew the fittings.
 • Remove the air manifold.
2. Air injection tubes (183).
 • The air injection tubes are a push fit.
 • If the air injection tubes will not come out, they may be easier to remove after the manifolds (31 and 37) are removed, as described later.

MANIFOLD REMOVAL

The intake and exhaust manifolds are removed as an assembly. Instructions for separating and replacing the manifolds are outlined later in this section.

Remove or Disconnect (Figures 4, 9, and 10)
1. Heat stove (191) if used (figure 9).
 • Remove the bolt (190).

Remove or Disconnect (Figure 6)
- Oil pan drain plug (144). Allow the oil to drain.
- Oil filter (174).
- Block drain plug (131). Allow the coolant to drain.

Install or Connect (Figure 6)
- Oil pan drain plug (144) and washer (143).

Tighten
- Oil pan drain plug (144) to 24 N·m (18 ft. lbs.).
- Block drain plug (31).

Tighten
- Block drain plug (131) to 12.7 N·m (112 in. lbs.).

AIR MANIFOLD AND INJECTION TUBE REMOVAL

Remove or Disconnect (Figures 7 and 8)
1. Air manifold (182).
 • Unscrew the fittings.
 • Remove the air manifold.
2. Air injection tubes (183).
 • The air injection tubes are a push fit.
 • If the air injection tubes will not come out, they may be easier to remove after the manifolds (31 and 37) are removed, as described later.

MANIFOLD REMOVAL

The intake and exhaust manifolds are removed as an assembly. Instructions for separating and replacing the manifolds are outlined later in this section.

Remove or Disconnect (Figures 4, 9, and 10)
1. Heat stove (191) if used (figure 9).
 • Remove the bolt (190).
Figure 11—Thermostat Housing and Water Pump Installed

- Remove the heat stove (191).
2. PCV hose.
3. Bolts (35), nuts (30), washers (29) and clamps (34).
4. Intake manifold (31) and exhaust manifold (37) as an assembly.
5. Gasket (27).

THERMOSTAT HOUSING REMOVAL

Remove or Disconnect (Figures 4 and 11)
1. Bolts (51).
2. Thermostat housing (50).
3. Gasket (49).

WATER PUMP REMOVAL

Remove or Disconnect (Figures 5 and 11)
1. Bolts (170).
2. Water pump (171).
3. Gasket (169).

Figure 12—Valve Train Component Rack

VALVE TRAIN COMPONENT REMOVAL

Remove or Disconnect (Figures 3, 4, 12, 13, and 14)

Tools Required:
- J-3049 Valve Lifter Remover (Plier Type)
- J-9290-01 Valve Lifter Remover (Slide Hammer Type)

Figure 13—Removing the Valve Lifters
Figure 14—Removing the Valve Lifters

1. Rocker arm cover (7).
 - If the rocker arm cover adheres to the cylinder head (26), try to shear the gasket by bumping the end of the cover with a rubber mallet. If the cover will not come loose, carefully pry until loose. DO NOT DISTORT THE SEALING FLANGE.

2. Nuts (11), balls (12), rocker arms (13) and pushrods (20).
 - Every effort should be made to insure that these mating parts are installed in their original locations during assembly. A simple valve train component organizer rack can be made from a piece of wood, as shown in figure 12.

3. Bolts (178) and pushrod covers (179).

5. Hydraulic lifters (100).
 - Remove the lifters one at a time and place them in the organizer rack. The lifters must be installed in the same bore from which they were removed.
 - A stuck lifter can be removed using J-3049 (figure 13) or J-9290-01 (figure 14).

Figure 15—Removing the Torsional Damper

CYLINDER HEAD REMOVAL

Remove or Disconnect (Figure 4)

1. Bolts (21).
2. Cylinder head (26). Use care when handling the cylinder head to prevent damage to the gasket surfaces.
3. Gasket (33).

TORSIONAL DAMPER REMOVAL

Remove or Disconnect (Figures 5 and 15)

Tool Required:
J-23523-E Torsional Damper Remover/Installer

1. Bolt (160) and washers (159 and 161).

OIL PAN REMOVAL

Remove or Disconnect (Figure 5)

1. Bolts (145).
2. Oil pan (146).
3. Gaskets (142).
4. Front and rear oil pan seals (141 and 147).

OIL PUMP REMOVAL

Remove or Disconnect (Figure 5)

1. Bolt (164).
2. Front cover (157).
3. Gasket (166).
TIMING GEAR COVER REMOVAL

Remove or Disconnect (Figure 5)
1. Bolt (164).
2. Timing gear cover (157).
3. Gasket (166).

PISTON AND CONNECTING ROD REMOVAL

Remove or Disconnect (Figures 5, 16, and 17)
Tool Required: J-5239 Connecting Rod Guide Set
1. Ridge (or deposits) at the top of the cylinder as follows:
 - Turn the crankshaft (154) until one piston (107) is at the bottom of its stroke. Place a soft cloth on top of the piston.

FLYWHEEL REMOVAL

The crankshaft can be removed from the block without removing the flywheel. If the flywheel is removed, the dowel holes must be reamed oversize and oversized dowel pins installed, as outlined later. If flywheel removal is necessary, proceed as follows:

Remove or Disconnect (Figures 5 and 18)
- Mark the crankshaft (154) and flywheel (118) so that the dowel holes can be aligned in their original positions at the assembly.
 1. Flywheel housing (119).
 2. Rear main bearing cap (137).
 3. Dowel pins (134).
- With the block (115) inverted, turn the crankshaft (154) so that a dowel pin is at the 12 o'clock position.
- Drive the dowel pin out, using a hammer and drift.
- Repeat the preceding steps to drive out the remaining dowel pins. The crankshaft must be turned each time so that the pin can be driven out without contacting the block.
CRANKSHAFT REMOVAL

The main bearings and rear oil seal can be replaced without removing the crankshaft, as outlined later in this section.

Remove or Disconnect (Figures 5 and 19)
- Check the main bearing caps (152) for location markings. Mark the caps if necessary. The caps must be returned to their original locations during the engine assembly.

1. Bolts (138) and stud (139).
2. Main bearing caps (137 and 152).
3. Crankshaft (154). Lift the crankshaft straight up, taking care to avoid damage to the crankshaft journals and thrust flange surfaces.
4. Upper and lower seal halves (132 and 135). Pry the seal halves out with a screwdriver (figure 19).
5. Main bearing inserts (130, 133, 136, and 153). If the main bearing inserts are to be reused, mark them to assure they are installed in their original positions before removal.

CRANKSHAFT REAR OIL SEAL REMOVAL (WITHOUT REMOVING CRANKSHAFT)

Remove or Disconnect (Figures 5, 19, and 20)
1. Rear main bearing cap (137).
2. Lower seal half (135) (figure 19).
3. Upper seal half (132).
 - Tap on the upper seal half, using a small drift and hammer (figure 20).
 - Remove the upper seal half, using pliers (figure 20).

MAIN BEARING REMOVAL (WITHOUT REMOVING CRANKSHAFT)

Remove or Disconnect (Figures 5, 21, and 22)

Tool Required: J-8080 Main Bearing Remover/Installer
- Check the main bearing caps (152) for location markings. Mark the caps if necessary. The caps must be returned to their original locations during assembly.
1. Main bearing caps (137 and 152).
2. Upper and lower seal halves (132 and 135), as previously described.
3. Upper rear main bearing insert (133).
4.8 LITER L6 6A4-13

- Use a small brass drift and hammer. Tap on the insert, on the side opposite the bearing tang, until the insert rotates out of position (figure 21).
- Use a pair of pliers with the jaws taped to prevent damage to the crankshaft. Clamp the insert to the crankshaft flange (figure 21). Rotate the crankshaft (154) to remove the bearing insert.

4. Upper main bearing inserts (130).
- Insert J-8080 into the crankshaft (154) oil hole (figure 22).
- Rotate the crankshaft to "turn" the bearing insert out of the block.

CAMSHAFT REMOVAL

Remove or Disconnect (Figures 5 and 23)
- Turn the camshaft (182) until the screws (93) are visible through the holes in the camshaft gear (94) (figure 23).

1. Screws (93).
2. Camshaft (182). Pull the camshaft out of the block.

Support the camshaft carefully when removing to prevent damage to the camshaft bearings.
CLEANING, INSPECTION, AND REPAIR

A solvent tank, large enough to hold the larger engine parts, will be needed along with various bristle brushes and a gasket scraper. A source of compressed air will be helpful in the cleaning operations.

Precision measuring tools will be required for the inspection procedure. These include: micrometers, cylinder bore gage, feeler gages, dial indicator set, etc. The inspection work, performed with the proper method and tools, is most important. The rebuilt engine cannot be expected to perform properly if parts worn beyond acceptable limits are reused.

BLOCK

Clean (Figure 5)
1. Block (115) in solvent.
2. Block gasket surfaces.
3. Cylinder bores.
4. Oil galleries and passages.
5. Scale deposits from the coolant passages.

Inspect (Figure 5)
1. All expansion plugs for looseness or leakage.
2. Valve lifter bores for deep scratches and varnish deposits.
3. Block (115) for cracks, especially in the following areas:
 — Cylinder walls.
 — Coolant jackets.
 — Main bearing webs.
 — Engine mount bosses.
4. Main bearing bores and main bearing caps (137 and 152).
 — All main bearing bores should be round and uniform in ID at all bearing supports.

— The area where the main bearing inserts (130, 133, 136, and 153) contact the main bearing bore should be smooth.
— If a main bearing cap is damaged and requires replacement, replace it as outlined later in this section.

Measure (Figure 24)
- Head gasket surface distortion. Use a straight edge and feeler gage to check for flatness of the milled surface at the top of the cylinder block. The surface must be flat (within 0.10 mm [0.004-inch]) to assure that the gasket will provide a tight seal between the cylinder head and block.

MAIN BEARING CAP REPLACEMENT

Install or Connect (Figure 5)
1. New main bearing cap (137 or 152). The arrow on the main bearing cap faces the front of the engine (opposite the flywheel).
2. Bolts (138) and stud (139).

Tighten
- Bolts (138) and stud (139) to 90 N·m (65 ft. lbs.).

Measure (Figure 25)
- Main bearing vertical ID (inside diameter). Use an inside micrometer.
 — This dimension should be the same as the other main bearing bore vertical diameters.
 — If it is necessary to increase the vertical ID, use an equal thickness of special service bearing cap shims at each side of the cap to
Figure 24—Checking the Block Gasket Surface

provide the same dimension as at the other bores. This is necessary to assure the proper "crush" on bearing inserts when the engine is assembled.

CYLINDER BORES

Inspect
- Cylinder walls for scoring or other damage.

Measure
- Cylinder out of round and taper. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

CYLINDER BORE RECONDITIONING

Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

Figure 25—Main Bearing Cap Shim Location

PISTON AND CONNECTING ROD ASSEMBLIES

Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) and perform the following:
- Disassemble
 • Components as required.
- Clean
 • Components as outlined.
- Inspect
 • Components as outlined.
- Measure
 • Piston pin diameter and pin to piston clearance.
 • Piston to bore clearance, and fit pistons as outlined.
- Assemble
 • Components as outlined.
- Measure
 • Ring end gap and ring clearance.
- Inspect
 • Ring fit.

INTAKE AND EXHAUST MANIFOLDS

Disassemble (Figure 4)
1. Bolts (39) and washers (40).
3. Intake manifold (31) and exhaust manifold (37).
- Clean
 • Old pieces of gasket from the gasket surfaces.
- Inspect
 — Manifolds for cracks, broken flanges, etc.
 — Gasket surfaces for heavy scratches.
 — Manifold heat control valve (if used). The heat control valve is in the exhaust manifold. The thermostatic spring and anti-rattle spring must be in place and in good condition. The shaft should turn freely when weight is moved and the spring should return the shaft to its original position.
- Measure
 • Manifold distortion. Lay a straight edge along the full length of the exhaust port faces and measure any gaps between the straight edge and the port faces. If at any point a gap of 0.80 mm (0.030-inch) or more exists, it is likely that the manifold has distorted to a point where it will not seal properly. If a good exhaust seal is to be expected, the exhaust manifold must be replaced.
CAMSHAFT GEAR AND THRUST PLATE REPLACEMENT

Assemble (Figure 4)

1. Gasket (36) to the exhaust manifold (37).
2. Intake manifold (31) and exhaust manifold (37).
3. Nuts (32), bolts (39) and washers (40). Leave the fasteners hand-tight until the manifold to cylinder head bolts are torqued. Refer to "Intake and Exhaust Manifold Installation."

Inspect (Figures 5, 26, 27, and 28)

- Camshaft (182) lobes and journals for scratches, pitting, scoring, and wear.
- Timing gear (94) for damaged or missing teeth.

Measure (Figures 26, 27, and 28)

Tool Required:
J-7872 Dial Indicator (or equivalent)

CAMSHAFT

Important
Whenever the camshaft needs to be replaced, a new set of hydraulic lifters must also be installed.

Inspect (Figures 5, 26, 27, and 28)

- Camshaft (182) lobes and journals for scratches, pitting, scoring, and wear.
- Timing gear (94) for damaged or missing teeth.

CAMSHAFT GEAR AND THRUST PLATE REPLACEMENT

Disassemble (Figures 5 and 29)

1. Camshaft gear (94).

CAMSHAFT GEAR AND THRUST PLATE REPLACEMENT

Disassemble (Figures 5 and 29)

1. Camshaft gear (94).
4.8 LITER L6 6A4-17

Figure 30—Installing the Camshaft Gear

• Place the camshaft (182) in a press. Support the camshaft gear. DO NOT support the thrust plate (95).

NOTICE: The thrust plate must be positioned so that the key (96) does not damage it during the removal operation.

• Press the camshaft out of the camshaft gear.
1. Thrust plate.
2. Spacer (97).
3. Thrust plate.
4. Camshaft gear (94).
 • MAKE SURE THAT THE TIMING MARK IS TO THE OUTSIDE.
 • Press the camshaft gear onto the camshaft until it bottoms on the spacer (figure 30).
 • Remove the camshaft from the press.

Assemble (Figures 5 and 30)
Tool Required:
 J-22912-01 Support Plate (or equivalent)
• Support the camshaft (182) at the front journal with tool J-22912-01 (or equivalent) (figure 30). Mount the camshaft in a press as shown.
• Lubricate the thrust plate (95) with engine oil.
1. Key (96) (if removed).
2. Spacer (97). Make sure the chamfer in the spacer faces towards the journal radius.
3. Thrust plate.

Figure 31—Installing the Front Crankshaft Gear

TIMING GEAR COVER

Clean
• Old gasket from the gasket surfaces.

Inspect
— Timing tab for damage.
— Timing gear cover for cracks, large dents, etc.

Disassemble (Figure 5)
• Seal (158). Pry the seal out with a screwdriver.

Assemble (Figure 31)
Tool Required:
 J-35468 Seal Installer
• Seal (158). Use J-35468.
 • Support the inside of the front cover around the seal bore area.
 • Press the seal into place. The open end of the seal faces inside the front cover.
 • Lubricate the seal lips with grease.

WATER PUMP

Clean
• Old gasket from the gasket surface.

Important
• Do not immerse the pump in solvent. The solvent may enter the pump's permanently lubricated bearings, dissolve the bearings' lubricant supply, and cause premature bearing failure.

Inspect
— Water pump shaft for roughness and end play. If the shaft does not turn smoothly, or if there is excessive end play, replace the water pump.
— Water pump body at the drain hole. If there is evidence of coolant leakage, the water pump shaft seal is leaking, and the water pump should be replaced.

CAMSHAFT BEARINGS
Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).
Clean

- Parts in solvent. Remove all sludge and varnish.
- Old gaskets from the gasket surfaces.

Inspect

- Gasket flanges for bending or damage.
- Rubber grommets and parts on the rocker arm cover for deterioration.
- Oil pan for rock damage or cracks.
- Oil pan baffle for looseness.
- Drain plug threads for stripping.

Assemble (Figures 32 and 33)

1. Pressure relief valve (201).
2. Spring (202).
3. Spring retaining pin (203).
4. Drive gear and shaft (208).
5. Idler gear (207) in the pump body (209) with the smooth side of the gear toward the pump cover opening. Index the marks made during disassembly.
7. Cover (205) and screws (204).

Tighten

- Screws (204) to 7.9 N·m (70 in. lbs.).
- Turn the drive shaft by hand to check for smooth operation.

NOTICE: Be careful not to twist, shear or collapse the pipe while installing.

8. Pick-up screen and pipe (140) (if removed) (figure 33).
 - If the pick-up screen and pipe assembly was removed, it should be replaced with a new part. Loss of press fit condition could result in an air leak and loss of oil pressure.
 - Mount the oil pump in a soft-jawed vise.
 - Apply sealer to the end of the pipe.
 - Tap the pick-up screen and pipe into place, using J-21882 and a hammer.
 - The pump screen must be parallel with the bottom of the oil pan when installed.
VALVE TRAIN COMPONENTS

PUSHRODS, ROCKER ARMS, BALLS, AND NUTS

Clean
- Parts in solvent. Blow dry with compressed air. Make sure the oil passages in the pushrods are clear.

Inspect (Figure 4)
- Rocker arms (13) and balls (12) at their mating surfaces. These surfaces should be smooth and free from scoring or other damage.
- Rocker arm areas which contact the valve stems, and the sockets which contact the pushrods (20). These areas should be smooth and free of damage and wear.
- Nuts (11). The nuts are prevailing torque nuts. At least 6.2 N·m (55 in. lbs.) torque should be required to thread the nuts onto the rocker arm studs. If not, it is possible that the nut(s) could back off during engine operation, causing loss of lash and valve train noise.
- Pushrods for bending. Roll the pushrod on a flat surface to determine if it is bent. Replace if necessary.
- Ends of the pushrods for scoring or roughness.

HYDRAULIC LIFTERS
Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

CYLINDER HEAD

Disassemble (Figures 34, and 35)
Tool Required:
J-8062 Valve Spring Compressor

1. Valve keys (15).
 - Compress the valve springs (19), using J-8062 (figure 35).
 - Remove the valve keys.
 - Remove the tool.
2. Rotators (17), and shields (18).
3. Valve springs (20) and dampers (240).
4. O-ring seals (16) and seals (19).
CLEANING AND INSPECTION OF COMPONENTS
Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) and perform the following:

Clean
- Components as outlined.

Inspect
- Components as outlined.

Measure
- Valve stem clearance.
- Valve spring tension and free length.
Other information outlined includes:
- Valve and seat grinding.
- Valve guide reaming.

ROCKER ARM STUD REPLACEMENT
Tools Required:
- J-5802-01 Stud Remover
- J-5715 Reamer (0.003-inch oversize) or J-6036 Reamer (0.013-inch oversize)
- J-6880 Stud Installer

Rocker arm studs that have damaged threads or are loose in cylinder heads should be replaced. New studs are available in 0.003-inch and 0.013-inch oversize.

1. Place tool J-5802-01 over the stud to be removed. Install a nut and flat washer. Remove the stud by turning the nut (figure 36).

2. Ream the hole to the proper size for the replacement oversize stud. Use reamer J-5715 for 0.003-inch oversize studs; reamer J-6036 for 0.013-inch oversize stud (figure 37).

3. Coat lower end (press-fit area) of stud with hypoid axle lubricant. Drive the stud into place with a hammer and tool J-6880. Stud is installed to proper depth when the tool bottoms on the cylinder head (figure 38).

Figure 36—Removing the Rocker Arm Stud

ASSEMBLY

Assemble (Figures 34, 35, and 39)
Tools Required:
- J-8062 Valve Spring Compressor
- J-23738-A Vacuum Pump

1. New seals (19) (intake valves only). Install the seals over the valve guides and seat them against the head.

2. Valves (42 and 43):
 - Lubricate the valve stems with engine oil.

Figure 38—Installing the Rocker Arm Stud
Figure 39—Checking the Valve Seals

- Insert the valves into the proper ports.
3. Valve spring shims (if used).
4. Valve springs (20) with dampers (240).
5. Shields (18).
6. Rotators (17).
7. O-ring seals (16) and valve keys (15).
 - Compress the valve spring, using J-8062 (figure 35). Compress the spring enough so the lower valve stem groove can be clearly seen.
 - Push a new O-ring seal onto the valve stem. The seal is to be installed on the stem's lower groove. Make sure the seal is flat and not twisted.
 - Apply grease to the area of the upper valve stem groove. Assemble the two valve keys, using the grease to hold the keys in place. Make sure the keys seat properly in the groove.
 - Release the compressor tool. Make sure the valve keys stay in place.
 - Repeat the preceding steps on the remaining valves.
 - Check each valve stem seal, using J-23738-A (figure 39). Place the adapter cup over the shield (18). Operate the vacuum pump. Observe the vacuum pump gage. No air should be able to leak past the seal. If the O-ring seal will not hold a vacuum, it may have been damaged or improperly installed.

Figure 40—Scale for Checking Valve Spring Installed Height

Measure (Figures 34, 40, and 41)
 - Valve spring installed height of each valve spring.
 1. Use a narrow, thin scale. A cutaway scale (figure 40) may be helpful.
 2. Measure from the valve shim or spring seat to the top of the shield (18) (figure 41).
 3. If this measurement exceeds the figure given in "Specifications," install valve spring seat shims of sufficient thickness (between the spring and cylinder head) to give the desired measurement. NEVER shim the spring so as to give an installed height under the specified figure.

THERMOSTAT AND HOUSING

The thermostat is located in a housing bolted to the front of the cylinder head (figure 4).
Thermostats consist of a restriction valve controlled by a thermostatic element. The restriction valve cracks or just starts to open at a predetermined temperature and continues to open as the engine coolant temperature increases. To assure proper cooling and engine warm-up it is important that the correct thermostat be used. Refer to the proper Truck Service Manual for the correct thermostat application.
Disassemble (Figure 4)
1. Bolts (55).
2. Water outlet (54).
3. Thermostat (52).
4. Gasket (53).

Inspect (Figure 4)
- Water outlet (54) and housing (50) for cracks or damage.

Assemble (Figure 4)
1. Thermostat (52).
2. Gasket (53).
3. Water outlet (54).

Tighten
- Bolts (55) to 40 N m (30 ft. lbs.).

TORSIONAL DAMPER

Inspect
- Torsional damper weight for looseness or signs of shifting on the hub. Replace as needed.
- Area of the torsional damper hub shaft which contacts the front crankshaft seal for roughness or nicks. Replace the damper if this condition exists.

CRANKSHAFT AND BEARINGS

CLEANING AND INSPECTION

Clean
- Crankshaft with solvent.
 - Do not scratch the bearing journals.
 - Blow all sludge from the oil passages with compressed air.
 - Main bearing inserts. Wipe free of oil with a soft cloth.

Inspect
- Crankshaft for cracks. Use the magnafux method, if available.
- Crankpins, main bearing journals and thrust surfaces for scoring, nicks, or damage caused by lack of lubrication.
- Main bearing inserts for scoring or other damage.
 In general, the lower inserts (except the #1 bearing) shows a greater wear and the most distress from fatigue. If, upon inspection, the lower insert is suitable for use, it can be assumed that the upper insert is also satisfactory. If the lower insert shows evidence of wear or damage, both upper and lower inserts must be replaced.
- Crankshaft gear for chipped or damaged teeth.

Measure (Figures 42 and 43)
- Main bearing and connecting rod journal diameters (figure 42). Compare with "Specifications." Grind or replace the crankshaft if necessary.
CRANKSHAFT BEARING AVAILABILITY
Main bearings are available in standard and 0.001, 0.002, 0.010, 0.020, and 0.030-inch undersizes. Connecting rod bearings are available in standard and 0.001, 0.002, 0.010, and 0.020-inch undersizes.

CRANKSHAFT GEAR REPLACEMENT
Disassemble (Figure 44)
Tool Required:
J-24420-B Puller
• Crankshaft gear, using J-24420-B.

ASSEMBLY OF ENGINE

PRIOR TO ASSEMBLY
The importance of cleanliness during the assembly procedure cannot be overstressed. Dirt will cause premature wear of the rebuilt engine.
Lubricate all moving parts lightly with engine oil or engine assembly lubricant (unless specified otherwise) during assembly. This will provide initial lubrication when the engine is started.

CRANKSHAFT REAR OIL SEAL INSTALLATION
An oil seal installation tool (figure 46) should be fabricated (if not provided in the seal kit) to prevent seal damage during installation. Extreme care should be

Figure 46—Oil Seal Installation Tool
A. 4 mm (11/64-inch)
B. 13 mm (1/2-inch)
C. 0.10 mm (0.004-inch) shim stock

OIL FILTER RELIEF VALVE REPLACEMENT
Disassemble (Figure 45)
• Oil pressure relief valve. Use a screwdriver to pry it from the block.

Assemble (Figure 45)
• Oil pressure relief valve. Use a 9/16-inch, thin wall, deep socket to tap it into place.
WITH CRANKSHAFT INSTALLED

Install or Connect (Figures 5, 47, and 48)

1. Upper seal half (132).
 - Coat the seal lips lightly with engine oil. Keep the oil off of the seal mating ends.
 - Position the tip of the tool between the crankshaft (154) and the seal seat in the block (115) (figure 47).
 - Position the seal half between the crankshaft and tip of the tool. Make sure that the oil seal lip is positioned toward the front of the engine (figure 47).
 - Roll the seal around the crankshaft using the tool as a "shoe-horn" to protect the seal bead from the sharp corner of the seal seat surface.

2. Lower seal half (135).
 - Coat the seal lips lightly with engine oil. Keep the oil off of the seal mating ends.
 - Insert the seal half into the rear main bearing cap (135). Use the tool to protect the seal half from the sharp edge of the seal seat. Feed the seal half into the rear main bearing cap, using light finger pressure. Make sure the oil seal lip faces the front of the engine (figure 48).

3. Rear main bearing cap (135) as outlined later.

WITH CRANKSHAFT REMOVED

Install or Connect (Figures 5 and 48)

1. Upper seal half (132).
 - Insert the seal half in the block (115), using the installation tool to protect the back sealing bead of the seal from the sharp corner of the block. Position the seal and the tip of the tool so that the seal contacts the tool. Make sure that the oil seal lip is positioned toward the front of the engine (figure 47).
 - Feed the seal into position gradually, using the tool as a "shoe-horn" to protect the seal outer diameter from damage. The tool must remain in position until the seal is properly in position, with both ends flush with the block.
 - Remove the tool, being careful not to withdraw the seal.

2. Lower seal half (135).
 - Insert the seal half into the rear main bearing cap (135). Use the tool to protect the seal half from the sharp edge of the seal seat. Feed the seal half into the rear main bearing cap, using light finger pressure.
 - Make sure the oil seal lip faces the front of the engine (figure 48).
 - Coat the seal lips lightly with engine oil. Keep the oil off of the oil seal mating ends.
MAIN BEARING INSTALLATION (WITH CRANKSHAFT INSTALLED)

Refer to "Crankshaft and Main Bearing Installation," later in this section for main bearing insert sizing information.

Install or Connect (Figures 5 and 21)

Tool Required:
J-8080 Main Bearing Remover/Installer

1. Upper rear main bearing insert (133).
 - Apply engine oil to an insert of the proper size.
 - Insert the plain end (without the bearing tang) of the insert between the crankshaft journal and the notched side of the block (115).
 - Use pliers with taped jaws to clamp the bearing to the crankshaft (154) as shown in figure 21. Rotate the crankshaft to "roll" the insert into the block. Then seat the insert using a small drift and hammer.

2. Lower rear main bearing insert (136).
 - Apply engine oil to an insert of the proper size.
 - Press the insert into the rear main bearing cap (137).

3. Upper main bearing inserts (130).
 - Insert J-8080 into a crankshaft main bearing oil hole.
 - Apply engine oil to inserts of the proper size.
 - Insert the plain end (without the bearing tang) of the insert between the crankshaft (154) and the notched side of the block (115).
 - Rotate the crankshaft (154) to "roll" the insert into the block.
 - Remove J-8080.

4. Lower main bearing inserts (153) to the main bearing caps (152).
 - Make sure the inserts are of the proper size.
 - Apply engine oil to the inserts.

5. Main bearing caps (137 and 152). Refer to "Crankshaft and Main Bearing Installation" later in this section.

Measure

- Main bearing clearance and crankshaft end play. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

CRANKSHAFT AND MAIN BEARING INSTALLATION

Main bearings are of the precision insert type and do not use shims for adjustment. If clearances are found to be excessive, a new bearing, plus both upper and lower inserts will be required. Service main bearings are available in standard size and 0.001-inch, 0.002-inch, 0.010-inch, 0.020-inch and 0.030-inch undersize.

Selective fitting of the main bearing inserts is necessary in production in order to obtain close tolerances. For this reason you may use one standard insert with one 0.001-inch undersize insert which will decrease the clearance 0.0005-inch from using two standard inserts.

MAIN BEARING SELECTION

The simplest, most accurate way to measure main bearing clearance is with the use of gaging plastic. This wax-like material compresses evenly between the bearing and journal surfaces without damaging them. Proceed as follows:

Install or Connect (Figure 5)

1. Upper main bearing inserts (130 and 133) to the block (115).
 - If any undersized bearings are used, make absolutely certain they are fitted to the proper journal.

2. Crankshaft (154). Take care not to damage the thrust areas.

3. Lower bearing inserts (136 and 153) to the bearing caps (137 and 153).

Measure

- Main bearing clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).
- Apply oil to the main bearing inserts.

4. Rear main bearing cap (137).
 - Apply a brush-on type oil sealing compound to the mating surface of the block and cap (figure 49). Do not allow any sealant on either crankshaft or rear oil seal.
 - Install the rear main bearing cap.

5. Bolts (138).

Tighten

- Bolts (138) to 14 N-m (10 ft. lbs.).

6. Main bearing caps (152) with the selected lower main bearing inserts (153). Be sure to put the main bearing caps in their original locations, with the arrows facing the front of the engine.

7. Bolts (138 and 139). Make sure the special bolt (139), which retains the oil pump screen bracket, is installed in the proper position. (#5 main bearing cap, camshaft side hole.)
Figure 50—Measuring Crankshaft End Play

Tighten
- All bolts (138 and 139) EXCEPT THE REAR MAIN BEARING CAP BOLTS to 90 N·m (65 ft. lbs.).

Measure (Figure 50)
- Crankshaft end play.
 1. Tap the end of the crankshaft (154) first rearward then forward with a lead hammer. This will line up the rear main bearing and crankshaft thrust surfaces.
 2. Tighten the rear main bearing cap bolts (138) to 90 N·m (65 ft. lbs.).
 3. With the crankshaft forced forward, measure at the front end of the rear main bearing with a feeler gage (figure 50). The proper clearance is 0.002-0.006-inch.

Inspect
- Crankshaft (154) for binding. Try turning the crankshaft to check for binding. If the crankshaft does not turn freely, loosen the bolts (138 and 139), one pair at a time, until the tight bearing is located. Burrs on the bearing cap, foreign matter between the insert and the block or the bearing cap, or a faulty insert could cause a lack of clearance at the bearing.

CAMSHAFT INSTALLATION

Install or Connect (Figures 5 and 51)
- Coat the camshaft lobes with Engine Oil Supplement (GM part number 1051396) or equivalent. Coat the bearing journals with engine oil.
 1. Camshaft (182) into the block (115). Take care not to damage the camshaft bearings (98 and 99).

Important
- Align the timing marks (figure 51).
 2. Screws (93).

TIMING GEAR COVER INSTALLATION

Install or Connect (Figures 5 and 52)
- Tool Required:
 - J-35468 Seal Installer and Centering Tool
 - Apply engine oil to the lips of the seal (158).
 1. J-35468 to the seal (158). The tool is necessary to properly "center" the front seal on the crankshaft. If the seal is not centered, it may be damaged when the vibration damper is installed, or it may fail prematurely.
 2. Gasket (166) to the block (115).
 3. Timing gear cover (157), with the tool, to the block (115) (figure 52).
 4. Bolts (164).

Tighten
- Screws (93) to 9.0 N·m (80 in. lbs.).
4.8 LITER L6 6A4-27

TORSIONAL DAMPER INSTALLATION

Install or Connect (Figures 5 and 53)

Tool Required:

J-23523-E Torsional Damper Remover/Installer

NOTICE: The inertia weight section of the torsional damper is assembled to the hub with a rubber type material. The correct installation procedures (with the proper tool) must be followed or movement of the inertia weight section of the hub will destroy the tuning of the damper.

1. Key (163).

2. Stud (item C, figure 53) to the crankshaft (154). Thread the stud fully into the tapped end of the crankshaft.

3. Torsional damper (162) over the end of the stud. Align the keyway in the vibration damper shaft with the crankshaft key.

4. Bearing, washer, and nut (figure 53).
 - Turn the nut to pull the vibration damper into place.
 - Remove the tool.

5. Bolt (160) and washer (161).

Install or Disconnect (Figure 5)

- J-35468 from the seal (158).

CONNECTING ROD INSTALLATION

Connecting Rod Bearing Selection

Connecting rod bearings are of the precision insert type and do not use shims for adjustment. DO NOT FILE RODS OR ROD CAPS. If clearances are found to be excessive, a new bearing will be required. Service bearings are available in standard size and 0.001-inch and 0.002-inch undersize for use with new and used standard size crankshafts, and in 0.010-inch and 0.020-inch undersize for use with reconditioned crankshafts. The simplest, most accurate way to measure connecting rod bearing clearance is with the use of gaging plastic. This wax-like material compresses evenly between the bearing and journal surfaces without damaging them.

Selective fitting of the bearing inserts is necessary to obtain close tolerances. For this reason you may use, for example, one standard insert with one 0.001-inch undersize insert, which will decrease the clearance 0.0005-inch from using two standard inserts.

Install or Connect (Figures 5 and 54 through 56)

Tools Required:

J-5329 Connecting Rod Guide Set
J-8037 Ring Compressor

- Make sure the cylinder walls are clean. Lubricate the cylinder wall lightly with engine oil.
- Make sure the piston is installed in the matching cylinder. Refer to "Piston and Connecting Rod Assemblies," previously in this section.

1. Connecting rod bearing inserts (112 and 113).
 - Be certain that the inserts are of the proper size.
 - Install the inserts in the connecting rod (108) and connecting rod cap (110).

2. Piston (107) and connecting rod (108) to the proper bore.
• With the connecting rod cap removed, install J-5329 onto the connecting rod studs (69).

• Locate the piston ring end gaps as shown in figure 87. Lubricate the piston and rings (101, 102, and 105) with engine oil.

• Locate the ring end gaps as shown in figure 54.

• Without disturbing the ring end gap location, install J-8037 over the piston (figure 55).

• The piston must be installed so that the piston crown depression's flat side faces to the engine's left side (figure 56).

• Place the piston in its matching bore. Using light blows with a hammer handle, tap the piston down into its bore (figure 55). At the same time, guide the connecting rod into piston on the crankpin, using the J-5329 Guide Tool. Hold the ring compressor against the block until all rings have entered the cylinder bore.

3. Connecting rod cap (110) with the lower connecting rod bearing insert.

Figure 55—Installing the Piston

Figure 56—Pistons Installed

Tighten

• Nuts (111) to 80 N-m (60 ft. lbs.).

Measure (Figure 57)

• Connecting rod side clearance. Use a feeler gage. The proper clearance is 0.006-0.017-inch.

OIL PUMP INSTALLATION

Install or Connect (Figure 5)

1. Oil pump (151).

2. Bolts (148) and nut (149).

Tighten

• Bolts (148) to 13.0 N-m (115 in. lbs.).

• Nut (149) to 34 N-m (26 ft. lbs.).

OIL PAN INSTALLATION

Install or Connect (Figure 5)

1. Rear oil pan seal (141).

2. Front oil pan seal (147).

3. Gaskets (142).

4. Oil pan (146).

5. Bolts (145).

Tighten

• 1/4-20 bolts to 9.0 N-m (80 in. lbs.).

• 5/16-18 bolts (except oil pan [146]) to front cover (157) bolts to 18.6 N-m (165 in. lbs.).

• Oil pan (146) to front cover (157) bolts to 5.1 N-m (45 in. lbs.).
CYLINDER HEAD INSTALLATION

Clean (Figures 4 and 5)
- Gasket surfaces on the block (115) and cylinder head (26).
- Threads for cylinder head bolts in the block (115).

Install or Connect (Figures 4, 5 and 58)
1. Head gasket (33).
 • On engines using a STEEL gasket, coat both sides of a new gasket with a good sealer. Spread the sealer thin and even. One method of applying the sealer that will assure the proper coat is with the use of a paint roller. Too much sealer may hold the gasket away from the head or block.
 - Use no sealer on engines using a composition STEEL ASBESTOS gasket.
 • Place the gasket in position over the dowel pins with the bead up.
2. Cylinder head (26). Carefully guide the cylinder head into place over the dowel pins and head gasket (33).
3. Bolts (21) and stud (59).
 • Coat the threads of the cylinder head bolts and stud with sealing compound (Loctite #592 or equivalent).
 • Install finger tight.
 - Tighten
 • Bolts (21) and stud (59) a little at a time, using the sequence shown in figure 58. The proper torques are as follows:
 - Left-hand front bolt 115 N-m (85 ft. lbs.).
 - All others: 130 N-m (95 ft. lbs.).
5. The following chart shows indicator readings with gears properly indexed for 4.8L engines and the indicator readings resulting from improperly indexed gears.

<table>
<thead>
<tr>
<th>Engine</th>
<th>Camshaft Part Number</th>
<th>Valve Lift</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8L</td>
<td>3848000</td>
<td>0.405"</td>
</tr>
<tr>
<td>Dial</td>
<td>Gears Properly Indexed</td>
<td>0.016" ± 0.004"</td>
</tr>
<tr>
<td>Indicator</td>
<td>One Tooth Advanced</td>
<td>0.0379"</td>
</tr>
<tr>
<td>Readings</td>
<td>One Tooth Retarded</td>
<td>0.0068"</td>
</tr>
</tbody>
</table>

ROCKER ARM COVER AND PUSHROD COVER INSTALLATION

INSTALLATION

Install or Connect (Figures 4 and 5)
1. Gasket (8).
2. Rocker arm cover (7).
3. Bolts (3), clips (2) and reinforcements (4).

Tighten
- Bolts (3) to 4.3 N·m (38 in. lbs.).

5. Pushrod covers (179).

Tighten
- Bolts (178) to 9.0 N·m (80 in. lbs.).

WATER PUMP INSTALLATION

Install or Connect (Figure 5)
1. Gasket (169).
2. Water pump (171).

Tighten
- Bolts (170) to 20 N·m (15 ft. lbs.).

THERMOSTAT HOUSING INSTALLATION

Install or Connect (Figure 4)
1. Gasket (49).
2. Thermostat housing (50).
3. Bolts (51).

Tighten
- Bolts (51) to 38 N·m (28 ft. lbs.).

4. Hose (47).
INTAKE AND EXHAUST MANIFOLD INSTALLATION

Install or Connect (Figure 4)

- The manifold attaching bolt (39) and nuts (32) must be finger tight ONLY. Do not tighten the manifold attaching bolt and nuts until the manifold to head bolts and nuts (30 and 35) have been tightened.

1. Gasket (27).
2. Intake and exhaust manifold assembly.
3. Clamps (34), washers (29), bolts (35) and nuts (30).

Tighten

- Nuts (30) and bolts (35) to 52 N·m (38 ft. lbs.).
- Nuts (32) and bolts (39) to 60 N·m (44 ft. lbs.).

AIR MANIFOLD INSTALLATION

Install or Connect (Figures 7 and 8)

1. Air injection tubes (183).
2. Air manifold (182).

FLYWHEEL INSTALLATION

Clean (Figure 5)

- Mating surfaces of the flywheel (118) and crankshaft (154).

Install or Connect (Figures 5 and 18)

1. Flywheel (118) to the crankshaft (154). Align the marks made at disassembly. Make sure the dowel holes in the crankshaft and flywheel are aligned.
2. Bolts (122).

Tighten

- Bolts (122) to 150 N·m (110 ft. lbs.).
3. Dowel pins (134).

- The interference fit dowel pins must be replaced with an oversized dowel pin when installing the flywheel.
- Ream the dowel pin holes to the proper size (0.4510-0.4517-inch).
- Tap the dowel pins into place, flush with the flywheel retaining bolt surface.

ENGINE ACCESSORY INSTALLATION

Install the engine accessories (distributor, carburetor, oil filter, generator, etc.) as directed in the proper Truck Service Manual. Connect all vacuum hoses and electrical equipment the same way as removed.

ENGINE SET-UP AND TESTING

1. After overhaul, the engine should be tested before installing in the vehicle. If a suitable test stand is not available, the following procedure can be used after the engine is installed in the vehicle.
2. Fill the crankcase with the proper quantity and grade of oil. Refer to the proper Truck Service Manual or Owner’s and Driver’s Manual for this information. If a new camshaft or hydraulic lifters were installed, add Engine Oil Supplement (GM part no. 1051396 or equivalent) to the engine oil. Fill the cooling system with the proper coolant.
3. With the ignition “OFF,” or disconnected, crank the engine several times. Listen for any unusual noises or evidence that any parts are binding.
4. Start the engine and listen for unusual noises. Run the engine at about 1000 rpm until the engine is at operating temperature.
5. Listen for improperly adjusted valves or sticking lifters, and other unusual noises.
6. Check for oil and coolant leaks while the engine is running.
7. Using the proper Truck Service Manual or Emission Control Label for specifications, adjust the ignition timing, and idle rpm and mixture.
SPECIFICATIONS

ENGINE SPECIFICATIONS

All Specifications are in INCHES unless otherwise noted.

GENERAL DATA:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>In Line</td>
</tr>
<tr>
<td>Displacement</td>
<td>4.8L (292 Cu. In.)</td>
</tr>
<tr>
<td>No. Of Cylinders</td>
<td>6</td>
</tr>
<tr>
<td>Bore</td>
<td>3.876</td>
</tr>
<tr>
<td>Stroke</td>
<td>4.12</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>8.0:1</td>
</tr>
<tr>
<td>Firing Order</td>
<td>1 - 5 - 3 - 6 - 2 - 4</td>
</tr>
<tr>
<td>Oil Pressure</td>
<td>16 psi @ 700 RPM; 30-45 psi @ 1500 RPM</td>
</tr>
</tbody>
</table>

CYLINDER BORE:

Diameter	3.8750-3.8780
Out Of Production	0.0005 (Maximum)
Round Service Limit	0.002 (Maximum)
Taper Production	0.0005 (Maximum)
Thrust Side Production	0.0005 (Maximum)
Relief Side Service	0.001 (Maximum)

PISTON:

<table>
<thead>
<tr>
<th>Clearance</th>
<th>Production</th>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0026-0.0036</td>
<td>0.0045 (Maximum)</td>
</tr>
</tbody>
</table>

PISTON RING:

<table>
<thead>
<tr>
<th>Compression Groove Clearance Production Top 2nd</th>
<th>Production Top 2nd</th>
<th>Service Limit Hi Limit Production ± 0.001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service Limit Hi Limit Production ± 0.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil Groove Clearance Production</td>
<td>0.005-0.0055</td>
<td>Hi Limit Production + 0.001</td>
</tr>
<tr>
<td>Service Limit Hi Limit Production + 0.010</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PISTON PIN:

Diameter	0.9270-0.09273
Clearnace Production	0.00015-0.00025
In Piston Service Limit	0.001 (Maximum)

Fit In Rod 0.0008-0.0016 Interference
SPECIFICATIONS

ENGINE SPECIFICATIONS (CONT.)

All specifications are in INCHES unless otherwise noted.

<table>
<thead>
<tr>
<th>CRANKSHAFT:</th>
<th>Diameter</th>
<th>All 2.2979-2.2994</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Journal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taper</td>
<td>Production</td>
<td>0.0002 (Maximum)</td>
</tr>
<tr>
<td></td>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Out of Round</td>
<td>Production</td>
<td>0.0002 (Maximum)</td>
</tr>
<tr>
<td></td>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Main Bearing</td>
<td>Production</td>
<td>#1-#6: 0.0010-0.0024 #7: 0.0016-0.0035</td>
</tr>
<tr>
<td>Clearance</td>
<td>Service Limit</td>
<td>#1-#6: 0.0010-0.0025 #7: 0.0015-0.0035</td>
</tr>
<tr>
<td>Crankshaft End Play</td>
<td>0.002-0.006</td>
<td></td>
</tr>
<tr>
<td>Crankpin</td>
<td>Diameter</td>
<td>2.099-2.100</td>
</tr>
<tr>
<td>Taper</td>
<td>Production</td>
<td>0.0002 (Maximum)</td>
</tr>
<tr>
<td></td>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Out of Round</td>
<td>Production</td>
<td>0.0002 (Maximum)</td>
</tr>
<tr>
<td></td>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Rod Bearing</td>
<td>Production</td>
<td>0.0010-0.0026</td>
</tr>
<tr>
<td>Clearance</td>
<td>Service Limit</td>
<td>0.0030 (Maximum)</td>
</tr>
<tr>
<td>Rod Side Clearance</td>
<td>0.006-0.017</td>
<td></td>
</tr>
</tbody>
</table>

CAMSHAFT:

<table>
<thead>
<tr>
<th>Lobe</th>
<th>Intake</th>
<th>0.2315</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lift ± 0.002</td>
<td>Exhaust</td>
<td>0.2315</td>
</tr>
<tr>
<td>Journal Diameter</td>
<td>1.8677-1.8697</td>
<td></td>
</tr>
<tr>
<td>Camshaft Runout</td>
<td>0.020 (Maximum)</td>
<td></td>
</tr>
<tr>
<td>Camshaft End Play</td>
<td>0.003-0.008</td>
<td></td>
</tr>
</tbody>
</table>

VALVE SYSTEM:

<table>
<thead>
<tr>
<th>Lifter</th>
<th>Hydraulic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocker Arm Ratio</td>
<td>1.75:1</td>
</tr>
<tr>
<td>Valve Lash</td>
<td>Intake</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
</tr>
<tr>
<td>Face Angle (Intake & Exhaust)</td>
<td>46°</td>
</tr>
<tr>
<td>Seat Angle (Intake & Exhaust)</td>
<td>46°</td>
</tr>
<tr>
<td>Seat Runout (Intake & Exhaust)</td>
<td>0.002 (Maximum)</td>
</tr>
<tr>
<td>Seat Width</td>
<td>Intake</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
</tr>
<tr>
<td>Stem Clearance</td>
<td>Production</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
</tr>
<tr>
<td></td>
<td>Intake</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
</tr>
<tr>
<td>Valve Spring Pressure (Outer)</td>
<td>Closed</td>
</tr>
<tr>
<td>Valve Length</td>
<td>2.08</td>
</tr>
<tr>
<td>Installed Height</td>
<td>1½/32</td>
</tr>
<tr>
<td>Valve Spring</td>
<td>1.94</td>
</tr>
<tr>
<td>Approx. # of Coils</td>
<td>4</td>
</tr>
</tbody>
</table>
SPECIFICATIONS (CONT.)

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
<th>In. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flywheel Bolts</td>
<td>150</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Flywheel Housing Bolts</td>
<td>40</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Main Bearing Cap Bolts</td>
<td>90</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Camshaft Thrust Plate Screws</td>
<td>9.0</td>
<td>—</td>
<td>80</td>
</tr>
<tr>
<td>Front Cover Bolts</td>
<td>9.0</td>
<td>—</td>
<td>80</td>
</tr>
<tr>
<td>Torsional Damper Bolt</td>
<td>70</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Connecting Rod Cap Nuts</td>
<td>60</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Oil Pump Bolts</td>
<td>13.0</td>
<td>—</td>
<td>115</td>
</tr>
<tr>
<td>Oil Pump Bracket Nut (to Main Bearing Cap Bolt)</td>
<td>34</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Oil Pump Cover Bolts</td>
<td>7.9</td>
<td>—</td>
<td>70</td>
</tr>
<tr>
<td>Oil Pan Bolts (to front cover)</td>
<td>5.1</td>
<td>—</td>
<td>45</td>
</tr>
<tr>
<td>(to block [1/4-20])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(to block [5/16-18])</td>
<td>9.0</td>
<td>—</td>
<td>80</td>
</tr>
<tr>
<td>(to block [9/16-18])</td>
<td>18.6</td>
<td>—</td>
<td>165</td>
</tr>
<tr>
<td>Cylinder Head Bolts (left–front bolt)</td>
<td>115</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>(all others)</td>
<td>130</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Rocker Arm Cover Bolts</td>
<td>4.3</td>
<td>—</td>
<td>38</td>
</tr>
<tr>
<td>Pushrod Cover Bolts</td>
<td>9.0</td>
<td>—</td>
<td>80</td>
</tr>
<tr>
<td>Water Pump Bolts</td>
<td>20</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Thermostat Housing to Block Bolts</td>
<td>38</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Water Outlet to Thermostat Housing Bolts</td>
<td>28</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Intake Manifold to Exhaust Manifold Bolts and Nuts</td>
<td>60</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Manifold to Cylinder Head Bolts and Nuts</td>
<td>52</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Spark Plug</td>
<td>20</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
SPECIAL TOOLS

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Torsional Damper Remover and Installer</td>
<td>J-23523-E</td>
</tr>
<tr>
<td>2.</td>
<td>Valve Spring Compressor</td>
<td>J-8062</td>
</tr>
<tr>
<td>3.</td>
<td>Support Plate</td>
<td>J-22912-01</td>
</tr>
<tr>
<td>4.</td>
<td>Crankshaft Seal Installer and Centering Tool</td>
<td>J-35468</td>
</tr>
<tr>
<td>5.</td>
<td>Crankshaft Seal Installer and Centering Tool</td>
<td>J-8080</td>
</tr>
<tr>
<td>6.</td>
<td>Crankshaft Seal Installer and Centering Tool</td>
<td>J-8037</td>
</tr>
<tr>
<td>7.</td>
<td>Crankshaft Seal Installer and Centering Tool</td>
<td>J-5239</td>
</tr>
<tr>
<td>8.</td>
<td>Crankshaft Seal Installer and Centering Tool</td>
<td>J-23738-A</td>
</tr>
<tr>
<td>9.</td>
<td>Main Bearing Replacer</td>
<td>J-9290-01</td>
</tr>
<tr>
<td>10.</td>
<td>Hydraulic Lifter Remover (Slide Hammer Type)</td>
<td>J-3049</td>
</tr>
<tr>
<td>11.</td>
<td>Hydraulic Lifter Remover (Plier Type)</td>
<td>J-5802-01</td>
</tr>
<tr>
<td>12.</td>
<td>Hydraulic Lifter Remover (Plier Type)</td>
<td>J-5715</td>
</tr>
<tr>
<td>13.</td>
<td>Hydraulic Lifter Remover (Plier Type)</td>
<td>J-6036</td>
</tr>
<tr>
<td>14.</td>
<td>Hydraulic Lifter Remover (Plier Type)</td>
<td>J-6880</td>
</tr>
<tr>
<td>15.</td>
<td>Hydraulic Lifter Remover (Plier Type)</td>
<td>J-24420-A</td>
</tr>
<tr>
<td>16.</td>
<td>Hydraulic Lifter Remover (Plier Type)</td>
<td>J-5590</td>
</tr>
<tr>
<td>17.</td>
<td>Hydraulic Lifter Remover (Plier Type)</td>
<td>J-8520</td>
</tr>
<tr>
<td>18.</td>
<td>Hydraulic Lifter Remover (Plier Type)</td>
<td>J-21882</td>
</tr>
</tbody>
</table>

- Torsional Damper Remover and Installer
- Valve Spring Compressor
- Support Plate
- Crankshaft Seal Installer and Centering Tool
- Main Bearing Replacer
- Piston Ring Compressor
- Guide Set
- Vacuum Pump
- Hydraulic Lifter Remover (Slide Hammer Type)
- Hydraulic Lifter Remover (Plier Type)
- Stud Remover
- Reamer (0.003-inch oversize)
- Reamer (0.013-inch oversize)
- Stud Installer
- Crankshaft Gear Puller
- Crankshaft Gear Installer
- Dial Indicator Adapter
- Oil Pump Suction Pipe Installer
SECTION 6A5

V8 ENGINE
5.0 LITER (305 Cu. In.)
5.7 LITER (350 Cu. In.)
7.4 LITER (454 Cu. In.)

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>.6A5-2</td>
</tr>
<tr>
<td>Engine Identification</td>
<td>.6A5-2</td>
</tr>
<tr>
<td>Disassembly</td>
<td>.6A5-6</td>
</tr>
<tr>
<td>Tools and Shop Equipment</td>
<td>.6A5-6</td>
</tr>
<tr>
<td>Accessory Removal</td>
<td>.6A5-6</td>
</tr>
<tr>
<td>Cleaning</td>
<td>.6A5-6</td>
</tr>
<tr>
<td>Draining the Engine</td>
<td>.6A5-6</td>
</tr>
<tr>
<td>Exhaust Manifold Removal</td>
<td>.6A5-6</td>
</tr>
<tr>
<td>Water Pump</td>
<td>.6A5-6</td>
</tr>
<tr>
<td>Intake Manifold Removal</td>
<td>.6A5-6</td>
</tr>
<tr>
<td>Rocker Arm Cover Removal</td>
<td>.6A5-6</td>
</tr>
<tr>
<td>Valve Train Component Removal</td>
<td>.6A5-7</td>
</tr>
<tr>
<td>Cylinder Head Removal</td>
<td>.6A5-8</td>
</tr>
<tr>
<td>Torsional Damper Removal</td>
<td>.6A5-8</td>
</tr>
<tr>
<td>Oil Pan Removal</td>
<td>.6A5-8</td>
</tr>
<tr>
<td>Oil Pump Removal</td>
<td>.6A5-8</td>
</tr>
<tr>
<td>Front Cover Removal</td>
<td>.6A5-8</td>
</tr>
<tr>
<td>Timing Chain and Camshaft Sprocket Removal</td>
<td>.6A5-9</td>
</tr>
<tr>
<td>Camshaft Removal</td>
<td>.6A5-9</td>
</tr>
<tr>
<td>Piston and Connecting Rod Removal</td>
<td>.6A5-9</td>
</tr>
<tr>
<td>Flywheel Removal</td>
<td>.6A5-9</td>
</tr>
<tr>
<td>Rear Crankshaft Oil Seal Retainer Removal (5.0 L and 5.7 L Engines)</td>
<td>.6A5-13</td>
</tr>
<tr>
<td>Crankshaft Removal</td>
<td>.6A5-13</td>
</tr>
<tr>
<td>Cleaning, Inspection, and Repair</td>
<td>.6A5-14</td>
</tr>
<tr>
<td>Block</td>
<td>.6A5-15</td>
</tr>
<tr>
<td>Piston and Connecting Rod Assemblies</td>
<td>.6A5-15</td>
</tr>
<tr>
<td>Intake and Exhaust Manifold</td>
<td>.6A5-16</td>
</tr>
<tr>
<td>Camshaft</td>
<td>.6A5-16</td>
</tr>
<tr>
<td>Camshaft Bearings</td>
<td>.6A5-16</td>
</tr>
<tr>
<td>Timing Chain and Sprockets</td>
<td>.6A5-17</td>
</tr>
<tr>
<td>Front Cover</td>
<td>.6A5-17</td>
</tr>
<tr>
<td>Water Pump</td>
<td>.6A5-17</td>
</tr>
<tr>
<td>Oil Pan and Rocker Arm Covers</td>
<td>.6A5-18</td>
</tr>
<tr>
<td>Oil Pump</td>
<td>.6A5-19</td>
</tr>
<tr>
<td>Valve Train Components</td>
<td>.6A5-19</td>
</tr>
<tr>
<td>Cylinder Head</td>
<td>.6A5-20</td>
</tr>
<tr>
<td>Thermostat and Water Outlet</td>
<td>.6A5-24</td>
</tr>
<tr>
<td>Torsional Damper</td>
<td>.6A5-24</td>
</tr>
<tr>
<td>Crankshaft and Bearings</td>
<td>.6A5-24</td>
</tr>
<tr>
<td>Oil Filter Bypass Valve</td>
<td>.6A5-25</td>
</tr>
<tr>
<td>Rear Crankshaft Oil Seal Retainer Removal (5.0 L and 5.7 L Engines)</td>
<td>.6A5-26</td>
</tr>
<tr>
<td>Assembly of Engine</td>
<td>.6A5-26</td>
</tr>
<tr>
<td>Prior to Assembly</td>
<td>.6A5-26</td>
</tr>
<tr>
<td>Rear Crankshaft Oil Seal Installation (7.4 L Engines)</td>
<td>.6A5-26</td>
</tr>
<tr>
<td>Crankshaft and Main Bearing Installation</td>
<td>.6A5-27</td>
</tr>
</tbody>
</table>
CONTENTS (CONT.)

Assembly of Engine (Cont.)
Rear Crankshaft Oil Seal and Retainer Installation (5.0 L and 5.7 L Engines) .. 6A5-29
Camshaft, Timing Chain, and Sprocket Installation ... 6A5-30
Front Cover Installation .. 6A5-30
Torsional Damper Installation ... 6A5-31
Piston and Connecting Rod Installation .. 6A5-31
Oil Pump Installation ... 6A5-32
Oil Pan Installation .. 6A5-32
Cylinder Head Installation .. 6A5-33
Valve Train Component Installation .. 6A5-34
Valve Adjustment .. 6A5-34
Intake Manifold Installation ... 6A5-35
Rocker Arm Cover Installation .. 6A5-36
Exhaust Manifold Installation ... 6A5-36
Water Pump Installation ... 6A5-37
Engine Accessory Installation .. 6A5-37
Engine Set-Up and Testing .. 6A5-37
Specifications .. 6A5-41
Special Tools ... 6A5-46

DESCRIPTION

GM V8 engines covered by this section are 90-degree V8 type, overhead valve, water cooled, with cast iron block and heads.

The camshaft is supported by five plain type bearings and is chain driven. Motion from the camshaft is transmitted to the valves by hydraulic lifters, pushrods, and ball-pivot type rocker arms. The valve guides are integral in the cylinder head.

The crankshaft is supported by five precision insert type bearings, with crankshaft thrust taken at the number five (rear) bearing.

The connecting rods are forged steel, with precision insert type crankpin bearings. The piston pins are a press fit in the connecting rods.

The pistons are cast aluminum alloy. The piston pins are a floating fit in the pistons.

The gear type oil pump is driven through an extension shaft from the distributor driveshaft which is gear driven from the camshaft. The oil is drawn from the engine oil pan through a pickup screen and tube. Pressurized oil is delivered through internal passages to the camshaft and crankshaft to lubricate the bearings. Lubrication diagrams are shown in figure 1, 2, and 3.

ENGINE IDENTIFICATION

Two basic types of engines, with three different displacements, are covered in this section.

The first type is the "small block" engine, which is available in 5.0 L (305 cu. in.) and 5.7 L (350 cu. in.) displacements.

The second type is the 7.4 L (454 cu. in.) engine, which is sometimes referred to as the "Mark IV" engine.

To determine the displacement of the engine, use the Vehicle Identification (VIN) of the vehicle the engine was removed from. Refer to "Specifications" at the end of this section. If the VIN is not available, the bore and stroke of the engine involved can be measured and compared against "Specifications" to determine the engine model.

Refer to General Information (Section 0A) in this manual for further information.
Figure 1—Lubrication Diagram (5.0L and 5.7L Engines)
Figure 2—Lubrication Diagram (5.0L and 5.7L Engines)
Cylinder walls are oiled by oil thrown off pressure fed connecting rod bearings.

Cylinder Wall and Camshaft Lobe Oiling

Fuel Pump Push Rod Oiling

Oil Filter and Distributor Oiling

Crankcase and Crankshaft Oiling

Valve Mechanism Oiling

Figure 3—Lubrication Diagram (7.4L Engines)
DISASSEMBLY

TOOLS AND SHOP EQUIPMENT

A clean, well lit work area should be available. Other necessary equipment includes: A suitable parts cleaning tank, compressed air supply, trays to keep parts and fasteners organized, and an adequate set of hand tools.

An approved engine repair stand will aid the work and help prevent personal injury or damage to engine components.

Special tools are illustrated throughout this section, and are listed at its end. These tools (or their equivalents) are specially designed to quickly and safely accomplish the operations for which they are intended. The use of these tools will also minimize possible damage to engine components.

Some precision measuring tools are required for inspection of certain critical components. Torque wrenches will be necessary for correct assembly of various parts.

ACCESSORY REMOVAL

This manual assumes that the engine accessories have been removed. These accessories may include one or more of the following:

- Hydraulic Pump
- Air Pump
- Generator
- Air Conditioning Compressor
- Cooling Fan
- Distributor
- Carburetor
- Fuel Pump
- EGR Valve and Equipment
- Emission Control
- Cooling Fan Equipment
- Heat shields

It is beyond the scope of this section to detail the many different accessory installations. Refer to the proper Truck Service Manual for this information.

Diagrams of emission and vacuum hose routings, wiring harness routing, accessory drive belt layout, etc., should be made before removing accessories.

CLEANING

Remove the engine accessories before cleaning, to provide better access to engine exterior surfaces. After removing the carburetor, distributor, fuel pump, etc., cover the openings with tape to prevent the entry of water, solvent, and dirt.

Methods used to clean the engine will depend on the aids which are available. Steam cleaning, pressure washing, or solvent cleaning are some acceptable methods. Allow the engine to dry before beginning the work.

It is important that the engine be as clean as possible to prevent dirt from entering critical areas during disassembly.

DRAINING THE ENGINE

Remove or Disconnect
1. Oil pan drain plug. Allow the oil pan to drain.
2. Oil filter.
3. Block drain plugs. Allow the coolant to drain.

Install or Connect
1. Oil pan drain plug.

Tighten
- Oil pan drain plug to 28 N·m (20 ft. lbs.).
2. Block drain plugs.

Tighten
- Block drain plugs to 12.7 N·m (112 in. lbs.).

EXHAUST MANIFOLD REMOVAL

Remove or Disconnect (Figures 4 and 5)
1. Oil dipstick tube.
 - On 5.0 L and 5.7 L engines with cast iron manifolds, bend back the tab washers (3).
2. Bolts and studs (4).
3. Tab washers (3) and washers (2) (some 5.0 L and 5.7 L engines).
4. Heat shields (6) (if used).
5. Exhaust manifold (1). Take care not to damage the AIR injection tubes (if used).

WATER PUMP REMOVAL

Remove or Disconnect (Figure 6)
1. Bolts (12).
2. Water pump (10).

INTAKE MANIFOLD REMOVAL

Remove or Disconnect (Figures 7 and 8)
1. Bolts (20).
2. Intake manifold (21).
 - Pull the intake manifold up.
 - Do not attempt to loosen the manifold by prying under the gasket surface with any tool.
3. Gaskets (22).
4. Seals (23) (7.4 L engines).
ROCKER ARM COVER REMOVAL

Remove or Disconnect (Figure 9)
1. Nuts (30), clips (35), and reinforcements (31) or bolts (36) and washers (37).
2. Rocker arm covers (32). If the rocker arm cover adheres to the cylinder head, try to shear the gasket by bumping the end of the cover with a rubber mallet. If the cover will not come loose, carefully pry until loose. DO NOT DISTORT THE SEALING FLANGE.

VALVE TRAIN COMPONENT REMOVAL

Remove or Disconnect (Figures 10 through 13)
Tools Required:
J 3049 Valve Lifter Remover (Plier Type)
J 9290-01 Valve Lifter Remover (Slide Hammer Type)
1. Nuts (40), balls (41), rocker arms (42) and pushrods (43).
 - Note that on 7.4 L engines, the exhaust valve pushrods are longer than the intake valve pushrods.
 - Every effort should be made to insure that these mating parts are installed in their original locations during assembly. A simple valve train component organizer rack can be made from a piece of wood, as shown in figure 11.
2. Hydraulic lifters (44).
 - Remove the lifters one at a time, using a magnet. Place the lifters in the organizer rack, or tag them in some way to insure that they can be returned to the valve lifter bore from which they were removed.
10. Water Pump
11. Gasket
12. Bolt

5.0L AND 5.7L ENGINES

7.4L ENGINES

Figure 6—Water Pumps
— Some lifters may be stuck in their bores due to gum or varnish deposits. These lifters can be removed using either J 3049 (figure 12) or J 9290-01 (figure 13).

CYLINDER HEAD REMOVAL
❤❤️ Remove or Disconnect (Figure 10)
1. Bolts (45).
2. Cylinder heads (46). Use care when handling the cylinder heads, to prevent damage to rocker arm studs or gasket sealing surfaces.

TORSIONAL DAMPER REMOVAL
❤❤️ Remove or Disconnect (Figure 14)
Tool Required:
J 23523-E Torsional Damper Puller and Installer
1. Crankshaft pulley.

21. Intake Manifold 23. Seal (7.4 L Engines)

Figure 7—Intake Manifold
2. Torsional damper retaining bolt and washer.

OIL PAN REMOVAL
❤❤️ Remove or Disconnect (Figures 15 and 16)
1. Oil pan bolts, timing marker (if used), clips and reinforcements.
2. Oil pan.
3. Gasket or gaskets.
4. Front and rear oil pan seals (7.4 L engines).

OIL PUMP REMOVAL
❤❤️ Remove or Disconnect (Figure 15)
1. Bolt (72).
2. Oil pump, with drive shaft and connector.

FRONT COVER REMOVAL
❤❤️ Remove or Disconnect (Figure 17)
1. Bolts (93).
2. Timing tab (92) (7.4 L engines).
3. Front cover (91).
4. Gasket (90).
TIMING CHAIN AND CAMSHAFT SPRECKET REMOVAL

Remove or Disconnect (Figure 18)

- Timing chain free play. If the chain can be moved back and forth in excess of 16 mm (5/8-inch), make a note that the timing chain should be replaced during assembly.

Remove or Disconnect (Figure 18)

1. Bolts (100).

2. Camshaft sprocket (101) and timing chain (102) together.

CAMSHAFT REMOVAL

Remove or Disconnect (Figure 19)

- Camshaft.
- Install three 5/16-18 bolts 100-125 mm (4-5-inches) long into the camshaft tapped holes. Use these bolts to handle the camshaft.
- Pull the camshaft from the block.
- Use care to prevent damage to the camshaft and bearings.

PISTON AND CONNECTING ROD REMOVAL

Remove or Disconnect (Figures 20 and 21)

Tool Required:
- J 5239 Connecting Rod Guide Set

1. Ridge (or deposits) at the top of the cylinder as follows:
Figure 9—Rocker Arm Cover (7.4L Engines)

Figure 10—Cylinder Head and Components (Typical)

- Turn the crankshaft until one piston is at the bottom of its stroke. Place a soft cloth on top of the piston.
- Using the manufacturer's directions, install a ridge reamer into the top of the cylinder (figure 20). Perform the cutting operation.
- After the ridge and/or deposits are removed, remove the ridge reamer. Turn the crankshaft until the piston is at the top of its stroke. Remove the cloth and cuttings.
- Repeat this procedure for each piston.
Figure 13—Removing the Hydraulic Lifter

2. Connecting rod caps as follows:
 • Make note of the arrangement of the connecting rod markings, to insure that they will be returned to their proper position during assembly. Mark the connecting rods with a scratch awl if necessary.
 • Remove the connecting rod nuts.
 • To avoid mismatching the connecting rods and connecting rod cap, remove only one connecting rod cap at a time. Place the piston at the bottom of its stroke.
 • Remove the connecting rod cap.
 • Install J5239 onto the studs. Use of the specified guide set will prevent the connecting rod from scratching the bore or crankshaft journal during the removal process. The tool will also prevent the rod bearing half from falling out of the connecting rod during removal.

3. Connecting rod and piston from the block.
 • Push on the guide rod (item A, figure 21) to push the piston and connecting rod out.

Figure 14—Removing the Torsional Damper

70. Oil Pump
72. Bolt
74. Gasket
75. Reinforcement

Figure 15—Oil Pan (5.0L and 5.7L Engines)
A. Apply RTV Sealer to Shaded Area
74. Gasket
75. Reinforcement
76. Rear Oil Pan Seal
77. Timing Marker (Some Engines)
78. Front Oil Pan Seal
79. Clip (Number and Location Varies)

Figure 16—Oil Pan (7.4L Engines)

90. Gasket
91. Front Cover
92. Timing Marker (Mark IV Engines)
93. Bolt

A. 16 mm (5/8-inch) Maximum
100. Bolt
101. Camshaft Sprocket
102. Timing Chain

Figure 18—Timing Chain and Sprockets
- Use the guide rod to prevent the connecting rod from scoring the cylinder bore.
- Assemble the connecting rod cap onto the connecting rod. Do not tighten.
- Repeat this procedure on the remaining piston and connecting rod assemblies.

Figure 17—Front Cover

Figure 19—Removing the Camshaft
FLYWHEEL REMOVAL

Remove or Disconnect (Figure 22)
1. Bolts (111).
2. Flywheel (110).

REAR CRANKSHAFT OIL SEAL RETAINER REMOVAL
(5.0 L and 5.7 L ENGINES)

Remove or Disconnect (Figure 23)
1. Screws and nuts.
2. Seal retainer (121).
3. Gasket (120).

CRANKSHAFT REMOVAL

Remove or Disconnect (Figures 24 and 25)
- Check the main bearing caps for location markings. Mark the caps if necessary. The caps must be returned to their original locations during assembly.
1. Bolts (134).
Cleansing, Inspection, and Repair

CLEANING, INSPECTION, AND REPAIR

A solvent tank, large enough to hold the larger engine parts, will be needed along with various bristle brushes and a gasket scraper. A source of compressed air will be helpful in the cleaning operations.

Precision measuring tools will be required for the inspection procedure. These include: micrometers, cylinder bore gage, feeler gages, dial indicator set, etc. The inspection work, performed with the proper method and tools, is most important. The rebuilt engine cannot be expected to perform properly if parts worn beyond acceptable limits are reused.

BLOCK

Clean

1. Block in solvent.
2. Block gasket surfaces.
3. Cylinder bores.
4. Oil galleries and passages.
5. Scale deposits from the coolant passages.

Inspect

1. All expansion plugs for poor fit or leakage.
2. Hydraulic lifter bores for deep scratches and varnish deposits.
3. Block for cracks.
Figure 26—Checking the Block Gasket Surface

- Cylinder walls.
- Coolant jackets.
- Main bearing webs.
- Engine mount bosses.

4. Main bearing bores and main bearing caps.
 - All main bearing bores should be round and uniform in ID at all bearing supports.
 - The area where the main bearing inserts contact the main bearing bore should be smooth.
 - If a main bearing cap is damaged and requires replacement, replace it as outlined later.

Measure (Figure 26)

- Head gasket surface distortion. Use a straight edge and feeler gage to check for flatness of the milled surface at the top of the cylinder block. The surface must be flat (within 0.10 mm [0.004-inch]) to assure proper head gasket sealing.

MAIN BEARING CAP REPLACEMENT

Install or Connect

1. New main bearing cap. The arrow on the main bearing cap faces the front of the engine (opposite the flywheel).
2. Main bearing cap bolts.

Tighten

- Bolts to “Specifications.”

Measure (Figure 27)

- Main bearing vertical ID (inside diameter). Use an inside micrometer.
- This dimension should be the same as the other main bearing bore vertical diameters.
- If it is necessary to increase the vertical ID, use an equal thickness of special service bearing cap shims at each side of the cap to provide the same dimension as at the other bores. This is necessary to assure the proper crush on the bearing inserts when the engine is assembled.

CYLINDER BORES

Inspect

- Cylinder bores for scoring and other damage.

Measure

- Cylinder out of round and taper. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

Cylinder Bore Reconditioning

- Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

PISTON AND CONNECTING ROD ASSEMBLIES

Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) and perform the following:

Disassemble

- Components as required.

Clean

- Components as outlined.

Inspect

- Components as outlined.

Measure

- Piston pin diameter and pin to piston clearance.
- Piston to bore clearance, and fit pistons as outlined.

Assemble

- Components as outlined.
Important

- Each connecting rod and bearing cap should be marked, beginning at the front of the engine. Cylinders 1, 3, 5 and 7 are the left bank and 2, 4, 6, and 8 are the right bank. The numbers on the connecting rod and bearing cap must be on the same side when installed in the cylinder bore. If a connecting rod is ever transposed from one block or cylinder to another, new connecting rod bearings should be fitted and the connecting rod should be numbered to correspond with the new cylinder number.

Measure

- Ring end gap and ring clearance.

Inspect

- Ring fit.

INTAKE AND EXHAUST MANIFOLD

Clean

- Old pieces of gasket from the gasket surfaces.
- Excessive carbon build-up in the exhaust passages of the intake manifold.
- Scale and deposits from the coolant passages of the intake manifold.
- EGR passage (if used) of excessive carbon deposits.

Inspect (Figure 28)

- Manifolds for cracks, broken flanges, and gasket surface damage.
- Alignment of exhaust manifold flanges. Use a straight edge and feeler gage (figure 28). If the flanges do not align, the manifold is warped and should be replaced.

CAMSHAFT

Important

- Whenever the camshaft needs to be replaced, a new set of valve lifters must also be installed.

Inspect

- Camshaft lobes and journals for scratches, pitting, scoring, and wear.

Measure (Figures 29 and 30)

Tool Required:

- J 7872 Dial Indicator (or equivalent)
- Camshaft runout (figure 29). Mount the camshaft in V-blocks or between centers. Using J 7872, check the intermediate camshaft journal. If runout exceeds (0.0015-inch), the camshaft is excessively bent and should be replaced along with the camshaft bearings.
- Camshaft journal out-of-round. Use a micrometer (figure 30). If the journals are more than 0.001-inch out-of-round, replace the camshaft.
— Camshaft journal diameter. Use a micrometer (figure 30). The proper diameter is listed in "Specifications."

CAMSHAFT BEARINGS

Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) for replacement procedures.

TIMING CHAIN AND SPROCKETS

- **Inspect**
 - Sprockets for chipped teeth and wear.
 - Timing chain for damage.
 - It should be noted that excessively worn sprockets will rapidly wear a new chain. Likewise, an excessively worn chain will rapidly wear a new set of sprockets.

CRANKSHAFT SPROCKET REPLACEMENT

Disassemble (Figures 31 and 32)

- Tools Required:
 - J 5825 Crankshaft Sprocket Puller
 (5.0 L and 5.7 L engines)
 - J 1619 Crankshaft Sprocket Puller
 (7.4 L engines)
 - 1. Crankshaft sprocket. On 5.0 L and 5.7 L engines, use J 5825 (figure 31). On 7.4 L engines, use J 1619 (figure 32).
 - 2. Key, if necessary.

Assemble (Figures 31 and 32)

- Tools Required:
 - J 5590 Crankshaft Sprocket Installer
 (5.0 L and 5.7 L engines)
 - J 22102 Crankshaft Sprocket Installer
 (7.4 L engines)
 - 1. Key, if removed.
 - 2. Crankshaft sprocket. Use J 5590 (5.0 L and 5.7 L engines) or J 22102 (7.4 L engines). Make sure the timing mark faces outside.

FRONT COVER

- **Clean**
 - Old gasket from the gasket surfaces.

- **Inspect**
 - Timing marker for damage.
 - Front cover for damage, dents, or cracks.

- **Disassemble**
 - Front crankshaft seal. Pry the seal out with a screwdriver.

WATER PUMP

- **Clean**
 - Old gasket from the gasket surface.

- **Important**
 - Do not immerse the pump in solvent. The solvent may enter the pump's permanently lubricated bearings, dissolve the bearings' lubricant supply, and cause premature bearing failure.
Inspect
- Water pump shaft for roughness and end play. If the shaft does not turn smoothly, or if there is excessive end play, replace the water pump.
- Water pump body at the drain hole. If there is evidence of coolant leakage, the water pump shaft seal is leaking and the water pump should be replaced.

OIL PAN AND ROCKER ARM COVERS

Clean
- Parts in solvent. Remove all sludge and varnish.
- Old gaskets from the gasket surfaces.

Inspect
- Gasket flanges for bending or damage.
- Rubber grommets and parts on the rocker arm cover for deterioration.
- Oil pan for rock damage or cracks.
- Oil pan baffle for lack of fit.
- Drain plug threads for stripping.

OIL PUMP

Disassemble (Figures 34 and 35)
1. Oil pump driveshaft (178) and connector (179).
2. Cover screws (186).
3. Cover (182) and gasket (180) (7.4L engines).
 • Mark the gear teeth so the pump gears can be installed with the same gear teeth indexed.
4. Drive gear and shaft (181).
5. Idler gear (181).
6. Spring retaining pin (185).
7. Washer (189) (7.4 L engines).
8. Spring (184).
9. Pressure relief valve (183).
Figure 35—Oil Pump Components (7.4L Engines)

 • Do not remove the pickup screen and pipe unless replacement is required.
 • The pickup screen is a press fit in the pump body (182).
 • Do not try to remove the screen from the pipe. The pickup screen and pipe is serviced as an assembly only.

Clean
 • All parts in clean solvent and blow dry with compressed air.

Inspect
 — Pump body (180) and cover (182) for cracks or other damage.
 — Gears (181 and 188) for wear.
 — Drive gear and shaft (181) for lack of fit in the pump body (180).

— Inside of the cover (182) for wear that would permit oil to leak past the ends of the gears. The pump gears, cover, and body are not serviced separately. If the parts are damaged or worn, replace the entire oil pump assembly.
— Pressure relief valve (183) for fit. The regulator valve should slide freely in its bore without sticking or binding.

Assemble (Figures 34, 35, and 36)

Tool Required:
 J 21882 Pickup Tube and Screen Installer (5.0 L and 5.7 L engines)
 J 22144 Pickup Tube and Screen Installer (7.4L engines)
 1. Pressure relief valve (183).
 2. Spring (184).
 3. Washer (189) (7.4 L engines).
 4. Spring retaining pin (185).
 5. Drive gear and shaft (181).
 6. Idler gear (188) in the pump body (180) with the smooth side of the gear toward the pump cover opening. Index the marks made during disassembly.
 7. Cover (182), gasket (190) (7.4L engines) and screws (186).

Tighten
 • Screws (186) to 9.0 N·m (80 in. lbs.).
 • Turn the driveshaft by hand to check for smooth operation.

NOTICE: Be careful of twisting, shearing or collapsing the pipe while installing in the pump.

8. Pickup screen and pipe (187) (if removed) (figure 36).
 • If the pickup screen and pipe assembly was removed, it should be replaced with a new part. Loss of press fit condition could result in an air leak and loss of oil pressure.
 • Mount the oil pump in a soft jawed vise.
 • Apply sealer to the end of the pipe.
 • Tap the pickup screen and pipe into place, using J 21882 (5.0 L and 5.7 L engines) or J 22144 (7.4 L engines), and a hammer.
 • The pump screen must be parallel with the bottom of the oil pan when installed.

9. Oil pump driveshaft (178) and connector (179).

VALVE TRAIN COMPONENTS

PUSHRODS, ROCKER ARMS, BALL, AND NUTS

Clean
 • Parts in solvent. Blow dry with compressed air.
 • Make sure the oil passages in the pushrods are clear.

Inspect
 — rocker arms and balls at their mating surfaces. These surfaces should be smooth and free from scoring or other damage.
— Rocker arm areas which contact the valve stems and the sockets which contact the pushrods. These areas should be smooth and free of damage and wear.

— Rocker arm nuts.
 • The nuts are prevailing torque nuts. At least 6.2 N·m (55 in. lbs.) torque should be required to thread the nuts onto the rocker arm studs. If not, it is possible that the nut(s) could back off during engine operation, causing loss of lash and valve train noise.

— Pushrods for bending. Roll the pushrod on a flat surface to determine if it is bent. Replace if necessary.

— Ends of the pushrods for scoring or roughness.

HYDRAULIC LIFTERS
Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

CYLINDER HEAD

Disassemble (Figures 37, 38 and 39)
Tool Required:
J 8062 Valve Spring Compressor
1. Valve keepers (251).
 • Compress the springs (256) with J 8062 (figure 39).
 • Remove the valve keepers.
 • Remove J 8062.
2. Caps (253), shields (255), springs with dampers (256) and rotators (254).
3. O-ring seals (252) (if used) and seals (257).
4. Valves (258 and 259). Place them in a rack so they can be returned to their original position at assembly.

CLEANING AND INSPECTION OF COMPONENTS
Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) and perform the following:

Clean
• Components as outlined.

Inspect
• Components as outlined.

Measure
• Valve stem clearance.
• Valve spring tension and free length.
Other information outlined includes:
• Valve and seat grinding.
• Valve guide reaming.

ROCKER ARM STUD REPLACEMENT
(5.0 L AND 5.7 L ENGINES)
Tools Required:
J 5802-01 Stud Remover
J 5715 Reamer (0.003-inch oversize) or
J 6036 Reamer (0.013-inch oversize)
J 6880 Stud Installer
Rocker arm studs that have damaged threads or are loose in cylinder heads should be replaced. New studs are available in 0.003-inch and 0.013-inch oversize.

1. Place J 5802-01 over the stud to be removed. Install a nut and flat washer. Remove the stud by turning the nut (figure 40).
2. Ream the hole to the proper size for the replacement oversize stud. Use J 5715 for 0.003-inch oversize studs; J 6036 for 0.013-inch oversize studs (figure 41).
3. Coat lower end (press-fit area) of stud with hypoid axle lubricant. Drive the stud into place with a hammer and J 6880. Stud is installed to proper depth when the tool bottoms on the cylinder head (figure 42).
ROCKER ARM STUD AND PUSHROD GUIDE REPLACEMENT (7.4 L ENGINES)

The rocker arm studs used in 7.4 L engines are threaded in place.

Disassemble (Figure 38)
1. Rocker arm studs (250). Use a deep socket.

Assemble (Figure 38)
1. Pushrod guide.
2. Rocker arm studs. Use a deep socket.

Tighten
- Rocker arm studs to 68 N·m (50 ft. lbs.).
ASSEMBLY (5.0 L AND 5.7 L ENGINES)

Assemble (Figures 37, 39, and 43)

Tools Required:
- J 8062 Valve Spring Compressor
- J 23738-A Valve Seal Leak Detector

1. Valves (258 and 259).
 - Lubricate the valve stems with engine oil.
 - Insert the valves into the proper ports.

2. Seals (257) (intake valve only). Install the seals over the valve stems and seat them against the head.

3. Springs with dampers (256).

5. Caps (253) (intake valves only).

6. Rotators (254) (exhaust valves only).

7. O-ring seals (252) and valve keepers (251).
Figure 43—Checking the Valve Seal (5.0L and 5.7L Engines)

- Compress the valve spring, using J 8062 (figure 39). Compress the spring enough so the lower valve stem groove can be clearly seen.
- Push a new O-ring seal onto the valve stem. The seal is to be installed on the stem's lower groove. Make sure the seal is flat and not twisted.
- Apply a small amount of grease to the area of the upper valve stem groove. Assemble the two valve keepers using the grease to hold the keys in place. Make sure the keepers seat properly in the groove.
- Release the compressor tool. Make sure the valve keepers stay in place.
- Repeat the preceding steps on the remaining valves.
- Check each seal, using J 23738-A (figure 43). Place the adapter cup over the shield. Operate the vacuum pump. Observe the vacuum pump gage. No air should be able to leak past the seal. If the seal will not hold a vacuum, it may have been damaged or improperly installed.

-measure (Figures 44 and 45)

- Valve spring installed height of each valve spring as follows:
 1. Use a narrow, thin scale. A cutaway scale (figure 44) may be helpful.
 2. Measure from the valve shim or spring seat to the top of the shield (255) (figure 45).

ASSEMBLY (7.4 L ENGINES)

Assemble (Figures 38 and 39)

Tool Required:
J 8062 Valve Spring Compressor

1. Valves (258 and 259).
- Lubricate the valve stems with engine oil.
6A5-24 V8 ENGINE

- Insert the valve into the proper port.
- Rotators (254).
- Seals (257).
 - Lubricate the seals with engine oil.
 - Push the seals into place.
- Valve springs with dampers (256).
- Caps (253).
- Valve keepers (251).
 - Compress the valve spring using J8062 (figure 39). Compress the spring until the valve stem groove can be seen.
 - Apply a small amount of grease to the area of the valve stem groove.
 - Assemble the valve keepers, using the grease to hold the keys in place. Make sure the keepers seat properly in the groove.
 - Release the compressor tools. Make sure the valve keepers stay in place.
 - Repeat this procedure on the remaining valves.

Measure (Figures 44 and 45)
- Valve spring installed height of each valve spring.
 1. Use a narrow, thin scale. A cutaway scale (figure 44) may be helpful.
 2. Measure from the spring seat to the top of the valve spring (figure 45).
 3. If this measurement exceeds the figure given in "Specifications," install valve spring seat shims of sufficient thickness (between the spring and cylinder head) to give the desired measurement. NEVER shim the spring so as to give an installed height under the specified figure.

THERMOSTAT AND WATER OUTLET

Disassemble (Figure 46)
- Bolts or studs (300).
- Water outlet (301).
- Gasket (302).
- Thermostat (303).

Inspect
- Water outlet for cracks.

Thermostat Check
1. Suspend the thermostat and a thermometer in water with the thermometer located close to the thermostat. The thermostat must be completely submerged and the water thoroughly agitated while heating. Apply heat to the water and record both the temperature at which the thermostat begins to open and the temperature at which the thermostat is fully open.
2. Compare the temperature readings taken in the test with those given in the proper Truck Service Manual.
3. Do not attempt to repair the thermostat. If the thermostat does not function properly, replace it with a new unit which has been checked as directed previously.

TORSIONAL DAMPER

Inspect
- Torsional damper weight for lack of fit or signs of shifting on the hub. Replace as needed.
- Area of the torsional damper hub shaft which contacts the front crankshaft seal for roughness or nicks. Replace the damper if this condition exists.

CRANKSHAFT AND BEARINGS

Clean
- Crankshaft with solvent.
- Blow all sludge from the oil passages with compressed air.
- Main bearing inserts. Wipe free of oil with a soft cloth.
V8 ENGINE 6A5-25

— Seal running surfaces with a non-abrasive cleaner.

Inspect
— Crankshaft for cracks. Use the magnaflux method, if available.
— Crankpins, main bearing journals and thrust surfaces for scoring, nicks, or damage caused by lack of lubrication.
— Main bearing inserts for scoring or other damage.

In general, the lower inserts (except the #1 bearing) show greater wear and the most distress from fatigue. If, upon inspection, the lower insert is suitable for use, it can be assumed that the upper insert is also satisfactory. If the lower insert shows evidence of wear or damage, both the upper and lower inserts must be replaced.

Measure (Figures 47 and 48)
— Main bearing and connecting rod journal diameters (figure 47). Compare with "Specifications." Grind or replace the crankshaft if necessary.
— Main bearing and connecting rod journals for taper and out-of-round (figure 47). If the journals are tapered or out-of-round more than 0.001-inch, grind or replace the crankshaft.
— Crankshaft run-out (figure 48).
 • Mount the crankshaft in V-blocks or between centers.
 • Use a dial indicator as shown.
 • If the main journals are misaligned, the crankshaft is bent and must be replaced, along with the main bearing.

Crankshaft Bearing Availability
Crankshaft main and connecting rod bearings are available in 0.001, 0.002, 0.010, and 0.020-inch undersizes.

OIL FILTER BYPASS VALVE

Disassemble (Figure 49)
1. Bolts (321).
2. Oil filter bypass valve (320).

Clean
— Oil filter bypass valve.
— Oil passages in the block.

Inspect (Figure 49)
• Valve disc (item A) and spring for damage or sticky operation. Replace the assembly if faulty.

Assemble (Figure 49)
1. Oil filter bypass valve (320).
2. Bolts (321).

Tighten
• Bolts (321) to 9.0 N·m (80 in. lbs.).
6A5-26 V8 ENGINE

REAR CRANKSHAFT OIL SEAL RETAINER (5.0 L AND 5.7 L ENGINES)

Disassemble (Figure 50)
- Rear crankshaft oil seal. Insert a screwdriver into the notches provided in the seal retainer and pry the seal out (figure 50).

Clean
- All traces of old gasket from the retainer.

Inspect
- Retainer for cracks, porosity, and damage to the sealing surfaces.

Important
- Install the new rear crankshaft oil seal with the proper tool, after the retainer is assembled to the engine, as outlined later.

ASSEMBLY OF ENGINE

PRIOR TO ASSEMBLY

The importance of cleanliness during the assembly procedure cannot be overstressed. Dirt will cause premature wear of the rebuilt engine. Lubricate all moving parts lightly with engine oil or engine assembly lubricant (unless specified otherwise) during assembly. This will provide initial lubrication when the engine is started.

REAR CRANKSHAFT OIL SEAL INSTALLATION (7.4 L ENGINES)

An oil seal installation tool (figure 51) should be fabricated (if not provided in the seal kit) to prevent seal damage during installation. Extreme care should be exercised when installing this seal to protect the sealing bead located in the channel on the outside diameter of the seal.

Install or Connect (Figures 51, 52, and 53)
1. Lower seal (131) (figure 52).
- Coat the seal lips lightly with engine oil. Keep the oil off the oil seal mating ends.

2. Upper seal half (130).
- Insert the seal half in the block using the installation tool to protect the back sealing bead of the seal from the sharp corner of the block. Position the seal and the tip of the tool so that the seal contacts the tool. Make sure that the oil seal lip is positioned toward the front of the engine.
- Feed the seal into position the same way as for the main bearing cap, gradually, using the tool as a "shoe-horn" to protect the seal outer diameter from damage. The tool must remain in position until the seal is properly in position, with both ends flush with the block.
- Remove the tool, being careful not to withdraw the seal.

CRANKSHAFT AND MAIN BEARING INSTALLATION

Main bearings are of the precision insert type and do not use shims for adjustment. If clearances are excessive, a new bearing plus both upper and lower inserts will be required. Service bearings are available in standard size and 0.001-inch, 0.002-inch, 0.010-inch, and 0.020-inch undersize. 0.009 inch is available for 5.0L and 5.7L engines only.

Selective fitting of both rod and main bearing inserts is necessary to obtain close tolerances. For this reason you may use, for example, one half of a 0.001-inch undersize insert which will decrease the clearance 0.0005-inch from using a full standard bearing.

UNDERSIZE MAIN JOURNALS (5.0 L AND 5.7 L ENGINES)
- On 5.0 L and 5.7 L engines, when a production crankshaft cannot be precision fit by the method described previously, it is then ground 0.009-inch undersize ON ONLY THOSE MAIN JOURNALS THAT CANNOT BE PROPERLY FITTED. ALL JOURNALS WILL NOT BE NECESSARILY BE GROUND. A 0.009-inch undersize bearing or 0.010-inch undersize bearing will then be used for precision fitting in the same manner as previously described.

OVERSIZE REAR MAIN BEARING THRUST FACES (5.0 L AND 5.7 L ENGINES)
- Some 5.0 L and 5.7 L production engines may have rear main bearings that are 0.008-inch wider than standard across the thrust faces.
- The crankshaft on these engines can be identified by " .008" stamped on the rear counterweight.
- If the rear main bearings are replaced, they must have the proper distance between thrust faces to obtain correct crankshaft end play.

Install or Connect (Figures 53, 54, and 55)
1. Upper main bearing inserts to the block.
Figure 54—Applying Sealant to the Block
(7.4L Engines)

Important
- If any undersized bearings are used, make sure they are fitted to the proper journals.

2. Crankshaft.
3. Lower main bearing inserts to the main bearing caps.

Measure
- Main bearing clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).
- Apply engine oil to the main bearing inserts.

4. Main bearing caps (except rear cap) and bolts to the block.

Tighten
- Main bearing cap bolts to specifications.
 - 5.0 L and 5.7 L engines: 95 N·m (70 ft. lbs.).
 - 7.4 L engines: 150 N·m (110 ft. lbs.).

5. Rear main bearing cap bolts to the block.

Tighten
- Rear main bearing cap bolts temporarily to 14 N·m (10 ft. lbs.).

Measure (Figure 55)
- Crankshaft end play, as follows:
 - Tap the end of the crankshaft first rearward then forward with a lead hammer. This will line up the rear main bearing and crankshaft thrust surfaces.

Tighten
- Rear main bearing cap bolts to specifications:
 - 5.0 L and 5.7 L engines: 110 N·m (80 ft. lbs.).
 - 7.4 L engines: 150 N·m (110 ft. lbs.).

2. With the crankshaft forced forward, measure at the front end of the rear main bearing with a feeler gage (figure 55). The proper clearance is 0.002–0.006-inch (5.0L and 5.7L engines), 0.006–0.010-inch (7.4L engines).

3. On 5.0 L and 5.7 L engines, if correct end play cannot be obtained, be certain that the correct size rear main bearing has been installed. Production engines may have rear main bearings that are 0.008-inch wider across the thrust faces than standard, as explained previously.

Inspect
- Crankshaft for binding. Try turning the crankshaft to check for binding. If the crankshaft does not turn freely, loosen the main bearing cap bolts, on one cap at a time, until the tight bearing is located. Burrs on the bearing cap, foreign matter between the insert and the block or the bearing cap, or a faulty insert could cause a lack of clearance at the bearing.

REAR CRANKSHAFT OIL SEAL AND RETAINER INSTALLATION
(5.0 L AND 5.7 L ENGINES)

Install or Connect (Figures 56 and 57)

Tool Required:
- J35621 Seal Installer

Whenever the seal retainer is removed, a new retainer gasket and rear crankshaft oil seal must be installed.

1. Gasket (120) to the block. It is not necessary to use sealant to hold the gasket in place.
2. Seal retainer (121).
3. Screws and nuts.
Tighten

- Screws and nuts to 15.3 N·m (135 in. lbs.).

4. Rear crankshaft oil seal (figure 57).
 - Make sure the crankshaft rear chamfer is free of grit, loose rust, and burrs. Correct as needed.
 - Lubricate the inner and outer diameter of the seal with engine oil.
 - Install the seal on J 35621.
 - Position J 35621 against the crankshaft. Thread the attaching screws into the tapped holes in the crankshaft.
 - Tighten the screws securely with a screwdriver. This will ensure that the seal is installed squarely over the crankshaft.
 - Turn the handle until it bottoms.
 - Remove J 35621.

Install or Connect (Figures 58 and 59)

- Coat the camshaft lobes and journals with Engine Oil Supplement (GM part number 1051396) or equivalent.

1. Camshaft (figure 58).
Figure 60—Front Cover

- Use three 5/16-18 bolts 100–125 mm (4–5 inches) long, threaded into the camshaft's tapped holes, to handle the camshaft.
- Take care to avoid damaging the camshaft bearings.
- Remove the three bolts after installation.

2. Timing chain to the camshaft sprocket.
3. Camshaft sprocket and timing chain to the engine.

Important
- Align the timing marks on the camshaft sprocket and crankshaft sprocket (figure 59).

4. Camshaft sprocket bolts. Use the bolts to draw the camshaft sprocket onto the camshaft. DO NOT ATTEMPT TO HAMMER THE CAMSHAFT SPROCKET ONTO THE CAMSHAFT TO DO SO MAY DISLODGE THE REAR CAMSHAFT PLUG.

Tighten
- Camshaft sprocket bolts to specifications.
 - 5.0 L and 5.7 L engines: 28 N m (21 ft. lbs.).
 - 7.4 L engines: 26 N m (20 ft. lbs.).

Measure
- Timing chain free play. The free play should not exceed 16 mm (%-inch).

FRONT COVER INSTALLATION

Install or Connect (Figure 60)
- Lubricate the lips of the front seal crankshaft oil with engine oil.
1. Gasket (90).
2. Front cover (91).
3. Timing tab (92) (7.4 L engines).
4. Bolts (93).

TIGHTENING SPECIFICATIONS

B-07880

Figure 61—Installing the Torsional Damper

Tighten
- Bolts (93) to specifications:
 - 5.0 L and 5.7 L engines: 10.8 N m (96 in. lbs.).
 - 7.4 L engines: 11.3 N m (100 in. lbs.).

TORSIONAL DAMPER INSTALLATION

Install or Connect (Figure 61)

Tools Required:
J 23523-E Torsional Damper Puller and Installer

1. Crankshaft key.

NOTICE: The inertia weight section of the torsional damper is assembled to the hub with a rubber type material. The correct installation procedures (with the proper tool) must be followed or movement of the inertia weight section of the hub will destroy the tuning of the torsional damper.

2. Stud (item A, figure 61) to the crankshaft. Thread the stud fully into the tapped hole in the crankshaft.
3. Torsional damper over the end of the stud. Align the keyway in the torsional damper shaft with the crankshaft key.
4. Bearing, washer and nut (figure 61).
 - Turn the nut to pull the vibration damper into place.
 - Remove the tool.
 - Use a small amount of RTV sealant to seal the keyway to crankshaft joint.
5. Torsional damper bolt and washer.

Tighten
- Bolt to specifications.
 - 5.0 L and 5.7 L engines: 95 N-m (70 ft. lbs.).
 - 7.4 L engines: 115 N m (85 ft. lbs.).
PISTON AND CONNECTING ROD INSTALLATION

CONNECTING ROD BEARING SELECTION

Connecting rod bearings are of the precision insert type and do not use shims for adjustment. DO NOT FILE RODS OR ROD CAPS. If clearances are excessive install a new bearing. Service bearings are available in standard size and 0.001-inch and 0.002-inch undersize for use with new and used standard size crankshafts, and in 0.010-inch and 0.020-inch undersize for use with reconditioned crankshafts.

On production 5.0 L and 5.7 L engines, it is possible to find an 0.010-inch undersize bearing. These are used in manufacturing for selective fitting.

Selective fitting of both rod and main bearing inserts is necessary to obtain close tolerances. For this reason you may use, for example, one half of a standard insert with one half of a 0.001-inch undersize insert which will decrease the clearance 0.0005-inch from using a full standard bearing.

INSTALLATION

Install or Connect (Figures 62 through 65)

Tools Required:
- J 5239 Connecting Rod Guide Set
- J 8037 Ring Compressor
- Lubricate the cylinder walls lightly with engine oil.
- Make sure the piston is installed in the matching cylinder.

1. Connecting rod bearing inserts.
 - Be certain that the inserts are of the proper size.
 - Install the inserts in the connecting rod and connecting rod cap.

2. Piston and connecting rod to the proper bore.
 - With the connecting rod cap removed, install J 5239 onto the connecting rod studs.
— On 5.0 L and 5.7 L engines, the notch in the piston crown (figure 62) must face the front of the engine.
— On 7.4 L engines, the valve clearance notches must face the top of the block (figure 65).

While tapping the piston into its bore, guide the connecting rod into position on the crankpin, using J 5239. Hold the ring compressor against the block until all rings have entered the cylinder bore.

Important
— Each connecting rod and bearing cap should be marked, beginning at the front of the engine. Cylinder 1, 3, 5 and 7 are the left bank and 2, 4, 6, and 8 are the right bank. The numbers on the connecting rod and bearing cap must be on the same side when installed in the cylinder bore. If a connecting rod is ever transposed from one block or cylinder to another, new connecting rod bearings should be fitted and the connecting rod should be numbered to correspond with the new cylinder number.

3. Connecting rod cap with bearing insert.

Measure
— Connecting rod bearing clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A). Then apply engine oil to the connecting rod bearing.

 Tighten
— Connecting rod cap nuts to specifications.
 — 5.0 L and 5.7 L engines: 60 N·m (45 ft. lbs.).
 — 7.0 L engines: 66 N·m (48 ft. lbs.).

OIL PUMP INSTALLATION

Install or Connect
1. Oil pump with connector and oil pump driveshaft.
2. Oil pump to main bearing cap bolt.

Tighten
— Bolt to 90 N·m (65 ft. lbs.).

OIL PAN INSTALLATION

5.0 L AND 5.7 L ENGINES

Install or Connect (Figure 67)
— Apply PST sealer (GM part no. 1052080 or equivalent) to the front cover to block joint and rear crankshaft seal retainer to block joint as shown in figure 67.
1. Oil pan gasket to the oil pan.
2. Oil pan to the engine.
3. Oil pan bolts, nuts, and reinforcements.

Tighten
— Oil pan bolts to 11.3 N·m (100 in. lbs.).
— Oil pan nuts to 22.6 N·m (200 in. lbs.).

7.4 L ENGINES

Install or Connect (Figure 68)
1. Gaskets (74) to the block. Retain with gasket cement.
2. Rear oil pan seal (76) to the rear main bearing cap. The ends of the seal should mate against the gaskets (74).
3. Front oil pan seal (78) to the front cover. The ends of the seal should mate against the gaskets (74).
V8 ENGINE 6A5-33

Figure 67—Oil Pan (5.0L and 5.7L Engines)

425x787

Figure 68—Oil Pan (7.4L Engines)

4. Oil pan. Make sure the gasket and seals stay in place.
5. Clips (79), reinforcements (75) and bolts.

Clean

Gasket surfaces on block and cylinder head.

Install or Connect (Figures 69, 70, and 71)

1. Head gasket.

- On engines using a STEEL gasket, coat both sides of the new gasket with a good sealer. Spread the sealer thin and even. One method

CYLINDER HEAD INSTALLATION

Tighten

- Bolts to specifications:
 - Oil pan to block bolts: 18.1 N·m (160 in. lbs.).
 - Oil pan to front cover bolts: 7.9 N·m (70 in. lbs.).

A. Apply RTV Sealer to Shaded Area
74. Gasket
75. Reinforcement
76. Rear Oil Pan Seal
77. Timing Marker (Some Engines)
78. Front Oil Pan Seal
79. Clip (Number and Location Varies)

F-05721

F-02382
Figure 69—Cylinder Head and Components

of applying the sealer that will assure the proper coat is with the use of a paint roller. Too much sealer may hold the gasket away from the head or block.

- Use no sealer on engines using a composition STEEL ASBESTOS gasket.
- Place the gasket in position over the dowel pins with the bead up.

2. Cylinder head. Carefully guide the cylinder head into place over the dowel pins and head gaskets.

3. Cylinder head bolts. Coat the threads of the bolts with sealing compound (Loctite #592 or equivalent) and install finger tight.

Figure 70—Cylinder Head Bolt Tightening Sequence (5.0L and 5.7L Engines)

Tighten

- Bolts a little at a time using the sequence shown in figures 70 or 71 until the proper torque is reached:
 - 5.7 L engines: 90 N·m (65 ft. lbs.).
 - 7.4 L engines: 110 N·m (80 ft. lbs.).

VALVE TRAIN COMPONENT INSTALLATION

Important

- Replace all hydraulic lifters if a new cam shaft was installed.

Install or Connect (Figure 69)

- Lubricate the hydraulic lifter bodies and feet with Engine Oil Supplement (GM part no. 1051396 or equivalent).
- Hydraulic lifters (44) to the block.
- Pushrods (43). Seat the pushrods into the socket in the hydraulic lifters.
- Coat the mating surfaces of the rocker arms (42) and balls (41) with "Moly Kote" or equivalent.
- Rocker arms.
- Balls.
- Nuts (40).

VALVE ADJUSTMENT

1. Remove the rocker arm covers.
2. Crank the engine until the mark on the torsional damper lines up with the center or "0" mark on the timing tab (figure 72). The engine must be in the number one firing position. This may be determined by placing fingers on the number one cylinder's valves as the mark on the damper comes near the "0" mark on the crankcase front cover. If the valves are not moving, the engine is in the number one firing position. If the valves move as the mark comes up to the timing tab, the engine is in the number six firing position and should be turned over one more time to reach the number one position.
3. With the engine in the number one firing position as determined above, the following valves may be adjusted:
 - Exhaust – 1, 3, 4, 8
 - Intake – 1, 2, 5, 7
 (Even numbered cylinders are in the right bank; odd numbered cylinders are in the left bank, when viewed from the rear of the engine.)

4. Back out the adjusting nut until lash is felt at the pushrod then turn in the adjusting nut until all lash is removed. This can be determined by rotating the pushrod while turning the adjusting nut (figure 73). When the play has been removed, turn the adjusting nut in as follows:
 - 5.0 L and 5.7 L engines: One full turn.
 - 7.4 L engines: 3/4 turn.

5. Crank the engine one revolution until the pointer “0” mark and torsional damper mark are again in alignment. This is the number six firing position. With the engine in this position the following valves may be adjusted:
 - Exhaust – 2, 5, 6, 7
 - Intake – 3, 4, 6, 8

INTAKE MANIFOLD INSTALLATION

5.0 L AND 5.7 L ENGINES

Install or Connect (Figures 74 and 75)

1. Gaskets to the cylinder heads.
 - On TBI engines, make sure the tab and/or arrow faces the front of the engine. The side stamped “This Side Down” must face the cylinder head.

2. RTV sealant to the front and rear intake manifold sealing surfaces on the block as follows:
 - Refer to figure 74.

3. Intake manifold to the engine.

4. Intake manifold bolts.

 Tighten
 - Bolts to 48 N·m (35 ft. lbs.). Use the tightening sequence shown in figure 75.

7.4 L ENGINES

Install or Connect (Figures 76 and 77)

1. Gaskets (22) to the cylinder heads.

2. Seals (23) to the block.

3. Intake manifold (21).

 Tighten
 - Bolts (20) to 40 N·m (30 ft. lbs.). Use the tightening sequence shown in figure 77.
ROCKER ARM COVER INSTALLATION

5.0L AND 5.7L TBI ENGINES

Install or Connect (Figure 78)

1. Gaskets (34).
2. Rocker arm covers (32).
3. Bolts (36) and washers (37).

Tighten

- Bolts to 10.2 N·m (90 in. lbs.)

ALL OTHERS

Install or Connect (Figure 79)

1. Gaskets (34).
2. Rocker arm covers (32).
3. Reinforcements (31) and clips.

Tighten

- Nuts (30) to specification:
 - 5.0 L and 5.7 L engines: 7.3 N·m (65 in. lbs.).
 - 7.4 L engines: 13.0 N·m (115 in. lbs.).

EXHAUST MANIFOLD INSTALLATION

Install or Connect (Figures 80 and 81)

1. Exhaust manifold (1).
2. Spark plug wire heat shields (if used).
3. Washers (2), tab washers (3) (5.0 L and 5.7 L engines) and bolts or studs (4).

Tighten

- Bolts or studs to specifications:
 - 5.0 L and 5.7 L engines with cast iron manifolds:
 - Two center bolts: 36 N·m (26 ft. lbs.).
 - Outside bolts: 28 N·m (20 ft. lbs.).
 - Bend the tab washers against the bolt heads.
 - 5.0 L and 5.7 L engines with stainless steel manifolds: 36 N·m (26 ft. lbs.).
 - 7.4 L engines: 54 N·m (40 ft. lbs.).
WATER PUMP INSTALLATION

Install or Connect (Figure 82)

1. Gaskets (11).
2. Water pump (10).

Tighten

- Bolts (12) to 40 N·m (30 ft. lbs.).

ENGINE ACCESSORY INSTALLATION

Install the engine accessories (distributor, carburetor, oil filter, generator, etc.) as directed in the proper Truck Service Manual. Connect all vacuum hoses and electrical equipment the same way as removed.

ENGINE SETUP AND TESTING

1. After overhaul, the engine should be tested before installation in the vehicle. If a suitable test stand is not available, the following procedure can be used after the engine is installed in the vehicle.
2. Fill the crankcase with the proper quantity and grade of oil.

Important

- If a new camshaft or hydraulic lifters were installed, add Engine Oil Supplement (GM part no. 1051396) or equivalent to the engine oil.
3. Fill the coolant system with the proper coolant.
4. With the ignition "OFF," or disconnected, crank the engine several times. Listen for any unusual noises or evidence that any parts are binding.
5. Start the engine and listen for unusual noises.
6. Run the engine at about 1000 until the engine is at operating temperature.
7. Listen for improperly adjusted valves or sticking lifters, and other unusual noises.
8. Check for oil and coolant leaks while the engine is running.
9. Using the proper Truck Service Manual or Emission Control Label for specifications, adjust the ignition timing, idle and mixture, and governor settings, if so equipped.
Figure 77—Intake Manifold Bolt Tightening Sequence (7.4L Engines)

Figure 78—Rocker Arm Cover Installation (5.0L and 5.7L Engines)
30. Nut
31. Reinforcement
32. Rocker Arm Cover
33. Stud
34. Gasket
35. Clip
(Number and Location Varies)

Figure 79—Rocker Arm Cover Installation
(7.4L Engines)

CAST IRON MANIFOLD (TYPICAL)

1. Exhaust Manifold
2. Washer
3. Tab Washer
4. Bolt/Stud

STAINLESS STEEL MANIFOLD

1. Exhaust Manifold
2. Washer
3. Tab Washer
4. Bolt/Stud

Figure 80—Exhaust Manifold (5.0L and 5.7L Engines)
CAST IRON MANIFOLD

STAINLESS STEEL MANIFOLD
1. Exhaust Manifold
4. Bolt/Stud
6. Spark Plug Wire Heat Shield

Figure 81—Exhaust Manifold (7.4L Engines)

5.0L AND 5.7L ENGINES

7.4L ENGINES

Figure 82—Water Pumps and Components
SPECIFICATIONS

ENGINE SPECIFICATIONS (5.0 L/5.7 L)

All Specifications are in INCHES unless otherwise noted.

GENERAL DATA:

<table>
<thead>
<tr>
<th>Type</th>
<th>V8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement</td>
<td>5.0L (305 Cu. In.)</td>
</tr>
<tr>
<td>RPO (VIN Code)</td>
<td>L03 (H)</td>
</tr>
<tr>
<td>Bore</td>
<td>3.736</td>
</tr>
<tr>
<td>Stroke</td>
<td>3480</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>9.3:1</td>
</tr>
<tr>
<td>Firing Order</td>
<td>1 - 8 - 4 - 3 - 6 - 5 - 7 - 2</td>
</tr>
<tr>
<td>Oil Pressure</td>
<td>6 PSI min. at 1000 RPM. 18 PSI min. at 2000 RPM</td>
</tr>
</tbody>
</table>

CYLINDER BORE:

<table>
<thead>
<tr>
<th>Diameter</th>
<th>3.7350-3.7385</th>
<th>3.9995-4.0025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out Of Round Production</td>
<td>0.001 (Maximum)</td>
<td></td>
</tr>
<tr>
<td>Service</td>
<td>0.002 (Maximum)</td>
<td></td>
</tr>
<tr>
<td>Taper Production Thrust Side</td>
<td>0.0005 (Maximum)</td>
<td></td>
</tr>
<tr>
<td>Relief Side</td>
<td>0.001 (Maximum)</td>
<td></td>
</tr>
<tr>
<td>Service</td>
<td>0.001 (Maximum)</td>
<td></td>
</tr>
</tbody>
</table>

PISTON:

| Clearance Production | 0.0007-0.0017 |
| Service Limit | 0.0027 (Maximum) |

PISTON RING:

Compression Groove Clearance Production Top	0.0012-0.0032
2nd	
Service Limit	Hi Limit Production + 0.001
Compression Gap Production Top	0.010-0.020
2nd	0.010-0.025
Service Limit	Hi Limit Production + 0.010
OIL Groove Clearance Production	0.002-0.007
Service Limit	Hi Limit Production + 0.001
Gap Production	0.015-0.055
Service Limit	Hi Production + 0.010

PISTON PIN:

Diameter	0.9269-0.9271
Clearance Production	0.0002-0.0007
In Piston Service Limit	0.001 (Maximum)
Fit In Rod	0.0008-0.0016 Interference

*8.6:1 (Over 8500 lb. GVW)

*9.3:1 (Under 8500 lb. GVW)

F-05724
SPECIFICATIONS

ENGINE SPECIFICATIONS (5.0 L/5.7 L) (Cont.)

All specifications are in INCHES unless otherwise noted.

<table>
<thead>
<tr>
<th>DISPLACEMENT</th>
<th>5.0L (305 Cu. in.)</th>
<th>5.7L (350 Cu. in.)</th>
</tr>
</thead>
</table>

CRANKSHAFT:

<table>
<thead>
<tr>
<th>Main Journal</th>
<th>Diameter</th>
<th>2.4484-2.4493</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td></td>
<td>2.4481-2.4490</td>
</tr>
<tr>
<td>#2, #3, #4</td>
<td></td>
<td>2.4479-2.4488</td>
</tr>
<tr>
<td>#5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taper</td>
<td>Production</td>
<td>0.0002 (Maximum)</td>
</tr>
<tr>
<td>Service Limit</td>
<td></td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Out Of Round</td>
<td>Production</td>
<td>0.0002 (Maximum)</td>
</tr>
<tr>
<td>Service Limit</td>
<td></td>
<td>0.001 (Maximum)</td>
</tr>
</tbody>
</table>

Crankpin

<table>
<thead>
<tr>
<th>Diameter</th>
<th>2.0988-2.0998</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taper</td>
<td>0.0005 (Maximum)</td>
</tr>
<tr>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Out Round</td>
<td>0.0005 (Maximum)</td>
</tr>
<tr>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
</tr>
</tbody>
</table>

Camshaft:

<table>
<thead>
<tr>
<th>Lobe</th>
<th>Intake</th>
<th>0.2336</th>
<th>0.2565</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lift</td>
<td>Exhaust</td>
<td>0.2565</td>
<td>0.2690</td>
</tr>
<tr>
<td></td>
<td>0.0004-0.0012</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valve System:

<table>
<thead>
<tr>
<th>Lifter</th>
<th>Hydraulic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocker Arm Ratio</td>
<td>1.50 : 1</td>
</tr>
<tr>
<td>Valve Lash</td>
<td>Intake</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
</tr>
<tr>
<td>Face Angle (Intake & Exhaust)</td>
<td>45°</td>
</tr>
<tr>
<td>Seat Angle (Intake & Exhaust)</td>
<td>45°</td>
</tr>
<tr>
<td>Seat Runout (Intake & Exhaust)</td>
<td>0.002 (Maximum)</td>
</tr>
<tr>
<td>Seat Width</td>
<td>Intake</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
</tr>
<tr>
<td>Stem Clearance</td>
<td>Production</td>
</tr>
<tr>
<td></td>
<td>Service</td>
</tr>
<tr>
<td>Valve Spring (Outer)</td>
<td>Pressure</td>
</tr>
<tr>
<td></td>
<td>Open</td>
</tr>
<tr>
<td></td>
<td>Installed Height</td>
</tr>
<tr>
<td>Valve Spring Damper</td>
<td>Approx. # of Coils</td>
</tr>
</tbody>
</table>
SPECIFICATIONS

ENGINE SPECIFICATIONS (7.4 L)

All Specifications are in INCHES unless otherwise noted.

<table>
<thead>
<tr>
<th>GENERAL DATA:</th>
<th>V8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>V8</td>
</tr>
<tr>
<td>Displacement</td>
<td>7.4L (454 Cu. In.)</td>
</tr>
<tr>
<td>RPO</td>
<td>L19. LE8</td>
</tr>
<tr>
<td>Bore</td>
<td>4.25</td>
</tr>
<tr>
<td>Stroke</td>
<td>4.00</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>7.9:1</td>
</tr>
<tr>
<td>Firing Order</td>
<td>1 - 8 - 4 - 3 - 6 - 5 - 7 - 2</td>
</tr>
<tr>
<td>Oil Pressure</td>
<td>10 psi @ 500 RPM Minimum; 40-60 psi @ 2000 RPM</td>
</tr>
</tbody>
</table>

CYLINDER BORE:

Diameter	4.2495-4.2525
Out Of Round	4.25 (Production) 0.001 (Maximum)
Taper	4.25 (Service) 0.002 (Maximum)

Thrust Side Production	0.0005 (Maximum)
Relief Side Production	0.001 (Maximum)
Service	0.001 (Maximum)

PISTON:

| Clearance | Production | 0.003-0.004 |
| Service Limit | 0.005 (Maximum) |

PISTON RING:

Compression Groove Clearance	Production Top	0.0017-0.0032
	2nd	0.0017-0.0032
Service Limit	Hi Limit Production + 0.001	

Compression Gap	Production Top	0.010-0.018
	2nd	0.016-0.024
Service Limit	Hi Limit Production + 0.010	

| Oil Groove Clearance | Production | 0.0050-0.0065 |
| Service Limit | Hi Limit Production + 0.001 |

| Oil Groove Gap | Production | 0.015-0.0055 |
| Service Limit | Hi Limit Production + 0.010 |

PISTON PIN:

Diameter	0.9895-0.9898
Clearance in Piston	0.00025-0.00035
Service Limit	0.001 (Maximum)
Fit in Rod	0.0013-0.0021 Interference

F-05725
SPECIFICATIONS

ENGINE SPECIFICATIONS (7.4 L) (Cont.)

All specifications are in INCHES unless otherwise noted.

<table>
<thead>
<tr>
<th>DISPLACEMENT</th>
<th>7.4L</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRANKSHAFT:</td>
<td></td>
</tr>
<tr>
<td>Main Journal</td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td>#1, #2, #3, #4</td>
</tr>
<tr>
<td></td>
<td>#5</td>
</tr>
<tr>
<td>Taper</td>
<td>Production</td>
</tr>
<tr>
<td></td>
<td>Service Limit</td>
</tr>
<tr>
<td>Out Of Round</td>
<td>Production</td>
</tr>
<tr>
<td></td>
<td>Service Limit</td>
</tr>
<tr>
<td>Main Bearing Clearance</td>
<td>Production</td>
</tr>
<tr>
<td></td>
<td>#5</td>
</tr>
<tr>
<td></td>
<td>Service Limit</td>
</tr>
<tr>
<td></td>
<td>#5</td>
</tr>
<tr>
<td>Crankshaft End Play</td>
<td>Diameter</td>
</tr>
<tr>
<td>Crankpin</td>
<td>Taper</td>
</tr>
<tr>
<td></td>
<td>Service Limit</td>
</tr>
<tr>
<td>Out Of Round</td>
<td>Production</td>
</tr>
<tr>
<td></td>
<td>Service Limit</td>
</tr>
<tr>
<td>Rod Bearing Clearance</td>
<td>Production</td>
</tr>
<tr>
<td></td>
<td>Service Limit</td>
</tr>
<tr>
<td>Camshaft:</td>
<td>Lobe</td>
</tr>
<tr>
<td>Lift + 0.002</td>
<td>Exhaust</td>
</tr>
<tr>
<td>Journal Diameter</td>
<td>1.9482-1.9492</td>
</tr>
<tr>
<td>Valve System:</td>
<td>Lifter</td>
</tr>
<tr>
<td>Rocker Arm Ratio</td>
<td>1.70:1</td>
</tr>
<tr>
<td>Valve Lash</td>
<td>Intake</td>
</tr>
<tr>
<td>Face Angle (Intake & Exhaust)</td>
<td>45°</td>
</tr>
<tr>
<td>Seat Angle (Intake & Exhaust)</td>
<td>46°</td>
</tr>
<tr>
<td>Seat Runout (Intake & Exhaust)</td>
<td>0.002 (Maximum)</td>
</tr>
<tr>
<td>Seat Width</td>
<td>Intake</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
</tr>
<tr>
<td>Stem Clearance</td>
<td>Production</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
</tr>
<tr>
<td></td>
<td>Service</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
</tr>
<tr>
<td>Valve Spring</td>
<td>Free Length</td>
</tr>
<tr>
<td>Pressure</td>
<td>Closed</td>
</tr>
<tr>
<td>lbs. @ in.</td>
<td>Open</td>
</tr>
<tr>
<td>Installed Height</td>
<td>+ ⅛"</td>
</tr>
<tr>
<td>Valve Spring Fit In Damper</td>
<td>0.042-0.094 Interference</td>
</tr>
</tbody>
</table>
SPECIFICATIONS (CONT.)

TORQUE SPECIFICATIONS

(5.0 L AND 5.7 L ENGINES)

<table>
<thead>
<tr>
<th>Item</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
<th>In. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocker Arm Cover Nuts (Carbureted Engines)</td>
<td>7.3</td>
<td>—</td>
<td>65</td>
</tr>
<tr>
<td>Rocker Arm Cover Bolt (TBI Engines)</td>
<td>10.2</td>
<td>—</td>
<td>90</td>
</tr>
<tr>
<td>Intake Manifold Bolts</td>
<td>48</td>
<td>35</td>
<td>—</td>
</tr>
<tr>
<td>Exhaust Manifold Bolts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cast Manifolds:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two Center Bolts</td>
<td>36</td>
<td>26</td>
<td>—</td>
</tr>
<tr>
<td>All Others</td>
<td>28</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Tubular (Stainless Steel) Manifolds (All Bolts)</td>
<td>36</td>
<td>26</td>
<td>—</td>
</tr>
<tr>
<td>Cylinder Head Bolts</td>
<td>90</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Torsional Damper Bolt</td>
<td>95</td>
<td>70</td>
<td>—</td>
</tr>
<tr>
<td>Front Cover Bolts</td>
<td>11.3</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pan Nuts at Corners</td>
<td>22.5</td>
<td>200</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pan Bolts</td>
<td>11.3</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pump Bolt</td>
<td>90</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pan Baffle Nuts (Some 5.7 L Engines)</td>
<td>36</td>
<td>26</td>
<td>—</td>
</tr>
<tr>
<td>Rear Crankshaft Oil Seal Retainer Screws and Nuts</td>
<td>15.3</td>
<td>135</td>
<td>—</td>
</tr>
<tr>
<td>Camshaft Sprocket Bolts</td>
<td>26</td>
<td>21</td>
<td>—</td>
</tr>
<tr>
<td>Connecting Rod Cap Nuts</td>
<td>60</td>
<td>45</td>
<td>—</td>
</tr>
<tr>
<td>Oil Filter Bypass Valve Bolts</td>
<td>26</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Main Bearing Cap Bolts:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outer Bolts on #2, #3, and #4 Caps</td>
<td>95</td>
<td>70</td>
<td>—</td>
</tr>
<tr>
<td>All Others</td>
<td>110</td>
<td>80</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pump Cover Bolts</td>
<td>9.0</td>
<td>—</td>
<td>80</td>
</tr>
<tr>
<td>Flywheel Bolts</td>
<td>100</td>
<td>75</td>
<td>—</td>
</tr>
<tr>
<td>Spark Plugs</td>
<td>30</td>
<td>22</td>
<td>—</td>
</tr>
<tr>
<td>Water Outlet Bolts</td>
<td>28</td>
<td>21</td>
<td>—</td>
</tr>
<tr>
<td>Water Pump Bolts</td>
<td>40</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Flywheel Housing Bolts</td>
<td>44</td>
<td>32</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pan Drain Plug</td>
<td>28</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Block Drain Plug</td>
<td>12.7</td>
<td>—</td>
<td>112</td>
</tr>
<tr>
<td>Rocker Arm Cover Studs to Head (Carbureted Engines)</td>
<td>1.7</td>
<td>—</td>
<td>15</td>
</tr>
</tbody>
</table>

(7.4 L ENGINES)

<table>
<thead>
<tr>
<th>Item</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
<th>In. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocker Arm Cover Nuts</td>
<td>13.0</td>
<td>—</td>
<td>115</td>
</tr>
<tr>
<td>Intake Manifold Bolts</td>
<td>40</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Rocker Arm Studs</td>
<td>68</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>Exhaust Manifold Bolts</td>
<td>54</td>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>Cylinder Head Bolts</td>
<td>110</td>
<td>80</td>
<td>—</td>
</tr>
<tr>
<td>Torsional Damper Bolts</td>
<td>115</td>
<td>85</td>
<td>—</td>
</tr>
<tr>
<td>Front Cover to Block Bolts</td>
<td>10.8</td>
<td>96</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pan to Front Cover Bolts</td>
<td>7.9</td>
<td>70</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pan to Block Bolts</td>
<td>18.1</td>
<td>—</td>
<td>160</td>
</tr>
<tr>
<td>Oil Pump Bolt</td>
<td>90</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Main Bearing Caps</td>
<td>150</td>
<td>110</td>
<td>—</td>
</tr>
<tr>
<td>Camshaft Sprocket Bolts</td>
<td>26</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Connecting Rod Cap Nuts</td>
<td>66</td>
<td>48</td>
<td>—</td>
</tr>
<tr>
<td>Oil Filter Bypass Valve Bolts</td>
<td>26</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Flywheel Bolts</td>
<td>90</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pump Cover Bolts</td>
<td>9.0</td>
<td>—</td>
<td>80</td>
</tr>
<tr>
<td>Flywheel Housing Bolts</td>
<td>40</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Water Pump Bolts</td>
<td>40</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Water Outlet Bolts</td>
<td>40</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Spark Plugs</td>
<td>30</td>
<td>22</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pan Drain Plug</td>
<td>28</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Block Drain Plug</td>
<td>12.7</td>
<td>—</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>Special Tools</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Torsional Damper Remover and Installer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Valve Spring Compressor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Oil Pump Pick-Up Tube Installer (Small Block Engines)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Oil Pump Pick-Up Tube Installer (Mark IV Engines)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Crankshaft Seal Installer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Piston Ring Compressor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Guide Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Vacuum Pump</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Hydraulic Lifter Remover (Slide Hammer Type)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Hydraulic Lifter Remover (Plier Type)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Stud Remover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Reamer (0.003-inch oversize)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Reamer (0.013-inch oversize)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Stud Installer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Crankshaft Sprocket Puller (Small Block Engines)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Crankshaft Sprocket Installer (Small Block Engines)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Rear Oil Seal Installer (Small Block Engines)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Crankshaft Sprocket Puller (Mark IV Engines)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

J-23523-E
J-8062
J-23590
J-22144
J-35468
J-22102
J-8037
J-5239
J-23738-A
J-9290-01
J-3049
J-5802-01
J-5715
J-6036
J-6880
J-5825-A
J-5590
J-35621
J-1619
SECTION 6A7

6.2 LITER DIESEL

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>6A7-2</td>
</tr>
<tr>
<td>Engine Lubrication</td>
<td>6A7-2</td>
</tr>
<tr>
<td>Disassembly</td>
<td>6A7-3</td>
</tr>
<tr>
<td>Tools and Shop Equipment</td>
<td>6A7-3</td>
</tr>
<tr>
<td>Cleaning</td>
<td>6A7-4</td>
</tr>
<tr>
<td>Draining the Engine</td>
<td>6A7-4</td>
</tr>
<tr>
<td>Vacuum Pump/Oil Pump Drive Removal</td>
<td>6A7-5</td>
</tr>
<tr>
<td>Intake Manifold Removal</td>
<td>6A7-5</td>
</tr>
<tr>
<td>Injection Line Removal</td>
<td>6A7-5</td>
</tr>
<tr>
<td>Injection Nozzle Removal</td>
<td>6A7-5</td>
</tr>
<tr>
<td>Glow Plug Removal</td>
<td>6A7-5</td>
</tr>
<tr>
<td>Exhaust Manifold Removal</td>
<td>6A7-5</td>
</tr>
<tr>
<td>Dipstick Tube Removal</td>
<td>6A7-6</td>
</tr>
<tr>
<td>Water Crossover Removal</td>
<td>6A7-6</td>
</tr>
<tr>
<td>Rocker Arm Cover Removal</td>
<td>6A7-6</td>
</tr>
<tr>
<td>Rocker Arm and Pushrod Removal</td>
<td>6A7-6</td>
</tr>
<tr>
<td>Cylinder Head Removal</td>
<td>6A7-7</td>
</tr>
<tr>
<td>Hydraulic Lifter Removal</td>
<td>6A7-7</td>
</tr>
<tr>
<td>Water Pump Removal</td>
<td>6A7-8</td>
</tr>
<tr>
<td>Torsional Damper Removal</td>
<td>6A7-8</td>
</tr>
<tr>
<td>Injection Pump Removal</td>
<td>6A7-8</td>
</tr>
<tr>
<td>Front Cover Removal</td>
<td>6A7-8</td>
</tr>
<tr>
<td>Timing Chain and Sprocket Removal</td>
<td>6A7-8</td>
</tr>
<tr>
<td>Camshaft Removal</td>
<td>6A7-9</td>
</tr>
<tr>
<td>Oil Pan Removal</td>
<td>6A7-9</td>
</tr>
<tr>
<td>Oil Pump Removal</td>
<td>6A7-9</td>
</tr>
<tr>
<td>Piston and Connecting Rod Removal</td>
<td>6A7-9</td>
</tr>
<tr>
<td>Flywheel Removal</td>
<td>6A7-9</td>
</tr>
<tr>
<td>Crankshaft Removal</td>
<td>6A7-9</td>
</tr>
<tr>
<td>Cleaning, Inspection, and Repair</td>
<td>6A7-11</td>
</tr>
<tr>
<td>Block</td>
<td>6A7-11</td>
</tr>
<tr>
<td>Cylinder Bores</td>
<td>6A7-12</td>
</tr>
<tr>
<td>Piston and Connecting Rod Assemblies</td>
<td>6A7-12</td>
</tr>
<tr>
<td>Intake and Exhaust Manifolds</td>
<td>6A7-12</td>
</tr>
<tr>
<td>Camshaft</td>
<td>6A7-12</td>
</tr>
<tr>
<td>Camshaft Bearings</td>
<td>6A7-12</td>
</tr>
<tr>
<td>Timing Chain, Sprockets, and Timing Gears</td>
<td>6A7-14</td>
</tr>
<tr>
<td>Front Cover</td>
<td>6A7-14</td>
</tr>
<tr>
<td>Water Pump</td>
<td>6A7-14</td>
</tr>
<tr>
<td>Oil Pan and Rocker Arm Covers</td>
<td>6A7-14</td>
</tr>
<tr>
<td>Oil Pump</td>
<td>6A7-14</td>
</tr>
<tr>
<td>Valve Train Components</td>
<td>6A7-14</td>
</tr>
<tr>
<td>Cylinder Head</td>
<td>6A7-15</td>
</tr>
<tr>
<td>Glow Plugs</td>
<td>6A7-17</td>
</tr>
<tr>
<td>Thermostat and Water Crossover</td>
<td>6A7-18</td>
</tr>
<tr>
<td>Injection Nozzles</td>
<td>6A7-18</td>
</tr>
<tr>
<td>Injection Lines</td>
<td>6A7-18</td>
</tr>
<tr>
<td>Injection Pump</td>
<td>6A7-18</td>
</tr>
<tr>
<td>Crankshaft and Bearings</td>
<td>6A7-18</td>
</tr>
<tr>
<td>Flywheel</td>
<td>6A7-19</td>
</tr>
<tr>
<td>Torsional Damper</td>
<td>6A7-20</td>
</tr>
<tr>
<td>Oil Filter Bypass Valve Replacement</td>
<td>6A7-20</td>
</tr>
</tbody>
</table>

Tools and Shop Equipment

- 6A7-7
CONTENTS (CONTINUED)

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly</td>
<td>6A7-20</td>
</tr>
<tr>
<td>Crankshaft Installation</td>
<td>6A7-20</td>
</tr>
<tr>
<td>Flywheel Installation</td>
<td>6A7-20</td>
</tr>
<tr>
<td>Connecting Rod and Piston Installation</td>
<td>6A7-22</td>
</tr>
<tr>
<td>Camshaft Installation</td>
<td>6A7-23</td>
</tr>
<tr>
<td>Timing Chain and Sprocket Installation</td>
<td>6A7-24</td>
</tr>
<tr>
<td>Front Cover Installation</td>
<td>6A7-24</td>
</tr>
<tr>
<td>Oil Pump Installation</td>
<td>6A7-25</td>
</tr>
<tr>
<td>Oil Pan Installation</td>
<td>6A7-26</td>
</tr>
<tr>
<td>Injection Pump Installation</td>
<td>6A7-26</td>
</tr>
<tr>
<td>Torsional Damper Installation</td>
<td>6A7-26</td>
</tr>
<tr>
<td>Water Pump Installation</td>
<td>6A7-27</td>
</tr>
<tr>
<td>Hydraulic Lifter Installation</td>
<td>6A7-27</td>
</tr>
<tr>
<td>Cylinder Head Installation</td>
<td>6A7-28</td>
</tr>
<tr>
<td>Pushrod and Rocker Arm Installation</td>
<td>6A7-29</td>
</tr>
<tr>
<td>Rocker Arm Cover Installation</td>
<td>6A7-29</td>
</tr>
<tr>
<td>Water Crossover Installation</td>
<td>6A7-30</td>
</tr>
<tr>
<td>Dipstick Tube Installation</td>
<td>6A7-30</td>
</tr>
<tr>
<td>Exhaust Manifold Installation</td>
<td>6A7-30</td>
</tr>
<tr>
<td>Glow Plug Installation</td>
<td>6A7-31</td>
</tr>
<tr>
<td>Injection Nozzle Installation</td>
<td>6A7-31</td>
</tr>
<tr>
<td>Injection Line Installation</td>
<td>6A7-31</td>
</tr>
<tr>
<td>Intake Manifold Installation</td>
<td>6A7-31</td>
</tr>
<tr>
<td>Oil Pump Drive or Vacuum Pump Installation</td>
<td>6A7-32</td>
</tr>
<tr>
<td>Engine Accessory Installation</td>
<td>6A7-32</td>
</tr>
<tr>
<td>Engine Set-Up and Testing</td>
<td>6A7-32</td>
</tr>
<tr>
<td>Specifications</td>
<td>6A7-36</td>
</tr>
<tr>
<td>Special Tools</td>
<td>6A7-39</td>
</tr>
</tbody>
</table>

DESCRIPTION

GM 6.2L diesel engines are 90 degree V8 type, naturally aspirated, with indirect type combustion chambers. The crankshaft is supported by five precision insert main bearings, with crankshaft thrust taken at the number three (center) main bearing.

The camshaft is supported by five plain type bearings and is chain driven. Motion from the camshaft is transmitted to the overhead valves by roller type hydraulic lifters, pushrods, and shaft mounted rocker arms. The valve guides are integral in the cylinder head.

The connecting rods are forged steel, with precision insert type crankpin bearings. The piston pins are retained by snap ring retainers.

For engine identification information, refer to GENERAL INFORMATION (SEC. 0A).

ENGINE LUBRICATION

A lubrication schematic is shown in figure 1.

The gear type oil pump is driven from either the vacuum pump shaft or from a drive gear, depending on engine application. The vacuum pump or drive gear is driven by the camshaft. Oil is drawn into the pump through a pickup screen and pipe.

Pressurized oil is routed to the oil cooler, located in the radiator. A bypass valve is provided should the oil cooler become restricted. Oil flows from the cooler to a full flow oil filter. An oil filter bypass valve is provided should the oil filter become restricted.

Oil flows from the oil filter to the oil galleries, providing pressurized lubrication to various components.

The hydraulic valve lifters receive oil from the oil galleries. Oil flows from the hydraulic lifters through hollow pushrods to the rocker arms. Oil from the overhead drains back to the crankcase through oil drain holes.

The pistons, rings, piston rings, cylinder walls, and connecting rod small end bearings are lubricated by oil splash.
A clean, well lit work area should be available. Other necessary equipment includes: A suitable parts cleaning tank, compressed air supply, trays to keep parts and fasteners organized, and an adequate set of hand tools.

An approved engine repair stand will aid the work and help prevent personal injury or damage to engine components.

Special tools are illustrated throughout this section, and are listed at its end. These tools (or their equivalents) are specially designed to quickly and safely accomplish the operations for which they were intended. The use of these tools will also minimize possible damage to engine components.

Some precision measuring tools are required for inspection of certain components. Torque wrenches will be necessary for correct assembly of various parts.

This manual assumes that the engine accessories have been removed. These accessories may include one or more of the following:
- Hydraulic Pump
- Generator
- Air Conditioning Compressor
- Cooling Fan
- Fuel Pump
- CDR Valve, EGR Valve, and other emissions equipment

It is beyond the scope of this section to detail the many different accessory installations. Refer to the proper Truck Service Manual for this information.

Diagrams of emission and vacuum hose routings, wiring harness routing, accessory drive belt layout, etc., should be made before removing accessories.
CLEANING

NOTICE: Clean the engine only when it is cold, never when it is warm or hot, and never when the engine is running. Spraying or pouring water or other fluids on your engine when it is warm or hot, or when it is running, can cause serious damage to the engine and its components.

Remove the engine accessories before cleaning to provide better access to engine exterior surfaces. Cover the openings with tape to prevent the entry of water, solvent, and dirt.

Methods used to clean the engine will depend on the aids which are available. Steam cleaning, pressure washing, or solvent cleaning are some acceptable methods. Allow the engine to dry before beginning the work.

It is important that the engine be as clean as possible to prevent dirt from entering critical areas during disassembly.

DRAINING THE ENGINE

Remove or Disconnect

1. Oil pan drain plug. Allow the oil pan to drain.
2. Oil filter.
3. Block drain plugs. Allow the coolant to drain.

Install or Connect

1. Oil pan drain plug.
 - **Tighten**
 - Oil pan drain plug to 10.0 N·m (90 in. lbs.).
2. Block drain plugs.
 - **Tighten**
 - Block drain plugs to 22 N·m (16 ft. lbs.).

VACUUM PUMP/OIL PUMP DRIVE REMOVAL

Remove or Disconnect (Figure 2)

1. Hold down clamp and bolt.
2. Speed sensor wire.
3. Vacuum pump or oil pump drive. Pull out to remove.
4. Gasket.
INTAKE MANIFOLD REMOVAL

+ Remove or Disconnect (Figure 3)
 1. Intake manifold bolts and fuel line clips.
 2. Intake manifold.

++ Install or Connect
 Tool Required:
 - J 29664 Manifold Cover Set
 - J 29664-1 to the intake ports.

INJECTION LINE REMOVAL

++ Remove or Disconnect (Figure 4)
 1. Injection line clips at the brackets.
 2. Injection lines at the nozzles.
 • Cap the lines and nozzles immediately.
 • Do not bend injection lines.
 3. Injection lines at the pump.
 • Cap the lines and pump fittings immediately.
 • Tag the lines for installation.
 4. Injection line brackets.

INJECTION NOZZLE REMOVAL

++ Remove or Disconnect (Figure 5)
 Tool Required:
 - J 29673, Nozzle Socket
 1. Fuel line clip.
 2. Fuel return hose.

NOTICE: When removing an injection nozzle, use J 29873. Remove the nozzle using the 30 mm hex portion. Failure to do so will result in damage to the injection nozzle.

 3. Injection nozzle using J 29873. Store the nozzles in a clean place.

GLOW PLUG REMOVAL

++ Remove or Disconnect
 • Glow plugs. Use a suitable socket.

EXHAUST MANIFOLD REMOVAL

++ Remove or Disconnect
 1. Exhaust manifold bolts.
 2. Exhaust manifolds.
DIPSTICK TUBE REMOVAL

- Remove or Disconnect
 1. Dipstick bracket bolt.
 2. Dipstick tube. Pull out to remove.
 3. O-ring from the dipstick tube.

WATER CROSSOVER REMOVAL

- Remove or Disconnect (Figure 6)
 1. Glow plug inhibit switch wire.
 2. Clamps (47).
 3. Bolts or studs (44).
 4. Water crossover (45).
 5. Gaskets (46).
 6. Hose (48).

ROCKER ARM COVER REMOVAL

- Remove or Disconnect (Figure 7)
 1. Bolts (58).

NOTICE: Do not pry on the rocker arm cover. Damage to sealing surfaces may result.

- Rocker arm covers (57).

ROCKER ARM AND PUSHROD REMOVAL

- Remove or Disconnect (Figure 7)
 1. Bolts (54).
 2. Rocker arm assemblies (55). Mark the assemblies so they can be returned to the original location at assembly.
 3. Pushrods (18).

Important

- The pushrods must be installed in the original direction at assembly. This is because the pushrods have a different degree of hardness at each end. A paint stripe identifies the upper end of the pushrod. If the paint stripe is not visible, mark the pushrods on the upper end as they are removed.
- Mark the pushrods so they can be installed in the same location at assembly.
CYLINDER HEAD REMOVAL

- Remove or Disconnect (Figure 7)
 1. Fuel return line bolts.
 2. Bolts (56).
 3. Cylinder heads (53).
 4. Head gaskets (52).

HYDRAULIC LIFTER REMOVAL

- Remove or Disconnect (Figure 7)
 1. Clamps (51).
 2. Guide plates (50).
 3. Hydraulic lifters (17). Place the lifters in an organizer rack. The lifters must be installed in the same bore from which they were removed.
WATER PUMP REMOVAL

gulp Remove or Disconnect (Figure 8)
1. Nuts (84).
2. Oil filler neck (83).
3. Bolts and studs (76).
4. Water pump (82) with water pump plate (75).
5. Bolts (88).
6. Water pump from the water pump plate.
7. Gasket (77).

TORSIONAL DAMPER REMOVAL

gulp Remove or Disconnect (Figures 8 and 9)
Tool Required:
J 23523-E Torsional Damper Puller
1. Bolt (80) and washer (81).

INJECTION PUMP REMOVAL

gulp Remove or Disconnect (Figure 10)
- Scribe a line across the injection pump flange and front cover.
1. Wires and hoses at the injection pump.
2. Bolts (105).
3. Injection pump gear (106).
4. Nuts (101), and throttle spring bracket (102).
5. Injection pump (100).

FRONT COVER REMOVAL

gulp Remove or Disconnect (Figure 8)
1. Oil pan to front cover bolts.
2. Bolts (86), nut (87) and baffle (72) (G models).
3. Bolts (70).
4. Front cover (71).

TIMING CHAIN AND SPROCKET REMOVAL

Measure
- Timing chain free play as follows:
 1. Mount a dial indicator to the front of the block.
 2. Position the dial indicator so that the plunger contacts the timing chain between the two gears.
 3. Pull the chain outward (parallel to the front face of the block) the maximum amount with finger pressure on the inside of the chain.
 4. Set the dial indicator to zero.
 5. Move the chain inward (parallel to the front face of the block) the maximum amount with finger pressure on the outside of the chain.
 6. The total indicator travel can be noted. With used parts, the deflection must not exceed 20.3 mm (0.80 inch). If the deflection exceeds this limit, the sprockets and timing chain must be inspected for wear and replaced as necessary.

Remove or Disconnect (Figure 11)
1. Bolt (119) and washer (118).
2. Camshaft gear (104).
3. Camshaft sprocket (115) with timing chain (116).
CAMSHAFT REMOVAL

Remove or Disconnect (Figure 11)
1. Bolts (114) and thrust plate (113).
2. Camshaft (110).
 - The fuel pump (lift pump) and pushrod must be removed to remove the camshaft.
 - Pull the camshaft from the block carefully to avoid damage to the camshaft bearings.

OIL PAN REMOVAL

Remove or Disconnect (Figure 12)
1. Bolts (133).
2. Oil Pan (134).
3. Oil pan rear seal (132).

OIL PUMP REMOVAL

Remove or Disconnect (Figure 12)
1. Bolt (131).
2. Oil pump (130).

PISTON AND CONNECTING ROD REMOVAL

Remove or Disconnect (Figures 13 and 14)
1. Ridge or deposits from the upper end of the cylinder bores.
 - Turn the crankshaft until the piston is at BDC.
 - Place a cloth on top of the piston.
 - Perform the cutting operation with a ridge reamer (figure 13).
 - Turn the crankshaft until the piston is at TDC.
 - Remove the cloth and cuttings.
2. Connecting rod cap. Check the connecting rod and cap for identification marks. Mark the parts if required. The connecting rod and cap must be kept together as mating parts.
3. Connecting rod and piston.
 - Attach two short pieces of 10 mm (⅜-inch) hose to the connecting rod bolts (figure 14). This will protect the crankshaft journal during removal.
 - Push the connecting rod and piston out of the bore.
 - After removal, assemble the connecting rod and cap.

FLYWHEEL REMOVAL

Remove or Disconnect (Figure 15)
1. Bolts (141).
2. Flywheel (140).

CRANKSHAFT REMOVAL

Remove or Disconnect (Figure 15)
1. Bolts (146).
2. Main bearing caps (147).
3. Crankshaft (148). Lift the crankshaft straight up, taking care to avoid damage to the crankshaft journals and thrust flange surfaces.
4. Rear crankshaft seal halves (142 and 145).
5. Main bearing inserts (143 and 144).
A. Use short pieces of 10 mm (\(\frac{3}{8}\) inch) hose to protect the crankshaft journal.

Figure 12—Oil Pan and Oil Pump

Figure 13—Removing the Cylinder Ridge

Figure 14—Removing the Piston and Connecting Rod
CLEANING, INSPECTION, AND REPAIR

A solvent tank, large enough to hold the larger engine parts, will be needed along with various bristle brushes and a gasket scraper. A source of compressed air will be helpful in the cleaning operations.

Precision measuring tools will be required for the inspection procedure. These include: micrometers, cylinder bore gage, feeler gages, dial indicator set, etc. The inspection work, performed with the proper method and tools, is most important. The rebuilt engine cannot be expected to perform properly if parts worn beyond acceptable limits are reused.

BLOCK

Clean
1. Block in solvent.
2. Block gasket surfaces.
3. Cylinder bores.
4. Oil galleries and passages.
5. Scale deposits from the coolant passages.

Inspect
1. All expansion plugs for poor fit or leakage.
2. Hydraulic lifter bores for deep scratches and varnish deposits.
3. Block for cracks.
4. Main bearing bores and main bearing caps.
 - All main bearing bores should be round and uniform in ID at all bearing supports.
 - The area where the main bearing inserts contact the main bearing bore must be free of burrs and scratches.
5. Head gasket surface for scratches, burrs and damage.

Measure
- Fire deck warpage. Use a straightedge and feeler gage. If the block is warped more than 0.15 mm (0.006-inch) longitudinally or 0.08 mm (0.003-inch) transversely, it should be replaced. Do not attempt to resurface the fire deck or cylinder head.
6A7-12 6.2 LITER DIESEL

CYLINDER BORES

- **Inspect**
 - Cylinder bores for scoring and other damage.

- **Measure**
 - Cylinder out of round and taper. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

Cylinder Bore Recomンドing

- Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

PISTON AND CONNECTING ROD ASSEMBLIES

Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) and perform the following:

- **Disassemble**
 - Components as required.

- **Clean**
 - Components as outlined.

- **Inspect**
 - Components as outlined.

- **Measure**
 - Piston pin diameter and pin to connecting rod bushing.
 - Piston to bore clearance, and fit pistons as outlined.

- **Assemble**
 - Components as outlined.

 Important
 - Each connecting rod and bearing cap should be marked, beginning at the front of the engine. Cylinders 1, 3, 5 and 7 are the left bank and 2, 4, 6, and 8 are the right bank. The numbers on the connecting rod and bearing cap must be on the same side when installed in the cylinder bore. If a connecting rod is ever transposed from one block or cylinder to another, new connecting rod bearings should be fitted and the connecting rod should be numbered to correspond with the new cylinder number.

- **Measure**
 - Ring end gap and ring clearance.

- **Inspect**
 - Ring fit.

INTAKE AND EXHAUST MANIFOLDS

- **Clean**
 - Old pieces of gasket from the gasket surfaces.
 - Soot deposits from the intake manifold.

- **Inspect**
 - Manifolds for cracks, broken flanges, and gasket surface damage.

CAMSHAFT

- **Important**
 - Whenever the camshaft needs to be replaced, a new set of hydraulic lifters must also be installed.

- **Inspect (Figure 11)**
 - Camshaft lobes and journals for scratches, pitting, scoring, and wear.
 - Thrust plate (113) for wear and scoring.

- **Measure (Figure 16)**
 - Camshaft journals. Use a micrometer (figure 16).
 - The proper journal dimensions are as follows:
 - #5 (rear) journal: 50.975-51.025 mm.
 - All others: 54.975-55.025 mm.

CAMSHAFT BEARINGS

- **Inspect**
 - Camshaft bearings for scratches, pits, or loose fit in their bores. Replace the camshaft bearings if necessary.

- **Disassemble (Figures 17 and 18)**

 Tools Required:
 - J 6098-01 Camshaft Bearing Remover and Installer
6.2 LITER DIESEL 6A7-13

- Assemble the bearing tool (J 6098-11) and driver handle.
- Drive the outer camshaft bearings out of the block.

4. Rear camshaft bearing, as described in step 3. Use the driver handle and bearing tool J 6098-12 (figure 18).

Clean
- Camshaft bearing bores in the block.

Assemble (Figures 17 and 18)

Tool Required:
- J 6098-01 Camshaft Bearing Remover and Installer
- J 6098-10 Adapter Set

- The outer camshaft bearings must be installed first. These bearings serve as guides for the pilot, and help center the inner bearings during the installation process.
- Be sure to fit the correct cam bearing into the bore. The cam bearing bores vary in size.

1. Rear camshaft bearing. Drive the bearing into place using the driver handle and J 6098-12 (figure 18).

- Important
 - The bearing oil hole MUST align with the oil hole in the block. This hole is located at about the 4 o'clock position from the block upright (viewed from the front of the block).
 - The seam in the bearing must be in the upper half of the block face.

2. Front camshaft bearing. Drive the bearing into place with the driver handle and J 6098-11 (figure 18).

- Important
 - The notch in the bearing must face the front of the block.
 - There are two oil holes in the bearing. One hole is located at about the 4 o'clock position; the other is located between the 12 o'clock and 1 o'clock position (block upright). The bearing oil holes MUST align with the holes in the block.
 - The seam in the bearing must be in the upper half of the block face.

3. Inner cam shaft bearings. Use J 6098-01 and J 6098-10 (figure 17).

- Assemble the tool with the pilot engaged in the front bearing and the pilot flange against the front face of the block.
- Slide the puller screw, with nut and washer, through the pilot.
- Place the new bearing on the bearing tool (J 6098-011). Hold the bearing tool and bearing against the bearing bore. Align the bearing oil hole with the oil hole in the block.
- Thread the puller screw into the bearing tool enough to hold the tool and bearing in place.
- Holding the puller screw with a wrench, turn the nut with a second wrench to pull the camshaft bearing into place.
Remove the puller screw, pilot, and bearing tool.

Important
- The bearing oil hole MUST align with the oil hole in the block. This hole is located at about the 4 o'clock position with the block upright (viewed from the front of the block).
- The seam in the bearing must be in the upper half of the block face.

4. New rear camshaft plug.
- Coat the camshaft plug with sealer (Loctite #592 or equivalent).
- Install the plug flush to 0.80 mm (1/32-inch) deep.

TIMING CHAIN, SPROCKETS AND TIMING GEARS

Inspect
- Sprockets for chipped teeth and wear.
- Timing chain for damage.
 - It should be noted that excessively worn sprockets will rapidly wear a new chain. Likewise, an excessively worn chain will rapidly wear a new set of sprockets.
- Timing gears on the injection pump and camshaft for wear and broken teeth.

Important
- If the timing chain, sprockets, or gears are replaced, it will be necessary to re-time the engine, as outlined later.

FRONT COVER

Clean
- Old sealer from the sealing surfaces.

Inspect
- Baffle for damage.
- Front cover for cracks and damage to the sealing surfaces.

Disassemble
- Front crankshaft seal. Pry the seal out with a large screwdriver.

Assemble
- Tool Required: J 22102 Seal Installer
 - Front crankshaft seal. Use J 22102. The open end of the seal must face inside the cover.
 - Coat the seal lips with grease.

Important
- If a new front cover is installed, the engine must be re-timed, as outlined later.

WATER PUMP

Clean
- Old gasket from the gasket surfaces on the water pump and water pump plate.

Important
- Do not immerse the pump in solvent. The solvent may enter the pump’s permanently lubricated bearings, dissolve the bearings’ lubricant supply, and cause premature bearing failure.

Inspect
- Water pump shaft for roughness and end play. If the shaft does not turn smoothly, or if there is excessive end play, replace the water pump.
- Water pump body at the drain hole. If there is evidence of coolant leakage, the water pump shaft seal is leaking and the water pump should be replaced.
- Water pump plate for damage.

OIL PAN AND ROCKER ARM COVERS

Clean
- Parts in solvent. Remove all sludge and varnish.
- Old sealer from the sealing surfaces.

Inspect
- Sealing flanges for bending or damage.
- Rubber grommets and parts on the rocker arm cover for deterioration.
- Oil pan for rock damage or cracks.
- Oil pan baffle for loose fit.
- Drain plug threads for stripping.

OIL PUMP

Disassemble
1. Oil pump cover screws.
2. Oil pump cover.
 - Mark the gear teeth so the pump gears can be installed with the same gear teeth indexed.
3. Drive gear and shaft.
4. Idler gear.
5. Pressure regulator valve retaining pin, valve, spring, and related parts. Note the order of assembly.

Clean
- All parts in clean solvent and blow dry with compressed air.

Inspect
- Pump body and cover for cracks or other damage.
- Gears for wear.
- Drive gear and shaft for improper fit in the pump body.
Inside of the cover for wear that would permit oil to leak past the ends of the gears. The pump gears, cover, and body are not serviced separately. If the parts are damaged or worn, replace the entire oil pump assembly.

Pickup screen and pipe for damage to the screen, pipe or relief grommet.

Assemble
1. Pressure regulator valve and related parts.
2. Idler gear and drive gear with shaft. Align the marks made during disassembly.
3. Oil pump cover.
4. Oil pump cover screws.

Inspect
- Oil pump operation. Turn the drive shaft by hand and check for smooth rotation.

VALVE TRAIN COMPONENTS

Clean
- Parts in solvent. Blow dry with compressed air.
- Make sure the oil passages in the pushrods are clear.

Disassemble (Figure 19)
1. Rocker arm retainers (160).
 - Insert a screwdriver into the rocker arm shaft bore and break off the end of the retainers.
 - Pull the rocker arm retainers out with pliers (figure 19).
2. Rocker arms from the rocker arm shaft. Mark the rocker arms so they can be returned to their original locations at assembly.

Inspect
- Rocker arms and shafts at their mating surfaces. These surfaces should be smooth and free from scoring or other damage.
- Rocker arm areas which contact the valve stems and the sockets which contact the pushrods. These areas should be smooth and free of damage and wear.

HYDRAULIC LIFTERS
Refer to **GENERAL ENGINE MECHANICAL (SEC. 6A).**

Important
- Some engines will have both standard 0.010-inch oversize hydraulic lifters. The oversize lifter will have a "10" etched on the side. The block will be stamped "O.S." on the cast pad adjacent to the lifter bore and on the top rail of the cylinder case above the lifter bore.

CYLINDER HEAD

Disassemble (Figures 20, 21, and 22)

Tool Required:
- J 8062 Valve Spring Compressor
1. Valve keepers (170).
 - Compress the valve springs with J 8062 (figure 21).
 - Remove the valve keepers.
 - Remove J 8062.
Cleaning and Inspection of Components

Clean
- Components as outlined in GENERAL ENGINE MECHANICAL (SEC. 6A).

Inspect (Figure 23)
1. Components outlined in GENERAL ENGINE MECHANICAL (SEC. 6A). Replace all valve springs at overhaul.

Acceptable Crack Length Not Over 5 mm (7/32-inch)
- A. Head Gasket Sealing Bead Mark
- B. Fire Slot

Unacceptable Crack Length Over 5 mm (7/32-inch)
- A. Pre-chamber
- B. Pre-chamber

Figure 21—Compressing the Valve Springs

2. Caps (178), rotators (171), shields (172), valve springs with dampers (175) and shims (176).
3. Valve seals (174) and O-ring seals (173).
4. Valves (177 and 179). Place them in a rack so they can be returned to their original position at assembly.
5. Pre-chambers (180) (if required) (figure 22). Drive out with a small nylon drift inserted through the injection nozzle hole.

Figure 22—Prechamber

Figure 23—Prechamber Inspection

2. Pre-chambers for cracks. Replace any pre-chambers with facial cracks longer than 5 mm (7/32-inch) (figure 23). Service pre-chambers are available in standard and 0.254 mm oversize.

Measure (Figure 24)
1. Valve stem clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).
2. Cylinder head warpage. Use a straightedge and a feeler gage (figure 24). If the head is warped more than 0.15 mm (0.006-inch) longitudinally or 0.08 mm (0.003-inch) transversely, replace the cylinder head. Resurfacing is not recommended.
3. Cylinder head thickness (rocker arm cover gasket rail to head gasket surface) must be at least 97.87 mm (3.853-inch).

Figure 24—Checking the Cylinder Head for Warpage
Valve Guides and Valve Seats
Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

NOTICE: Valve seats on 6.2L engines are induction hardened. Excessive removal of stock may result in damage to the valve seats.

Assemble (Figures 20, 21 and 22)

Tool Required:
J 8062 Valve Spring Compressor

1. Pre-chambers (180) (if removed) (figure 22).
 - Align the locating notches. The pre-chamber will fit correctly in only one position.
 - Tap into place. Use a 32 mm (1\(\frac{1}{4}\)-inch) socket.

 Measure
 - Pre-chamber installed depth. The pre-chamber should be flush to a maximum of 0.05 mm (0.002-inch) protrusion.
 - Make the measurement at two or more points on the pre-chamber where the prechamber seats on the head gasket shield and sealing ring.
 - Measure the difference between the flat of the pre-chamber and the flat surface of the cylinder head.
 - The pre-chamber must not protrude out of the cylinder head more than 0.05 mm (0.002-inch).
 - The pre-chamber must not be recessed into the cylinder head.

2. Valves (177 and 179).
 - Lubricate the valve stems with engine oil.
 - Insert the valves into the proper ports.

4. Valve seals (174) (exhaust valves only). Install the valve seals over the valve stems and seat them against the heads.

5. New valve springs with dampers (175).

7. Caps (178) (intake valves only).

8. Rotators (171) (exhaust valves only).

9. O-ring seals (173) and valve keepers (170).
 - Compress the valve spring, using J 8062 (figure 21). Compress the spring enough so the lower valve stem groove can be clearly seen.
 - Push a new seal onto the valve stem. The seal is to be installed on the stem's lower groove. Make sure the seal is flat and not twisted.
 - Apply a small amount of grease to the area of the upper valve stem groove. Assemble the two valve keepers using the grease to hold the keepers in place. Make sure the keepers seat properly in the groove.
 - Release the compressor tool. Make sure the valve keepers stay in place.
 - Repeat the preceding steps on the remaining valves.

Measure (Figures 25 and 26)
- Valve spring installed height of each valve spring, as follows:

GLOW PLUGS

Inspect
- Glow plugs for stripped threads and damage. Replace the glow plugs if the tips are cracked, bulged, or broken.

Measure
- Glow plug resistance. Connect an ohmmeter between the electrical connector blade and the glow plug body. Replace any glow plug with a resistance greater than 2 ohms.
THERMOSTAT AND WATER CROSSOVER

Disassemble (Figure 6)
1. Bolts or studs (40).
2. Water outlet (41).
3. Thermostat (42).
4. Gasket (43).

Inspect
- Water outlet and water crossover for cracks.

Thermostat Check
1. Suspend the thermostat and a thermometer in water with the thermometer located close to the thermostat. The thermostat must be completely submerged and the water thoroughly agitated while heating. Apply heat to the water and record both the temperature at which the thermostat begins to open and the temperature at which the thermostat is fully open.
2. Compare the temperature readings taken in the test with those given in the proper Truck Service Manual.
3. Do not attempt to repair the thermostat. If the thermostat does not function properly, replace it with a new unit which has been checked as directed previously.

Install or Connect (Figure 6)
1. Gasket (43).
2. Thermostat (42).
3. Water outlet (41).
4. Bolts or studs (40).

Tighten
- Bolts or studs to 47 N m (35 ft. lbs.).

INJECTION NOZZLES

Perform the following tests on the injection nozzles as outlined in the proper truck service manual:
- Nozzle opening pressure.
- Leakage test.
- Chatter test.
- Spray pattern test.
Replace any faulty nozzles. Do not attempt repairs.

NOTICE: On LH6 (light duty emissions) engines, the nozzles used in G models are shorter than nozzles used on C-K-R-V-P models. They must not be interchanged. Attempts to use the incorrect nozzle will damage the nozzle and/or cylinder head.

INJECTION LINES

Inspect
- Injection lines for kinks and damaged fittings. Replace any damaged lines.

INJECTION PUMP

Inspection
- Injection pump body and mounting flange for damage.
- Injection pump for evidence of fuel leakage.
- Injection line fittings for stripping.

Injection Pump Repair
Refer to the proper truck service manual for allowable repairs. If necessary, have the pump repaired by an authorized repair station.

CRANKSHAFT AND BEARINGS

CLEANING AND INSPECTION

Clean
- Crankshaft with solvent.
- Do not scratch the bearing journals.
- Blow all sludge from the oil passages with compressed air.
- Main bearing inserts. Wipe free of oil with a soft cloth.

Inspect
- Crankshaft for cracks. Use the magnaflux method, if available.
- Crankpins, main bearing journals and thrust surfaces for scoring, nicks, or damage caused by lack of lubrication.
- Main bearing inserts for scoring or other damage.
In general, the lower inserts (except the #1 bearing) show greater wear and the most distress from fatigue. If, upon inspection, the lower insert is suitable for use, it can be assumed that the upper insert is also satisfactory. If the lower insert shows evidence of wear or damage, both the upper and lower inserts must be replaced.

Measure (Figures 27 and 28)
- Main bearing and connecting rod journal diameters
Figure 28—Checking Crankshaft Run-Out

(figure 27). Compare with "Specifications." Grind or replace the crankshaft if necessary.

- Main bearing and connecting rod journals for taper and out-of-round (figure 27). If the journals are tapered or out-of-round more than 0.001-inch, replace the crankshaft.

- Crankshaft run-out (figure 28).
 - Mount the crankshaft in V-blocks or between centers.
 - Use a dial indicator as shown.
 - If the main journals are misaligned, the crankshaft is bent and must be replaced, along with the main bearings.

AVAILABLE BEARING SIZES
- Main bearings are available in 0.013 mm (0.0005-inch) and 0.026 mm (0.001-inch) undersizes for select fitting to attain proper main bearing clearance.
- Connecting rod bearings are available in 0.026 mm (0.001-inch) undersizes for select fitting.
- Some VIN Code C (RPO LH6) (light duty emissions) engines may have both standard and 0.08 mm (0.003-inch) OVERSIZE connecting rod bearings. The oversize connecting rods are stamped "O.S." on the cap's lower end.

FLYWHEEL

Clean
- Mating surfaces of crankshaft and flywheel. Remove any burrs.

Inspect
- Flywheel for burning, scoring, warping, and wear. Replace the flywheel if necessary. Do not machine the flywheel.
- Flywheel ring gear for worn or broken teeth.
Flywheel Ring Gear Replacement

1. Use a torch to heat the gear around the entire circumference, then drive the gear off the flywheel, using care not to damage the flywheel.

NOTICE: Never heat starter gear to red heat as this will change metal structure.

2. Uniformly heat the flywheel gear to temperature which will expand the gear to permit installation. Temperature must not exceed 200°C (400°F).

3. As soon as the gear has been heated, install on the flywheel.

TORSIONAL DAMPER

- Oil seal contact area on the torsional damper shaft for grooving and roughness. Replace if necessary.

ASSEMBLY

CRANKSHAFT INSTALLATION

MAIN BEARING SELECTION

Main bearings are of the precision insert type and do not use shims for adjustment. If clearances are excessive, a new bearing, both upper and lower inserts, will be required. Service bearings are available in standard size and 0.013 mm (0.0005-inch) and 0.026 mm (0.001-inch) undersizes.

Selective fitting of both rod and main bearings inserts is necessary to obtain close tolerances. For this reason you may use, for example, one half of a standard insert with one half of a 0.026 mm (0.001-inch) undersize insert which will decrease the clearance 0.013 mm (0.0005-inch) from using a full standard bearing.

REAR CRANKSHAFT OIL SEAL

The production rear crankshaft oil seal is a “rope” type seal. The rope seal is replaced with a two piece type seal for service.

INSTALLATION

- **Clean**
 - Main bearing cap and block mating surfaces with carburetor cleaner or equivalent.
 - Seal grooves in the block and main bearing cap with carburetor cleaner of equivalent.

- **Install or Connect (Figures 30 through 33)**
 1. Upper main bearing inserts to the block.
 2. Crankshaft.
 3. Lower main bearing inserts to the main bearing caps.

OIL FILTER BYPASS VALVE REPLACEMENT

- **Remove or Disconnect (Figure 29)**
 1. Oil filter.
 2. Oil filter bypass valve. Pry out with a screwdriver.

- **Clean**
 - Recess in the block.

- **Install or Connect (Figure 29)**
 1. Oil filter bypass valve. Tap into place, using a 16 mm socket.
 2. Oil filter.
INSTALLING THE UPPER SEAL HALF

13 mm (1/2-inch)

INSTALLING THE LOWER SEAL HALF

Figure 31—Installing the Two-Piece Rear Oil Seal

installed, check for fraying that may prevent the bearing cap from seating.

- Apply engine oil to the main bearings.

4. Rear crankshaft oil seal halves to the block.
- Apply a light coat of engine oil to the seal lips where they contact the crankshaft.

Figure 32—Applying Sealant to the Main Bearing Cap

A. Oil Relief Slot
B. Apply Anaerobic Sealer to Shaded Area

F-02470

A. Forward

Figure 33—Measuring Crankshaft End Play

- "Roll" one seal half into the block seal groove until 13 mm (1/2-inch) of the seal's one end is extending out of the block (figure 31).
- Insert the other seal half into the opposite side of the seal groove in the block (figure 31).

Important

- The contact ends of the seal halves should now be at the four and ten o'clock positions, or at the eight and two o'clock positions. This is necessary to align the rear main bearing cap and seal lips.

NOTICE: The main bearing caps are to be tapped into place with a brass or leather mallet before the attaching bolts are installed. Do not use the attaching bolts to pull the main bearing caps into their seats, as this may damage the bearing cap and/or block.

5. Number 5 (rear) main bearing cap.
- If a two piece type seal is to be installed, lightly coat the seal groove in the cap with adhesive (GM part number 1052621 [Loctite 414] or equivalent).
- Apply a thin film of anaerobic sealant (GM part number 1052756 or equivalent) to the bearing cap as shown in figure 32. Keep the sealant off the seal and bearing. Do not put sealant in the bearing cap oil relief slot.
- Apply engine oil to the main bearing cap bolt threads.
- Tap the main bearing cap into place with a brass or leather mallet. Then install the bolts.

Tighten
- Bolts to specifications, in the following sequence:
 - Inner bolts: 150 N·m (110 ft·lbs).
 - Outer bolts: 135 N·m (100 ft·lbs).
- Re-tighten all bolts in the same sequence.

6. Numbers 1, 2, and 4 main bearing caps and bolts.

Tighten
- Bolts to specifications. Refer to step 5.

7. Number 3 (center) main bearing cap and bolts. Tighten the bolts temporarily to 14 N·m (10 ft·lbs).

Measure (Figure 33)
- Crankshaft end play, as follows:
 - Tap the end of the crankshaft first rearward then forward with a lead hammer. This will line up the main bearing and crankshaft thrust surfaces.
 - Tighten the main bearing cap bolts to specifications. Refer to step 5.
 - With the crankshaft forced forward, measure at the front end of the number 3 main bearing with a feeler gage (figure 33). The proper clearance is 0.10-0.25 mm.

Inspect
- Crankshaft for binding. Try turning the crankshaft to check for binding. If the crankshaft does not turn freely, loosen the main bearing cap bolts, one pair at a time, until the tight bearing is located. Burrs on the bearing cap, foreign matter between the insert and the block or the bearing cap, or a faulty insert could cause a lack of clearance at the bearing.

FLYWHEEL INSTALLATION

++ Install or Connect (Figure 30)
1. Flywheel (140).
2. Bolts (141).

Tighten
- Bolts (141) to 90 N·m (65 ft·lbs.).

CONNECTING ROD AND PISTON INSTALLATION

CONNECTING ROD BEARING SELECTION
Connecting rod bearings are of the precision insert type and do not use shims for adjustment. DO NOT FILE RODS OR ROD CAPS. If clearances are excessive install a new bearing. Service bearings are available in standard size and 0.026 mm (0.001-inch) undersizes.

Selective fitting of both rod and main bearing inserts is necessary to obtain close tolerances. For this reason you may use, for example, one half of a standard insert with one half of a 0.026 mm (0.001-inch) undersize insert which will decrease the clearance 0.013 mm (0.0005-inch) from using a full standard bearing.

Some VIN Code C (RPO LH6) (light duty emissions) engines may have both standard and 0.08 mm (0.003-inch) oversize connecting rod bearings. The oversize connecting rods are stamped “O.S.” on the cap's lower end.

INSTALLATION

++ Install or Connect (Figures 34, 35, and 36)

Tool Required:
- J 8037 Ring Compressor

- Make sure the cylinder walls are clean. Lubricate the cylinder wall lightly with engine oil.

- Make sure the piston is installed in the matching cylinder. Install new pistons in the cylinders for which they were fitted. Install used pistons in the cylinder from which they were removed.

1. Connecting rod bearings.
 - Be certain that the bearings are the proper size.
 - Install the bearings in the connecting rod and connecting rod cap.

2. Piston and connecting rod to the proper bore.
 - With the connecting rod cap removed, install two short pieces of 10 mm (3/8-inch) hose onto the connecting rod studs.
 - Locate the piston ring end gaps as shown in figure 34. Lubricate the piston and rings with engine oil.
Without disturbing the ring end gap location, install J 8037 over the piston (figure 35). The piston must be installed so that the depression in the piston crown is towards the outside of the engine. The connecting rod bearing tang slots must be opposite the camshaft.

Place the piston in its matching bore. Using light blows with a hammer handle, tap the piston down into its bore (figure 35). At the same time, from beneath the engine guide the connecting rod to the journal with the pieces of hose (figure 36). Hold the ring compressor against the block until all rings have entered the cylinder bore.

• Remove the hoses from the connecting rod bolts.

Important
• Each connecting rod and bearing cap should be marked, beginning at the front of the engine. Cylinders 1, 3, 5 and 7 are the left bank and 2, 4, 6 and 8 are the right bank. The numbers on the connecting rod and bearing cap must be on the same side when installed in the cylinder bore. If a connecting rod is ever transposed from one block or cylinder to another, new connecting rod bearings should be fitted and the connecting rod should be numbered to correspond with the new cylinder number.

Measure
• Connecting rod bearing clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).
• Apply engine oil to the connecting rod bearings.
3. Connecting rod cap with bearing.
4. Connecting rod cap nuts.

Measure (Figure 37)
• Connecting rod side clearance. Use a feeler gage between the connecting rod and crankshaft (figure 37). The correct clearance is 0.17-0.63 mm.

CAMSHAFT INSTALLATION

Install or Connect (Figure 38)
• When a new camshaft is installed, replacement of all hydraulic lifters, engine oil, and oil filter is recommended.
1. Key (112).
2. Spacer (111), with the ID chamfer towards the camshaft (110).
3. Camshaft.
 • Coat the camshaft lobes with "Molykote" or equivalent.
 • Lubricate the camshaft bearing journals with engine oil.
 • Insert the camshaft carefully into the block to avoid damage to the camshaft bearings.

4. Thrust plate (113) and bolts (114).
 - **Tighten**
 - Bolts (114) to 23 N·m (17 ft. lbs.).

TIMING CHAIN AND SPROCKET INSTALLATION

Install or Connect (Figure 38)
1. Crankshaft sprocket (117).
2. Camshaft sprocket (115) with timing chain (116).
 - **Important**
 - Align the timing marks (figure 38).
3. Camshaft gear (104), washer (118) and bolts (119).
 - **Tighten**
 - Bolt (119) to 100 N·m (75 ft. lbs.).
4. Measure
 - Timing chain free play as follows:
 1. Mount a dial indicator to the front of the block.
 2. Position the dial indicator so that the plunger contacts the timing chain between the two sprockets.
 3. Pull the chain outward (parallel to the front face of the block) the maximum amount with finger pressure on the inside of the chain.
 4. Set the dial indicator to zero.
 5. Move the chain inward (parallel to the front face of the block) the maximum amount with finger pressure on the outside of the chain.
6. The total indicator travel can be noted. With used parts, the deflection must not exceed 20.3 mm (0.80-inch). If the deflection exceeds this limit, the sprockets and timing chain must be inspected for wear and replaced as necessary. With new parts, the deflection must not exceed 12.7 mm (0.50-inch).

FRONT COVER INSTALLATION

- **Clean**
 - Sealing surfaces on the block and front cover with carburetor cleaner or equivalent.

- **Install or Connect (Figures 39 and 40)**
 - Apply a 2 mm (\(\frac{3}{32}\) -inch) bead of anaerobic sealant (GM part number 1052357 or equivalent) to the front cover sealing area shown in figure 40.
1. Front cover to the engine. Install the bolts (70).
2. Baffle (72) bolts (86) and nut (87) (G models).
 - **Tighten**
 - Bolts (86) and nut (87) to 45 N·m (33 ft. lbs.).
3. Measure
 - Clearance between injection pump gear and baffle (figure 40). It is necessary to maintain a minimum of 1.0 mm (0.040-inch) between the gear and baffle, or noise may result.
4. **Important**
 - If a new front cover was installed, mark TDC on the cover as outlined following. This is necessary to provide a reference mark for timing the injection pump.
MARKING TDC ON THE FRONT COVER

Tool Required:
J 33042, Timing Fixture

1. Set the engine so that number 1 cylinder is at TDC (firing).
2. Install J 33042 in the injection pump location.
 - Do not use the gasket.
3. Set the injection pump gear (106) (figure 44) in place, aligning the timing marks on the injection pump and camshaft gears, as shown. The slot in the injection pump gear should be in the vertical 6 o'clock position (figure 41). If not, remove J 333042 and rotate the engine crankshaft 360 degrees.
4. Fasten J 33042 to the injection pump gear and tighten (figure 42).
5. Install one 10 mm nut to the upper housing stud to hold the tool flange.
 - The nut should be finger tight.
6. Tighten the large bolt (18 mm head) clockwise (looking at the front of the engine) to 48 N·m (35 ft. lbs.).
7. Tighten the 10 mm nut.
8. Check that the crankshaft has not rotated and that the tools did not bind.
9. Strike the scriber with a mallet to mark TDC on the front cover.
10. Remove J 33042.

OIL PUMP INSTALLATION

Install or Connect (Figure 43)

1. Oil pump with extension.
2. Bolt (131).
OIL PAN INSTALLATION

Install or Connect (Figure 43)

- Apply a 5 mm (3/16-inch) bead of RTV sealant (GM part number 1052915 or equivalent) to the oil pan sealing surface, inboard of the bolt holes (figure 40). The sealer must be wet to the touch when the oil pan is installed.

1. Oil pan rear seal to the oil pan.
2. Oil pan to the engine.
3. Bolts (133).

Tighten
- Bolt (131) to 90 N·m (65 ft·lbs).

TORSONAL DAMPER INSTALLATION

Install or Connect (Figure 39)

1. Torsional damper (79). Tap into place with a mallet. Make sure the key is in place. Make sure the damper is all the way on the crankshaft.
2. Bolt (80) and washer (81).

INJECTION PUMP INSTALLATION

Install or Connect (Figure 44)

1. Gasket (103) to the front cover.
2. Injection pump (100).
3. Throttle spring bracket (102).
4. Nuts (101). Leave finger tight until the injection pump timing is adjusted.
5. Injection pump gear (106). Align the slot in the injection pump with the locating pin on the injection pump hub (107).

Important
- Align the timing marks (figure 44).

Tighten
- Bolts (105) to 25 N·m (20 ft·lbs).
7. Wires and hoses at the injection pump.

Adjust (Figure 45)
- Injection pump timing. For the engine to be properly timed, the marks on the top of the engine front cover must be aligned with the marks on the injection pump flange (figure 45). The engine must be off when the timing is reset.

Tighten (Figure 44)
- Nuts (101) to 40 N·m (30 ft·lbs.).
6.2 LITER DIESEL 6A7-27

WATER PUMP INSTALLATION

Clean
- Sealing surfaces on the water pump plate and block. Use carburetor cleaner or equivalent.

Install or Connect (Figures 39 and 46)
1. Water pump (82) and gasket (77) to the water pump plate (75).
2. Bolts (88).

Tighten
- Bolts (88) to 22 N-m (16 ft. lbs.).
- Apply a bead of anaerobic sealer (GM part no. 1052357 or equivalent) to the water pump plate as shown in figure 46.
3. Water pump plate to the engine. The sealer must be wet to the touch when installing the plate.
- Apply sealant (GM Part no. 1052080 or equivalent) to the threads of bolts and studs (76).
4. Bolts and studs (76).

Tighten
- Water pump to front cover bolts to 42 N-m (32 ft. lbs.).
- Water pump plate to front cover bolts to 22 N-m (16 ft. lbs.).

5. Oil filler neck (83) and nuts (84).

HYDRAULIC LIFTER INSTALLATION

Important
- Some engines will have both standard and 0.010-inch oversize hydraulic lifters. The oversize lifter will have a "10" etched on the side. The block will be stamped "O.S." on the cast pad adjacent to the lifter bore and on the top rail of the cylinder case above the lifter bore.

Install or Connect (Figure 47)

NOTICE: New hydraulic lifters must be primed before installation. Damage to the lifters may result if dry when the engine is started.

1. Hydraulic lifters to the engine.
 - Prime new hydraulic lifters before installation by working the lifter plunger while submerged in clean kerosene or diesel fuel.
 - Coat the lifter roller and bearings with lubricant (GM part number 1052365 or equivalent).
 - Lifters MUST be installed in their original locations.
2. Guide plates (50).
3. Clamps (51).
Tighten
- Clamp bolts to 26 N·m (18 ft·lbs.).

Important
- After all clamps are installed, turn the crankshaft by hand 720 degrees (two full turns), to insure free movement of the lifters in the guide plates. If the engine will not turn over by hand, one or more of the lifters may be binding in the guide plate.

CYLINDER HEAD INSTALLATION

Install or Connect (Figures 47 and 48)

Tool Required:
J 29664 Manifold Cover Set

1. Head gasket to the block, over the dowel pins.

Important
- The block gasket surfaces must be clean.
- DO NOT use a sealer on the head gasket. The head gasket is manufactured with the proper amount of sealant “printed” on its surface. Additional sealer may cause leakage or malfunction. In addition, some sealers may attack the sealant already on the head gasket.

2. Cylinder head. Make sure the gasket surfaces are clean. Guide the head carefully into place over the dowel pins.

- Make sure the bolt threads are clean.
- Apply sealant (GM part number 1052080 or equivalent) to the bolt threads and under the bolt heads.

Tighten
- Bolts (56).
- Using the sequence shown in figure 48, tighten all bolts to 25 N·m (20 ft·lbs.).
6.2 LITER DIESEL 6A7-29

17. Hydraulic Lifter
18. Pushrod
50. Guide Plate
51. Clamp
52. Head Gasket
53. Cylinder Head
54. Bolt
55. Rocker Arm Assembly
56. Bolt
57. Rocker Arm Cover
58. Bolt

Figure 47—Cylinder Head and Components

- In sequence, tighten all bolts to 65 N·m (50 ft. lbs.).
- In sequence, tighten all bolts an additional 90 degrees (1/4 turn).

4. J 29664-1 to the intake ports.

PUSHROD AND ROCKER ARM INSTALLATION

Install or Connect (Figures 47 and 49)

NOTICE: The pushrods must be installed with the marked or painted end up. Failure to do so may result in damage or premature wear.

1. Pushrods, with the painted or marked end up.
2. Rocker arm shaft assembly. Make sure the ball ends of the pushrods seat in the rocker arms.

NOTICE: Improper installation of the rocker arm shaft bolts may cause rocker arm shaft breakage and/or piston to valve contact.

3. Bolts (54).

Figure 48—Head Bolt Tightening Sequence

- Rotate the engine until the mark on the torsional damper aligns with the "0" mark on the timing tab.
- Rotate the engine counterclockwise 88 mm (3 1/2 inches), measured at the torsional damper. This measurement can be estimated by aligning the torsional damper mark with the first lower water pump bolt (figure 49). This procedure will position the engine so no valves are close to a piston crown.

Install the bolts finger tight.

Tighten

- Bolts (54) alternately to 55 N·m (40 ft. lbs.).

ROCKER ARM COVER INSTALLATION

Clean

- Sealing surfaces on the cylinder head and rocker arm cover with carburetor cleaner or equivalent.

Install or Connect (Figure 50)

NOTICE: Do not allow RTV sealant into the rocker arm cover bolt holes. This may cause a "hydraulic lock" condition when the bolts are tightened, damaging the cylinder head casting.

- Apply a 5 mm (1/4-inch) bead of RTV sealant (GM part number 1052915 or equivalent) to the rocker arm covers, inboard of the bolt holes. Refer to figure 50. The sealer must be wet to the touch when the bolts are torqued.

1. Rocker arm covers.
2. Bolts (58).

Tighten

- Bolts (58) to 22 N·m (16 ft. lbs.).
Figure 49—Aligning the Timing Mark

WATER CROSSOVER INSTALLATION

++ Install or Connect (Figure 51)
1. Gaskets (46).
2. Water crossover.
3. Bolts and studs (44).

□ Tighten
- Bolts and studs (44) to 42 N·m (31 ft·lbs).
4. Hose (48) and clamps (47).
5. Glow plug inhibit switch wire.

Figure 50—Applying Sealant to the Rocker Arm Cover

DIPSTICK TUBE INSTALLATION

++ Install or Connect
1. New O-ring to the dipstick.
2. Dipstick to the engine.
3. Dipstick bracket bolt.

EXHAUST MANIFOLD INSTALLATION

++ Install or Connect
- Exhaust manifolds and bolts.

□ Tighten
- Bolts to 35 N·m (26 ft·lbs).

GLOW PLUG INSTALLATION

++ Install or Connect
- Glow plugs.

□ Tighten
- Glow plugs to 14 N·m (10 ft·lbs.)
INJECTION NOZZLE INSTALLATION

Install or Connect (Figure 52)

Tool Required:

J 29873, Nozzle Socket

NOTICE: Nozzles used in LH6 (light duty emissions) engines used in G models are shorter than nozzles used in other models. Attempts to install an incorrect nozzle will damage the cylinder heads.

NOTICE: When installing an injection nozzle, use J 29873. Install the nozzle using the 30 mm hex portion. Failure to do so will result in damage to the injection nozzle.

1. Injection nozzle with gasket using J 29873.

INJECTION LINE INSTALLATION

Install or Connect (Figures 53 and 54)

1. Injection line brackets.
2. Injection lines to the pump. Uncap the lines before assembly. Do not bend the injection lines.
3. Injection lines to the nozzles. Uncap the lines before assembly. Do not bend the injection lines.

Tighten

- Injection line fittings at both ends of the lines to 25 N m (19 ft. lbs.).
4. Injection line clips to the brackets.

INTAKE MANIFOLD INSTALLATION

Remove or Disconnect

- J 29664-1 from the intake ports.

Install or Connect (Figure 55)

Tool Required:

J 29664 Manifold Cover Set
1. New gaskets. Be sure to use the correct gasket. The gaskets for light duty emissions models have openings for the EGR, the gaskets for heavy duty emissions models do not.

2. Intake manifold
3. Intake manifold bolts and fuel line clips.

Tighten
- Intake manifold bolts to 42 N·m (31 ft. lbs.).
 Use the tightening sequence shown in figure 55.
4. J 29664-2 to the mouth of the intake manifold.

ENGINE ACCESSORY INSTALLATION

Install the engine accessories as directed in the proper Truck Service Manual. Connect all vacuum hoses and electrical equipment the same way as removed.

ENGINE SET-UP AND TESTING

1. After overhaul, the engine should be tested before installation in the vehicle. If a suitable test stand is not available, the following procedure can be used after the engine is installed in the vehicle.
2. Fill the crankcase with the proper quantity and grade of oil and install a new oil filter. Refer to the proper Truck Service Manual or Owner's and Driver's Manual for this information. Replacement of the engine oil and filter is recommended, especially if a new camshaft was installed.
3. Fill the cooling system with the proper coolant.
4. With the shutdown solenoid disconnected, crank the engine several times. Listen for any unusual noises or evidence that any parts are binding.
5. Start the engine and listen for unusual noises. Run the engine at about 1000 rpm until the engine is at operating temperature.
Listen for sticking lifters, and other unusual noises. Check for oil and coolant leaks while the engine is running. Using the proper Truck Service Manual or Emission Control Label for specifications, adjust idle speed, fast idle speed, etc. as required.
Figure 55—Intake Manifold Installation

A. Forward
60. Engine Speed Sensor
61. Clamp
62. Bolt
63. Gasket

Figure 56—Oil Pump Drive Installed

Figure 57—Vacuum Pump
Figure 58—Vacuum Pump Installed
SPECIFICATIONS

ENGINE SPECIFICATIONS

All Specifications are in millimeters (mm) unless otherwise noted.

<table>
<thead>
<tr>
<th>GENERAL DATA:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>90-degree V8 Diesel</td>
</tr>
<tr>
<td>Displacement</td>
<td>6.2L</td>
</tr>
<tr>
<td>RPO</td>
<td>LH6 LL4</td>
</tr>
<tr>
<td>Bore</td>
<td>101</td>
</tr>
<tr>
<td>Stroke</td>
<td>97</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>21.3:1</td>
</tr>
<tr>
<td>Firing Order</td>
<td>1-8-7-2-6-5-4-3</td>
</tr>
<tr>
<td>Oil Pressure</td>
<td>10 psi at idle (hot); 40–45 psi at 2000 RPM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CYLINDER BORE:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>100.987–101.065</td>
</tr>
<tr>
<td>Taper (Thrust Side)</td>
<td>0.02 (Maximum)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PISTON:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearance</td>
<td></td>
</tr>
<tr>
<td>Bohn Pistons</td>
<td>Bores 1 through 6: 0.089–0.115</td>
</tr>
<tr>
<td></td>
<td>Bores 7 and 8: 0.102–0.128</td>
</tr>
<tr>
<td>Zollner Pistons</td>
<td>Bores 1 through 6: 0.112–0.138</td>
</tr>
<tr>
<td></td>
<td>Bores 7 and 8: 0.125–0.151</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PISTON RING:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression</td>
<td></td>
</tr>
<tr>
<td>Groove Clearance</td>
<td>Top: 0.076–0.178</td>
</tr>
<tr>
<td></td>
<td>2nd: 0.039–0.080</td>
</tr>
<tr>
<td>Gap</td>
<td>Top: 0.30–0.55</td>
</tr>
<tr>
<td></td>
<td>2nd: 0.75–1.00</td>
</tr>
<tr>
<td>Oil Groove Clearance</td>
<td>0.040–0.096</td>
</tr>
<tr>
<td>Gap</td>
<td>0.25–0.51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PISTON PIN:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>30.9961–31.0039</td>
</tr>
<tr>
<td>Clearance</td>
<td>0.0101–0.0153</td>
</tr>
<tr>
<td>Fit in Rod</td>
<td>0.0081–0.0309</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CRANKSHAFT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Diameter</td>
<td>#1, 2, 3, 4: 74.917–74.941</td>
</tr>
<tr>
<td></td>
<td>#5: 74.912–74.936</td>
</tr>
<tr>
<td>Taper</td>
<td>0.005 (Maximum)</td>
</tr>
<tr>
<td>Out of Round</td>
<td>0.005 (Maximum)</td>
</tr>
<tr>
<td>Main Bearing Clearance</td>
<td>#1, 2, 3, 4: 0.045–0.083</td>
</tr>
<tr>
<td></td>
<td>#5: 0.055–0.093</td>
</tr>
<tr>
<td>Crankshaft End Play</td>
<td>0.10–0.25</td>
</tr>
<tr>
<td>Crankpin Diameter</td>
<td>60.913–60.939</td>
</tr>
<tr>
<td>Taper</td>
<td>0.005 (Maximum)</td>
</tr>
<tr>
<td>Out-of-Round</td>
<td>0.005 (Maximum)</td>
</tr>
<tr>
<td>Rod Bearing Clearance</td>
<td>0.045–0.100</td>
</tr>
<tr>
<td>Rod Side Clearance</td>
<td>0.17–0.63</td>
</tr>
</tbody>
</table>
SPECIFICATIONS

ENGINE SPECIFICATIONS (CONT.)

All Specifications are in millimeters (mm) unless otherwise noted.

<table>
<thead>
<tr>
<th>DISPLACEMENT</th>
<th>6.2 L</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAMSHAFT:</td>
<td></td>
</tr>
<tr>
<td>Lobe Lift ± 0.05</td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>7.133</td>
</tr>
<tr>
<td>Exhaust</td>
<td>7.133</td>
</tr>
<tr>
<td>Journal Diameter:</td>
<td></td>
</tr>
<tr>
<td>#1, 2, 3, 4</td>
<td>54.970-55.025</td>
</tr>
<tr>
<td>#5</td>
<td>50.970-51.025</td>
</tr>
<tr>
<td>Journal Clearance:</td>
<td></td>
</tr>
<tr>
<td>#1, 2, 3, 4</td>
<td>0.025-0.118</td>
</tr>
<tr>
<td>#5</td>
<td>0.020-0.113</td>
</tr>
<tr>
<td>Camshaft End Play</td>
<td>0.051-0.305</td>
</tr>
</tbody>
</table>

VALVE SYSTEM:

<table>
<thead>
<tr>
<th>Lifter</th>
<th>Hydraulic Roller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocker Arm Ratio</td>
<td>1.5 : 1</td>
</tr>
<tr>
<td>Valve Lash:</td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>Not Adjustable</td>
</tr>
<tr>
<td>Exhaust</td>
<td>Not Adjustable</td>
</tr>
<tr>
<td>Face Angle (Intake & Exhaust):</td>
<td>45°</td>
</tr>
<tr>
<td>Seat Angle (intake & Exhaust):</td>
<td>46°</td>
</tr>
<tr>
<td>Seat Runout (Intake & Exhaust):</td>
<td>0.05</td>
</tr>
<tr>
<td>Seat Width:</td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>0.89-1.53</td>
</tr>
<tr>
<td>Exhaust</td>
<td>1.57-2.36</td>
</tr>
<tr>
<td>Stem Clearance:</td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>0.026-0.069</td>
</tr>
<tr>
<td>Exhaust</td>
<td>0.026-0.069</td>
</tr>
<tr>
<td>Valve Spring Pressure:</td>
<td></td>
</tr>
<tr>
<td>Closed</td>
<td>356 N @ 46.0 mm</td>
</tr>
<tr>
<td>Open</td>
<td>1025 N @ 35.3 mm</td>
</tr>
<tr>
<td>Installed Height:</td>
<td>46</td>
</tr>
<tr>
<td>Timing Chain Free Play:</td>
<td></td>
</tr>
<tr>
<td>New Chain</td>
<td>12.7 mm (0.500-inch)</td>
</tr>
<tr>
<td>Used Chain</td>
<td>20.3 mm (0.800-inch)</td>
</tr>
<tr>
<td>Hydraulic Lifter Diameter:</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>23.39-23.41</td>
</tr>
<tr>
<td>0.010-inch Oversize</td>
<td>23.64-23.66</td>
</tr>
<tr>
<td>Lifter Bore Diameter:</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>23.45-23.47</td>
</tr>
<tr>
<td>0.010-inch Oversize</td>
<td>23.70-23.72</td>
</tr>
<tr>
<td>Lifter to Bore Clearance:</td>
<td>0.040-0.080°</td>
</tr>
</tbody>
</table>

An oversize lifter can be used to replace a standard lifter, if resulting clearance is as specified.
SPECIFICATIONS (CONT.)

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
<th>In. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Outlet Bolts/Studs</td>
<td>47</td>
<td>35</td>
<td>—</td>
</tr>
<tr>
<td>Water Crossover to Cylinder Head Bolts/Studs</td>
<td>42</td>
<td>31</td>
<td>—</td>
</tr>
<tr>
<td>Main Bearing Cap Bolts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Inner)</td>
<td>150</td>
<td>110</td>
<td>—</td>
</tr>
<tr>
<td>(Outer)</td>
<td>135</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>Flywheel Bolts</td>
<td>90</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Connecting Rod Cap Nuts</td>
<td>65</td>
<td>48</td>
<td>—</td>
</tr>
<tr>
<td>Camshaft Thrust Plate Bolts</td>
<td>23</td>
<td>17</td>
<td>—</td>
</tr>
<tr>
<td>Camshaft Gear Bolt</td>
<td>100</td>
<td>75</td>
<td>—</td>
</tr>
<tr>
<td>Front Cover to Block Bolts</td>
<td>45</td>
<td>33</td>
<td>—</td>
</tr>
<tr>
<td>Injection Pump Gear Baffle Bolts and Nut</td>
<td>45</td>
<td>33</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pump to Bearing Cap Bolt</td>
<td>90</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pan Bolts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All except Rear Two Bolts</td>
<td>10.0</td>
<td>—</td>
<td>84</td>
</tr>
<tr>
<td>Rear Two Bolts</td>
<td>23</td>
<td>17</td>
<td>—</td>
</tr>
<tr>
<td>Injection Pump Gear Bolts</td>
<td>25</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Injection Pump Flange Nuts</td>
<td>40</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pan Drain Plug</td>
<td>10.0</td>
<td>—</td>
<td>90</td>
</tr>
<tr>
<td>Block Drain Plug</td>
<td>22</td>
<td>16</td>
<td>—</td>
</tr>
<tr>
<td>Torsional Damper Bolt</td>
<td>270</td>
<td>200</td>
<td>—</td>
</tr>
<tr>
<td>Water Pump Plate to Water Pump Bolts</td>
<td>22</td>
<td>16</td>
<td>—</td>
</tr>
<tr>
<td>Water Pump to Front Cover Bolts</td>
<td>42</td>
<td>32</td>
<td>—</td>
</tr>
<tr>
<td>Water Pump Plate to Front Cover Bolts</td>
<td>22</td>
<td>16</td>
<td>—</td>
</tr>
<tr>
<td>Hydraulic Lifter Guide Plate Clamp Bolts</td>
<td>26</td>
<td>18</td>
<td>—</td>
</tr>
<tr>
<td>Cylinder Head Bolts — See Text</td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Rocker Arm Assembly Bolts</td>
<td>55</td>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>Rocker Arm Cover Bolts</td>
<td>22</td>
<td>16</td>
<td>—</td>
</tr>
<tr>
<td>Exhaust Manifold Bolts</td>
<td>35</td>
<td>26</td>
<td>—</td>
</tr>
<tr>
<td>Glow Plugs</td>
<td>14</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>Injection Nozzles</td>
<td>70</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>Injection Line Fittings</td>
<td>25</td>
<td>19</td>
<td>—</td>
</tr>
<tr>
<td>Intake Manifold Bolts</td>
<td>42</td>
<td>31</td>
<td>—</td>
</tr>
<tr>
<td>Vacuum Pump/Oil Pump Drive Clamp Bolt</td>
<td>42</td>
<td>31</td>
<td>—</td>
</tr>
</tbody>
</table>
SPECIAL TOOLS

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ring Compressor</td>
<td>J-8037</td>
</tr>
<tr>
<td>2</td>
<td>Timing Fixture</td>
<td>J-33042</td>
</tr>
<tr>
<td>3</td>
<td>Nozzle Socket</td>
<td>J-29873</td>
</tr>
<tr>
<td>4</td>
<td>Seal Installer</td>
<td>J-22102</td>
</tr>
<tr>
<td>5</td>
<td>Torsional Damper Remover</td>
<td>J-23523-E</td>
</tr>
<tr>
<td>6</td>
<td>Manifold Cover Set</td>
<td>J-29664</td>
</tr>
</tbody>
</table>

1. Ring Compressor
2. Timing Fixture
3. Nozzle Socket
4. Seal Installer
5. Torsional Damper Remover
6. Manifold Cover Set
SECTION 6C1

MODEL 1MEF CARBURETOR

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carburetor Identification</td>
<td>6C1-2</td>
</tr>
<tr>
<td>General Description</td>
<td>6C1-2</td>
</tr>
<tr>
<td>Carburetor Disassembly</td>
<td>6C1-6</td>
</tr>
<tr>
<td>Cleaning, Inspection and Repair</td>
<td>6C1-13</td>
</tr>
<tr>
<td>Carburetor Reassembly</td>
<td>6C1-16</td>
</tr>
<tr>
<td>Metering Rod Adjustment</td>
<td>6C1-18</td>
</tr>
<tr>
<td>Float Adjustment</td>
<td>6C1-18</td>
</tr>
<tr>
<td>Choke Stat Lever Adjustment</td>
<td>6C1-20</td>
</tr>
<tr>
<td>Choke Link (Fast Idle Cam) Adjustment</td>
<td>6C1-20</td>
</tr>
<tr>
<td>Vacuum Break Adjustment</td>
<td>6C1-21</td>
</tr>
<tr>
<td>Choke Unloader Adjustment</td>
<td>6C1-21</td>
</tr>
<tr>
<td>Specifications</td>
<td>6C1-22</td>
</tr>
<tr>
<td>Special Tools</td>
<td>6C1-22</td>
</tr>
</tbody>
</table>
CARBURETOR IDENTIFICATION

Model Number: 17086101
Application: Federal (Non-California)
4.8 Liter L6 engine

The carburetor identification number is stamped vertically on the float bowl, next to the fuel inlet nut (Figure 1). Refer to this number when servicing the carburetor. If replacing the float bowl assembly, transfer the identification number to the new float bowl. Follow the instructions on the envelope included in the service package.

Carburetor parts are shown in the disassembled view (Figure 14), and are identified by name on the facing page (Figure 15).

NOTICE: The factory-set metering rod adjusting screw, located in the air horn (Figure 6), controls the position of the enrichment portion of the metering rod in the jet. Any unnecessary adjustment of that screw could result in engine damage or excessive emissions.

GENERAL DESCRIPTION

Model 1MEF is a single stage, single barrel carburetor of the "1M" family (Figure 2). Letters following the "1M" designate these features:
E: It has an integral Electric choke.
F: It has adjustable wide open throttle mixture control.

Model 1MEF has three major assemblies: an air horn, a float bowl and a throttle body. It has the six operating systems shown in Figures 3 through 8:

- Figure 3 Float
- Figure 4 Idle
- Figure 5 Main Metering
- Figure 6 Power
- Figure 7 Pump
- Figure 8 Choke

IDLE STOP SOLENOID (ISS)

The electric idle stop solenoid (ISS) is used to provide the desired engine idle speed, and to prevent "dieseling" when the ignition is switched off.

UNIT REPAIR

The information that follows applies to a complete overhaul, after the carburetor has been removed from the engine, and includes disassembly, thorough cleaning, inspection and replacement of all gaskets, seals, worn or damaged parts, and adjustment of individual systems.

Refer to the disassembled view (Figure 14), and parts list (Figure 15), for parts identification.
Figure 3 - Float System

- 215. Fuel Inlet Filter
- 218. Fuel Filter Spring
- 226. Float
- 228. Float Hinge Pin
- 231. Float Needle
- 234. Float Needle Seat

A. Internal Vent
B. Vent Tube to Canister
C. Check Valve Seat
D. Fuel In
E. Check Valve
F. Valve Closing Spring

Figure 4 - Idle System

- 282. Jet-Main Metering
- 286. Idle Tube Assembly
- 326. Needle-Idle Mixture
- 333. Plug-Idle Mixture Needle
 A. Throttle Valve
 B. Idle Channel Restriction
 C. Top Idle Air Bleed
 D. Lower Idle Air Bleed
 E. Off-Idle Port
 F. Idle Discharge Orifice
 G. Timed Vacuum Port

B-06642
F-01479
266. Rod - Power Piston
274. Power Valve Piston Assembly
276. Spring - Power Piston
279. Metering Rod and Spring Assembly
282. Jet - Main Metering
 A. Throttle Valve
 B. Vacuum Channel
 C. Main Venturi
 D. Boost Venturi
 E. Main Discharge Nozzle
 F. Lower Idle Air Bleed
 G. Main Well
 H. Fuel Feed Orifice
 I. Part Throttle Adjusting Screw
 J. Top Main Well Air Bleed
 K. Main Well to Aspirator Bleed

Figure 5 - Main Metering System

266. Rod - Power Piston
274. Power Valve Piston Assembly
276. Spring - Power Piston
279. Metering Rod and Spring Assembly
282. Jet - Main Metering
310. Lever - Pump and Power Rod
314. Link - Power Rod
 A. Throttle Valve
 B. Vacuum Channel
 C. Main Discharge Nozzle
 D. Lower Idle Air Bleed
 E. Main Well
 F. Metering Rod Adjusting Screw
 G. Setscrew
 H. Metering Rod Adjusting Screw Plug
 I. Top Main Well Air Bleed
 J. Main Well to Aspirator Bleed

Figure 6 - Power System
Figure 7 - Pump System

Figure 8 - Choke System - Electric
CARBURETOR DISASSEMBLY

IDLE MIXTURE NEEDLE PLUG

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Invert carburetor, and support it, to avoid damaging external components.</td>
</tr>
<tr>
<td>2.</td>
<td>Make two parallel hacksaw cuts (C) in the throttle body, one on each side of the locator point (B) above idle mixture needle plug (333).</td>
</tr>
<tr>
<td></td>
<td>• Cut down to the plug, but not more than 1/8" beyond the locator point.</td>
</tr>
<tr>
<td>3.</td>
<td>Place a flat punch (D) at a point near the ends of the saw marks. Hold the punch at a 45° angle, and drive it into the throttle body to break casting away, to expose the plug.</td>
</tr>
<tr>
<td>4.</td>
<td>Use center punch (E) to break plug apart, to uncover idle mixture needle.</td>
</tr>
<tr>
<td>5.</td>
<td>Remove all loose pieces of plug.</td>
</tr>
</tbody>
</table>

FUEL INLET NUT AND FILTER

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Support carburetor to avoid damaging external components.</td>
</tr>
</tbody>
</table>

IDLE STOP SOLENOID

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Idle stop solenoid (400), and idle stop solenoid spring (401).</td>
</tr>
<tr>
<td></td>
<td>• Use 9/16" socket or hex wrench on end of solenoid body.</td>
</tr>
</tbody>
</table>

THROTTLE RETURN SPRING BRACKET

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Loosen bracket attaching screw (421)(bottom).</td>
</tr>
<tr>
<td>2.</td>
<td>Remove countersunk bracket attaching screws (420) and throttle return spring anchor bracket (415).</td>
</tr>
</tbody>
</table>

CHOKE COMPONENTS

Vacuum Break Assembly

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Vacuum break hose (67).</td>
</tr>
</tbody>
</table>
2. Air horn to float bowl (vacuum break attaching) screws (111) and bowl side vacuum break assembly (65).
 - Disconnect vacuum break from vacuum break link (69A).
 - Allow choke wire connector bracket assembly (47A) to hang freely.

Choke Housing

- Remove or Disconnect (Figure 12)
 - Choke housing attaching screws (36, 37), and choke housing and bearing assembly (35).
 - Disconnect choke housing from choke link (20A).

Fast Idle Cam and Link

- Remove or Disconnect (Figure 13)
 - Fast idle cam attaching screw (12), cam (10) and cam link (15).
 - Disconnect fast idle cam link from choke shaft lever (20)

AIR HORN COMPONENTS

- Remove or Disconnect (Figure 16)
 1. Air horn to float bowl screw assemblies (105, 108).
MODEL 1MEF CARBURETOR

Parts Identification

1. Gasket - Air Cleaner
2. Air horn assembly (100).
3. Air horn to float bowl gasket (101).
 - Discard gasket.

Further disassembly of the air horn is not required. Do not remove the staked choke valve screws, or the vacuum break lever attaching screw, which is installed with thread locking compound.

NOTICE: Do not turn or remove the metering rod adjusting screw (Figure 6). Unnecessary adjustment of this screw could result in engine damage or increased exhaust emissions.

FLOAT BOWL COMPONENTS

Float and Float Needle

- **Remove or Disconnect** (Figure 17)

1. Float (226) and hinge pin (228).
 - Pull up on hinge pin.

Figure 15 -- Monojet - Model 1MEF

B-06651
6C1-10 MODEL 1MEF CARBURETOR

Figure 16 - Air Horn Screw Location and Tightening Sequence

Figure 17 - Float and Float Needle

2. Float needle (231) from needle seat (234).

Pump and Power Piston

- **Remove or Disconnect** (Figures 18 - 22)
 1. Pump lever attaching screw (311).
 2. Pump and power rod lever (310), power rod link (314), and pump link (317) as follows:
 A. Close throttle

B. Remove pump and power rod lever (310) from end of throttle shaft.

C. Press down on power valve piston assembly (274), and disconnect power rod link (314) from power piston rod (266).

D. Press down on pump rod (240), and disconnect pump link (317) from slot in rod.

3. Pump rod (240) and pump assembly (246).

- **Disassemble** (Figure 21)
 - Pump plunger spring (248) and cup (247) from pump assembly (246).

4. Pump rod seal (242) from boss on float bowl.

5. Pump return spring (252) from pump well.

6. Power valve piston assembly (274), metering rod and spring assembly (279), and power piston rod (266)

- **Disassemble** (Figure 22)
 - Metering rod and spring assembly (279) from metering rod hanger.

7. Power piston spring (276) from float bowl.
240. Pump Rod
266. Power Piston Rod
310. Pump and Power Rod Lever
311. Pump Lever Attaching Screw
314. Power Rod Link
317. Pump Link

246. Pump Assembly
247. Pump Plunger Cup
248. Pump Plunger Spring

Figure 19 - Pump and Power Piston Linkage

240. Pump Rod
242. Pump Rod Seal

279. Metering Rod and Spring Assembly
282. Main Metering Jet
276. Power Piston Spring
274. Power Valve Piston Assembly

Figure 20 - Pump Rod Seal

Figure 21 - Pump Plunger Cup and Spring

Figure 22 - Power Piston, Metering Rod and Jet
Float Needle Seat and Main Metering Jet

1. Float needle seat (234) and seat gasket (235).
2. Main metering jet (282).

Idle Tube Assembly

1. Idle tube assembly (286).
2. Invert carburetor, and catch idle tube.

Pump Discharge Ball and Spring

1. Pump discharge spring guide (256).
2. Pump discharge ball spring (258), and ball (260).

THROTTLE BODY COMPONENTS

Idle Mixture Needle

Tool required:
J-29030-B or BT-7610B, Idle Mixture Socket (Adjusting Tool).
Idle mixture needle (326) and spring (327)
- Count, and make a record of, number of turns needed to lightly bottom needle, for use in reassembly.
Inspect (Figure 25)
- Idle mixture needle for damaged tip or threads.
 - If damaged, replacement is required.

Throttle Body
- Invert carburetor.

Remove or Disconnect (Figure 26)
1. Float bowl to throttle body screw assemblies (305).
2. Throttle body assembly (300), and float bowl to throttle body gasket (301).
- Do not disassemble throttle body further. The throttle body is serviced as a complete assembly.

POWER PISTON SEAL
- Invert float bowl.

Remove or Disconnect (Figure 27)
1. Power piston rod seal retainer (270).
 - Use small screwdriver or awl.
2. Power piston rod seal (268).

CLEANING, INSPECTION AND REPAIR
Inspect
- If an excessive amount of foreign material is found in the float bowl, check tank(s) and fuel lines for the source.

Clean (Figure 28)
1. Power piston bore of float bowl
1. Fill empty float chamber and pump well with a clean solvent, such as mineral spirits.

2. Seal the pump discharge passage on top of the pump discharge spring guide with a finger. Use other hand to push pump assembly slowly downward in pump well.
 - Pump assembly should not travel to bottom of well. Only movement should be compressing of the duration spring.
 - If pump assembly moves down in well, this may indicate that the pump cup is not sealing properly or that the pump well is worn or scored.

3. With clean solvent in float chamber and pump well, slowly move pump assembly down in pump well until solvent is visible at top of the pump discharge spring guide.

4. Remove pump assembly, continue to observe solvent level at the spring guide.
 - Solvent level should not lower.
 - If level lowers, the discharge ball may not be seating correctly because of foreign material, damage to the ball, or because the seat for the ball needs restaking.

5. Satisfactory pump system operation requires that these checks be successful. After cleaning or parts replacement, repeat procedure.

VACUUM BREAK CHECKING PROCEDURE

1. If the vacuum break has an air bleed hole, plug it as shown, during this checking procedure.

PUMP SYSTEM CHECK

1. Perform this check with a new pump cup installed on the pump plunger, and with the pump discharge ball, ball spring and spring guide installed.
2. Apply 51kPa (15" Hg) vacuum to the vacuum break.
 • Apply finger pressure to the plunger to see if it has moved through full travel. If not, replace the vacuum break.
 • Observe vacuum gage. Vacuum should hold for at least twenty seconds. If not, replace the vacuum break.

3. Replace vacuum break hose if it is cracked, cut or hardened.

ELECTRIC CHOKE COVER AND STAT ASSEMBLY REPLACEMENT

The electric choke cover and stat assembly may be removed for replacement or to access the choke shaft and lever assembly as follows:

Electric Choke Cover and Stat

- **Remove or Disconnect** (Figure 31)
 1. Heads of choke cover attaching rivets (52).
 • Use 4 mm (5/32") drill bit.
 2. Choke cover retainers (50).
 3. Electric choke cover and stat assembly (47).
 4. Remaining pieces of rivets in housing.
 • Use punch to drive out.

IDLE STOP SOLENOID CHECKING PROCEDURE

Check the idle stop solenoid (400) electrically, using a 12 volt automotive battery.

1. Hold the solenoid plunger in (against the internal stop), using finger pressure.
2. Apply +12 volts to the terminal and -12 volts to the solenoid body.
3. If the solenoid plunger does not extend when the voltage is applied, replace the solenoid.
Choke Housing

Assemble (Figure 32)

1. Choke shaft and lever assembly (40) in choke housing (35).
2. Choke stat lever (43) on flats of choke shaft assembly (40).
 - Line-up gaging hole in choke shaft lever with hole in housing, install stat lever on shaft in the four o’clock position.
3. Stat lever attaching screw (44).

Electric Choke Cover and Stat

Install or Connect (Figures 32, 33)

1. Electric choke cover and stat assembly (47) in choke housing (35) as follows:
 A. Line up gaging hole in choke shaft lever (40) with hole in housing, install choke cover with stat tang under stat lever.
 B. Rotate choke cover to line-up notch in the cover with the projection on the housing.
2. Choke cover retainers (50) and attaching rivets (52).
 - Use blind rivet tool to install rivets.

CARBURETOR REASSEMBLY

POWER PISTON ROD SEAL (In Float Bowl)

Install or Connect (Figure 27)

1. New power piston rod seal (268) in float bowl.
2. New power piston rod seal retainer (270).
 - Install flush with casting surface.

THROTTLE BODY COMPONENTS

Throttle Body

- Invert float bowl (200).

Install or Connect (Figure 26)

1. New float bowl to throttle body gasket (301).
 - Install over locator bosses on float bowl.
2. Throttle body assembly (300)
3. Float bowl to throttle body screw assemblies (305).

Tighten
- Screw assemblies to 20N · m (15 ft.lbs.).

Idle Mixture Needle
- Support carburetor.

Install or Connect (Figure 25)

Tool required:
- J-29030-B or BT-7610B, Idle Mixture Socket (Adjusting Tool).
- Idle mixture needle (326) and spring (327).
- Turn needle in to lightly bottom, then back out number of turns counted during disassembly.
- Final idle mixture adjustment is made on the vehicle. For information on the idle mixture adjustment procedure, refer to Carburetors (SEC. 6C1) in the 1987 Light Duty Trucks Service Manual.

FLOAT BOWL COMPONENTS
If replacing the float bowl assembly, transfer the identification number to the new float bowl at location shown, (figure 1). Follow the instructions on the envelope included in the service package.

Pump Discharge Ball and Spring
Install or Connect (Figure 24)
1. Pump discharge ball (260).
2. Pump discharge ball spring (258).
3. Pump discharge spring guide (256).
- Install flush with casting surface.

Idle Tube Assembly
Install or Connect (Figure 24)
- Idle tube assembly (286).
- Should be flush with casting surface.

Main Metering Jet and Float Needle Seat
Install or Connect (Figures 22, 23)
1. Main metering jet (282).
2. Float needle seat (234) with new gasket (235).

POWEP PISTON AND PUMP
Install or Connect (Figures 34, 20, 35)
1. Power piston spring (276) in float bowl.
2. Power piston rod (266) with piston drive end facing away from piston cavity.
3. Power valve piston assembly (274), without the metering rod spring assembly (279).
- Press down on piston and rotate piston rod to engage slot in piston.

Assemble (Figure 21)
- Pump assembly (246), with new pump plunger cup (247), and spring (248), (if not installed for pump system check).
4. Pump return spring (252) in pump well.
5. New pump rod seal (242) over boss on float bowl.
6. Pump assembly (246) and pump rod (240).

Assemble (Figure 35)
- Pump link (317) and power rod link (314) to pump and power rod lever (310) as shown in Figure 35.
240. Pump Rod
266. Power Piston Rod
310. Pump and Power Rod Lever
311. Pump Lever Attaching Screw
314. Power Rod Link
317. Pump Link

Figure 35 - Pump and Power Piston Linkage

7. Pump and power rod lever and links to carburetor as follows:
 A. Press down on pump rod (240) and connect pump link (317) to pump rod.
 B. Press down on power valve piston assembly (274) and connect power rod link (314) to power piston rod (266).
 C. Close throttle and install pump and power rod lever (310) on flats of throttle shaft.

8. Pump lever attaching screw (311).

METERING ROD ADJUSTMENT

Adjust (Figures 36, 44)

Tool Required:
- J-9789-D or BT-3005A, Universal Carburetor Gage Set
- Metering Rod
 - Specification is in Figure 44.
 - Close the throttle valve completely, and press the power valve piston down against its stop.
 - Swing the metering rod hanger over the flat bowl surface next to the carburetor bore
 - Gage between the end of the metering rod hanger and the top of the casting

Figure 36 - Metering Rod Adjustment
- Use the specified plug gage.
- Gage should have a slide fit.
- If an adjustment is needed, bend at point "C" shown in Figure 36.

9. Install metering rod and spring assembly (279) as follows:
 A. Hold throttle wide open
 B. Position metering rod in main metering jet, then connect to power piston metering rod hanger, with metering rod spring on top of hanger.

FLOAT AND FLOAT NEEDLE

Install or Connect (Figure 17)
1. Float needle (231) in seat (234).
2. Float hinge pin (228) through float lever
3. Float (226) and hinge pin.

FLOAT ADJUSTMENT

Adjust (Figures 37, 44)

Tool Required:
- J-34817-A or BT-8426, Float Positioning Tool Kit
- Float Level.
 - Specification is in Figure 44.

AIR HORN COMPONENTS

Install or Connect (Figure 38)
1. Air horn to float bowl gasket (101)
2. Air horn assembly (100)
3. Long air horn to float bowl screw assemblies (105) at locations #1, 3 and 4, short screw assembly (108) at location #6.
 • Finger tighten only.

A. Remove air horn and gasket.
B. Attach J-34817-2 or BT-8227A-2 to float bowl using an air horn attaching screw.
C. Place J-34817-3 or BT-8227A in base with contact pin resting on outer edge of float lever.
D. Measure distance from top of casting to top of Index at toe of float. Use J-9789-90 or BT-8037.
E. If more than ±2/32" from specification, use J-34817-30 or BT-8424 to bend lever up or down. Remove bending tool and measure, repeating until within specification.
F. Check float alignment.
G. Reassemble carburetor.

CHOKE COMPONENTS

Fast Idle Cam and Link

Install or Connect (Figure 13)
1. Fast idle cam link (15) through slot in choke shaft lever (20).
2. Attach fast idle cam (10) to cam link (15).
 • Unloader tang on cam should face outward.
3. Fast idle cam attaching screw (12).

Choke Housing

Install or Connect (Figure 12)
1. Connect choke link (20A) to choke shaft and lever assembly (40), then position choke housing and bearing assembly (35) on float bowl.
 • Choke shaft lever should be facing upward.
2. Install choke housing attaching screws as follows:
 A. Start countersunk attaching screw (37). It is slightly longer than throttle return spring anchor bracket attaching screws (420).
 B. Start attaching screw assemblies (36).
 C. Tighten countersunk screw (37), then tighten screw assemblies (36).

Vacuum Break

Install or Connect (Figures 11, 38)
1. Connect bowl side vacuum break assembly (65) to vacuum break link (69A).
2. Position choke wire connector and bracket assembly (47A) under vacuum break bracket.
3. Install air horn to float bowl (vacuum break attaching) screws (111).
 • Tighten all air horn to float bowl screws (in sequence shown in Figure 38.)

THROTTLE RETURN SPRING BRACKET

Install or Connect (Figures 14, 15)
• Throttle return spring anchor bracket (415) with bracket attaching screws (420, 421)
IDLE STOP SOLENOID

Install or Connect (Figures 14, 15)
- Idle stop solenoid (400) and spring (401).
- Use 9/16" socket or hex wrench on end of solenoid body.
- Turn solenoid in, until plunger just contacts throttle lever.

FUEL INLET NUT AND FILTER

Install or Connect (Figure 10)
1. Fuel filter spring (218), in float bowl.
2. New gasket (212), on fuel inlet nut (210).
3. Inlet nut with new filter (215).
 - Tighten
 - Fuel inlet nut to 45 N·m (33 ft.lbs.).

CHOKE ADJUSTMENTS

- Tools required:
 J-9784-D or BT-3005A,
 Universal Carburetor Gage Set
 J-23738-A or BT-7517, Hand Operated Vacuum Pump
- Specifications are in Figure 44.

CHOKE STAT LEVER ADJUSTMENT

Adjust (Figure 39)
- Place the fast idle cam follower on the highest step of the fast idle cam.
- Hold the choke valve completely closed.
- Insert a 3 mm (0.120 inch) plug gage through the hole in the lever, and into the hole in the choke housing.
- If gage does not pass freely through both holes, bend choke link at point shown in Figure 39 to align the holes.

CHOKE LINK (FAST IDLE CAM) ADJUSTMENT

Adjust (Figures 40, 44)
- Position the fast idle cam follower on the second step of the fast idle cam against the rise of the high step.
- Hold down on the choke valve with the fast idle cam link in the end of the choke lever slot.
- Check the gap between the lower edge of the choke valve and the air horn wall.
- If an adjustment is needed, bend the fast idle cam link at the point shown in Figure 40.
VACUUM BREAK ADJUSTMENT

Adjust (Figures 41 - 42, 44)

- Place the fast idle cam follower on the highest step of the cam.
- If vacuum break has a bleed orifice (hole), plug it as shown, during the adjustment.
- Apply 51kPa (15” Hg) vacuum to the vacuum break. Push down on the choke valve. (Compress the plunger bucking spring and seat the plunger stem.)
- Check the gap between the lower edge of the choke valve and the air horn wall.
- If an adjustment is needed, bend the vacuum break link at the point shown in inset, Figure 42.
- Release the vacuum source and apply it again.
- Check the gap once more, and adjust as needed.

A. Plugging Air Bleed Holes
B. Pump Cup or Valve Stem Seal
C. Tape Hole in Tube
D. Tape End of Cover
E. Plunger Bucking Spring
F. Plunger Stem Extended (Spring Compressed)
G. Leaf Type Bucking Spring
H. Spring Seated

CHOKE UNLOADER ADJUSTMENT

Adjust (Figures 43, 44)

- Hold the throttle lever in the wide open throttle position.
- Hold down on the choke valve with the fast idle cam link in the end of the choke lever slot.
- Check the gap between the lower edge of the choke valve and the air horn wall.
- If adjustment is needed, bend the unloader tang on throttle lever as shown in inset of Figure 43.

A. Plug Gage
B. Fast Idle Cam Link
C. Unloader Tang
D. Bending Tool – J-9789-111 or BT-3006M
E. Throttle Lever
F. Choke Shaft, Lever and Link Assembly
G. Choke Valve

Install or Connect

- Carburetor on vehicle, with new flange gasket(s).

Adjust

- Idle mixture and idle speeds.
 - For information on idle mixture and idle speed adjustments, refer to Carburetors (SEC. 6C1) in the 1987 Light Duty Trucks Service Manual.
SPECIFICATIONS

1 MEF CARBURETOR

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Float Level</td>
<td>11/32 inch</td>
</tr>
<tr>
<td>Metering Rod</td>
<td>0.090 inch</td>
</tr>
<tr>
<td>Choke Stat Lever</td>
<td>0.120 inch</td>
</tr>
<tr>
<td>Choke Link - Fast Idle Cam</td>
<td>0.275 inch</td>
</tr>
<tr>
<td>Vacuum Break</td>
<td>0.200 inch</td>
</tr>
<tr>
<td>Unloader</td>
<td>0.520 inch</td>
</tr>
</tbody>
</table>

Figure 44 Specifications

SPECIAL TOOLS

1. Idle Mixture Socket (Adjusting Tool)
2. Hand Operated Vacuum Pump
3. Universal Carburetor Gauged Set
4. Float Positioning Tool Set
SECTION 6C2
MODEL M4MEF
CARBURETOR

CONTENTS

SUBJECT PAGE
Carburetor Identification ... 6C2-1
General Description .. 6C2-2
Carburetor Disassembly ... 6C2-5
Cleaning And Inspection .. 6C2-13
Pump System Checking Procedure 6C2-14
Vacuum Break Checking Procedure 6C2-14
Idle Stop Solenoid Checking Procedure 6C2-15
Carburetor Reassembly ... 6C2-15
Adjustment Procedures ... 6C2-19
Specifications ... 6C2-25
Special Tools ... 6C2-16

CARBURETOR IDENTIFICATION

Listed below are model identification numbers for carburetor M4MEF.

MODEL MODEL NUMBER APPLICATION
M4MEF 17088040 FED. 5.7L V8 W/MT
M4MEF 17088041 FED. 5.7L V8 W/AT
M4MEF 17085004 FED. 7.4L V8 W/MT
M4MEF 17085212 FED. 7.4L V8 W/AT

The carburetor model identification number is stamped vertically on the float bowl, near the secondary throttle lever, as shown, (Figure 1). Refer to this part number when servicing the carburetor. If replacing the float bowl assembly, transfer the identification number to the new float bowl. Follow instructions on the envelope included in the service package.

Carburetor parts are shown in the disassembled view (Figure 8) and are identified by name on the facing page (Figure 9).

Figure 1 -- Carburetor Identification
GENERAL DESCRIPTION

The letters and number in the model name M4MEF describe specific features of the carburetor:

M: It has a Modified open-loop primary metering system.

4M: A member of the Quadrajet (four barrel, two stage) carburetor family.

E: It has an integral Electric choke.

F: It has adjustable wide open throttle mixture control.

Model M4MEF is a four barrel, two stage carburetor, with three major sub-assemblies: the air horn, float bowl and throttle body. Each has six basic operating systems, shown in Figures 2 through 7:

- FLOAT
- IDLE
- MAIN METERING
- POWER
- PUMP
- CHOKE

Important
The part throttle adjusting screw was set at the factory and then plugged. Any attempt to readjust this screw could result in increased exhaust emissions.

NOTICE: The rich stop adjusting bushing and the secondary well bleed adjusting screw (Figure 5) are also factory set. Any attempt to readjust them could result in engine damage or increased exhaust emissions.

IDLE STOP SOLENOID (ISS)

V8 Engines With Manual Transmission.

The electric Idle Stop Solenoid (ISS) found on these applications is used to provide the desired engine idle speed, and to prevent "dieseling" when the ignition is switched off.

UNIT REPAIR

The information that follows applies to a complete overhaul, after the carburetor has been removed from the engine, and includes: disassembly, thorough cleaning, inspection and replacement of all gaskets, seals, worn or damaged parts, and adjustment of individual systems.

Refer to Figures 8 and 9 for parts identification.
Figure 3 -- Idle System

A. Idle Tube
B. Idle Air Bleed
C. Idle Channel Restriction
D. Lower Idle Air Bleed
E. Off - Idle Port
F. Idle Discharge Orifice
G. Fixed Idle Air By-Pass
H. Primary Throttle Valve
J. Timed Vacuum Ports

248. Primary Metering Jet
420. Idle Mixture Needle
422. Idle Mixture Needle Plug

Figure 4 -- Main Metering System

A. Part Throttle Adjusting Screw
B. Rich Stop Adjusting Bushing
C. Rich Stop Adjust Plug
D. Vacuum Channel
E. Main Well
F. Main Well Air Bleeds
G. Main Discharge Nozzle
H. Boost Venturi
J. Main Venturi
K. Primary Throttle Valve
213. Primary Metering Rod
218. Power Piston Spring
248. Primary Metering Jet
CARBURETOR DISASSEMBLY

IDLE MIXTURE NEEDLE PLUGS

1. Remove or Disconnect (Figure 10)
 Invert and support carburetor to avoid damaging external components.

2. Make two parallel hacksaw cuts in the throttle body, between the locator points near one idle mixture needle plug (422). The distance between the cuts depends on the size of the punch to be used.
 - Cut down to the plug, but not more than 1/8" beyond the locator points.

3. Place a flat punch at a point near the ends of the saw marks. Hold the punch at a 45° angle, and drive it into the throttle body to break casting away and expose the plug.

4. Use center punch to break plug apart and uncover idle mixture needle.
 - Remove all loose pieces of plug.

5. Repeat steps 2 through 4 for other needle plug.

CARBURETOR HOLDING STAND (Figure 11)

Tool Required:
J-9789-118 or BT-3553 - Carburetor Holding Stand.

- Place carburetor on holding stand.

NOTICE: Failure to place carburetor on holding stand could cause damage to throttle valves.

FUEL INLET NUT AND FILTER

1. Remove or Disconnect (Figure 12)
 Fuel inlet nut (370).

2. Fuel inlet filter (375), inlet nut gasket (372), and filter spring (377).
 - Discard gasket.

3. Inspect
 - Cut filter open. If clogged, check tank(s) and fuel lines for source of material.
Figure 8 -- Model M4MEF

NOT ALL PARTS APPEAR ON ALL MODELS

F-01897
CARBURETOR MODEL M4MEF

Parts Identification

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gasket - Air Cleaner</td>
<td>240</td>
<td>Seat - Float Needle</td>
</tr>
<tr>
<td>5</td>
<td>Gasket - Flange</td>
<td>241</td>
<td>Gasket - Float Needle Seat</td>
</tr>
<tr>
<td>10</td>
<td>Air Horn Assembly</td>
<td>248</td>
<td>Jet - Primary Metering</td>
</tr>
<tr>
<td>30</td>
<td>Screw - Secondary Metering Rod Holder Attaching</td>
<td>250</td>
<td>Plug - Pump Discharge (Retainer)</td>
</tr>
<tr>
<td>31</td>
<td>Holder - Secondary Metering Rod</td>
<td>251</td>
<td>Ball - Pump Discharge</td>
</tr>
<tr>
<td>32</td>
<td>Rod - Secondary Metering</td>
<td>252</td>
<td>Baffle - Pump Well</td>
</tr>
<tr>
<td>35</td>
<td>Lever - Choke</td>
<td>330</td>
<td>Rivet - Choke Cover Attaching</td>
</tr>
<tr>
<td>36</td>
<td>Screw - Choke Lever Attaching</td>
<td>331</td>
<td>Retainer - Choke Cover</td>
</tr>
<tr>
<td>41</td>
<td>Pin - Pump</td>
<td>335</td>
<td>Electric Choke Cover and Stat Assembly</td>
</tr>
<tr>
<td>42</td>
<td>Screw Assembly - Air Horn to Throttle Body</td>
<td>340</td>
<td>Choke Housing Assembly</td>
</tr>
<tr>
<td>46</td>
<td>Screw Assembly - Air Horn to Float Bowl</td>
<td>341</td>
<td>Screw and Washer Assembly - Choke Housing to Float Bowl</td>
</tr>
<tr>
<td>47</td>
<td>Screw - Air Horn to Float Bowl (Countersunk)</td>
<td>345</td>
<td>Screw - Choke Stat Lever Attaching</td>
</tr>
<tr>
<td>50</td>
<td>Baffle - Air Horn</td>
<td>348</td>
<td>Lever - Choke Stat</td>
</tr>
<tr>
<td>55</td>
<td>Vacuum Break Assembly - Primary Side (Front)</td>
<td>350</td>
<td>Intermediate Choke Lever, Lever and Link Assembly</td>
</tr>
<tr>
<td>56</td>
<td>Screw - Primary Side (Front) Vacuum Break Assembly Attaching</td>
<td>352</td>
<td>Fast Idle Cam Assembly</td>
</tr>
<tr>
<td>57</td>
<td>Hose - Primary Side (Front) Vacuum Break</td>
<td>354</td>
<td>Lever - Intermediate Choke</td>
</tr>
<tr>
<td>58</td>
<td>Link - Primary Side Vacuum Break - Air Valve Lever</td>
<td>356</td>
<td>Link - Choke</td>
</tr>
<tr>
<td>67</td>
<td>Retainer - Pump Stem Seal</td>
<td>360</td>
<td>Lever - Secondary Throttle Lockout</td>
</tr>
<tr>
<td>68</td>
<td>Seal - Pump Stem</td>
<td>364</td>
<td>Seal - Intermediate Choke Shaft</td>
</tr>
<tr>
<td>200</td>
<td>Float Bowl Assembly</td>
<td>370</td>
<td>Nut - Fuel Inlet</td>
</tr>
<tr>
<td>201</td>
<td>Gasket - Air Horn to Float Bowl</td>
<td>372</td>
<td>Gasket - Fuel Inlet Nut</td>
</tr>
<tr>
<td>203</td>
<td>Spring - Pump Plunger</td>
<td>375</td>
<td>Filter - Fuel Inlet</td>
</tr>
<tr>
<td>204</td>
<td>Cup - Pump Plunger</td>
<td>377</td>
<td>Spring - Fuel Filter</td>
</tr>
<tr>
<td>205</td>
<td>Pump Assembly</td>
<td>380</td>
<td>Screw - Throttle Stop</td>
</tr>
<tr>
<td>206</td>
<td>Spring - Pump Return</td>
<td>381</td>
<td>Spring - Throttle Stop Screw</td>
</tr>
<tr>
<td>212</td>
<td>Power Valve Piston Assembly</td>
<td>400</td>
<td>Throttle Body Assembly</td>
</tr>
<tr>
<td>213</td>
<td>Rod - Primary Metering</td>
<td>401</td>
<td>Gasket - Float Bowl to Throttle Body</td>
</tr>
<tr>
<td>214</td>
<td>Spring - Primary Metering Rod</td>
<td>405</td>
<td>Screw Assembly - Float Bowl to Throttle Body</td>
</tr>
<tr>
<td>218</td>
<td>Spring - Power Piston</td>
<td>410</td>
<td>Link - Pump</td>
</tr>
<tr>
<td>235</td>
<td>Insert - Float Bowl</td>
<td>420</td>
<td>Needle - Idle Mixture</td>
</tr>
<tr>
<td>236</td>
<td>Hinge Pin - Float</td>
<td>421</td>
<td>Spring - Idle Mixture Needle</td>
</tr>
<tr>
<td>237</td>
<td>Float</td>
<td>422</td>
<td>Plug - Idle Mixture Needle</td>
</tr>
<tr>
<td>238</td>
<td>Pull Clip - Float Needle</td>
<td>425</td>
<td>Screw - Fast Idle Adjusting</td>
</tr>
<tr>
<td>239</td>
<td>Needle - Float</td>
<td>426</td>
<td>Spring - Fast Idle Adjusting Screw</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500</td>
<td>Solenoid and Bracket Assembly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>501</td>
<td>Screw - Bracket Attaching</td>
</tr>
</tbody>
</table>

Figure 9 -- Model M4MEF
SOLENOID AND BRACKET ASSEMBLY

- Remove or Disconnect (Figures 8, 9)
- Bracket attaching screws (501), and solenoid and bracket assembly (500).

VACUUM BREAK ASSEMBLY

- Remove or Disconnect (Figures 8, 9)
1. Primary side vacuum break hose (57).
2. Primary side vacuum break attaching screws (56).
3. Primary side vacuum break assembly (55) and primary side vacuum break-air valve lever link (58).

AIR HORN COMPONENTS

Secondary Metering Rods

- Remove or Disconnect (Figure 13)
1. Secondary metering rod holder attaching screw (30).
2. Metering rod holder (31), and metering rods (32).

Choke Lever and Link

- Remove or Disconnect (Figure 14)
1. Choke lever attaching screw (36).
2. Choke lever (35).
3. Choke link (356).
MODEL M4MEF CARBURETOR 6C2-9

35 LEVER - CHOKE
36 SCREW - CHOKE LEVER ATTACHING
354 LEVER - INTERMEDIATE CHOKE
356 LINK - CHOKE

Figure 14 -- Choke Lever and Link

- Pull up on link, hold intermediate choke lever (354) outward with screwdriver. Twist link from lever.

Pump Lever and Link

Remove or Disconnect (Figure 15)

Tool Required:
J-25322 or BT-7523 - Pump Lever Pin Punch.

1. Pump lever (41).
 - Use tool J-25322 or BT-7523, or small punch, to drive pump lever hinge pin (42) inward, to release pump lever.

2. Pump link (410), from throttle lever.

Air Horn

Remove or Disconnect (Figure 16)

1. Air horn screws:
 - Air horn to throttle body screw assemblies (45).
 - Air horn to float bowl screw assemblies (46).
 - Air horn baffle (50), if used.
 - Air horn to float bowl (countersunk) screws (47).

Figure 15 -- Removing Pump Lever

Figure 16 -- Air Horn Screw Location and Tightening Sequence

2. Air horn assembly (10).
 - Lift straight up.
 - Leave air horn gasket (201) on float bowl.

NOTICE: Use care when removing air horn, to prevent damage to tubes pressed into the air horn casting. (DO NOT remove tubes).

Pump Stem Seal

Invert air horn assembly.

Remove or Disconnect (Figure 17)

- Pump stem seal (68).
 - Use small screwdriver to remove the seal retainer (57).
 - Use suitable tool to remove old staking.
 - Do not disassemble air horn further.
FLOAT BOWL COMPONENTS

Pump

- Remove or Disconnect (Figure 18)
 1. Air horn to float bowl gasket (201).
 • Discard.
 2. Pump assembly (205).

- Disassemble (Figure 18)
 1. Pump plunger spring (203), and cup (204).
 2. Pump return spring (206) from pump well.

Power Valve Piston and Metering Rods

- Remove or Disconnect (Figures 19 - 20)
 1. Power valve piston assembly (212) and primary metering rods (213).
 • Press down on piston stem and release it, causing the power piston to snap up against retainer. Repeat until free.

NOTICE: Do not use pliers on metering rod holder to remove power valve piston, as the holder could come loose from piston.

Important (Figure 21)

Do not remove nor adjust the factory set part throttle adjusting (APT) screw, which could result in increased exhaust emissions.

• If required, a replacement float bowl contains a preset APT adjusting screw.
Disassemble (Figure 20)
- Primary metering rods (213) and metering rod spring (214), from power valve piston assembly (212).
- Note the position of the metering rod spring for reassembly.

1. Remove power piston spring (218) from float bowl.

Float, Needle and Seat

Remove or Disconnect (Figure 22)

Tool Required:
- J-22769 or BT-3006M - Needle Seat Tool.
1. Float bowl insert (235).
2. Float (237), hinge pin (236), float needle (239) and pull clip (238).
 - Pull up on float hinge pin (236).

3. Float needle seat (240), and gasket (241).

Primary Metering Jets

Remove or Disconnect (Figure 20)
- Primary metering jets (248) from float bowl.

NOTICE: Do not remove secondary metering discs. They are pressed into place, and if damaged, entire bowl replacement is required.

Pump Discharge Ball and Pump Well Baffle

Remove or Disconnect (Figure 18)
1. Pump discharge plug (retainer) (250).
2. Pump discharge ball (251).
 - Invert bowl and catch ball.
3. Pump well baffle (252).

CHOKE COMPONENTS

The tamper resistant choke cover discourages unnecessary readjustment of the choke cover and stat assembly. However, for overhaul, it is necessary to remove this assembly.

Electric Choke Cover and Stat

Remove or Disconnect (Figure 23)
1. Heads of choke cover attaching rivets (330).
 - Use a 4 mm (5/32") drill bit.
2. Choke cover retainers (331).

3. Electric choke cover and stat assembly (335).

4. Remaining pieces of rivets in housing.
 • Use punch to drive out.

Choke Housing

Remove or Disconnect (Figure 24)

1. Choke housing to float bowl screw and washer assembly (341).

2. Choke housing assembly (340).
 • Secondary throttle lockout lever (360).
 • Intermediate choke lever (354).
 • Invert bowl.
 • Intermediate choke shaft seal (364), from float bowl.
 • Do not remove bushing from float bowl.

Disassemble (Figure 24)

1. Remove choke stat lever attaching screw (345).

2. Choke stat lever (348).

3. Intermediate choke shaft, lever and link assembly (350).

THROTTLE BODY COMPONENTS

Idle Mixture Needles

Remove or Disconnect (Figure 25)

Tool Required:
J-29030-B or BT-7610-B, Idle Mixture Socket (Adjusting Tool).
Remove or Disconnect (Figure 26)

1. Float bowl to throttle body screw assemblies (405).
2. Throttle body assembly (400), and float bowl to throttle body gasket (401).
 - Discard gasket.
 - Do not disassemble throttle body further. The throttle body is serviced as a complete assembly.

CLEANING AND INSPECTION

If an excessive amount of foreign material is found in float bowl, check tanks and fuel lines for the source.

Clean (Figure 27)

1. Power piston bore of float bowl.
 - Use 0.375 inch soft wire brush. Turn clockwise through full length of the power piston bore. Turn brush several more turns, to remove dirt and varnish.
2. Metal parts in cold immersion cleaner, X-55 or equivalent.

NOTICE: Do not immerse ISS, vacuum breaks, electric choke cover and stat assembly, float and float bowl insert, pump plunger, seals, etc., in cleaner as they may become non-functional, swell, harden, or distort.
 - The plastic cam on the air valve shaft will withstand normal cleaning.
3. Rinse thoroughly after soaking.

4. Blow dry with compressed air.
 - Do Not pass drill bits or wire through jets or other passages.

Inspect

Check the following items and if the condition listed is noted: clean, repair or replace the components.

- Air and fuel passages, and metering parts, for dirt or burrs.
- Mating surfaces of castings for nicks or damage that would prevent sealing air or fuel.

IMPORTANT (Figure 28)

If replacing float bowl, look for letters "MW", which indicate Machined pump Well, and determine the type of pump that can be used. If present, a new bowl must also have the letters.

A "MACHINED PUMP WELL" (SHOWN NEXT TO FUEL INLET)
MEF CARBURETOR

Power valve piston assembly for free movement in the bore.
- Power piston spring for being stretched or distorted.
- Choke valve and secondary air valves for freedom of movement.
- Throttle shafts for freedom of movement. If cleaning does not correct condition, replace throttle body assembly.
- Throttle valves for nicks or damage. If noted, replace throttle body assembly.
- Idle mixture needles for grooves, ridges or bends.
- Levers for looseness on shafts, or wear in holes. If throttle lever is loose, replace throttle body assembly.
- Links for wear or rubbing against other components.
- Float, float lever and hinge pin for distortion, binds and burrs.
- The float for being loaded.
- Check weight of float in comparison with a new float, and replace if heavier.
- Plastic parts for cracks, damage, etc.

PUMP SYSTEM CHECKING PROCEDURE

Inspect (Figures 6, 18)

- Perform this check with a new pump cup installed on the pump plunger, and with the pump discharge ball, plug (retainer), and pump well baffle installed.
1. Fill empty float chamber and pump well with a clean solvent, such as mineral spirits.
2. Seal the two pump discharge passages on top surface of float bowl with two fingers. Use other hand to push pump assembly down slowly in pump well.
 - Pump assembly should not travel to bottom of well. Only movement should be compressing of the duration spring.
 - If pump assembly moves down in well, this may indicate that: the pump cup is not sealing properly, the pump well is worn or scored, or the pump discharge plug is leaking (as indicated by bubbles around plug).
3. With clean solvent in float chamber and pump well, slowly move pump assembly down in pump well until solvent is visible at top of pump discharge passages.
4. Remove pump assembly. Continue to watch solvent in passages. The level should not lower.
 - If level begins to drop, the discharge check ball may be: missing, not seating correctly because of foreign material, damaged, or, the seat for the ball may need restaking.
5. Satisfactory pump system operation requires all above checks be successful. After cleaning or parts replacement, repeat procedure.

VACUUM BREAK CHECKING PROCEDURE

Inspect (Figures 29, 30)

Tool required:
J-23738-A or BT-7517 - Hand Operated Vacuum Pump.
1. If the vacuum break has an air bleed hole, plug it as shown, during this checking procedure.
2. Apply 15" Hg (51kPa) vacuum to the vacuum break.
 - Apply finger pressure to the plunger to see if it has moved through full travel. If not, replace the vacuum break.
 - Observe vacuum gage. Vacuum should hold for at least twenty seconds. If not, replace the vacuum break.
3. Replace vacuum break hoses that are cracked, cut or hardened.

Figure 29 -- Vacuum Break Information
Idle Mixture Needles

Install or Connect (Figures 11, 25)

Tools Required:
- J-9789-118 or BT-3553 - Carburetor Holding Stand
- J-29030-B or BT-7610B - Idle Mixture Socket (Adjusting tool).

1. Place carburetor on J-9789-118 or BT-3553.
2. Idle mixture needles (420), and springs (421).
 - Use J-29030-B or BT-7610B to lightly seat each needle, then back out the number of turns counted in disassembly.
 - Final idle mixture adjustment is made on the vehicle. For information on the idle mixture adjustment procedure, refer to Carburetors (SEC. 6C1) in the 1988 Light Duty Trucks Service Manual.

CHOKE COMPONENTS

Choke Housing

Assemble (Figure 31)

1. Fast idle cam assembly (352) to choke housing (340), with cam bushing facing away from housing.

CARBURETOR REASSEMBLY

THROTTLE BODY COMPONENTS

Throttle Body

Invert float bowl (200).

Install or Connect (Figure 26)

1. New float bowl to throttle body gasket (401).
 - Install over locator pins on float bowl.
2. Throttle body assembly (400).
3. Float bowl to throttle body screw assemblies (405).

IDLE STOP SOLENOID CHECKING PROCEDURE

Inspect

Check the idle stop solenoid (500) electrically, using a 12 volt automotive battery.

1. Retract the solenoid plunger, using finger pressure.
2. Apply +12 volts to the terminal and -12 volts to the solenoid body.
3. If the solenoid plunger does not extend when the voltage is applied, replace the solenoid with a new one.
6C2-16 MODEL M4MEF CARBURETOR

• Position tail of cam (weighted end) in line with housing attaching screw hole.

2. Intermediate choke shaft assembly (350) into the choke housing, so the vacuum break lever will surround the tail of the fast idle cam.

3. Choke stat lever (348) on flats of intermediate choke shaft, with stat lever tang lined up with vacuum break lever of intermediate choke shaft.

4. Install choke stat lever attaching screw (345).

Install or Connect (Figures 31, 32)

Tool Required:
J-23417 or BT-6911 - Choke Lever Installing Tool.

1. New intermediate choke shaft seal (364) in float bowl.
 • Sealing lip faces outward.

2. Secondary throttle lockout lever (360).

3. Choke housing assembly (340) as follows:
 A. Position intermediate choke lever (354) in bowl cavity, using J-23417 or BT-6911.
 B. Guide intermediate choke shaft through slot in intermediate choke lever.

4. Choke housing to float bowl screw and washer assembly (341).

Inspect
• Linkage for freedom of movement.

Important
Electric choke cover and stat assembly (335) should be installed after making choke stat lever adjustment.

FLOAT BOWL COMPONENTS

If replacing the float bowl assembly, transfer the identification number on the new float bowl at location shown, (Figure 1). Follow the instructions on the envelope included in the service package.

Pump Discharge Ball and Pump Well Baffle

Install or Connect (Figure 18)

1. Pump well baffle (252).
 • Slot toward bottom.

2. Pump discharge ball (251).

3. Pump discharge plug (retainer) (250).

Primary Metering Jets

Install or Connect (Figure 33)
• Primary metering jets (248) in float bowl.

Figure 32 -- Installing Choke Housing Assembly

Figure 33 -- Power Piston, Metering Rods and Jets
MODEL M4MEF CARBURETOR 6C2-17

Figure 34 -- Float Needle Pull Clip Location

Float, Needle and Seat

- **Install or Connect** *(Figures 22, 34)*
 - Tool Required:
 - J-22769 or BT-3006M - Needle Seat Tool
 - 1. Float needle seat (240) with new gasket (241).

- **Assemble** *(Figures 22, 34)*
 - A. Float needle pull clip (238) to float needle (239).
 - B. Float needle onto float lever as shown in Figure 34.
 - C. Hinge pin (236) through float lever.
 - Open end faces pump well.

- 2. Install float, needle, and hinge pin.

- **Adjust** *(Figures 39, 50)*
 - Tools Required:
 - J-9789-90 or BT-8037 - Float Level T-Scale
 - J-34817-A or BT-8426 - Float Positioning Tool Kit
 - A. Float Level
 - Specification is in Figure 50.

- 3. Install float bowl insert (235).

Power Valve Piston and Metering Rods

- **Assemble** *(Figure 33)*
 - Primary metering rods (213), and metering rod spring (214), to power valve piston assembly (212).

- **Install or Connect** *(Figures 19, 33)*
 - 1. Power piston spring (218).

- 2. Install power valve piston assembly and primary metering rods, as follows:
 - A. Align pin on piston with slot in bore, and primary metering rods in jets.
 - B. Press plastic retainer flush with top of float bowl.
 - If necessary, use a small punch and hammer.

Pump

- **Assemble** *(Figure 18)*
 - Pump assembly (205) with new pump plunger cup (204), and spring (203).

- **Install or Connect** *(Figure 18)*
 1. Pump return spring (206).
 2. Pump assembly (205).
 3. New air horn to float bowl gasket (201).

AIR HORN COMPONENTS

Pump Stem Seal

- **Install or Connect** *(Figure 17)*
 1. New pump stem seal (68) in air horn.
 - Sealing lip faces outward.
 2. New seal retainer (67).
 - Lightly stake retainer in three different places than original stakings.

Lubricating Air Valve Spring Pin

- **Install or Connect** *(Figure 35)*
 - Apply lithium grease to the air valve shaft pin where it contacts the air valve return spring.

Figure 35 -- Lubricating Air Valve Spring Pin
6C2-18 MODEL M4MEF CARBURETOR

Air Horn

Install or Connect
1. Air horn assembly (10).
 - Hold air horn gasket (201) down at pump location, guide pump stem through air horn.
 - Be sure that tubes are positioned properly through the holes in the air horn gasket.
2. Air horn screws, in sequence shown:
 - Two countersunk screws (47) (locations #1 & 2), located next to the venturi area.
 - Air horn to float bowl screw assemblies (46).
 - Air horn baffle (50), if used, under screw assemblies in locations #3 and 4.
 - Air horn to throttle body screw assemblies (45).

Pump Lever and Link

Install or Connect
1. Pump link (410), in throttle lever.
 - End of link with squirt (bump) faces outward in the lever.
2. Pump lever (41).
 A. Pump link in specified hole.
 - Specification is in figure 50.
 B. Use J-25322 or BT-7523, or small punch, to align hole in lever with hole in air horn casting.

Choke Lever and Link

Install or Connect
1. Choke link (356) into intermediate choke lever (354).
 - Hold fast idle cam (352) down to rotate lever up for easier installation.
2. Choke lever (35).
 - Connect lever to choke link, and install on end of choke shaft.
3. Choke lever attaching screw (36).

Secondary Metering Rods

Install or Connect
1. Secondary metering rods (32), and holder (31).
 - Ends of rods face each other.
2. Holder attaching screw (30).
 - Work air valves up and down several times, to be sure they move freely both ways.

VACUUM BREAK ASSEMBLY

Install or Connect
1. Primary side vacuum break - air valve lever link (58) to air valve lever.
2. Primary side vacuum break assembly (55).
 - Connect plunger to air valve lever link.
3. Vacuum break attaching screws (56).
4. Primary side vacuum break hose (57).

SOLENOID AND BRACKET ASSEMBLY

Install or Connect (Figure 8)

- Solenoid and bracket assembly (500) with bracket attaching screws (501).

FUEL INLET NUT AND FILTER

Install or Connect (Figure 12)

1. Fuel filter spring (377), in float bowl.
2. New gasket (372), on inlet nut (370).
3. Inlet nut with new filter (375).

Tighten

- Nut to 62 N·m (46 lbs.ft.).

ADJUSTMENT PROCEDURES

If you are following the unit repair procedures, proceed with adjustments in Figures 39 - 50.

Adjust (Figures 39 through 50)

Tools Required:
- J-9789-D or BT-3005A, Universal Carburetor Gage Set.
- J-9789-90 or BT-8037, Float Level T-Scale.
- J-9789-111 or BT-3006M, Linkage Bending Tool.
- J-26701-A or BT-7704, Choke Valve Angle Gage.
- J-23738-A or BT-7517, Hand Operated Vacuum Pump.
- Float, Figure 39.
- Pump, Figure 40.
- Air Valve Return Spring, Figure 41.
- Choke Stat Lever, Figure 42.
- Choke Valve Angle Gage, Figure 43.
- Choke Link - Fast Idle Cam, Figure 44.
- Vacuum Break Information, Figure 45.
- Primary Side Vacuum Break, Figure 46.
- Air Valve Link, Figure 47.
- Unloader, Figure 48.
- Secondary Throttle Lockout, Figure 49.
- Specifications are in Figure 50.

ELECTRIC CHOKE COVER AND STAT

Install or Connect (Figure 38, 42)

1. Place fast idle cam (352) on high step, against cam follower lever.
2. Electric choke cover and stat assembly (335) in the choke housing (340).
 - Be sure coil tang engages the choke stat lever, and notch in cover lines up with projection on housing.

Important

Ground contact for the electric choke is provided by the metal plate on the back side of the choke cover assembly. Do Not install a stat cover gasket.

3. Choke cover retainers (331) and attaching rivets (330).
 - Use blind rivet tool to install rivets.
 - It may be necessary to use an adapter (tube) if the tool interferes with the electrical connector on the electric choke cover and stat (335).
 - Instructions are included in choke cover retainer kit.

Install or Connect

- Carburetor on vehicle, with new flange gasket.

Adjust

- Idle mixture and idle speeds.
 - For information on idle mixture and idle speed adjustments, refer to Carburetors (SEC.6C1) in the 1988 Light Duty Trucks Service Manual.
1. REMOVE AIR HORN, GASKET, POWER PISTON AND METERING ROD ASSEMBLY, AND FLOAT BOWL INSERT.

2. ATTACH J-34817-1 OR BT-8227A-1 TO FLOAT BOWL.

3. PLACE J-34817-3 OR BT-8227A IN BASE WITH CONTACT PIN RESTING ON OUTER EDGE OF FLOAT LEVER.

4. MEASURE DISTANCE FROM TOP OF CASTING TO TOP OF FLOAT, AT POINT 3/16" FROM LARGE END OF FLOAT. USE J-9789-90 OR BT-8037.

5. IF MORE THAN ±2/32" FROM SPECIFICATION, USE J-34817-25 OR BT-8427 TO BEND LEVER UP OR DOWN. REMOVE BENDING TOOL AND MEASURE, REPEATING UNTIL WITHIN SPECIFICATION.

6. CHECK FLOAT ALIGNMENT.

7. REASSEMBLE CARBURETOR.

1. With the fast idle cam off the cam follower lever, turn the throttle stop screw out so it does not touch the throttle lever.

2. Measure the distance from the top of the choke valve wall to the top of the pump stem.

3. Adjust, if necessary, by supporting the pump lever at S and bending at the notch.
1. Loosen set screw.

2a. Turn Spring Fulcrum Pin until Air Valves open.

2b. Turn pin until Air Valves close, then additional turns specified.

3. Tighten set screw.

4. Apply Lithium grease to spring contact area.

1. If riveted, drill out and remove rivets. Remove Choke Cover and Stat Assembly.

2. Place Fast Idle Cam on high step against Cam Follower Lever.

3. Push up on Choke Stat Lever to close Choke Valve.

4. Check Stat Lever for correct orientation by inserting .120” plug gage in hole. Gage should fit in hole and touch edge of lever.

5. Adjust, if necessary, by bending Choke Link.
1. Attach Angle Gage Magnet to closed Choke Valve.
2. Rotate degree scale until zero is opposite pointer.
3. Center the leveling bubble.
4. Rotate scale to specified angle.
5. Open Choke Valve as described.
6. Adjust linkage if bubble is not recentered.

Figure 43 -- Choke Valve Angle Gage

1. Attach rubber band to Vacuum Break Lever of Intermediate Choke Shaft.
2. Open Throttle to allow Choke Valve to close.
3. Set up Angle Gage and set to specification.
4. Place Fast Idle Cam A on second step against Cam Follower Lever B, with Lever contacting rise of High Step. If Lever does not contact Cam, turn Fast Idle Adjusting Screw C in additional turn(s).
5. Adjust, if bubble is not recentered, by bending Fast Idle Cam Kick Lever with pliers.

Figure 44 -- Choke Link - Fast Idle Cam Adjustment
Adjust, if bubble is not recentered, by turning screw.

Figure 46 -- Primary Side (Front) Vacuum Break Adjustment
1. Plug Vacuum Break bleed holes, if applicable. Air Valves \(\text{A} \) closed. Apply 15" Hg (51 k Pa) vacuum to seat Vacuum Break Plunger.

2. Gage the clearance between Air Valve Link and end of slot in lever.

3. Adjust, if necessary, by bending link.

1. Attach rubber band to Vacuum Break Lever of Intermediate Choke Shaft.

2. Open Throttle to allow Choke Valve to close.

3. Set up Angle Gage and set to specification.

4. On Quadrajet, hold Secondary Throttle Lockout Lever \(\text{A} \) away from pin \(\text{B} \).

5. Hold Throttle Lever in wide open position.

6. Adjust, if bubble is not recentered, by bending Fast Idle Lever.
1. Place Fast Idle Cam (A) on high step against Cam Follower Lever.

2. Hold Throttle Lever closed.

3. Gage the clearance between Lockout Lever and pin. It must be .015" ±.005".

4. Adjust, if necessary, by bending pin.

5. Push down on tail of Fast Idle Cam (A) to move Lockout Lever away from pin.

6. Rotate Throttle Lever to bring Lockout Pin to position of minimum clearance with Lockout Lever.

7. Gage the clearance between Lockout Lever and pin. Minimum must be .015".

8. Adjust, if necessary, by filing end of pin.

Figure 49 -- Secondary Throttle Lockout Adjustment

Figure 50 -- Specifications

<table>
<thead>
<tr>
<th>CARBURETOR NUMBER</th>
<th>FLOAT SETTING ± 2/32"</th>
<th>PUMP SETTING</th>
<th>AIR VALVE SPRING TURNS</th>
<th>CHOKE STAT LEVER</th>
<th>CHOKE LINK CAM ± 2.5°</th>
<th>VAC. BRK. FRONT ± 2.5°</th>
<th>AIR VALVE LINK</th>
<th>UNLOADER ± 4°</th>
</tr>
</thead>
<tbody>
<tr>
<td>17088040</td>
<td>13/32"</td>
<td>Inner 9/32"</td>
<td>7/8</td>
<td>0.120" G</td>
<td>46°</td>
<td>0.025"</td>
<td>13/32"</td>
<td>35°</td>
</tr>
<tr>
<td>17088041</td>
<td>13/32"</td>
<td>Inner 9/32"</td>
<td>7/8</td>
<td>0.120" G</td>
<td>46°</td>
<td>0.025"</td>
<td>13/32"</td>
<td>35°</td>
</tr>
<tr>
<td>17085004</td>
<td>13/32"</td>
<td>Inner 9/32"</td>
<td>7/8</td>
<td>0.120" G</td>
<td>46°</td>
<td>0.025"</td>
<td>13/32"</td>
<td>35°</td>
</tr>
<tr>
<td>17085212</td>
<td>13/32"</td>
<td>Inner 9/32"</td>
<td>7/8</td>
<td>0.120" G</td>
<td>46°</td>
<td>0.025"</td>
<td>13/32"</td>
<td>35°</td>
</tr>
</tbody>
</table>

Notes: 1. Secondary Lockout 0.015 inches 2. G = Gage Dimension
1. Universal Carburetor Gage Set
2. Carburetor Holding Stand
3. Pump Lever Pin Punch (Not Shown)
4. Needle Seat Tool
5. Idle Mixture Socket (Adjusting Tool)
6. Hand Operated Vacuum Pump
7. Choke Lever Installer
8. Float Level T-Scale
9. Float Positioning Tool Set
10. Choke Valve Angle Gage
11. Linkage Bending Tool
DELCO-REMY 12-SI SERIES, TYPE 100 AND 17-SI SERIES, TYPE 100 GENERATORS

DESCRIPTION

The generators shown in figures 1 and 2 feature a solid state regulator mounted inside the slip ring end frame. The SI-series indicates “Systems Integral” (generator with built-in regulator). All regulator components are enclosed in a solid mold. This unit, along with the brush holder assembly, is attached to the slip ring end frame. The regulator voltage setting is not adjustable.

The generator rotor bearings contain enough grease to eliminate periodic lubrication. Two brushes carry current through two slip rings to the field coil.

The stator windings are assembled on the inside of a laminated core that forms part of the generator frame. A rectifier bridge connected to the stator windings contains six diodes, and electrically changes the stator AC voltages to a DC voltage which appears at the generator output “BAT” terminal. Generator field current is supplied through a diode trio connected to the stator windings. A capacitor, or condenser, mounted to the end frame protects the rectifier bridge and diode trio from high voltages, and suppresses radio noise.

The generator part number is the seven-digit number stamped on the drive end frame above the build date (figure 1).
OPERATING PRINCIPLES (Figure 3)

The battery is directly connected to the No. 2 terminal on the generator. This supplies voltage through resistor R5 to the base-emitter of transistor TR3. Transistor TR3 turns on which then turns on transistor TR1 which allows field current to flow through to ground. Also, resistors R2 and R3 are connected to the battery through terminal No. 2, but the discharge current of the battery is very low because of the resistance values of R2, R3, R5, TR1 and TR3.

At this point, transistors TR3 and TR1 are turned on, but no current is flowing through them. Now the engine control switch is closed, allowing current to flow from the battery through the indicator lamp to the No. 1 terminal on the generator. From No. 1 terminal, the current goes through resistor R1, transistors TR3 and TR1 to ground, turning on the indicator lamp. Resistor R6 carries some of the indicator lamp current.

When the generator is spinning, AC voltages are generated in the "Y" stator windings (delta windings on the 17-SI). The AC is converted to DC current in the diode trio, and is then fed through to the field to transistor TR1 and to ground. At the same time, the DC voltage from the diode trio causes the indicator lamp current to stop, making the indicator lamp go out.

Now the AC voltages are converted to DC in the rectifier bridge. This DC voltage is then fed through the "BAT" terminal to the battery, thus keeping the battery charged and supplying electricity to the vehicle electrical loads.

As the generator speed and voltage increase, the voltage between R2 and R3 increases to the point where the zener diode D1 conducts. This turns on transistor TR2.
which causes TR3 and TR1 to turn off. With TR1 off, the field current and system voltage decrease. D2 stops conducting when the voltage drops to a certain level, causing TR3 and TR1 to turn back on. This cycle repeats many times per second to limit the generator voltage to a preset value.

Capacitor C1 smoothes out the voltage across R3. Resistor R4 prevents excessive current through TR1 at high temperatures. Diode D2 prevents induced high voltages in the field windings when TR1 turns off. Resistor R2 is a thermistor which causes the regulated voltage to vary with temperature, thus providing the optimum voltage for charging the battery.

Some installations do not use an indicator lamp. Instead a resistor or resistance wire is used in its place. The charge rate is then indicated by a voltmeter.

If an open should occur in the No. 2 terminal circuit, TR3 and TR1 will turn off, field current will stop and the indicator lamp current will flow through R6 to ground, causing the indicator lamp to come on. Also, an open in the field circuit will cause the indicator lamp to turn on because indicator lamp current will flow through R6 to ground.

If an open should occur in the No. 1 terminal circuit, the indicator lamp will stay off, and the generator will not generate current.

GENERATOR OUTPUT TEST

To check the generator in a test stand, proceed as follows:

1. Make the connections as shown in figure 4, except leave the carbon pile disconnected.
 - The ground polarity of the battery and the generator must be the same.
 - Use a fully charged battery, and a 10 ohm resistor rated at six watts or more between the generator No. 1 terminal and the battery.

2. Slowly increase the generator speed and observe the voltage.

3. If the voltage is uncontrolled with speed and increases above 15.5 volts on a 12-volt system, replace the regulator and check the field winding.

4. If the voltage is below 15.5 volts on a 12-volt system, connect the carbon pile as shown.

5. Operate the generator at moderate speed as required and adjust the carbon pile as required to obtain maximum current output.

6. If the output is within 10 amperes of the rated output as stamped on the generator frame, the generator is good.

7. If the output is not within 10 amperes of the rated output, keep the battery loaded with the carbon pile, and ground the generator field (figure 5).
 - The field ground tab is within 25 mm (1-inch) of the casting surface. DO NOT force the screwdriver deeper into the end frame.

8. Operate the generator at a moderate speed and adjust the carbon pile as required to obtain maximum output.

9. If the output is within 10 amperes of the rated output, replace the regulator and check the field winding.
6D-4 ENGINE ELECTRICAL

Figure 5—Field Ground Tab

1. "BAT" Terminal
2. No. 1 Terminal
3. No. 2 Terminal
4. Field Ground Hole

Figure 6—Slip Ring End Frame: 12-SI 100

11. Insulated Screws
12. "BAT" Terminal Stud
13. Brush Holder
14. Resistor
15. Diode Trio
17. Rectifier Bridge
18. Capacitor

12-SI Series (Figures 6 and 8)
13. Ground screw (29) from the rectifier bridge (17).
14. "BAT" terminal stud nut (20) from the rectifier bridge.
15. Rectifier bridge (17), "BAT" terminal (1), and insulator (36) from the end frame.

17-SI Series (Figures 7 and 9)
16. Two ground screws from the rectifier bridge (17).
17. "BAT" terminal stud nut (20) from the rectifier bridge.
18. Rectifier bridge, "BAT" terminal (1), and insulator (36) from the end frame.

Both Models
 - Support the bearing housing from the inside.
 - Press out the bearing, using a tube slightly smaller than the bearing shell.
 — Press out the bearing from the outside toward the inside.
1. "BAT" Terminal
13. Brush Holder
14. Resistor
15. Diode Trio
16. Regulator
17. Rectifier Bridge
18. Capacitor
19. Nut
20. "BAT" Terminal Nut
22. Pulley Nut
23. Washer
24. Bolt
29. Grounded Screw
30. Insulated Screw
31. Rear Bearing
32. Front Bearing
34. Front Collar
35. Rear Collar
36. Insulator
37. Retainer
38. Brushes
39. Drive End Frame
40. Slip Ring End Frame
41. Stator
42. Rotor
43. Pulley
44. Fan

Figure 8—12-SI Series 100 Components
1. "BAT" Terminal
13. Brush Holder
14. Resistor
15. Diode Trio
16. Regulator
17. Rectifier Bridge
18. Capacitor
20. "BAT" Terminal Nut
21. Rectifier Bridge Terminal Nut
22. Pulley Nut
23. Wave Washer
24. Bolt
25. Short Bolt
26. Long Bolt
27. Through Bolt
28. Rectifier Bridge Retainer Bolt
29. Grounded Screw
30. Insulated Screw
31. Rear Bearing
32. Front Bearing
33. Slip Ring
34. Front Collar
35. Rear Collar
36. Insulator
37. Retainer
38. Brushes
39. Drive End Frame
40. Slip Ring End Frame
41. Stator
42. Rotor
43. Pulley
44. Fan

Figure 9—17-SI Series 100 Components
DRIVE END FRAME

Disassemble (Figures 9 and 10)

- Place the rotor, but not the rotor shaft, in a vise and tighten only enough to permit removal of the pulley nut.

NOTICE: The rotor may be distorted if the vise is overtightened.

1. Pulley nut (22).
 - Insert a hex head wrench in the end of the rotor shaft to counteract the force of rotation when removing the pulley nut.
2. Washer (23).
3. Pulley (43).
4. Fan (44).
5. Front collar (34).
6. Rotor (42).
7. Rear collar (35).

- Support the bearing housing when pressing out the bearing.

INSPECTION AND REPAIR

Clean
- All metal parts except the voltage regulator, rectifier bridge, stator, rotor and bearing assemblies in a suitable solvent.
 - Wipe or blow the parts dry.

Inspect
1. Brush holder for damage.

Clean
- Brush holder. Make sure the brush pockets are clean.
- Brushes with a soft dry cloth.
2. Insulating sleeves on the insulated screws for splits or wear.
3. Brushes for wear. If the brushes are worn to one half or less of their original length, replace them.
4. Brush leads for broken wires, corrosion or chafing.
5. Slip ring end bearing for grease. If the grease supply is used up, replace the bearing. DO NOT relubricate the bearing.
6. Slip ring end of the rotor shaft for overheating or scoring. If the signs of overheating or scoring are present, replace the bearing and rotor.
7. Drive end bearing for roughness, looseness, and seal condition. If the condition of the bearing is doubtful, replace it.
8. Windings for burned insulation. Replace the rotor or stator if either looks burned.
 - Burned insulation appears as a very dark or blackened wiring. A strong acrid odor will be apparent.
9. Terminal connectors for corrosion or breaks.

ELECTRICAL TESTS

Except as stated, make the following tests with an ohmmeter on the low range scale.

ROTOR FIELD WINDING CHECKS (Figure 10)

The rotor may be checked electrically with a 110-volt test lamp or an ohmmeter.

Open Winding
To check for opens, connect the test lamp or ohmmeter to each slip ring. If the lamp fails to light, or if the ohmmeter reading is high (infinite), the winding is open.

Ground Winding
Connect a test lamp or ohmmeter from one slip ring to the shaft. If the lamp lights, or if the reading is low, the rotor winding is grounded.

Short Circuit or Resistance Check
The winding is checked for short-circuits or excessive resistance by connecting a battery and ammeter in series with the edge of the two slip rings. Note the ammeter reading and refer to "Specifications" at the end of this section.
An ammeter reading above the specified value indicates shorted windings; a reading below the specified value indicates excessive resistance. An alternate method is to check the resistance of the field by connecting an ohmmeter to the two slip rings. If the resistance reading is above the specified value the winding has excessive resistance. Note the reading and refer to “Specifications” at the end of this section.

Remember that the winding resistance and ammeter readings will vary slightly with winding temperature changes. If the rotor is all right, but the generator fails to supply rated output, the problem is in the diode trio, rectifier bridge, stator or regulator.

If the rotor is bad, replace it.

DIODE TRIO CHECK (Figure 11)
Connect an ohmmeter having a 1.5-volt cell, and using the lowest range scale, to the single connector and to one of the three connectors (figure 11). Observe the reading. Then reverse the ohmmeter leads to the same two connectors. If both readings are the same, replace the diode trio. A good diode trio will give one high and one low reading. Repeat this same test between the single connector and each of the other two connectors. Also, connect the ohmmeter to each pair of the three connectors (not illustrated). If any reading is zero, replace the diode trio.

RECTIFIER BRIDGE CHECK (Figure 12)
To check the rectifier bridge, connect the ohmmeter to the grounded heat sink and one of the three flat metal connectors or threaded studs, depending on the type of regulator. Refer to figure 12.

Observe the ohmmeter reading and reverse the lead connectors to the grounded heat sink and the same flat metal connector or stud. If both readings are the same, replace the rectifier bridge. A good rectifier bridge will give one high and one low reading. Repeat this same test between the grounded heat sink and the other two terminals or connectors, and between the insulated heat sink and each of the three terminals or connectors. This makes a total of six checks, with two readings taken for each check.

The ohmmeter check of the rectifier bridge, and of the diode trio as previously covered, is a valid and accurate check. Do not replace either unit unless at least one pair of readings is the same.

STATOR CHECKS (Figure 13)
The stator windings may be checked with a 110-volt test lamp or ohmmeter. If the meter reading is low when connected from any stator lead to the frame, the windings are grounded. If the lamp fails to light, or if the meter reading is high when successively connected between each pair of stator leads, the windings are open.

Delta windings on the 17-SI Series cannot be checked for opens. Check the windings for ground only.

A short circuit in the delta stator windings is difficult to locate without laboratory test equipment due to the low resistance of the windings. However, if all other electrical checks are normal and the generator fails to supply rated output, shorted stator windings or an open delta winding is indicated. Also a shorted stator can cause the indicator lamp to be on with the engine at low speed. Check the regulator before replacing the stator.
ENGINE ELECTRICAL 6D-9

A. Ohmmeter Connections Checking for Grounds
B. Ohmmeter Connections Checking for Opens

Figure 13—Checking the Stator

TESTING THE VOLTAGE REGULATOR (Figure 14)

1. Connect the voltmeter and the fast charger to the 12-volt battery.

2. Connect the regulator and the test lamp as shown. Observe battery polarity.

3. Test lamp should be on.

4. Turn on the fast charger and slowly increase the charge rate. Observe the voltmeter. The lamp should go out at the voltage regulator setting. The voltage regulator setting should be a minimum of 13.5 volts and a maximum of 16.0 volts.

The test lamp is connected into the circuit, exactly as the rotor is when the regulator is inside the generator. The regulator shuts off the current to the test lamp when the regulator setting is reached. This voltage will vary with temperature differences.

SLIP RING END FRAME

• Install or Connect (Figures 8, 9 and 15)
 • If the old bearing is dry, do not lubricate or reinstall it. Replace the bearing.
 1. Bearing (31).
 • Support the inside of the frame.

31. Rear Bearing
40. Slip Ring End Frame

Figure 15—Slip Ring End Frame Bearing
6D-10 ENGINE ELECTRICAL

Figure 16—Brush Retainer Installed

- Place a flat plate over the bearing and press in from the outside to the inside of the end frame housing.
- Press the bearing flush with the outside of the end frame (figure 15).
- Rectifier bridge (17) (figures 7 and 8).
- Ground screw(s) (29) in the rectifier bridge.
- "BAT" terminal (1) and insulator (36).
- "BAT" terminal nut (20).
- Capacitor (18) in the end frame.
 - Retain with a screw.
- Capacitor lead to the rectifier bridge (17) with a screw.
- Regulator (16).
- Brushes (38) in the brush holder (13).
 - Retract the brushes in the holder.
 - Retain the retracted brushes with a toothpick (figure 16).
 - Be sure that the toothpick extends through the end frame when the brush holder is in place in the end frame. After the rotor and drive end frame are installed, the toothpick will be pulled out, allowing the brushes to contact the slip rings.
- Brush holder with retracted brushes.
- Diode trio (15).
- Resistor (14).
- Retaining screws.
 - Insulated screws are located at the brush clip and the diode trio connecting strap.
 - Grounded screw is located on the resistor mount.
- Stator (41) to the end frame, aligning the three stator leads to the three rectifier bridge terminals.
- Three terminal nuts. Tighten the nuts securely.

MAIN ASSEMBLY

Install or Connect

1. Drive end frame (39) and rotor assembly to the slip ring end.
2. Four through bolts (27). Tighten securely.
 - Remove the brush retainer (toothpick) from the end frame.
 - Test the generator output.

DRIVE END FRAME

Assemble (Figures 8 and 9)

1. Bearing (32).
 - Support the end frame.
 - Position the bearing with the sealed end toward the outside of the generator.
DESCRIPTION

The overrunning-clutch type starting motors covered in this section are the enclosed shift lever type (figures 17, 18 and 19).

The starting motor has the drive end housing extended to enclose the shift lever and solenoid plunger. The solenoid flange is mounted on the drive end housing with sealing compound between the flange and the field frame.

The starter motor bearings are lubricated during motor assembly and do not require service except during motor repair.

The part number can be found either stamped on the outside of the frame or on an identification label attached to the frame.

DIAGNOSIS OF THE STARTING MOTOR

STARTING MOTOR TESTS

Before disassembling the starting motor for repair, the following tests should be made.

NOTICE: Never operate the starting motor more than 30 seconds at a time without pausing to allow it to cool for at least two minutes. Overheating, caused by too much cranking, will damage the starting motor.

![Figure 17—5MT Starting Motor](image)

NO LOAD TEST (Figure 20)

Connect a voltmeter from the motor terminal to the motor frame and an rpm indicator to measure armature speed. Connect the motor and an ammeter in series with a fully charged battery of the specified voltage, and a switch in the open position switch terminal. Close the switch and compare the rpm, current, and voltage readings with the specifications at the end of this section. It is not necessary to obtain the exact voltage specified as a good reading can be made by understanding that if the voltage is slightly higher the rpm will be slightly higher, with the current remaining basically unchanged. However, if the exact voltage is desired, a carbon pile connected across the battery can be used to reduce the voltage to the specified value. Compare the test results as follows:

1. Rated current draw and no-load speed indicates normal condition of the starting motor.
2. Low free speed and high current draw indicates:
 a. **Too much friction.** Tight, dirty, or worn bearings, bent armature shaft or loose pole shoes allowing the armature to drag.
 b. **Shorted armature.** This can be further checked on a growler after disassembly.
 c. **Grounded armature or fields.** Check further after disassembly.
3. Failure to operate with high current draw indicates:
 a. **A direct ground** in the terminal or fields.
 b. **Seized bearings.** This should have been noted by turning the armature by hand.
4. Failure to operate with no current draw indicates:
 a. **Open field circuit.** This can be checked after disassembly by inspecting internal connections and tracing the circuit with a test lamp.
 b. **Open armature coils.** Inspect the commutator for badly burned bars after disassembly.
 c. **Broken brush springs, worn brushes.** High insulation between the commutator bars or other causes which would prevent good contact between the brushes and commutator.
5. Low no-load speed and low current draw indicates a high internal resistance due to poor connections, defective leads, dirty commutator and causes listed under step 4.
Figure 18—10MT Starting Motor

1. Shift Lever
2. Plunger
9. Armature
10. Bearing
11. Grommet
12. Overrunning Clutch

13. Bronze-Graphite Bushing
14. Grease Reservoir
15. Sealing Grommet
16. Sealing Washers
17. Cadmium-Copper Contact Disc
18. Gasket
19. Center Bearing
20. Center Bearing Retaining Screw
21. Conductor Banding

Figure 19—27MT Starting Motor
6. Armature from the drive housing by tilting the armature to disengage the shift lever fingers (1) from the drive collar (32) (figure 25).
 • On the 27MT, it may be necessary to perform steps 2, 3 and 4 below before the drive assembly can be removed from the drive housing.

LEVER HOUSING

Disassemble
1. Drive assembly (32) from the armature shaft (9) as follows:
 • Remove the pinion stop washer (34) or thrust collar (39) from the armature shaft.
 • Drive the stop collar (39) away from the pinion stop retainer ring (37) by sliding a metal cylinder onto the armature shaft and with a hammer, striking the metal cylinder against the stop collar (figures 26 and 27).
 • Remove the pinion stop retainer ring from the groove in the armature shaft. If the retainer ring is distorted during removal, it must be replaced.
 • Slide the drive assembly and the stop collar off the armature shaft.
2. Bolts (35) attaching the solenoid (3) to the drive housing.
3. Bolt and nut (44) and washer on the 10MT or the retainer ring (37) and shaft (43) on the 5MT and 27MT attaching the shift lever to the drive housing.
4. Shift lever (1) and the attached solenoid plunger (2) from the drive housing.
5. Roll pin (40) in order to separate the shift lever from the solenoid plunger (2).

BRUSHES

Disassemble
5MT (Figure 28)
1. Brush holders (38) from the brush supports (62).
2. Screws from the brush holders.
3. Brushes (33) from the holders.

10MT and 27MT (Figure 29)
1. Brush holder pivot pins (63).
2. Brush springs (64).
3. Brushes (33) from the brush holders.

SOLENOID

First perform the electrical tests on the solenoid described under “Inspection and Repair” later in this section. Then disassemble the solenoid to inspect the contact disc and terminals.

Remove or Disconnect (Figure 30)
1. Nuts from the “S” terminal (23) and the motor terminal (24).
2. Screws attaching the end cover (67).
3. End cover from the solenoid body.

Inspect
1. Contact disc for wear.
 • Replace if worn.
INSPECTION AND REPAIR

Clean
- All parts, except the drive, with mineral spirits. Do not clean the parts in a degreasing tank or with grease dissolving solvents.
 — Dry by wiping with a clean cloth.

Inspect
1. Armature bearing fit in the end frame, lever housing, and nose housing. On 27MT models with bushings, check them. If the bushings are worn, replace them. Also replace the oil wicks when a bushing is replaced.
 - Lubricate the oil wicks and bushings before assembling the starter motor.
2. End frame bushing for damage or wear. Replace if damaged or worn.
3. Armature shaft for runout or scoring. Replace the armature assembly if the condition of the armature shaft is doubtful.
4. Commutator for run out.
 - Do not turn the commutator.
 - Do not undercut the insulation.
 - Clean the commutator with No. 240 grit emery cloth. If the commutator cannot be cleaned, replace the armature.
5. Armature for short circuits (figure 31).
 - Rotate the armature in a growler with a steel strip, such as a hacksaw blade, held on the armature parallel to the shaft. The steel strip will vibrate on the area of the short circuit.
 - Shorts between the commutator bars are sometimes produced by brush dust or copper dust.
6. Armature for opens.
 - Look for loose connections where the conductors join the commutator bars. Poor connections cause arcing and burning of the commutator. If the bars are not badly burned, the leads can be resoldered.
7. Armature for grounds by using a test lamp (figure 32).
 - If the test lamp lights when one test prod is placed on the commutator and the other test prod is placed on the armature core or shaft, the armature is grounded.
8. Motor housing and solenoid housing for oil and water.
 - If oil or water is present, this indicates broken O-rings, leaking gaskets, or oil seal wear. Replace all seals and gaskets as required.
9. Brushes for wear. If the brushes are worn to half the size of a new brush, replace the brushes.
10. Brush holders for dirt or damage.
 - Make sure that the brushes are not binding in the holders.
11. Brush springs for distortion or discoloring. If the springs are weak, bent, or discolored, replace them.
12. Field coils.
1. Lever
2. Plunger
3. Solenoid
4. Bushing
5. Spring
6. Coil
7. Armature
11. Grommet
31. Housing
32. Drive
33. Brushes
34. Washer
35. Bolt
36. Screw
37. Ring
38. Holder
39. Collar
40. Pin
41. Frame
44. Nut
45. Lead
46. Insulator
47. Shoe
48. Plate

• Look for burned or damaged insulation, damaged connections or loose poles. Replace the field coils if their condition is doubtful.

13. Field coils for grounds.
 • Disconnect the field coil ground connections.
 • Connect a test lamp between the field frame and the field connector.
 — If the test lamp lights, the field coils are grounded and must be repaired or replaced.

14. Field coils for opens.
 • Connect a test lamp across the ends of the coils.
 — If the test lamp does not light, the field coils are open.

15. Field coils for shorts.
 • Shorts are indicated by poor motor performance after everything else has been checked out. On the 5MT starter motor, the coils cannot be replaced separately because of the integral frame construction. The frame and field assembly must be replaced. To replace the field coils on the 10MT or 27MT, a pole shoe spreader and pole shoe screwdriver should be used. Care should be exercised in replacing the field coils to prevent grounding or shorting them as they are tightened into place. Where the pole shoe has a long lip on the side, it should be assembled in the direction of armature rotation.

16. Drive assembly (clutch) by turning the drive pinion in the cranking direction.
 • If the drive pinion turns roughly or slips in the cranking direction, replace the complete overrunning clutch assembly.

17. Solenoid for grounds.
 • Connect a 100 volt test lamp between the solenoid case and each terminal, one terminal at a time.
 — If the test lamp lights, the terminal is grounded. If the solenoid is grounded, replace the solenoid.

1. Lever
2. Plunger
3. Solenoid
4. Bushing (Some Models)
5. Spring
6. Coil
7. Armature
8. Grommet
9. Housing
10. Drive
11. Brush
12. Washer
13. Bolt
14. Screw
15. Ring
16. Collar
17. Pin
18. Frame
19. Shaft
20. Nut
21. Lead
22. Grounded Brush Holder
23. Insulated Brush Holder
24. Field Coil Connection
25. Support
26. Center Bearing
27. Retaining Screw
28. Shoe Pole

Figure 23—27MT Components
• With all the leads disconnected from the solenoid, make the test connections as shown in figure 33.

NOTICE: To prevent overheating the pull-in winding, do not leave the winding energized more than 15 seconds. The current draw will decrease as the winding temperature increases.

• Turn the switch on and adjust the carbon pile
to lower the battery voltage to the value shown in "Specifications" at the end of this section.

- Note the ampere reading; a high reading indicates a shorted or grounded winding, and a low reading indicates excessive resistance.
 - The windings resistance can be read directly using a digital ohmmeter that can measure tenths of an ohm.
 - The coil resistance can be determined by dividing the voltage by the current (amperes) values listed in "Specifications" at the end of this section.

ASSEMBLY

SOLENOID

Assemble (Figure 30)

1. New solenoid disc assembly if needed.
2. End cover to the solenoid body.
3. Screws attaching the end cover.
4. Nuts from the "S" terminal and the motor terminal.
Figure 31—Testing the Armature for Short Circuits

BRUSHES

- Assemble

5MT (Figure 28)

1. Brushes (33) into the holders (38).

2. Screws into the brush holders.

3. Brush holders into the brush supports (62).

Figure 32—Testing the Armature for Grounds

Figure 33—Solenoid Test Connections

3. Solenoid
22. Battery
23. "S" Terminal
24. "M" Terminal
25. "BAT" Terminal
26. Voltmeter
27. Ammeter
29. Switch
30. Carbon Pile
A. Checking Solenoid Pull-in Winding
B. Checking Solenoid Hold-in Winding
6D-20 ENGINE ELECTRICAL

10MT and 27MT (Figure 29)
1. Brushes (33) into the brush holders.
2. Brush springs (64).
3. Brush holder pivot pins (63).

LEVER HOUSING AND FIELD FRAME (Figures 21 through 23)

- **Assemble**
 1. Solenoid plunger (2) to the shift lever (1) with the roll pin (40).
 2. Lever assembly in the drive housing (31) with bolt (35), washer (34), and nut (44) on the 10MT or with the shaft (43) and snap ring on the 5MT and 27MT.
 - Make sure the shift lever pivots freely.

- **Important**
 1. Lubricate the drive end, commutator, bushings or bearings and armature shaft with Delco-Remy Lubricant No. 1960954 or equivalent.
 2. On starters with bronze bearings and oil wicks, soak the wicks and bearing surfaces with non-detergent SAE #20 oil. Do not drill, ream or machine sintered bronze bearings in any way. Oil from the wick will bleed through the highly porous bearing to lubricate the shaft.
 3. Lubricate the shaft underneath the overrunning clutch assembly with a silicone grease, such as General Electric CG321, or Dow Corning 33 medium, or equivalent. the overrunning clutch does not require lubrication.
 4. Drive assembly (32) on the armature shaft.
 - Slide the drive assembly on the shaft with the pinion gear toward the shaft end.
 5. Stop collar (39) on the shaft with the cupped end away from the pinion gear.
 6. Retainer ring (37) on the shaft (figure 34).
 - Place the ring on the end of the shaft.
 - With a wood block on the top of the ring, force the ring onto the shaft with a light hammer blow.
 - Slide the ring down and into the shaft groove. Do not distort the retainer ring when installing it.
 7. Thrust collar (39) or pinion stop washer (34) with the flat side away from the pinion.
 - Apply sealing compound to the solenoid flange, just under the solenoid.
 - Spread the brush assemblies using a tool socket slightly larger in diameter than the commutator.
 - Slide the field frame over the armature. The brush retaining tool socket will slide out as the field frame bottoms.
 - Install the washer, end frame and the two through bolts.

8. Brake washer (34) on the commutator end of the armature shaft (10MT and 27MT).
9. Solenoid (3) and the solenoid return spring (5) with the drive end housing (31).
10. Solenoid retaining screws.
11. Drive assembly collar to the shift lever fingers.
12. Armature shaft into the drive end bearing.
13. Field frame to the drive end assembly.
14. Field coil strap to the solenoid motor terminal.
PINION CLEARANCE CHECK

The pinion clearance cannot be adjusted but should be checked after reassembly of the motor. Improper clearance is an indication of worn parts.

To check pinion clearance, perform the following steps (figures 36 and 37).

1. Disconnect the motor field connector from the solenoid motor terminal and insulate it carefully.
2. Connect a battery of the same voltage as the solenoid from the solenoid switch terminal to the solenoid frame.
3. Momentarily flash a jumper lead from the solenoid motor terminal to the solenoid frame. This will shift the pinion into cranking position and it will remain so until the battery is disconnected.
4. Push the pinion back toward the commutator end to eliminate slack movement.
5. Measure the distance between pinion and pinion stop.
 - Clearance should be 0.25 mm to 4.06 mm (0.010 inch to 0.160 inch).

DELCO-REMY PMGR STARTING MOTOR

DESCRIPTION

The PMGR starting motor features small permanent magnets mounted inside the field frame (figure 38). These magnets take the place of current-carrying field coils mounted on iron pole pieces.

The use of MAGNEQUENCH® permanent magnets permits the design of a gear reduction motor that is about half as large and half the weight of a field coil motor having the same cranking performance. Internal gear reduction through planetary gears results in armature speeds in the 7000 rpm range. This higher armature speed may result in a noticeable difference in sound during cranking. The armature and drive shaft are mounted on roller or ball bearings in place of bushings.

Electrically the motor consists of the brush assembly and the armature. The solenoid contains pull-in and hold-in windings, and the motor external wiring is the same as field-coil motors. No periodic lubrication is required except during motor repair.

The part number and the date code are stamped on the outside of the end plate. The date code shows the year, month and day of month of production.

DIAGNOSIS OF THE STARTING MOTOR

STARTING MOTOR TESTS

Before disassembling the starting motor for repair, the following tests should be made.

NOTICE: Never operate the starting motor more than 30 seconds at a time without pausing to allow it to cool for at least two minutes. Overheating, caused by too much cranking, will damage the starting motor.
Inspect

1. Pinion for freedom of operation by turning it on the screw shaft.
2. Armature for freedom of rotation by prying the pinion with a screwdriver.
 - Tight bearings or a bent armature shaft will cause the armature to not turn freely.
 - If the armature does not turn freely, the motor should be disassembled.
 - If the armature does not rotate freely, the motor should be given a no-load test before disassembly.

NO LOAD TEST (Figure 39)

Connect a voltmeter from the motor terminal to the motor frame and an rpm indicator to measure drive speed. Connect the motor and an ammeter in series with a fully charged battery of the specified voltage, and a switch in the open position switch terminal. Close the switch and compare the rpm, current, and voltage readings with the specifications at the end of this section. It is not necessary to obtain the exact voltage specified as a good reading can be made by understanding that if the voltage is slightly higher the rpm will be slightly higher, with the current remaining basically unchanged. However, if the exact voltage is desired, a carbon pile connected across the battery can be used to reduce the voltage to the specified value. Compare the test results as follows:

1. Rated current draw and no-load speed indicates normal condition of the starting motor.
2. Low free speed and high current draw indicates:
 a. Too much friction. Tight, dirty, or worn bearings or bent armature shaft allowing the armature to drag.
 b. Shorted armature. This can be further checked on a growler after disassembly.
 c. Grounded armature or fields. Check further after disassembly.
3. Failure to operate with high current draw indicates:
 a. A direct ground in the terminal or brush assembly.
 b. Seized bearings. This should have been noted by turning the armature by hand.
4. Failure to operate with no current draw indicates:
 a. Open brush leads.
 b. Open armature coils. Inspect the commutator for badly burned bars after disassembly.
 c. Broken brush springs, worn brushes, high insulation between the commutator bars. Look for these or other causes which would prevent good contact between the brushes and commutator.
Figure 40—PMGR Starting Motor Components

5. Low no-load speed and low current draw indicates a high internal resistance due to poor connections, worn leads, dirty commutator and causes listed under step 4.

DISASSEMBLY

If the motor does not perform to specifications, it may need to be disassembled for further testing of the components. Normally the starting motor should be disassembled only so far as is necessary to make repair or replacement or parts. As a precaution, it is suggested that safety glasses be worn when disassembling or assembling the starting motor.

++ Remove or Disconnect (Figures 40 through 43)

Tool Required:

J 28509-A Bearing Puller

- Clean the outside of the starter housing, removing grease, oil, mud, etc.
- Make scribe marks to show the relationship of the lever housing, field frame, and end plate to aid in assembly.

1. Nut (44) and lead at solenoid terminal.
2. Through bolts (35).
3. Two screws and end plate (75).

CAUTION: The magnets in the frame have a strong attraction to metal parts. Do not put your fingers between the armature and frame when removing or installing the armature assembly or injury could result.

4. Field frame with armature and shield (77) from the drive end.
5. Armature (9) from the field frame (41).
6. Commutator end bearing (78) from the armature shaft with J 28509-A or equivalent.
 - Lift the brushes so each spring rests against the brush to prevent brush damage during brush assembly removal (figure 41).
7. Brush assembly from the commutator.

Figure 41—Armature Assembly
6. Gear and drive from the drive housing assembly (82).
 - Use a screwdriver to pry the shift lever off the drive pins.

7. Thrust collar (81) from the drive shaft
 - Slide a deep socket over the shaft and tap the socket to drive the stop collar (39) off the pinion stop ring (37) (figure 42).

8. Stop collar and stop ring.

9. Drive and gear from the shaft.

10. Bearing (83) from the drive housing assembly (figure 43).
 - The assembly, including the solenoid, plunger, return spring, shift lever, and drive housing, cannot be disassembled.

INSPECTION AND REPAIR

Clean

- All parts with a soft dry cloth. Do not use grease dissolving solvents on the field frame, armature, bearings or drive assembly.

Inspect

1. Brushes and brush holders. Make sure they are clean and the brushes are not worn. Check by hand that the brush springs are giving firm contact between the brushes and commutator. If the springs are discolored or distorted, or the brushes worn, replace the brush assembly.

2. Armature. If the commutator is rough or worn, turn it down only enough to clean the surface. Do not undercut it.

3. Armature for short circuits (figure 44).
 - Rotate the armature in a growler with a steel strip, such as a hacksaw blade, held on the armature parallel to the shaft. The steel strip will vibrate on the area of the short circuit.
 - Shorts between the commutator bars are sometimes produced by brush dust or copper dust.

 - Look for loose connections where the conductors join the commutator bars. Poor connections cause arcing and burning of the
3. Commutator. If the bars are black or discolored where the windings are connected to the bars, replace the armature.

5. Armature for grounds by using a test lamp (figure 45).
 - If the test lamp lights when one test prod is placed on the commutator and the other test prod is placed on the armature core or shaft, the armature is grounded.

6. Shaft, bearings, pinion and gears for wear and discoloration. Replace as necessary.

7. Solenoid hold-in winding.
 - With all the leads disconnected from the solenoid, make the test connections as shown in figure 46.
 - Turn the switch on and adjust the carbon pile to lower the battery voltage to the value shown in “Specifications” at the end of this section.
 - Note the ampere reading; a high reading indicates a shorted or grounded winding, and a low reading indicates excessive resistance.

 - With all the leads disconnected from the solenoid, make the test connections as shown in figure 47.

NOTICE: To prevent overheating the pull-in winding, do not leave the winding energized more than 15 seconds. The current draw will decrease as the winding temperature increases.

 - Turn the switch on and adjust the carbon pile to lower the battery voltage to the value shown in “Specifications” at the end of this section.
 - Note the ampere reading; a high reading indicates a shorted or grounded winding, and a low reading indicates excessive resistance.
ASSEMBLY

Install or Connect (Figures 40, 41, 48 through 52)

1. Lift the brushes up in the holders with the springs resting against the sides of the brushes.

2. Commutator end bearing inner race onto the shaft by pressing until the inner race contacts the stop shoulder.
 - The bearing is sealed and does not need lubrication.
 - Lift the springs and allow the brushes to drop onto the commutator.
3. Gear bearing into the gear by pressing until it is 0.28 to 0.38 mm (0.011 to 0.014 inch) below the casting surface (figure 48).
 - Lubricate the bearing with lubricant PN 10497186 or equivalent if needed. This grease maintains lubricating qualities even at temperature extremes.
4. Drive end bearing into the drive housing assembly (figure 49).
 - Press the bearing until it is 0.25 to 0.45 mm (0.009 to 0.010 inches) below the casting face.
 - Add lubricant PN 10497186 or equivalent to the bearing.
5. Lubricant PN 10497186 or equivalent to the inner gear teeth, planetary gears, armature shaft gear teeth, and the shaft assembly bearing (figure 50).
6. Inner gear and drive over the shaft.
7. Stop collar (39) onto the shaft.
8. Stop ring (37) on the shaft (figure 51).
 - Place the ring on the end of the shaft.
With a wood block on the top of the ring, force the ring onto the shaft with a light hammer blow.

Slide the ring down and into the shaft groove. Do not distort the retainer ring when installing it.

9. Thrust collar (81) onto the shaft:
 - Use pliers to squeeze the collars over the stop ring (figure 52).

10. Drive and shaft assembly into the drive housing assembly.
 - With a screwdriver, guide the shift lever over the shift collar pins on the drive assembly.

11. Shield (77) to the drive housing assembly.

CAUTION: The magnets in the frame have a strong attraction to metal parts. Do not put your fingers between the armature and frame when removing or installing the armature assembly or injury could result.

12. Armature assembly (9) into the frame.
13. Frame to the drive housing assembly.
14. End plate (75) to the brush assembly with two screws.
15. Two bolts (35) to the starter assembly.
16. Nut (44) and lead to the solenoid terminal.

PINION CLEARANCE CHECK

The pinion clearance cannot be adjusted but should be checked after reassembly of the motor. Improper clearance is an indication of worn parts.

To check pinion clearance, perform the following steps (figures 53 and 54).

1. Disconnect the motor lead connector from the solenoid motor terminal.
2. Connect a 12-volt battery from the solenoid switch terminal to the drive housing.
3. **Momentarily** flash a jumper lead from the solenoid motor terminal to the drive housing. This will shift the pinion into cranking position and it will remain so until the battery is disconnected.
4. Push the pinion back toward the commutator end to eliminate slack movement.
5. Measure the distance between pinion and pinion stop.
 - Clearance should be 0.25 mm to 3.56 mm (0.010 to 0.160 inch).
6. The clearance is not adjustable. If it is not within limits, check for improper assembly.
DESCRIPTION

This distributor is a magnetic pulse triggered, transistor controlled, inductive discharge distributor (figures 55 through 58). The magnetic pickup assembly located inside the distributor contains a permanent magnet, a pole piece with internal teeth, and a pickup coil. When the teeth of the timer core rotating inside the pole piece line up with the teeth of the pole piece, an induced voltage in the pickup coil signals the electronic module to trigger the coil primary circuit. The primary current decreases and a high voltage of up to 35,000 volts is induced in the ignition coil secondary winding which is directed through the rotor and secondary leads to fire the spark plugs. The capacitor in the distributor is for radio noise suppression.

The magnetic pickup assembly is mounted over the main bearing on the distributor housing. The electronic module within the distributor automatically controls the dwell period.

A distributor with an integral coil is used on engines without TBI (Throttle Body Injection). A distributor with a separate coil is used on engines with TBI, and the ignition system is then controlled by the computer. This EST (Electronic Spark Timing) system may include ESC (Electronic Spark Control). Refer to ENGINE ELECTRICAL (SEC. 6D) in the applicable truck service manual for a description of these systems.

IGNITION COIL

The coil is built like a transformer with the winding surrounded by a laminated iron frame. It generates a high secondary voltage (up to 35,000 volts) when the primary circuit is broken. It may be contained in the cap or mounted separately and connected to the distributor by a high tension wire.

ELECTRONIC MODULE

The electronic module is a solid state unit containing many complete circuits. The circuits control spark triggering, switching, current limiting, dwell control and distributor pickup. The dwell angle is controlled by the module and is varied in direction relation to engine speed.
POLE PIECE AND COIL ASSEMBLY (Figure 59)

The pole piece and plate assembly (often referred to as the pickup coil assembly) consists of the following: A stationary pole piece with internal teeth and a pickup coil and magnet which are located between the pole piece and a bottom plate.

CENTRIFUGAL AND VACUUM ADVANCE (Figures 59 and 60)

Distributors without EST systems have centrifugal advance weights and springs. Some also have vacuum advance units.

Centrifugal advance is achieved through the rotation of the timer core in relation to the distributor shaft. Vacuum advance is achieved by attaching the pickup coil and pole piece to the vacuum advance unit actuating arm.

On distributors without the vacuum unit, a plastic retainer is installed to hold the pickup coil assembly stationary. Only centrifugal advance is used on these models.

HALL EFFECT SWITCH

This switch, used on some distributors in the EST system, signals the computer which cylinder will fire next.
DISASSEMBLY OF DISTRIBUTORS WITH INTEGRAL COILS

Cap

1. Wiring harness connector from the ignition coil terminal connector (figure 55).
 - Unlatch the four spring latches holding the cap to the housing.
2. Cap and coil.
 - Inspect and check the coil. Refer to "Inspection and Electrical Tests" later in this section.

Coil

3. Cover attaching bolts (32) and the cover (19) from the cap (23).
4. Four attaching bolts from the coil (21).
5. Coil wires from the connector housing with needle nose pliers (figure 62).
6. Coil and wiring from the cap.
7. Arc seal (22) and the ground wire (20) from the cap (23).
 - Refer to "Inspection and Electrical Tests" later in this section.

Shaft Assembly

8. Two bolts (32) holding the rotor (10) to the shaft (26).
10. Two bolts holding the Hall Effect switch to the housing (if equipped).
11. Hall Effect switch (35) if equipped (figure 63).
 - Refer to "Inspection and Electrical Tests" later in this section.
12. Roll pin (27) from the shaft (26) (figure 64).
 - Mark the shaft and driven gear so they can be aligned for assembly.
 - Drive out the roll pin with a small punch.
14. Driven gear (29), shim washer (31) and thrust washer on distributor for an 8-cylinder engine.
15. Timer core shaft (26) from the housing (30).
 - Distributors for non-EST ignition systems have centrifugal advance weights and springs.
 - These are part of the shaft assembly and are not serviceable.

Module Components

16. Four-wire connector from the pickup coil connector on distributors with ESC (figure 65).
17. Pickup coil connector from the module (figure 66).
 - Check the vacuum advance unit (if equipped) and the pickup coil. Refer to "Inspection and Electrical Tests" later in this section.
18. Screw holding the capacitor to the housing.
19. Capacitor (36), wiring harness connector (40) and module (14) from the housing (figure 67).
20. Connector from the module.
 - Check the module. Refer to "Inspection and Electrical Tests" later in this section.

Pickup Coil Assembly (Figure 68)

22. Thin washer (31) from the housing.
23. Pickup coil assembly (11).
 - Do not disassemble. The coil is serviced only as an assembly.
24. Vacuum unit (2) (if equipped) or plastic retainer and two bolts.

INSPECTION AND ELECTRICAL TESTS

Inspect

1. Cap for cracks or holes. Replace the cap if it is damaged at all.
2. Metal terminals in the cap for corrosion. Scrape them clean with a knife or replace the cap.
3. Seal and the button in the cap (figure 69). Replace the button if the end that contacts the distributor rotor is pitted or burned.
4. Rotor for wear or burning at the outer terminal. The presence of carbon on the terminal indicates rotor wear and the need for replacement. Do not try to scrape carbon deposits from the outer terminal since this would shorten the terminal and might alter ignition timing.
5. Advance assembly components (springs and weights) for corrosion or dirt.

![Diagram of Distributor Components](image)

<table>
<thead>
<tr>
<th>Part</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum Unit</td>
<td>2</td>
</tr>
<tr>
<td>Rotor</td>
<td>10</td>
</tr>
<tr>
<td>Pickup Coil Assembly (Pole Piece and Plate)</td>
<td>11</td>
</tr>
<tr>
<td>Module</td>
<td>14</td>
</tr>
<tr>
<td>Cover</td>
<td>19</td>
</tr>
<tr>
<td>Ground Strap</td>
<td>20</td>
</tr>
<tr>
<td>Ignition Coil Assembly</td>
<td>21</td>
</tr>
<tr>
<td>Seal</td>
<td>22</td>
</tr>
<tr>
<td>Cap</td>
<td>23</td>
</tr>
<tr>
<td>Resistor</td>
<td>24</td>
</tr>
<tr>
<td>Screw</td>
<td>25</td>
</tr>
<tr>
<td>Shaft Assembly</td>
<td>26</td>
</tr>
<tr>
<td>Pin</td>
<td>27</td>
</tr>
<tr>
<td>Terminal Block</td>
<td>28</td>
</tr>
<tr>
<td>Gear</td>
<td>29</td>
</tr>
<tr>
<td>Housing</td>
<td>30</td>
</tr>
<tr>
<td>Washer</td>
<td>31</td>
</tr>
<tr>
<td>Bolt</td>
<td>32</td>
</tr>
<tr>
<td>Tang Washer</td>
<td>33</td>
</tr>
</tbody>
</table>

Figure 61—Distributor Components

2. Voltage of the Hall Effect switch (if equipped).
 - Connect a 12 volt battery and voltmeter as shown in figure 71.
 - With a knife blade inserted and held against the magnet the voltmeter should read within 0.5 volts of the battery voltage. If not, replace the switch.
 - Remove the knife blade. The voltmeter should read less than 0.5 volts. If not, replace the switch.

3. Resistance of the pickup coil with an ohmmeter.
 - Connect an ohmmeter as shown in figure 72, step 1. If the ohmmeter reads less than 500 ohms or more than 1500 ohms while flexing the leads, replace the pickup coil.
 - If the coil does not have an open, check for ground as shown in step 2. The reading should be infinite.

4. Resistance of the ignition coil with an ohmmeter.
 - Connect the ohmmeter as shown in figure 73, step 1. The reading should be zero or nearly zero. If not, replace the coil.
20. Ground Strap
21. Coil Assembly
34. C, Ground, B + Terminals

Figure 62—Ignition Coil

20
21
34

Figure 64—Removing the Roll Pin

11. Pickup Coil Assembly (Underneath)
14. Module
35. Hall Effect Switch

Figure 63—Distributor with Hall Effect Switch

14
11
35

Figure 65—Module and Connectors

14. Module
36. Capacitor
37. Ignition Coil Connector
38. Pickup Coil Connector
39. Electronic Spark Control Connector
2. Vacuum Unit
11. Pickup Coil Assembly (Pole Piece and Plate)
30. Housing
31. Washer

- Connect the ohmmeter as shown in steps 2 and 3. Use the high scale. Replace the coil only if both readings are infinite.

5. Electrical performance of the module. The module can only be checked with an approved module tester, such as J 24642-F or equivalent. Follow the directions exactly that come with the tester.

14. Module
36. Capacitor
40. Wiring Harness Connector

41. Contact Button and Spring
42. Ignition Coil Seal

Figure 66—Removing the Pickup Coil Connector
Figure 68—Pickup Coil Removed
Figure 67—Removing the Module
Figure 69—Cap and Seal
ASSEMBLY OF DISTRIBUTORS WITH INTEGRAL COILS

Install or Connect (Figure 61)

Cap
1. Spring, button (41) and seal (42) into the cap (figure 69).
2. Coil (21) and wiring into the cap (figure 62).
3. Four bolts holding the coil to the cap.

43. Magnet
44. Battery
45. Voltmeter
A. Insert a knife blade straight down and against the magnet.

Figure 70—Checking the Vacuum Advance Unit

Figure 71—Testing the Hall Effect Switch

Figure 72—Checking the Pickup Coil

Figure 73—Checking the Ignition Coil
4. Cover (19) to the cap (23) with two bolts.

Distributor Components

5. Lubricant into the lube cavity of the housing (30) only if needed.
 - Refer to "Specifications" at the end of this section.
6. Vacuum unit (2) if equipped or plastic retainer.
7. Screws holding the vacuum unit or retainer to the housing.
8. Pickup coil assembly (11) into the housing (30).
 - Position the assembly over the pin on the vacuum unit or retainer.

NOTICE: If the arm of the assembly is not properly installed on the pin, the arm can float and cause the ignition timing to vary.
 - Secure the assembly with the C-washer (figure 68).
9. Magnetic shield (if equipped).
10. Wiring connectors to the module (figure 65).
 - Lubricate.
 - Module terminals with a thin coat of petroleum jelly to prevent future oxidation.
 - Bottom of the module and the module rest pad in the housing with silicone grease or an equivalent heat transfer substance.

NOTICE: Be sure to thoroughly coat the bottom of the module. Failure to do so could result in heat damage to the module.

Install or Connect

- Pickup coil connector to the module.
- ESC connector (if equipped) to the pickup coil connector.
- Wiring harness and capacitor to the other end of the module.
11. Module, wiring harness, and capacitor to the housing with three bolts.
12. Shaft assembly into the housing.
 - Rotate the shaft to check for even clearance all around between the pickup coil assembly and the teeth on the distributor shaft assembly. If interference exists, loosen the three bolts on the pickup coil assembly and move the pole piece (teeth) to provide an even clearance and tighten the three bolts.
13. Hall Effect switch (if equipped) to the housing with two bolts.
14. Rotor to the shaft assembly with two screws.

Distributors for 6 Cylinder Engines
15. Driven gear (29) onto the shaft.

Distributors for 8 Cylinder Engines
16. Seal (22), thrust washer, washer (31), and driven gear (29) onto the shaft.
Disassembly of Distributors with Separate Coils

Distributors with Sealed Module Connectors (Figure 57)

- Remove or Disconnect (Figure 77 and 78)

1. Screws and washers holding the cap to the housing.
2. Cap (23) from the housing.
3. Rotor (10) from the shaft by lifting or prying straight up.
4. Roll pin (27) from the shaft (26).
 - Mark the shaft and driven gear for reassembly.
 - Drive out the roll pin with a small punch (figure 79).
5. Driven gear (29), washer or spring, and spring retainer (52) or tang washer (33).
6. Shaft (26) with the pole piece and plate from the housing (30).
7. Retainer (49) from the housing (30) by prying it with a screwdriver.
8. Shield (50).
9. Pickup coil connector from the module (14).
 - Lift the locking tab with a screwdriver.
11. Two screws holding the module to the housing.
12. Module (14).

Distributors without Sealed Module Connectors

- Remove or Disconnect (Figure 80)

1. Cap.
 - Unlatch the spring latches holding the cap to the housing.
 - Place a mark on the rotor and on the shaft assembly to help line up the rotor during reassembly.
2. Rotor (10).
3. Two bolts holding the Hall Effect switch (if equipped) to the housing.
 - Lift away the locking tab of the connector to the switch.
4. Hall Effect switch (35) by lifting straight up.
5. Roll pin (26) from the shaft (27).
 - Mark the shaft and driven gear so they can be aligned for assembly.
 - Drive out the roll pin with a small punch (figure 79).
6. Driven gear (29), washer (31), spring (51), retainer (52), and tang washer (33).
ENGINE ELECTRICAL 6D-37

Figure 78—Distributor Components (Separate Coil and Sealed Connector) for an 8-Cylinder Engine

7. Shaft (27) from the housing (30).
 • Pry straight up.
8. Thin "C" retaining washer (53) from inside the pickup coil assembly.
9. Pickup coil connector from the module (14).
10. Pickup coil assembly (11) from the housing.
11. Wiring harness connectors from the module.
12. Two screws holding the module to the housing.
14. Bolt holding the wiring harness to the housing.
15. Wiring harness.

INSPECTION AND ELECTRICAL TESTS

Inspect

1. Cap for cracks or tiny holes. Replace the cap if it is damaged at all.
2. Metal terminals in the cap for corrosion. Scrape them clean with a knife or replace the cap.
3. Rotor for wear or burning at the outer terminal. The presence of carbon on the terminal indicates rotor wear and the need for replacement.

4. Shaft for shaft-to-bushing looseness. Insert the shaft in the housing. If the shaft wobbles, replace the housing and/or shaft.
5. Housing for cracks or damage.

Measure

Tools Required:
- J 24642-F Module Tester

1. Voltage of the Hall Effect switch (if equipped).
 • Connect a 12 volt battery and voltmeter as shown in figure 71.
 • With a knife blade inserted and held against the magnet, the voltmeter should read within 0.5 volts of the battery voltage. If not, replace the switch.
 • Remove the knife blade. The voltmeter should read less than 0.5 volts. If not, replace the switch.

2. Resistance of the pickup coil with an ohmmeter.
 • Connect an ohmmeter to either pickup coil lead and the housing as shown in figure 81, step 1. The reading should be infinite. If not, replace the coil.
 • Connect an ohmmeter to both pickup coil leads as shown in figure 81, step 2. Flex the leads by hand at the coil and the connector to locate any intermittent opens. The ohmmeter should read a constant unchanging value in the 500 to 1500 ohm range. If not, replace the coil.

3. Electrical performance of the module. The module can only be checked with an approved module tester, such as J 24642 or equivalent. Follow the directions exactly that come with the tester.

4. Resistance of the ignition coil with an ohmmeter.
 • Connect the ohmmeter as shown in figure 82, step 1. Use the high scale. The reading should be infinite. If not, replace the coil.
 • Connect the ohmmeter as shown in step 2. Use the low scale. The reading should be very low or zero. If not, replace the coil.
Figure 80—Distributor Components (Separate Coil)

- Connect the ohmmeter as shown in step 3. Use the high scale. The meter should not read infinite. If it does, replace the coil.

ASSEMBLY OF DISTRIBUTORS WITH SEPARATE COILS

DISTRIBUTORS WITH SEALED MODULE CONNECTORS (Figure 57)

Install or Connect (Figure 77 and 78)

- Lubricate
 - Bottom of the module and the module rest pad in the housing with silicone grease or an equivalent heat transfer substance.

NOTICE: Be sure to thoroughly coat the bottom of the module. Failure to do so could result in heat damage to the module.

1. Module (14) to the housing (30) with two screws.
2. Pickup coil (11).
 - Fit the tab on the bottom of the coil into the anchor hole in the housing.
3. Pickup coil wiring connector to the module.
 - Make sure the locking tab is in place.
4. Shield (50) onto the coil.
5. Retainer (49) onto the shield.
6. Shaft assembly (26) into the housing (30).
7. Spring retainer (52), spring (51), washer and driven gear (29) onto the bottom of the shaft.
 - Align the marks on the driven gear, housing, and shaft assembly.
8. Roll pin (27) into the gear.
 - Spin the shaft and make sure the teeth on the shaft assembly do not touch the pole piece.
9. Rotor (10) onto the shaft.
 - Fit the tab in the rotor into the slot on the shaft.
10. Cap (23) to the housing with screws and washers.
DISTRIBUTORS WITHOUT SEALED CONNECTOR
(Figure 80)

Install or Connect

- Lubricate
 - Bottom of the module and the module rest pad in the housing with silicone grease or an equivalent heat transfer substance.

NOTICE: Be sure to thoroughly coat the bottom of the module. Failure to do so could result in heat damage to the module.

1. Module (14) to the housing (30) with two screws.
2. Wiring harness into the housing.
3. Two harness mounting tabs to the housing with one bolt.
4. Two wiring connectors to the module.
 - Be sure the locking tabs are in place.
5. Pickup coil (11) to the housing.
 - Fit the tab on the bottom of the coil into the anchor hole in the housing.
6. Pickup coil wiring connector to the module.
7. Thin "C" washer into the coil.
8. Shaft (26) into the housing.
9. Tang washer (33), spring retainer (52), spring (51), and driven gear (29) onto the shaft.
 - Align the marks on the driven gear, housing, and shaft assembly.
10. Roll pin into the driven gear.
 - After assembly, turn the shaft by hand to check tooth clearance between the shaft and pickup coil assembly. If the clearance needs adjustment, loosen and retighten the three pickup coil bolts.
11. Wiring connector to the Hall Effect switch (if equipped).
12. Hall Effect switch to the housing with two bolts.
 - The teeth on the shaft should rotate between the back plate and the magnet of the switch without touching.
13. Rotor (10) onto the shaft.
 - Fit the tab in the rotor into the slot on the shaft.
14. Cap (23) onto the housing.
 - Fit the tab inside the rim of the cap into the slot on the rim of the housing.
15. Spring clips on the cap onto the rim of the housing.

A. Scrape clean metal ground.
6D-40 ENGINE ELECTRICAL

SPECIFICATIONS

GENERATOR SPECIFICATIONS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Series (Type 100)</th>
<th>Rotation Viewing Dr. End</th>
<th>Field-Ohms 27°C (80°F)</th>
<th>Field Current @ 12 Volts 27°C (80°F)</th>
<th>Cold Output</th>
<th>Hot Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>AMPS</td>
<td>RPM AMPS RPM</td>
<td>AMPS RPM</td>
<td>AMPS RPM</td>
</tr>
<tr>
<td>1100207</td>
<td>12 SI</td>
<td>CW</td>
<td>2.4-2.7</td>
<td>4.5-5.0 23 1600 70 6500</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>1101157</td>
<td>12 SI</td>
<td>CW</td>
<td>2.4-2.8</td>
<td>4.2-5.0 30 1600 78 6500</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>1101215</td>
<td>17 SI</td>
<td>CW</td>
<td>1.7-2.1</td>
<td>5.7-7.1 50 1600 120 6500</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>1101240</td>
<td>12 SI</td>
<td>CW</td>
<td>2.4-2.8</td>
<td>4.2-5.0 30 1600 94 6500</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>1101243</td>
<td>12 SI</td>
<td>CW</td>
<td>2.4-2.8</td>
<td>4.2-5.0 30 1600 94 6500</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>1101244</td>
<td>12 SI</td>
<td>CW</td>
<td>2.4-2.8</td>
<td>4.2-5.0 30 1600 94 6500</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>1101245</td>
<td>12 SI</td>
<td>CW</td>
<td>2.4-2.8</td>
<td>4.2-5.0 30 1600 94 6500</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>1101263</td>
<td>17 SI</td>
<td>CW</td>
<td>1.7-2.1</td>
<td>5.7-7.1 50 1600 120 6500</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>1105628</td>
<td>12 SI</td>
<td>CW</td>
<td>2.4-2.7</td>
<td>4.5-5.0 30 1600 81 6500</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>1105632</td>
<td>12 SI</td>
<td>CW</td>
<td>2.4-2.7</td>
<td>4.5-5.0 23 1600 70 6500</td>
<td>66</td>
<td></td>
</tr>
</tbody>
</table>

STARTER SPECIFICATIONS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Series</th>
<th>Type</th>
<th>No Load Test @ 10 Volts</th>
<th>AMPS</th>
<th>RPM</th>
<th>Solenoid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>Maximum</td>
<td>Part No.</td>
</tr>
<tr>
<td>1113589</td>
<td>27MT</td>
<td>136</td>
<td></td>
<td>9000</td>
<td>13400</td>
<td>1114247</td>
</tr>
<tr>
<td>1113590</td>
<td>27MT</td>
<td>136</td>
<td></td>
<td>9000</td>
<td>13400</td>
<td>1114558</td>
</tr>
<tr>
<td>1998530</td>
<td>5MT</td>
<td>101</td>
<td></td>
<td>6000</td>
<td>11900</td>
<td>1114530</td>
</tr>
<tr>
<td>1998559</td>
<td>10MT</td>
<td>101</td>
<td></td>
<td>6500</td>
<td>10500</td>
<td>1114520</td>
</tr>
<tr>
<td>1998583</td>
<td>10MT</td>
<td>101</td>
<td></td>
<td>6500</td>
<td>10700</td>
<td>1114520</td>
</tr>
<tr>
<td>1998584</td>
<td>10MT</td>
<td>101</td>
<td></td>
<td>6500</td>
<td>10700</td>
<td>1114531</td>
</tr>
<tr>
<td>1998588</td>
<td>10MT</td>
<td>101</td>
<td></td>
<td>6500</td>
<td>10700</td>
<td>1114563</td>
</tr>
<tr>
<td>1998589</td>
<td>10MT</td>
<td>101</td>
<td></td>
<td>6500</td>
<td>10700</td>
<td>1114563</td>
</tr>
<tr>
<td>1998590</td>
<td>10MT</td>
<td>101</td>
<td></td>
<td>6500</td>
<td>10700</td>
<td>1114531</td>
</tr>
<tr>
<td>9000719</td>
<td>PMGR</td>
<td>101</td>
<td></td>
<td>2300*</td>
<td>26600*</td>
<td>—</td>
</tr>
<tr>
<td>9000735</td>
<td>PMGR</td>
<td>PG200</td>
<td></td>
<td>2300*</td>
<td>26600*</td>
<td>—</td>
</tr>
<tr>
<td>10455016</td>
<td>5MT</td>
<td>101</td>
<td></td>
<td>6500</td>
<td>11900</td>
<td>1114530</td>
</tr>
<tr>
<td>10455018</td>
<td>5MT</td>
<td>101</td>
<td></td>
<td>6500</td>
<td>11900</td>
<td>1114530</td>
</tr>
</tbody>
</table>

Drive Speed
SPECIFICATIONS (CONT.)

SOLENOID SWITCHES

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Volts</th>
<th>Pull-In Winding</th>
<th>Hold-In Winding</th>
</tr>
</thead>
<tbody>
<tr>
<td>1114247</td>
<td>12</td>
<td>13-16</td>
<td>5</td>
</tr>
<tr>
<td>1114520</td>
<td>12</td>
<td>23-30</td>
<td>5</td>
</tr>
<tr>
<td>1114530</td>
<td>12</td>
<td>23-30</td>
<td>5</td>
</tr>
<tr>
<td>1114531</td>
<td>12</td>
<td>23-30</td>
<td>5</td>
</tr>
<tr>
<td>1114558</td>
<td>12</td>
<td>13-16</td>
<td>5</td>
</tr>
<tr>
<td>1114563</td>
<td>12</td>
<td>26-30</td>
<td>5</td>
</tr>
<tr>
<td>PMGR Solenoid</td>
<td>12</td>
<td>31-36</td>
<td>5</td>
</tr>
<tr>
<td>1114531</td>
<td>12</td>
<td>23-30</td>
<td>5</td>
</tr>
<tr>
<td>1114558</td>
<td>12</td>
<td>13-16</td>
<td>5</td>
</tr>
<tr>
<td>1114563</td>
<td>12</td>
<td>26-30</td>
<td>5</td>
</tr>
<tr>
<td>PMGR Solenoid</td>
<td>12</td>
<td>31-36</td>
<td>5</td>
</tr>
</tbody>
</table>

DISTRIBUTOR SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Start Distributor RPM</th>
<th>Degree</th>
<th>Intermediate Distributor RPM</th>
<th>Degree</th>
<th>Maximum Distributor RPM</th>
<th>Degree</th>
<th>Vacuum Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1103717</td>
<td>650</td>
<td>0-3</td>
<td>1200</td>
<td>6-6</td>
<td>2050</td>
<td>11-13</td>
<td>1973682</td>
</tr>
<tr>
<td>1103719</td>
<td>700</td>
<td>0-2</td>
<td>1000</td>
<td>2-5</td>
<td>3000</td>
<td>4-8</td>
<td>1973682</td>
</tr>
</tbody>
</table>

VACUUM ADVANCE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Vacuum Model</th>
<th>Start Inches Hg.</th>
<th>Start -kPa</th>
<th>Maximum Inches Hg.</th>
<th>Maximum -kPa</th>
<th>Max. Dist. (Deg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973682</td>
<td>7-9</td>
<td>24-32</td>
<td>13-14</td>
<td>42-46</td>
<td>5</td>
</tr>
</tbody>
</table>

LUBRICATION

For generator bearing lubrication, use only Delco-Remy Lubricant No. 1948791 or equivalent. This lubricant is a premium type lithium soap-mineral oil grease made especially for ball and roller bearings.

For starters (other than the PMGR) and distributor part lubrication, use Delco-Remy Gear and Shift Lubricant No. 1960954 or equivalent.

For PMGR starting motors, use Delco-Remy Lubricant No. 10497186.
SPECIAL TOOLS

1 Module Tester
2 Bearing Puller

J 24642-F
J 28509-A
 SECTION 7A
AUTOMATIC TRANSMISSION

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>700-R4 Automatic Transmission</td>
<td>.7A1-1</td>
</tr>
<tr>
<td>400/475 Automatic Transmission</td>
<td>.7A2-1</td>
</tr>
<tr>
<td>180C Automatic Transmission</td>
<td>.7A3-1</td>
</tr>
</tbody>
</table>

The information on the 400 automatic transmission also applies to the 475 automatic transmission.

All automatic transmissions have a metal identification nameplate attached to the case exterior. For additional information refer to AUTOMATIC TRANSMISSION (SEC. 7A) in the 1987 Light Duty Truck Service Manual.

SECTION 7A1
700-R4 AUTOMATIC TRANSMISSION

CONTENTS

<table>
<thead>
<tr>
<th>COMPONENT REPAIR AND TRANSMISSION ASSEMBLY</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission Disassembly</td>
<td>.7A1-4</td>
</tr>
<tr>
<td>General Service Information</td>
<td>.7A1-4</td>
</tr>
<tr>
<td>Disassembly</td>
<td>.7A1-4</td>
</tr>
<tr>
<td>Servo Pin Length</td>
<td>.7A1-4</td>
</tr>
<tr>
<td>Governor And Extension</td>
<td>.7A1-4</td>
</tr>
<tr>
<td>Valve Body And Wiring Harness</td>
<td>.7A1-5</td>
</tr>
<tr>
<td>Transmission End Play Check</td>
<td>.7A1-6</td>
</tr>
<tr>
<td>Oil Pump Assembly</td>
<td>.7A1-7</td>
</tr>
<tr>
<td>2-4 Band, Reverse Input Clutch, Input And Input Gear Set</td>
<td>.7A1-8</td>
</tr>
<tr>
<td>Reaction Gear Set</td>
<td>.7A1-10</td>
</tr>
<tr>
<td>Lo and Reverse Clutch Parts</td>
<td>.7A1-10</td>
</tr>
<tr>
<td>Inner Manual Linkage</td>
<td>.7A1-10</td>
</tr>
<tr>
<td>Manual Shaft Seal Replacement</td>
<td>.7A1-10</td>
</tr>
<tr>
<td>Case</td>
<td>.7A1-13</td>
</tr>
<tr>
<td>Third Accumulator Retainer And Check Ball Assembly</td>
<td>.7A1-15</td>
</tr>
<tr>
<td>Case Assembly</td>
<td>.7A1-18</td>
</tr>
<tr>
<td>Lo And Reverse Clutch Assembly</td>
<td>.7A1-18</td>
</tr>
<tr>
<td>*Lo And Reverse Clutch Backing Plate Selection</td>
<td>.7A1-19</td>
</tr>
<tr>
<td>Parking Pawl</td>
<td>.7A1-18</td>
</tr>
<tr>
<td>Reaction Internal Gear And Carrier Assembly</td>
<td>.7A1-18</td>
</tr>
<tr>
<td>Reaction Internal Gear And Support</td>
<td>.7A1-19</td>
</tr>
<tr>
<td>Lo And Reverse Support Assembly</td>
<td>.7A1-20</td>
</tr>
<tr>
<td>Reaction Sun Gear And Shell</td>
<td>.7A1-21</td>
</tr>
<tr>
<td>Input Internal Gear And Output Shaft</td>
<td>.7A1-22</td>
</tr>
<tr>
<td>Input Carrier And Sun Gear</td>
<td>.7A1-24</td>
</tr>
<tr>
<td>*Input Clutch Assembly</td>
<td>.7A1-25</td>
</tr>
<tr>
<td>Check Valve Retainer and Ball Assembly Replacement Procedures</td>
<td>.7A1-26</td>
</tr>
<tr>
<td>Forward Clutch Sprag Assembly</td>
<td>.7A1-30</td>
</tr>
<tr>
<td>*3-4 Clutch Assembly</td>
<td>.7A1-32</td>
</tr>
<tr>
<td>*3-4 Clutch Piston Travel Check</td>
<td>.7A1-32</td>
</tr>
<tr>
<td>Clutch Air Check</td>
<td>.7A1-33</td>
</tr>
<tr>
<td>*Reverse Input Clutch Assembly</td>
<td>.7A1-33</td>
</tr>
<tr>
<td>*Reverse Input Clutch Backing Plate Selection</td>
<td>.7A1-34</td>
</tr>
<tr>
<td>Reverse Input And Input Clutches</td>
<td>.7A1-35</td>
</tr>
<tr>
<td>2-4 Band Assembly</td>
<td>.7A1-35</td>
</tr>
<tr>
<td>*Oil Pump Assembly</td>
<td>.7A1-36</td>
</tr>
<tr>
<td>*Pump Body</td>
<td>.7A1-36</td>
</tr>
<tr>
<td>Oil Pump Cover</td>
<td>.7A1-36</td>
</tr>
<tr>
<td>Oil Pump Body And Cover Transmission End Play Check</td>
<td>.7A1-41</td>
</tr>
<tr>
<td>Valve Body And Associated Parts</td>
<td>.7A1-44</td>
</tr>
<tr>
<td>*Control Valve Assembly</td>
<td>.7A1-45</td>
</tr>
<tr>
<td>*2-4 Servo Assembly</td>
<td>.7A1-51</td>
</tr>
<tr>
<td>Governor Assembly</td>
<td>.7A1-52</td>
</tr>
<tr>
<td>Speedometer</td>
<td>.7A1-55</td>
</tr>
<tr>
<td>Torque Converter Assembly</td>
<td>.7A1-55</td>
</tr>
</tbody>
</table>

SEALS AND BEARING LOCATIONS | .7A1-58
TORQUE SPECIFICATIONS AND BUSHING LOCATIONS | .7A1-59
BUSHING REPLACEMENT PROCEDURE | .7A1-60
GOVERNOR BORE REPAIR PROCEDURE | .7A1-63
SPECIAL TOOLS | .7A1-64

*Designates significant product changes since the publication of the 1987 Service Manual.
Figure 67 Case and External Parts
<table>
<thead>
<tr>
<th>ILL. NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CONVERTER ASSEMBLY</td>
</tr>
<tr>
<td>2</td>
<td>SEAL ASSEMBLY, OIL</td>
</tr>
<tr>
<td>3</td>
<td>BUSHING, OIL PUMP BODY</td>
</tr>
<tr>
<td>4</td>
<td>BUSHING, STATOR SHAFT (FRONT)</td>
</tr>
<tr>
<td>5</td>
<td>BOLT, PUMP TO CASE</td>
</tr>
<tr>
<td>6</td>
<td>WASHER, PUMP TO CASE BOLT</td>
</tr>
<tr>
<td>7</td>
<td>PUMP ASSEMBLY, OIL</td>
</tr>
<tr>
<td>8</td>
<td>SEAL, OIL (PUMP TO CASE)</td>
</tr>
<tr>
<td>9</td>
<td>GASKET, PUMP COVER TO CASE</td>
</tr>
<tr>
<td>10</td>
<td>CASE, TRANSMISSION</td>
</tr>
<tr>
<td>11</td>
<td>VENT ASSEMBLY, TRANSMISSION</td>
</tr>
<tr>
<td>12</td>
<td>CONNECTOR, OIL COOLER PIPE</td>
</tr>
<tr>
<td>13</td>
<td>RING, SERVO COVER RETAINING</td>
</tr>
<tr>
<td>14</td>
<td>SEAL, "O" RING (2-4 SERVO COVER)</td>
</tr>
<tr>
<td>15</td>
<td>COVER, 2-4 SERVO</td>
</tr>
<tr>
<td>16</td>
<td>PISTON, 4TH APPLY</td>
</tr>
<tr>
<td>17</td>
<td>RING, OIL SEAL (4TH APPLY PISTON) (OUTER)</td>
</tr>
<tr>
<td>18</td>
<td>RING, RETAINER (APPLY PIN)</td>
</tr>
<tr>
<td>19</td>
<td>WASHER, SERVO APPLY PIN</td>
</tr>
<tr>
<td>20</td>
<td>SPRING, SERVO APPLY PIN</td>
</tr>
<tr>
<td>21</td>
<td>SEAL, "O" RING</td>
</tr>
<tr>
<td>22</td>
<td>HOUSING, SERVO PISTON (INNER)</td>
</tr>
<tr>
<td>23</td>
<td>RING, OIL SEAL (2ND APPLY PISTON) (INNER)</td>
</tr>
<tr>
<td>24</td>
<td>RING, OIL SEAL (2ND APPLY PISTON) (OUTER)</td>
</tr>
<tr>
<td>25</td>
<td>PISTON, 2ND APPLY</td>
</tr>
<tr>
<td>26</td>
<td>SPRING, SERVO CUSHION</td>
</tr>
<tr>
<td>27</td>
<td>RETAINER, SERVO CUSHION SPRING</td>
</tr>
<tr>
<td>28</td>
<td>RING, RETAINER (2ND APPLY PISTON)</td>
</tr>
<tr>
<td>29</td>
<td>PIN, 2ND APPLY PISTON</td>
</tr>
<tr>
<td>30</td>
<td>SPRING, SERVO RETURN</td>
</tr>
<tr>
<td>31</td>
<td>SEAT, "O" RING (ELECTRICAL CONNECTION)</td>
</tr>
<tr>
<td>32</td>
<td>SEAL, CASE EXTENSION TO CASE</td>
</tr>
<tr>
<td>33</td>
<td>EXTENSION, CASE</td>
</tr>
<tr>
<td>34</td>
<td>BOLT, CASE EXTENSION TO CASE</td>
</tr>
<tr>
<td>35</td>
<td>BUSHING, CASE EXTENSION</td>
</tr>
<tr>
<td>36</td>
<td>SEAL ASSEMBLY, CASE EXTENSION OIL</td>
</tr>
<tr>
<td>37</td>
<td>RETAINER, SPEEDO DRIVEN GEAR FITTING</td>
</tr>
<tr>
<td>38</td>
<td>BOLT & WASHER ASSEMBLY</td>
</tr>
<tr>
<td>39</td>
<td>SEAL, "O" RING (SPEEDO FITTING TO CASE EXTENSION)</td>
</tr>
<tr>
<td>40</td>
<td>FITTING ASSEMBLY, SPEEDO DRIVEN GEAR</td>
</tr>
<tr>
<td>41</td>
<td>GEAR, SPEEDO DRIVEN</td>
</tr>
<tr>
<td>42</td>
<td>GOVERNOR ASSEMBLY</td>
</tr>
<tr>
<td>43</td>
<td>COVER, GOVERNOR</td>
</tr>
<tr>
<td>44</td>
<td>SCREEN, TRANSMISSION OIL PRESSURE (CONVERTER & GOVERNOR)</td>
</tr>
<tr>
<td>45</td>
<td>PIN, BAND ANCHOR</td>
</tr>
<tr>
<td>46</td>
<td>SEAL, "O" RING (SOLENOID)</td>
</tr>
<tr>
<td>47</td>
<td>SOLENOID ASSEMBLY</td>
</tr>
<tr>
<td>48</td>
<td>BOLT, HEX WASHER HEAD (SOLENOID)</td>
</tr>
<tr>
<td>49</td>
<td>PISTON, 3-4 ACCUMULATOR</td>
</tr>
<tr>
<td>50</td>
<td>RING, OIL SEAL (3-4 ACCUMULATOR PISTON)</td>
</tr>
<tr>
<td>51</td>
<td>SPRING, 3-4 ACCUMULATOR</td>
</tr>
<tr>
<td>52</td>
<td>BALL, .25 DIAMETER</td>
</tr>
<tr>
<td>53</td>
<td>PLATE, VALVE BODY SPACER</td>
</tr>
<tr>
<td>54</td>
<td>SPRING ASSEMBLY, MANUAL DETENT</td>
</tr>
<tr>
<td>55</td>
<td>PLUG, TRANSMISSION CASE (ACCUMULATOR BLEED)</td>
</tr>
<tr>
<td>56</td>
<td>PIN, GOVERNOR GEAR RETAINER</td>
</tr>
<tr>
<td>57</td>
<td>GEAR, GOVERNOR DRIVEN</td>
</tr>
<tr>
<td>58</td>
<td>PIN, GOVERNOR WEIGHT</td>
</tr>
<tr>
<td>59</td>
<td>CAP, GOVERNOR THRUST</td>
</tr>
<tr>
<td>60</td>
<td>PLUG, CASE SERVO</td>
</tr>
<tr>
<td>61</td>
<td>CLIP, FILTER RETAINER</td>
</tr>
<tr>
<td>62</td>
<td>GASKET, SPACER PLATE TO CASE</td>
</tr>
<tr>
<td>63</td>
<td>GASKET, SPACER PLATE TO VALVE BODY</td>
</tr>
<tr>
<td>64</td>
<td>BUSHING, STATOR SHAFT (REAR)</td>
</tr>
<tr>
<td>65</td>
<td>BALL, CARBON STEEL (T.V. EXHAUST)</td>
</tr>
<tr>
<td>66</td>
<td>CLIP, SOLENOID VALVE</td>
</tr>
<tr>
<td>67</td>
<td>TUBE, AUXILIARY ACCUMULATOR VALVE</td>
</tr>
<tr>
<td>68</td>
<td>AUXILIARY ACCUMULATOR VALVE BODY ASSEMBLY</td>
</tr>
<tr>
<td>69</td>
<td>SPRING ASSEMBLY, MANUAL DETENT</td>
</tr>
</tbody>
</table>
TRANSMISSION DISASSEMBLY

General Service Information

- Teflon Oil Seal Rings
 If any seal rings are damaged, cut, or do not rotate freely in their groove be certain to check the ring groove for debris, burrs, or damage.
- Thrust Washer Surfaces
 The thrust washer and thrust bearing surfaces may appear to be polished. This is a normal condition and should not be considered damage.

Clean
- Thoroughly clean the exterior of the transmission.

Remove or Disconnect
- Torque Converter (1)

Install or Connect (Figure 69)

Tools Required:
- J-8763-02 Holding Fixture and Base
 1. J-8763-02 onto the transmission case.
 2. Holding fixture into the base.

Remove or Disconnect
- Drain the transmission fluid.

2.4 Servo Assembly

Remove or Disconnect (Figures 67, 68, and 70)

Tools Required:
- J-29714 Servo Cover Compressor
 1. Install J-29714.
 2. Servo cover retaining ring (13)
 3. Servo cover and “O” ring seal (14 and 15)
 4. 2-4 servo assembly (16-31)

Servo Pin Length
As a diagnostic aid, the servo pin length should now be checked. If the pin length is too short or too long be certain to inspect the 2-4 band and reverse input drum for damage or wear when disassembled.

Governor and Extension

Remove or Disconnect (Figure 75)

1. Governor cover (46)
 - tap around the cover flange with a punch to remove
 - DO NOT DAMAGE THE GOVERNOR COVER
2. Governor assembly (45)
 Mechanical Speedometer:
 3. Bolt and washer assembly (41) and retainer (40)
 4. Speedometer driven gear assembly (43), speedo driven gear (44) and o-ring seal (42)
 Internal Transmission Speed Sensor (I.T.S.S.)
 3. Speed sensor retaining bolt (100)
 4. Speed Sensor assembly (99) and o-ring seal (42)
5. Case extension bolts (37) and case extension (36)
6. Extension seal ring (35)
7. Output shaft sleeve (690) and output shaft o-ring seal (691)
 - Not all models use an output shaft sleeve and seal

Remove or Disconnect (Figures 75)

Models with Mechanical Speedometer
1. Speedometer drive gear (689) and clip (688)
 - Push tab of retaining clip and tap speedometer gear off the output shaft.
 - Use care not to damage the speedo gear

Valve Body and Wiring Harness

Remove or Disconnect (Figures 76, 77)
1. Screws (74), oil pan (73), and gasket (72).
2. Oil filter (71) and filter seal (70).
 - Filter seal may be stuck in the case
3. Outside electrical connector (33) and o-ring seal (34).
4. Electrical connections from switches.
 - Refer to wiring diagrams in the Hydraulic Diagnosis Section for specific model applications
5. Solenoid bolts (51) and solenoid assembly (50) with o-ring seal (49) and wiring harness.
6. Accumulator cover bolts (63) and 1-2 accumulator cover and pin assembly (62).
7. 1-2 accumulator piston (61) and seal (60).
8. Spring (59).

Remove or Disconnect (Figures 78, 79, 80 and 81)
1. Bolt (75) and manual detent spring assembly (709).
2. Electrical wire clips (66) and tube clamps (97).
3. Auxiliary valve tube (96).
4. Wiring harness retaining washer (A) and the filter retainer clips (87).
5. Bolts (69) and T.V. lever and bracket assembly (65).
6. T.V. link (64)

Remove or Disconnect (Figures 78, 80, 81 and 82)
1. Remaining valve body bolts (69)
2. Manual valve link (705)
3. Control valve assembly (67)
4. Bolts (374-376), auxiliary valve body (377), and check ball (55)
5. Spacer plate (56) and spacer plate gaskets (88 and 89)
6. Check balls (55 and 91) spring (54), piston (52), seal (53) and pin
 - Three checkballs are located under the valve body, one in the auxiliary valve body and four are located in the case. The large copper flash colored ball is #10 check ball (91)
Transmission End Play Check

As a diagnostic aid, transmission end play should be checked prior to removing the internal parts. If the end play is not within specifications, you should watch for possible worn or misassembled parts during disassembly.

\[\text{Tighten (Figures 84 and 85)}\]

TOOLS REQUIRED:
- J-24773-A Oil Pump Remover
- J-25022-A End Play Adaptor (245 mm)
- J-34725 End Play Adaptor (298 mm)
- J-25025-7A Post
- Dial Indicator

1. Remove an oil pump bolt (5) and install a 278 mm (11 in.) bolt and locknut or J-25025-7A.
700-R4 AUTOMATIC TRANSMISSION 7A1-7

2. Install J-25022-A or J-34725 as shown.
3. Install J-24773-A as shown.
4. Install dial indicator.
 - set to zero
 - pull up on J-24773-A
 - end play should be 0.13/0.92 mm (.005/.036 in.).

Oil Pump Assembly

Remove or Disconnect (Figures 88 and 89)

TOOLS REQUIRED:
J-24773-A Oil Pump Remover
1. “O” ring seal (618)
2. All oil pump bolts (5) and washers (6)
3. Oil pump assembly (7) with J-24773-A
4. Oil pump to case seal (8) and gasket (9)
5. Reverse input clutch to oil pump thrust washer (601)
2-4 Band Reverse Input Clutch, Input Clutch and Input Gear Set (Figures 88, 89 and 90)

1. Reverse input clutch (605) and input clutch (62) together
 - (grasp the turbine shaft and lift)
2. Band assembly pin (48)
3. The 2-4 band assembly (602)
4. Input sun gear (658)

Install or Connect (Figure 91)

TOOLS REQUIRED:
- J-29837 Output Shaft Support Fixture
- J-29837 as shown

Important
- Output shaft (687) may fall free when input carrier retaining ring (661) is removed if J-29837 is not used.
7A1-10 700-R4 AUTOMATIC TRANSMISSION

TOOLS REQUIRED:
J-34627 Snap Ring Pliers
Input carrier to output shaft retaining ring (661) with J-34627. Do not overexpand the ring.
Input carrier assembly (662)
J-29837 and output shaft (687)

Important
- The manufacturer assembles the output shaft and reaction internal gear with adhesive for ease of assembly. If these parts have not become separated during use, the output shaft will come out later along with the reaction internal gear.

Thrust bearing assembly (663)

Reaction Gear Set

TOOLS REQUIRED:
J-23327 Clutch Spring Compressor
Bolts (715) and parking lock bracket (710)

Important
- Due to interference, the parking pawl may have to be removed before removing or installing the low and reverse piston.

2. Parking pawl shaft plug (713) with a #4 screw extractor
3. Parking pawl pivot shaft (712) with a magnet
4. Parking pawl (711) and return spring (714)
5. Install tool J-23327.
6. Lo and reverse clutch retainer ring (693)
7. Lo and reverse clutch spring assembly (694)
8. Lo and reverse clutch piston (695)
 - by application of air pressure in the case apply passage

COMPONENT REPAIR AND TRANSMISSION REASSEMBLY

Inner Manual Linkage

Remove or Disconnect (Figure 94)
1. Inside manual shaft nut (702)
2. Manual shaft (707) and manual shaft retainer (706)
3. Parking lock actuator assembly (701) and inside detent lever (703)

Manual Shaft Seal Replacement

Remove or Disconnect (Figure 95)
- Manual shaft seal (708)
 - pry out with a screwdriver

Install or Connect
- Tap a new seal in place
 - use a 14 mm socket

Inspect (Figures 94 and 95)
- Actuator rod (701) for damage
- Inside detent lever (703) for damage or cracks
- Manual shaft (707) for damage or burrs
- Manual detent spring assembly (709) for roller freeness or damage

Install or Connect (Figure 94)
- Parking lock actuator (701) onto inside detent lever (703)
- Manual shaft (707) into case (10) and inside detent lever (703)
- Inside manual shaft nut (702) onto manual shaft (707)
 - torque to 31 N·m (23 ft. lbs.)
- Manual shaft retainer (706) onto manual shaft (707)
Figure 86 Transmission Internal Parts
<table>
<thead>
<tr>
<th>ILL. NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>601</td>
<td>WASHER, THRUST (PUMP TO DRUM)</td>
</tr>
<tr>
<td>602</td>
<td>BAND ASSEMBLY, 2-4</td>
</tr>
<tr>
<td>603</td>
<td>BUSHING, REVERSE INPUT CL. (FRONT)</td>
</tr>
<tr>
<td>605</td>
<td>HOUSING & DRUM ASSEMBLY, REVERSE INPUT CLUTCH</td>
</tr>
<tr>
<td>606</td>
<td>BUSHING, REVERSE INPUT CLUTCH (REAR)</td>
</tr>
<tr>
<td>607</td>
<td>PISTON ASM., REVERSE INPUT CLUTCH</td>
</tr>
<tr>
<td>608</td>
<td>SEALS, REVERSE INPUT CLUTCH (INNER & OUTER)</td>
</tr>
<tr>
<td>609</td>
<td>SPRING ASM., REVERSE INPUT CLUTCH</td>
</tr>
<tr>
<td>610</td>
<td>RING, REVERSE INPUT CLUTCH SPRING RETAINER</td>
</tr>
<tr>
<td>611</td>
<td>PLATE, REVERSE INPUT CLUTCH (BELLEVILLE)</td>
</tr>
<tr>
<td>612</td>
<td>PLATE ASM., REVERSE INPUT CLUTCH</td>
</tr>
<tr>
<td>613</td>
<td>RING, REVERSE INPUT CLUTCH BACKING (SELECTIVE)</td>
</tr>
<tr>
<td>614</td>
<td>BEARING ASSEMBLY, STATOR SHAFT/SELECTIVE WASHER</td>
</tr>
<tr>
<td>615</td>
<td>WASHER, THRUST (SELECTIVE)</td>
</tr>
<tr>
<td>616</td>
<td>RETAINER & BALL ASM., CHECK VALVE</td>
</tr>
<tr>
<td>618</td>
<td>SEAL, "O" RING (TURBINE SHAFT/SELECTIVE WASHER)</td>
</tr>
<tr>
<td>619</td>
<td>RING, OIL SEAL (SOLID)</td>
</tr>
<tr>
<td>620</td>
<td>RETAINER & CHECK BALL ASSEMBLY</td>
</tr>
<tr>
<td>621</td>
<td>HOUSING & SHAFT ASSEMBLY, INPUT</td>
</tr>
<tr>
<td>622</td>
<td>SEAL, "O" RING INPUT TO FORWARD HSG.</td>
</tr>
<tr>
<td>623</td>
<td>PISTON, 3RD & 4TH CLUTCH</td>
</tr>
<tr>
<td>624</td>
<td>SEAL, 3RD & 4TH CL. (INNER & OUTER)</td>
</tr>
<tr>
<td>625</td>
<td>RING, 3RD & 4TH CLUTCH APPLY</td>
</tr>
<tr>
<td>626</td>
<td>SPRING ASSEMBLY, 3RD & 4TH CLUTCH</td>
</tr>
<tr>
<td>627</td>
<td>RETAINER & BALL ASSEMBLY, FORWARD CLUTCH HOUSING</td>
</tr>
<tr>
<td>628</td>
<td>HOUSING, FORWARD CLUTCH</td>
</tr>
<tr>
<td>629</td>
<td>SEAL, FORWARD CLUTCH (INNER & OUTER)</td>
</tr>
<tr>
<td>630</td>
<td>PISTON, FORWARD CLUTCH</td>
</tr>
<tr>
<td>631</td>
<td>SEAL, OVERRUN CLUTCH (INNER & OUTER)</td>
</tr>
<tr>
<td>632</td>
<td>PISTON, OVERRUN CLUTCH</td>
</tr>
<tr>
<td>633</td>
<td>BALL, OVERRUN CLUTCH</td>
</tr>
<tr>
<td>634</td>
<td>SPRING ASSEMBLY, OVERRUN CLUTCH</td>
</tr>
<tr>
<td>635</td>
<td>SNAP RING, OVERRUN CLUTCH SPRING RETAINER</td>
</tr>
<tr>
<td>636</td>
<td>SEAL, INPUT HOUSING TO OUTPUT SHAFT</td>
</tr>
<tr>
<td>637</td>
<td>BEARING ASSEMBLY, INPUT SUN GEAR</td>
</tr>
<tr>
<td>638</td>
<td>SNAP RING, OVERRUN CL. HUB RETAINING</td>
</tr>
<tr>
<td>639</td>
<td>HUB, OVERRUN CLUTCH</td>
</tr>
<tr>
<td>641</td>
<td>RETAINER & RACE ASSEMBLY, SPRAG</td>
</tr>
<tr>
<td>642</td>
<td>FORWARD SPRAG ASSEMBLY</td>
</tr>
<tr>
<td>643</td>
<td>RETAINER RINGS, SPRAG ASSEMBLY</td>
</tr>
<tr>
<td>644</td>
<td>RACE, FORWARD CLUTCH (OUTER)</td>
</tr>
<tr>
<td>645</td>
<td>PLATE ASSEMBLY, OVERRUN CLUTCH</td>
</tr>
<tr>
<td>646</td>
<td>PLATE, FORWARD CLUTCH</td>
</tr>
<tr>
<td>648</td>
<td>PLATE, FORWARD CLUTCH (WAVED)</td>
</tr>
<tr>
<td>649</td>
<td>PLATE ASSEMBLY, FORWARD CLUTCH</td>
</tr>
<tr>
<td>650</td>
<td>PLATE, FORWARD CLUTCH BACKING (SEL.)</td>
</tr>
<tr>
<td>651</td>
<td>RING, FORWARD CLUTCH BACKING PLATE RETAINER</td>
</tr>
<tr>
<td>652</td>
<td>PLATE, 3RD & 4TH CLUTCH RING RETAINER</td>
</tr>
<tr>
<td>653</td>
<td>PLATE, 3RD & 4TH CLUTCH APPLY (STEPPED)</td>
</tr>
<tr>
<td>654</td>
<td>PLATE ASSEMBLY, 3RD & 4TH CLUTCH</td>
</tr>
<tr>
<td>655</td>
<td>PLATE, 3RD & 4TH CLUTCH BACKING (SEL.)</td>
</tr>
</tbody>
</table>

For Figures 87 and 88: Table format with descriptions for various transmission components.
THE SOLENOID ASM. AND OIL FILTER MUST BE REMOVED BEFORE OIL PUMP REMOVAL

Figure 88 Oil Pump Removal

Case

Inspect (Figures 96, 97 and 98)

- Case (10) exterior for cracks or porosity
- Case to valve body face for damage, interconnected oil passages and flatness
 - the face flatness can be checked by inspecting the spacer plate to case gasket for proper land impressions.
- Vent assembly (11) for damage
- Air check all oil passages.
 - see diagnosis section for oil passage identification.
- 2-4 servo bore for
 - damage, porosity, or burrs
 - any sharp edges (i.e. - oil passages, slots for retaining ring removal - remove if found)
- Orifice cup plug (86) in servo bore for debris or damage
- Third accumulator bore for
 - porosity, damage, or burrs
 - pin damage (77)
 - orifice cup plug (81) damaged or plugged
- Speedometer bore
 - damaged
 - sharp edges
 - porosity
- All bolt holes for thread damage
 - Heli-coil to repair
- Cooler connectors (12) for
 - damage
 - proper torque 38 N·m (28 ft. lbs.)
- Case interior for
 - damaged ring grooves or casting flash
 - clutch plate lugs worn or damaged
 - bushing (76) scored, worn, or damaged (see Bushing Replacement)
 - governor support pin installation depth.
 (Incorrect installation depth will cause governor driven gear damage and shift problems.)
A BAND ANCHOR PIN LOCATION
10 CASE, TRANSMISSION
48 PIN, BAND ANCHOR
602 BAND ASSEMBLY, 2-4
658 GEAR, INPUT SUN
661 RET., OUTPUT SHAFT TO INPUT CARRIER
662 CARRIER ASSEMBLY, INPUT - COMPLETE
663 BEARING ASSEMBLY, THRUST (INPUT CARRIER TO REACTION SHAFT)

Figure 90 Input Carrier Removal

10 CASE, TRANSMISSION
664 GEAR, INPUT INTERNAL
666 SHAFT, REACTION CARRIER
669 WASHER, THRUST (REACTION SHAFT/ SHELL)
670 SHELL, REACTION SUN
673 GEAR, REACTION SUN
674 WASHER, THRUST (RACE/REACTION SHELL)
675 RACE, LO & REVERSE ROLLER CLUTCH
676 RING, LO & REVERSE SUPPORT TO CASE RETAINER
678 CLUTCH ASM., LO & REVERSE ROLLER
679 SUPPORT ASM., LO & REVERSE CLUTCH
680 SPRING, TRANSMISSION (LO & REVERSE CLUTCH SUPPORT RETAINER)
681 CARRIER ASSEMBLY, REACTION
682 PLATE ASSEMBLY, LO & REVERSE CLUTCH
682A PLATE, LO & REVERSE CLUTCH (WAVED)
682B PLATE, LO & REVERSE CL. (SELECTIVE)
683 BEARING ASSEMBLY, THRUST (REACTION CARRIER/SUPPORT)
684 GEAR, INTERNAL REACTION
685 SUPPORT, INTERNAL REACTION GEAR
692 BRG., REACTION GEAR SUPPORT TO CASE
693 RING, LO & REVERSE CLUTCH RETAINER
694 SPRING ASM., LO & REVERSE CLUTCH
695 PISTON, LO & REVERSE CLUTCH
697 DEFLECTOR, OIL (HIGH OUTPUT MODELS ONLY)

Figure 92 Reaction Gear Set Removal
Third Accumulator Retainer and Ball Assembly (80) (Figure 99)

Inspect
- Ball
 - missing
 - sticking or leaking
- Retainer
 - missing
 - loose
 - not seated correctly
 - feed slots restricted

Retainer and Ball Assembly Leak Check Procedure

1. Install the servo assembly into the servo bore.
2. Install the servo cover and retainer.
3. Pour a suitable solvent into the accumulator bore.
4. Watch for leakage inside the case.
5. If leakage is observed, replace the third accumulator retainer and ball assembly.

Replacement Procedure - Third Accumulator Retainer and Ball Assembly

Remove or Disconnect (Figure 99 and 100)

TOOLS REQUIRED:
- 6.3 mm (#4) Screw Extractor
- Third accumulator retainer and ball assembly (80)
 - use 6.3 (#4) screw extractor

Install or Connect (Figure 99 and 100)

TOOLS REQUIRED:
- 9.5 mm (3/8 in.) Diameter Metal Rod
7A1-16 700-R4 AUTOMATIC TRANSMISSION

Figure 95 Manual Shaft Seal

Figure 96 Servo Bore

A CASE SERVO BORE
B SERVO EXHAUST HOLE
C 2ND & 4TH BAND APPLY PASSAGE
D 3RD ACCUMULATOR PRESSURE TAP PASSAGE
80 RETAINER & BALL ASSEMBLY, 3RD ACCUM.
86 PLUG, CASE SERVO

Figure 97 Third Accumulator Bore

A 3-4 ACCUMULATOR BORE
B 81 PLUG, TRANSMISSION CASE ACCUM. BLEED

Figure 98 Governor Pin Location

A GOV. COVER
FACE SURFACE
B DOWEL

Figure 99 Leak Check - 3rd Accumulator

A 3RD ACCUMULATOR BORE
C CASE INTERIOR
D 24 SERVO BORE
80 RETAINER & BALL ASSEMBLY, 3RD ACCUM.

Figure 100 Third Accumulator Retainer and Ball Asm. - Installation

DRIVE UNTIL SCRIBE MARK IS FLUSH WITH CASE
A new third accumulator retainer and ball assembly.

- Oil feed slots in the retainer must line up with oil passage in the servo bore. To be certain of correct installation depth, scribe a mark at 42.0 mm (1.653 in.) on the 9.5 mm (3/8") diameter metal rod. Use it to seat the third accumulator and ball assembly as shown. When the scribed line is flush with the case face, installation depth is correct.
Case Assembly

Clean
- Thoroughly with solvent
- Air dry
 - do not wipe with cloth.

Lo and Reverse Clutch Assembly

Inspect (Figure 101)
- Lo and reverse piston (695) for
 - porosity or damage
 - ring groove damage
- Piston seals (696) for nicks or cuts
- Spring assembly (694) for damage
- Retainer ring (693) overstressed

Install or Connect (Figure 101)

TOOLS REQUIRED:
- J-23327 Clutch Spring Compressor
1. Piston seals (696) onto the piston (695)
 - lubricate with transmission fluid
2. Piston (695) into the case
 - index the piston with the notch in the bottom of the case.
3. Spring assembly (694) onto the piston
 - flat side of the retainer upward
4. J-23327 over the spring assembly
 - compress the spring assembly past the ring groove in the case hub.
5. Retainer ring (693) into the case hub ring groove

Parking Pawl

Inspect (Figure 102)
- Parking pawl (711) for cracks, burrs, or damage
- Parking pawl return spring (714) for distortion or damage
- Parking pawl pivot shaft (712) for damage and freeness of fit with the parking pawl

Install or Connect (Figure 102)
1. Parking pawl (711) and parking pawl return spring (714) into the case
2. Parking pawl pivot shaft (712) into the parking pawl (711) and the case
 - CHECK FOR PROPER OPERATION
3. Retaining plug (713) into the case
 - coat the plug with loctite sealant or equivalent and install it with a hammer and punch.

Reaction Internal Gear and Carrier Assembly

Inspect (Figures 103, 104, 105)
- Reaction internal gear (683) and support (684) for
 - proper assembly
- Thrust bearing assemblies (683 and 692) for damage
- Lo and reverse clutch plates (682)
 - Composition for wear, heat damage, or delamination
- Steel for heat damage or surface finish damage
- Reaction carrier assembly (681) for
 - pinion gear damage
 - excessive pinion washer wear (end play .20-.61 mm/.008-.024 in.)
 - proper pinion staking
 - keystoned pinion gears (pinions must turn free)
 - damaged or worn thrust bearing

To check the captive thrust bearing in the carrier for wear, place a bushing or an output shaft sleeve on the bearing race (do not contact the pinion gears) and turn it with the palm of your hand. Any imperfections will be felt through the bushing.

Reaction Internal Gear and Support

Install or Connect (Figures 106)

1. Reaction gear support to case bearing (692) onto the case hub as shown
 - Outside bearing race goes toward case hub.
 - Retain with petrolatum.
2. Reaction internal gear and support (684 and 685) onto the bearing as shown
3. Reaction carrier to support thrust bearing assembly (683) onto the support (685)
 - Outer bearing race goes toward the support
4. Reaction carrier (681) onto the thrust bearing

Lo and Reverse Clutch

Measure (Figure 107 and 108)

TOOLS REQUIRED
- Scale and straight edge
1. To measure for proper selection backing plate, stack the lo and reverse assembly on a flat surface in the following order:
 - 1 waved plate (682B)
 - 5 fiber and 4 steel plates (682), starting with one fiber plate and alternating with a steel plate.
 - Lo and Reverse Clutch Support (679)
2. Apply an evenly distributed load to the top of the Lo and Reverse Support Assembly (679) Light pressure (5 lbs.) on the Lo and Reverse Support Assembly (679) will provide the correct dimension for measurement.

CAUTION: EXCESSIVE PRESSURE WILL START TO FLATTEN THE WAVE PLATE RESULTING IN AN INACCURATE MEASUREMENT

3. Measure the height of the clutch pack from the work surface to the top of the Lo and Reverse Clutch Support (Dimension D)
4. Use dimension D to select the proper thickness of the selective spacer plate for assembly.
5. Install the proper selective spacer plate between the wave plate and the first fiber clutch plate with the identification side up.
6. The overall height for dimension D with the selective spacer plate included should be 30.515 mm - 31.401 mm (1.20" - 1.24).
Lo and Reverse Support Assembly

Remove or Disconnect (Figure 111)
1. Inner race (675) from the support assembly
2. One retainer ring (677)
3. Roller clutch assembly (678)

Inspect (Figure 111)
- Inner race (675) for damage and surface finish
- Roller clutch assembly (678) for
 - damaged rollers
 - broken springs
- Cam and support assembly for
 - loose cam
 - surface finish
 - cracks or damaged lugs.

Install or Connect (Figure 111 and 112)
1. Roller clutch assembly (678) into the cam and support assembly (679)
2. Support and roller assembly into the case with the hub down
3. Inner race (675) into the roller assembly
4. Turn inner race (675) while inserting
 - push down for full engagement.
 - bottom tangs will be flush with carrier hub when properly installed.
 - check for proper operation by rotating the inner race as shown in Figure 111.
5. Support retainer spring (680) into the case
 - insert between the case lug and the one open notch in the support.

Reaction Sun Gear and Shell

Inspect (Figure 114)
- Reaction Sun Gear (673) for
 - nicked, scored, or worn bushing. (See Bushing Replacement).
 - damaged spline or teeth
 - loose or weak retaining ring (do not remove this ring, except to replace it.)
- Reaction sun shell (670) for
 - stripped or worn splines
Figure 109 Lo and Reverse Clutch Plate Chart

<table>
<thead>
<tr>
<th>LO & REVERSE CLUTCH</th>
<th>QTY</th>
<th>THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLATE—FLAT STEEL</td>
<td>4</td>
<td>1.77mm (.069")</td>
</tr>
<tr>
<td>PLATE—COMP. FACED</td>
<td>5</td>
<td>2.25mm (.088")</td>
</tr>
<tr>
<td>PLATE—SELECTIVE</td>
<td>1</td>
<td>SEE FIG. 108</td>
</tr>
<tr>
<td>PLATE—WAIVED</td>
<td>1</td>
<td>2.43mm (.096")</td>
</tr>
</tbody>
</table>

Install or Connect (Figure 114 and 115)

1. Reaction sun gear retainer ring (671) onto the reaction sun gear, if previously removed.
2. Reaction sun gear (673) into the reaction carrier—index the teeth with the pinion gears.
3. Thrust washer (674) onto the lo and reverse support inner race—index the four locating ears into the inner race.
4. Reaction gear shell (670) onto the reaction sun gear
5. (Bronze) thrust washer (669) onto the reaction sun shell—index tangs into the shell.

Remove or Disconnect (Figure 116)

1. Retainer ring (668) from input internal gear (664)
2. Reaction carrier shaft (666) from the input internal gear
Inspect (Figures 115, 116, and 118)
- Reaction Carrier Shaft (666) for
- scored, damaged, or worn bushings (see Bushing Replacement)
- cracked shaft
- damaged spline or gear teeth
- under cut around the shaft from interference with the sun gear
- Input internal gear (664) for
7A1-24 700-R4 AUTOMATIC TRANSMISSION

- cracks
- damaged spline or gear teeth
- Input carrier to reaction shaft thrust bearing (663) for wear or damage
- Output shaft (687)
 - plugged or restricted lube passages
 - damaged splines or ring groove
 - damaged governor drive gear teeth
 - burrs or damage to the front of the shaft at seal area. (Polish with crocus cloth if necessary)
 - burrs or damage to bearing journals
 - damaged teeth on speed sensor rotor

Internal Transmission Speed Sensor Rotor

REMOVE ONLY IF DAMAGED

TOOLS REQUIRED:
- J-21427-01 speedometer gear puller adapter
- J-8433 speedometer gear puller
- J-36352 speedometer gear installater & “C” washer
- Mechanical press

1. Install J-21427 with J-8433 and remove rotor.
2. Place new rotor over output shaft.
3. Place J-36352-1 in groove on output shaft.
4. Place J-36352-2 on shaft and press to make contact with J-36352-1.

DO NOT REUSE ROTOR

Output Shaft (687) into the transmission
- index the splines with the mating parts.

J-29837 onto the case
- position upwards as far as possible to support the output shaft.

Input Carrier and Sun Gear

Inspect (Figures 119 and 120)
- Input carrier assembly (662) for
 - pinion gear damage
 - excessive pinion washer wear (end play .20-.61 mm/.008-.024 in.)
 - proper pin stake
 - keystoned pinion gears (pinion gears must rotate freely)
 - damaged or worn thrust bearing
- Input sun gear (658) for
 - bushing damage or wear (see Bushing Replacement Procedure)
 - cracks
 - damaged spline or gear teeth

Install or Connect (Figure 119)

TOOLS REQUIRED:
- J-34627 Snap Ring Pliers

1. Input carrier assembly (662) onto the output shaft
2. Retainer ring (661) into the output shaft ring groove
 - Do not reuse the old retainer ring if it has been overexpanded.
 - Use care not to overexpand the ring during installation.
4. Input sun gear (658) into the input carrier
 - index the sun gear teeth into the pinion gear teeth.
Input Clutch Assembly

- **Remove or Disconnect (Figure 121)**
 - Reverse input clutch assembly (605) from the input clutch assembly (621)
 - Oil pump to selective washer thrust bearing (615)
 - Selective washer (616)

Disassemble (Figures 123 and 124)

TOOLS REQUIRED:
- J-23456 Clutch Spring Compressor Press
- J-25018 Clutch Spring Compressor

1. Place the input clutch assembly (621) on the bench with the turbine shaft through the bench hole.
2. The 3-4 clutch plate retainer ring (656) and the backing plate (655)
3. The 3-4 clutch plates (654)
4. The 3-4 clutch apply plate (653)
5. The 3-4 clutch ring retainer plate (652)
6. Forward clutch backing plate retainer ring (651) and backing plate (650)
7. Forward clutch sprag assembly (638 - 644)

Disassemble

1. Input sun gear bearing assembly (637)
2. Input housing to output shaft lip seal (636)
3. Forward clutch plates (649)
4. Forward wave plate (648)
5. Forward clutch apply plate (646)
7A1-26 700-R4 AUTOMATIC TRANSMISSION

Inspect (Figure 126 and 127)
1. Input housing for porosity or damage
2. Input housing and shaft assembly (621)
 - all splines for wear or damage
 - air check feed passages.
 - three turbine shaft scaling balls
 - the balls must not be loose or leaking.
 - the open hole is the lube oil passage which feeds the output shaft.
 - Presence of orificed cup plug (698)
 - Cracks at lube holes.
 - Four turbine shaft oil seal rings (619) and their ring grooves for damage, burrs, or cuts
 - these seals must fit freely into the ring grooves.
 - Check valve retainer and ball assembly (617) for damage
 - the ball must move freely in the retainer.
 - the retainer must be tight in the turbine shaft.

Check Valve Retainer and Ball Assembly - Replacement Procedures

Remove or Disconnect (Figure 125)
TOOLS REQUIRED:
- #4 Screw extractor
1. Straighten the tangs of the retainer and remove the ball.
2. Check valve retainer
 - use #4 Screw Extractor

Install or Connect (Figure 125)
TOOLS REQUIRED:
- 9.5 mm (3/8") diameter metal rod
- New check valve retainer and ball assembly (617)
 - use the 9.5 mm (3/8") metal rod.
 - seat the retainer 3.0 mm (1/8 in.) below top surface of the turbine shaft.
 - be certain the ball is loose.

Inspect (Figure 126 and 127)
- Turbine shaft “O” ring seal (618) for nicks, cuts, or damage
- Input housing check valve ball (620).
 - the ball must move freely.
 - leak check the ball with solvent.

Important (Figure 126)
- If the 3-4 clutch plates are burned or worn and a cause is not found during diagnosis or disassembly, replacement of the retainer and check ball assembly may be required.

Remove or Disconnect (Figure 122)
TOOLS REQUIRED:
- 5.715 mm (1/4") diameter rod or drift hammer
ILL. NO. DESCRIPTION

615 BEARING ASSEMBLY, STATOR SHAFT/ SELECTIVE WASHER
616 WASHER, THRUST (SELECTIVE)
620 RETAINER & CHECK BALL ASSEMBLY
621 HOUSING & SHAFT ASSEMBLY, INPUT
623 PISTON, 3RD & 4TH CLUTCH
625 RING, 3RD & 4TH CLUTCH APPLY
626 SPRING ASSEMBLY, 3RD & 4TH CLUTCH
628 HOUSING, FORWARD CLUTCH
630 PISTON, FORWARD CLUTCH
632 PISTON, OVERRUN CLUTCH
634 SPRING ASSEMBLY, OVERRUN CLUTCH
635 SNAP RING, OVERRUN CLUTCH SPRING RETAINER
636 SEAL, INPUT HOUSING TO OUTPUT SHAFT
645 PLATE ASSEMBLY, OVERRUN CLUTCH

A FORWARD CLUTCH SPRAG ASSEMBLY
637 BEARING ASSEMBLY, INPUT SUN GEAR
638 SNAP RING, OVERRUN CL. HUB RET.
639 HUB, OVERRUN CLUTCH
641 RETAINER & RACE ASSEMBLY, SPRAG
642 FORWARD SPRAG ASSEMBLY
643 RETAINER RINGS, SPRAG ASSEMBLY
644 RACE, FORWARD CLUTCH (OUTER)

646 PLATE, FORWARD CLUTCH APPLY
648 PLATE, FORWARD CLUTCH (WAVED)
649 PLATE ASSEMBLY, FORWARD CLUTCH
650 PLATE, FORWARD CLUTCH BACKING (SEL.)
651 RING, FORWARD CLUTCH BACKING PLATE RETAINER
652 PLATE, 3RD & 4TH CLUTCH RING RETAINER
653 PLATE, 3RD & 4TH CLUTCH APPLY (STEPPED)
654 PLATE ASSEMBLY, 3RD & 4TH CLUTCH
655 PLATE, 3RD & 4TH CLUTCH BACKING (SEL.)
656 RING, 3RD & 4TH CLUTCH BACKING PLATE RETAINER
657 BUSHING, INPUT SUN GEAR (FRONT)
698 PLUG, ORIFICED CUP

Figure 123 Input Clutch Assembly
1. Tap out retainer and ball assembly.

Install or Connect (Figures 122 and 126)
1. Using same tools, tap in retainer and ball assembly until shoulder is seated in housing.

Inspect (Figure 123)
- The 3-4 clutch piston (623) for damage or porosity
- The 3-4 clutch apply ring (625) for bent tangs
- The 3-4 clutch spring assembly for damage or distortion

Assemble (Figure 128)
1. Position the input housing and shaft assembly on the bench with the turbine shaft through a bench hole.
2. Inner and outer 3-4 clutch lip seals (624) on the 3-4 clutch piston
 - seal lips must face away from the piston hub.
 - lubricate the seals with transmission fluid.
3. The 3-4 clutch piston (623) into the input housing as shown

Figure 124 Overrun Clutch Retainer Ring - Removal

A #4 EASY OUT
B TURBINE SHAFT
C 9.5MM (3/8 IN.) METAL ROD
617 CHECK VALVE RETAINER & BALL ASSEMBLY

1. Tap out retainer and ball assembly.

Figure 125 Retainer and Ball Assembly - Replacement

L®

Figure 126 Input Housing Check Valve Ball

A LUBE PASSAGE
615 BEARING ASSEMBLY, STATOR SHAFT/SELECTIVE WASHER
616 WASHER, THRUST (SELECTIVE)
620 RETAINER & CHECK BALL ASSEMBLY
621 HOUSING & SHAFT ASSEMBLY, INPUT
636 SEAL, INPUT HOUSING TO OUTPUT SHAFT
687 SHAFT, OUTPUT
698 PLUG, ORIFICE CUP

Figure 127 Views of the Input Housing

- use care not to damage the seals.
Inspect (Figures 123, 129, 131)

- Forward clutch housing (628) for
 - proper check ball operation
 - damage or distortion
 - burrs in seal areas
 - cracks
- Forward clutch piston (630) and overrun clutch piston (632) for
 - porosity or damage
 - ring groove damage
 - apply leg damage
- Overrun spring assembly (634) for damage or distortion
- Input housing to output shaft lip seal (636) for damage or wear

Assemble (Figures 129 and 130)

TOOLS REQUIRED:
- J-23456 Clutch Spring Compressor Press
- J-25018 Clutch Spring Compressor
- J-29882 Overrun Clutch Inner Seal Protector
- J-29883 Forward Clutch Inner Seal Protector

1. Forward clutch housing to input clutch housing “O” ring seal (622) as shown
 - lubricate with transmission fluid.
2. Inner and outer seals (629) on forward clutch piston
 - seal lips must face away from the piston tangs as shown.
 - lubricate with transmission fluid.
3. Forward clutch piston (630) into the forward clutch housing
 - use care not to damage the outer lip seal.
4. The 3-4 clutch spring assembly (626) onto the 3-4 clutch apply ring
5. Forward clutch assembly onto the 3-4 clutch spring assembly

- the forward clutch piston apply legs must be indexed with the 3-4 clutch apply ring legs.
6. J-29883 on the input housing as shown
7. Apply ring and forward clutch assembly into the input housing as shown
 - hold the assembly by the apply ring legs during installation.
 - do not let the forward clutch piston separate from the housing.
 - firmly seat the assembly.
8. J-29882 on the input housing as shown
9. Overrun clutch piston (632)
 - hub facing upward as shown.
 - if all parts are properly seated to this point, the overrun piston hub will be approximately 3/16 in. below the snap ring groove in the input housing hub.

Assemble (Figures 131 and 132)

1. Overrun clutch spring assembly (634) onto the overrun clutch piston.
 - locate the springs on the piston tabs
2. J-23456 and J-25018 onto the overrun spring assembly.
 - compress springs (Do not over-compress).
3. Retainer snap ring (635) into the snap ring groove
4. Input housing to output shaft lip seal (636)

Inspect

- Overrun clutch plates (645)
ILL. NO. DESCRIPTION
621 HOUSING & SHAFT ASSEMBLY, INPUT
623 PISTON, 3RD & 4TH CLUTCH
625 RING, 3RD & 4TH CLUTCH APPLY
626 SPRING ASSEMBLY, 3RD & 4TH CLUTCH
628 HOUSING, FORWARD CLUTCH
630 PISTON, FORWARD CLUTCH
631 SEAL, OVERRUN CLUTCH (INNER & OUTER)
632 PISTON, OVERRUN CLUTCH

Composition plates for damaged tangs, delamination, or excessive wear
Steel plates for damaged tangs, wear, or heat damage
Input sun gear bearing assembly (637) for wear, flatness or damage

Assemble (Figures 133 and 134)
1. Overrun clutch plates (645) into the input housing.
 - Overrun clutch plates are the smallest of the three sets of plates in the input housing.
 - Index the plate as shown.
2. Thrust bearing assembly (637) onto the input clutch hub
 - The inside race must face the input housing hub.

Figure 130 Overrun Piston - Installed
Figure 131 Overrun Clutch Retaining Ring - Installed
Figure 132 Input Hsg. to Output Shaft Lip Seal

Forward Clutch Sprag Assembly

Disassemble (Figure 135)
1. Forward sprag outer race (644)
2. Overrun clutch hub retaining snap ring (638) and clutch hub (639)
3. Forward clutch retainer and race assembly (641)

Inspect
- Forward clutch sprag assembly (642) for
 - Wear or damage
 - Weak or broken springs
 - Damaged or missing retainer caps (brass)
- Overrun clutch hub (639) for
 - Spline damage
 - Plugged lubrication holes
 - Damaged tangs
 - Cracks
- Forward clutch retainer and race assembly (641) for
 - Spline damage
 - Ring groove damage
 - Surface finish damage
 - Loose retainer
- Forward sprag outer race (644) for
 - Spline damage
THE NOTCHES ABOVE EACH SPRAG MUST POINT UP AS SHOWN WHEN ASSEMBLED INTO THE OUTER RACE.

637 BEARING ASSEMBLY, INPUT SUN GEAR
638 SNAP RING, OVERRUN CLUTCH HUB RET.
639 HUB, OVERRUN CLUTCH
641 RETAINER & RACE ASSEMBLY, SPRAG
642 FORWARD SPRAG ASSEMBLY
643 RETAINER RINGS, SPRAG ASSEMBLY
644 RACE, FORWARD CL - OUTER

Assemble (Figures 136, 137, 138)

1. Forward clutch sprag assembly (642) into the outer race
 - to correctly install, the notches in the sprag cage must face upward as shown.

2. One sprag retainer ring (643) onto the race and retainer assembly
 - the flange on the retainer ring must face away from the retainer.

3. Race and retainer assembly into the sprag assembly
 - to assemble, hold the outer race in your left hand with your fingers supporting the sprag at the recessed side of the outer race.
 - insert the race and retainer assembly by pushing in and turning to the left.

4. The remaining retainer ring onto the sprag assembly

5. Overrun clutch hub (639) onto the wear plate

6. Overrun clutch hub retaining snap ring (638) into the snap ring groove of the race and retainer assembly

7. Test the assembly for proper operation as shown.
 - If the assembly operates backwards, you have installed the sprag backwards. Reassemble correctly.

Assemble

- Forward clutch sprag assembly into the input clutch housing
 - index the overrun clutch hub into the overrun clutch plates.

Inspect (Figure 139 and 140)

- Forward (649) and 3-4 clutch plates (654)
 - Composition plates for damaged tangs, delamination, or wear
- Forward (650) and 3-4 clutch backing plates (655) for
 - flatness
 - surface finish damage
 - burrs or nicks
- Forward clutch apply plate (646) and spacer plate (647) for
 - flatness
 - surface finish damage
 - burrs or nicks
- The 3-4 clutch apply plate (653) for
 - flatness
 - surface finish damage
- The 3-4 clutch ring retainer plate (652) for
 - bent tangs
 - flatness

Assemble (Figures 139, 140, 141 and 142)
1. Forward clutch apply plate (646) into the input clutch housing
 - index as shown.
2. Waved steel forward clutch plate (648) into the input clutch housing
 - index as shown.
3. The remaining forward clutch plates (649) into the input clutch housing
 - start with steel plate and alternate with a composition
4. Forward clutch selective backing plate (650)
5. Forward clutch retaining ring (651)

Forward Clutch Piston Travel Check

Measure (Figure 142)
Check the end clearance between the backing plate (650) and the retaining ring (651) with two feeler gages.
- Select the proper backing plate from the chart to obtain the correct clearance

Assemble (Figure 143 and 147)
1. The 3-4 ring retainer plate (652)
 - index each leg into the apply ring legs.
2. The 3-4 clutch apply plate (653)
3. The 3-4 clutch plates (654)
 - start with composition and alternate with steel
4. The 3-4 boost springs (600) (some models only)
5. The 3-4 clutch backing plate (655) and retainer ring (656)
 - chamfered side up.

3-4 Clutch Piston Travel Check

Measure (Figure 144)
- Check the end clearance between the backing plate (655) and the first composition plate with a feeler gage.
- Select the proper backing plate from the chart to obtain the correct clearance.

Clutch Air Check

Figure 145

Air check the 3-4, forward, and overrun clutches by applying air pressure at the feed holes in the turbine shaft. (When the overrun clutch is checked, the air will blow by the forward clutch piston lip seals and exit out the forward clutch feed hole in the turbine shaft.)

Assemble (Figure 146)

TOOLS REQUIRED:
- J-36418-1 seal installer
- J-36418-2A seal sizer
1. Install four turbine shaft oil seal rings (619) using J-36418-1
 - Adjust screw to obtain proper height
2. Use J-36418-2A to size the seals after installation

Reverse Input Clutch Assembly

Disassemble (Figure 148 and 149)

TOOLS REQUIRED:
- J-23327 Clutch Spring Compressor
- J-25018 Clutch Spring Compressor Adaptor
1. Retaining ring (614) from reverse input housing
2. Backing plate (613)
3. Clutch plates (612) and belleville steel plate (611)
4. Install J-23327 and J-25018.
 - compress the spring assembly.
5. Spring assembly retainer ring (610) and spring assembly (609)
6. Reverse input clutch piston (607)
 - inner and outer lip seals (608) from piston

Inspect (Figures 148 and 150)
- Backing plate (613) for
 - damage
 - distortion or flatness
 - burrs or surface finish damage
- Clutch Plates (612)
 - Composition for tang damage, delamination, or wear
 - Steel for tang damage, wear, or heat damage
- Spring assembly (609) for distortion or damage
- Piston (607) for
 - poposity
 - damaged lip seals
- Housing and drum assembly (605) for
 - damaged or worn bushings (603 and 606)
 - surface on the hub and outer housing
 - leak at the weld

Assemble (Figures 148, 149, 151, 152 and 152A)

TOOLS REQUIRED:
J-23327 Clutch Spring Compressor
J-25018 Clutch Spring Compressor Adaptor
1. Inner and outer seals (608) on the piston
 - lips must face away from the hub as shown.
 - lubricate with transmission fluid.
2. Piston (607) into the housing and drum assembly
 - use an 8 mm feeler gage to position the lip seals.
3. Spring assembly (609) large opening in the assembly goes towards the piston.
4. Install J-23327 and J-25018.
 - compress the spring assembly
 - install the retainer ring (610).
5. Belleville steel clutch plate (611)
6. Clutch plates (612). (4 steel and 4 composition plates required)
 - start with a composition and alternate with steel
7. Backing plate (613)
 - chamfered side up
8. Retaining ring (614)

Measure (Figure 151, 152, 152A and 153)
1. With the Reverse Input Clutch fully assembled, apply an evenly distributed load to the Clutch Pack in the direction shown in Figure 1. Medium pressure (approximately 20 lbs.) on the Backing Plate applied by hand on five evenly distributed
3-4 CLUTCH INFORMATION CHART

<table>
<thead>
<tr>
<th>PLATE TYPE</th>
<th>THICKNESS</th>
<th>QUANTITY REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLAT STEEL CLUTCH PLATE</td>
<td>1.97mm (.077")</td>
<td>6 5</td>
</tr>
<tr>
<td>COMPOSITION FACED CLUTCH PLATES</td>
<td>2.03mm (.079")</td>
<td>5 6</td>
</tr>
<tr>
<td>STEPPED APPLY PLATE</td>
<td>3.30mm (.130")</td>
<td>1 1</td>
</tr>
<tr>
<td>BACKING PLATE</td>
<td>SELECTIVE</td>
<td>1 1</td>
</tr>
<tr>
<td>FLAT STEEL CLUTCH PLATES</td>
<td>1.97mm (.070")</td>
<td>1 1</td>
</tr>
<tr>
<td>*A-MODELS</td>
<td>FAM, FMM, MAM, MFM, MRM, MXM, McM, MTM, PRM, TAM, TBM, YXM</td>
<td></td>
</tr>
<tr>
<td>*B-MODELS</td>
<td>ALL OTHERS</td>
<td></td>
</tr>
</tbody>
</table>

* A-MODELS
FAM, FMM, MAM, MFM, MRM, MXM, McM, MTM, PRM, TAM, TBM, YXM

* B-MODELS
ALL OTHERS

CAUTION: (Excessive pressure will distort the Belleville plate resulting in an inaccurate measurement.)

2. Using a Feeler Gage, measure between the Snap Ring and the Backing Plate. Backing Plate Travel should be 1.02mm - 1.94mm (.040" - .076").

3. Select the proper Backing Plate to obtain the specified travel.

Reverse Input and Input Clutches

Assemble (Figures 154 and 155)

1. Selective thrust washer (616) onto the input housing
2. Bearing assembly (615)
 - inside (black race) goes toward the oil pump.
3. Reverse input clutch assembly (605) onto the input clutch assembly
 - index the reverse input clutch plates with the input clutch hub.
 - make certain all clutches are fully engaged.

Assemble (Figure 156)

- Reverse input and input clutch assembly into the transmission case
 - index the 3-4 clutch plates with the input internal gear.

2-4 Band Assembly

Inspect
- 2-4 band assembly (602) for damage or wear

Assemble (Figure 156, 157)

1. The 2-4 band assembly (602) into the case
 - index the band anchor pin end with the case pin hole.
2. Band anchor pin (48) into the case
 - index the pin into the 2-4 band.
7A1-36 700-R4 AUTOMATIC TRANSMISSION

Pump Body

Disassemble (Figure 160)
1. Pump slide spring (209)
 - compress with needle nose pliers.
 - pull straight out.
 CAUTION: Spring is under very high pressure. Place covering over spring to prevent possible injury.
2. From the pump pocket
 - Pump guide rings (212)
 - Pump vanes (215)
 - Pump rotor (214)
 - Pump guide (213)
 - Slide (206)
 - Slide Seal (211)
 - Seal Support (210)
 - Pivot slide pin (208) and spring (207)
 - Slide seal ring (204) and slide back up seal (205)
3. Retainer (94), oil seal assembly (2)
 - pry out with a screwdriver.

Oil Pump Cover

Disassemble (Figure 160)
1. Converter clutch apply valve train
 - compress converter clutch apply valve spring (228) with a screwdriver.
 - remove retaining ring (225).
 - slowly release the spring tension.
 - stop valve (226), converter clutch apply valve (227), and two converter clutch valve springs.
2. Pressure relief ball (231)
 - ball is under strong spring pressure.
 - cover the ball with a cloth when removed.
3. Pressure regulator assembly (218-224)
 - follow the same procedure used to remove the converter clutch valve.

Inspect (Figure 160)
- Pressure regulator valve assembly (218-224) and converter clutch apply valve assembly (225-229) for
 - chips, burrs, distortion, plugged oil passage, and free movement in bore
 - remove burrs with lapping compound
- Pressure relief assembly (230-232) for damage or distortion
- Pump cover (217) and pump body (203) for
 - worn or damaged bushings (see Bushing Replacement Procedure)
 - foreign material or debris
 - porosity
 - scored or irregular mating faces
 - cross channel leaks
 - ring groove damage
- Rotor (214) and slide (206) for cracks

Oil Pump Assembly

Remove or Disconnect (Figure 160)
1. Thrust washer (601)
2. Pump cover to case gasket (9)
3. Pump to case oil seal (8)
4. Pump cover bolts (236)
5. Pump cover (217) from pump body (203)
Oil seal assembly for damage or wear

Clean

Wash and air dry all parts.

- do not wipe dry with a cloth.

Measure (Figure 159)

TOOL REQUIRED:

One inch Micrometer

- Oil pump rotor (214) thickness
- Oil pump slide (206) thickness

Important

Measurement of rotor/slide must be made on undamaged surfaces. Select similar size replacements. Lightly hone both sides of replacement rotor or slide to remove any nicks or burrs.

Pump Body

Assemble (Figures 160, 161 and 162)

TOOL REQUIRED:

J-25016 Seal Installer

1. “O” ring seal (205) and oil seal ring (204) into the groove on the back side of the slide - retain with petrolatum.
2. Pivot pin spring (207) and pivot pin (208) into the pump body
3. Slide (206)
 - index the notch in the slide with the pivot pin.
 - the oil seal ring must face downward into the pump pocket.
4. Slide seal (211) and support (210)
5. Vane guide ring (212)
6. Rotor guide (213) onto the rotor - retain with petrolatum.
7. Rotor (214)
 - with guide toward the pump pocket.
ILL. NO. DESCRIPTION
605 HOUSING & DRUM ASSEMBLY, REVERSE INPUT CLUTCH
607 PISTON ASM., REVERSE INPUT CLUTCH
608 SEALS, REVERSE INPUT CLUTCH (INNER & OUTER)
609 SPRING ASM., REVERSE INPUT CLUTCH
610 RING, REVERSE INPUT CLUTCH SPRING RETAINER
611 PLATE, REVERSE INPUT CL. (BELLEVILLE)
612 PLATE ASM., REVERSE INPUT CLUTCH
613 PLATE, REVERSE INPUT CLUTCH BACKING
614 RING, REVERSE INPUT CL. RETAINING

Figure 148 Reverse Input Clutch Assembly

8. Vanes (215)
9. Vane guide ring (212)
10. Pump slide spring (209)
11. Oil seal assembly (2), retainer (94).
 - Use J-25016

Oil Pump Cover

Assembly (Figures 160 and 163)
1. Pressure relief ball (231), spring (232) and rivet (230)
2. Inner (229) and outer (228) converter clutch valve springs into the converter clutch valve bore
3. Converter clutch valve (227)
4. Stop valve (226)
5. Retaining ring (225)
6. Pressure regulator valve (218) into the pressure regulator bore
7. Pressure regulator valve spring (219)
8. T.V. boost valve (222) into the T.V. bushing
 - Long land of the valve into the large hole of the bushing.
 - Retain with petrolatum.
9. Reverse boost valve (220) into the reverse boost valve sleeve
 - Small end of the valve first.
REVERSE INPUT CLUTCH BACKING PLATE SELECTION

<table>
<thead>
<tr>
<th>ALL MODELS</th>
<th>BACKING PLATE TRAVEL</th>
<th>PLATE THICKNESS</th>
<th>IDENTIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.02mm - 1.94mm (.040" - .076")</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BACKING PLATE TRAVEL</th>
<th>PLATE THICKNESS</th>
<th>IDENTIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.60mm - 7.45mm (.299" - .293")</td>
<td>1.880mm (.074")</td>
<td>5</td>
</tr>
<tr>
<td>6.94mm - 6.79mm (.273" - .267")</td>
<td>1.730mm (.068")</td>
<td>6</td>
</tr>
<tr>
<td>6.28mm - 6.13mm (.247" - .241")</td>
<td>2.311mm (.091")</td>
<td>7</td>
</tr>
<tr>
<td>5.62mm - 5.47mm (.221" - .215")</td>
<td>2.210mm (.087")</td>
<td>8</td>
</tr>
</tbody>
</table>

Tools Required:
- J-21368 Oil Pump Body and Cover Alignment Band

Assemble (Figures 160, 164, 165 and 166)

Tools Required:
- J-21368 Oil Pump Body and Cover Alignment Band

1. Oil pump cover (217) onto oil pump body
2. Pump cover bolts (236)
3. Align pump cover and pump body with J-21368.
4. Place a screwdriver through a bolt hole and into a hole in the bench.
5. Torque attaching bolts to 22 N·m (18 ft. lbs.)
6. Oil seals (233), if removed previously, onto the pump cover hub
7. Pump to case oil seal (008)
7A1-40 700-R4 AUTOMATIC TRANSMISSION

Figure 154 Thrust Bearing and Selective Washer Location

Figure 155 Reverse Input and Input Clutches

Figure 156 Installing Input Clutch

Figure 157 2-4 Band Assembly - Installed

605 HOUSING & DRUM ASSEMBLY, REVERSE INPUT CLUTCH
615 BEARING ASSEMBLY, STATOR SHAFT/SELECTIVE WASHER
616 WASHER, THRUST (SELECTIVE)
621 HOUSING & SHAFT ASSEMBLY, INPUT

JH0136-700R4

A BAND ANCHOR PIN LOCATION
10 CASE, TRANSMISSION
48 PIN, BAND ANCHOR
605 HOUSING & DRUM ASSEMBLY, REVERSE INPUT CLUTCH
621 HOUSING & SHAFT ASSEMBLY, INPUT

JH0137-700R4

8. Thrust washer (601)

- do not twist the seal.
- lubricate with transmission fluid.

Install or Connect (Figure 167)

TOOLS REQUIRED:
- J-25025-1 Alignment Pins

1. J-25025-1 into the case as shown
2. Oil pump assembly into the case
 - align all holes properly.
3. Bolts and washers (5 and 6)
Figure 158 Oil Pump Thrust Washer Location

OIL PUMP ROTOR SELECTION CHART

<table>
<thead>
<tr>
<th>THICKNESS (mm)</th>
<th>THICKNESS (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.948 - 17.961</td>
<td>0.7066 - 0.7071</td>
</tr>
<tr>
<td>17.961 - 17.974</td>
<td>0.7071 - 0.7076</td>
</tr>
<tr>
<td>17.974 - 17.987</td>
<td>0.7076 - 0.7081</td>
</tr>
<tr>
<td>17.987 - 18.000</td>
<td>0.7081 - 0.7086</td>
</tr>
<tr>
<td>18.000 - 18.013</td>
<td>0.7086 - 0.7091</td>
</tr>
</tbody>
</table>

OIL PUMP SLIDE SELECTION CHART

<table>
<thead>
<tr>
<th>THICKNESS (mm)</th>
<th>THICKNESS (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.948 - 17.961</td>
<td>0.7066 - 0.7071</td>
</tr>
<tr>
<td>17.961 - 17.974</td>
<td>0.7071 - 0.7076</td>
</tr>
<tr>
<td>17.974 - 17.987</td>
<td>0.7076 - 0.7081</td>
</tr>
<tr>
<td>17.987 - 18.000</td>
<td>0.7081 - 0.7086</td>
</tr>
<tr>
<td>18.000 - 18.013</td>
<td>0.7086 - 0.7091</td>
</tr>
</tbody>
</table>

Figure 159 Oil Pump Rotor and Slide Selection

- torque to 22 N·m (18 ft. lbs.)

Important

Rotate the transmission to a horizontal position. If the transmission is assembled properly the turbine shaft should turn by hand. If not identify and correct the misassembly now.

Transmission End Play Check

1. **Measure** (Figures 168, 169, 170, 171)
2. **Tools Required:**
 - J-24773-A End Play Checking Fixture
 - J-25022 End Play Checking Fixture Adaptor (245 mm)
 - J-34725 End Play Checking Fixture Adaptor (298 mm)
 - 278 mm (11 in.) Bolt and Nut or J-25025-7A Post Dial Indicator
3. **Install J-24773-A as shown.**
4. **Install a dial indicator.**
 - set to zero.
5. **Pull up on J-24773-A.**
 - End play should be 0.13 - 0.92 mm (.005 - .036 in.).
 - The selective washer which controls end play is located between the input housing and the thrust bearing on the oil pump hub. If more or less end play is required, select the proper washer from the chart and install. If dial indicator shows no end play, the selective washer and thrust bearing have been misassembled.

Assemble (Figure 172)

1. “O” ring seal (618) into the groove in the end of the turbine shaft.

Important (Figure 173)

- There should be clearance between the reverse input clutch and the reaction sun gear shell. This clearance can be observed at the point shown in-700-R4 Figure 173. Do not try to shim the internal parts because of this clearance.

Inspect (Figure 175, 176 and 177)

- The 1-2 accumulator cover and pin assembly (62) for
 - porosity or damage
 - scored piston wall
 - plugged oil passage
- 1-2 accumulator piston (61) and the 3-4 accumulator piston (52) for
 - porosity
 - ring groove damage
 - pin hole damage
- 1-2 accumulator spring (59) and 3-4 accumulator spring (54) for distortion or damage
- Spacer plate (56) and gaskets (88 and 89) for damage
ILL. NO. | DESCRIPTION
--- | ---
002 | SEAL ASSEMBLY, OIL
003 | BUSHING, PUMP BODY
094 | RETAINER, FRONT HELIX SEAL
096 | TUBE, AUXILIARY ACCUMULATOR VALVE
203 | BODY, PUMP
204 | RING, OIL SEAL (SLIDE TO WEAR PLATE)
205 | SEAL, "O" RING (SLIDE SEAL BACK-UP)
206 | SLIDE, PUMP
207 | SPRING, PIVOT PIN
208 | PIN, PIVOT SLIDE
209 | SPRING, PUMP SLIDE (OUTER)
210 | SUPPORT, PUMP SLIDE SEAL
211 | SEAL, PUMP SLIDE
212 | RING, PUMP VANES
213 | GUIDE, ROTOR
214 | ROTOR, OIL PUMP
215 | VANE, PUMP
216 | SHAFT, STATOR
217 | COVER, PUMP
218 | VALVE, PRESSURE REGULATOR
219 | SPRING, PRESSURE REGULATOR VALVE
220 | VALVE, REVERSE BOOST
221 | SLEEVE, REVERSE BOOST VALVE
222 | VALVE, T.V. BOOST
223 | BUSHING, T.V. BOOST
224 | RING, OIL PUMP REVERSE BOOST VALVE RETAINING
225 | RING, OIL PUMP CONVERTER CLUTCH VALVE RETAINING
226 | VALVE, STOP
227 | VALVE, CONVERTER CLUTCH
228 | SPRING, CONVERTER CLUTCH VALVE (OUTER)
229 | SPRING, CONVERTER CLUTCH VALVE (INNER)
230 | RIVET, PRESSURE RELIEF BOLT
231 | BALL, PRESSURE RELIEF
232 | SPRING, PRESSURE RELIEF
233 | RING, OIL SEAL (STATOR SHAFT)
234 | SEAL, OIL PUMP COVER SCREEN
235 | SCREEN, OIL PUMP COVER
236 | BOLT, M8 x 1.25 x 40 (COVER TO BODY)
237 | PLUG, OIL PUMP AIR BLEED
238 | PLUG, OIL PUMP COVER
239 | PLUG, OIL PUMP COOLER FEED
240 | PLUG, OIL PUMP CONVERTER CLUTCH SIGNAL
241 | RETAINER & BALL ASSEMBLY, PUMP COVER
242 | SCREW, STATOR SHAFT (M6 x 1 x 16.0)
243 | SPRING, PUMP SLIDE (INNER)
Checkballs (55) for damage
T.V. Link (64) for damage
Manual detent spring (709) for damage
Oil filter (71) for
- cut or damaged filter seal (70)
- cracks in the neck or body
- casting flash in the neck
Solenoid assembly (50) for
- damage
- cut or pinched wires
- damaged connectors
- cut or damaged "O" ring (49)
Valve Body and Associated Parts

Install or Connect (Figure 178 and 179)

1. The 3-4 accumulator pin (77) into the case
2. The 3-4 accumulator piston seal (53) onto the 3-4 accumulator piston
3. The 3-4 accumulator piston (52) onto the pin
 - the end with three legs must face the valve body.
4. The 3-4 accumulator piston spring (54)
TRANSMISSION END PLAY WASHER SELECTION CHART

<table>
<thead>
<tr>
<th>WASHER THICKNESS</th>
<th>I.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.87 - 1.97 mm</td>
<td>67</td>
</tr>
<tr>
<td>2.04 - 2.14 mm</td>
<td>68</td>
</tr>
<tr>
<td>2.21 - 2.31 mm</td>
<td>69</td>
</tr>
<tr>
<td>2.38 - 2.48 mm</td>
<td>70</td>
</tr>
<tr>
<td>2.55 - 2.65 mm</td>
<td>71</td>
</tr>
<tr>
<td>2.72 - 2.82 mm</td>
<td>72</td>
</tr>
<tr>
<td>2.89 - 2.99 mm</td>
<td>73</td>
</tr>
<tr>
<td>3.06 - 3.16 mm</td>
<td>74</td>
</tr>
</tbody>
</table>

Figure 170 End Play Chart

Control Valve Assembly

Clean
- Control valve assembly (67) thoroughly in clean solvent-move the valves with a pick or small screwdriver to dislodge any dirt or debris that may have accumulated

Air Dry

Disassemble (Figures 178 & 179)
- Control Valve Assembly
 - Position as shown on a clean surface
 - Remove valve trains beginning with the upper left hand corner. **NOTE**: Some valves are under pressure - cover the bores while removing the roll pins
 - Remove blind hole roll pins with a modified drill bit
 - Valves, springs and bushings must be laid out on a clean surface in the exact sequence they are removed
64 THROTTLE LINK
65 LEVER & BRACKET ASSEMBLY, THROTTLE
91 BALL, CARBON STEEL – T.V. EXHAUST
(LOCATED IN VALVE BODY)

Figure 174 Throttle Lever and Bracket Assembly

1988 MODELS 1-2 ACCUMULATOR SPRING COLOR 3-4 ACCUMULATOR SPRING COLOR
MHM, MPM, MWM, MZM, PAM, PAM, PCM, TMM, TUM, TMM
RED VIOLET
MCM, MTM, PMM, YPM, YTM, YMM
YELLOW RED
FAM, FJM, FMM, MAM, MCM, MMK, MUM, MUM, MMK, MMK, TMM, TMM, TMM, TMM, TMM, TMM, YMM, YMM, YMM
RED RED
TAM, TBM
RED DK. GREEN
YAM
DK. GREEN YELLOW
YDM
DK. GREEN DK. GREEN
YXM
DK. GREEN RED
YMM
YELLOW YELLOW
YZM
YELLOW VIOLET

Figure 176 1-2 and 3-4 Accumulator Spring Chart

- Remove pressure switches

Clean
- All valves, springs, bushings and control valve body in clean solvent
- Dry using compressed air

Inspect
- All Valves and Bushings For:
 - Porosity
 - Scoring
 - Nicks
 - Scratches
- Springs for Damaged or Distorted Coils
- Valve Body Casting For:
 - Porosity
 - Cracks
 - Interconnected Oil Passages
 - Damaged Machined Surfaces

Assemble (Figures 178, 179)
- Control valve assembly (67) exactly as shown. Notice the position of the valve lands and bushing passages.

Install or Connect (Figures 180, 182)
1. Two checkballs (55) and one checkball (91) into the valve body assembly and one checkball (55 B) into the Auxiliary Valve Body as shown. Checkball (91) is the larger copper colored ball shown as #10 on Figure 180.
 - retain with petrolatum.
2. Valve body assembly (67)
 - connect the manual valve link (705) to the inside detent lever (703).
Auxiliary Accumulator Valve Body Assembly

Clean (Figure 181)
- Auxiliary valve assembly (377) thoroughly in clean solvent
 - move the valves with a pick or small screwdriver to dislodge any dirt or debris that may have accumulated
- Air dry

Disassemble (Figure 181)
1. (3) Bolts (373)
 - Cover (371) is under spring pressure
2. Cover (371) and accumulator piston spring (370)
3. Piston (367)
4. Piston oil seal ring (53)

Disassemble (Figure 181)
- Position the auxiliary accumulator valve body on a clean surface. Remove valve trains beginning with the lower left hand corner. NOTE: valves are under pressure-cover bores while removing the roll pin.
- Valves and springs must be laid out on a clean surface in the exact sequence as they are removed

Clean
- All valves and springs in clean solvent
- Air dry

Inspect
- Piston (367) for:
 - cracks
 - porosity
 - damage
- Valves for:
 - scoring
 - nicks
 - scratches
- Springs for damaged or distorted coils
- Auxiliary valve body (377) for:
 - porosity
 - damaged machined surfaces
- Orifice cup plug (359)
 - remove only if damaged

Remove or Disconnect
Tools Required
- #3 Screw Extractor
- Orifice cup plug (359). Use modified #3 screw extractor.

Install or Connect
Tools Required
- 3/8” Rod
- Orifice cup plug (359). Use 3/8” rod.
 - seat flush

Assemble (Figure 181)
- Auxiliary accumulator valve train exactly as shown. Notice the valve lands

Assemble (Figure 181)
1. Piston oil seal ring (369) onto piston (367)
 - lubricate with petrolatum
2. Piston (367)
3. Accumulator spring (370)
4. Cover (371) and (3) bolts (373)

Install or Connect (Figures 181, 184 and 185)
1. Check ball (55) into auxiliary accumulator valve (377)
 - do not block orifice cup plug
 - retain with petrolatum
2. Bolts (374-376) and auxiliary valve body (377)
 - torque to 11 N·m (8 lbs.-ft.)

NOTE: #9 CHECK BALL (DETENT/LO) HAS BEEN REMOVED ON 1988 MODELS.

Inspect (Figure 174)
- The throttle lever and bracket assembly (65) for:
 - sticking, binding or damage
- Make sure it operates freely without restrictions
- Replace if necessary

Install or Connect (Figures 183, 184 and 185)
1. T.V. link (64) onto the T.V. lever and bracket as shown
*USED ON VEHICLES HAVING ECM CONTROL OF T.C.C. APPLY

Figure 178 Control Valve Assembly
<table>
<thead>
<tr>
<th>ILL. NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>301</td>
<td>VALVE, T.V. MODULATOR DOWNSHIFT</td>
</tr>
<tr>
<td>302</td>
<td>SPRING, T.V. MODULATOR DOWNSHIFT VALVE</td>
</tr>
<tr>
<td>303</td>
<td>VALVE, T.V. MODULATOR UPSHIFT</td>
</tr>
<tr>
<td>304</td>
<td>SPRING, T.V. MODULATOR UPSHIFT VALVE</td>
</tr>
<tr>
<td>305</td>
<td>SLEEVE, CONVERTER CLUTCH THROTTLE</td>
</tr>
<tr>
<td>306</td>
<td>SPRING, CONVERTER CLUTCH THROTTLE</td>
</tr>
<tr>
<td>307</td>
<td>VALVE, CONVERTER CLUTCH THROTTLE</td>
</tr>
<tr>
<td>308</td>
<td>VALVE, CONVERTER CLUTCH SHIFT</td>
</tr>
<tr>
<td>309</td>
<td>SLEEVE, 3-4 THROTTLE VALVE</td>
</tr>
<tr>
<td>310</td>
<td>SPRING, 3-4 THROTTLE VALVE</td>
</tr>
<tr>
<td>311</td>
<td>VALVE, 3-4 THROTTLE</td>
</tr>
<tr>
<td>312</td>
<td>VALVE, 3-4 SHIFT</td>
</tr>
<tr>
<td>313</td>
<td>SLEEVE, 2-3 THROTTLE VALVE</td>
</tr>
<tr>
<td>314</td>
<td>SPRING, 2-3 THROTTLE VALVE</td>
</tr>
<tr>
<td>315</td>
<td>VALVE, 2-3 THROTTLE</td>
</tr>
<tr>
<td>316</td>
<td>VALVE, 2-3 SHIFT</td>
</tr>
<tr>
<td>317</td>
<td>SLEEVE, 1-2 THROTTLE VALVE</td>
</tr>
<tr>
<td>318</td>
<td>SPRING, 1-2 THROTTLE VALVE</td>
</tr>
<tr>
<td>319</td>
<td>VALVE, 1-2 THROTTLE</td>
</tr>
<tr>
<td>322</td>
<td>VALVE, 1-2 SHIFT</td>
</tr>
<tr>
<td>323</td>
<td>SLEEVE, THROTTLE VALVE PLUNGER</td>
</tr>
<tr>
<td>324</td>
<td>PLUNGER, THROTTLE VALVE</td>
</tr>
<tr>
<td>325</td>
<td>SPRING, THROTTLE VALVE</td>
</tr>
<tr>
<td>326</td>
<td>VALVE, THROTTLE</td>
</tr>
<tr>
<td>328</td>
<td>VALVE, 3-4 RELAY</td>
</tr>
<tr>
<td>329</td>
<td>VALVE, 4-3 SEQUENCE</td>
</tr>
<tr>
<td>330</td>
<td>SPRING, 4-3 SEQUENCE VALVE</td>
</tr>
<tr>
<td>331</td>
<td>SPRING, T.V. LIMIT VALVE</td>
</tr>
<tr>
<td>332</td>
<td>VALVE, T.V. LIMIT</td>
</tr>
<tr>
<td>333</td>
<td>VALVE, 1-2 ACCUMULATOR</td>
</tr>
<tr>
<td>334</td>
<td>SLEEVE, 1-2 ACCUMULATOR VALVE</td>
</tr>
<tr>
<td>336</td>
<td>SPRING, 1-2 ACCUMULATOR VALVE</td>
</tr>
<tr>
<td>336</td>
<td>VALVE, LINE BIAS</td>
</tr>
<tr>
<td>337</td>
<td>SPRING, LINE BIAS VALVE</td>
</tr>
<tr>
<td>338</td>
<td>SPRING, 3-2 CONTROL</td>
</tr>
<tr>
<td>339</td>
<td>VALVE, 3-2 CONTROL</td>
</tr>
<tr>
<td>340</td>
<td>VALVE, MANUAL</td>
</tr>
<tr>
<td>341</td>
<td>PIN, COILED SPRING</td>
</tr>
<tr>
<td>342</td>
<td>PIN, COILED SPRING</td>
</tr>
<tr>
<td>343</td>
<td>RETAINER, SPRING (SLEEVE)</td>
</tr>
<tr>
<td>344</td>
<td>PLUG, VALVE BORE</td>
</tr>
<tr>
<td>345</td>
<td>PLUG, CUP (.33 DIA.)</td>
</tr>
<tr>
<td>346</td>
<td>SWITCH ASM., PRESSURE (3RD CLUTCH)</td>
</tr>
<tr>
<td>347</td>
<td>SWITCH ASM., PRESSURE (4-3 PULSE)</td>
</tr>
<tr>
<td>348</td>
<td>SWITCH ASM., PRESSURE (4TH CLUTCH)</td>
</tr>
<tr>
<td>349</td>
<td>SWITCH ASM., PRESSURE (T.C.C. SIGNAL)</td>
</tr>
<tr>
<td>350</td>
<td>BODY, CONTROL VALVE</td>
</tr>
<tr>
<td>351</td>
<td>PLUG, T.V. LIMIT</td>
</tr>
<tr>
<td>352</td>
<td>PLUG, VALVE BORE (12.5 - O.D.)</td>
</tr>
<tr>
<td>354</td>
<td>PLUG, CONVERTER CLUTCH SHIFT VALVE BORE (ECM CONTROLLED VEHICLES)</td>
</tr>
<tr>
<td>355</td>
<td>PLUG, CONVERTER CLUTCH T.V. BUSHING BORE (ECM CONTROLLED VEHICLES)</td>
</tr>
</tbody>
</table>

Figure 179 Control Valve Assembly-Legend

![Figure 180 Valve Body Checkball Locations](image180)

2. T.V. lever and bracket assembly (65) onto the valve body as shown
 - attach with two valve body to case bolts (69).
3. Wire harness clips (66), filter retaining clip (87), manual spring assembly (68), wire retaining washer, and all remaining valve body to case bolts (69)
 - Torque to 11.0 N·m (8 ft.lbs.).
4. "O"ring seal (34) onto the electrical connector (33)
 - lubricate with transmission fluid.
5. Electrical connector (33) into the case
6. "O" ring seal (49) on the solenoid assembly (50)
7. Solenoid assembly (50) into the case
 - attach with two solenoid bolts (51)
 - torque to 11 N·m (8 ft. lbs.)
 - to correctly route and hook up the wires see the wiring diagrams in the 700-R4 diagnosis section.
 The wire connectors are color coded to correspond to the information in the wiring diagram. On switches which take two connectors, the terminals are reversible. It will be necessary to identify and use the wiring diagram chart which corresponds to the type of vehicle you are working on. (See the Diagnosis Section for the wiring diagrams.)

Install or Connect (Figure 183, and 184)

1. Parking bracket (710)
1. Install or Connect (Figure 186)
 1. Filter seal (70) onto the oil filter
 - lubricate with transmission fluid.
 2. Oil filter (71)
 3. Oil pan gasket (72)
 4. Chip magnet (93) into oil pan (73)
 5. Oil pan (73) and bolts (74)
 - torque to 16 N·m (12 ft. lbs.)

2. The 1-2 accumulator piston seal (60) onto the 1-2 accumulator piston (61)
3. The 1-2 accumulator piston (61) into the 1-2 accumulator cover and pin assembly (62)
 - the three legs on the piston must face up toward the case when installed.
4. The 1-2 accumulator spring (59) onto the piston
5. The 1-2 accumulator cover and pin assembly (62) onto the case
 - torque to 11 N·m (8 ft. lbs.)
2.4 Servo Assembly

Measure (Figure 187)

TOOLS REQUIRED:
- J-33037 Band Apply Pin Tool

1. Install J-33037 as shown with apply pin (29).
2. Apply 11.0 N·m (100 in. lbs.) torque.
3. If white line “A” appears in the gage slot “B”, pin length is correct.
4. Use pin selection chart to determine the correct pin length.

Inspect
- Pistons for porosity or damage, ring groove damage
- Cover (15) for porosity or damage
- Seals for nicks or cuts, freeness in the seal groove
- Springs for distortion
- Pin for wear or burrs

Important
- Check servo bore in the case for any wear which may cut the servo seals.
Figure 187 Servo Pin Length

24 SERVO PIN SELECTION

<table>
<thead>
<tr>
<th>PIN LENGTH</th>
<th>PIN I.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>INCH</td>
</tr>
<tr>
<td>66.37-66.67</td>
<td>2.61-2.62</td>
</tr>
<tr>
<td>67.74-68.04</td>
<td>2.67-2.68</td>
</tr>
<tr>
<td>69.11-69.41</td>
<td>2.72-2.73</td>
</tr>
</tbody>
</table>

Figure 187 Servo Pin Length

2ND APPLY PISTON & HOUSING APPLICATION

<table>
<thead>
<tr>
<th>MODEL</th>
<th>PISTON DIMENSION "A"</th>
<th>HOUSING DIMENSION "B"</th>
</tr>
</thead>
<tbody>
<tr>
<td>YAM, YDM, YMM</td>
<td>44.84 mm (1.78")</td>
<td>45.54 mm (1.79")</td>
</tr>
<tr>
<td>FAM, FMM, MAM, MCM, MDM, MFM, MKM, MLM, MRM, MTM, MXM, PMM, TAM, TBM, TDM, TTM, TLM, YMM, YPM, YTM, YXM</td>
<td>57.85 mm (2.28")</td>
<td>58.74 mm (2.31")</td>
</tr>
<tr>
<td>FJM, MHM, MPM, MW, ZM, PAM, PB, PCM, TNM, TUM, TXM, YKM, YWM, ZNM</td>
<td>63.10 mm (2.48")</td>
<td>64.00 mm (2.52")</td>
</tr>
</tbody>
</table>

Measure (Figure 188)

TOOLS REQUIRED:
- Vernier Calipers
- Scale
- Check Model Application

1. Measure Piston (25) Dimension "A"
2. Measure housing (22) Dimension "B"
3. Check Model Application

Assemble (Figures 189, 190, 191 and 192)

TOOLS REQUIRED:
- J-22269-01
- J-29714

1. Cushion spring (26) into the 2nd apply piston (25)
2. Cushion spring retainer (27) on the cushion spring
3. Install J-22269-01.
 - compress the retainer past the snap ring groove in the 2nd apply piston.
 - install the retainer ring (28).
4. The 2nd apply piston (25) onto the apply pin (29)
 - retainer goes toward the shoulder of the pin.
5. Servo apply pin spring (20) on the pin
6. Servo apply pin washer (19) and retaining clip (18)
7. Inner (23) and outer (24) seals on the 2nd apply piston
 - retain with petrolatum.
8. “O” ring seal (21) on servo piston housing

Governor Assembly

Inspect (Figure 193)

- Valve for free operation
- Weights for free operation
- Springs - missing or distorted
- Sleeve for nicks, burrs, scored or galled
- Driven gear for damage
DO NOT DISASSEMBLE EXCEPT FOR CLEANING OR PART REPLACEMENT.

1. Cut off one end of each governor weight pin.
2. Pins (84)
3. Weights
4. Valve
5. Driven gear (83)
 - Drive out the retainer pin (82) with a small punch.
 - Support the governor assembly sleeve on plates installed in the exhaust slots. Push out the gear with an arbor press and a long punch.

Clean
- Wash all parts in solvent.
- Air dry and blow out passages.

Assemble
1. Install a new governor drive gear.
 - support the governor or plates through the exhaust slots.
 - Press gear (83) into the sleeve until seated.
 - Drill a new retaining pin hole in the sleeve ninety degrees from the existing hole. Use a 3.0 mm (1/8 in.) drill.
 - Install retainer pin (82) and stake.
2. Valve into the sleeve
3. Weights, springs, and thrust cap onto the governor assembly
4. Retaining pins (84) into the thrust cap (85) and governor assembly
5. Stake the retaining pins (84).
6. Check for free operation of the valve and weights.
Install or Connect (Figures 193, 194)
1. Governor assembly (45) into the governor bore
2. Governor Cover (46)
 - apply sealant, such as loctite cup plug sealant #11 or equivalent to cover flange before installation.
A APPLY SEALANT ON THIS FLANGE BEFORE INSTALLATION
10 CASE, TRANSMISSION
45 GOVERNOR ASSEMBLY
46 COVER, GOVERNOR

A SPEEDO CLIP HOLE FOR CORVETTE ONLY
B SPEEDO CLIP HOLE FOR ALL OTHER VEHICLES
687 SHAFT, OUTPUT

Install or Connect (Figures 195 thru 201)

MECHANICAL SPEEDOMETER TOOLS REQUIRED:
- J-23103 or J-25016 Seal Installer
- J-21426 Seal Installer

1. Speedometer drive gear (689) and clip (688)
 - if the output shaft has two speedometer locating holes, use the hole nearest the yoke spline for Corvette vehicles only.
2. “O” ring seal (691) on the output shaft sleeve
3. Output shaft sleeve (690) on the output shaft
 - use J-25016 or J-23103.
 - do not push the sleeve past the machined surface on the output shaft.
4. Seal ring (35) on the case extension
5. Case extension (36) and bolts (37) or stud (100) and nut (98)
 - position extension so the speedometer bore is on the governor side of the case.
 - torque to 35 N·m (26 ft. lbs.)
6. Remove case extension oil seal (89)
 - pry out with a screwdriver
 - install new seal with J-21426
7. Speedometer driven gear (44) and assembly (43) or speed sensor (99)
8. Retainer (40) bolt and washer (41)
9. Outside electrical connector, manual lever and nut

Torque Converter Assembly

Inspect
- The torque converter assembly (1) must be replaced for any of the following conditions:
 - Evidence of damage to the pump assembly
 - Metal particles are found after flushing the cooler and cooler pipes
- External leaks in hub weld area
- Converter pilot is broken, damaged or poor fit into crankshaft
- Converter hub is scored or damaged
- Internal damage to stator
- Contamination from engine coolant
- Excess end play

Inspect or Connect (Figures 195 thru 201)

MECHANICAL SPEEDOMETER TOOLS REQUIRED:
- J-23103 or J-25016 Seal Installer
- J-21426 Seal Installer

1. Speedometer drive gear (689) and clip (688)
 - if the output shaft has two speedometer locating holes, use the hole nearest the yoke spline for Corvette vehicles only.
2. “O” ring seal (691) on the output shaft sleeve
3. Output shaft sleeve (690) on the output shaft
 - use J-25016 or J-23103.
 - do not push the sleeve past the machined surface on the output shaft.
4. Seal ring (35) on the case extension
5. Case extension (36) and bolts (37) or stud (100) and nut (98)
 - position extension so the speedometer bore is on the governor side of the case.
 - torque to 35 N·m (26 ft. lbs.)
6. Remove case extension oil seal (89)
 - pry out with a screwdriver
 - install new seal with J-21426
7. Speedometer driven gear (44) and assembly (43) or speed sensor (99)
8. Retainer (40) bolt and washer (41)
9. Outside electrical connector, manual lever and nut

Torque Converter Assembly

Inspect
- The torque converter assembly (1) must be replaced for any of the following conditions:
 - Evidence of damage to the pump assembly
 - Metal particles are found after flushing the cooler and cooler pipes
- External leaks in hub weld area
- Converter pilot is broken, damaged or poor fit into crankshaft
- Converter hub is scored or damaged
- Internal damage to stator
- Contamination from engine coolant
- Excess end play
7A1-56 700-R4 AUTOMATIC TRANSMISSION

Figure 198 Output Shaft Sleeve and Seal

Figure 199 Output Shaft Sleeve - Installation

Figure 200 Case Extension and Seal

Figure 201 Case Extension and Associated Parts

ILL. NO. DESCRIPTION
10 CASE, TRANSMISSION
35 SEAL, CASE EXTENSION TO CASE
36 EXTENSION, CASE
37 BOLT, CASE EXTENSION TO CASE
39 SEAL ASSEMBLY, CASE EXTENSION OIL
40 RETAINER, SPEEDO DRIVEN GEAR FITTING
41 BOLT & WASHER ASSEMBLY
42 SEAL, "O" RING (SPEEDO FITTING TO CASE EXTENSION)
43 FITTING ASSEMBLY, SPEEDO DRIVEN GEAR
44 GEAR, SPEEDO DRIVEN
45 GOVERNOR ASSEMBLY
46 COVER, GOVERNOR
99 SPEED SENSOR, INTERNAL TRANSMISSION
100 BOLT, SPEEDO SENSOR RETAINING
687 SHAFT, OUTPUT
688 CLIP, SPEEDO DRIVE GEAR
689 GEAR, SPEEDO DRIVE
690 SLEEVE, OUTPUT SHAFT NOT USED ON ALL MODELS
691 SEAL, OUTPUT SHAFT NOT USED ON ALL MODELS
Measuring (Figure 203)

Tool Required:
J-35138 Torque Converter End Play Checking Tool

- Install J-35138 and measure end play
 - 0mm - .5mm (.020") for 245mm Torque Converters
 - 0mm - .6mm (.024") for 298mm Torque Converters

The Torque Converter Should Not Be Replaced

- The fluid has an odor, discolored or no evidence of metal or clutch plate material
 - Drain out as much fluid as possible
 - Replace the oil filter and pan gasket
 - Fill to proper level (Refer to Section 7A)

- The converter bolt hole threads are damaged
 - Correct with thread insert (Refer to Section 6A)

Flushing the torque converter is not recommended.

Install Or Connect

1. Torque converter (1)
2. J-21366 converter holding strap
3. Remove transmission from holding fixture
<table>
<thead>
<tr>
<th>ILL. NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>601</td>
<td>WASHER, THRUST (PUMP TO DRUM)</td>
</tr>
<tr>
<td>608</td>
<td>SEALS, REVERSE INPUT CLUTCH (INNER & OUTER)</td>
</tr>
<tr>
<td>615</td>
<td>BEARING ASSEMBLY, STATOR SHAFT/SELECTIVE WASHER</td>
</tr>
<tr>
<td>616</td>
<td>WASHER, THRUST (SELECTIVE)</td>
</tr>
<tr>
<td>622</td>
<td>SEAL, "O" RING INPUT TO FORWARD HSG.</td>
</tr>
<tr>
<td>624</td>
<td>SEAL, 3RD & 4TH CL. (INNER & OUTER)</td>
</tr>
<tr>
<td>629</td>
<td>SEAL, FORWARD CLUTCH (INNER & OUTER)</td>
</tr>
<tr>
<td>631</td>
<td>SEAL, OVERRUN CLUTCH (INNER & OUTER)</td>
</tr>
<tr>
<td>637</td>
<td>BEARING ASSEMBLY, INPUT SUN GEAR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ILL. NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>663</td>
<td>BEARING ASSEMBLY, THRUST (INPUT CARRIER TO REACTION SHAFT)</td>
</tr>
<tr>
<td>669</td>
<td>WASHER, THRUST (REACTION SHAFT/ SHELL)</td>
</tr>
<tr>
<td>674</td>
<td>WASHER, THRUST (RACE/REACTION SHELL)</td>
</tr>
<tr>
<td>683</td>
<td>BEARING ASSEMBLY, THRUST (REACTION CARRIER/SUPPORT)</td>
</tr>
<tr>
<td>692</td>
<td>BRG., REACTION GEAR SUPPORT TO CASE</td>
</tr>
<tr>
<td>696</td>
<td>SEAL, TRANSMISSION (LO & REVERSE CLUTCH — OUTER, CENTER, INNER)</td>
</tr>
</tbody>
</table>

Figure 204 Seals and Bearing Locations
700-R4 AUTOMATIC TRANSMISSION 7A1-59

ILL. NO. DESCRIPTION
3 BUSHING, OIL PUMP BODY
4 BUSHING, STATOR SHAFT (REAR)
38 BUSHING, CASE EXTENSION
76 BUSHING, CASE
90 BUSHING, STATOR SHAFT (FRONT)
603 BUSHING, REVERSE INPUT CLUTCH (FRONT)
606 BUSHING, REVERSE INPUT CLUTCH (REAR)

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>QTY.</th>
<th>SIZE</th>
<th>TORQUE</th>
<th>LOCATION</th>
<th>QTY.</th>
<th>SIZE</th>
<th>TORQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCUMULATOR COVER TO CASE</td>
<td>2</td>
<td>M6 1.0 x 35.0</td>
<td>11 N·m (8 FT.-LB.)</td>
<td>PARK BRAKE BRACKET TO CASE</td>
<td>2</td>
<td>M8 1.25 x 20.0</td>
<td>22 N·m (18 FT.-LB.)</td>
</tr>
<tr>
<td>ACCUMULATOR COVER TO CASE</td>
<td>1</td>
<td>M6 1.0 x 65.0</td>
<td>11 N·m (8 FT.-LB.)</td>
<td>PUMP COVER TO BODY</td>
<td>5</td>
<td>M8 1.25 x 40.0</td>
<td>22 N·m (18 FT.-LB.)</td>
</tr>
<tr>
<td>DETENT SPRING TO VALVE BODY</td>
<td>1</td>
<td>M8 1.75 x 20.0</td>
<td>22 N·m (18 FT.-LB.)</td>
<td>PUMP ASSY. TO CASE</td>
<td>7</td>
<td>M8 1.25 x 60.0</td>
<td>22 N·m (18 FT.-LB.)</td>
</tr>
<tr>
<td>VALVE BODY TO CASE</td>
<td>15</td>
<td>M6 1.0 x 50.0</td>
<td>11 N·m (8 FT.-LB.)</td>
<td>CASE EXTENSION TO CASE</td>
<td>4</td>
<td>M10 1.50 x 30.0</td>
<td>34 N·m (26 FT.-LB.)</td>
</tr>
<tr>
<td>OIL PASSAGE COVER TO CASE</td>
<td>3</td>
<td>M6 1.0 x 16.0</td>
<td>11 N·m (8 FT.-LB.)</td>
<td>MANUAL SHAFT TO INSIDE DET. LEVER</td>
<td>1</td>
<td>M10 1.50 NUT</td>
<td>31 N·m (23 FT.-LB.)</td>
</tr>
<tr>
<td>SOLENOID ASSY. TO PUMP</td>
<td>2</td>
<td>M6 1.0 x 12.0</td>
<td>11 N·m (8 FT.-LB.)</td>
<td>PRESSURE PLUGS</td>
<td>1-4</td>
<td>¼ - 27</td>
<td>11 N·m (8 FT.-LB.)</td>
</tr>
<tr>
<td>TRANSMISSION OIL PAN TO CASE</td>
<td>16</td>
<td>M8 1.25 x 19.3</td>
<td>11 N·m (8 FT.-LB.)</td>
<td>PRESSURE PLUGS</td>
<td>3</td>
<td>¼ - 18</td>
<td>24 N·m (18 FT.-LB.)</td>
</tr>
<tr>
<td>PRESSURE SWITCHES</td>
<td>1-3</td>
<td>½ - 27</td>
<td>11 N·m (8 FT.-LB.)</td>
<td>CONNECTOR COOLER PIPE</td>
<td>2</td>
<td>¼ - 18</td>
<td>38 N·m (28 FT.-LB.)</td>
</tr>
</tbody>
</table>

Figure 205 Torque Specifications and Bushing Locations
BUSHING REPLACEMENT PROCEDURE

PROTECT PARTS WITH WOOD BLOCKS OR CLOTH AS NECESSARY

<table>
<thead>
<tr>
<th>REMOVE AS SHOWN</th>
<th>INSTALL AS SHOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 BUSHING, STATOR SHAFT – FRONT</td>
<td>4 BUSHING, STATOR SHAFT – FRONT</td>
</tr>
<tr>
<td>90 BUSHING, STATOR SHAFT – REAR</td>
<td>90 BUSHING, STATOR SHAFT – REAR</td>
</tr>
<tr>
<td>217 COVER, PUMP</td>
<td>217 COVER, PUMP</td>
</tr>
<tr>
<td>J-21465-15</td>
<td>J-21465-2</td>
</tr>
<tr>
<td>J-7004-1</td>
<td>J-7004-1</td>
</tr>
<tr>
<td>J-25019-14</td>
<td>J-25019-6</td>
</tr>
<tr>
<td>J-8092</td>
<td>J-8092</td>
</tr>
<tr>
<td>J-25019-4</td>
<td>J-34196-12</td>
</tr>
<tr>
<td>J-8092</td>
<td>J-8092</td>
</tr>
<tr>
<td>3 BUSHING, OIL PUMP BODY</td>
<td>3 BUSHING, OIL PUMP BODY</td>
</tr>
<tr>
<td>203 BODY, PUMP</td>
<td>203 BODY, PUMP</td>
</tr>
<tr>
<td>J-8092</td>
<td>J-8092</td>
</tr>
<tr>
<td>J-25019-4</td>
<td>J-34196-3</td>
</tr>
<tr>
<td>J-7004-1</td>
<td>J-7004-1</td>
</tr>
<tr>
<td>J-25019-16</td>
<td>J-25019-9</td>
</tr>
<tr>
<td>J-8092</td>
<td>J-8092</td>
</tr>
<tr>
<td>603 BUSHING, REVERSE INPUT CLUTCH – FRONT</td>
<td>603 BUSHING, REVERSE INPUT CLUTCH – FRONT</td>
</tr>
<tr>
<td>605 HOUSING & DRUM ASSEMBLY, REVERSE INPUT CLUTCH</td>
<td>605 HOUSING & DRUM ASSEMBLY, REVERSE INPUT CLUTCH</td>
</tr>
<tr>
<td>606 BUSHING, REVERSE INPUT CLUTCH – REAR</td>
<td>606 BUSHING, REVERSE INPUT CLUTCH – REAR</td>
</tr>
<tr>
<td>603 BUSHING, REVERSE INPUT CLUTCH – FRONT</td>
<td>603 BUSHING, REVERSE INPUT CLUTCH – FRONT</td>
</tr>
<tr>
<td>605 HOUSING & DRUM ASSEMBLY, REVERSE INPUT CLUTCH</td>
<td>605 HOUSING & DRUM ASSEMBLY, REVERSE INPUT CLUTCH</td>
</tr>
<tr>
<td>606 BUSHING, REVERSE INPUT CLUTCH – REAR</td>
<td>606 BUSHING, REVERSE INPUT CLUTCH – REAR</td>
</tr>
</tbody>
</table>

Figure 206 Bushing Replacement Procedure
700-R4 Automatic Transmission

Bushing Replacement Procedure

Protect parts with wood blocks or cloth as necessary

<table>
<thead>
<tr>
<th>Remove As Shown</th>
<th>Install As Shown</th>
</tr>
</thead>
<tbody>
<tr>
<td>J-34196 657 Bushing, Input Sun Gear – Front</td>
<td>J-34196 657 Bushing, Input Sun Gear – Front</td>
</tr>
<tr>
<td>658 Gear, Input Sun</td>
<td>658 Gear, Input Sun</td>
</tr>
<tr>
<td>659 Bushing, Input Sun Gear – Rear</td>
<td>659 Bushing, Input Sun Gear – Rear</td>
</tr>
<tr>
<td>J-23907 665 Bushing, Reaction Carrier Shaft – Front</td>
<td>J-23907 665 Bushing, Reaction Carrier Shaft – Front</td>
</tr>
<tr>
<td>J-29369 666 Shaft, Reaction Carrier</td>
<td>J-29369 666 Shaft, Reaction Carrier</td>
</tr>
<tr>
<td>J-25019 667 Bushing, Reaction Carrier Shaft – Rear</td>
<td>J-25019 667 Bushing, Reaction Carrier Shaft – Rear</td>
</tr>
<tr>
<td>J-8092 672 Bushing, Reaction Sun</td>
<td>J-8092 672 Bushing, Reaction Sun</td>
</tr>
<tr>
<td>673 Gear, Reaction Sun</td>
<td>673 Gear, Reaction Sun</td>
</tr>
</tbody>
</table>

Figure 207 Bushing Replacement Procedure
BUSHING REPLACEMENT PROCEDURE
PROTECT PARTS WITH WOOD BLOCKS OR CLOTH AS NECESSARY

<table>
<thead>
<tr>
<th>REMOVE AS SHOWN</th>
<th>INSTALL AS SHOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>36 EXTENSION, CASE</td>
<td>36 EXTENSION, CASE</td>
</tr>
<tr>
<td>38 BUSHING, CASE EXTENSION</td>
<td>38 BUSHING, CASE EXTENSION</td>
</tr>
<tr>
<td>10 CASE, TRANSMISSION</td>
<td>10 CASE, TRANSMISSION</td>
</tr>
<tr>
<td>76 BUSHING, CASE</td>
<td>76 BUSHING, CASE</td>
</tr>
</tbody>
</table>

Figure 208 Bushing Replacement Procedure
GOVERNOR BORE REPAIR PROCEDURE
FOLLOW STEPS 1-6 TO REPAIR THE GOVERNOR BORE

STEP 1 Install holding fixture J-8763 and mount in vise.

STEP 2 Remove (file) any excess material from the governor face.

STEP 3 Install J-22976-3 and J-22976-1. Torque bolts to 13 N-m (10 ft.-lbs.). Make sure J-22976-3 rotates freely and then remove it.

B RATCHET & SOCKET

STEP 4 Ream the governor bore as follows:
- Oil J-22976-9, J-22976-1 and the governor bore with transmission fluid.
- After each ten revolutions, remove the reamer and dip in transmission fluid to clean.
- After the reamer reaches the end of the bore and bottoms on the governor support pin, rotate the reamer ten additional revolutions.
- Remove the reamer. Be certain to rotate during removal to prevent scoring the bore.
- Remove the tools and thoroughly clean the case.

STEP 5 Align the slots in the bushing with the slots in the governor bore.

STEP 6 Install the bushing until the slots in the bushing align with the feed holes in the governor bore.

Figure 209 Governor Bore Repair Procedure
7A1-64 700-R4 Automatic Transmission

<table>
<thead>
<tr>
<th>Tool Name</th>
<th>Part Number</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universal Remover</td>
<td>J-7004-1</td>
<td>A</td>
</tr>
<tr>
<td>Dial Indicator Set</td>
<td>J-8001</td>
<td>E</td>
</tr>
<tr>
<td>Handle</td>
<td>J-8092</td>
<td>E</td>
</tr>
<tr>
<td>Holding Fixture & Base</td>
<td>J-8763-02</td>
<td>E</td>
</tr>
<tr>
<td>Oil Pump Body & Cover Alignment Band</td>
<td>J-21368</td>
<td>E</td>
</tr>
<tr>
<td>Rear Seal Installer</td>
<td>J-21426</td>
<td>E</td>
</tr>
<tr>
<td>Pump Oil Seal Installer</td>
<td>J-25016</td>
<td>E</td>
</tr>
<tr>
<td>Piston Compressor</td>
<td>J-22269-01</td>
<td>E</td>
</tr>
<tr>
<td>Bushing Remover</td>
<td>J-21426</td>
<td>E</td>
</tr>
<tr>
<td>Clutch Spring Compressor</td>
<td>J-23062-14</td>
<td>E</td>
</tr>
<tr>
<td>Clutch Spring Compressor Adaptor</td>
<td>J-23456</td>
<td>A</td>
</tr>
<tr>
<td>Universal Remover</td>
<td>J-23327</td>
<td>E</td>
</tr>
<tr>
<td>Oil Pump Remover & End Play Checking Fixture</td>
<td>J-24773-A</td>
<td>E</td>
</tr>
<tr>
<td>End Play Checking Fixture Adaptor</td>
<td>J-25018-A</td>
<td>E</td>
</tr>
<tr>
<td>End Play Checking Fixture Adaptor</td>
<td>J-23456</td>
<td>E</td>
</tr>
<tr>
<td>Bushing Remover</td>
<td>J-24773-A</td>
<td>E</td>
</tr>
<tr>
<td>Bushing Installer</td>
<td>J-25019-9</td>
<td>A</td>
</tr>
<tr>
<td>Turbine Shaft Seal Installer</td>
<td>J-36418-1</td>
<td>E</td>
</tr>
<tr>
<td>Turbine Shaft Seal Sizer</td>
<td>J-36418-2</td>
<td>E</td>
</tr>
<tr>
<td>Bushing Remover</td>
<td>J-25019-14</td>
<td>A</td>
</tr>
<tr>
<td>Bushing Remover</td>
<td>J-25019-12</td>
<td>A</td>
</tr>
<tr>
<td>Bushing Remover</td>
<td>J-25019-16</td>
<td>A</td>
</tr>
<tr>
<td>Bushing & Universal Remover Set</td>
<td>J-29369-1</td>
<td>E</td>
</tr>
<tr>
<td>Speedometer Gear Puller & Adapter</td>
<td>J-21427-01 & J-8433</td>
<td>E</td>
</tr>
<tr>
<td>Servo Cover Compressor</td>
<td>J-29714</td>
<td>E</td>
</tr>
<tr>
<td>Output Shaft Support Fixture</td>
<td>J-29837</td>
<td>E</td>
</tr>
<tr>
<td>Inner Overrun Clutch Seal Protector</td>
<td>J-29882</td>
<td>E</td>
</tr>
<tr>
<td>Inner Forward Clutch Seal Protector</td>
<td>J-29883</td>
<td>E</td>
</tr>
<tr>
<td>24 Band Apply Pin Tools</td>
<td>J-33037</td>
<td>E</td>
</tr>
<tr>
<td>Speed Sensor Rotor Installer</td>
<td>J-36352</td>
<td>A</td>
</tr>
<tr>
<td>Bushing Set</td>
<td>J-5590</td>
<td>A</td>
</tr>
</tbody>
</table>

E – Essential Tool
A – Available Tool

Figure 210 Special Tools
SECTION 7A2

400/475 AUTOMATIC TRANSMISSION

CONTENTS

TRANSMISSION DISASSEMBLY ..7A2- 1
General Service Information ..7A2- 1
Disassembly ...7A2- 3
Vacuum Modulator Assembly ..7A2- 3
Oil Pan & Filter Assembly ..7A2- 4
Control Valve Assembly ..7A2- 4
Solenoid Assembly ..7A2- 4
Front and Rear Servo Assemblies7A2- 4
*Band Apply Pin Check ..7A2- 4
Governor Assembly ..7A2- 5
Front End Play Check ..7A2- 5
Case Extension Assembly ...7A2- 6
Rear Unit End Play Check ..7A2- 6
Oil Pump Assembly ...7A2- 7
Parking Lock Pawl and Actuator Assembly7A2- 7
*Forward Clutch Assembly ...7A2- 8
*Direct Clutch Assembly ..7A2- 8
*Intermediate Clutch Assembly7A2- 8
Center Support and Gear Unit Assembly7A2-10
Transmission Case ..7A2-11
COMPONENT REPAIR AND TRANSMISSION ASSEMBLY7A2-15
Park Lock Pawl and Actuator Assembly7A2-15
Rear Band and Selective Thrust Washers7A2-16
Gear Unit and Output Carrier Assemblies7A2-16

*Speedometer Drive Gear
 Speed Sensor Rotor Replacement7A2-16
 Gear Unit Assembly ..7A2-17
 Reaction Carrier Assembly7A2-18
 *Intermediate Clutch Piston7A2-20
 Low Clutch Roller Assembly7A2-21
 Direct Clutch and Intermediate Roller Assembly7A2-21
 *Direct Clutch Piston ..7A2-22
 *Direct Clutch Assembly ..7A2-22
 *Center Support and Gear Unit Assembly.......................7A2-24
 *Intermediate Clutch Assembly7A2-24
 Direct Clutch Assembly and Front Band7A2-25
 *Forward Clutch Assembly7A2-25
 Turbine Shaft Removal ..7A2-26
 Oil Pump Assembly ..7A2-29
 Pump Body ..7A2-29
 Gear Clearance ..7A2-29
 Pump Cover ..7A2-30
 Rear Unit End Play Check7A2-31
 Front Unit End Play Check7A2-32
 *Governor Assembly ..7A2-32
 Driven Gear Replacement7A2-32
 Rear Servo Accumulator Assembly7A2-34
 Front Servo Assembly ..7A2-35
 Control Valve Assembly ...7A2-36
 Oil Pan and Filter Assembly7A2-39
 Torque Converter ..7A2-40
 TORQUE SPECIFICATIONS7A2-42
 SPECIAL TOOLS ..7A2-43
 BUSHING REPLACEMENT ..7A2-45

*Designates significant product changes since the publication of the 1987 Service Manual.

TRANSMISSION DISASSEMBLY

GENERAL SERVICE INFORMATION

• Teflon Oil Seal Rings: During disassembly, check seals for damage and make sure that they rotate freely in their grooves. Inspect the grooves for dirt, burrs or other damage.

• Thrust washers and surfaces: These washers and the surfaces they engage may appear polished. This is a normal condition and does not indicate damage.

• Thoroughly clean the exterior of the transmission.

 • As the unit is disassembled clean the assemblies or components so that proper inspection can be made.

 ← Remove or Disconnect (Figure 1)
 Torque converter (1).

 → Install or Connect (Figure 3)
 Tools Required:
 J 3289-20 Base
 J 8763-02 Holding Fixture

 1. J 8763-02 onto transmission case.
Case and External Parts Legend

<table>
<thead>
<tr>
<th>ILL. NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CONVERTER ASSEMBLY</td>
</tr>
<tr>
<td>4</td>
<td>BOLT, HEX HD 5/16-18 X 1.406 (PUMP TO CASE)</td>
</tr>
<tr>
<td>5</td>
<td>WASHER, PUMP TO CASE BOLTS</td>
</tr>
<tr>
<td>6</td>
<td>PUMP ASSEMBLY</td>
</tr>
<tr>
<td>7</td>
<td>SEAL, RING (PUMP TO CASE)</td>
</tr>
<tr>
<td>8</td>
<td>GASKET, PUMP COVER TO CASE</td>
</tr>
<tr>
<td>9</td>
<td>VENT, PIPE</td>
</tr>
<tr>
<td>10</td>
<td>CASE, TRANSMISSION</td>
</tr>
<tr>
<td>11</td>
<td>BOLT, HEX HD 5/16-18 X .62</td>
</tr>
<tr>
<td>12</td>
<td>RETAINER, MODULATOR</td>
</tr>
<tr>
<td>13</td>
<td>VACUUM MODULATOR ASSEMBLY</td>
</tr>
<tr>
<td>14</td>
<td>SEAL, O-RING</td>
</tr>
<tr>
<td>15</td>
<td>VALVE, VACUUM MODULATOR</td>
</tr>
<tr>
<td>16</td>
<td>CONNECTOR, COOLER FITTING</td>
</tr>
<tr>
<td>17</td>
<td>SCREW, NAMEPLATE</td>
</tr>
<tr>
<td>18</td>
<td>NAMEPLATE</td>
</tr>
<tr>
<td>19</td>
<td>SCREW & CONICAL WASHER ASSEMBLY</td>
</tr>
<tr>
<td>20</td>
<td>COVER, GOVERNOR</td>
</tr>
<tr>
<td>21</td>
<td>GASKET, GOVERNOR COVER</td>
</tr>
<tr>
<td>22</td>
<td>GOVERNOR ASSEMBLY</td>
</tr>
<tr>
<td>23</td>
<td>BOLT, HEX HD 3/8-16 X 1 (CASE EXTENSION TO CASE)</td>
</tr>
<tr>
<td>24</td>
<td>NUT, HEX 3/8-24 (STUD)</td>
</tr>
<tr>
<td>25</td>
<td>WASHER, FLAT</td>
</tr>
<tr>
<td>26</td>
<td>SEAL, CASE EXTENSION</td>
</tr>
<tr>
<td>27</td>
<td>CASE EXTENSION ASSEMBLY</td>
</tr>
<tr>
<td>28</td>
<td>BEARING ASSEMBLY</td>
</tr>
<tr>
<td>29</td>
<td>SPACER, BEARING</td>
</tr>
<tr>
<td>30</td>
<td>BUSHING, CASE EXTENSION</td>
</tr>
<tr>
<td>31</td>
<td>RING, INTERNAL SNAP</td>
</tr>
<tr>
<td>32</td>
<td>SEAL, CASE EXTENSION TO CASE</td>
</tr>
<tr>
<td>33</td>
<td>BUSHING</td>
</tr>
<tr>
<td>34</td>
<td>GASKET, CASE TO EXTENSION</td>
</tr>
<tr>
<td>35</td>
<td>CONNECTOR, ELECTRICAL</td>
</tr>
<tr>
<td>36</td>
<td>SEAL, O-RING</td>
</tr>
<tr>
<td>37</td>
<td>SCREW & CONICAL WASHER ASSEMBLY</td>
</tr>
<tr>
<td>38</td>
<td>PAN, TRANSMISSION</td>
</tr>
<tr>
<td>39</td>
<td>GASKET, TRANSMISSION OIL PAN</td>
</tr>
<tr>
<td>40</td>
<td>MAGNET, CHIP COLLECTOR</td>
</tr>
<tr>
<td>41</td>
<td>BOLT, SHOULDER (FILTER TO VALVE BODY)</td>
</tr>
<tr>
<td>42</td>
<td>FILTER ASSEMBLY, TRANSMISSION OIL</td>
</tr>
<tr>
<td>43</td>
<td>SPACER, VALVE BODY TO FILTER</td>
</tr>
<tr>
<td>45</td>
<td>PIPE, INTAKE</td>
</tr>
</tbody>
</table>

Important

Do not overtighten the tool as case damage may result.

2. Transmission and holding fixture into J 3289-20.
3. Fixture pin.
4. Drain transmission fluid.

DISASSEMBLY

Vacuum Modulator Assembly

1. Bolt (11) and retainer (12).
2. Vacuum modulator assembly (13), and o-ring seal (14)
 - o-ring seal may be stuck in case
3. Modulator valve (15) with magnet.
Oil Pan & Filter Assembly

Remove or Disconnect (Figure 5)

1. Rotate transmission upside down and lock in place with base pin.
2. Oil pan bolts (37)
3. Oil pan (38), gasket (39) and magnet (40).
4. Oil filter bolt (41), spacer (43), filter (42), intake pipe (45), and o-ring seal (46)
 - o-ring seal may be stuck in case

Control Valve Assembly

Remove or Disconnect (Figure 6)

1. Full (47), manual detent spring and roller (48).
2. Full (51)
3. Governor oil pipes (50) up from case and rotate them away from their holes.
4. Governor oil screen (52) from the inboard hole.
5. Control valve assembly (49).

Solenoid Assembly

Remove or Disconnect (Figure 6)

Tool Required:
- Magnet to capture check balls

1. Wire connecting solenoid (54) to exterior electrical connector.
2. Screws (53) and solenoid (54).
 - Be careful not to press against solenoid cover.
3. Valve body to spacer plate gasket (56), spacer plate (57) and spacer plate to case gasket (58).
4. Six check balls (59) with magnet

Band Apply Pin Check

Measure (Figures 9, 10 and 11)

Tools Required:
- J 21370-10 Gage Pin
- J 21370-6 Selector Gage

1. Place J 21370-10 in the servo pin bore.
2. Position J 21370-6 over the bore with the hex nut facing the parking pawl linkage.
3. Fasten with two 5/16-18 x 1" screws and torque to 18 lbs./ft. (24 N·m)
4. Make sure J 21370-10 moves freely in the tool and pin bore.
400/475 Automatic Transmission 7A2-5

I.L.L. No. Description

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>Bolt, hex hd 5/16-18 x 1.875 (V. B. TO CASE)</td>
</tr>
<tr>
<td>48</td>
<td>Manual Detent Roller & Spring Assembly</td>
</tr>
<tr>
<td>49</td>
<td>Control Valve Assembly</td>
</tr>
<tr>
<td>50</td>
<td>Pipe, Governor</td>
</tr>
<tr>
<td>51</td>
<td>Bolt</td>
</tr>
<tr>
<td>52</td>
<td>Screen Assembly, Governor</td>
</tr>
<tr>
<td>53</td>
<td>Screw, hex hd & washer</td>
</tr>
<tr>
<td>54</td>
<td>Solenoid Assembly</td>
</tr>
<tr>
<td>55</td>
<td>Gasket, Solenoid</td>
</tr>
<tr>
<td>56</td>
<td>Gasket, Valve Body to Spacer Plate</td>
</tr>
<tr>
<td>57</td>
<td>Plate, Valve Body Spacer</td>
</tr>
<tr>
<td>58</td>
<td>Gasket, Spacer Plate to Case</td>
</tr>
<tr>
<td>59</td>
<td>Ball, 1.25" Dia.) (6)</td>
</tr>
</tbody>
</table>

Figure 6 - Removing Control Valve Assembly

5. To determine correct pin length apply 25 lbs./ft. torque to the nut on the gage.
6. For pin selection, see Figure 11.

Governor Assembly

Remove or Disconnect (Figure 12)

1. Bolts (19), cover (20) and gasket (21)
2. Governor assembly (22)

Internal Transmission Speed Sensor (I.T.S.S.)

Models
3. Retaining bolt (83)
4. Speed sensor (81) with o-ring (82)

Front End Play Check

Measure (Figures 13 and 14)

Tools Required:
- J 6125 Slide Hammer Bolt
- J 8001 Dial Indicator

1. Remove oil pump bolt (4) and washer (5) at the 10-o’clock position as shown and install J 6125.
2. Attach J 8001.
3. Eliminate slack by pressing turbine shaft to the rear and output shaft (691) forward.
4. Index J 8001 against the end of turbine shaft and set dial to "0".
5. Pull out on the turbine shaft and note the measurement on J 8001. End play should be between .003” and .024” (.076-.610 mm)
6. Select correct washer from chart.
7. Remove tools.

Important

During reassembly Front End Play Check must be repeated to verify accuracy of selective thrust washer (207) Figure 19.

Case Extension Assembly

- Remove or Disconnect (Figure 15)
 1. Bolts (23) and/or nuts (24) extension (27).
 2. Rear seal (26), bearings (28), spacer (29), snap ring (31), seal (32) and bushings (30 and 33).

Rear Unit End Play Check

- Measure (Figures 16 and 17)

 Tools Required:
 - J 21797 Bolt
 - J 8001 Dial Indicator
 1. Attach J 21797 to one of the bolt holes at the end of the transmission case (10).
 2. Mount J 8001 on the bolt and index it to the end of the output shaft (691).
1. Move the output shaft in and out noting the amount of end play.
 - correct end play is between .007" and .019" (.178 - .483 mm)

Important

During reassembly, Rear End Play Check must be repeated to verify accuracy of selective thrust washer (696) Figure 27.

Oil Pump Assembly

Remove or Disconnect (Figures 18 and 19)

Tool Required:

- J 24773-1 Oil Pump Remover

1. Bolts (4) and washers (5).
2. Oil pump assembly (6).
3. Pump seal (7) and gasket (8).

Parking Lock Pawl and Actuator Assembly

Remove or Disconnect (Figure 20 and 21)

1. Nut (703) and pin (704).
2. Detent lever (707) and actuator (708).
3. Bolts (701) and parking pawl bracket (702).
4. Spring (710) and retainer (711).
5. Shaft (712) and plug (709).
Forward Clutch Assembly

- **Remove or Disconnect (Figure 22)**
 - Forward clutch assembly (602-618).

 - Grasp turbine shaft and lift.

Intermediate Clutch Assembly

- **Remove or Disconnect (Figure 24)**
 - Snap ring (640).
2. Intermediate clutch backing plate (641).
3. Clutch plates (642 and 643).
4. Waved plate (644) when part of assembly.

Center Support and Gear Unit Assembly

K Remove or Disconnect (Figures 25, 26 and 27)

Tool Required:
- J 6116 Gear Unit Holding Fixture
- J 21795 Main Shaft Tool.

1. Center support bolt (79)
2. Snap ring (645)
3. Center support assembly (646-654)
4. Sun gear shaft (664)
5. Gear unit assembly (656-697)
 - place in J 6116 fixture
6. Rear band (672), thrust washer (695), selective thrust washer (696).
Transmission Case

Inspect (Figure 30)
- Case (10) for cracks, porosity and connected passages.
- Case extension (27) for cracks, porosity, scored bushing (30).
- All threaded holes for damage.
 - Heli-coil to repair.
- Air check all oil passages.
 - See Diagnosis Section for oil passage identification.
- Front and rear servo bores for damage, porosity, or burrs.
- Cooler connectors (16) for damage.
 - Proper torque 26-30 lbs. ft. (35-41 N·m)
- Intermediate clutch plate lugs for damage or hardening (brinelling).
- Snap ring grooves for damage.
- Governor and modulator bores for scoring or damage.
<table>
<thead>
<tr>
<th>ILL. NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>CASE, TRANSMISSION</td>
</tr>
<tr>
<td>16</td>
<td>CONNECTOR, COOLER FITTING</td>
</tr>
<tr>
<td>17</td>
<td>SCREW, NAMEPLATE</td>
</tr>
<tr>
<td>18</td>
<td>NAMEPLATE</td>
</tr>
<tr>
<td>23</td>
<td>BOLT, HEX HD 3/8-16 X 1 (CASE EXTENSION TO CASE)</td>
</tr>
<tr>
<td>24</td>
<td>NUT, HEX 3/8-24 (STUD)</td>
</tr>
<tr>
<td>25</td>
<td>WASHER, FLAT</td>
</tr>
<tr>
<td>26</td>
<td>SEAL, CASE EXTENSION</td>
</tr>
<tr>
<td>27</td>
<td>CASE EXTENSION ASSEMBLY</td>
</tr>
<tr>
<td>28</td>
<td>BEARING ASSEMBLY</td>
</tr>
<tr>
<td>29</td>
<td>SPACER, BEARING</td>
</tr>
<tr>
<td>30</td>
<td>BUSHING, CASE EXTENSION</td>
</tr>
<tr>
<td>31</td>
<td>RING, INTERNAL SNAP</td>
</tr>
<tr>
<td>32</td>
<td>SEAL, CASE EXTENSION TO CASE</td>
</tr>
<tr>
<td>33</td>
<td>BUSHING</td>
</tr>
<tr>
<td>34</td>
<td>GASKET, CASE TO EXTENSION</td>
</tr>
</tbody>
</table>

Figure 28 - Transmission Case And Extension Assembly
<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>601</td>
<td>Shaft, turbine</td>
</tr>
<tr>
<td>602</td>
<td>Housing, forward clutch</td>
</tr>
<tr>
<td>603</td>
<td>Seal, forward clutch (center)</td>
</tr>
<tr>
<td>604</td>
<td>Seal, forward clutch piston (outer)</td>
</tr>
<tr>
<td>605</td>
<td>Seal, forward clutch piston (inner)</td>
</tr>
<tr>
<td>606</td>
<td>Piston, forward clutch</td>
</tr>
<tr>
<td>607</td>
<td>Spring, piston release (16)</td>
</tr>
<tr>
<td>608</td>
<td>Retainer, release spring</td>
</tr>
<tr>
<td>609</td>
<td>Ring, snap</td>
</tr>
<tr>
<td>611</td>
<td>Plate, clutch (waved)</td>
</tr>
<tr>
<td>612</td>
<td>Plate, forward clutch (dished)</td>
</tr>
<tr>
<td>613</td>
<td>Plate, clutch (flat)</td>
</tr>
<tr>
<td>614</td>
<td>Plate assembly, clutch</td>
</tr>
<tr>
<td>615</td>
<td>Washer, thrust (clutch hub to housing)</td>
</tr>
<tr>
<td>616</td>
<td>Hub, forward clutch</td>
</tr>
<tr>
<td>617</td>
<td>Washer, thrust (fwd. cl. hub/dir. cl. hsg.)</td>
</tr>
<tr>
<td>618</td>
<td>Hub, direct clutch driving</td>
</tr>
<tr>
<td>619</td>
<td>Ring, snap</td>
</tr>
<tr>
<td>620</td>
<td>Plate, direct clutch backing</td>
</tr>
<tr>
<td>621</td>
<td>Plate assembly, clutch</td>
</tr>
<tr>
<td>622</td>
<td>Plate, clutch</td>
</tr>
<tr>
<td>623</td>
<td>Plate, clutch (waved)</td>
</tr>
<tr>
<td>624</td>
<td>Plate, direct clutch (dished)</td>
</tr>
<tr>
<td>625</td>
<td>Ring, snap (direct clutch)</td>
</tr>
<tr>
<td>626</td>
<td>Retainer, release spring</td>
</tr>
<tr>
<td>627</td>
<td>Spring, piston release</td>
</tr>
<tr>
<td>629</td>
<td>Piston, direct clutch</td>
</tr>
<tr>
<td>530</td>
<td>Seal, clutch inner</td>
</tr>
<tr>
<td>531</td>
<td>Seal, clutch outer</td>
</tr>
<tr>
<td>532</td>
<td>Seal, clutch center</td>
</tr>
<tr>
<td>533</td>
<td>Housing, direct clutch</td>
</tr>
<tr>
<td>634</td>
<td>Roller assembly, intermediate clutch</td>
</tr>
<tr>
<td>635</td>
<td>Sprag assembly</td>
</tr>
<tr>
<td>636</td>
<td>Race, intermediate clutch</td>
</tr>
<tr>
<td>637</td>
<td>Retainer, intermediate clutch</td>
</tr>
<tr>
<td>638</td>
<td>Ring, snap</td>
</tr>
<tr>
<td>639</td>
<td>Band assembly, front</td>
</tr>
<tr>
<td>640</td>
<td>Ring, snap (intermediate clutch)</td>
</tr>
<tr>
<td>641</td>
<td>Plate, intermediate clutch backing</td>
</tr>
<tr>
<td>642</td>
<td>Plate assembly, intermediate clutch</td>
</tr>
<tr>
<td>643</td>
<td>Plate, intermediate clutch (flat)</td>
</tr>
<tr>
<td>644</td>
<td>Plate, intermediate clutch (waved)</td>
</tr>
<tr>
<td>645</td>
<td>Ring, snap</td>
</tr>
<tr>
<td>646</td>
<td>Ring, snap (intermediate clutch)</td>
</tr>
<tr>
<td>647</td>
<td>Retainer, intermediate clutch spring</td>
</tr>
<tr>
<td>648</td>
<td>Spring, intermediate clutch release</td>
</tr>
</tbody>
</table>

Figure 30 - Internal Parts - Legend
TRANSMISSION ASSEMBLY

Park Lock Pawl and Actuator Assembly

Inspect
- Parking pawl (713) for cracks, burrs, damage
- Parking pawl shaft (712) for damage and freeness of fit
- Parking pawl return spring (710) for distortion or damage
- Detent lever (707) and actuator (708) for:
 - Damage or cracks
 - Manual shaft for damage

Install or Connect (Figures 31 and 32)
1. Parking pawl (713).
2. Pawl shaft (712).
3. Plug (709).
4. Retainer (711).
5. Pawl return spring (710).
6. Detent lever (707) to actuator (708).
7. Actuator (708) under parking pawl (713).
8. Manual shaft (705) and seal (706).
11. Parking lock bracket (702) with bolts (701).
Rear Band and Selective Thrust Washer

Inspect (Figure 33)
- Rear band (672) and thrust washer (696) for:
 - wear or damage

Install or Connect (Figure 33)
1. Selective thrust washer (696) from Rear End Play Check.
2. Output shaft to case thrust washer (695).
3. Rear band (672).

Inspect (Figures 33 and 35)
- Output shaft (691) for:
 - damaged splines
 - worn or damaged governor drive gear teeth
- Output shaft bushing (690) for:
 - wear, scoring or galling
 - See Bushing Replacement Procedure
- Speedometer drive gear (693) for:
 - wear or cracks
- Main shaft (681) for:
 - scored, damaged or worn bushings (see Bushing Replacement Procedure)
 - cracks
 - damaged splines
- Rear internal gear (685) for:
 - stripped splines
 - damaged teeth
 - cracks
- Output carrier assembly (675) for:
 - damaged lugs
 - pinion gear damage
 - excess pinion washer wear (end play should be .009"-.024"/.228-.610 mm)
- Front internal gear ring (673) for:
 - damage
 - cracks

Gear Unit and Output Carrier Assemblies

Disassemble (Figure 34)
1. Thrust bearing (661) and races (660, 662).
2. Reaction carrier (666).
3. Sun gear (665), thrust washer (674) and front internal gear ring (673).
4. Snap ring (694), output shaft (691) and o-ring (697).
5. Thrust bearing (683) and races (682 and 684) from rear internal gear (685).
6. Rear internal gear (685) and main shaft (681).
7. Snap ring (689) from main shaft (681).
8. Races (686 and 688) and bearing (687).

Inspect (Figures 34 and 35)
- Output shaft (691) for:
 - damaged splines
 - worn or damaged governor drive gear teeth
- Output shaft bushing (690) for:
 - wear, scoring or galling
 - See Bushing Replacement Procedure
- Speedometer drive gear (693) for:
 - wear or cracks
- Main shaft (681) for:
 - scored, damaged or worn bushings (see Bushing Replacement Procedure)

SPEEDOMETER DRIVE GEAR/SPEED SENSOR ROTOR REPLACEMENT (FIGURE 36)

Tools Required:
- J 21427-01 Speedometer Gear Puller Adapter
- J 8433 Speedometer Gear Puller
- J 5590 Speedometer Gear Installer
- J 36352-3 Rotor Installer/Mechanical Press
- J 36352-5 Rotor Installer/Mechanical Press

Do not remove rotor (698) unless damaged. After removal a new rotor must be installed to insure press fit to output shaft.
1. Install J 21427-01 and J 8433 puller.
2. Depress clip (692) and remove gear (693) or rotor (698).
3. Install rotor (698) using J 36352-3 or J 36352-5.

Pinion Gear Replacement Procedure - Output Carrier Assembly

Remove or Disconnect (Figures 37 and 38)
1. Stake marks from pinion pins (680) with 1/2" drill.

Important
Do not allow drill to remove stock from carrier. Excessive removal of material will weaken carrier.
2. Pinion pins (680) from carrier (675).
3. Pinion gears (679) thrust washers (676, 677) and roller needle bearings (678).

Inspect (Figures 38 and 39)
- Pinion pocket thrust faces for burrs.
- Output carrier (675) for:
 - cracks, damage or wear

Assemble (Figures 38 and 39)
1. Needle bearings (678) in pinion gears (679).
2. Bronze (676) and steel (677) thrust washers on each side of pinion gears.
 - steel washers are next to pinion gears
Figure 34 - Gear Unit Assembly

1. Pinion gear assemblies into carriers (675).
2. Snap ring (689).
3. Pinion gear assemblies into carriers (675).
4. Pinion pins (680).
5. Stake pins at three points with blunt chisel.
 - headed end of pins must be flush with carrier face.

- Gear Unit Assembly

Assemble (Figure 40)

1. Race (682) thrust bearing (683), and race (684) on grooved end of mainshaft (681).
2. Main shaft (681) into rear internal gear (685).
3. Race (686), bearing (687) and race (688) on main shaft (681).
4. Snap ring (689) on main shaft (681).
5. Main shaft assembly (681-689) to output shaft (691).
7. O-ring seal (697).
Reaction Carrier Assembly

Inspect (Figure 40 and 42)
- Reaction carrier assembly for:
 - pinion gear damage
 - excess pinion washer wear (end play should be .009"-.024"/.228-.610 mm)
 - cracks or damage to band apply surface
- Roller clutch assembly for damage to:
 - rollers
 - springs

Pinion Gear Replacement Procedure - Reaction Carrier Assembly

Remove or Disconnect (Figures 42, 43 and 44)
1. Stake marks from pinion pins (671) with 1/2" drill

Important
DO NOT ALLOW DRILL TO REMOVE STOCK FROM CARRIER. EXCESSIVE REMOVAL OF MATERIAL WILL WEAKEN CARRIER.
2. Pinion pins (671) from carrier (666)
Inspect
- Pinion pocket thrust surfaces for burrs.
- Reaction carrier (666) for:
 - cracks, damage or wear

Assemble
1. Needle bearings (668) in pinion gears (669)
2. Bronze washers (670) and steel washers (667) as shown
3. Pinion gear assemblies into carrier (666)
4. Pinion pins (671)
 - headed end of pins must be flush with carrier face
5. Stake pins at three points with blunt chisel

3. Pinion gears (669), thrust washers (667, 670) and roller needle bearings (668)

Assemble (Figure 45)
1. Gear ring (673) over output carrier (675).
 - replace if damaged
2. Thrust washer (674) into output carrier (675) with tabs in pockets.
Intermediate Clutch Piston

- Remove or Disconnect (Figure 46)
- Oil rings (653) from center support (654).
- Press in on spring retainer (647) and remove snap ring (646).
- Retainer (647) and three clutch release springs (648).
- Spring guide (649) and clutch piston (650).
- Inner seal (651) and outer seal (652) from clutch piston (650).

- Important
 Do not remove three screws holding roller clutch race to center support (654).

- Inspect (Figures 46 and 47)
 - Roller clutch race inside center support (654) for scratches, wear or damage.
 - Center support (654) for:
 - cracks
 - damaged lugs
 - Oil rings (653) and ring grooves for damage, burrs or cuts.
 - Air check oil passages (Figure 49).
 - Intermediate clutch piston (650) for cracks or damage.
 - Sealing surfaces and seal grooves for scratches or other damage.
 - Springs (648) for collapsed coils or distortion.
 - Constant bleed orifice is open approximately .020" (.51 mm).
 - Clean all components

- Assemble (Figure 48)
 Tool Required:
 J 21363 Intermediate Clutch Inner Seal Protector
1. Lubricate new inner and outer clutch piston seals (651 and 652) and grooves with transmission fluid.
2. Seals (651 and 652) on piston (650) with lips facing away from spring guide (649).
3. Clutch piston (650) on center support (654) with J 21363.
4. Spring guide (649) and clutch release springs (648).
5. Spring retainer (647) and snap ring (646).
6. Oil seal rings (653) on center support hub (654).

Inspect (Figure 49)
- Air check operation of intermediate clutch piston as shown.

Low Roller Clutch Assembly

Install or Connect (Figures 50 and 51)

1. Thrust washer (656) in recess of center support (654).
2. Spacer (659) and roller assembly (658) into reaction carrier (666).
3. Center support (654) into reaction carrier (666).

Important
To verify correct assembly, hold reaction carrier (666) stationary. Center support (654) should turn counter clockwise only.

Direct Clutch and Intermediate Roller Assembly

Disassemble (Figures 52 and 53)

Tools Required:
- J 4670 Spring Compressor
- J 21664 Adapter Mechanical Press

1. Snap ring (638) and clutch retainer (637).
2. Race (636) and roller assembly (634) (or sprag assembly 635).
3. Snap ring (619).
4. Direct clutch backing plate (620) and clutch plates (621 and 622).
5. Snap ring (625) with J 4670 and J 21664.
6. Retainer (626) and clutch release springs (627).
7. Piston (629).
8. Inner seal (630) and outer seal (631) from piston (629).
9. Center piston seal (632) from housing (633).

Inspect (Figure 52)
- Roller assembly (634) for damaged rollers, cage or distorted springs.
- Clutch housing (633) for cracks, wear and proper opening of oil passages.
- Clutch plates (621 and 622) for:
7A2-22 400/475 AUTOMATIC TRANSMISSION

Figure 51 - Center Support and Reaction Carrier Assembly

- wear
- burned
- flaking

- Backing plate (620) and piston (629) for damage or cracks.
- Clutch springs (627) for collapsed coils or distortion.
 - replace if necessary
- Housing (633) for correct operation of check ball.

Assemble (Figure 53)

1. Lubricate inner (630) and outer (631) clutch piston seals and grooves with transmission fluid.
2. Inner seal (630) and outer seal (631) with lips facing away from spring pockets.
3. Center seal (632).

Figure 52 - Disassembly of Direct Clutch Housing

Direct Clutch Piston

Install or Connect (Figure 54 and 55)

Tools Required:
- J 21362 Seal Protector
- J 21409 Piston Installer
- J 21664 Adapter

1. J 21362 on housing (633) hub.
2. Piston (629) inside J 21409.
3. J 21409 and piston into housing (333).
4. Clutch release springs (627) in pockets.
5. Spring retainer (626) with J 21664.

Direct Clutch Assembly

Install or Connect (Figures 56, 57 and 58)

1. Piston (629)
2. Waved clutch plate (623) or dished clutch plate (624) into direct clutch housing (633).
3. Clutch plates (621 and 622).
 - alternate steel and composition plates as shown in chart
4. Direct clutch backing plate (620) and snap ring (619).
5. Roller assembly (634) or sprag assembly (635).
6. Intermediate clutch race (636) with clockwise motion. When properly installed it should not rotate counter-clockwise.
ILL. NO. DESCRIPTION
619 RING, SNAP
620 PLATE, DIRECT CLUTCH BACKING
621 PLATE ASSEMBLY, CLUTCH
622 PLATE, CLUTCH
623 PLATE, CLUTCH (WAVED)
624 PLATE, DIRECT CLUTCH (DISHED)
625 RING, SNAP (DIRECT CLUTCH)
626 RETAINER, RELEASE SPRING
627 SPRING, PISTON RELEASE
629 PISTON, DIRECT CLUTCH
630 SEAL, CLUTCH INNER
631 SEAL, CLUTCH OUTER
632 SEAL, CLUTCH CENTER
633 HOUSING, DIRECT CLUTCH
634 ROLLER ASSEMBLY, INTERMEDIATE CLUTCH
635 SPRAG ASSEMBLY
636 RACE, INTERMEDIATE CLUTCH
637 RETAINER, INTERMEDIATE CLUTCH
638 RING, SNAP

Figure 53 - Direct Clutch and Intermediate Roller Assembly

1988 THM 400 CLUTCH PLATE APPLICATION CHART DIRECT CLUTCH

<table>
<thead>
<tr>
<th>MODELS</th>
<th>NO. OF FLAT STEEL PLATES</th>
<th>NO. OF WAVED STEEL PLATES</th>
<th>NO. OF DISHED PLATES</th>
<th>NO. OF COMPOSITION PLATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAA, FRA, FKA, FVA, LXA, TAA, TBA, TCA, TDA, TFA, TKA, TLA, TMA, TNA</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVA, FBA, FKA, FSA, HRA, MA A, RVA</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOA, ILA, RKA, RMA</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>RDA, RLA</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ALL OTHER</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure 56 - Direct Clutch Plate Chart
7A2-24 400/475 AUTOMATIC TRANSMISSION

7. Intermediate clutch retainer (637) and snap ring (638).

Inspect (Figure 59)
1. Place direct clutch assembly on center support (654) for air check operation.

2. Air applied to reverse passage will escape from direct passage. This condition is normal. Apply air to direct passage to actuate piston and move clutch plates.

Center Support and Gear Unit Assembly

Install or Connect (Figure 60)
Tools Required:
- J 21795-1 Gear Assembly Remover and Installer Adapter
- J 23093 Center Support Locating Tool

1. J 21795-1 to main shaft (681).
2. With transmission in a vertical position, align bolt hole in center support (654) with hole in case (10) and carefully lower into case.
3. Locate J 23093 into the center support (654) direct clutch passage through case (10). Apply pressure on J 23093, in direction of arrow (Figure 60), seating the center support splines against the case splines.
4. Case to center support bolt (79).
 - torque to 20-25 lbs.ft. (27-34 N·m)
5. Snap ring (645).

Intermediate Clutch Assembly

Inspect (Figure 61)
- Clutch plates (642) for:
 - wear, pitting, flaking or cracks in lining
- Clutch plates (643) for:
 - discoloration, scoring or cracks
- Backing plate (641) for burrs and dirt.
- Front band for:
Figure 60 - Installing Center Support and Gear Unit Assembly

Figure 61 Intermediate Clutch Plates

Direct Clutch Assembly and Front Band

Install or Connect (Figure 63)
1. Direct clutch assembly (619, 638) onto the intermediate clutch.
2. Front band (639).

Forward Clutch Assembly

Disassemble (Figure 64 and 65)

Tools Required:
1. Snap ring (619) and direct clutch driving hub (618) from forward clutch housing (602).
2. Forward clutch hub (616).
3. Thrust washers (615 and 617).
5. Waved clutch plate (611) or dished plate (612).
6. Snap ring (609) and release spring retainer (608) with J 4670-01 and J 21364.
7. Piston release springs (607), piston (606).

Important

Unless forward clutch housing (602) and turbine shaft (601) are damaged, disassembly is not necessary.

Turbine Shaft Removal

1. Place housing (602) in mechanical press with turbine shaft (601) down.
2. Remove turbine shaft (601) by placing 3/8" drive extension on end of shaft and pressing out.

Forward Clutch Assembly

Inspect (Figure 65)

- Clutch plates (613 and 614) for:
 - burning, scoring, flaking, pitting or wear.
- Release springs (607) for collapsed coils or distortion.
- Clutch hubs (616 and 618) for spline wear, open lubrication holes and damaged thrust faces.
- Piston (606) for cracks.
- Forward clutch housing (602) for wear, scoring, cracks and open oil passages.
Free operation of check ball.
Turbine shaft (601) for spline damage, open oil passages, cracks or distortion.

Install or Connect
1. Forward clutch housing (602) in press facing up.
2. Turbine shaft (601) in clutch housing (602) approximately 1/8".
3. Continue installing in small steps, checking frequently to make sure connection is straight.

Assemble (Figure 64, 65 and 66)

Tools Required:
- J 21409 Seal Protector
- J 21362 Piston Installer

1. Lubricate new inner seal (605) and outer seal (604) with transmission fluid. Lubricate seal grooves with petrolatum.
2. Seals (604) and (605) on piston (606) with lips facing away from spring pockets.
3. Lubricate center piston seal (603) and groove.
4. Center piston seal (603) onto clutch housing (602) with lip facing up.
5. J 21409 over clutch hub.
6. Piston (606) inside J 21362 and insert assembly into housing (602) rotating slightly clockwise until seated.

Assemble (Figures 65, 67 and 68)

Tool Required:
- J 21664 Spring Compressor

1. Clutch release springs (607) in piston (606).
2. Retainer (608) on springs (607) with J 21664.
3. Snap ring (609).
4. Thrust washer (617) on outside of forward clutch hub (616).
5. Bronze thrust washer (615) on inside of hub (616).
7A2-28 400/475 AUTOMATIC TRANSMISSION

- retain with petrolatum

6. Forward clutch hub (616) in clutch housing (602).
7. Waved clutch plate (611) or dished clutch plate (612).
8. Clutch plates (614 and 613) alternately.
 - refer to chart for model application
9. Direct clutch hub (618) in forward clutch housing (602) (over clutch plates).
10. Snap ring (619).

Inspect (Figure 69)

- Install forward clutch on oil pump assembly.
- Check piston and clutch operation by applying air to forward clutch passage in pump.
- Install forward clutch assembly (602-618) with turbine shaft (601) into transmission.

<table>
<thead>
<tr>
<th>MODELS</th>
<th>NO. OF FLAT STEEL PLATES</th>
<th>NO. OF WAVED STEEL PLATES</th>
<th>NO. OF DISHED PLATES</th>
<th>NO. OF COMPOSITION PLATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVA, HRA, MAA, RVA,</td>
<td>2.32 MM (.0915")</td>
<td>1.97 MM (.0775")</td>
<td>1.54 MM (.0605")</td>
<td>1.37 MM (.054")</td>
</tr>
<tr>
<td>FAA, FQA, FRA, FDA, FXA, LLA, LXA, TAA, TBA, TCA, DTA, TFA, TKA, TLA, TMA, TNA</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>ALL OTHER MODELS</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Figure 68 - Forward Clutch Plate Chart
Oil Pump Assembly

Disassemble (Figure 71)

NOTICE: Regulator spring (214) is tightly compressed. Use care when removing bushing (212).

1. Retaining ring (211).
2. Pressure regulator and boost valve assemblies (212-217).
3. Bolts (203, 204 and 205).

Important
Before removing gears (209) and (210) from pump body, mark gear faces to ensure reassembly to same position.

4. Pump drive gear (209) and driven gear (210).
5. Straight pin (219) and valve bore plug (218).
6. Oil seal rings (208) and thrust washer (207).

Pump Body

Inspect (Figure 71)

- Gear pockets, crescent, pump body face, and bushing for:
 - scoring
 - nicks
 - wear
- Oil passages for:
 - foreign material or debris
 - porosity
 - scored or irregular mating surfaces
 - cross channel leaks
- Pump body bolt threads for damage.
- Oil seal (2), bushing (3) for wear or damage.

Gear Clearance

Measure (Figure 72)

1. Install pump gears (209 and 210) in body (201) as marked.
2. Measure clearance between gears and body.
 - .0008"-.0035" (.02 mm-.09 mm) maximum clearance
3. Pump body with straight edge to assure it is flat.

Pump Cover

Inspect (Figure 71)
- Pump gear face for:
 - wear
 - scoring
- Stripped or damaged stator shaft splines
- Bushings (220) and (206) for:
 - wear, galling
- Oil ring grooves for nicks, burrs or debris
- Pressure regulator (217) and boost regulator valves (213) for:
 - free movement in regulator bore,
 - chips, burrs, distortion or plugged oil passages
- Breather hole in pump cover blocked.

Oil Pump Assembly

Assemble (Figures 71 and 73)
1. Drive gear (209) and driven gear (210) with alignment marks in correct position.
 - lugs on drive gear should be flush with pump body (201).
torque to 15-20 lbs. ft. (20-27 N·m)

Important

If turbine shaft cannot be rotated as pump assembly is being pulled into place, the forward and/or direct clutch housings have not been installed properly to index with all the clutch plates. This condition must be corrected before pump assembly is fully installed.
Front Unit End Play Check

Measure (Figures 79 and 80)

Tools Required:
- J 6125 Slide Hammer Bolt
- J 8001 Dial Indicator

1. Install J 8001.
2. Eliminate slack by pressing turbine shaft (601) to the rear and output shaft (691) forward.
3. Index J 8001 against end of turbine shaft.
 - set dial to “0”
4. Pull out turbine shaft.
 - proper end play is .003”-.024” (.076 mm-.610 mm)
5. Remove tools and correct end play if necessary.

Tools Required:
- J 6125 Slide Hammer Bolt
- J 8001 Dial Indicator

Inspect
- Sleeve (407) for nicks, burrs or galling and free operation in case bore.
- Valve (402) for damage and free operation in bore of sleeve (407).
- Driven gear (409) for damage.
- Springs (403) for distortion or damage.
- Weights (404 and 405) for free operation in retainers.

Important
- Support governor with exhaust slots of sleeve. Plates are set into clean:
 - Chips or residue from sleeve and carrier assembly (407).

Governor Assembly

Important
Governor assembly is calibrated and is serviced as an assembly. However, driven gear (409) may be serviced separately and unit may be disassembled for cleaning.

Inspect
- Weight assemblies (404 and 405) for free movement on pins.
Valve (402) for free movement in sleeve bore.

Internal Transmission Speed Sensor (I.T.S.S.) models.

- Inspect
 - Sensor (81) for porosity, cracks or damage
 - O-ring (82) and o-ring groove for nicks or damage
 - Speed sensor bore in case for porosity, scoring or damage

Install or Connect (Figure 85)
1. Governor (22) into case (10).
2. Governor cover (20) and gasket (21) with bolts (19).
3. Lubricate speed sensor bore in case with petroleum jelly.
4. Speed sensor (81) with new o-ring (82) into case.

NOTICE: Properly align the speed sensor before installing into the case to prevent damage to the rotor or sensor.

5. Retain sensor with bolt (83).
Band Apply Pin Check

Measure (Figures 86, 87 and 88)

Tools Required:
- J 21370-10 Gage Pin
- J 21370-6 Selector Gage

1. Place J 21370-10 in the servo pin bore.
2. Position J 21370-6 over the bore with the hex nut facing the parking pawl linkage.
3. Fasten with two 5/16-18 x 1" screws and torque to 18 lbs./ft. (24 N·m).

4. Make sure J 21370-10 moves freely in the tool and pin bore.
5. To determine correct pin length, apply 25 lbs./ft. Torque to the nut on the gage.
6. For pin selection, see Figure 88.

Rear Servo Accumulator

Inspect (Figure 89)
- Remove retaining ring (68) from rear band apply pin (77) and inspect
- Accumulator pistons (69 and 72) for:
 - porosity or damage
 - ring groove damage
- Seals (70, 71, 73) for:
 - nicks or cuts
- Cover (66) for:
 - porosity
 - scored or damaged
- Springs (75, 78) for distortion
- Pin (77) for wear
- Servo bore for wear or scoring

Assemble (Figure 89)

1. Rear accumulator spring (78).
2. Rear servo spring retainer (76), rear servo spring (75) and servo washer (74) on rear band apply pin (77).

3. Inner (73) and outer (71) accumulator piston oil seals on accumulator piston (72). Place on rear band apply pin assembly.

4. Rear servo piston seal (70) on rear servo piston (69) and press onto rear band apply pin (77).

5. Retaining ring (68).

Install or Connect (Figure 89)

1. Assembly in bore.
2. Cover (66), gasket (67) and bolts (65).

Front Servo Assembly

Inspect (Figure 90)

- Servo piston (60) for:
 - porosity or damage
 - ring groove damage
7A2-36 400/475 AUTOMATIC TRANSMISSION

Figure 90 - Front Servo Assembly
- Piston pin (62) for wear
- Spring (64) for distortion
- Servo bore for wear or scoring

Install or Connect (Figures 90, 91 and 92)
1. Front servo piston spring (64) and retainer (63).
2. Washer (61), piston pin (62) and piston (60).
 - make certain tapered end contacts band
3. Front servo assembly into case.

Figure 91 - Check Ball Location
- Six check balls (59) in case.
- Spacer plate to case gasket (58).
- Valve body spacer plate (57).
- Valve body to spacer plate gasket (56).
- Gasket (55) and solenoid assembly (54) with screw (53)
 - finger tight
- Wire connector to case connector

Figure 92 - Installing Solenoid and Spacer Plate

Control Valve Assembly

Disassemble (Figures 93, 94 and 95)
J 21885 Piston Installer
1. Install J 21885 on front accumulator piston.
2. Retainer (302) and front accumulator piston (303).
3. Accumulator spring (305).
4. Accumulator piston seal (304).
5. Remove J 21885.

Clean
- Control valve assembly (49) thoroughly in clean solvent-move the the valves with a pick or small screwdriver to dislodge any dirt or debris that may have accumulated
- Air Dry

Disassemble (Figures 93 and 94)
- Control Valve Assembly
 - Position as shown on a clean surface
Figure 93 - Control Valve Assembly
ILL. NO. DESCRIPTION

<table>
<thead>
<tr>
<th>ILL. NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>301</td>
<td>BODY, CONTROL VALVE</td>
</tr>
<tr>
<td>302</td>
<td>RING, RETAINER (ACCUMULATOR PISTON)</td>
</tr>
<tr>
<td>303</td>
<td>PISTON, FRONT ACCUMULATOR</td>
</tr>
<tr>
<td>304</td>
<td>RING, OIL SEAL (ACCUMULATOR PISTON)</td>
</tr>
<tr>
<td>305</td>
<td>SPRING, FRONT ACCUMULATOR PISTON</td>
</tr>
<tr>
<td>306</td>
<td>SWITCH, PRESSURE (RCA, RRA, RTA, RVA MODELS)</td>
</tr>
<tr>
<td>307</td>
<td>WIRE, LEAD (RCA, RRA, RTA, RVA MODELS)</td>
</tr>
<tr>
<td>308</td>
<td>PIN, GROOVED</td>
</tr>
<tr>
<td>309</td>
<td>PLUG, VALVE BORE (.56 O.D.)</td>
</tr>
<tr>
<td>310</td>
<td>VALVE, 1-2 ACCUMULATOR</td>
</tr>
<tr>
<td>311</td>
<td>SPRING, 1-2 ACCUMULATOR VALVE PRIMARY</td>
</tr>
<tr>
<td>312</td>
<td>SPRING, 1-2 ACCUMULATOR VALVE SECONDARY</td>
</tr>
<tr>
<td>313</td>
<td>PIN, COILED SPRING</td>
</tr>
<tr>
<td>314</td>
<td>PLUG, VALVE BORE (1.50)</td>
</tr>
<tr>
<td>315</td>
<td>VALVE, DETENT</td>
</tr>
<tr>
<td>316</td>
<td>VALVE, DETENT REGULATOR</td>
</tr>
<tr>
<td>317</td>
<td>PIN, DETENT REGULATOR VALVE</td>
</tr>
<tr>
<td>318</td>
<td>SPRING, DETENT REGULATOR</td>
</tr>
<tr>
<td>319</td>
<td>VALVE, MANUAL</td>
</tr>
<tr>
<td>320</td>
<td>BUSHING, 1-2 MODULATOR VALVE</td>
</tr>
<tr>
<td>321</td>
<td>VALVE, 1-2 REGULATOR</td>
</tr>
<tr>
<td>322</td>
<td>SPRING, 1-2 REGULATOR VALVE</td>
</tr>
<tr>
<td>323</td>
<td>VALVE, 1-2 DETENT</td>
</tr>
<tr>
<td>324</td>
<td>VALVE, 1-2 MODULATOR VALVE</td>
</tr>
<tr>
<td>325</td>
<td>VALVE, 1-2 MODULATOR</td>
</tr>
<tr>
<td>326</td>
<td>VALVE, 1-2 MODULATOR</td>
</tr>
<tr>
<td>327</td>
<td>PIN, STRAIGHT</td>
</tr>
<tr>
<td>328</td>
<td>BUSHING, 2-3 MODULATOR VALVE</td>
</tr>
<tr>
<td>329</td>
<td>SPRING, 2-3 VALVE (OUTER)</td>
</tr>
<tr>
<td>330</td>
<td>VALVE, 2-3 MODULATOR</td>
</tr>
<tr>
<td>331</td>
<td>SPRING, 2-3 VALVE (INNER)</td>
</tr>
<tr>
<td>332</td>
<td>VALVE, 2-3</td>
</tr>
<tr>
<td>333</td>
<td>PIN, STRAIGHT</td>
</tr>
<tr>
<td>334</td>
<td>PLUG, VALVE BORE (1.437)</td>
</tr>
<tr>
<td>335</td>
<td>SPRING, 3-2 VALVE</td>
</tr>
<tr>
<td>336</td>
<td>PIN, 3-2 VALVE</td>
</tr>
<tr>
<td>337</td>
<td>VALVE, 3-2</td>
</tr>
</tbody>
</table>

Figure 94 - Control Valve Assembly Legend

- Remove valve trains beginning with the upper left hand corner. **NOTE:** Some valves are under pressure - cover the bores while removing the roll pins.
- Remove blind hole roll pins with a modified drill bit.
- Valves, springs and bushings must be laid out on a clean surface in the exact sequence they are removed.
- Remove pressure switches.

Clean
- All valves, springs, bushings and control valve body in clean solvent.
- Dry using compressed air.

Inspect
- All Valves and Bushings For:
 - Porosity
 - Scoring
 - Nicks

Figure 95 - Removing Front Accumulator Piston

- Scratches
- Springs for Damaged or Distorted Coils
- Valve Body Casting For:
 - Porosity
 - Cracks
 - Interconnected oil passages
 - Damaged machined surfaces

Assemble (Figures 93 and 94)
- Control valve assembly components exactly as shown. Notice the position of the valve lands and bushing passages.

Installing Control Valve Assembly

Assemble (Figures 95, 96 and 97)

Tool Required:
- J 21885 Piston Installer

1. Front accumulator piston spring (305).
2. Front accumulator piston (303) and retainer ring (302) with J 21885.
3. Governor screen (52), pointed end up.
4. Governor oil pipes (50).
5. Control valve assembly (49).
6. Bolts (47), (51) and (53).
7. Detent spring and roller assembly (48) and bolt (47).
Oil Pan and Filter Assembly

Install or Connect (Figure 98)
1. Intake pipe (45), o-ring (46) and filter (42).
2. Spacer (43) and bolt (41).
3. Gasket (39) to oil pan (38).
4. Oil pan (38) with screw and conical washer assembly (37).
 - torque to 6-10 lbs. ft. (8-14 N·m)

Case Extension Assembly

Inspect (Figure 99)
- for wear or damage
 - bearings (28)
 - spacer (29)
 - bushings (30) and (33)
 (See Bushing Replacement)

Install or Connect (Figure 28)
Tool Required:
J 214426 Rear seal installer
1. New rear seal (26) with J 214426.
2. Extension to case seal (32).
3. Gasket (34) to extension (27).
4. Extension (27) to case (10) with bolts (23).

Vacuum Modulator Assembly

Inspect (Figures 100 and 101)
Tool Required:
J 24466 Modulator Checking Tool
1. Modulator (13) with J 24466 and a known good modulator
 - place gage between modulators and apply pressure to both
 - if the indicator line moves out of view replace the modulator
2. Modulator valve (15) for nicks or damage
3. Modulator valve bore in the case for burrs, porosity or scoring

Install or Connect (Figure 101)

1. Modulator valve (15) into case.
 - small end first
2. New o-ring seal (14) into case.
3. Modulator assembly (13) into case.
4. Retainer (12) and bolt (11).
 - torque to 15-20 lbs. ft. (10-27 N·m).

TORQUE CONVERTER ASSEMBLY

Inspect

The torque converter assembly (1) must be replaced for any of the following conditions:

- Evidence of damage to the pump assembly
- Metal particles are found after flushing the cooler and cooler lines
- External leaks in hub weld area

Converter pilot is broken, damaged or poor fit into crankshaft
Converter hub is scored or damaged
Internal failure to stator
Contamination from engine coolant
Excess end play

Measure (Figure 102)

Tool Required:
- J 35138 Torque Converter End Play Checking Tool
 - Install J 35138 and measure end play
 - .000" - .024" (.00 mm - .61 mm)

The Torque Converter Should Not Be Replaced

If:
- The fluid has an odor, discolored or no evidence of metal or clutch plate material
 - Drain out as much fluid as possible
 - Replace the oil filter and pan gasket
 - Fill to proper level (Refer to Section 7A)
- The converter bolt hole threads are damaged
 - Correct with thread insert (Refer to Section 6A)

Flush the torque converter is not recommended.

Install or Connect

Tool Required:
- J 21366 Converter Holding Strap
- Torque converter (1) with J 21366
 - Engage turbine shaft, stator shaft and lugs on oil pump driven gear. Three clicks will be felt as each engages slots in converter.
<table>
<thead>
<tr>
<th>FASTENER APPLICATION</th>
<th>ASSEMBLY TORQUE</th>
<th>RECHECK TORQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILTER TO VALVE BODY SCREW</td>
<td>8.14 Nm</td>
<td>8.20 Nm</td>
</tr>
<tr>
<td>SOLENOID TO CASE SCREW</td>
<td>5.14 Nm</td>
<td>5.20 Nm</td>
</tr>
<tr>
<td>CONTROL VALVE ASSEMBLY TO CASE SCREW</td>
<td>8.14 Nm</td>
<td>8.20 Nm</td>
</tr>
<tr>
<td>LINE PRESSURE PLUG</td>
<td>7.14 Nm</td>
<td>7.14 Nm</td>
</tr>
<tr>
<td>FLYWHEEL HOUSING COVER TO TRANSMISSION SCREW</td>
<td>5.8 Nm</td>
<td>5.8 Nm</td>
</tr>
<tr>
<td>PUMP BODY TO COVER SCREW</td>
<td>20.27 Nm</td>
<td>20.34 Nm</td>
</tr>
<tr>
<td>PUMP ASSEMBLY TO CASE SCREW</td>
<td>20.27 Nm</td>
<td>20.34 Nm</td>
</tr>
<tr>
<td>REAR SERVO COVER TO CASE SCREW</td>
<td>20.27 Nm</td>
<td>20.27 Nm</td>
</tr>
<tr>
<td>GOVERNOR COVER TO CASE</td>
<td>11.16 Nm</td>
<td>5.21 Nm</td>
</tr>
<tr>
<td>PARKING PAWL BRACKET TO CASE SCREW</td>
<td>20.27 Nm</td>
<td>20.41 Nm</td>
</tr>
<tr>
<td>VACUUM MODULATOR RETAINER TO CASE SCREW</td>
<td>20.27 Nm</td>
<td>20.27 Nm</td>
</tr>
<tr>
<td>SPEEDOMETER DRIVEN GEAR RETAINER TO CASE SCREW</td>
<td>5.8 Nm</td>
<td>5.8 Nm</td>
</tr>
<tr>
<td>OIL PAN TO CASE SCREW</td>
<td>8.14 Nm</td>
<td>4.22 Nm</td>
</tr>
<tr>
<td>EXTENSION HOUSING TO CASE SCREW</td>
<td>27.34 Nm</td>
<td>20 MIN.</td>
</tr>
<tr>
<td>MANUAL SHAFT TO DETENT LEVER NUT</td>
<td>20.27 Nm</td>
<td>20.27 Nm</td>
</tr>
<tr>
<td>MANUAL YOKE TO MANUAL SHAFT NUT</td>
<td>18.24 Nm</td>
<td>18.24 Nm</td>
</tr>
<tr>
<td>CASE TO CENTER SUPPORT SCREW</td>
<td>27.34 Nm</td>
<td>27.52 Nm</td>
</tr>
<tr>
<td>FLYWHEEL TO CONVERTER SCREW</td>
<td>41.47 Nm</td>
<td>41.47 Nm</td>
</tr>
<tr>
<td>TRANSMISSION CASE TO ENGINE SCREW</td>
<td>41.47 Nm</td>
<td>41.47 Nm</td>
</tr>
<tr>
<td>OIL COOLER PIPE CONNECTOR NUT AT CASE & Radiator</td>
<td>35.41 Nm</td>
<td>35.41 Nm</td>
</tr>
<tr>
<td>COOLER PIPE CONNECTOR AT CASE</td>
<td>35.41 Nm</td>
<td>35.41 Nm</td>
</tr>
<tr>
<td>ENGINE REAR MOUNT TO TRANSMISSION BOLT</td>
<td>41.47 Nm</td>
<td>41.47 Nm</td>
</tr>
<tr>
<td>ENGINE REAR SUPPORT BRACKET TO FRAME NUT</td>
<td>3.5 Nm</td>
<td>3.5 Nm</td>
</tr>
</tbody>
</table>

Figure 103 - Torque Specifications
<table>
<thead>
<tr>
<th>Tool Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slide Hammer (15/8" x 18 with 1/2" x 13 Adapter)</td>
<td>J 2619-01</td>
</tr>
<tr>
<td>Forward and Direct Clutch Inner Seal Protector</td>
<td>J 21362</td>
</tr>
<tr>
<td>Compressor Adapter (Used with J 4670-01 & J 6129)</td>
<td>J 21664</td>
</tr>
<tr>
<td>Clutch Spring Compressor (Use with J 6129 & J 21664)</td>
<td>J 6129</td>
</tr>
<tr>
<td>Second Clutch Inner Seal Protector</td>
<td>J 21363</td>
</tr>
<tr>
<td>Gear Unit Holding Tool (Use with J 6125-A)</td>
<td>J 21795-02</td>
</tr>
<tr>
<td>Clutch Unit Holding Fixture</td>
<td>J 21364-A</td>
</tr>
<tr>
<td>Support Adapter (Used with J 6116-01)</td>
<td>J 21364</td>
</tr>
<tr>
<td>Low Servo Cover Remover & Installer</td>
<td>J 22269-01</td>
</tr>
<tr>
<td>5/16-18 Thread with 3/8-16 Adapter (Set of 2)</td>
<td>J 6125-B</td>
</tr>
<tr>
<td>Pump Body and Cover Alignment Band</td>
<td>J 21368</td>
</tr>
<tr>
<td>Transmission Modulator Checking Tool</td>
<td>J 24466</td>
</tr>
<tr>
<td>Dial Indicator Set</td>
<td>J 8001</td>
</tr>
<tr>
<td>Band to Apply Pin Gauge (Use with J 21370-6)</td>
<td>J 21370-10</td>
</tr>
<tr>
<td>Oil Pump Remover & End-Play Checking Fixture</td>
<td>J 24773-A</td>
</tr>
<tr>
<td>Driver Handle (3/4"-10 Thread)</td>
<td>J 8092</td>
</tr>
<tr>
<td>Band to Apply Pin Assembly</td>
<td>J 21370-6</td>
</tr>
<tr>
<td>Universal Converter End-Play Tool (All Turbo Hydramatic Torque Converters)</td>
<td>J 35138</td>
</tr>
<tr>
<td>Speedo Gear Remover (Use with J 21427-01)</td>
<td>J 8433</td>
</tr>
<tr>
<td>Forward and Direct Clutch Outer Seal Protector</td>
<td>J 21409</td>
</tr>
<tr>
<td>Center Support Tool</td>
<td>J 23093</td>
</tr>
<tr>
<td>Transmission Holding Fixture (Use with J 3289-20)</td>
<td>J 8763-02</td>
</tr>
<tr>
<td>Extension Housing Oil Seal Installer</td>
<td>J 21426</td>
</tr>
<tr>
<td>Speed Sensor Rotor Installer</td>
<td>J 36352-5</td>
</tr>
<tr>
<td>Pump Oil Seal Installer</td>
<td>J 21359</td>
</tr>
<tr>
<td>Speedo Gear Remover (Used with J 8433)</td>
<td>J 21427-01</td>
</tr>
</tbody>
</table>

Figure 104 - Special Tools
3 BUSHING, PUMP BODY
30 BUSHING, CASE EXTENSION
33 BUSHING
206 BUSHING, STATOR SHAFT (REAR)

220 BUSHING, STATOR SHAFT (FRONT)
655 BUSHING
663 BUSHING, STATOR SHAFT (MAIN SHAFT)
690 BUSHING, OUTPUT SHAFT

Figure 105 - Bushing Locations
Bushing Replacement Procedure
Protect parts with wood blocks or cloth as necessary

Remove as shown

- J-2619
- J-2619-4
- J-21465-15
- 220
- 206
- 202

Install as shown

- J-8092
- J-21465-3
- 220
- 206
- 202
- 201

- 3 Bushing, pump body
- 201 Body assembly, pump

- 663 Bushing, stator shaft (mainshaft)
- 664 Shaft, sun gear

Figure 106 - Bushing Replacement Procedure
BUSHING REPLACEMENT PROCEDURE
PROTECT PARTS WITH WOOD BLOCKS
OR CLOTH AS NECESSARY

<table>
<thead>
<tr>
<th>REMOVE AS SHOWN</th>
<th>INSTALL AS SHOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>J-8092</td>
<td>J-8092</td>
</tr>
<tr>
<td>J-21465-6</td>
<td>J-21465-6</td>
</tr>
<tr>
<td>655</td>
<td>655</td>
</tr>
<tr>
<td>654</td>
<td>654</td>
</tr>
</tbody>
</table>

654 SUPPORT, CENTER
655 BUSHING

<table>
<thead>
<tr>
<th>J-2619</th>
<th>J-8092</th>
</tr>
</thead>
<tbody>
<tr>
<td>J-2619-4</td>
<td>J-21465-1</td>
</tr>
<tr>
<td>J-21465-16</td>
<td>J-21465-1</td>
</tr>
<tr>
<td>690</td>
<td>690</td>
</tr>
<tr>
<td>691</td>
<td>691</td>
</tr>
</tbody>
</table>

690 BUSHING, OUTPUT SHAFT
691 SHAFT, OUTPUT

<table>
<thead>
<tr>
<th>J-8092 J-21465-8</th>
<th>J-21465-8 J-21465-9 J-21465-13 J-8092</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>33</td>
</tr>
</tbody>
</table>

10 CASE, TRANSMISSION
33 BUSHING

Figure 107 - Bushing Replacement Procedure
BUSHING REPLACEMENT PROCEDURE
PROTECT PARTS WITH WOOD BLOCKS
OR CLOTH AS NECESSARY

<table>
<thead>
<tr>
<th>REMOVE AS SHOWN</th>
<th>INSTALL AS SHOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>J-8092</td>
<td>J-8092</td>
</tr>
<tr>
<td>J-21465-17</td>
<td>J-21465-17</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
</tr>
</tbody>
</table>

27 CASE EXTENSION ASSEMBLY
30 BUSHING, CASE EXTENSION

Figure 108 - Bushing Replacement Procedure
SECTION 7A3

180C AUTOMATIC TRANSMISSION

CONTENTS

GENERAL INFORMATION
UNIT REPAIR
EXTERNAL PARTS ... 7A3-1
Selector Lever and Electrical
Modulator and Detent Valve
Servo Piston Removal ..7A3-1
Connector Removal ..7A3-2
Extension Housing, Speedometer Driven
Gear and Governor Assembly7A3-3
INTERNAL PARTS.. 7A3-3
COMPONENT REPAIR AND
TRANSMISSION ASSEMBLY7A3-6
Case... 7A3-6
Case Interior...7A3-6
Selector Lever and Shaft7A3-6
Planetary Carrier ... 7A3-6
Third Clutch Assembly7A3-7
Sprag Unit...7A3-9
Reverse Clutch Parts ..7A3-12
Determing Selective Washer Thickness.............. 7A3-12
Converter Housing, Oil Pump and
Reverse Clutch .. 7A3-13
Governor Hub ...7A3-15
Governor Body and Speedometer
Drive Gear..7A3-15
Extension Housing and Speedometer
Drive Gear..7A3-17
Detent Valve and Modulator.................................7A3-18
Servo Piston..7A3-18
Control Valve Assembly7A3-19
External Parts..7A3-22

TRANSMISSION DISASSEMBLY

GENERAL SERVICE INFORMATION

• Oil Seal Rings
If any seal rings are damaged, cut, or do not rotate freely in their grooves, be certain to check the ring groove for debris, burrs, or damage.
• Thrust washer surfaces
The thrust washers and bearing surfaces may appear to be polished. This is a normal condition and should not be considered damage.
• Snap rings
Do not over expand snap rings when removing or installing.

EXTERNAL PARTS

Clean
• Thoroughly clean the exterior of the transmission.

 Remove or Disconnect
• Torque converter

 Install or Connect
Tools Required
J-3289-20 Base
J-8763-01 Holding Fixture
2. Holding fixture into the base.

Tools Required
J-3289-20 Base
J-8763-01 Holding Fixture
2. Holding fixture into the base.

Drain the transmission fluid through the rear extension.

Remove or Disconnect (Figure 1)
1. Bolts, oil pan and gasket.
2. Bolts, oil strainer and gasket.
4. Electrical connections at the governor pressure switch.
5. Solenoid from transfer plate reinforcement.
6. Solenoid from the solenoid pipes.
7. Solenoid pipes from the valve body and the case.

Remove or Disconnect (Figure 2)
1. Governor pressure switch using a 1-1/16 oil pressure switch socket.
2. Bolts, transfer plate reinforcement.
3. Bolts, servo cover, and gasket.
5. Check balls.

Servo Piston Removal

Remove or Disconnect (Figures 3 and 4)
Tools Required
J-23075 Servo/3rd Clutch Piston Spring Compressor
1. Install J-23075 with tool offset to the rear case.
2. Compress servo piston.
5. Remove J-23075, servo piston, return spring, and the servo apply rod.

Selector Lever and Electrical Connector Removal

1. Inner selector hex nut.
2. Inside range selector.
3. Range selector shaft spring pin, using diagonal pliers. Insert a wire in the center of the spring pin to prevent it from collapsing during removal.

NOTICE: Inspect the range shaft for burrs before removing shaft to prevent damage to the case.

4. Range selector shaft.
5. Selector shaft seal, if necessary.
6. Electrical connector and "O" ring if necessary.
Modulator and Detent Valve Assemblies

Remove or Disconnect (Figures 7 and 8)

Tool Required
J-23100 Vacuum Modulator Wrench

NOTICE: Use of another tool to remove the vacuum modulator may result in internal damage to the modulator.

1. Vacuum modulator, "O" ring, and modulator plunger.
2. Modulator valve and sleeve.
3. Detent valve retaining pin using diagonal pliers. Insert a wire in the center of the spring pin to prevent it from collapsing during removal.
4. Detent sleeve, valve, and spring.
5. "O" ring.

Extension Housing, Speedometer, Driven Gear and Governor Assembly

Remove or Disconnect (Figures 9, 10 and 11)

Tools Required
J-7004 Slide Hammer
J-23129 Converter Housing Seal Remover
1. Bolt and speedometer guide bracket.
2. Speedometer driven gear assembly and seal ring.
3. Extension housing seal using J-23129 and J-7004 if necessary.

INTERNAL PARTS

Remove or Disconnect (Figures 12, 13 and 14)

Tools Required
J-7004 Slide Hammer
J-23129 Converter Housing Seal Remover
1. Converter housing oil seal using J-7004 and J-23129, if necessary.
2. Seven outer bolts.
3. Loosen five inner bolts.
4. "O" ring from input shaft.
 CAUTION: If the "O" ring is not removed, the second speed clutch and the third speed clutch will come out with the converter housing. The "O" ring may shear while the parts are being held, allowing the second and the third speed clutches to fall, causing personal injury.
5. Converter housing with the oil pump and reverse clutch assembly.

Remove or Disconnect (Figure 15)
1. Second and third clutch assemblies.
2. Separate the second clutch and the third clutch assemblies.

NOTICE: If the reverse clutch plates are not being replaced, they must be installed in their original position.

3. Reverse clutch plates and aluminum pressure plate.
4. Inside selector lever and parking lock actuator rod.
5. Bearing assembly and thrust washer.
6. Planetary carrier assembly, bearing assembly and thrust washer.

Remove or Disconnect
1. Reaction sun gear and drum.
2. Bearing assembly and thrust washer.
3. Low band.
4. Case vent, if necessary. If case vent is removed install a new vent.
1. CUT-AWAY VIEW CONVERTER HOUSING
2. INPUT SHAFT "O" RING SEAL
3. INNER CIRCLE OF BOLTS ARE OIL PUMP ATTACHING BOLTS (5)
4. OUTER CIRCLE OF BOLTS ARE CONVERTER HOUSING ATTACHING BOLTS (7)

Figure 13 Converter Housing Attaching Bolts and "O" Ring Seal

Inspect
- Low band for
 - cracks
 - flaking
 - heat damage
- Reaction sun gear and drum for
 - chipped teeth
 - worn bushing
 - scored drum

1. REV. CL. WAVED PLATE
2. REVERSE CLUTCH PLATE
3. REV. CL. COMPOSITION PLATE
4. PRESSURE PLATE
5. 2ND CLUTCH ASM.
6. 3RD CLUTCH ASM.
7. BEARING ASSEMBLY
8. THRUST WASHER
9. PLANETARY CARRIER ASM.
10. THRUST WASHER
11. BEARING ASSEMBLY
12. SUN GEAR DRUM
13. LOW BAND
14. BEARING ASSEMBLY
15. THRUST WASHER

Figure 15 Internal Parts
Component Repair and Transmission Assembly

NOTICE: When assembling the transmission, do not use any "O" rings, gaskets, or oil seals that have been removed.

Case

- Case exterior for cracks or porosity
- Case to valve body face for damage
- Interconnected oil passages for damage
- Servo bore for sharp edges
- Servo bore for porosity
- All bolt holes for thread damage
- Heli-coil to repair
- Cooler connections for proper torque 38 N·m (28 lbs.-ft)

Case Interior

- Ring grooves for damage
- Clutch plate lugs for wear or damage
- Band retaining pins for good retention
- Detent bore for scoring or scratches
- Modulator bore for scoring or scratches

Selector Lever and Shaft

Install or Connect (Figures 16, 17 and 18)
1. Selector seal, if necessary.
2. Selector shaft.
 - identification groove must be on the outside.
3. Spring pin. Check the selector lever shaft for free movement.
4. Inside selector lever and parking pawl actuator assembly.
5. Inside selector lever.
6. Electrical connector with a new "O" ring if necessary.

Install or Connect (Figure 15)
1. Thrust washer and bearing.
 - The case bushing acts as a guide for the thrust washer and the bearing.
2. Band
3. Reaction sun gear and drum assembly.
4. Bearing and thrust washer.
 Use petrolatum to hold the bearing and thrust bearing in place.

Planetary Carrier

Inspect (Figure 19)
- Planetary carrier and output shaft for:
 - damage
 - distortion
- Planetary pinions for:
 - damage
 - chipped teeth
Measure

- Pinion clearance at points A and B with a feeler gage. Clearance should be \(0.127-0.889\) mm \(0.005-0.035\)".

Install or Connect (Figure 20)

1. Planetary carrier and output shaft assembly.
2. Thrust washer and bearing.
 - Use petrolatum to hold the thrust washer and bearing in place.

Third Clutch Assembly

Disassemble (Figures 21 and 22)

Tools Required

- SOFT JAWED VISE
- SMALL PUNCH
- THIRD CLUTCH ASM.
Disassemble (Figures 23 and 24)

Tools Required
J-23075 Servo/Third Clutch Piston Spring Compressor

1. Position third clutch and input shaft assembly in a press with the input shaft facing down.
4. Release the clutch piston.
 DO NOT LET THE SPRING SEAT CATCH IN THE RING GROOVE.
5. Spring seat and return springs.
6. Clutch piston.

Inspect (Figure 26)

- Third clutch piston check ball
 - Shake the piston and listen for check ball movement.
 - Replace the piston if check ball is missing or falls out.
- Clutch piston lip seal for nicks, cuts, or damage.
- Input shaft lip seal for nicks, cuts, or damage.

Inspect (Figure 26)

- Clutch plates
 - Composite plates for damaged tangs, delamination or excessive wear.
 - Steel plates for damaged lugs, or heat damage.
- Third clutch drum for damage or worn clutch splines.
- Thrust washer and bearing for damage.

Assemble (Figures 26 and 27)

Tools Required
J-23084 Third Clutch Seal Protector

1. Input shaft lip seal. Lip seal must point toward the input shaft. Lubricate the lip seal with transmission fluid.
2. Piston lip seal onto the piston as shown.
 Lubricate the lip seal with transmission fluid. Use J-23084 to protect the seal during installation.
3. Piston into the clutch drum.
4. Remove J-23084.

(Figures 23 and 26)

Tools Required
J-23075 Servo/Third Clutch Piston Compressor

1. Third clutch piston return springs.
2. Spring seat.
3. Position the third clutch and input shaft assembly in a press with the input shaft pointing down.
1. THIRD CLUTCH HOUSING
2. THIRD CLUTCH PISTON LIP SEALS
3. THIRD CLUTCH PISTON
4. RETURN SPRINGS
5. SPRING SEAT
6. RETAINING CLIP
7. THIRD CLUTCH HUB
8. STEEL CLUTCH PLATES
9. COMPOSITION CLUTCH PLATES
10. CONICAL STEEL PLATE (CUSHION SPRING)
11. INPUT SUN GEAR BEARING & THRUST WASHER

Figure 26 Third Clutch

Figure 27 Input Shaft Lip Seal

1. PROPERLY INSTALLED LIP SEAL
2. THIRD CLUTCH HOUSING

4. Compress the piston return springs using J-23075.
5. Spring seat snap ring.

Assembly (Figure 28)
1. Third clutch plates into the clutch hub.
 - start with a steel clutch plate and alternate with a composition plate.
2. Conical steel plate.
 - bevel faces down
3. Align the internal clutch tangs.
4. Thrust washer and the bearing.
 Use petrolatum to hold the thrust washer and the bearing in place.

Sprag Unit

Disassemble (Figure 29)
1. Sprag assembly from the third speed clutch sun gear.
2. Sprag cage and retaining washers from the outer sprag race.

Inspect (Figures 29 and 30)
- Sun gear for nicked or chipped teeth.
- Sun gear sprag surface for pitting or damage.
- Outer sprag race for pitting or heat damage.
- Retaining ring damage.
Assemble

1. Retaining rings and sprag cage onto the sun gear. Flared shoulder of the sprag cage faces the sun gear.

Important
This procedure must be followed exactly to be sure that the sprag assembly is installed properly.

2. Outer sprag race over the sprag cage. Hold the sun gear with your left hand. The sprag and retainer assembly should hold firmly when turned in a clockwise direction with your right hand.

- The sprag race and retainer assembly should rotate freely when turned in a counterclockwise direction with your right hand.

Tools Required
J-29351 Third Clutch Ring Compressor (Late 1979 to current)
J-28456 J-29351/J-28456 on the sprag race to compress the retaining ring.
Sprag assembly into the clutch drum.
Remove J-29351/J-28456.
Seat the retaining ring in the ring groove.

Second Clutch

Disassemble (Figure 32)

1. Retaining ring from the second clutch drum.
2. Ring gear, retaining ring, and spacer.

NOTICE: If the second speed clutch plates are not being replaced, they must be installed in their original position.

Tools Required
J-23327 Clutch Spring Compressor
J-29838 Clutch Spring Compressor Adapter
Install J-23327 and J-29838.
Compress the piston return springs.
Retaining snap ring.
Clutch piston. Remove J-23327 and J-29838.
Spring seal and return springs.
Clutch piston.
Piston lip seal and the clutch drum lip seal if nicked, cut or damaged.

Inspect

- Second speed clutch piston
 - Shake the piston and listen for check ball movement. Movement indicates proper check ball operation. Replace the piston if check ball is missing or falls out.

- Second speed clutch plates
 - composition clutch plates for damaged tangs or delamination
 - steel clutch plates for damaged tangs, wear, or heat damage

- Clutch hub
 - bushing for scoring or damage
 - clutch splines for wear or damage
 - thrust washer for wear or damage

Assemble

Tools Required
J-23327 Clutch Spring Compressor
J-29838 Clutch Spring Compressor Adapter
J-23080 Second Speed Piston Seal Installer
Clutch drum lip seal with the lip facing down, if necessary. Lubricate the lip seal with transmission fluid.
1. RETAINING RING
2. RING GEAR
3. SPACER
4. STEEL CLUTCH PLATES
5. WAVED PLATE (CUSHION)
6. COMPOSITION PLATES
7. THRUST WASHER
8. RETAINING RING
9. PISTON RETURN SPRINGS (22)
10. SECOND CLUTCH
11. PISTON SEALS
12. SECOND CLUTCH HOUSING

Assemble (Figure 33)

1. Piston return springs and spring seat on the second clutch piston.
2. Use J-23327 and J-29838 to compress the second clutch piston return springs. **DO NOT LET SPRING SEAT CATCH IN RING GROOVE.**
3. Snap ring.
4. Remove J-23327 and J-29838.
5. Thrust washer. Seat the tang in the slot on the second clutch hub.
 Use petrolatum to hold the thrust washer in position.
6. Clutch plates into the second clutch drum in the following order:
 - Waved plate
 - Steel plate
 - Composition plate
 - Steel plate
7. Align the internal splines of the clutch plates.

Assemble (Figure 32)
1. Ring gear spacer.
 - Wavy end toward the clutch plates.
2. Spacer retaining ring.
3. Ring gear.
 - Grooved edge facing up.
4. Ring gear retaining ring.

Assemble (Figure 36)
1. Third clutch and input shaft assembly into the second clutch drum.
2. Second and third clutch assembly.

Reverse Clutch Parts

1. Aluminum pressure plate with the flat side up. LUGS ON PRESSURE PLATE MUST ENGAGE NARROW NOTCH IN THE CASE.
2. Reverse clutch plates. Start with a steel plate and alternate with a composition plate.

Determining Selective Washer Thickness

Measure (Figures 38 and 39)

Tools Required

J-23085 Selective Washer Gaging Tool

1. Install J-23085 on the case flange and against the input shaft.
2. Position the inner shaft of J-23085 against the thrust surface of the second speed clutch hub.
 Select the thickest washer available without exceeding measurement "A".
Converter Housing, Oil Pump and Reverse Clutch

Remove or Disconnect (Figures 40 and 41)

1. Oil pump to case gasket.
2. Oil pump outer square cut gasket.

Tools Required
J-23327 Clutch Spring Compressor
1. Install J-23327.
2. Compress the reverse clutch return springs.
3. Retaining ring.
4. Release the reverse clutch return springs.
 DO NOT LET SPRING SEAT CATCH IN RING GROOVE.
5. Remove J-23327, spring seat, and return springs.

Figure 39 Selective Washer Chart

When Measured Gap (A) is:

<table>
<thead>
<tr>
<th>INCHES</th>
<th>mm</th>
<th>USE WASHER PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>.069 -.074</td>
<td>1.78 - 1.88</td>
<td>5258202</td>
</tr>
<tr>
<td>.075 -.079</td>
<td>1.93 - 2.03</td>
<td>5258203</td>
</tr>
<tr>
<td>.080 -.084</td>
<td>2.06 - 2.16</td>
<td>5258204</td>
</tr>
<tr>
<td>.085 -.089</td>
<td>2.18 - 2.29</td>
<td>5258205</td>
</tr>
<tr>
<td>.090 -.094</td>
<td>2.31 - 2.41</td>
<td>5258206</td>
</tr>
<tr>
<td>.095 -.100</td>
<td>2.46 - 2.57</td>
<td>5258207</td>
</tr>
</tbody>
</table>

FOLLOWING THE PROCEDURE SHOULD RESULT IN FINAL END-PLAY FROM 0.36 mm TO 0.79 mm (.014 in. TO .031 in.)

Figure 40 Exploded View of Converter Housing, Oil Pump and Reverse Clutch

Figure 41 Marking Location of Oil Pump Gear

Disassemble (Figures 40 and 42)
6. Reverse clutch piston. Apply compressed air to the "apply" oil passage.
7. Inner and outer piston oil seals if necessary.

Disassemble (Figure 43)

- Do not remove the converter clutch control valve, pressure regulator valve, or the reverse boost valve, unless determined by oil pressure checks to be malfunctioning.

CAUTION: Valves are under spring pressure, use caution when disassembling.

1. Retaining pin from the converter clutch control port.
2. Oil pump boost valve sleeve, boost valve, spring, spring seats, and valve.
3. Screen, retainer, valve and spring.
4. Oil pump seal rings.

Inspect (Figures 43 and 44)

- Reverse boost valve, pressure regulator valve, and the converter clutch control valve for:
 - nicks
 - scoring
 - damage
- Oil pump seal rings for:
 - side wear
 - damage

Clean

- Thoroughly clean the pressure regulator valve, reverse boost valve, and the converter clutch control valve.
- Soak valves in transmission fluid.

Assemble

1. Spring, valve, retainer and screen.
2. Plug, valve, spring seats, spring, oil pump boost valve, sleeve, and retaining ring.
3. (2) Piston oil seals.

Assemble (Figures 45 and 46)

Tools Required
- J-23327 Clutch Spring Compressor
1. Inner and outer piston oil seals.
2. Reverse clutch piston onto the rear face of the oil pump.
3. Clutch return springs.
4. Spring seat and snap ring.
5. Install J-23327.
6. Compress clutch piston return springs.

Assemble

- Oil pump gears with tangs on the driven gear facing up.

Measure (Figure 47)

- Use a straight edge and a feeler gage to measure between the gear face and the pump face.

Assemble (Figures 40, 48 and 49)

Tools Required
- J-23082 Converter Housing to Oil Pump Alignment Tool
- J-21359 Seal Installation Tool

Important

Failure to use J-23082 will cause pump damage when transmission is operated after assembly.

1. Oil pump wear plate.
2. Converter housing oil seal. Use J-21359.
3. Converter housing onto the oil pump.
4. Loosely install oil pump bolt.
5. Install J-23082. Tool will bottom out on the oil pump gear.
6. Tighten oil pump bolts to half torque, then go to 19 N·m (14 lb.-ft.) in an alternating pattern.
7. Remove J-23082.

Assemble (Figures 50 and 51)

1. Oil pump to case gasket.
2. Oil pump outer square cut oil seal.
3. Converter housing and reverse clutch assembly. Use guide pins.
4. Converter to case bolts.

Tighten

- Torque bolt to 33 N·m (25 lbs.-ft.). Rotate input shaft to check for proper assembly.

Install or Connect

- Input "O" ring.
Governor Hub

Inspect (Figures 52 and 53)
- Seal rings for nicks, burrs, or damage.
- Governor hub oil screen.
- Governor hub splines for:
 - cracks
 - chipped teeth

Assemble
1. Oil screen flush with the governor hub.

Governor Body and Speedometer Drive Gear

Disassemble
1. Secondary valve spring retainer.
Inspect
- Primary and secondary valves for:
 - nicks
 - burrs
- Oil passages and valve bores for:
 - nicks
 - burrs
 - varnish

Inspect (Figure 54)
1. Primary valve, small end first.

2. Secondary valve, small end first.
4. Governor body, gasket, bolts.

Tighten
- Torque bolts to 8 N·m (6 lbs.-ft.).
 Valve should move freely.

Assemble
- Speedometer drive gear and retaining clip.
Extension Housing and Speedometer Drive Gear

Inspect (Figure 55)

- Extension housing for cracks or porosity.
- Parking pawl and spring.

Assemble (Figures 56 and 57)

Tools Required

J-21426 Extension Housing Seal Installer

1. Extension housing seal, use J-21426.
2. Gasket.
3. Align the parking pawl actuator rod into the extension housing.
4. Extension housing bolts.

Tighten

- Extension housing bolts to 31 N·m (32 lbs.-ft.).

Assemble

1. Speedometer driven gear housing and "O" ring if necessary.
2. Bolt and speedometer guide bracket.

Tighten

- Torque bolt to 9.5 N·m (7 lbs.-ft.).
Detent Valve and Modulator

Inspect (Figures 58 and 59)
- Detent valve sleeve for nicks, scratches, or scoring.
- Detent valve for nicks, or scoring.
- Modulator plunger for nicks, scratches, or scoring.
- Modulator valve sleeve for nickes, scratches, or scoring.
- Modulator valve for nicks, scratches, or scoring.

Tools Required
- J-23100 Modulator Wrench

1. Spring seats, spring, detent valve, SLOTS FACE OIL PAN. Detent valve sleeve, oil seal, and retaining pin.
 - Lubricate with transmission fluid.
2. Modulator valve sleeve, small end first.
 - TAB MUST ENGAGE SLOT IN MODULATOR BORE.
3. Modulator valve and plunger.
4. "O" ring onto the modulator assembly.

NOTICE: Use of another tool to install the vacuum modulator may result in internal damage to the modulator.

5. Modulator assembly.

Tighten
- Torque modulator to 52 N·m (38 lbs.-ft.)

Servo Piston

Disassemble (Figure 60)
1. Servo piston and apply rod.
2. Locknut.
4. Compress the cushion spring.
5. Retaining clip.
6. Release the cushion spring.
7. Sleeve, spring seat, cushion spring and adjusting bolt.

Inspect
- Servo piston ring for:
 - nicks, burrs, or side damage
- Piston sleeve for nicks, or burrs
- Apply rod for nicks, burrs, or scoring

Assemble
1. Spring seat and cushion spring onto the sleeve.
2. Insert the sleeve into the piston.
3. Position the piston and sleeve in a press.
4. Compress the cushion spring.
5. Retaining clip.
6. Release the cushion spring.

Assemble
1. Adjusting bolt into the sleeve.
2. Locknut. Do not tighten.
3. Piston ring, if necessary.

1. Servo apply rod, return spring, and piston.
2. Install J-23075 with tool offset toward the rear of the case.
3. Compress the servo piston return spring using J-23075. Tap servo piston with a rubber mallet while compressing the return spring to seat the piston ring.
4. Retaining ring.
5. Remove J-23075.

Adjust
1. Torque adjusting bolt to 4.5 N·m (40 lbs.-in.).
2. Back off the adjusting screw exactly 5 turns.
3. Tighten locknut securely.

Control Valve Assembly

Disassemble (Figure 64)
2. Bolts, transfer plate and gaskets.
Disassemble

- Position the control valve as shown on a clean surface.
 - Remove the valve trains beginning with the upper left hand corner.
 - Some of the valves are under pressure—cover the bores while removing the retaining pins.
 - Remove blind hole roll pins with a modified drill bit.
 - Valves, springs, and sleeves must be laid out on a clean surface in the exact sequence they are removed.

Clean

- All valves, springs, sleeves and control valve body.
- Dry using compressed air.

Inspect

- All valves and sleeves for:
 - porosity
 - scoring
 - nicks
 - scratches
- Springs for damaged or distorted coils
- Valve body casting for:
 - porosity
 - cracks
 - interconnected oil passages
 - damaged machined surfaces.

Assemble

- Control valve assembly exactly as shown.
- Notice the position of the valve lands and sleeves position.

Clean (Figure 65)

- Control valve assembly thoroughly in cleaning solvent. Move the valves with a pick or small screwdriver to dislodge any dirt or debris that may have accumulated.
1. RETAINING CLIP
2. OIL RING
3. 1-2 ACCUMULATOR PISTON
4. 1-2 ACCUMULATOR SPRING
5. RETAINING PIN
6. 1-2 ACCUMULATOR VALVE PLUG
7. 1-2 ACCUMULATOR VALVE
8. 1-2 ACCUMULATOR VALVE SPRING
 1/2" x 1-1/16"
9. HIGH SPEED DOWNSHIFT TIMING VALVE SPRING
 7/16" x 1-5/16"
10. HIGH SPEED DOWNSHIFT TIMING VALVE
11. TIMING AND CONTROL VALVE PLUG
12. LOW SPEED DOWNSHIFT TIMING VALVE
13. LOW SPEED DOWNSHIFT TIMING VALVE SPRING
 7/16" x 1-3/8"
14. MANUAL LOW CONTROL VALVE SPRING
 7/16" x 1 5/16"
15. MANUAL LOW CONTROL VALVE
16. REVERSE CONTROL VALVE
17. 1-2 SHIFT VALVE
18. 1-2 SHIFT CONTROL VALVE SPRING
 3/4" x 2-7/16"
19. 1-2 SHIFT CONTROL VALVE
20. 1-2 SHIFT CONTROL VALVE SPRING
21. 1-2 SHIFT CONTROL VALVE SLEEVE
22. 2-3 SHIFT VALVE
23. 2-3 SHIFT CONTROL VALVE SPRING SEAT
24. 2-3 SHIFT CONTROL VALVE SPRING
 11/16" x 1-3/4"
25. 2-3 SHIFT CONTROL VALVE
26. 2-3 SHIFT CONTROL VALVE SLEEVE
27. 3-2 CONTROL VALVE
28. 3-2 CONTROL VALVE SPRING
 7/16" x 1-3/4"
29. 3-2 CONTROL VALVE PLUG
30. DETENT PRESSURE REGULATOR VALVE
31. DETENT PRESSURE REGULATOR VALVE SPRING
 1/2" x 1-5/8"
32. MANUAL VALVE
33. MANUAL LINK

Figure 65 Typical Valve Body
Assemble (Figures 64)

1. Gasket, transfer plate, and bolts.
 - Torque to 9.5 N·m (7 lbs.-ft.)

Assemble

1. Check balls.
2. Gasket
3. Control valve. Position manual valve link as shown.
4. Bolts
 - Torque to 19 N·m (14 lbs-ft).

External Parts

Install or Connect (Figure 68)

1. Bolts and selector lever roller and spring.
 - Torque to 13 N·m (9 lbs.-ft.)

2. Bolts, reinforcement plate, and ground wire.
 - Torque to 19 N·m (14 lbs-ft.)

3. Governor pressure switch.
 - Torque to 10 N·m (7 lbs.-ft.)

4. Solenoid tubing, solenoid and bolts.
 - Torque to 19 N·m (14 lbs-ft.)
 - Make sure tubing does not interfere with manual valve operation.

5. Electrical connections.

Install or Connect (Figures 69 and 70)

1. Servo cover, gasket and bolts
 - Torque to 24.4 N·m (18 lbs-ft.)

2. Oil strainer, gasket, and bolts.
 - Torque to 18.9 N·m (14 lbs-ft.)
3. Oil pan, gasket, and bolts.
 - torque to 11 N·m (8 lbs.-ft.).
4. Torque converter.

![Figure 69 External Parts](image)

![Figure 70 Proper Converter Installation](image)
<table>
<thead>
<tr>
<th>ITEM</th>
<th>N·m</th>
<th>LB.FT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>OIL PAN-TO-CASE</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>MODULATOR ASSEMBLY</td>
<td>52</td>
<td>33</td>
</tr>
<tr>
<td>EXTENSION HOUSING-TO-CASE</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>OIL PRESSURE CHECK PLUG</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>CONVERTER HOUSING-TO-CYLINDER BLOCK</td>
<td>34</td>
<td>25</td>
</tr>
<tr>
<td>TRANSMISSION SUPPORT-TO-EXTENSION</td>
<td>44</td>
<td>33</td>
</tr>
<tr>
<td>SHIFT LEVER-TO-SELECTOR LEVER SHAFT</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>DETENT CABLE, RETAINER-TO-CASE</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>OIL COOLER FITTINGS-TO-CASE</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>OIL COOLER FITTINGS-TO-RADIATOR</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>OIL COOLER HOSE CLAMPS-TO-COOLER LINES</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>SHIFTER ASS’Y-TO-CONSOLE</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>NEUTRAL SAFETY SWITCH-TO-BRACKET</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>LOWER COVER-TO-CONVERTER HOUSING</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>FLEXPLATE-TO-CONVERTER</td>
<td>48</td>
<td>35</td>
</tr>
<tr>
<td>TRANSFER PLATE-TO-VALVE BODY</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>REINFORCEMENT PLATE-TO-CASE</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>VALVE BODY-TO-CASE</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>SERVO COVER-TO-CASE</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>CONVERTER HOUSING-TO-OIL PUMP</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>CONVERTER HOUSING-TO-CASE</td>
<td>33</td>
<td>25</td>
</tr>
<tr>
<td>SELECTOR LEVER LOCKNUT</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>GOVERNOR BODY-TO-GOVERNOR HUB</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>SERVO ADJUSTING BOLT LOCKNUT</td>
<td>18</td>
<td>14</td>
</tr>
<tr>
<td>GOVERNOR PRESSURE SWITCH</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>SOLENOID</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>OIL STRAINER</td>
<td>18.9</td>
<td>14</td>
</tr>
</tbody>
</table>
1. SELECTIVE THRUST WASHER (OIL PUMP HUB-TO-2ND CLUTCH)
2. BRONZE THRUST WASHER (2ND CLUTCH-TO-3RD CLUTCH)
3. STEEL THRUST WASHER (2ND CLUTCH-TO-3RD CLUTCH)
4. THRUST WASHER (INPUT SHAFT-TO-INPUT SUN GEAR)
5. TORRINGTON BEARING (INPUT SHAFT-TO-INPUT SUN GEAR)
 NO'S. 4 & 5 MAY BE STAKED TOGETHER
6. TORRINGTON BEARING (SUN GEAR-TO-OUTPUT SHAFT)
7. THRUST WASHER
8. THRUST WASHER (OUTPUT SHAFT-TO-REACTION SUN GEAR)
9. TORRINGTON BEARING
10. TORRINGTON BEARING (REACTION SUN GEAR-TO-CASE)
11. THRUST WASHER
12. OIL PUMP HUB BUSHING (FRONT)
13. CONVERTER HOUSING BUSHING
14. OIL PUMP BODY BUSHING (REAR)
15. SECOND CLUTCH HUB BUSHING
16. REACTION SUN GEAR DRUM BUSHING
17. REACTION SUN GEAR DRUM BUSHING SLEEVE
18. CASE BUSHING
19. EXTENSION BUSHING

Figure 72 Washer and Bushing Location

Figure 73 Removing or Installing Converter Housing Bushing

Figure 74 Removing Oil Pump Bushing - Front
Figure 76 Removing Oil Pump Bushing – Rear (Inner Tool Threads Into Bushing)

Figure 77 Installing Oil Pump Bushing – Rear (Inner)

Figure 78 Removing or Installing Second Clutch Bushing (Bearing Must Be Driven In Until Tool Bottoms On Bench)

Figure 79 Removing Reaction Sun Gear Drum Bushing
Figure 85 Transmission - Special Tools
SECTION 7B

MANUAL TRANSMISSION

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydra-matic Muncie Transmission</td>
<td>7B1-1</td>
</tr>
<tr>
<td>New Process Transmission</td>
<td>7B2-1</td>
</tr>
<tr>
<td>Borg Warner Transmission</td>
<td>7B3-1</td>
</tr>
</tbody>
</table>

SECTION 7B1

HYDRA-MATIC MUNCIE TRANSMISSION

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disassembly of the HM-117 Transmission</td>
<td>7B1-3</td>
</tr>
<tr>
<td>Disassembly and Assembly of Sub-Assembly</td>
<td>7B1-7</td>
</tr>
<tr>
<td>Main Drive Gear</td>
<td>7B1-7</td>
</tr>
<tr>
<td>Mainshaft</td>
<td>7B1-8</td>
</tr>
<tr>
<td>Countergear</td>
<td>7B1-8</td>
</tr>
<tr>
<td>Rear Bearing Retainer</td>
<td>7B1-11</td>
</tr>
<tr>
<td>Main Drive Gear Bearing Retainer</td>
<td>7B1-13</td>
</tr>
<tr>
<td>Shift Cover</td>
<td>7B1-13</td>
</tr>
<tr>
<td>Transmission Assembly (Installation of Sub-Assemblies)</td>
<td>7B1-17</td>
</tr>
<tr>
<td>Specifications</td>
<td>7B1-19</td>
</tr>
<tr>
<td>Fastener Torque</td>
<td>7B1-19</td>
</tr>
<tr>
<td>Lubrication</td>
<td>7B1-19</td>
</tr>
<tr>
<td>Special Tools</td>
<td>7B1-19</td>
</tr>
</tbody>
</table>
SECTION 7B1

HYDRA-MATIC MUNCIE TRANSMISSION

CONTENTS (CONT.)

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disassembly of the HM-290 Transmission</td>
<td>7B1-21</td>
</tr>
<tr>
<td>General Service Information</td>
<td>7B1-21</td>
</tr>
<tr>
<td>2WD Rear Housing Removal</td>
<td>7B1-33</td>
</tr>
<tr>
<td>4WD Rear Housing Removal</td>
<td>7B1-35</td>
</tr>
<tr>
<td>Disassembly and Assembly of Mainshaft 2WD and 4WD</td>
<td>7B1-37</td>
</tr>
<tr>
<td>Countershaft Inspection</td>
<td>7B1-53</td>
</tr>
<tr>
<td>Disassembly and Assembly of Reverse Idler Gear</td>
<td>7B1-53</td>
</tr>
<tr>
<td>Disassembly and Assembly of Front Housing Assembly</td>
<td>7B1-53</td>
</tr>
<tr>
<td>Disassembly and Assembly of Rear Housing Assembly</td>
<td>7B1-61</td>
</tr>
<tr>
<td>Shift Shaft/Rail and Fork Assemblies Inspection</td>
<td>7B1-63</td>
</tr>
<tr>
<td>Shift Lever Housing Assembly Inspection</td>
<td>7B1-64</td>
</tr>
<tr>
<td>Input Shaft Bearing Retainer Assembly</td>
<td>7B1-64</td>
</tr>
<tr>
<td>Countershaft Endplay Adjustment</td>
<td>7B1-65</td>
</tr>
<tr>
<td>Input Shaft Bearing Retainer Selective Shim Procedure</td>
<td>7B1-68</td>
</tr>
<tr>
<td>Output Shaft Bearing Selective Shim Procedure</td>
<td>7B1-69</td>
</tr>
<tr>
<td>Transmission Assembly</td>
<td>7B1-70</td>
</tr>
<tr>
<td>2WD Models</td>
<td>7B1-70</td>
</tr>
<tr>
<td>4WD Models</td>
<td>7B1-74</td>
</tr>
<tr>
<td>2WD and 4WD</td>
<td>7B1-76</td>
</tr>
<tr>
<td>Specifications</td>
<td>7B1-82</td>
</tr>
<tr>
<td>Fastener Torque</td>
<td>7B1-82</td>
</tr>
<tr>
<td>Lubrication</td>
<td>7B1-82</td>
</tr>
<tr>
<td>Special Tools</td>
<td>7B1-83</td>
</tr>
</tbody>
</table>
DISASSEMBLY OF THE HM-117 TRANSMISSION

Remove or Disconnect (Figures 21 and 22)

Tools Required:
- J-28509-A Countergear Front Bearing Remover
- J-8433 Bearing Puller
- J-22832-01 Countergear and Mainshaft Rear Bearing Remover
- J-35907 Mainshaft Lock Nut
- Wrench (4WD models only)

- Speedometer driven gear, switches and any external components.

1. Shifter housing.
 - Remove shifter housing bolts.
 - Move the reverse shift fork to partially engage the reverse idler gear.
 - Lift off the housing.

2. Flange nut (221).

3. Brake drum and the flange, or the yoke (220).

4. Parking brake assembly.
 - Mainshaft lock nut (256) and the washer using J-35907 (4WD models only).

5. Rear bearing retainer (223) and the gasket.

7. Front bearing retainer (202) and the gasket.

8. Cover (238) and the gasket.

10. Snap rings (225 and 226).

 - J-22832-01 must be seated in the groove completely.

12. Main drive gear (201).
 - Remove the bearing to case (large) snap ring.
 - Rotate the gear so the cutout portion is down to clear the countershaft, (figure 25).
 - Pull the drive gear from the case.

13. 4th speed blocker ring (204).

 - 1st speed thrust washer.

16. Mainshaft (250) from the case.

17. Countershaft (227) from the case.

18. Idler gear (230) and the shaft.
 - Drive the shaft from the case.
Figure 21—Four Speed Transmission
HM-117 MANUAL TRANSMISSION 7B1-5

Figure 22—Transmission Components

201. Main Drive Gear
202. Bearing Retainer
203. Snap Ring - Bearing to Case
204. 4th Speed Blocker Ring
218. Snap Ring
219. Speedometer Drive Gear
220. Output Yoke
221. Flange Nut
222. Oil Seal
223. Rear Bearing Retainer
224. Main Shaft Rear Bearing
225. Snap Ring - Bearing to Case
226. Snap Ring - Bearing to Gear
227. Counter Gear
228. Counter Gear Rear Bearing
230. Reverse Idler Gear
231. Reverse Idler Gear Shaft
237. Counter Gear Front Bearing
238. Counter Gear Front Cover
239. Pilot Bearings
241. Snap Ring - Bearing to Shaft
250. Main Shaft
251. Gasket
252. Dowel Pin
253. Screw
254. Transfer Case Adapter
255. Gasket
256. Rear Lock Nut
257. Lock Washer
258. Transmission Case
259. Screw
260. Cover Plate
261. Gasket
262. Gasket
263. Screw
264. Screw
265. Gasket
266. Oil Seal
267. Screw
268. Shift Cover
269. Gasket
Figure 23—Removing the Countergear Front Bearing

Figure 24—Removing the Countergear Rear Bearing

Figure 25—Main Drive Gear Cutout

Figure 26—Removing the Mainshaft Rear Bearing
DISASSEMBLY AND ASSEMBLY OF SUB-ASSEMBLIES

MAIN DRIVE GEAR

Disassemble (Figure 27)

Tools Required:
- J-358-1 Bearing Remover Holder
- J-22872 Drive Gear Bearing Remover

1. Pilot bearings (239).
 - Do not remove the snap ring from the bore.
2. Bearing retainer (276).
4. Bearing (278), using J-358-1 and J-22872, (figures 28 and 29)
5. Slinger (240).

Clean
- All parts in a suitable solvent.

Inspect
1. Parts for damage and wear.
2. Oil the bearings and check for roughness.

Assemble (Figures 27 and 30)

Tools Required:
- J-358-1 Bearing Remover Holder
- J-22872 Drive Gear Bearing Remover

1. New slinger (240).
 - The concave side goes toward the gear.

Important
- Do not damage or bend the slinger when installing the bearing.

Figure 27—Main Drive Gear Components

Figure 28—Installing Tool J-22872

Figure 29—Removing the Main Drive Gear Bearing

Important
- Do not spin the bearings dry.

Figure 30—Main Drive Gear Assembly
Disassemble (Figure 31)

1. Thrust washer and the 1st speed gear (216).
2. Reverse driven gear (211), the synchronizer keys and springs.
 • Do not loose the keys and springs.
3. 3-4 synchronizer snap ring (280).
 • Do no let the synchronizer come apart.
4. 3-4 synchronizer, the 3rd speed gear (208), the 2nd speed gear (209), the bushing, and the thrust washer (243).
 • Support the second speed gear and press the mainshaft out, (figure 32).

Important
• Do not let the mainshaft fall to the floor.
5. 2nd speed blocker ring (282).
6. 1st speed gear bushing and the 1-2 synchronizer hub (210).
Figure 33—Removing the Mainshaft from the 1st and 2nd Speed Synchronizer Hub

• Support the hub on J-8176 and press the mainshaft out, (figure 33).

Important
• Do not let the mainshaft fall to the floor.

7. 2nd speed gear bushing (244).
• Use a cold chisel to split the bushing if it is worn or damaged.

Important
• Do not scratch or gouge the mainshaft.

8. 3-4 synchronizer (205), (figure 34).
• The synchronizer hub and sleeve are a select fit. Do not mix the parts of the two synchronizers.

• Mark the hub and sleeve alignment for reassembly.
• Push the hub out of the sleeve while holding the springs and keys to avoid losing them.

Clean
• All parts in a suitable solvent and air dry.

Important
• Do not spin dry the bearings.

Inspect
1. Gears for cracks, chipped gear teeth, and other damage that could cause gear noise.
2. Thrust washers and bushings for damage and wear.
3. Related surfaces on the gears like thrust faces and bearing surface diameters.
4. The reverse sliding gear for a sliding fit on the synchronizer hub without excess radial or circular play. If the sliding gear is not free on the hub, inspect it for burrs on the ends of the internal splines. Remove any burrs by honing as required.
5. Synchronizer sleeves for a sliding fit on the synchronizer hubs and for the hubs a snug fit on the mainshaft splines.
6. Synchronizer springs and keys for looseness and damage.
7. Brass synchronizer rings for excess wear and damage.
8. All gear teeth for excess wear.
10. Lubricate all roller bearings with light engine oil and check for rough rotation.

Assemble (Figure 31)
Tools Required:
J-22873 Mainshaft Bushing Installer
J-22875 3rd Gear Assembly Tool

NOTICE: The mainshaft 1st, 2nd and 3rd speed gear bushings are sintered iron. The bushings could be damaged if they are not properly installed. The bushings must be installed in the proper positions.

1. 3-4 synchronizer (205), (figure 35).
• Place the keys in the hub.
• Engage the springs in different slots in either side of the hub so they support all the keys.
• Slide the sleeve onto the hub aligning the marks made during disassembly.

2. 2nd speed bushing, using J-22873, (figure 36).
3. 1-2 synchronizer hub (210), (figure 37).
• A minimum press of 681 kg (1500 lbs.) is required to move the hub.
• The annulus must be to the rear of the shaft.

5. 1st speed bushing (245), using J-22873, (figure 38).
6. 2nd speed blocker ring, the 2nd speed gear (209) and the 3rd speed thrust washer (243) (figure 39).
• The tab on the thrust washer must be in the slot in the mainshaft.

7. 3rd speed bushing (242) using J-22875 (figure 39).
Figure 35—Synchronizer Assembled

Figure 36—Installing the 2nd Speed Bushing

Figure 37—Installing the 1st and 2nd Synchronizer

Figure 38—Installing the 1st Speed Gear Bushing
Figure 39—Installing the 3rd Speed Gear Bushing

8. 3rd speed gear (208) and the blocker ring (figure 40).
9. 3-4 synchronizer (205) using J-22873 (figure 40).
 • A minimum press of 681 kg (1500 lbs.) is required to move the hub.
 • The stepped side of the sleeve goes to the front of the mainshaft.
11. Reverse gear (211).
 • The shift fork groove goes to the rear of the mainshaft.
12. 1st speed gear (216).

COUNTERGEAR

Disassemble (Figure 42)

Tools Required:
 J-22832-01 Countergear and Mainshaft Rear Bearing Remover
1. Snap ring and the thrust washer (235).
2. Driven gear (234).
 • Install J-22832-01 with the open side to the spacer (figure 43).
 • Support the gear and press the countergear through (figure 44).

Important
 • Do not let the countergear fall to the floor.
4. 3rd speed gear (290).
Counter Gear

227. Counter Gear
233. Spacer
234. Driven Gear
235. Thrust Washer
236. Snap Ring
290. 3rd Speed Gear

Clean
- Counter Gear and the gears in suitable solvent and air dry.

Inspect
- Counter Gear and the gears for nicks, burrs, and broken teeth.
- The splined area on the counter gear for chips and wear.

Assemble (Figure 42)

Tools Required:
- J-22873 Mainshaft Bushing Installer
- J-22830-A Snap Ring Installer
- A minimum press of 681 kg (1500 lbs.) is required to move each gear. If less pressure is required, replace the gear(s) or the shaft, or both.

1. 3rd speed gear (290) (figure 45).
 - The gear is marked "FRONT" in the web area, as shown in figure 42.
2. Spacer (233).
3. Driven gear (234), using J-22873 (figure 46).
4. Thrust washer (235).

Important
- Do not bend or damage the thrust washer.
- The snap ring should be tight in the groove with no side play.
233. Spacer
234. Driven Gear
290. 3rd Speed Gear

Figure 46—Installing the Driven Gear

Figure 47—Installing the Driven Gear Snap Ring

Figure 48—Installing the Rear Bearing Retainer

Rear Bearing Retainer

Seal Replacement

- **Remove or Disconnect (Figure 22)**
 1. Seal (222).
 - Pry the seal out with a small pry bar.
 2. Gasket material from the retainer (223) using a scraper.
 - Inspect the retainer for damage.

- **Install or Connect (Figure 22)**
 Tools Required:
 - J-22834 Extension Housing Seal Installer
 1. Locking compound on the outside of a new seal (222)
 - Use J-22834-1 if a parking brake is used.
 - Fill between the seal lips with chassis grease.

Main Drive Gear Bearing Retainer

Seal Replacement

- **Remove or Disconnect (Figure 22)**
 1. Seal (222).
 - Pry the seal out with a small pry bar.
 2. Gasket material from the retainer (202) using a scraper.
Inspect

1. Retainer nose for scoring, wear, or cracks, especially at the flange.
2. Snap ring groove for damage caused by drive gear bearing movement.
3. Retainer for wear and damage.

Install or Connect (Figure 22)

Tool Required:
- J-22833 Front Housing Drive Gear Seal Installer
- Seal (222), using J-22833. The lip of the seal goes toward the installing tool, (figure 49).

SHIFT COVER

Disassemble (Figure 50)

1. Three plugs (297).
 - Use a punch to drive the plugs out.

Important
- The reverse shift fork retaining pin cannot be removed until the other shift forks have been removed.
- Note the positions of the shift forks and the rods before removing them.
2. Fork retaining pins (303), (figure 51).
 - Shift rods must be in neutral position before any one rod can be removed.
 - Do not lose the detent balls and springs and the interlock shuttles and pin when removing the rods.
4. Interlock shuttles (306) and the pin (304).
5. Detent balls (213) and the springs (212).
6. Retainer (302) from the plunger (299).
7. Plunger (299) and spring (300) from the reverse shift fork (301).

Clean (Figure 50)
- All parts in solvent and air dry.

Inspect (Figure 50)

1. Shift fork
 - For damage or bends.
 - For worn finger pads.
2. Shift rods
For damage and bends.
For worn or damaged detents and detent balls.
For broken detent springs.
3. Shift control cover
 - For cracks and warping.
 - For smooth shift rod fit.

Important
 • The shift rods must be installed in the proper positions, (figure 53).
2. Shift rods (307, 305 and 214)
 • Place the detent springs (212) and the balls (213) in the holes in the cover, (figure 54).
 • Start the shift rods into the cover by depressing the spring loaded detent ball and pushing the rod over the ball.

• Position each rod part way into the cover with the detent groove down toward the spring loaded detent ball.

Important
 • Shift forks must be installed in the following order: Reverse, 3rd-4th, and 1st-2nd.
3. Hold the reverse shift fork (301) in position and push the rod through the fork and into the front support bore. Install a new retaining pin through the fork and rod.
4. Position the 3rd-4th shift fork (206) and push the rod through the yoke but not into the front support bore.
5. Place an interlock shuttle (306) in the cross-bore of the front support between the reverse and the 3rd-4th shift rods, (figure 54). Then install the interlock pin (304) in the 3rd-4th shift rod hole.
6. Push the 3rd-4th shift rod (306) into the front support bore and install a new retainer pin through the fork and rod.
7. Position the reverse and 3rd-4th shift rods in neutral position. Then place an interlock shuttle (306) in the cross-bore between the 1st-2nd and 3rd-4th shift rods, (figure 54).
8. Position the 1st-2nd shift fork (215) and push the rod through the yoke and into the front support bore. DO NOT force the rod into the front to see that the reverse and 3rd-4th shift rods are in neutral.
9. Install a new retainer pin through the shift fork and rod. Move the rod to neutral position.
10. Apply gasket maker GM P N 1052942 or equivalent to the edges of three new expansion plugs (297) and install them in the housing openings. Position each plug with the convex side out and drive a flat faced 13 mm (1/2-inch) dowel pin against it to seat the plug.
206. 3rd and 4th Shift Fork
212. Detent Spring
213. Detent Ball
214. Reverse Shift Rod
215. 1st and 2nd Shift Fork
301. Reverse Shift Fork
303. Retaining Pin
304. Interlock Pin
305. 3rd and 4th Shift Rod
306. Interlock Shuttle
307. 1st and 2nd Shift Rod

Figure 53—Shift Rod and Fork Positions
Before assembling the transmission, check the reverse idler gear bushing for wear. Clearance between the bushing and shaft at both ends should be no more than 0.10 mm (0.004-inch). If it is more, install a new gear and bushing assembly, and/or a new shaft as required.

Use new seals, gaskets and pipe sealant with Teflon® GM P.N 1052080 or equivalent on all bolt threads when assembling the transmission. Tighten all bolts to specified torque.

Lubricate all assemblies as they are installed in the transmission case using transmission oil.

Install or Connect (Figure 22)

Tools Required:
- J-22874, Mainshaft and Countergear Bearing Installer
- J-35907 Mainshaft Lock Nut Wrench (4WD models only)

1. Countergear (227) into the case.
 - Do not install the bearings.
2. Reverse idler gear (230) and the shaft.
 - The gear teeth go forward.
 - The slot in the shaft faces down.
 - Drive the shaft flush with the case.
3. Mainshaft (250) into the case.
 - The rear of the mainshaft must be through the rear bearing hole.
 - Place J-22874-5 into the front bearing hole, engaged with the mainshaft, (figure 55).

Important
- Be sure the 1st speed gear thrust washer is in place.
4. Mainshaft rear bearing (224).
 - Install a new snap ring (218) onto the bearing.
 - Drive the bearing until the snap ring is flush with the case using J-22874-1 (figure 55).
7B1-18 HM-117 MANUAL TRANSMISSION

Figure 55—Installing the Mainshaft Rear Bearing

- Remove J-22874-5.
5. 4th speed blocker ring (204).
- Be sure the cut outs align with the synchronizer keys.

⚠️ Important
- Be sure the main drive gear pilot bearings are in place.
6. Main drive gear (201).
- The drive gear cutout goes down (figure 25).
- Tap on the outer bearing race to install the assembly.
7. Bearing retainer (202) and a new gasket.
8. Countergear rear bearing (228).
- Support the front of the countergear using J-22874-10, (figure 56).
- New snap ring (225) onto the bearing.
- Drive the bearing onto the countershaft until the snap ring is flush with the case, using J-22874-1, (figure 57).
- Remove J-22874-10.
10. Countergear front bearing (237).
- Tap the bearing into place.
11. Cover (238) and a new gasket.
13. Rear bearing retainer (223) and a new gasket.
- 4WD models only.
 - Back plate.
 - New mainshaft lock nut (256) and a new spring washer using J-35907.

Figure 56—Tool J-22874-10 Installed

15. Brake drum and the flange or yoke (220).
- Lubricate the flange sealing surface with transmission oil.
16. Flange nut (221).
17. Shift cover (268) and a new gasket.
- Move the transmission gears and shift rods to the neutral position.
- Partially engage the reverse idler gear with the countergear and move the reverse shift fork an equal distance in the shift cover.
- Position the cover over the transmission case (not cocked or tilted) and lower the cover with the reverse shift fork entering the case first. As the cover is near its resting point on the case, observe that the 1-2 and 3-4 shift forks engage with the synchronizer collars.
- Repeat above procedures if needed to install.
18. Shift cover screws (267).
- Speedometer driven gear, switches and any external components that were removed.

Figure 57—Installing the Countergear Rear Bearing
SPECIFICATIONS

FASTENER TORQUE

<table>
<thead>
<tr>
<th>Item Description</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rear Bearing Retainer Screws</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Bottom</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Plug, Drain and Fill</td>
<td>23</td>
<td>17</td>
</tr>
<tr>
<td>Drive Gear Bearing Retainer Screws</td>
<td>32</td>
<td>25</td>
</tr>
<tr>
<td>Shift Lever to Shift Shaft Nut</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Cover Screws</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Parking Brake Plate Screws</td>
<td>41</td>
<td>30</td>
</tr>
<tr>
<td>Mainshaft Lock Nut (K model only)</td>
<td>135</td>
<td>100</td>
</tr>
<tr>
<td>Universal Joint Flange Nut</td>
<td>135</td>
<td>100</td>
</tr>
<tr>
<td>Power Take Off Cover Bolts</td>
<td>23</td>
<td>17</td>
</tr>
<tr>
<td>Countergear Front Cover Screws</td>
<td>3</td>
<td>4.5</td>
</tr>
<tr>
<td>Parking Brake Flange Plate Bolts</td>
<td>41</td>
<td>30</td>
</tr>
</tbody>
</table>

LUBRICATION

- Capacity: 4.0L (4.2 qts.)
- Type Recommended: API GL5 SAE 80W90 (Use SAE 80W GL5 in Canada)

SPECIAL TOOLS

1. J-22873 Main Shaft Bushing Installer
2. J-22875 3rd Gear Assembly Tool
3. J-22834 Extension Housing Seal Installer
4. J-22833 Front Housing Drive Gear Seal Installer
5. J-22874 Main Shaft And Countergear Bearing Installer
6. J-35907 Main Shaft Lock Nut Tool
7. J-8433 Bearing Puller
8. J-22832-01 Countergear And Mainshaft Rear Bearing Remover
9. J-8176 Bearing Separator
10. J-22872 Drive Gear Bearing Remover
11. J-28509-A Countergear Front Bearing Remover
12. J-22830-A Snap Ring Installer
13. J-358-1 Bearing Remover Holder
BLANK
DISASSEMBLY OF THE HM-290 TRANSMISSION

Remove or Disconnect (Figure 1, 2, 3 and 4).

GENERAL SERVICE INFORMATION

- Lubricant

The lubricant may appear to be very dark in color, almost black. This is a normal condition. The silicon imbedded into the shift forks to reduce wear is reacting with the lubricant.

Clean

Thoroughly clean the exterior of the transmission.
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SHAFT, INPUT</td>
</tr>
<tr>
<td>2</td>
<td>RING, SYNCHRONIZER</td>
</tr>
<tr>
<td>3</td>
<td>BEARING, PILOT</td>
</tr>
<tr>
<td>4</td>
<td>SHAFT ASSEMBLY, MAIN (2WD – MCO & MG5)</td>
</tr>
<tr>
<td>5</td>
<td>RING, SNAP (SELECTIVE)</td>
</tr>
<tr>
<td>6</td>
<td>SYNCHRONIZER ASSEMBLY, 3-4</td>
</tr>
<tr>
<td>7</td>
<td>SLEEVE, SYNCHRONIZER</td>
</tr>
<tr>
<td>8</td>
<td>BALL, SYNCHRONIZER DETENT</td>
</tr>
<tr>
<td>9</td>
<td>SPRING, SYNCHRONIZER DETENT</td>
</tr>
<tr>
<td>10</td>
<td>KEY, SYNCHRONIZER</td>
</tr>
<tr>
<td>11</td>
<td>HUB, 3-4 SYNCHRONIZER</td>
</tr>
<tr>
<td>12</td>
<td>GEAR ASSEMBLY, 3RD SPEED</td>
</tr>
<tr>
<td>13</td>
<td>BEARING ASSEMBLY, 3RD SPEED GEAR NEEDLE</td>
</tr>
<tr>
<td>14</td>
<td>RING, SNAP (SELECTIVE)</td>
</tr>
<tr>
<td>15</td>
<td>RACE, 2ND SPEED GEAR NEEDLE BEARING (INNER)</td>
</tr>
<tr>
<td>16</td>
<td>BEARING ASSEMBLY, SPEED GEAR NEEDLE</td>
</tr>
<tr>
<td>17</td>
<td>GEAR ASSEMBLY, 2ND SPEED</td>
</tr>
<tr>
<td>18</td>
<td>SYNCHRONIZER ASSEMBLY, 1-2</td>
</tr>
<tr>
<td>19</td>
<td>SLEEVE, 1-2 SYNCHRONIZER</td>
</tr>
<tr>
<td>20</td>
<td>HUB, 1-2 SYNCHRONIZER</td>
</tr>
<tr>
<td>21</td>
<td>GEAR, 1ST SPEED</td>
</tr>
<tr>
<td>22</td>
<td>SHAFT, OUTPUT (2WD)</td>
</tr>
<tr>
<td>23</td>
<td>BEARING ASSEMBLY, REVERSE SPEED</td>
</tr>
<tr>
<td>24</td>
<td>SYNCHRONIZER ASSEMBLY, 5TH-REVERSE (MG5)</td>
</tr>
<tr>
<td>25</td>
<td>RING, SPIRAL LOCK (MG5 ONLY)</td>
</tr>
<tr>
<td>26</td>
<td>HUB, 5TH-REVERSE SYNCHRONIZER</td>
</tr>
<tr>
<td>27</td>
<td>RING, SNAP (SELECTIVE)</td>
</tr>
<tr>
<td>28</td>
<td>BEARING ASSEMBLY, 5TH SPEED GEAR NEEDLE (MG5)</td>
</tr>
<tr>
<td>29</td>
<td>GEAR ASSEMBLY, 5TH SPEED (MG5)</td>
</tr>
<tr>
<td>30</td>
<td>SYNCHRONIZER ASSEMBLY, REVERSE (MCO)</td>
</tr>
<tr>
<td>31</td>
<td>BEARING ASSEMBLY, OUTPUT SHAFT</td>
</tr>
<tr>
<td>32</td>
<td>RACE, ROLLER BEARING</td>
</tr>
<tr>
<td>33</td>
<td>BEARING, ROLLER</td>
</tr>
<tr>
<td>34</td>
<td>RACE, BALL BEARING (INNER)</td>
</tr>
<tr>
<td>35</td>
<td>RACE, BEARING ASSEMBLY (OUTER)</td>
</tr>
<tr>
<td>36</td>
<td>RING, BALL BEARING (OUTER)</td>
</tr>
<tr>
<td>37</td>
<td>RING, THREADED THRUST (OUTER)</td>
</tr>
<tr>
<td>38</td>
<td>BALL, 4mm</td>
</tr>
<tr>
<td>39</td>
<td>RING, THREADED THRUST (INNER)</td>
</tr>
<tr>
<td>40</td>
<td>PIN SPRIL ROLL</td>
</tr>
<tr>
<td>41</td>
<td>RING, SNAP</td>
</tr>
<tr>
<td>42</td>
<td>WASHER, SPEED GEAR THRUST (2WD)</td>
</tr>
<tr>
<td>43</td>
<td>ROTOR, SPEED SENSOR</td>
</tr>
<tr>
<td>44</td>
<td>IDLER ASSEMBLY, REVERSE</td>
</tr>
<tr>
<td>45</td>
<td>BEARING, THRUST</td>
</tr>
<tr>
<td>46</td>
<td>GEAR, REVERSE</td>
</tr>
<tr>
<td>47</td>
<td>BEARING ASSEMBLY, NEEDLE</td>
</tr>
<tr>
<td>48</td>
<td>SHAFT, REVERSE IDLER</td>
</tr>
<tr>
<td>49</td>
<td>O-RING</td>
</tr>
<tr>
<td>50</td>
<td>COUNTERSHAFT ASSEMBLY, (MG5)</td>
</tr>
<tr>
<td>51</td>
<td>COUNTERSHAFT, (MCO)</td>
</tr>
<tr>
<td>52</td>
<td>GEAR, 5TH (MG5)</td>
</tr>
<tr>
<td>53</td>
<td>HOUSING, FRONT</td>
</tr>
<tr>
<td>54</td>
<td>BEARING ASSEMBLY, COUNTERSHAFT</td>
</tr>
<tr>
<td>55</td>
<td>RACE, COUNTERSHAFT BEARING</td>
</tr>
<tr>
<td>56</td>
<td>BEARING, COUNTERSHAFT</td>
</tr>
<tr>
<td>57</td>
<td>SHIM, (SELECTIVE)</td>
</tr>
<tr>
<td>58</td>
<td>HOUSING, REAR (2WD)</td>
</tr>
<tr>
<td>59</td>
<td>RETAINER, OUTPUT SHAFT BEARING (2WD)</td>
</tr>
<tr>
<td>60</td>
<td>BOLT, HEX HEAD (M8 X 50) (2WD)</td>
</tr>
<tr>
<td>61</td>
<td>BOLT, HEX HEAD (M8 X 60) (2WD)</td>
</tr>
<tr>
<td>62</td>
<td>SUPPORT, IDLER SHAFT</td>
</tr>
<tr>
<td>63</td>
<td>BOLT, HEX HEAD (M8 X 50)</td>
</tr>
<tr>
<td>64</td>
<td>BOLT, HEX HEAD (M8 X 50)</td>
</tr>
</tbody>
</table>
Figure 2 Transmission-2WD Shift Mechanism and Case Components
<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>RAIL ASSEMBLY, 1ST & 2ND SHIFT</td>
</tr>
<tr>
<td>101</td>
<td>RAIL, 1ST & 2ND SHIFT</td>
</tr>
<tr>
<td>102</td>
<td>PIN, ROLL</td>
</tr>
<tr>
<td>103</td>
<td>YOKE, 1ST & 2ND SHIFT</td>
</tr>
<tr>
<td>104</td>
<td>PIN, ROLL</td>
</tr>
<tr>
<td>105</td>
<td>FORK, 1ST & 2ND SHIFT</td>
</tr>
<tr>
<td>106</td>
<td>RAIL ASSEMBLY, 3RD & 4TH SHIFT</td>
</tr>
<tr>
<td>107</td>
<td>PIN, ROLL (3RD & 4TH FORK)</td>
</tr>
<tr>
<td>108</td>
<td>FORK, 3RD & 4TH SHIFT</td>
</tr>
<tr>
<td>109</td>
<td>RAIL, 3RD & 4TH</td>
</tr>
<tr>
<td>110</td>
<td>PIN, 3RD & 4TH SHIFT INTERLOCK</td>
</tr>
<tr>
<td>111</td>
<td>RAIL ASSEMBLY, 5TH & REVERSE SHFT</td>
</tr>
<tr>
<td>112</td>
<td>RAIL, 5TH & REVERSE</td>
</tr>
<tr>
<td>113</td>
<td>PIN, ROLL</td>
</tr>
<tr>
<td>114</td>
<td>FORK, 5TH & REVERSE SHFT</td>
</tr>
<tr>
<td>115</td>
<td>BLOCK, SPACER (MCO)</td>
</tr>
<tr>
<td>116</td>
<td>SHAFT ASSEMBLY, SHIFT</td>
</tr>
<tr>
<td>117</td>
<td>SHAFT, SHIFT</td>
</tr>
<tr>
<td>118</td>
<td>ROLLER, SHIFT SHAFT</td>
</tr>
<tr>
<td>119</td>
<td>PIN, ROLL</td>
</tr>
<tr>
<td>120</td>
<td>PIN, ROLL (6 X 28mm)</td>
</tr>
<tr>
<td>121</td>
<td>FINGER</td>
</tr>
<tr>
<td>122</td>
<td>PIN, ROLL</td>
</tr>
<tr>
<td>123</td>
<td>SOCKET ASSEMBLY, SHIFT SHAFT</td>
</tr>
<tr>
<td>124</td>
<td>SOCKET, SHIFT SHAFT</td>
</tr>
<tr>
<td>125</td>
<td>O-RING</td>
</tr>
<tr>
<td>126</td>
<td>BUSHING, SHIFT SOCKET</td>
</tr>
<tr>
<td>127</td>
<td>WASHER, SHIFT SOCKET</td>
</tr>
<tr>
<td>128</td>
<td>RING, SNAP</td>
</tr>
<tr>
<td>129</td>
<td>O-RING</td>
</tr>
<tr>
<td>130</td>
<td>BOOT</td>
</tr>
<tr>
<td>131</td>
<td>O-RING</td>
</tr>
<tr>
<td>132</td>
<td>SEAL, SHIFT LEVER HOUSING</td>
</tr>
<tr>
<td>133</td>
<td>NUT, HEX JAM (MCO)</td>
</tr>
<tr>
<td>134</td>
<td>NUT, HEX JAM (M5)</td>
</tr>
<tr>
<td>135</td>
<td>HOUSING ASSEMBLY, SHIFT LEVER (MCO)</td>
</tr>
<tr>
<td>136</td>
<td>HOUSING ASSEMBLY, SHIFT LEVER (M5)</td>
</tr>
<tr>
<td>200</td>
<td>HOUSING, FRONT</td>
</tr>
<tr>
<td>201</td>
<td>BOLT, HEX HEAD (M6 X 25mm)</td>
</tr>
<tr>
<td>205</td>
<td>RETAINER ASSEMBLY, INPUT SHAFT BEARING</td>
</tr>
<tr>
<td>206</td>
<td>RETAINER, INPUT SHAFT BEARING</td>
</tr>
<tr>
<td>207</td>
<td>PILOT, CLUTCH RELEASE BEARING</td>
</tr>
<tr>
<td>208</td>
<td>WASHER, INPUT BEARING RETAINER</td>
</tr>
<tr>
<td>209</td>
<td>SEAT, INPUT SHAFT BEARING RETAINER OIL</td>
</tr>
<tr>
<td>210</td>
<td>RING, SNAP (SELECTIVE)</td>
</tr>
<tr>
<td>211</td>
<td>SPACER, INPUT SHAFT</td>
</tr>
<tr>
<td>212</td>
<td>SHIM, (SELECTIVE)</td>
</tr>
<tr>
<td>213</td>
<td>RING, INPUT SHAFT BEARING ASSEMBLY SNAP</td>
</tr>
<tr>
<td>214</td>
<td>BEARING ASSEMBLY, INPUT SHAFT</td>
</tr>
<tr>
<td>215</td>
<td>RACE, BEARING ASSEMBLY OUTER</td>
</tr>
<tr>
<td>216</td>
<td>RACE, BEARING ASSEMBLY INNER</td>
</tr>
<tr>
<td>217</td>
<td>RACE, BALL BEARING INNER</td>
</tr>
<tr>
<td>218</td>
<td>BEARING, ROLLER</td>
</tr>
<tr>
<td>219</td>
<td>PIVOT ASSEMBLY, CLUTCH FORK</td>
</tr>
<tr>
<td>220</td>
<td>FITTING, LUBE</td>
</tr>
<tr>
<td>221</td>
<td>PLUG, SHIFT SHAFT/RAILS</td>
</tr>
<tr>
<td>222</td>
<td>PLUG, OIL FILL</td>
</tr>
<tr>
<td>223</td>
<td>BREATHER-ASSEMBLY</td>
</tr>
<tr>
<td>224</td>
<td>ADAPTER, BREATHER HOSE</td>
</tr>
<tr>
<td>225</td>
<td>PLUG, OIL DRAIN</td>
</tr>
<tr>
<td>226</td>
<td>BOLT, HEX HEAD (M10 X 25.4mm)</td>
</tr>
<tr>
<td>227</td>
<td>NUT, LOCK</td>
</tr>
<tr>
<td>228</td>
<td>BEARING, SHIFT RAIL FRONT HOUSING</td>
</tr>
<tr>
<td>229</td>
<td>LEVER ASSEMBLY, SHIFT SHAFT (230 & 231)</td>
</tr>
<tr>
<td>230</td>
<td>LEVER, SHIFT SHAFT</td>
</tr>
<tr>
<td>231</td>
<td>PIN, SHIFT SHAFT LEVER</td>
</tr>
<tr>
<td>232</td>
<td>ROLLER, O/CVR DETENT</td>
</tr>
<tr>
<td>233</td>
<td>SLEEVE, BIAS SPRING</td>
</tr>
<tr>
<td>234</td>
<td>SPRING, BIAS LOAD TORSIONAL</td>
</tr>
<tr>
<td>235</td>
<td>SEAT, BIAS SPRING & SLEEVE</td>
</tr>
<tr>
<td>236</td>
<td>BOLT, HEX HEAD (M6 X 16mm)</td>
</tr>
<tr>
<td>237</td>
<td>SUPPORT, 5TH & REVERSE DETENT CAM</td>
</tr>
<tr>
<td>238</td>
<td>CAM, 5TH & REVERSE DETENT CAM</td>
</tr>
<tr>
<td>239</td>
<td>CAM, 5TH & REVERSE DETENT CAM (M55)</td>
</tr>
<tr>
<td>240</td>
<td>SLEEVE, DETENT CAM PIVO</td>
</tr>
<tr>
<td>241</td>
<td>WASHER, RETAINING</td>
</tr>
<tr>
<td>242</td>
<td>BUSHING, DETENT PLUNGER</td>
</tr>
<tr>
<td>243</td>
<td>PLUNGER, SHIFT SHAFT DETENT</td>
</tr>
<tr>
<td>244</td>
<td>SPRING, SHIFT SHAFT DETENT PLUNGER</td>
</tr>
<tr>
<td>245</td>
<td>PLUG</td>
</tr>
<tr>
<td>246</td>
<td>BUSHING, 5 & REVERSE DETENT PLUNGER</td>
</tr>
<tr>
<td>247</td>
<td>PLUNGER ASSEMBLY, 5TH & REVERSE DETENT</td>
</tr>
<tr>
<td>248</td>
<td>SPRING, 5TH & REVERSE DETENT</td>
</tr>
<tr>
<td>249</td>
<td>PLUG, HEX HEAD</td>
</tr>
<tr>
<td>250</td>
<td>PLUG, COUNTERSHAFT BEARING</td>
</tr>
<tr>
<td>251</td>
<td>RING, SNAP</td>
</tr>
<tr>
<td>252</td>
<td>SHIM(55)</td>
</tr>
<tr>
<td>300</td>
<td>HOUSING, REAR (2WD)</td>
</tr>
<tr>
<td>307</td>
<td>TUBE ASSEMBLY, OIL DELIVERY</td>
</tr>
<tr>
<td>308</td>
<td>BEARING, REAR HOUSING SHIFT RAIL</td>
</tr>
<tr>
<td>313</td>
<td>SWITCH ASSEMBLY, BACK-UP LAMP</td>
</tr>
<tr>
<td>314</td>
<td>SENSOR ASSEMBLY, ELECTRONIC SPEED</td>
</tr>
<tr>
<td>315</td>
<td>O-RING</td>
</tr>
<tr>
<td>316</td>
<td>SENSOR, ELECTRONIC SPEED</td>
</tr>
<tr>
<td>317</td>
<td>BOLT, HEX HEAD (M6 X 16)</td>
</tr>
<tr>
<td>318</td>
<td>BEARING, REAR EXTENSION (2WD)</td>
</tr>
<tr>
<td>319</td>
<td>SEAL, SLIP YOKE OIL (2WD)</td>
</tr>
<tr>
<td>321</td>
<td>PIN, DOWEL</td>
</tr>
<tr>
<td>322</td>
<td>PLUG</td>
</tr>
<tr>
<td>323</td>
<td>BALL, DETENT/INTERLOCK</td>
</tr>
<tr>
<td>324</td>
<td>SPRING, DETENT</td>
</tr>
<tr>
<td>325</td>
<td>COVER, DETENT SPRING</td>
</tr>
<tr>
<td>326</td>
<td>PLUG</td>
</tr>
</tbody>
</table>
Figure 4 Legend

100 RAIL ASSEMBLY, 1ST & 2ND SHIFT
101 RAIL, 1ST & 2ND SHIFT
102 PIN, ROLL
103 YOKE, 1ST & 2ND SHIFT
104 PIN, ROLL
105 FORK, 1ST-2ND SHIFT
106 RAIL ASSEMBLY, 3RD & 4TH SHIFT
107 PIN, ROLL (3RD & 4TH FORK)
108 FORK, 3RD & 4TH SHIFT
109 RAIL, 3RD & 4TH
110 PIN, 3RD & 4TH SHIFT INTERLOCK
111 RAIL ASSEMBLY, 5TH & REVERSE SHIFT
112 RAIL, 5TH & REVERSE
113 PIN, ROLL
114 FORK, 5TH & REVERSE SHIFT
115 SHAFT ASSEMBLY, SHIFT
116 SHAFT, SHIFT
118 ROLLER, SHIFT SHAFT
119 PIN, ROLLER
120 PIN, ROLL (6 X 28mm)
121 FINGER
122 PIN, ROLL
123 SOCKET ASSEMBLY, SHIFT SHAFT
124 SOCKET, SHIFT SHAFT
125 O-RING
126 BUSHING, SHIFT SOCKET
127 WASHER, SHIFT SOCKET
128 RING, SNAP
129 O-RING
130 BOX
131 O-RING
132 SEAL, SHIFT LEVER HOUSING
134 NUT, HEX JAM
136 HOUSING ASSEMBLY, SHIFT LEVER (MG5)
200 HOUSING, FRONT
204 BOLT, HEX HEAD (M6 X 25mm)
205 RETAINER, INPUT SHAFT BEARING
206 RETAINER, INPUT SHAFT BEARING
207 PILOT, CLUTCH RELEASE BEARING
208 WASHER, INPUT BEARING RETAINER
209 SEAL, INPUT SHAFT BEARING RETAINER OIL
210 RING, SNAP (SELECTIVE)
211 SPACER, INPUT SHAFT
212 SHIM, (SELECTIVE)
213 RING, INPUT SHAFT BEARING ASSEMBLY SNAP
214 BEARING ASSEMBLY, INPUT SHAFT
215 RACE, BALL BEARING (OUTER)
216 RACE, BEARING ASSEMBLY (OUTER)
217 RACE, BALL BEARING (INNER)
218 BEARING, ROLLER
219 PIVOT ASSEMBLY, CLUTCH FORK
220 FITTING, LUBE
221 PLUG, SHIFT SHAFT/RAILS
222 PLUG, OIL FILL
223 BREATHER ASSEMBLY
224 ADAPTER, BREATHER HOSE
225 PLUG, OIL DRAIN
226 BOLT, HEX HEAD (M10 X 25.4mm)
227 NUT, LOCK
228 BEARING, SHIFT RAIL FRONT HOUSING
229 LEVER ASSEMBLY, SHIFT SHAFT (230 & 231)
230 LEVER, SHIFT SHAFT
231 PIN, SHIFT SHAFT LEVER
232 ROLLER, C/OVR DETENT
233 SLEEVE, BIAS SPRING
234 SPRING, BIAS LOAD TORSIONAL
235 SEAT, BIAS SPRING & SLEEVE
236 BOLT, HEX HEAD (M6 X 16mm)
237 SUPPORT, 5TH & REVERSE DETENT CAM
239 CAM, 5TH & REVERSE DETENT
240 SLEEVE, DETENT CAM PIVOT
241 WASHER, RETAINING
242 BUSHING, DETENT PLUNGER
243 PLUNGER, SHIFT SHAFT DETENT
244 SPRING, SHIFT SHAFT DETENT PLUNGER
245 PLUG
246 BUSHING, 5TH & REVERSE DETENT PLUNGER
247 PLUNGER ASSEMBLY, 5TH & REVERSE DETENT
248 SPRING, 5TH & REVERSE DETENT
249 PLUG, HEX HEAD
250 PLUG, COUNTERSHAFT BEARING
251 RING, SNAP
252 SHIM(S)
301 HOUSING, REAR (4WD)
307 TUBE ASSEMBLY, OIL DELIVERY
308 BEARING, REAR HOUSING SHIFT RAIL
309 BEARING, REAR HOUSING SHIFT SHAFT
313 SWITCH ASSEMBLY, BACK-UP LAMP
320 SEAL, OUTPUT SHAFT OIL (4WD)
321 PIN, DOWEL
322 PLUG
323 BALL, DETENT/INTERLOCK
324 SPRING, DETENT
325 COVER, DETENT SPRING
326 PLUG
Tools Required:
- J 3289-20 Base Holding Fixture
- J 8763-02 Holding Fixture C-Clamp
- J 8763-21 Balance Bracket for C-Clamp
- J 36824 Transmission Adapters
- J 36509 Clutch Pivot Remover/Detent Spring Plug Remover
- J 23907 Slide Hammer
- J 36825 4WD Output Shaft Oil Seal Remover (4WD models only)
- J 36515 Assembly Pallet
- J 36515-12 Countershaft Adapter for 1988 and 1989 models

1. Idler shaft support bolt (311) and bottom two bolts (312) (Figure 5).

2. Backup lamp switch assembly (313) (Figure 7).

3. Bolt (317) and electronic speed sensor assembly (314).
 - 2WD models only.

4. Detent plug (245) using J 36509 and J 23907, Spring (244) and plunger (243).

5. Two bolts (236), detent spring cover (325), springs (324), and balls (323) (Figure 8).
 - It may be necessary to remove sealant from inside of holes to remove the balls (323).

6. Output shaft oil seal (320) using J 36825 and J 23907 (Figure 9).
 - 4WD models only
 - Screw J 36825 into one of the three perforated holes in the seal.

7. Six bolts (204) and input shaft bearing retainer assembly (205) (Figure 10).
• Tap on clutch release bearing pilot with a rubber hammer.
• Save the input bearing retainer washer (208).

8. Snap ring (selective) (210), input shaft spacer (211), ball bearing inner race (215) and shim (212).
• Position horizontally.
9. Front housing to rear housing bolts (312) (Figure 11)
10. Drive dowels (321) into front housing.
11. Front Housing (200).

12. Countershaft bearing (203).
13. Ball bearing inner race (217) and roller bearing (218).
 • Degreasing with a liquid cleaner will make it easier to remove.
 • Grab on OD edge (non-machined surface) of the inner race (217) and remove with large pliers.

\[\text{Important}\]
Do not damage bearing cage while removing ball bearing inner race.

14. Idler shaft support (310).
 • snap out

15. Four rollers (118) (Figure 12).
 Roll Pin
 • Pull shift shaft forward.
 • Cock to detent cover side.

16. Roll Pin (120)

\[\text{Important}\]
Support the shift shaft end while driving out finger roll pin.
• Slide the shaft (116) all the way back and cocked over to the detent spring cover side.

17. Shift shaft socket assembly roll pin (122) (Figure 13).
• Pin will fall into the case.
NOTICE: Excessive force will "peen" the shift shaft and damage the rear housing shift shaft bearing (309) causing increased shift effort.

18. Shift Shaft (116), shift shaft socket assembly (123) and finger (121).
19. 3rd and 4th shift fork roll pin (107) (Figure 14).
 - With a large pair of diagonal cutters - pry out.

 Important

 If roll pin (107) breaks off, put the transmission in 3rd gear and cut off remainder of roll pin then drive through.

20. Plug (326).
 - By hitting on one side - cocking it.
21. 3rd and 4th rail (109) (Figure 15).
• Make sure the 1-2 and 5-reverse rails are in neutral.
• Drive through the plug hole (326) enough to expose the roll pin hole (107) then insert a 3/8 punch or equivalent through the roll pin hole (107) and pull (while twisting) out the shift rail.

22. Two interlock balls (323).
• Install J 36515 with J 36515-12 (Figure 16).
• Remove J 8763-02 and J 36824.

![Figure 14 Removing 3-4 Rail Plug and Roll Pin](image1.png)

![Figure 15 Removing 3-4 Rail and Interlock Balls](image2.png)

2WD REAR HOUSING REMOVAL

Important

Steps 1 through 13 are for 2WD models only. The 4WD section follows step 13.

2WD REAR HOUSING REMOVAL

Tools Required:
- J 8105 Gear Puller (2WD models only)
- J 21427-01 Speedometer Gear Puller Adapter (2WD models only)
- J 36516 Output Shaft Spanner Nut Wrench

1. Bolts (304) and (305).
2. 2WD rear housing assembly (300).
 - Tap upwards on the housing with a rubber hammer (alternately on each side).
3. 2WD output shaft bearing retainer (302).
4. Shim (212).
 - Lock up the transmission in 2nd and 4th gear by sliding the 1st-2nd rail assembly (100) and the 3rd-4th shift fork (108) downward towards J 36515 (Figure 18).
 - Slide the snap ring (43) and washer (44) away from the rotor to make clearance for J 21427-01 (Figure 19).
5. Speed sensor rotor (45) using J 21427-01 and J 8105
- DO NOT REUSE ROTOR AFTER REMOVAL.

6. Washer (44) and snap ring (43).

7. Spiral roll Pin (42) using J 36516 (Figure 20).
 - Move the black depth locating tang for the spiral roll pin remover/installer out of the way, then drive down.
 - Put the black depth locating tang back in place with the rod going through it.
 - Turn J 36516 clockwise till it stops.

8. Snap ring (43).

9. Threaded thrust ring (inner) (41), ball (40) and threaded thrust ring (outer) (39).
 - Hold the countershaft against the mainshaft.
 - Turn J 36516 clockwise till both threaded thrust rings (39) and (41) are completely apart.

10. Reverse idler gear assembly (46) and countershaft (4-speed) (54) or (5-speed) (53) (Figure 21).
11. 1-2 shift rail assembly (100), 5-Reverse shift rail assembly (111), 3-4 shift fork (108), and (4-speed) spacer block (115).
 - By Snapping them off

 Important
 Leave the synchronizer ring (2) on the 3-4 synchronizer assembly (7) to prevent the synchronizer detent balls (9) from popping out.
13. Input shaft gear (1) and pilot bearing (3).

4WD REAR HOUSING REMOVAL

 Important
 Steps 1 through 10 are for 4WD models only.

 Remove or Disconnect
 Tools Required:
 J 36516 Output Shaft Spanner Nut Wrench
 - Lock up the transmission in 2nd and 4th gear by sliding the 1st and 2nd Shift rail assembly (100) and the 3rd and 4th shift fork (108) downward towards J 36515 (Figure 22).

1. Spiral roll pin (42) using J 36516 (Figure 23).
- Move the black depth locating tang for the spiral roll pin remover/installer out of the way, then drive roll pin down.
- Put the black depth locating tang back.
- Turn J 36516 counterclockwise till it stops.

2. Snap ring (43).
3. Threaded thrust ring - inner (41), ball (40) and threaded thrust ring - outer (39).
 - Turn J 36516 clockwise till both threaded thrust rings (39) and (41) are completely apart.

4. 4WD Rear Housing Assembly (301) (Figure 24).
 - Tap upwards on the housing with a rubber hammer (alternately on each side).
 - Save the ball bearing outer race (38) that will be left in the rear housing.

5. Countershaft bearing (203).
6. Countershaft (53).
7. Reverse idler assembly (46).
8. 5th and reverse shift rail assembly (111), 1st and 2nd shift rail assembly (100) and 3rd and 4th shift fork (108).
9. Mainshaft assembly (5).

Important

Leave the synchronizer ring (2) on the 3-4 synchronizer assembly (7) to prevent the synchronizer detent balls (9) from popping out.

10. Input shaft gear (1) and pilot bearing (3).

DISASSEMBLY AND ASSEMBLY OF MAINSHAFT 2WD AND 4WD

NOTICE: Optional method in Figure 25 can be used if the service press bed is not wide enough for the 1st speed to pass through. This method can be used to totally disassemble the main shaft, if necessary.

Disassemble

Tools Required:

- Hydraulic Press
- J 36513 Gear and Bearing Separator Plate
- J 22912-01 Small Gear Puller (4-speed models only).

1. Snap ring (selective) (6) (Figure 25).

2. 3-4 synchronizer assembly (7), synchronizer rings (2) and third speed gear (13) using J 36513 and hydraulic press.

3. Leave the synchronizer rings (2) to prevent the synchronizer detent balls (9) from popping out.

4. Snap ring (selective) (15) (Figure 26).

5. Second speed gear assembly (18) and second speed gear bearing race (16) using J 36513 and hydraulic press.

6. Speed gear bearing assembly (17).

7. First speed gear (22) and 1-2 synchronizer assembly (19) using J 36513 and hydraulic press.

8. Speed gear bearing assembly (17).

9. Inner ball bearing race (36), roller bearing (35) and roller bearing race (34) using J 22912-01 and hydraulic press (Figure 28).

10. Fifth speed gear bearing (30).
Figure 24 Removing 4WD Rear Housing

Figure 25 Removing 3-4 Gear Components
15 RING, SNAP (SELECTIVE)
16 RACE, 2ND SPEED GEAR NEEDLE BEARING (INNER)
17 BEARING ASSEMBLY, SPEED GEAR NEEDLE
18 GEAR ASSEMBLY, 2ND SPEED
23 SHAFT, OUTPUT (2WD)
24 SHAFT, OUTPUT (4WD)

Figure 26 Removing 2nd Gear Components

2 RING, SYNCHRONIZER
17 BEARING ASSEMBLY, SPEED GEAR NEEDLE
19 SYNCHRONIZER ASSEMBLY, 1-2
22 GEAR, 1ST SPEED
23 SHAFT, OUTPUT (2WD)
24 SHAFT, OUTPUT (4WD)

Figure 27 Removing 1st Gear Components
23 SHAFT, OUTPUT (2WD)
34 RACE, ROLLER BEARING
35 BEARING, ROLLER
36 RACE, BALL BEARING (INNER)

Figure 28 Removing 4-Speed Ball and Roller Races

23 SHAFT, OUTPUT (2WD)
24 SHAFT, OUTPUT (4WD)
30 BEARING ASSEMBLY, 5TH SPEED GEAR NEEDLE (MG5)
31 GEAR ASSEMBLY, 5TH SPEED (MG5)
34 RACE, ROLLER BEARING
35 BEARING, ROLLER
36 RACE, BALL BEARING (INNER)

Figure 29 Removing 5th Gear Components
12. Snap ring (selective) (29) (Figure 30).

13. Reverse speed gear assembly (25) and (5-speed) 5th-reverse synchronizer assembly (26) or (4-speed) reverse synchronizer assembly (32) using J 36513 and hydraulic press.
 - Scribe on hub and sleeve so the parts can be installed in the same position.
 - Leave the synchronizer ring (2) on the 5th-reverse synchronizer assembly (26) to prevent the synchronizer detent balls (9) from popping out.

14. Speed gear bearing assembly (17).

15. Place 1-2, 3-4, and 5th speed synchronizers in separate shop towels, wrap assemblies and press against inner hub.

 ![Important](https://via.placeholder.com/15)
 - ![Important](https://via.placeholder.com/15)
 - ![Clean](https://via.placeholder.com/15)
 - ![Important](https://via.placeholder.com/15)

 - ![Important](https://via.placeholder.com/15)
 - ![Clean](https://via.placeholder.com/15)

 - ![Important](https://via.placeholder.com/15)
 - ![Clean](https://via.placeholder.com/15)
Inspect (Figure 31, 32, and 33)

1. Gears for cracks, chipped gear teeth, and other damage that could cause gear noise.
2. Related surfaces on the gears like thrust faces and bearing surface diameters.
3. Synchronizer sleeves for a sliding fit on the synchronizer hubs and for the hubs to have a force fit on the mainshaft splines.
4. Synchronizer springs and keys for damage.
5. Synchronizer rings for excess wear.
6. Synchronizer clutching teeth for wear, scuffed, nicked, burred or broken teeth.
7. Speed gear clutching cones for synchronizer ring metal transfer.
8. All gear teeth for excess wear.
 • The black phosphate coating will develop wear patterns, this is a normal condition.
10. Lubricate all bearings with light engine oil and check for rough rotation.
 • If scuffed, nicked, burred, scoring, or synchronizer ring metal transfer conditions cannot be removed with a soft stone or crocus cloth, replace the component and inspect mating parts.
 • Lubricate all components as assembly progresses. Use lubricant 5W-30 GM P/N 1052931 or equivalent.
Figure 32 2WD Main Shaft Components
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SHAFT, INPUT</td>
</tr>
<tr>
<td>2</td>
<td>RING, SYNCHRONIZER</td>
</tr>
<tr>
<td>3</td>
<td>BEARING, PILOT</td>
</tr>
<tr>
<td>4</td>
<td>SHAFT ASSEMBLY, MAIN (2WD – MCO & MG5)</td>
</tr>
<tr>
<td>5</td>
<td>RING, SNAP (SELECTIVE)</td>
</tr>
<tr>
<td>6</td>
<td>SYNCHRONIZER ASSEMBLY, 3-4</td>
</tr>
<tr>
<td>7</td>
<td>SLEEVE, SYNCHRONIZER</td>
</tr>
<tr>
<td>8</td>
<td>BALL, SYNCHRONIZER DETENT</td>
</tr>
<tr>
<td>9</td>
<td>SPRING, SYNCHRONIZER DETENT</td>
</tr>
<tr>
<td>10</td>
<td>KEY, SYNCHRONIZER</td>
</tr>
<tr>
<td>11</td>
<td>HUB, 3-4 SYNCHRONIZER</td>
</tr>
<tr>
<td>12</td>
<td>GEAR ASSEMBLY, 3RD SPEED</td>
</tr>
<tr>
<td>13</td>
<td>BEARING ASSEMBLY, 3RD SPEED GEAR NEEDLE</td>
</tr>
<tr>
<td>14</td>
<td>RING, SNAP (SELECTIVE)</td>
</tr>
<tr>
<td>15</td>
<td>RACE, 2ND SPEED GEAR NEEDLE BEARING (INNER)</td>
</tr>
<tr>
<td>16</td>
<td>BEARING ASSEMBLY, SPEED GEAR NEEDLE</td>
</tr>
<tr>
<td>17</td>
<td>GEAR ASSEMBLY, 2ND SPEED</td>
</tr>
<tr>
<td>18</td>
<td>SYNCHRONIZER ASSEMBLY, 1-2</td>
</tr>
<tr>
<td>19</td>
<td>SLEEVE, 1-2 SYNCHRONIZER</td>
</tr>
<tr>
<td>20</td>
<td>HUB, 1-2 SYNCHRONIZER</td>
</tr>
<tr>
<td>21</td>
<td>GEAR, 1ST SPEED</td>
</tr>
<tr>
<td>22</td>
<td>SHAFT, OUTPUT (2WD)</td>
</tr>
<tr>
<td>23</td>
<td>GEAR ASSEMBLY, REVERSE SPEED</td>
</tr>
<tr>
<td>24</td>
<td>SYNCHRONIZER ASSEMBLY, 5TH-REVERSE (MG5)</td>
</tr>
<tr>
<td>25</td>
<td>RING, SPIRAL LOCK (MG5 ONLY)</td>
</tr>
<tr>
<td>26</td>
<td>HUB, 5TH REVERSE SYNCHRONIZER</td>
</tr>
<tr>
<td>27</td>
<td>BEARING ASSEMBLY, 5TH GEAR NEEDLE (MG5)</td>
</tr>
<tr>
<td>28</td>
<td>SYNCHRONIZER ASSEMBLY, REVERSE (MCO)</td>
</tr>
<tr>
<td>29</td>
<td>BEARING ASSEMBLY, OUTPUT SHAFT</td>
</tr>
<tr>
<td>30</td>
<td>RACE, ROLLER BEARING</td>
</tr>
<tr>
<td>31</td>
<td>BEARING, ROLLER</td>
</tr>
<tr>
<td>32</td>
<td>RACE, BALL BEARING (INNER)</td>
</tr>
<tr>
<td>33</td>
<td>RACE, BEARING ASSEMBLY (OUTER)</td>
</tr>
<tr>
<td>34</td>
<td>RACE, BALL BEARING (OUTER)</td>
</tr>
<tr>
<td>35</td>
<td>RING, THREADED THRUST (INNER)</td>
</tr>
<tr>
<td>36</td>
<td>BALL, 4mm</td>
</tr>
<tr>
<td>37</td>
<td>RING, THREADED THRUST (INNER)</td>
</tr>
<tr>
<td>38</td>
<td>PIN SPRIL ROLL</td>
</tr>
<tr>
<td>39</td>
<td>RING, SNAP</td>
</tr>
<tr>
<td>40</td>
<td>WASHER, SPEEDO GEAR THRUST (2WD)</td>
</tr>
<tr>
<td>41</td>
<td>ROTOR, SPEED SENSOR</td>
</tr>
</tbody>
</table>

Figure 32 Legend
Figure 33 4WD Main Shaft Components
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SHAFT, INPUT</td>
</tr>
<tr>
<td>2</td>
<td>RING, SYNCHRONIZER</td>
</tr>
<tr>
<td>3</td>
<td>BEARING, PILOT</td>
</tr>
<tr>
<td>5</td>
<td>SHAFT ASSEMBLY, MAIN (4WD)</td>
</tr>
<tr>
<td>6</td>
<td>RING, SNAP (SELECTIVE)</td>
</tr>
<tr>
<td>7</td>
<td>SYNCHRONIZER ASSEMBLY, 3-4</td>
</tr>
<tr>
<td>8</td>
<td>SLEEVE, SYNCHRONIZER</td>
</tr>
<tr>
<td>9</td>
<td>BALL, SYNCHRONIZER DETENT</td>
</tr>
<tr>
<td>10</td>
<td>SPRING, SYNCHRONIZER DETENT</td>
</tr>
<tr>
<td>11</td>
<td>KEY, SYNCHRONIZER</td>
</tr>
<tr>
<td>12</td>
<td>HUB, 3-4 SYNCHRONIZER</td>
</tr>
<tr>
<td>13</td>
<td>GEAR ASSEMBLY, 3RD SPEED</td>
</tr>
<tr>
<td>14</td>
<td>BEARING ASSEMBLY, 3RD SPEED GEAR NEEDLE</td>
</tr>
<tr>
<td>15</td>
<td>RING, SNAP (SELECTIVE)</td>
</tr>
<tr>
<td>16</td>
<td>RACE, 2ND SPEED GEAR NEEDLE BEARING (INNER)</td>
</tr>
<tr>
<td>17</td>
<td>BEARING ASSEMBLY, SPEED GEAR NEEDLE</td>
</tr>
<tr>
<td>18</td>
<td>GEAR ASSEMBLY, 2ND SPEED</td>
</tr>
<tr>
<td>19</td>
<td>SYNCHRONIZER ASSEMBLY, 1-2</td>
</tr>
<tr>
<td>20</td>
<td>SLEEVE, 1-2 SYNCHRONIZER</td>
</tr>
<tr>
<td>21</td>
<td>HUB, 1-2 SYNCHRONIZER</td>
</tr>
<tr>
<td>22</td>
<td>GEAR, 1ST SPEED</td>
</tr>
<tr>
<td>24</td>
<td>SHAFT, OUTPUT (4WD)</td>
</tr>
<tr>
<td>25</td>
<td>GEAR ASSEMBLY, REVERSE SPEED</td>
</tr>
<tr>
<td>26</td>
<td>SYNCHRONIZER ASSEMBLY, 5TH-REVERSE</td>
</tr>
<tr>
<td>27</td>
<td>RING, SPIRAL LOCK</td>
</tr>
<tr>
<td>28</td>
<td>HUB, 5TH-REVERSE SYNCHRONIZER</td>
</tr>
<tr>
<td>29</td>
<td>RING, SNAP (SELECTIVE)</td>
</tr>
<tr>
<td>30</td>
<td>BEARING ASSEMBLY, 5TH SPEED GEAR NEEDLE</td>
</tr>
<tr>
<td>31</td>
<td>GEAR ASSEMBLY, 5TH SPEED</td>
</tr>
<tr>
<td>32</td>
<td>SYNCHRONIZER ASSEMBLY, REVERSE</td>
</tr>
<tr>
<td>33</td>
<td>BEARING ASSEMBLY, OUTPUT SHAFT</td>
</tr>
<tr>
<td>34</td>
<td>RACE, ROLLER BEARING</td>
</tr>
<tr>
<td>35</td>
<td>BEARING, ROLLER</td>
</tr>
<tr>
<td>36</td>
<td>RACE, BALL BEARING (INNER)</td>
</tr>
<tr>
<td>37</td>
<td>RACE, BEARING ASSEMBLY (OUTER)</td>
</tr>
<tr>
<td>38</td>
<td>RACE, BALL BEARING (OUTER)</td>
</tr>
</tbody>
</table>

Figure 33 Legend
Assemble

Important

The following components will require heating prior to installation during assembly procedures.

- 7-10 minutes, 120° C (250° F).
 - 1st-2nd gear synchronizer assembly (19), (Figure 34)
 - 3rd-4th gear synchronizer assembly (7), (Figure 35)
 - 5th-reverse gear synchronizer assembly (26) (4-speed) or (32) (5-speed), (Figure 36)
 - Bearing assembly (17), reverse speed gear (25) (Figure 37).

Tools Required:
- Hydraulic Press
- J 36183 Press Tube
- J 36184 Adapter, Press Tube Reducer
- J 36513 Gear and Bearing Separator Plate
- J 22912-01 Small Gear Puller
- J 6133-01 Speedo Gear and Bearing Installer

1. Assemble 1st-2nd gear synchronizer assembly (19), (Figure 34)
2. Assemble 3rd-4th gear synchronizer assembly (7), (Figure 35)
3. Assemble 5th-reverse gear synchronizer assembly (26) (4-speed) or (32) (5-speed), (Figure 36)
4. Assemble Bearing assembly (17), reverse speed gear (25) (Figure 37).

Important

- When pressing the 5th-reverse synchronizer assembly (32) (4-speed) or (26) (5-speed):
 - Manually align and engage splines.
 - Press until seated.
 - Be sure all shavings are removed.

5. Assemble 5th-Reverse synchronizer assembly (26) with synchronizer ring (2) (5-speed) or (32) (4-speed) using J 36183, J 36184, J 36513 and hydraulic press.

- Check scribe marks for correct positions.
- With spiral lock ring (27) (5-speed) or groove (4-speed) in hub (28) towards reverse speed gear (25).

6. Assemble NEW selective snap ring (29).

- Install the thickest snap ring that will fit in the groove.

7. Assemble Bearing assembly (30) and 5th speed gear (31) (5-speed) (Figure 38).

Important

- When pressing the bearing races onto the main shaft (23) or (24):
 - Press until there is no clearance between roller bearing race and stop on main shaft.

- Shoulder down towards reverse gear.

3RD-4TH ASSEMBLY PROCEDURES

Install

1. Sleeve (8), onto hub (12):
 - Check scribe marks for correct positions.
2. Spring (10) into key (11):
 - Assemble into the hub.
3. Position assembly as in View A.
4. Balls (9):
 - Push the ball into the sleeve using a screwdriver. View A
 - Push the sleeve (8) down just enough to retain the ball (9).
 - Slide the sleeve up just enough to install each of the two remaining balls (one at a time).
5. Synchronizer ring (2):
 - Make sure synchronizer ring tangs line up with the keys.
6. Center the hub, keys and balls by pushing on both synchronizer rings, View B. Balls will “click” into position.

Figure 34 3rd-4th Synchronizer Assembly
1ST-2ND ASSEMBLY PROCEDURES

Install
1. Sleeve (20), onto hub (21):
 - Check scribe marks for correct positions.
2. Spring (10) into key (11):
 - Assemble into hub.
3. Position assembly as in View C.
4. Balls (9):
 - Push the ball into the sleeve using a screwdriver. View C
 - Push the sleeve (20) down just enough to retain the ball (9).
 - Slide the sleeve up just enough to install each of the two remaining balls (one at a time).
5. Synchronizer ring (2):
 - Make sure synchronizer ring tangs line up with the keys.
6. Center the hub, keys and balls by pushing on both synchronizer rings, View D. Balls will "click" into position.

5TH-REVERSE ASSEMBLY PROCEDURES

Install
1. Sleeve (8), onto hub (28):
 - Check scribe marks for correct positions.
 - Make sure spiral lock ring (27) is in place (RPO MG5 ONLY).
 - NOTE: The following steps are for RPO MG5 ONLY.
2. Spring (10) into key (11):
 - Assemble into hub.
3. Position assembly as in View E.
4. Balls (9):
 - Push the ball into the sleeve using a screwdriver. View E
 - Push the sleeve (8) down just enough to retain the ball (9).
 - Slide the sleeve up just enough to install each of the two remaining balls (one at a time).
5. Synchronizer ring (2):
 - Make sure synchronizer ring tangs line up with the keys.
6. Center the hub, keys and balls by pushing on the synchronizer ring, View F. Balls will "click" into position.

Figure 35 1st-2nd Synchronizer Assembly

Figure 36 5th-Reverse Synchronizer Assembly
9. Roller bearing (35), ball bearing (inner) race (36) HEATED using J 6133-01, J 36513 and hydraulic press.
 • Apply grease to roller bearing.
 • SMALLER DIAMETER OF BEARING CAGE UP.
 • Shoulder of ball bearing (inner) race down towards reverse gear.
10. Bearing assembly (17) and 1st speed gear (22) (Figure 39).

[Important]
 • When pressing the 1st-2nd synchronizer assembly (19):
 • Manually align and engage splines.
 • Start press operation, STOP before tangs engage.
 • Lift and rotate gear (22), to engage synchronizer ring (2).
 • Continue to press until seated.
 • Be sure all shavings are removed.
11. 1-2 synchronizer assembly (19) with both synchronizer rings (2) using J 36183, J 36184, J 22912-01 and hydraulic press.
 • Check scribe marks for correct positions.

[Important]
 • The groove on the outside of the sleeve MUST GO TOWARDS THE 2ND SPEED GEAR to prevent gear clash during 1st and 2nd gear shifts (the teeth on the sleeve have different angles).
12. Bearing assembly (17) and 2nd speed gear (18) (Figure 40).
 • Make sure bearing cage is together.
13. 2nd gear race (16) HEATED using J 36183, J 36184, J 22912-01 and hydraulic press.
14. NEW selective snap ring (15)
 • Install the thickest snap ring that will fit in the groove.
15. Bearing assembly (14) and 3rd speed gear (13) (Figure 41).

[Important]
 • When pressing the 3rd-4th synchronizer assembly (7):
 • Manually align and engage splines.
 • Start press operation, STOP before tangs engage.
 • Lift and rotate gear (13), to engage synchronizer ring (2).
 • Continue to press until seated.
 • Be sure all shavings are removed.
16. 3-4 synchronizer assembly (7) with both synchronizer rings (2) using J 36183, J 36184, J 22912-01 and hydraulic press.
 • Check scribe marks for correct positions.
17. NEW selective snap ring (6)
 • Install the thickest snap ring that will fit in the groove.
Figure 38 Bearing Races and 5th Gear Installed

- 23 SHAFT, OUTPUT (2WD)
- 24 SHAFT, OUTPUT (4WD)
- 30 BEARING ASSEMBLY, 5TH SPEED GEAR NEEDLE (MG5)
- 31 GEAR ASSEMBLY, 5TH SPEED (MG5)
- 34 RACE, ROLLER BEARING
- 35 BEARING, ROLLER
- 36 RACE, BALL BEARING (INNER)

NOTE: SMALLER DIAMETER OF BEARING CAGE UP.

Figure 39 1st Gear and Components Installed

- 2 RING, SYNCHRONIZER
- 17 BEARING ASSEMBLY, SPEED GEAR NEEDLE
- 19 SYNCHRONIZER ASSEMBLY, 1-2
- 22 GEAR, 1ST SPEED
- 23 SHAFT, OUTPUT (2WD)
- 24 SHAFT, OUTPUT (4WD)
7B1-52 HM-290 MANUAL TRANSMISSION

Figure 40 2nd Gear and Components Installed

Figure 41 3rd Gear and Components Installed

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DIM. A (IN.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23049718</td>
<td>2.30 (0.081)</td>
</tr>
<tr>
<td>23049719</td>
<td>2.25 (0.089)</td>
</tr>
<tr>
<td>23049720</td>
<td>2.20 (0.087)</td>
</tr>
<tr>
<td>23049721</td>
<td>2.15 (0.085)</td>
</tr>
<tr>
<td>23049722</td>
<td>2.10 (0.083)</td>
</tr>
<tr>
<td>23049723</td>
<td>2.05 (0.081)</td>
</tr>
<tr>
<td>23049790</td>
<td>2.00 (0.077)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DIM. A (IN.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23049986</td>
<td>2.00 (0.079)</td>
</tr>
<tr>
<td>23049987</td>
<td>1.95 (0.077)</td>
</tr>
<tr>
<td>23049988</td>
<td>1.90 (0.075)</td>
</tr>
<tr>
<td>23049989</td>
<td>1.85 (0.073)</td>
</tr>
<tr>
<td>23049990</td>
<td>1.80 (0.071)</td>
</tr>
</tbody>
</table>

16 RING, SNAP (SELECTIVE)
16 RACE, 2ND SPEED GEAR NEEDLE BEARING (INNER)
17 BEARING ASSEMBLY, SPEED GEAR NEEDLE
18 GEAR ASSEMBLY, 2ND SPEED
23 SHAFT, OUTPUT (2WD)
24 SHAFT, OUTPUT (4WD)

2 RING, SYNCHRONIZER
6 RING, SNAP (SELECTIVE)
7 SYNCHRONIZER ASSEMBLY, 3-4
13 GEAR ASSEMBLY, 3RD SPEED
14 BEARING ASSEMBLY, 3RD SPEED GEAR NEEDLE
23 SHAFT, OUTPUT (2WD)
24 SHAFT, OUTPUT (4WD)
COUNTERSHAFT INSPECTION

Clean
- All parts in a suitable solvent and air dry.

Inspect (Figure 42)
1. Shaft (54) or (53), for cracks, replace if these conditions exist.
2. Gear teeth (54) and (53) for scuffed, nicked, burred, or broken teeth.
3. Bearings (203) for roughness of rotation, burred or pitted condition, replace if these conditions exist (Figures 1 or 3).
4. Bearing races (202) for scoring, wear or overheating (Figures 1 or 3).

Important
- If scuffed, nicked, burred or scoring conditions cannot be removed with a soft stone or crocus cloth, replace the component.
- Fifth gear (55) (5-speed) CANNOT be pressed off the countershaft assembly (53), replace as an assembly only.

DISSASSEMBLY AND ASSEMBLY OF REVERSE IDLER GEAR

Disassemble (Figure 43)
1. Snap ring (47).
2. Thrust washer (48).
3. Ball (40).
4. Reverse gear (49).
5. Bearing assemblies (50) (THREE).
6. O-ring (52).

Inspect
- All parts in a suitable solvent and air dry.

1. Gear teeth (49), for scuffed, nicked, burred or broken teeth.
2. Bearing assemblies (50) for roughness of rotation, burred or pitted condition and gage damage, replace if these conditions exist.
3. Shaft (51), for scoring, wear or overheating.

Important
- If scuffed, nicked, burred or scoring conditions cannot be removed with a soft stone or crocus cloth, replace the component.

Assemble (Figure 43)
- Lubricate all components as assembly progresses. Use lubricant 5W-30 GM P/N 1052931 or equivalent.
1. Three bearing assemblies (50).
2. Reverse gear (49).
- Extended part of the hub faces thrust washer.
3. Thrust washer (48) and ball (4mm) (40).
- Retain ball with petroleum jelly.
4. NEW snap ring (47).
5. NEW o-ring (52).

DISASSEMBLY AND ASSEMBLY OF FRONT HOUSING ASSEMBLY

Disassemble (Figure 44)

Tools Required:
J 8092 Universal Drive Handle
J 36507 Detent Bushing Remover and Installer
J 36509 Clutch Pivot Remover/Detent Spring Plug Remover
J 36800 Shift Rail Bushing Remover
J 36506 Reverse Detent Bushing Remover and Installer
J 23907 Slide Hammer
J 36511 Oil Fill Plug Hex Bit (17mm)
J 36799 Countershaft Bearing Race Shimming Tool

Remove or Disconnect

1. Ball bearing outer race (216), using brass drift.
2. Three shift rail front housing bearings (228), using J 36800 and J 23907 (Figure 45).

![Figure 45 Removing Shift Rail Bearings](image)

3. Clutch fork pivot assembly (219), using J 36509 and J 23907 (Figure 46).
4. Shift shaft/rails plugs (221)
 - Use a punch to drive the plugs out.
5. Countershaft bearing plug (250) (Figure 47).
 - Destake first.
 - Tap using 3/8-16 bottom tap.
 - Screw 3/8-16 adapter into the plug.
 - Remove the plug with J 6725-B.
6. Snap ring (251), shim(s) (252) and countershaft bearing race (202) using J 36799 and J 8092.
 - Tap in countershaft bearing race (202) before removing snap ring (251).

Important

If countershaft bearing race (202) is removed refer to COUNTERSHAFT ENDPLAY ADJUSTMENT.

![Figure 46 Removing Clutch Fork Pivot Assembly](image)

Measure (Figure 48)

The countershaft bearing race bore in two places diagonally, 4mm (0.157 inch) in from the inside of the transmission housing. Replace the housing if the bore is not within 51.946 to 51.965mm (2.045 to 2.046 inch).

7. Hex head plug (249), 5th-reverse detent spring (248), 5th-reverse detent plunger assembly (247) (Figure 49).
8. Bolt (204), washer (241), reverse detent cam (238) (4-speed) or 5th-reverse cam (239) (5-speed) and bushing (240) (Figure 50).
Release tension of bias spring (234) from the end of the shift shaft lever pin (231) using a screwdriver.

CAUTION: Spring is under high tension

9. Bolt (236), bias spring and sleeve seat (235), bias load torsional spring (234), bias spring sleeve (233), shift shaft lever assembly (229) and detent roller (232) (Figure 51).

10. Bolt (236), detent cam support (237).
11. Two 5th-reverse detent bushings (246), using J 36506 (Figure 52).
 - Drive J 36506 till BOTH bushings are removed.

12. Two detent plunger bushings (242), using J 36507 (Figure 53).
 - Remove ONE bushing at a time

 - DO NOT REMOVE metal tube from case.

14. Oil fill plug (222) and oil drain plug (225), using J 36511 (Figure 54).

15. Gasket material from the case using liquid gasket remover.

 Inspect

 Clean
 - All parts in a suitable solvent and air dry.
1. Bearing race bore, for wear, scratches or grooves; if countershaft bearing race is worn or damaged the rear housing MUST be replaced.
2. Bushings, for scores, burrs, roundness or evidence of overheating;
3. Case, for cracks, threaded opening for damaged threads, mounting faces for nicks, burrs, or scratches; if case is cracked, it must be replaced.
4. Machined mating surfaces for flatness, check with a straight edge.

Important
- If scratches, grooves or scoring cannot be removed with a soft stone or crocus cloth, replace the component.
- Clean-up damaged threads with correct size tap.

Important
The following component will require cooling prior to installation during assembly procedures.
- 20 minutes MINIMUM, O° C (32° F).
 - countershaft bearing plug (250). (If removed)

Assemble

Tools Required:
- J 36190 Drive handle
- J 36507 Detent Bushing Remover and Installer Plug Remover
- J 36510 Clutch Pivot Installer
- J 36800 Shift Rail Bushing Remover
- J 36506 Reverse Detent Bushing Remover and Installer
- J 36511 Oil Fill Plug Hex Bit (17mm)
- J 36799 Countershaft Bearing Race Shimming Tool

1. Ball bearing outer race (216), using brass driff.
 - Put a shop towel over the bearing during installation.
2. Three shift rail front housing bearings (228), using J 36798-1 and J 36190 (Figure 55).
 - Install flush and stake using J 36798-2, J 36798-1 and J 36190.
 - DO NOT STAKE the tabs on the bushings.
3. Clutch fork pivot assembly (219), using J 36510 and J 36190 (Figure 56).
 - Grease after installation through lube fitting (220).
4. Two detent plunger bushings (242), using J 36507 (Figure 57).
 - Install one at a time.
 - Install the first bushing till the second scribe mark on the tool lines up with the housing.
 - Install the second bushing till the first scribe mark on the tool lines up with the housing.
5. Countershaft bearing race (202) using J 36799 and J 8092 (Figure 58).
 - Align lube slot in race with groove in the housing.

Important
If any of the parts listed below are replaced the COUNTERSHAFT ENDPLAY SHIMMING PROCEDURE must be performed:
- Countershaft bearing races.
- Countershaft bearings.
- Countershaft.
- Front or rear housing.
1. Countershaft bearing plug MUST be cooled at 0°C (32°F) for a MINIMUM of 20 minutes before installation.

2. NEW Countershaft bearing plug (250) using J 36799 and J 8092.
 - Apply gasket maker GM P/N 1052943 or equivalent to the outside edge of the plug.
 - Stake in three places evenly apart.

3. Two 5th-reverse detent bushings (246), using J 36506 (Figure 59).
 - Install one at a time.
 - Install the first bushing till the second scribe mark on the tool lines up with the housing.
 - Install the second bushing till the first scribe mark on the tool lines up with the housing.

4. Detent cam support (237) and bolt (236) (Figure 60).
 - Tighten • Bolt (236) to 8.5 N·m (7 Lb. Ft.).

5. Reverse detent cam (238) (4-speed) or 5th-reverse cam (239) (5-speed), bushing (240), washer (241) and bolt (204).
 - Tighten • Bolt (204) to 8.5 N·m (7 Lb. Ft.).

6. Detent roller (232) on shift shaft lever assembly (229) and install into housing (Figure 61).

7. Bias spring sleeve (233), bias load torsional spring (234), bias spring and sleeve seat (235) and bolt (236).
 - Tighten • Bolt (236) to 8.5 N·m (7 Lb. Ft.).

8. Bias load torsional spring (235) end back onto the shift shaft lever pin (231).

9. 5th-reverse plunger assembly (247), 5th-reverse detent spring (248), hex head plug (249) (Figure 62).
 - Tighten • Make sure slot in plunger is lined up with reverse cam.
 - Apply pipe sealant with Teflon™ GM P/N 1052080 or equivalent to the threads.

 - Hex head plug (249) to 60 N·m (46 Lb. Ft.).
NOTICE: Take great care not to strip the bore threads while installing hex head plug.

15. Oil fill plug (222) and oil drain plug (225), using J 36511 torque drain plug to 60 N·m (46 Lb. Ft.)
 - Apply pipe sealant with Teflon™ GM P/N 1052080 or equivalent to the threads.

16. Shift shaft/rails plugs (221)
 - Apply gasket maker GM P/N 1052943 to the edge of the plugs.
 - Install flush
HM-290 MANUAL TRANSMISSION 7B1-61

DISASSEMBLY AND ASSEMBLY OF REAR HOUSING ASSEMBLY

Disassemble (Figure 64)

Tools Required:
- J 36800 Shift Rail Bushing Remover
- J 23907 Slide Hammer with pilot bearing puller
- J 26941 2WD Output Shaft Oil Seal Remover (2WD models only)

Remove or Disconnect

1. Rear housing shift rail bearings (308) (three), using J 36800 and J 23907 (Figure 65).
 - Screw J 36800 into the bearing, then slide hammer out.
2. Rear housing shift shaft bearing (309), using J 23907 with pilot bearing puller (Figure 66).
 - Position pilot bearing puller legs behind ball bearing cage.
 - Tighten.
 - Slide hammer out.
3. Three bolts (306), output shaft bearing retainer (303) (4WD), bearing assembly (outer) race (37), using brass drift then remove shim(s) (212).
 - 4WD models only.
4. Slip yoke oil seal (319), using J 26941 and J 23907 (Figure 67).
 - 2WD models only.
5. Plug (322).
 - Use a punch to drive the plug out.

6. Gasket material from the case using liquid gasket remover.

Inspect

Clean

1. Bearing race bore, for wear, scratches or grooves; if counter shaft bearing race is worn or damaged the rear housing MUST be replaced.
2. Bushings, for scores, burrs, roundness or evidence of overheating; 2WD output shaft bushing (318) cannot be serviced, replace the rear housing (300) (no service for bushing).
3. Case, for cracks, threaded opening for damaged threads, mounting faces for nicks, burrs, or scratches; if case is cracked, it must be replaced.
4. Machined mating surfaces for flatness, check with a straight edge.

Important

- If scratches, grooves or scoring cannot be removed with a soft stone or crocus cloth, replace the component.
- Clean-up damaged threads with correct size tap.

Assemble

Tools Required:
- J 36190 Drive Handle
- J 36503 Extension Housing Seal Installer (2WD models only)
- J 36798-1 Shift Rail Bushing Installing Tool
- J 36798-2 Shift Rail Bushing Staking Tool
- Rear housing shift rail bearings (308) (three), using J 36190 and J 36798-1 (Figure 68).
 - Stake with J 36798-2, J 36798-1 and J 36190.
- Rear housing shift shaft bearing (309), using J 36506 (Figure 69).
 - Install flush.
- Shim(s) (212), bearing assembly (outer) race (37), using brass drift.
 - 4WD models only
 - Output shaft bearing retainer (303).
 - Bolts (Three) (306) apply threadlocker GM P/N 12345382 or equivalent to the threads.

Tighten

- Bolts (306) to 22 N·m (17 Lb. Ft.).

Important

The OUTPUT BEARING SELECTIVE SHIM PROCEDURE MUST be performed before installing a new bearing assembly.
HM-290 MANUAL TRANSMISSION 7B1-63

Figure 68 Shift Rail Bearings Install

• Drive till flush.

5. Slip yoke oil seal (319), using J 36503 (Figure 70).
 - 2WD models only.
 • Fill between the seal lips with chassis grease
6. Plug (322).
 • Apply gasket maker GM P/N 1052943 or equivalent around the edge of the plug.

SHIFT SHAFT/RAIL AND FORK
ASSEMBLIES INSPECTION

Inspect (Figure 71)

Clean
• All parts in a suitable solvent and air dry.
• The parts that compose the 1-2 (100), 5th-reverse (111) shift rail and fork assemblies are serviceable as an assembly only.
1. Shafts (101, 109, 112 and 117) for wear or scoring.

Figure 69 Shift Shaft Bearing Install

Figure 70 2WD Slip Yoke Oil Seal Install

2. Forks (105, 108 and 114) for wear, scoring or distortion. The edges will turn black in color, this is a normal condition.
SHIFT LEVER HOUSING ASSEMBLY INSPECTION

Clean
- The gasket material from the machined mating surface with liquid gasket remover.

Inspect (Figure 72)
- The parts that compose the shift lever housing assembly (4-speed) (135) or (5-speed) (136) are serviceable as an assembly only. Replace the assembly for any shift lever rattle/buzz.

1. O-rings (129) or (131) (some models) for cracks, tears or distortion. Replace the o-rings if any of these conditions exist.
2. Boot (130) for cracks, tears or distortion. Replace the boot if any of these conditions exist.
3. Machined mating surface for flatness, check with a straight edge.

Important
- Wear, scoring or distortion requires replacement of assembly and close inspection of mating parts.

INPUT SHAFT BEARING RETAINER ASSEMBLY

Seal Replacement

Remove or Disconnect (Figure 73)
Tools Required
J 29369-2 Input Shaft Bearing Retainer Oil Seal Remover
J 23907 Slide Hammer
J 25070 Heat Gun

1. Rubber seal lip with pliers
 • Exposing the metal lip.
 • Save the input bearing retainer washer (208).
 • Install J 29369-2 below metal lip of seal.
 • Expand to finger tight.
 • Turn five full additional revolutions.
 • Install J 23907 into J 29369-2.

2. Input shaft bearing retainer oil seal (209).
 • Heat oil seal with J 25070 for a minimum of one minute.
 • Hold clutch release bearing pilot (207) with heat resisting glove or equivalent, then slide hammer out seal.

3. Gasket material from the retainer (205) using liquid gasket remover.

1. Clutch release bearing pilot (207) for scoring, wear or cracks, especially at the flange.

2. Retainer for wear or damage.

Tools Required:
J 36504 Input Shaft Bearing Oil Seal Installer

1. NEW oil seal (209), using J 36504.
 • Fill between the seal lips with chassis grease.

COUNTERSHAFT ENDPLAY ADJUSTMENT

This procedure must be performed when any of the following components are replaced:

- Countershaft bearings (203) and/or front housing countershaft bearing race (202).
- Front housing (200), rear housing (300) (2WD) or (301) (4WD).
- Gear rattle noise complaint (not clutch disc related).
Important

The following component will require cooling prior to installation during assembly procedures.

- countershaft bearing plug (250).

Tools Required:
- J 36799 Countershaft Bearing Race Shimming Tool
- J 6125-B Slide Hammer with 3/8-16 Adapter
- J 8092 Universal Drive Handle
- J 8001 Dial Indicator Set
- J 25025-A Dial Indicator Stand and Guide Pin Set

1. Bearing race (216) using brass drift.
2. Countershaft bearing plug (250).
 - Destake first.
 - Tap using 3/8-16 bottom tap.
 - Screw 3/8-16 adapter into the plug.
 - Remove the plug with J 6125-B.
3. Snap Ring (251) and shim(s) (252).
4. Oil fill plug (222).

Inspect

1. Bearing (203) and countershaft (54) (4-speed) or (53) (5-speed).

Important

- SMALLER DIAMETER OF BEARING CAGE INTO BEARING RACE (202).
- Install bearings (203) in bearing races (202) prior to assembly.
- Retain with petroleum jelly.

2. Bolts (312).
 - Use only 4 or 5 (evenly spaced).

Tighten

- Bolts (312) to 35 N·m (27 Lb. Ft.).

3. J 8001 and J 25025-A to front housing in one of the input shaft bearing retainer bolt holes.

Measure

- Use a long screwdriver to pry the counter shaft upward, noting the dial indicator travel. Use the fill plug hole to reach the third gear part of the countershaft for prying.

Important

- Measure off gear tooth.
- Make sure that J 8001 stays on gear tooth while measuring endplay.
- Allow the countershaft to lower to its original position, noting the dial indicator travel. Total travel should be 0.13 - 0.23mm (0.005 - 0.009 inches).

4. Move bearing race (202) with J 8092 and J 36799 to achieve specified endplay.
5. Select shim(s) (252) to retain specified endplay.
 - Using least number of shims.

Install or Connect

6. Selected shim(s) (252).
7. Snap ring (251).
8. Seat countershaft bearing race (202) using J 8092 and J 36799.
9. Repeat MEASURE procedure.
 - To make sure endplay is still correct after step 8.
10. NEW countershaft bearing plug (250) with gasket maker GM P/N 01052943 applied to the outside edge of the plug.

Important

- It will be necessary to cool the plug for 20 minutes at 0° C (32° F) before installation.
- Stake in three places evenly apart.

Remove or Disconnect

11. Front housing (200) and rear housing (300) (2WD) or (301) (4WD).
12. Countershaft (54) (4-speed) or (53) (5-speed) and bearings (203).

Install or Connect

13. Fill plug (222) and drain plug (225).
- Apply pipe sealant with Teflon™ GM P/N 1052080 or equivalent to the threads.
- Do not tighten fill plug.

![Diagram of countershaft endplay adjustment]

Figure 75 Countershaft Endplay Adjustment

- Drain plug (225) to 60 N·m (46 Lb. Ft.).
- Bearing race (216) using brass drift.
- Cover with shop towel before installing

Tighten

14. **NOTE: OUTER BEARING ASSEMBLY RACE (216) REMOVED**
Measure (Figure 76)

Tools Required:
- Dial Depth Gage or Equivalent
- The distance between the sealing flange of the retainer and the flanged part of the release guide. Record this measurement.
- The height of the input bearing outer race from the sealing surface of the front housing. Record this measurement.
- Subtract the bearing race height from the retainer depth and select a shim the same (or next smaller) size as the difference in measurements.

<table>
<thead>
<tr>
<th>ILL. NO.</th>
<th>PART NO.</th>
<th>DIM. C mm (IN.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>212</td>
<td>23049825</td>
<td>0.30 (0.012)</td>
</tr>
<tr>
<td></td>
<td>23049826</td>
<td>0.40 (0.016)</td>
</tr>
<tr>
<td></td>
<td>23049827</td>
<td>0.50 (0.020)</td>
</tr>
</tbody>
</table>

Figure 76 Input Shaft Bearing Retainer Selective Shim Procedure
OUTPUT SHAFT BEARING SELECTIVE SHIM PROCEDURE

Measure (Figure 77)

Tools Required:

Dial Depth Gage or Equivalent

- The distance between the bearing retainer surface and the bottom of the bearing bore in the rear housing. Record this measurement.
- The width of the main shaft rear bearing. Record this measurement.
- Subtract the bearing width from the housing bore depth. Select a shim which is the same (or next smaller) size as the difference in measurements.

![Diagram of Measure Bearing Outer Race Width and Measure Bearing Bore Depth]

CALCULATION:

\[
A \ (\text{HOUSING DEPTH}) - B \ (\text{BEARING WIDTH}) = C \ (\text{SHIM SPACE})
\]

ILL. DIM.

<table>
<thead>
<tr>
<th>ILL. NO.</th>
<th>PART NO.</th>
<th>DIM. C (mm / IN.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>23049825</td>
<td>0.30 (0.012)</td>
</tr>
<tr>
<td>33</td>
<td>23049826</td>
<td>0.40 (0.016)</td>
</tr>
<tr>
<td>33</td>
<td>23049827</td>
<td>0.50 (0.020)</td>
</tr>
</tbody>
</table>

Figure 77 Output Shaft Bearing Selective Shim Procedure
TRANSMISSION ASSEMBLY

Assemble (Figure 78, 79 and 80)

Tools Required:
- J 36515 Assembly Pallet
- J 36515-12 Countershaft Adapter for 1988 and 1989 Models

Important

The following component will require heating prior to installation during assembly procedures.
- 7-10 minutes, 120° C (250° F).
 - 2WD speed sensor rotor (45)

1. Pilot bearing (3) into input shaft (1).
 - SMALLER DIAMETER OF BEARING CAGE TOWARD INPUT SHAFT.
 - Retain with petroleum jelly.
2. Input shaft (1), pilot bearing (3), synchronizer ring (2) and mainshaft assembly (4) (2WD - 4-Speed and 5-speed) or (5) (4WD 5-speed into J 36515.
3. J 36515-12 onto countershaft (53) (5-speed) or (54) (4-speed).
 - Install the assembly onto J 36515.
4. Reverse idler assembly (46) and NEW o-ring (52).
5. Bearing assembly (outer) race (37) and ball bearing (outer) race (38).
 - 2WD models only.
6. Install on main shaft assembly (4) or (5)
 - 3-4 shift fork (108).
 - TAPER ON FORK TOWARDS 3RD GEAR
 - 1-2 shift rail assembly (100).
 - Reverse shift rail assembly (111) and spacer block (115) (4-speed ONLY).
 - Lock up transmission by sliding the 3-4 shift fork (108) and 1-2 shift rail assembly downward towards J 36515 (Figure 81).

2WD MODELS ONLY

Important

Steps 1 through 12 are for 2WD models only. The 4WD section follows step 12.

Install or Connect

Tools Required:
- J 25070 Heat Gun
- J 36515-10 Retainer Alignment Cables (2WD models only)
- J 36516 Output Shaft Spanner Nut Wrench
- J 61133-01 Speedometer Rotor and Bearing Race Installer
1. Ball (4mm) (40) (Figure 82).
 - Retain in output shaft with petroleum jelly.
NOTE: TAPER ON 3-4 FORK UP

4 SHAFT ASSEMBLY, MAIN (2WD - MC0 & MG5)
5 SHAFT ASSEMBLY, MAIN (4WD - MG5)
37 RACE, BEARING ASSEMBLY (OUTER)
38 RACE, BALL BEARING (OUTER)
46 IDLER ASSEMBLY, REVERSE
53 COUNTERSHAFT ASSEMBLY, (MG5)
54 COUNTERSHAFT, (MC0)
100 RAIL ASSEMBLY, 1ST & 2ND SHIFT
108 FORK, 3RD & 4TH SHIFT
111 RAIL ASSEMBLY, 5TH & REVERSE SHIFT
115 BLOCK, SPACER (MC0)

2. Threaded thrust (inner) ring (41) and threaded thrust (outer) ring (39).
 - MAKE SURE THE OLD SPIRAL ROLL PIN (42) IS REMOVED FROM THREADED THRUST RING (OUTER) (39)

 Important
 - Screw the rings together completely, then back the rings off till BOTH ID SLOTS FOR THE BALL (40) LINE UP.
 - Slide the assembled rings over the ball that is retained on the output shaft.

3. NEW SNAP RING (43) (2.00mm thickness).
4. Turning J 36516 clockwise, torque to 15 N·m (12 Lb. Ft.) then ADVANCE to the next spiral roll pin notch.
 - Hold the countershaft against the mainshaft while setting torque.
5. NEW SPIRAL ROLL PIN (42).
 - Install roll pin in the bottom of J 36516, retain with petroleum jelly.
 - Put J 36516 on with the roll pin hole and roll pin lined up.
 - Drive roll pin into thrust ring (outer).
 - Remove tool.
Figure 81 Locking Up Transmission

100 RAIL ASSEMBLY, 1ST & 2ND SHIFT
108 FORK, 3RD & 4TH SHIFT
Figure 82 2WD Threaded Thrust Rings Assemble

4 SHAFT ASSEMBLY, MAIN (2WD — MC0 & MG5)
39 RING, THREADED THRUST (OUTER)
40 BALL, 4mm
41 RING, THREADED THRUST (INNER)
42 PIN SPRIL ROLL
43 RING, SNAP
6. Snap-ring (43) and speedo gear thrust (2WD) washer (44) (Figure 83).

7. Speed sensor rotor (45) HEATED.
 - If necessary seat with J 6133-01.
8. Shim (212) onto output shaft bearing assembly (33).
 - Retain with petroleum jelly.
9. J 36515-10 through bolt (304) and (305) holes in the rear housing (Figure 85).
 - Screw into the output shaft bearing retainer (302).
 - Notch in retainer towards oil delivery tube assembly (307).
 - Install in bearing race (202) of the housing.
 - SMALLER DIAMETER OF BEARING CAGE INTO BEARING RACE.
 - Retain with petroleum jelly.
11. Rear housing assembly (300).

4WD MODELS ONLY

Steps 1 through 9 are for 4WD models only.

Install or Connect (Figure 87)

Tools Required:
- J 36502 4WD Oil Seal Installer
- J 36516 Output Shaft Spanner Nut Wrench

1. Bearing (203).
 - Install in bearing race (202) of the housing.
 - SMALLER DIAMETER OF BEARING CAGE INTO BEARING RACE.
Note: notch in retainer towards backup lamp switch hole.

- Retain with petroleum jelly.

Important

- Press each roller towards the race to secure them for easier assembly.

2. Rear housing assembly (301).

- Make sure the reverse idler shaft is lined up with the hole in the case.
- Rotate back and forth while pulling down.

Important

Bring housing straight down. If resistance is felt at about 1/4 inch then the rollers (35) or (203) are cocked. Repeat above procedures to install. Do not force housing down.

3. Ball bearing (outer) race (38).

4. Ball (4mm) (40) (Figure 88).

- Retain in output shaft with petroleum jelly.

5. Threaded thrust (inner) ring (41) and threaded thrust (outer) ring (39).

- Make sure the old spiral roll pin (42) is removed from threaded thrust ring (outer) (39).

Important

- Screw the rings together completely, then back the rings off till both ID slots for the ball (40) line up.
- Slide the assembled rings over the ball that is retained on the output shaft.
- Slide up the rod on J 36516, turn the black depth locating tang over, slide the rod through (so the roll pin will be installed to the correct depth).
MAKE CLEARANCE FOR THE SNAP RING BY FIRST screwing the rings together completely by turning J 36516 counterclockwise.

6. NEW snap ring (43) (2.00mm thickness).

7. Turning J 36516 clockwise, torque to 15 N·m (12 Lb. Ft.) then ADVANCE to the next spiral roll pin notch.

8. NEW spiral roll pin (42).
 - Install roll pin in the bottom of J 36516, retain with petroleum jelly.
 - Put J 36516 on with the roll pin hole and roll pin lined up.
 - Drive roll pin into thrust ring (outer).
 - Remove tool.
 - Install seal protector onto output shaft.

9. 4WD output shaft oil seal (320) using J 36502 (Figure 89).
 - Fill between the seal lips with J 36502 grease.
 - Remove seal protector.

2WD AND 4WD

Tools Required:
- J 36515 Assembly Pallet
- J 36515-12 Countershaft Adapter for 1988 and 1989 Models
- J 3289-20 Base Holding Fixture
- J 8763-02 Holding Fixture C-Clamp
- J 8763-21 Balance Bracket for C-Clamp
- J 36824 Transmission Adapters

- Lay the unit down on the workbench and remove J 36515.

Install or Connect (Figure 90)

1. Idler shaft support (310), bolt (311).
 - Line up the bolt threads in the idler shaft support with bolt hole.

 NOTICE: Machined surface on the face of casting MUST be installed down into case because the bolt hole is slightly off center. Incorrect installation will cause incorrect reverse gear tooth pattern under load.

 - Apply pipe sealant with Teflon™ GM P/N 1052080 or equivalent to the bolt hole.
 - Apply threadlocker GM P/N 12345382 or equivalent to the bolt threads.
 - Hold reverse idler shaft against idler support while torqueing.

2. J 36824 onto the transmission case.
 - J 8763-21 on J 8763-02.

3. Two interlock balls (323) (Figure 91).
 - All forks MUST be in neutral position.
 - Coat balls with petroleum jelly.
Using a magnetic screwdriver or equivalent, insert one interlock ball (one at a time) through the plug hole (326).

With a small blade screwdriver, push one ball to the 1-2 shift rail side and the other to the 3-4 shift rail side.

4. 3-4 shift rail (109), with interlock pin (110).
 - Retain pin with petroleum jelly.
 - Detent slots in 3-4 shift rail UP.
 - Install through 3-4 shift fork and into the rear housing shift rail bearing.

5. Roll pin (107) (36mm) (Figure 92).
 - Install to a depth where a MAXIMUM of 12.5mm of the roll pin (measured from the
7B1-78 HM-290 MANUAL TRANSMISSION

NOTE: DETENT SLOTS UP

Figure 91 Interlock Balls and 3-4 Shift Rail Install

edge of the 3-4 rail to the top of the roll pin) is left remaining.

NOTICE: IF THE ROLL PIN IS NOT AT PROPER DEPTH IT MAY RUB ON FRONT HOUSING AND CAUSE 3RD OR 4TH GEAR HOP-OUT.

- Test interlock system to make sure interlock balls are in place by trying to move two shift rails.

6. NEW plug (326).
- Apply gasket maker GM P/N 1052943 or equivalent to the edge of the plug.
- Install flush.

7. Shift shaft (116), finger (121) and shift shaft socket assembly (123) (Figure 93).

8. Roll pin (120) (28mm) and roll pin (122) (33mm).

- Detent slots towards idler support side of transmission.
- Finger extension must be on the underside of the 5-reverse shift rail.

9. Three detent balls (323) and three springs (324) (Figure 93).
10. Detent spring cover (325) and two bolts (236).
- Apply gasket maker GM P/N 1052943 or equivalent to the outside of the bolt hole pattern of the detent spring cover.

Tighten
- Bolts (236) to 8.5 N·m (7 Lb. Ft.).

11. Four rollers (118) (Figure 95).
- Retain with petroleum jelly.
12. Countershaft bearing (203) (Figure 96).
- Install in bearing race (202) of the front housing.

Important
- SMALLER DIAMETER OF BEARING CAGE INTO BEARING RACE.
- Retain with petroleum jelly and press on each roller towards the outside of the bearing race to lock it in place.
- Apply petroleum jelly to bearing race on input shaft.
13. Roller bearing (218) and ball bearing (outer) race (217).
• Apply gasket maker GM P/N 1052943 or equivalent to the outside of the bolt hole pattern of the rear housing.

14. Front housing (200).

Important

• Bring housing straight down. If resistance is felt at about 1/4 inch then the roller(s) (218) or (203) are cocked, repeat steps 12, 13 and 14. DO NOT FORCE DOWN THE HOUSING.

15. Two dowels (321).

16. Bolts (312).
 • Do not tighten.
 • Tip vertically.

17. Ball bearing (outer) race (215), input shaft spacer (211) and NEW selective snap ring (210) (Figure 97).
 • Install the thickest snap ring into the groove that will fit.
 • It may be necessary to pull out on the input shaft to install the selective snap ring.

• Apply gasket maker GM P/N 1052943 or equivalent to the inside cover bolt hole pattern.

Important

DO NOT APPLY too much gasket maker around the oil drain back hole. This could clog the hole causing a low fluid flow through the bearing resulting in premature bearing failure.

18. Shim (212) into input shaft bearing retainer assembly (205).
 • Make sure input bearing retainer washer (208) is in place.
 • Retain with petroleum jelly.

19. Input shaft bearing retainer assembly (205) and six bolts (204).
 • Make sure oil drain back hole is lined up with the hole in the housing.

Tighten

• Bolts (204) to 8.5 N·m (7 Lb. Ft.)

20. Shift shaft detent plunger (243), shift shaft detent spring (244) and plug (245) using brass drift (Figure 98).
 • Apply pipe sealant with Teflon™ GM P/N 1052080 or equivalent to the plug.

21. NEW o-ring (315) onto electronic speedo sensor assembly (316).
 - 2WD models only.
 • Coat the o-ring with a thin film of transmission oil.

22. Electronic speedo sensor assembly (316) and bolt (317).
 - 2WD models only.

Tighten

• Bolt (317) to 9 N·m (7 Lb. Ft.).

23. Backup lamp switch assembly (313).
NOTE: SMALLER DIAMETER OF BOTH BEARING CAGES UP

Figure 97 Input Shaft Bearing Retainer Assembly Install

- Apply pipe sealant with Teflon™ GM P/N 1052080 or equivalent to the threads.

\[\text{Apply pipe sealant with Teflon™ GM P/N 1052080 or equivalent to the threads.}\]

- Switch (313) to 9 N·m (7 Lb. Ft.).

- Remove J 8763-02 and J 36824.

24. Bolts (312) (Figure 99).

\[\text{Tighten}\]
- Bolts (312) to 35 N·m (27 Lb. Ft.).
243 PLUNGER, SHIFT SHAFT DETENT
244 SPRING, SHIFT SHAFT DETENT PLUNGER
245 PLUG
313 SWITCH ASSEMBLY, BACK-UP LAMP
314 SENSOR ASSEMBLY, ELECTRONIC SPEED
315 O-RING
316 SENSOR, ELECTRONIC SPEED
317 BOLT, HEX HEAD (M8 X 16)

Figure 98 External Components Install

Figure 99 Bolts Install
SPECIFICATIONS

FASTENER TORQUE

<table>
<thead>
<tr>
<th>ILLUSTRATION NUMBERS</th>
<th>N·m – Ft.Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>39 & 41 Ring, Threaded Thrust Assembly</td>
<td>15 12</td>
</tr>
<tr>
<td>204 Retainer Assembly, Input Bearing Bolts</td>
<td>8.5 7</td>
</tr>
<tr>
<td>222 Plug, Oil Fill</td>
<td>60 46</td>
</tr>
<tr>
<td>225 Plug, Oil Drain</td>
<td>60 46</td>
</tr>
<tr>
<td>226 5th & Reverse Rail Deflection Bolt</td>
<td>35 27</td>
</tr>
<tr>
<td>236 Seat, Bias Spring and Sleeve Bolt</td>
<td>8.5 7</td>
</tr>
<tr>
<td>249 Spring, 5th & Reverse Detent Hex Head Plug</td>
<td>60 46</td>
</tr>
<tr>
<td>304-306 Retainer, Output Shaft Bearing Bolts</td>
<td>22 17</td>
</tr>
<tr>
<td>311 Support, Idler Shaft Bolt</td>
<td>22 17</td>
</tr>
<tr>
<td>312 Housing Front/Rear</td>
<td>35 27</td>
</tr>
<tr>
<td>317 Sensor, Electronic Speed Bolt</td>
<td>9 7</td>
</tr>
<tr>
<td>204 Housing Assembly, Shift Lever</td>
<td>8.5 7</td>
</tr>
</tbody>
</table>

LUBRICATION

- **Capacity**
 - RPO MCO (4-SPEED) ... 2.03L 2.13 qts.
 - RPO MG5 (5-SPEED) ... 1.98L 2.08 qts.

- **Type Recommended:**
 - Manual Transmission Fluid 5W-30 GM P/N 1052931
HM-290 MANUAL TRANSMISSION 7B1-83

<table>
<thead>
<tr>
<th>Holding Fixture</th>
<th>Speedometer Gear Puller Adapter</th>
<th>Input Shaft Remover/Installer Press Tube with Cap</th>
</tr>
</thead>
<tbody>
<tr>
<td>J 3289-20, J 8763-02, J 8763-21</td>
<td>J 21427-01</td>
<td>J 36183</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slide Hammer With Adapter</th>
<th>Separator Plate or Equivalent</th>
<th>Adapter Press Tube Reducer</th>
</tr>
</thead>
<tbody>
<tr>
<td>J 6125-1B</td>
<td>J 22912-01</td>
<td>J 36184</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bearing Race Installer</th>
<th>Slide Hammer With Pilot Bearing Puller</th>
<th>Universal Driver Handle</th>
</tr>
</thead>
<tbody>
<tr>
<td>J 6133-01</td>
<td>J 23907</td>
<td>J 36190</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dial Indicator Set</th>
<th>Dial Indicator Stand and Guide Pin Set</th>
<th>4WD Output Shaft Oil Seal Installer</th>
</tr>
</thead>
<tbody>
<tr>
<td>J 8001</td>
<td>J 25025-B</td>
<td>J 36502</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Universal Driver Handle</th>
<th>Heat Gun or Equivalent</th>
<th>2WD Output Shaft Oil Seal Installer</th>
</tr>
</thead>
<tbody>
<tr>
<td>J 8092</td>
<td>J 25070</td>
<td>J 36503</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gear Puller or Equivalent</th>
<th>2WD Output Shaft Oil Seal Remover</th>
<th>Input Shaft Bearing Retainer Oil Seal Installer</th>
</tr>
</thead>
<tbody>
<tr>
<td>J 8105</td>
<td>J 26941</td>
<td>J 36504</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Speedometer Gear Puller</th>
<th>Input Shaft Bearing Retainer Oil Seal Remover</th>
<th>5th and Reverse Detent Bushing Remover/Installer</th>
</tr>
</thead>
<tbody>
<tr>
<td>J 8433</td>
<td>J 29369-2</td>
<td>J 36506</td>
</tr>
</tbody>
</table>

Figure 100 Special Tools
Figure 101 Special Tools

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift Shaft Detent Bushing Remover/Installer</td>
<td>J 36507</td>
</tr>
<tr>
<td>Output Shaft Spanner Nut Wrench</td>
<td>J 36516</td>
</tr>
<tr>
<td>Depth Gauge</td>
<td></td>
</tr>
<tr>
<td>Clutch Fork Pivot or Shift Shaft Detent Plug Remover</td>
<td>J 36509</td>
</tr>
<tr>
<td>Shift Rail Bushing Installing and Stacking Tool</td>
<td>J 36798</td>
</tr>
<tr>
<td>Tap 3/8-16</td>
<td></td>
</tr>
<tr>
<td>Clutch Fork Pivot Installer</td>
<td>J 36510</td>
</tr>
<tr>
<td>Countershaft Bearing Cup Shimming Tool</td>
<td>J 36799</td>
</tr>
<tr>
<td>Oil Fill/Drain Plug Hex Bit (17 mm)</td>
<td>J 36511</td>
</tr>
<tr>
<td>Shift Rail Bushing Remover</td>
<td>J 36800</td>
</tr>
<tr>
<td>Gear and Bearing Separator Plate</td>
<td>J 36513</td>
</tr>
<tr>
<td>Transmission Holding Adapters</td>
<td>J 36824</td>
</tr>
<tr>
<td>Assembly Pallet With Counter Shaft Adapter for 1988 and 1989 Models</td>
<td>J 36515, J 36515-12</td>
</tr>
<tr>
<td>4WD Output Shaft Oil Seal Remover</td>
<td>J 36825</td>
</tr>
<tr>
<td>2WD Output Shaft Bearing Retainer Alignment Cables</td>
<td>J 36515-10</td>
</tr>
<tr>
<td>Oven</td>
<td></td>
</tr>
</tbody>
</table>
SECTION 7B2
NEW PROCESS TRANSMISSION

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>7B2- 1</td>
</tr>
<tr>
<td>Disassembly of the Transmission</td>
<td>7B2- 3</td>
</tr>
<tr>
<td>Disassembly and Assembly of Sub-Assemblies</td>
<td>7B2- 6</td>
</tr>
<tr>
<td>Main Drive Gear</td>
<td>7B2- 6</td>
</tr>
<tr>
<td>Mainshaft</td>
<td>7B2- 6</td>
</tr>
<tr>
<td>Countergear</td>
<td>7B2- 8</td>
</tr>
<tr>
<td>Extension Housing</td>
<td>7B2- 8</td>
</tr>
<tr>
<td>Main Drive Gear Bearing Retainer</td>
<td>7B2- 9</td>
</tr>
<tr>
<td>Side Cover</td>
<td>7B2- 9</td>
</tr>
<tr>
<td>Transmission Assembly (Installation of Sub-Assemblies)</td>
<td>7B2-10</td>
</tr>
<tr>
<td>Specifications</td>
<td>7B2-11</td>
</tr>
<tr>
<td>Fastener Torque</td>
<td>7B2-11</td>
</tr>
<tr>
<td>Lubrication</td>
<td>7B2-11</td>
</tr>
<tr>
<td>Special Tools</td>
<td>7B2-12</td>
</tr>
</tbody>
</table>

DESCRIPTION

The New Process 89 mm 4 speed transmission (RPO MY6) is an overdrive transmission and is fully synchronized in all speeds except reverse (figure 1).

The main components are:
1. Main drive gear.
 - An integral shaft is splined to engage with the clutch driven plate.
 - The gear drives the countergear.
 - A ball bearing supports the shaft in the case.
2. Countershaft.
 - The countergear is keyed to the countershaft for constant rotation with the main drive gear.
 - Roller bearings align the countergear on the shaft.
 - Thrust washers and a spacer limit the countershaft end play.
 - The countershaft is not a press fit, and a plug seals the case bore.
 - The drive gears rotate freely on the mainshaft and are in constant mesh with the countergear.
 - Key type synchronizers are splined to the mainshaft and engage with the drive gears to turn the mainshaft.
 - A ball bearing supports the mainshaft in the extension housing.
4. Roller bearings support the mainshaft independently in the input shaft.
5. The input shaft and mainshaft are engaged by a synchronizer for direct drive in top gear.
4. Reverse idler shaft.
 - An idler gear drives the mainshaft in reverse.
 - A bushing supports the gear on the shaft.
5. Side cover.
 - Shift forks mounted in the cover move the synchronizers to engage the gears.
 - The reverse shift lever and a detent ball and spring are mounted in the case.

Certain precautions should be followed when repairing the transmission. Unless proper care is taken, the components of the transmission may be damaged.

- Repair of the transmission should be done in a clean work area. The outside of the case should be clean to keep dirt out of the transmission. On transmissions with a standard gearshift lever, install the lever before cleaning the outside of the transmission.
- During the transmission repair, all the parts should be cleaned in cleaning solvent and then air dried. Wiping cloths or rags should not be used to dry the parts as lint may get on the parts and cause trouble later. All the parts except those being worked on, should be kept covered with clean paper.
401. Drive Gear Bearing Retainer
402. Seal
403. Snap Ring, Bearing to Shaft
404. Drive Gear Bearing
405. Main Drive Gear
406. 3rd Speed Blocker Ring
407. 3rd and Overdrive Synchronizer
408. Overdrive Blocker Ring
409. Overdrive Gear
410. 2nd Speed Gear
411. 2nd Speed Blocker Ring
412. 1st and 2nd Synchronizer (Reverse Gear)
413. 1st Speed Blocker Ring
414. 1st Speed Gear
415. Main Shaft Rear Bearing
416. Extension Housing
417. Vent Plug
418. Main Shaft
419. Retainer
420. Speedometer Gear
421. Rear Extension Seal
422. Reverse Idler Gear
423. Reverse Idler Gear Bushing
424. Reverse Idler Shaft
425. Snap Ring, Bearing to Shaft
426. Woodruff Key
427. Thrust Washer
428. Countershaft Roller Bearings
429. Countershaft
430. Counter Gear
431. Countershaft Spacer
432. Expansion Plug
433. Snap Ring
434. Pilot Bearings
DISASSEMBLY OF THE TRANSMISSION

Remove or Disconnect (Figure 2)

Tool Required:
- J 29793 Countershaft Alignment Tool
- Speedometer driven gear, switches and any external components.
- Shift the transmission into neutral.
1. Reverse shift lever (445).
2. Side cover (450) and the gasket.
 - Detent ball and the spring.
 - Shift forks (452 and 453). Note the positions they were removed from.
3. Extension housing screws (439), (figure 3).
 - Install one screw to hold the housing, as shown.

Important
- Do not damage the countershaft or bearings when removing the plug and the countershaft.
 - Punch or drill a hole in the center of the plug.
 - Reaching through the hole, drive the countershaft to the rear until the woodruff key can be removed.
 - Drive the countershaft to the front until it pushes the plug out of the case.
5. Countershaft (429), using J 29793.
 - Drive the countershaft out the rear of the case.
 - Turn the housing to the normal position.
7. Bearing retainer (401) and the gasket.
8. Main drive gear (405).
 - Drive the gear out the front of the case.
9. Extension housing (416) and the mainshaft.
 - Slide the 3rd and overdrive synchronizer sleeve (407) to the front (figure 1).
 - Slide the reverse idler gear (422) to the center of the idler shaft.
 - Drive the housing to the rear.
10. Snap ring (454) and the mainshaft (418) from the extension housing (figure 4).
11. Countergear (430) and the thrust washers.
12. Reverse idler shaft (424).
 - Place a 3/8-inch x 3/8-inch screw and nut into a 3/8-inch drive, deep 7/8-inch socket.
 - Place the screw head against the case and the socket against the shaft.
 - Turn the nut against the socket, driving the shaft out of the bore (figure 5).
 - Remove the shaft, the gear and the key.
13. Reverse shift shaft (443) and the seal.
<table>
<thead>
<tr>
<th>Component ID</th>
<th>Component Description</th>
<th>Component ID</th>
<th>Component Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>401</td>
<td>Drive Gear Bearing Retainer</td>
<td>429</td>
<td>Countershaft</td>
</tr>
<tr>
<td>405</td>
<td>Main Drive Gear</td>
<td>430</td>
<td>Countergear</td>
</tr>
<tr>
<td>406</td>
<td>Overdrive Blocker Ring</td>
<td>431</td>
<td>Countershaft Spacer</td>
</tr>
<tr>
<td>415</td>
<td>Main Shaft Rear Bearing</td>
<td>432</td>
<td>Expansion Plug</td>
</tr>
<tr>
<td>416</td>
<td>Extension Housing</td>
<td>435</td>
<td>Screw</td>
</tr>
<tr>
<td>417</td>
<td>Vent Plug</td>
<td>436</td>
<td>Bearing Retainer Gasket</td>
</tr>
<tr>
<td>418</td>
<td>Mainshaft</td>
<td>437</td>
<td>Transmission Case</td>
</tr>
<tr>
<td>422</td>
<td>Reverse Idler Gear</td>
<td>438</td>
<td>Spring Washer</td>
</tr>
<tr>
<td>423</td>
<td>Reverse Idler Gear Bushing</td>
<td>439</td>
<td>Screw</td>
</tr>
<tr>
<td>424</td>
<td>Reverse Idler Shaft</td>
<td>440</td>
<td>Extension Housing Gasket</td>
</tr>
<tr>
<td>426</td>
<td>Woodruff Key</td>
<td>441</td>
<td>Detent Ball</td>
</tr>
<tr>
<td>427</td>
<td>Thrust Washer</td>
<td>442</td>
<td>Detent Spring</td>
</tr>
<tr>
<td>443</td>
<td>Reverse Shift Shaft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>444</td>
<td>Seal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>445</td>
<td>Reverse Shift Lever</td>
<td></td>
<td></td>
</tr>
<tr>
<td>446</td>
<td>Washer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>447</td>
<td>Nut</td>
<td></td>
<td></td>
</tr>
<tr>
<td>448</td>
<td>Spring Washer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>449</td>
<td>Screw</td>
<td></td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>Side Cover Gasket</td>
<td></td>
<td></td>
</tr>
<tr>
<td>451</td>
<td>3rd and Overdrive Shift Fork</td>
<td></td>
<td></td>
</tr>
<tr>
<td>452</td>
<td>1st and 2nd Shift Fork</td>
<td></td>
<td></td>
</tr>
<tr>
<td>453</td>
<td>Snap Ring, Bearing to Extension</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
401. Bearing Retainer
416. Extension Housing
429. Countershaft
432. Plug
437. Case
439. Screw

Figure 3—Turning the Extension Housing

Figure 4—Removing the Mainshaft

Figure 5—Removing the Reverse Idler Shaft
Disassembly and Assembly of Sub-Assemblies

Main Drive Gear

Disassemble (Figure 6)
1. Pilot bearings (434) and the snap ring.
2. Bearing to case snap ring (460).
3. Bearing to shaft snap ring (403).
4. Bearing (404).

Clean (Figure 6)
- All parts in a suitable solvent.
 (Do not spin the bearings dry).

Inspect (Figure 6)
1. Parts for damage and wear.
2. Oil the bearings and check for roughness.

Assemble (Figure 6)
1. Bearing (404).
 - Press the bearing against the shoulder on the shaft.
2. New bearing to shaft snap ring (403).
3. New bearing to case snap ring (460).
4. Pilot bearings (434).
 - Use chassis grease to hold the bearings in place.

Mainshaft

Disassemble (Figure 7)
1. Slide the 3rd speed blocker ring (406) off.
2. Remove the snap ring and slide the 3rd and overdrive synchronizer (407) off.
 - Do not let the synchronizer come apart.
3. Remove the overdrive blocker ring and the overdrive gear (409).
4. Speedometer drive gear (420).
 - Press the retaining clip down.

Important
- Do not let the mainshaft fall to the floor.
5. Rear bearing (415) and the 1st speed gear (414).
 - Remove the snap ring.
 - Support the gear in a press.
 - Press the mainshaft through the bearing and the gear (figure 8).
6. Slide the 1st speed blocker ring off.
7. Remove the snap ring and the 1st and 2nd synchronizer (412).
 - Do not let the synchronizer come apart.
8. Remove the 2nd speed blocker ring and the 2nd speed gear (410).
 - The synchronizer hub and sleeve are a select fit, do not mix the parts of the two synchronizers.
 - Mark the hub and sleeve alignment for reassembly.
 - Push the hub out of the sleeve while holding the springs and keys to avoid losing them.

Clean
- All parts in a suitable solvent and air dry.

Inspect
1. Gears for cracks, chipped gear teeth, and other damage that could cause gear noise.
2. Thrust washers and bushings for damage and wear.
3. Related surfaces on the gears like thrust faces and bearing surface diameters.
4. The reverse sliding gear for a sliding fit on the synchronizer hub without excess radial, or circular play. If the sliding gear is not free on the hub, inspect it for burrs on the ends of the internal splines. Remove any burrs by honing as required.
5. Synchronizer sleeves for a sliding fit on the synchronizer hubs, also, the hubs have to be a snug fit on the mainshaft splines.
6. Synchronizer springs and keys for looseness and damage.
7. Brass synchronizer rings for excess looseness and damage.
8. All gear teeth for excess wear.
10. Lubricate all roller bearings with light engine oil and check for rough rotation.

Assemble (Figures 7 and 10)
- Coat all parts with transmission oil before installing them onto the shaft.
1. Synchronizers (407 and 412) (figure 9).
 - Place the keys into the hub.
- Engage the springs in different slots in either side of the hub, so they support all the keys.
- Slide the sleeve onto the hub, aligning the marks made during disassembly.

Important

- The long side of the hub center (A) must be to the front.

2. 2nd speed gear (410) and the blocker ring.
 - Slide the gear on, with the cone to the rear.
 - Slide the blocker ring onto the gear cone with the clutching teeth to the front.

3. Install the 1st and 2nd synchronizer (412) and a new snap ring.
 - The hub slots must be engaged with the blocker ring.

4. 1st speed gear (414) and the blocker ring.
 - Slide the blocker ring on with the clutching teeth to the rear, engaged in the synchronizer hub slots.
407. 3rd and Overdrive Synchronizer
409. Overdrive Gear
410. 2nd Speed Gear
412. 1st and 2nd Synchronizer (Reverse Gear)
414. 1st Speed Gear
416. Extension Housing
418. Main Shaft

Figure 10—Mainshaft Assembled
- Install the gear with the cone into the blocker ring.

5. Press the rear bearing (415) on and install a new snap ring.

Important
- Use the correct snap ring, it is a select fit to limit the mainshaft end play.

6. Install the speedometer drive gear (420) and the retaining clip.
7. Overdrive gear (409) and the blocker ring.
 - Slide the gear on with the cone to the front.
 - Slide the blocker ring onto the gear cone with the clutching teeth to the rear.
8. Install the 3rd and overdrive synchronizer (407) and a new snap ring.
 - The shift fork slot must be to the rear.
 - The hub slots must be engaged with the blocker ring.
9. Install the 3rd speed blocker ring with the clutching teeth to the front.
 - The ring must be engaged with the synchronizer hub slots.
 - Hold the ring in place with grease.

Figure 11—Countergear and Components

COUNTERGEAR

Disassemble (Figure 11)
- Tool Required: J 29793 Countershaft Alignment Tool
 1. Remove tool J 29793.
 2. Remove the bearings (428) and the spacers.
 3. Remove the countershaft spacer (431).

Clean
- All parts in suitable solvent and air dry.

Inspect
- Countergear for nicks, burrs, and broken teeth.
- Bearings for wear and rough surfaces.
- Spacers for wear and grooves.
- Countershaft for wear, nicks and burrs.

Measure
- Countershaft to case bore clearance. Clearance must be no more than 0.127 mm (0.005-in.).

Assemble (Figure 11)
- Tool Required: J 29793 Countershaft Alignment Tool
 1. Coat the inside of the countergear with grease.
 2. Install the countershaft spacer (431) using J 29793.
 3. Install the bearings (428) and the spacers.
 - Be sure the bearings and the spacers are centered.
 4. Install a thrust washer (427) to the front of the countergear with the tab inside the countergear.

EXTENSION HOUSING

Remove or Disconnect (Figure 12)
- Tools Required: J 23062-14 Extension Housing Bushing Remover
- J 8092 Driver Handle
 1. Seal (421).
 2. Gasket material from flange of the extension (416).
 3. Bushing (478) if it is worn or damaged, using J 23062-14.
Inspect
1. Extension for scoring, wear or cracks, especially at the flange.
2. Snap ring groove for wear and damage.

Install or Connect (Figure 12)
Tool Required:
J 21426 Rear Extension Seal Installer
1. New bushing (478) if needed, using a suitable tool.
 • Coat the bushing with transmission oil.
 • Drive the bushing into the extension.
2. Locking compound on the inside of a new seal (421).
3. New seal (421) using J 21426 (figure 13).
 • Fill between the seal lips with chassis grease.

Inspect (Figure 15)
B-08301 All parts for wear and damage.
Gasket surface for nicks and scratches.
Shift shafts and the forks for burrs and wear.
Seal bores for cracks and damage.

SIDE COVER
Disassemble (Figure 15)
1. Remove the shift levers (484 and 487).
2. Shift shafts (480 and 481).
 • Remove any burrs from the shafts to avoid scoring the cover bores.
 • Pull the shafts out of the cover.
 • Tag the shafts so they can be installed in the positions they were removed from.
3. Remove the retaining clip, the detent cams (488) and the spring.
4. Pry the seals (482) and the retainers (483) from the cover.

Clean (Figure 15)
• All parts using cleaning solvent. Air dry.

Inspect (Figure 15)
• All parts for wear and damage.
• Gasket surface for nicks and scratches.
• Shift shafts and the forks for burrs and wear.
• Seal bores for cracks and damage.
Assemble (Figure 15)

1. Install the detent cams (488), a new retainer clip and the spring.
2. Shift shafts (480 and 481).
 • Coat the cover bores with grease.
 • Install the shafts in the positions they were removed from.
3. Install new seals and the retainers (483).
4. Install the shift levers (484 and 487).
 • The 3rd and overdrive lever must point down.

TRANSMISSION ASSEMBLY
(INSTALLATION OF SUB-ASSEMBLIES)

Use new seals, gaskets and thread sealer on all bolt threads when assembling the transmission. Tighten all bolts to specified torque.

Lubricate all assemblies as they are installed in the transmission case using transmission oil.

Install or Connect (Figure 2)

Tool Required:
J 29793 Countershaft Alignment Tool

1. Countergear (430) and the thrust washers.
 • Lower the countergear into place with the front thrust washer tabs into the case slots.
 • Align the rear thrust washer tabs with the case slots and slide it in.
2. Main shaft (418) and a new snap ring (454) into the extension housing (416).
3. Extension housing (416) and a new gasket onto the case.
 • Turn the extension housing upside down and install one screw to hold it in place (figure 3).
4. Main drive gear (405).
 • Tap the gear in until the bearing snap ring bottoms against the case.

Important
• The main drive gear must fit smoothly into place, if it does not, check to see that all components of the main shaft are in the proper positions.

5. Countershaft (429) and the woodruff key.
 • Lift the countergear into mesh with the mainshaft. Be sure the thrust washers are in place.
 • Push the countershaft half way into the countergear and install the woodruff key.
 • Push the countershaft into place and remove J 29793.
6. Reverse shift shaft (443) and a new seal.
7. Reverse idler shaft (424) and the reverse gear.
 • Push the shaft in part way.
 • Put the gear onto the shaft with the fork slot to the rear and engage the slot with the reverse shift shaft fork (figure 16).
 • Install the woodruff key and drive the shaft flush with the case.
8. Extension housing screws.
 • Do not damage the gasket when turning the housing into place.
9. Bearing retainer (401) and a new gasket.
11. 1st and 2nd shift fork (453) into the synchronizer slot.
12. 3rd and overdrive shift fork (452) into the side cover.
13. New side cover gasket (451) and the detent ball and spring.
14. Side cover (450).
 • Move the synchronizer sleeves and the reverse idler gear to the neutral positions.
 • Move the shift levers to neutral (straight up).
 • Hold the detent cam against the 1st and 2nd shift lever, then lift the cam over the fork to install the cover.

Important
• Be sure the detent ball and the spring are in position.
15. Side cover screws (449) and new spring washers.
 • Install the locating (long shoulder) screw finger tight in the locating hole (A), (figure 16).
 • Install the remaining screws finger tight.
 • Tighten the screws evenly.
 • Shift the transmission through all gears to check the operation.
 • Speedometer driven gear, switches and any external components that were removed.

SPECIFICATIONS

FASTENER TORQUE

<table>
<thead>
<tr>
<th></th>
<th>N·m</th>
<th>Ft. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift Lever Nut</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>Extension Housing Screw</td>
<td>68</td>
<td>50</td>
</tr>
<tr>
<td>Drive Gear Bearing Retainer</td>
<td>41</td>
<td>30</td>
</tr>
<tr>
<td>Side Cover Screw</td>
<td>20</td>
<td>15</td>
</tr>
</tbody>
</table>

LUBRICATION

- **Capacity**: 4.0 L
- **Type Recommended**: Dexron II Automatic Transmission Fluid

Figure 16—Reverse Idler Gear and Case

- Coat the outside of the plug with sealing compound.

11. 1st and 2nd shift fork (453) into the synchronizer slot.
12. 3rd and overdrive shift fork (452) into the side cover.
1. J 21426 Rear Extension Seal Installer
2. J 12096 Drive Gear Retainer Installer
3. J 8092 Driver Handle
4. J 29793 Countershaft Alignment Tool
5. J 23062-14 Extension Housing Bushing Remover
The 77 mm 4 speed and 5 speed are constant mesh transmissions, synchronized in all speeds except reverse. The main components are:

1. Main drive gear.
 - An integral shaft is splined to engage with the clutch driven plate.
 - The gear drives the countergear.
 - A tapered bearing supports the shaft in the case.

2. Countergear.
 - The countergear is one unit for constant rotation with the main drive gear.
 - Bearings support the countergear in the case.
 - Thrust washers limit the play of the countergear.
 - An extra gear is mounted to the countergear for 5th speed.

 - The drive gears rotate freely on the mainshaft and are in constant mesh with the countergear.
 - Key type synchronizers engage the gears.
 - The 1st and 2nd synchronizer hub is machined in place.
 - A tapered bearing supports the mainshaft in the rear of the case.
 - Roller bearings support the mainshaft independently in the main drive gear.

 - The main drive gear and mainshaft are engaged by a synchronizer for direct drive in top gear.
 - Thrust washers limit the play of the mainshaft.

4. Reverse idler gear.
 - The idler gear drives the mainshaft in reverse.
 - The idler gear is supported on its own shaft.

5. Shift lever.
 - The shift lever is mounted on the extension housing and holds the shift lever.
 - The shift lever moves the shafts which are mounted in the transmission top cover.
 - Shift forks mounted on shafts move the synchronizers to engage the gears.
 - A pin-type interlock blocks the other shafts when one is moved.

Certain precautions should be followed when repairing the transmission. Unless proper care is taken, the components may be damaged.

- Repair of a transmission should be done in a clean work area. The outside of the case should be clean to keep dirt out of the transmission. On transmissions with a standard gearshift lever, install the lever before cleaning the outside of the transmission.
- During transmission repair, all the parts should be cleaned in cleaning solvent and then air dried. Wiping cloths or rags should not be used to dry the parts as lint may get on the parts and cause trouble later. All the parts, except those being worked on, should be kept covered with clean paper.
![Image of the document content]

7B3-2 BORG WARNER TRANSMISSIONS

DISASSEMBLY OF THE 77 mm TRANSMISSION

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Component Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>Screw</td>
</tr>
<tr>
<td>601</td>
<td>Shift Cover</td>
</tr>
<tr>
<td>602</td>
<td>Seal</td>
</tr>
<tr>
<td>603</td>
<td>Transmission Case</td>
</tr>
<tr>
<td>604</td>
<td>Mainshaft</td>
</tr>
<tr>
<td>605</td>
<td>Bearing Race</td>
</tr>
<tr>
<td>606</td>
<td>5th Speed Gear Snap Ring</td>
</tr>
<tr>
<td>607</td>
<td>Retaining Clip</td>
</tr>
<tr>
<td>608</td>
<td>Ball</td>
</tr>
<tr>
<td>609</td>
<td>Speedometer Drive Gear</td>
</tr>
<tr>
<td>610</td>
<td>Snap Ring</td>
</tr>
<tr>
<td>611</td>
<td>Front Thrust Race</td>
</tr>
<tr>
<td>612</td>
<td>Countergear Thrust Bearing</td>
</tr>
<tr>
<td>613</td>
<td>Extension Housing</td>
</tr>
<tr>
<td>614</td>
<td>Screw</td>
</tr>
<tr>
<td>615</td>
<td>Funnel</td>
</tr>
<tr>
<td>616</td>
<td>Snap Ring</td>
</tr>
<tr>
<td>618</td>
<td>5th Speed Shift Fork</td>
</tr>
<tr>
<td>619</td>
<td>Pin</td>
</tr>
<tr>
<td>620</td>
<td>Pin Roller</td>
</tr>
<tr>
<td>621</td>
<td>Shaft Pin</td>
</tr>
<tr>
<td>622</td>
<td>Fork Pin</td>
</tr>
<tr>
<td>623</td>
<td>5th Speed and Reverse Shift Lever</td>
</tr>
<tr>
<td>624</td>
<td>Pivot Bolt</td>
</tr>
<tr>
<td>625</td>
<td>Retaining Ring</td>
</tr>
<tr>
<td>626</td>
<td>Pin Roller</td>
</tr>
<tr>
<td>627</td>
<td>Lock Spring</td>
</tr>
<tr>
<td>628</td>
<td>Reverse Shift Fork</td>
</tr>
<tr>
<td>629</td>
<td>5th Speed and Reverse Shift Shaft</td>
</tr>
<tr>
<td>630</td>
<td>5th Speed Synchronizer</td>
</tr>
<tr>
<td>631</td>
<td>5th Speed Blocker Ring</td>
</tr>
<tr>
<td>632</td>
<td>5th Speed Drive Gear</td>
</tr>
<tr>
<td>633</td>
<td>Snap Ring</td>
</tr>
<tr>
<td>634</td>
<td>Countergear Spacer, Rear</td>
</tr>
<tr>
<td>635</td>
<td>Countergear Ring Bearing</td>
</tr>
<tr>
<td>636</td>
<td>Countergear Spacer, Front</td>
</tr>
<tr>
<td>637</td>
<td>Reverse Idler Shaft</td>
</tr>
<tr>
<td>638</td>
<td>Reverse Idler Gear</td>
</tr>
<tr>
<td>639</td>
<td>Pin</td>
</tr>
<tr>
<td>640</td>
<td>Countergear</td>
</tr>
<tr>
<td>641</td>
<td>Countergear Thrust Washer</td>
</tr>
<tr>
<td>642</td>
<td>Countergear Front Bearing</td>
</tr>
<tr>
<td>643</td>
<td>Main Drive Gear</td>
</tr>
<tr>
<td>644</td>
<td>Main Drive Gear Bearing Race</td>
</tr>
<tr>
<td>645</td>
<td>Bearing Shim Pack</td>
</tr>
<tr>
<td>646</td>
<td>Main Drive Gear Bearing Retainer</td>
</tr>
<tr>
<td>647</td>
<td>Screw</td>
</tr>
<tr>
<td>648</td>
<td>Magnet</td>
</tr>
<tr>
<td>649</td>
<td>Nut</td>
</tr>
</tbody>
</table>

*5 Speed Only

Figure 1—77 mm Transmission and Components

Remove or Disconnect (Figures 1, 2 and 3)

- Speedometer driven gear, switches and any external components.
 1. Control lever (653).
 - Boot and the dust cover.
 2. Pin (659) from the offset lever (655), (figure 4).
 3. Extension housing (613) and the offset lever.

Important

- The offset lever is engaged into the extension housing and cannot be removed when the extension housing is mounted to the transmission.

4. Detent ball and the spring from the offset lever, (figure 5).

5. Countergear rear thrust bearing (612).
- Plastic funnel (5 speed only) (figure 6).
- Front thrust race (5 speed only).

Important

- Two of the cover mounting screws are alignment screws. Note the positions they were removed from for installation.

7. 5th speed drive gear (632) (5 speed only).
- Support the 5th speed shift fork (618) and drive the pin out, (figure 7).

- Snap ring and the 5th gear synchronizer (630) and shift fork together (figure 8).
- 5th speed blocker ring (631) and the 5th speed gear (632).

8. Speedometer drive gear (609) and the clip.

9. 5th speed driven gear snap ring (606) (5 speed only).

10. Main drive gear bearing retainer (646).
- Mark the retainer and the case for alignment (figure 9).

11. Bearing race (644) and the shim pack (figure 10).

12. Main drive gear (643).
- Turn the gear so the cut-out is toward the countergear (figure 11).

13. Retaining ring and the reverse shift shaft lever pivot bolt (624) (figure 12).

14. Mainshaft rear bearing race (605).

15. Mainshaft (604).

16. 5th speed and reverse shift shaft (629) (figure 13).
- Unhook the lock spring.
- Turn the shaft to disengage it from the reverse lever.
- Remove the shaft from the rear of the transmission case.

17. 5th speed and reverse shift lever (623).

18. Reverse idler gear (638).
- Drive the pin through the front of the idler shaft (637) (figure 14).
- Idler shaft and the seal.
Figure 2—77 mm Transmission and Components
613. Extension Housing
650. Retainer
651. Boot
652. Retainer
653. Control Lever
654. Damper Sleeve
655. Offset Lever
656. Detent Plate
657. Detent Ball
658. Detent Spring
659. Pin

Figure 3—Shift Lever Components

Figure 4—Removing the Offset Lever Pin

Figure 5—Detent Ball and the Spring

Figure 6—Plastic Funnel

Figure 7—Removing the 5th Speed Shift Fork Pin
Figure 8—Removing the 5th Speed Shift Fork and the Synchronizer

19. Snap ring and the countergear rear bearing spacer (634) (5 speed only).
20. Countergear rear bearing (635).
 - Drive the countergear (640) to the rear to remove the bearing (figure 15).

Important
- Note the direction the bearing faces.

21. Countergear (640) and the rear bearing spacer (636).
22. Countergear thrust washer (641).
23. Countergear front bearing (642).
 - Press the bearing from the case.

Figure 9—Bearing Cap Alignment Marks

Figure 10—Main Drive Gear shim Pack

Figure 11—Main Drive Gear Cut Out

Figure 12—5th Speed and Reverse Shift Lever Retaining Ring
Figure 13—5th Speed and Reverse Shift Shaft

Figure 14—Removing the Reverse Idler Shaft Pin

Figure 15—Removing the Countergear Rear Bearing
DISASSEMBLY AND ASSEMBLY OF SUB-ASSEMBLIES

643. Main Drive Gear
680. Drive Gear Bearing
681. Pilot Bearings
682. Drive Gear Thrust Bearing

Figure 16—Main Drive Gear Bearings

MAIN DRIVE GEAR

Disassemble (Figure 16)

Tool Required:
J 22912-01 Bearing and Gear Puller
1. Thrust bearing and the race (682).
2. Pilot bearings (681).

Clean (Figure 16)
• All parts in a suitable solvent.
(Do not spin the bearings dry.)

Inspect (Figure 16)
1. Parts for damage and wear.
2. Oil the bearings and check for roughness.

Assemble (Figure 16)

Tool Required:
J 22912-01 Bearing and Gear Puller
1. Bearing (680), using J 22912-01 (figure 17).
2. Pilot bearings.
3. Thrust bearing and the race (682).

Use chassis grease to hold the bearings in place.

MAINSHAFT

Disassemble (Figure 18)

Tool Required:
J 22912-01 Bearing and Gear Puller
1. 4th speed blocker ring (661).
2. 3rd and 4th synchronizer and the 3rd speed gear (664).
 • Press the mainshaft through the synchronizer, the blocker ring and the gear using J 22912-01 (figure 19).
 • Do not let the synchronizer come apart.

Important
• Do not let the mainshaft fall to the floor.

3. Remove the snap ring and the 2nd speed gear thrust washer (666).
4. Remove the 2nd speed gear (667) and blocker ring.
5. Press the mainshaft through the 5th speed driven gear (679) using J 22912-01 (figure 20) (5 speed only).

Important
• Do not let the mainshaft fall to the floor.
6. Mainshaft rear bearing (678).
 • It may be necessary to press the mainshaft through the bearing using J 22912-01 (figure 20).

Important
• Do not let the mainshaft fall to the floor.
7. Remove the 1st speed gear thrust washer (677).
8. Pull the retaining pin out and remove the 1st speed gear (676) (figure 21).
9. 1st and 2nd speed synchronizer sleeve (674) (figure 22).
 • Mark the hub and sleeve alignment for reassembly.
 • Push the hub out of the sleeve while holding the springs and keys to avoid losing them.
 • Do not lose the antirattle ball and spring (669) (5 speed only).

Important
• Do not remove the hub. The hub and the mainshaft are machined together as a set.

10. Synchronizers (630 and 662) (figure 22).
 • The synchronizer hub and sleeve are a select fit, do not mix the parts of the two synchronizers.
 • Mark the hub and sleeve alignment for reassembly.
 • Push the hub out of the sleeve while holding the springs and keys to avoid losing them.
Clean (Figure 18)
- All parts in a suitable solvent and air dry.

Important
- Do not spin dry bearings.

Inspect (Figure 18)
1. Gears for cracks, chipped gear teeth, and other damage that could cause gear noise.
2. Thrust washers and bushings for damage and wear.
3. Related surfaces on the gears like thrust faces and bearing surface diameters.
4. The reverse sliding gear for a sliding fit on the synchronizer hub without excess radial, or circular play. If the sliding gear is not free on the hub, inspect it for burrs on the ends of the internal splines. Remove any burrs by honing as required.
5. Synchronizer sleeves for a sliding fit on the synchronizer hubs, also, the hubs have to be a snug fit on the mainshaft splines.
Figure 22—Synchronizer Components

6. Synchronizer springs and keys for looseness and damage.
7. Brass synchronizer rings for excess wear and damage.
8. All gear teeth for excess wear.
10. Lubricate all roller bearings with light engine oil and check for rough rotation.

Assemble (Figure 18)

Tools Required:
- J 22912-01 Bearing and Gear Puller
- J 25234 Countergear Rear Bearing Installer
- Coat all parts with transmission oil before installing them.

1. Synchronizers (630 and 662) (figure 22).
 - Place the keys into the hub.
 - Engage the springs in the same key with the open ends away from each other (figure 23).
 - Slide the sleeve onto the hub, aligning the marks made during disassembly.

2. 1st and 2nd speed synchronizer sleeve (674) (figure 22).
 - Hold the antirattle ball and spring (669) in the hub (5 speed only).
 - Place the keys into the hub.
 - Engage the springs in the same key with the open ends away from each other.
 - Slide the sleeve onto the hub, aligning the marks made during disassembly.

3. Slide the 2nd speed blocker ring (668) onto the mainshaft.
 - The clutching teeth must be to the front.

4. Slide the 2nd speed gear (667) on with the cone into the blocker ring.

5. 2nd speed gear thrust washer (666) and a new snap ring.
 - Be sure the thrust washer tab is seated in the mainshaft groove.

6. Slide the 1st speed blocker ring (675) onto the mainshaft.
 - The clutching teeth must be to the rear.

7. Install the 1st speed gear (676) and a new retaining pin (figure 21).

8. Slide the 1st speed gear thrust washer (677) against the gear.

9. Install the mainshaft rear bearing (678).
 - The bearing may have to be pressed on using J 25234 (figure 24).

10. Install the 5th speed driven gear (679) using J 22912-01 (5 speed only).

11. Slide the 3rd speed gear (664) on with the cone to the front.

12. Slide the 3rd speed blocker ring (663) onto the 3rd speed gear.
 - The clutching teeth must be against the gear.

13. Install the 3rd and 4th synchronizer (662) with the hub offset to the front.

14. Slide the 4th speed blocker ring (661) into the 3rd and 4th synchronizer.
 - The clutching teeth must be to the front.
EXTENSION HOUSING

Remove or Disconnect (Figure 25)

Tools Required:
- J 8092 Driver Handle
- J 23062-14 Extension Housing Bushing Remover and Installer

1. Seal (681).
2. Sealing compound from the flange of the extension.
3. Bushing (680) if it is worn or damaged, using J 8092 and J 23062-14.

Inspect (Figure 25)

1. Extension for scoring, wear or cracks, especially at the flange.
2. Snap ring groove for wear and damage.

Install or Connect (Figure 25)

Tools Required:
- J 8092 Driver Handle

MAIN DRIVE GEAR BEARING RETAINER

Remove or Disconnect (Figure 28)

1. Seal (683).
2. Sealing compound from flange of retainer (646).

Inspect (Figure 28)

1. Retainer nose for scoring, wear or cracks, especially at the flange.
2. Snap ring groove for damage caused by drive gear bearing movement.
3. Replace the retainer if it is worn or damaged.

Install or Connect (Figure 28)

Tool Required:
- J 23096 Front Housing Drive Gear Seal Installer
- New seal (683) using J 23096. Coat the inside of the seal with transmission oil (figure 29).

SHIFT COVER

Disassemble (Figure 30)
- The shift shaft and shift fork plates must be in the neutral position (centered).
 1. Turn the shift shaft (685) until the selector arm (689) is disengaged from the fork plates (688).
 2. Drive the retaining pin out of the selector arm (689) (figure 31).
 3. Remove the shift shaft (685).
 - Shift forks and the plates.
 - Selector arm.
 - Interlock plate.
 4. Pry the oil seal (602) out.

Shift Forks and Plates.
- Selector arm.
- Interlock plate.

Clean (Figure 30)
- All metal parts in solvent and air dry.

Inspect (Figure 30)
1. Shift forks.
 - For damage or bends.
 - For worn inserts.
2. Shift shaft.

Figure 27—Installing the Extension Housing Oil Seal

Figure 28—Main Drive Gear Bearing Retainer Oil Seal

Figure 29—Installing the Bearing Retainer Oil Seal

Figure 30—Shift Cover and Components
Figure 31—Shift Forks and Selector Plates

- For damage and bends.
- For worn or damaged plates.
- For smooth fit in the cover.

3. Shift cover.
- For cracks and warping.
- For smooth shift shaft fit.
- Shaft plug for damage or leaks.

Assemble (Figure 30)

- Coat the shift shaft and the cover bores lightly with grease.
 1. Install a new shift shaft plug (673), if needed.
 - Coat the outside of the plug with sealing compound.
 2. Fit the inserts (686) and the fork plates (688) into the shift forks (figure 31).
 3. 1st and 2nd (largest) shift fork (672).
 - Fit the shift shaft into the cover rear bore.
 - Hold the shift fork in the cover with the fork offset to the rear (figure 32).
 - Push the shift shaft through the fork.
 4. Selector arm (689) and the interlock plate (671).

Figure 32—Removing the Shift Shaft Retaining Pin

- Hold the selector arm and the interlock plate in the cover with the widest part of the plate away from the cover.
- The shift arm retaining pin hole must be away from the cover and to the rear (figure 32).
- Push the shift shaft through the arm.

5. 3rd and 4th shift fork (687).
- Hold the shift fork in the cover with fork offset to the rear (figure 32).
- The fork plate must be under the 1st and 2nd shift fork plate.
- Push the shift shaft through the fork, into the cover front bore.

6. Turn the shift shaft until the front fork plate is away from the cover and parallel to it.

7. Drive a new retaining pin (670) into the selector arm and the shift shaft.
- Be sure the arm and shaft pin holes are aligned.
- The retaining pin must be flush with the selector arm.

8. Install a new oil seal (602).
- Coat the seal with transmission oil.

TRANSMISSION ASSEMBLY

(INSTALLATION OF SUB-ASSEMBLIES)

Use new seals, gaskets, and thread sealer on all bolt threads when assembling the transmission. Tighten all bolts to specified torque.

Lubricate all assemblies as they are installed in the transmission using transmission oil.

Install or Connect (Figures 1, 2 and 3)

Tools Required:
J 29895 Countershaft Rear Bearing Installer
J 33032 Rear Cluster Bearing Assembly Tool

1. Countergear front bearing (642) (figure 33).
 - Coat the bearing bore with Loctite #601 or equivalent.

2. Countergear thrust washer (641).

3. Countergear (604) and the rear bearing spacer (636).
 - Tip the transmission case up.
 - Fit the countergear into the front bearing.
 - Install the rear bearing spacer.

4. Countergear rear bearing (635) (figures 34 and 35).
 - Coat the bearing with grease.
 - Install the bearing using J 33032 and J 29895.

- The bearing must be flush with the transmission case.
Be sure the bearing is installed in the direction it was removed from.

Countergear rear bearing. It must extend 3 mm (0.125-inch) past the transmission case.

Reverse idler gear (638) and the shaft.

Hold the gear in the case with the shift lever groove to the rear.

Install the reverse idler shaft from the rear.

Install a new retaining pin (figure 14).

Fit the mainshaft (604) into place.

Mainshaft rear bearing race (605).

Turn the gear so the cut-out is toward the countergear (figure 11).

Be sure the 4th speed blocker ring is engaged in the synchronizer properly.

Main drive gear bearing race (644).

Main drive gear bearing retainer (646) and the screws.

Be sure to align the marks (figure 9).

5th speed and reverse shift lever (623), and the pivot bolt.

Coat the pivot bolt threads with a non-hardening sealer.

Be sure the reverse lever fork is engaged in the idler gear slot.

New reverse shift lever retaining ring (625).

Countergear rear bearing spacer (634) and a new snap ring (5 speed only).

5th speed drive gear (632) (5 speed only).

5th speed and reverse shift shaft (629) (figure 13).

Install the shaft from the rear of the case.

Turn the shaft to engage it in the reverse lever.

Hook the lock spring to the front of the case.

5th speed shift fork (618) and the synchronizer (5 speed only).

Engage the shift fork in the synchronizer.

Engage the 5th speed blocker ring into the synchronizer.

Install the synchronizer onto the countergear and the shift fork onto the shift shaft together.

New pin (619) (5 speed only).

Align the holes in the 5th speed shift fork and the shift shaft.

Support the shift fork and install the pin (figure 7).

Front thrust race (611) and a new snap ring (5 speed only).

Countergear thrust bearing (612).

Coat the bearing with petroleum jelly.

The bearing race lip must be over the bearing.

Plastic funnel (615) into the bearing (5 speed only).

Extension housing (613) and the screws.

Turn the transmission on end and mount a dial indicator on the extension housing (figure 36).
Figure 36—Measuring Mainshaft End Play

Measure
- Mainshaft end play.
- Select a shim pack 0.03-0.13 mm (0.001-0.005-inch) LARGER than the end play measured, to preload the mainshaft bearings 0.03-0.13 mm (0.001-0.005-inch).

- Remove the bearing retainer.
- Install the correct shim pack (figure 10).
- Apply a 3 mm (¼-inch) diameter bead of RTV #732, or equivalent, sealer to the case mating surface.
- Install the bearing retainer, aligning the marks (figure 9).

22. Shift cover (601).
- Remove the extension housing.
- Move the shift forks and the synchronizers to the neutral positions.
- Apply a 3 mm (¼-inch) bead of RTV #732, or equivalent, sealer to the cover mating surface.
- Lower the cover onto the case, aligning the shift forks into the synchronizers.
- The offset lever to shift shaft pin hole must be up.

23. Shift cover screws.
- Install the two locating screws in the holes they were removed from first.

24. Speedometer drive gear (609) and the retaining clip.
- Do not lose the balls from the gear.

25. Extension housing (613).
- Apply a 3 mm (¼-inch) diameter bead of RTV #732, or equivalent, sealer to the mating surface.
- Hold the extension housing so the shift shaft just enters the shift cover opening.

26. Offset lever (655), the detent ball and the spring (figure 5).
- Press the offset lever into place and seat the extension housing.
- Install the extension housing screws.

27. New pin (659) into the offset lever and shift shaft.

28. Control lever (653), the boot and the dust cover.
- Silicone sealer in the groove around the dust cover.

SPECIFICATIONS

FASTENER TORQUE

<table>
<thead>
<tr>
<th></th>
<th>N·m</th>
<th>Ft. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive Gear Bearing Retainer Screws</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Shift Cover Screws</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>Rear Extension Screws</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>Reverse Pivot Bolt</td>
<td>27</td>
<td>20</td>
</tr>
</tbody>
</table>

LUBRICATION

Capacity .. 2.0 L 2.0 qts.
Type Recommended .. Dexron II Automatic Transmission Fluid
SPECIAL TOOLS

1. J-8001 Dial Indicator
2. J-33032 Rear Cluster Bearing Assembly Tool
3. J-29895 Countershaft Rear Bearing Installer
4. J-22912-01 Bearing and Gear Puller
5. J-23096 Front Housing Drive Gear Oil Seal Installer
6. J-21426 Extension Housing Oil Seal Installer
7. J-8092 Driver Handle
8. J-23062-14 Extension Housing Bushing Remover and Installer
SECTION 7D
TRANSFER CASE

CONTENTS

NEW PROCESS 205 TRANSFER CASE

DESCRIPTION

A transfer case mounts behind the transmission and allows drive torque to be transmitted in a proportional split to both the front axle and the rear axle, resulting in four-wheel drive. The shift control lever for the transfer case is floor-mounted in the passenger compartment. Depending on the type of transfer case and the shift lever position, various combinations of rear wheel drive, four wheel drive, high traction (gear reduction) or direct drive may be selected.

The model 205 transfer case is a two-speed unit which can be used for either two-wheel or four-wheel drive. Direct drive (1:1 ratio) is available in two modes, 2H for two-wheel drive, or 4H for four-wheel drive. Gear reduction (1.96:1 ratio) is used in the 4L position. This unit uses constant mesh helical gears to connect the input shaft, idler gear and two output gears, thus allowing gear selection to match driving conditions. The front input shaft gear is in constant mesh with the idler gear and, through the idler gear, with the front output gears and the rear output gear. Sliding clutches allow for selective gear engagement resulting in High or Lo range, and two-wheel or four-wheel drive. Ball bearings support the input shaft, rear output shaft and front output shaft. Tapered roller bearings are used on the idler shaft. When driving in a four-wheel mode (4L or 4H) the hubs on the front wheels must be turned to the "Locked" position.
REAR OUTPUT SHAFT AND YOKE ASSEMBLY

Clean
- The transfer case exterior using a solvent and a stiff brush.

Remove or Disconnect (Figures 1, 2, 3, and 4)
Tool Required:
- J 23432 Snap Ring Pliers
- Loosen the rear output shaft yoke nut (79).
1. Rear output shaft housing bolts (6).
2. Housing and retainer assembly (62) from the case (19).
3. Yoke nut (79) and washers (80 and 69).
4. Yoke (68).
5. Shaft assembly (26) from the housing (62).
7. Thrust washer (81).
8. Washer pin (45).
9. Tanged bronze washer (60).
10. Gear roller bearings, 32 per row (41).
11. Spacer (42).
12. Gear roller bearings, 32 per row (41).
13. Tanged bronze thrust washer (60).
15. Retainer ring (23).
17. Oil seal retainer (65).
18. Ball bearing (9) and bearing retaining snap ring.
20. Oil seal (67) from the retainer (65).
21. Needle bearing (61) from the rear output shaft bearing retainer (62), using a suitable tool.

FRONT OUTPUT SHAFT ASSEMBLY

Remove or Disconnect (Figures 1, 2, 3, 4 and 5)
Tools Required:
- J 23432-1 Snap Ring Picks
- J 23232 Snap Ring Pliers
1. Lock nut (1).
2. Washer (2 and 3).
3. Yoke (4).
4. Front bearing retainer bolts (6).
5. Retainer (8).
6. Front output shaft rear bearing retainer attaching bolts (6) and retainer (49).
7. Front output shaft (40), gear assembly, and rear bearing retainer (49) from the case (19).
- Tap on the output shaft with a soft hammer.
8. Clutch hub (34) from the output high gear (33).
 • Output high gear, washer and bearing are still in the case.
9. Low gear retaining ring (46) from the shaft (40), using J 23432-1. Discard the ring.
10. Thrust washer (44) from the shaft.
11. Pin (45) from the shaft.
12. Low gear (43).
13. Roller bearings — 32 per row (41) — first row.
15. Roller bearings — 32 per row (41) — second row.
16. Front output shaft rear bearing (47).
 • Support the cover.
 • Press the bearing from the cover (figure 5).

SHIFT RAIL AND FORK ASSEMBLIES

Remove or Disconnect (Figures 3, 4, 6, and 7)
1. Two poppet screws (15) on top of the case (19).
2. Two poppet springs (17).
3. Poppet balls (18).
 • Use a magnet.
4. Cup plugs.
 • Drive the cup plugs into the case, using a 6.35 mm (1/4-inch) punch (figure 6).
5. Shift fork pins (36).
 • Position both shift rails into neutral.
 • Drive the shift fork pins through the shift rails and into the case.
6. Clevis spring clips (37) and clevis pins (38).
7. Shift rail link (13).
8. Upper shift rail (39) (figure 7).
10. Shift forks (77 and 35).
11. Sliding clutch hub (34).
12. Front output high gear (33).
14. Bearing (9).
15. Shift rail cup plugs and shift fork pins (36) from the case.
16. Snap ring (11) in front of the main drive gear bearing (12).
17. Main drive shaft (22).
 • Tap the shaft out the rear of the case.
18. Main drive gear bearing (12).
 • Tap the bearing out the front of the case.
19. Interlock pins (21).

IDLER GEAR

Remove or Disconnect (Figures 3, 4 and 8)

Tool Required: Tool-A
1. Idler gear shaft nut (27) and washer (28).
2. Idler shaft rear cover bolts (58) and rear cover (56).
3. Idler gear shaft (54), using Tool A and a soft hammer (figure 8).
4. Idler gear (51).
 • Roll the gear to the front output shaft hole and remove it from the case.
5. Bearing cups (50), as required, from the idler gear (51).
6. Spacer (52).
7. Shims (53).

MISCELLANEOUS

Remove or Disconnect
1. Lock pins (37).
2. Clevis pins (38).
3. Shift rail cross link (13).
4. Drain plugs and filler plugs.
5. PTO cover bolts (30).
6. PTO cover (31).
7. PTO cover gasket (29).
Figure 3—New Process 205 Transfer Case
NEW PROCESS 205 TRANSFER CASE 7D1-5

<table>
<thead>
<tr>
<th>Number</th>
<th>Part Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yoke Nut</td>
</tr>
<tr>
<td>2</td>
<td>Washer</td>
</tr>
<tr>
<td>3</td>
<td>Washer (Rubber)</td>
</tr>
<tr>
<td>4</td>
<td>Yoke</td>
</tr>
<tr>
<td>5</td>
<td>Seal</td>
</tr>
<tr>
<td>6</td>
<td>Retainer Bolt</td>
</tr>
<tr>
<td>7</td>
<td>Washer, Toothed</td>
</tr>
<tr>
<td>8</td>
<td>Retainer</td>
</tr>
<tr>
<td>9</td>
<td>Front and Rear Output Shaft Bearing</td>
</tr>
<tr>
<td>10</td>
<td>Gasket</td>
</tr>
<tr>
<td>11</td>
<td>Bearing Retaining Snap Ring</td>
</tr>
<tr>
<td>12</td>
<td>Main Drive Gear Bearing</td>
</tr>
<tr>
<td>13</td>
<td>Shift Shaft Link</td>
</tr>
<tr>
<td>14</td>
<td>Shift Shaft Oil Seal</td>
</tr>
<tr>
<td>15</td>
<td>Poppet Plug (on Rear Output Shift Shaft) or Four Wheel Indicator Lamp Switch (on Front Output Shift Shaft)</td>
</tr>
<tr>
<td>16</td>
<td>Poppet Plug Gasket</td>
</tr>
<tr>
<td>17</td>
<td>Poppet Plug Spring</td>
</tr>
<tr>
<td>18</td>
<td>Poppet Ball</td>
</tr>
<tr>
<td>19</td>
<td>Transfer Case</td>
</tr>
<tr>
<td>20</td>
<td>Fill Plug</td>
</tr>
<tr>
<td>21</td>
<td>Shift Rail Interlink Plunger</td>
</tr>
<tr>
<td>22</td>
<td>Input Main Drive Gear Bearing</td>
</tr>
<tr>
<td>23</td>
<td>Pilot Roller Retainer Ring</td>
</tr>
<tr>
<td>24</td>
<td>Rear Output Shaft Roller Bearing Thrust Washer</td>
</tr>
<tr>
<td>25</td>
<td>Rear Output Shaft Pilot Bearing Roller</td>
</tr>
<tr>
<td>26</td>
<td>Rear Output Shaft</td>
</tr>
<tr>
<td>27</td>
<td>Idler Shaft Yoke Nut</td>
</tr>
<tr>
<td>28</td>
<td>Washer</td>
</tr>
<tr>
<td>29</td>
<td>Power Take-Off Cover Gasket</td>
</tr>
<tr>
<td>30</td>
<td>Bolt</td>
</tr>
<tr>
<td>31</td>
<td>Power Take-Off Cover</td>
</tr>
<tr>
<td>32</td>
<td>Front Output Shaft Bearing Thrust Washer</td>
</tr>
<tr>
<td>33</td>
<td>Front Output Shaft Front Gear</td>
</tr>
<tr>
<td>34</td>
<td>Front Output Gear Clutch Hub</td>
</tr>
<tr>
<td>35</td>
<td>Front Wheel Shift Fork</td>
</tr>
<tr>
<td>36</td>
<td>Lock Pin</td>
</tr>
<tr>
<td>37</td>
<td>Shift Link Clevis Spring Clip</td>
</tr>
<tr>
<td>38</td>
<td>Clevis Pin</td>
</tr>
<tr>
<td>39</td>
<td>Two/Four Wheel Shift Shaft</td>
</tr>
<tr>
<td>40</td>
<td>Front Output Shaft</td>
</tr>
<tr>
<td>41</td>
<td>Bearing Roller</td>
</tr>
<tr>
<td>42</td>
<td>Spacer</td>
</tr>
<tr>
<td>43</td>
<td>Front and Rear Output Shaft Low Gear</td>
</tr>
<tr>
<td>44</td>
<td>Thrust Bearing</td>
</tr>
<tr>
<td>45</td>
<td>Thrust Washer Retainer Pin</td>
</tr>
<tr>
<td>46</td>
<td>Snap Ring</td>
</tr>
<tr>
<td>47</td>
<td>Bearing</td>
</tr>
<tr>
<td>48</td>
<td>Gasket</td>
</tr>
<tr>
<td>49</td>
<td>Front Output Shaft Rear Bearing Retainer</td>
</tr>
<tr>
<td>50</td>
<td>Idler Gear Bearing</td>
</tr>
<tr>
<td>51</td>
<td>Transfer Case Idler Gear</td>
</tr>
<tr>
<td>52</td>
<td>Idler Gear Bearing Spacer</td>
</tr>
<tr>
<td>53</td>
<td>Idler Gear Shim</td>
</tr>
<tr>
<td>54</td>
<td>Idler Gear Shaft</td>
</tr>
<tr>
<td>55</td>
<td>Idler Shaft Cover Gasket</td>
</tr>
<tr>
<td>56</td>
<td>Idler Shaft Cover</td>
</tr>
<tr>
<td>57</td>
<td>Washer</td>
</tr>
<tr>
<td>58</td>
<td>Bolt</td>
</tr>
<tr>
<td>59</td>
<td>Hi-Lo Range Shaft Shaft</td>
</tr>
<tr>
<td>60</td>
<td>Thrust Washer</td>
</tr>
<tr>
<td>61</td>
<td>Rear Output Shaft Retainer Bearing</td>
</tr>
<tr>
<td>62</td>
<td>Rear Output Shaft Bearing Retainer</td>
</tr>
<tr>
<td>63</td>
<td>Speedometer Gear</td>
</tr>
<tr>
<td>64</td>
<td>Retainer Oil Seal Gasket</td>
</tr>
<tr>
<td>65</td>
<td>Retainer</td>
</tr>
<tr>
<td>66</td>
<td>Bolt</td>
</tr>
<tr>
<td>67</td>
<td>Oil Seal</td>
</tr>
<tr>
<td>68</td>
<td>Yoke</td>
</tr>
<tr>
<td>69</td>
<td>Washer (Rubber)</td>
</tr>
<tr>
<td>70</td>
<td>Extension</td>
</tr>
<tr>
<td>71</td>
<td>Bushing</td>
</tr>
<tr>
<td>72</td>
<td>Seal</td>
</tr>
<tr>
<td>73</td>
<td>Input Drive Gear Seal</td>
</tr>
<tr>
<td>74</td>
<td>Gasket</td>
</tr>
<tr>
<td>75</td>
<td>Retainer</td>
</tr>
<tr>
<td>76</td>
<td>Bolt</td>
</tr>
<tr>
<td>77</td>
<td>Front Output Shift Fork</td>
</tr>
<tr>
<td>78</td>
<td>Fork Insert</td>
</tr>
<tr>
<td>79</td>
<td>Rear Output Shaft Nut</td>
</tr>
<tr>
<td>80</td>
<td>Rear Output Washer</td>
</tr>
<tr>
<td>81</td>
<td>Thrust Washer</td>
</tr>
</tbody>
</table>

Figure 4—New Process 205 Transfer Case
Figure 5—Front Output Shaft Rear Bearing Removal

49. Front Output Shaft Rear Bearing Retainer

- **Figure 6—Shift Fork Pin Removal**

36. Coiled Spring Pin

- **Figure 7—Shift Rail Removal**

39. Two/Four Wheel Shift Shaft
59. Hi/Lo Range Shift Shaft

- **Figure 8—Idler Gear Shaft Removal**

Tool A
CLEANING AND INSPECTION

Clean
1. Bearings and rollers.
 • Remove all old lubricant and dirt.
2. Shafts and gears.
 • Remove all old lubricant and dirt.
3. Transfer case, cover and bearing cups.
 • Remove all old lubricant and dirt.
 • Remove all traces of gaskets.

Inspect
1. Bearings and thrust washers for wear, spalling, brinneling, or corrosion.
2. Rollers for wear, spalling or corrosion.
3. Shaft splines for excessive wear, chipped teeth, or cracks.
4. Gears for excessive wear, chipped teeth, spalling, cracks, or corrosion.
5. Housing, retainers and case for cracks, warpage or damage.
6. Shafts for wear, corrosion, cracks, and damage.
7. Bolts and threaded holes for wear, damage, stretched threads or corrosion.

ASSEMBLY

Install or Connect (Figures 3, 4, 9, 10, 11, 12, and 13)

Tools Required:
- J 8092 Driver Handle
- Tool-B
- Tool-A

1. Two bearing cups (50) in the idler gear (51) using Tool-B and J 8092 (figure 9).
2. Two bearing cones (50), spacer (52), shims (53), and idler gear (51) on J 23429 with the bore up.

Measure
- End play. Limits are .025-.051 mm (0.001-0.002-inch) (figure 10).
3. Idler gear assembly with Tool-A into the case. Go through the front output bore, large end first (figure 11).
4. Idler shaft (54) from the large bore side.
NEW PROCESS 205 TRANSFER CASE

54. Idler Gear Shaft

7D1-8 NEW PROCESS 205 TRANSFER CASE

54. Idler Gear Shaft

7D1-8 NEW PROCESS 205 TRANSFER CASE

Figure 12—Idler Shaft Installation

- Drive the shaft through, using a soft hammer (figure 12).

5. Washer (28).

- Check for end play and free rotation.

Tighten

- Nut to 202 N·m (150 ft. lbs.).

7. Idler shaft cover gasket (55).

8. Idler shaft cover (56) (figure 13).

- The flat on the cover must be located adjacent to the front output shaft rear cover.

Tighten

- Bolts to 27 N·m (20 ft. lbs.).

Figure 13—Idler Shaft Cover Alignment

SHIFT RAIL AND FORK ASSEMBLIES

Install or Connect (Figures 3, 4, and 14)

1. Two rail seals (14) into the case (19).

- Seals should be installed with the metal lip outward.

2. Interlink plungers (21) through the large bore or PTO opening.

3. Hi-Lo range shift rail (59).

- Start the rail into the case from the back, slotted end first, with the poppet notches up.

4. Shift fork (35).

- Install the shift fork (long end forward) into the front output drive shift rail (59).

- Push the rail through to the neutral position.

5. Input shaft bearing (12) and shaft (22) into the case.

6. Range rail (39) into the case.

- Start the range rail into the case from the front, with the poppet notches up.

7. Sliding clutch (34) and fork (77).

- Install the sliding clutch onto the fork.

- Place the assembly over the input shaft (40) in the case.

- Position the assembly to receive the range rail (39).

- Push the range rail through to the neutral position.

8. Lock pins (36).

- Install the new lock pins through the holes at the top of the case.

- Drive the lock pins into the forks (figure 14).

- Tip the case onto the PTO opening when installing the range rail lock pin.

FRONT OUTPUT SHAFT ASSEMBLY

Install or Connect (Figures 3, 4 and 15)

Tools Required:

- J 23432 Snap Ring Pliers
- J 22836 Front Output Shaft Bearing Retainer Seal Installer
1. Roller bearings — 32 per row (41) in the front low gear (43).
 • Use grease to retain the roller bearings.
2. Spacer (42).
3. Roller bearings — 32 per row (41) in the front low gear (43).
4. Front low gear (43) on the front output shaft (40).
 • Place the front output shaft in a soft jawsed vise, with the spline end down.
 • Install the front low gear on the shaft with the clutch gear facing down.
5. Thrust washer pin (45) in the shaft (40).
6. Thrust washer (44) on the shaft (40).
 • Position the snap ring so that the opening is opposite the pin.
8. Front output shaft front bearing (9) into the case (19).
 Front output shaft front bearing retainer seal (5), using J 22836 (figure 15).
 Front output shaft front bearing retainer (8).
9. Retainer bolts (6).

 Tighten
 • Bolts to 40 N-m (30 ft. lbs.).
10. Washer (32) in the case.
11. Front output shaft high gear (33) in the case.
12. Shift fork (77) in the sliding clutch hub (34).
13. Shift fork (77) and rail (39) in the front wheel drive (4H) position with the clutch teeth in mesh with the front output high gear teeth.
14. Front output shaft and low gear assembly through the high gear assembly.
 • Line up the washer (32), high gear (33), and the clutch hub (34) with the bearing bore before installing the front output shaft (40).
15. Bearing (47) in the front output rear bearing retainer (49).
16. Front output rear bearing retainer (49) onto the case (19).
 • Use one gasket.

Figure 15—Front Output Bearing Retainer Seal Installation

Figure 16—Rear Output Shaft Retainer Bearing Installation

19. Retainer bolts (6).
 • Dip the bolts into sealant before installing.
20. Front output yoke (4).
21. Washers (2 and 3).
22. Lock nut (1).

Tighten
• Bolts to 40 N-m (30 ft. lbs.).

REAR OUTPUT SHAFT ASSEMBLY

Install or Connect (Figures 3, 4, 16, 17, and 18)

Tools Required:
J 22875 Rear Output Shaft Rear Bearing Installer
J 23432 Snap Ring Pliers
J 23432-1 Snap Ring Picks Tool-C
J 21359 Rear Output Shaft Bearing Retainer Seal Installer

1. First row of roller bearings (41) — 32 each, in the rear output shaft low gear (43).
 • Use grease to retain the rollers.
2. Spacer (42) in the rear output shaft low gear (43).
Figure 17—Speedometer Gear Installation

3. Second row of roller bearings (41) — 32 each, in the rear output shaft low gear (43).
4. Thrust washer (60) onto the rear output shaft (26).
 • Install the washer with the tab down in the clutch gear groove.
5. Rear output shaft low gear (43) onto the rear output shaft (26).
 • Install the gear with the clutch teeth facing toward the clutch hub (34).
6. Thrust washer (60) over the gear (43).
 • Install the washer with the tab pointing up and away from the gear.
7. Washer pin (45).
8. Large thrust washer (44) over the shaft (26) and the pin (45).
 • Rotate the washer until the tab fits into the slot 90 degrees away from the pin.

Figure 18—Rear Bearing Retainer Seal Installation

Install or Connect

1. PTO cover gasket (29).
2. PTO cover (31).
3. PTO cover bolts (30).
4. Cup plugs at the rail pin holes.
 • Apply sealant to the plugs before installing.
5. Drain plugs and filler plugs.
6. Shift rail cross link (13).
7. Clevis pins (38).
8. Lock pins (37).

Measure

• End play of .05-.56 mm (0.002-0.027-inch).
10. Grease in the pilot bore of the rear output shaft (26).
12. Thrust washer (24).
13. New snap ring (23) in the bore.
14. New bearing (61) in the retainer housing (62), using Tool-C (figure 16).
 • Grease the bearing before installing it.
15. Retainer housing (62) onto the output shaft assembly (26).
16. Retainer housing and output shaft to the case (19).
17. Retainer bolts (6).

Tighten

• Bolts to 40 N m (30 ft. lbs.)
18. Speedometer gear (63) (figure 17).
19. Rear output shaft bearing (9) in the bearing retainer housing (62), using J 22875.
20. Rear bearing seal (67) in the seal retainer (65), using J 21359 (figure 18).
21. Seal retainer (65) on the retainer housing (62).
 • Use one or two seals, depending on the needed clearance.
22. Retainer bolts (66).

MISCELLANEOUS

Tighten

• Bolts to 20 N m (15 ft. lbs.)
4. Cup plugs at the rail pin holes.
 • Apply sealant to the plugs before installing.
5. Drain plugs and filler plugs.

Tighten

• Bolts to 55 N m (40 ft. lbs.)
6. Shift rail cross link (13).
7. Clevis pins (38).
8. Lock pins (37).
NEW PROCESS 205 TRANSFER CASE 7D1-11

SPECIFICATIONS
NEW PROCESS 205 TRANSFER CASE

<table>
<thead>
<tr>
<th>Part Description</th>
<th>MM</th>
<th>INCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idler Gear End Play</td>
<td>0.025-0.051</td>
<td>0.001-0.002</td>
</tr>
<tr>
<td>Rear Output Shaft End Play</td>
<td>0.05-0.56</td>
<td>0.002-0.027</td>
</tr>
<tr>
<td>Idler Gear Lock Nut</td>
<td>202</td>
<td>150</td>
</tr>
<tr>
<td>Idler Shaft Cover Bolts</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Front Output Shaft Front Bearing Retainer Bolts</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Front Output Rear Bearing Retainer Bolts</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Front Output Yoke Lock Nut</td>
<td>202</td>
<td>150</td>
</tr>
<tr>
<td>Retainer Housing Bolts</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Seal Retainer Bolts</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Lubricant: Dexron™ II</td>
<td></td>
<td>5.2 Pints</td>
</tr>
</tbody>
</table>

SPECIAL TOOLS

1. Driver Handle
2. Seal Installer
3. Seal Installer
4. Bearing Installer
5. Snap Ring Pliers
6. Snap Ring Picks
7. Tool A
8. Tool B
9. Tool C

F-05689
DESCRIPTION

The 207 transfer case is an aluminum case, chain drive, four position unit providing four-wheel drive high and low ranges, a two-wheel high range, and a neutral position. The 207 is a part-time four-wheel drive unit. Torque input in four-wheel high and low ranges is undifferentiated. The range positions on the 207 transfer case are selected by a floor mounted gearshift lever.

The 207 case is a two-piece aluminum case containing front and rear output shafts, two drive sprockets, a shift mechanism and a planetary gear assembly. The drive sprockets are connected and operated by the drive chain. The planetary assembly which consists of a three pinion carrier and an annulus gear provide the four-wheel drive low range when engaged.

IDENTIFICATION

An identification tag is attached to the rear half of the transfer case. This tag provides the transfer case model number, low range reduction ratio, and assembly number. The information on this tag is necessary for servicing information. If the tag is removed or becomes dislodged during service operations, it should be reattached using an adhesive sealant such as Loctite 312 or equivalent.

POWER FLOW

In all drive range positions input torque is transmitted to the transfer case gear train through the transfer case input gear. In 2H range, torque flows from the input gear to the planetary assembly and annulus gear which rotate as a unit. Torque is transferred to the mainshaft through the planetary carrier which is splined to the mainshaft. Torque flow continues through the mainshaft and rear yoke which is splined to the mainshaft, and finally to the rear propeller shaft and axle. In 2H range, the sliding clutch remains in a neutral position and does not lock the drive sprocket to the mainshaft. As a result, torque is not transferred to the front output shaft.

In 4H range, input torque from the input gear is transmitted through the planetary and annulus gear and through the mainshaft in exactly the same fashion as in 2H range. However, in 4H position, the sliding clutch is shifted rearward and into engagement with the sprocket clutch teeth. This locks the drive sprocket to the mainshaft through the sliding clutch. Torque is now transmitted through the drive sprocket to the front output shaft by the connecting drive chain. The torque then flows through the front output shaft to the front propeller shaft and axle resulting in high range four-wheel drive.

In 4L range, the path of torque through the transfer case is exactly the same as in 4H range but with one major difference. In 4L range, the annulus gear is shifted forward and into engagement with the lock plate. Since the lock plate is fixed in the case, the annulus gear is held stationary and does not rotate. This causes the planetary pinions to rotate about the annulus gear internal teeth producing a gear reduction ratio of 2.61:1.

DISASSEMBLY

TRANSFER CASE

Clean

- The transfer case exterior using a solvent and a stiff brush.

Tools Required:
J 8092 Driver Handle
J 29369-1 Input Gear Pilot Bearing Remover
J 29369-2 Front Output Shaft Rear Bearing Remover
Figure 1—New Process 207 Transfer Case
NEW PROCESS 207 TRANSFER CASE 7D2-3

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Main Drive Shaft</td>
</tr>
<tr>
<td>2.</td>
<td>Case Housing</td>
</tr>
<tr>
<td>3.</td>
<td>Oil Pump Housing Seal</td>
</tr>
<tr>
<td>4.</td>
<td>Oil Pump Housing</td>
</tr>
<tr>
<td>5.</td>
<td>Oil Pump</td>
</tr>
<tr>
<td>6.</td>
<td>Speedometer Drive Gear</td>
</tr>
<tr>
<td>7.</td>
<td>Main Shaft Rear Bearing Retainer</td>
</tr>
<tr>
<td>8.</td>
<td>Case Vent Connector</td>
</tr>
<tr>
<td>9.</td>
<td>Bolt</td>
</tr>
<tr>
<td>10.</td>
<td>Main Shaft Rear Bearing</td>
</tr>
<tr>
<td>11.</td>
<td>Retaining Ring</td>
</tr>
<tr>
<td>12.</td>
<td>Main Shaft Extension Housing</td>
</tr>
<tr>
<td>13.</td>
<td>Bolt</td>
</tr>
<tr>
<td>14.</td>
<td>Bushing</td>
</tr>
<tr>
<td>15.</td>
<td>Oil Seal</td>
</tr>
<tr>
<td>16.</td>
<td>Plug — Fill or Drain</td>
</tr>
<tr>
<td>17.</td>
<td>Bolt</td>
</tr>
<tr>
<td>18.</td>
<td>Alignment Dowel Washer</td>
</tr>
<tr>
<td>19.</td>
<td>Alignment Dowel</td>
</tr>
<tr>
<td>20.</td>
<td>Front Output Shaft Pilot Bearing</td>
</tr>
<tr>
<td>21.</td>
<td>Front Output Shaft</td>
</tr>
<tr>
<td>22.</td>
<td>Planet Gear Carrier Assembly</td>
</tr>
<tr>
<td>23.</td>
<td>Thrust Washer</td>
</tr>
<tr>
<td>24.</td>
<td>Retainer Ring</td>
</tr>
<tr>
<td>25.</td>
<td>Annulus Gear</td>
</tr>
<tr>
<td>26.</td>
<td>Synchronizer Retaining Ring</td>
</tr>
<tr>
<td>27.</td>
<td>Synchronizer Assembly</td>
</tr>
<tr>
<td>28.</td>
<td>Synchronizer Strut</td>
</tr>
<tr>
<td>29.</td>
<td>Strut Spring</td>
</tr>
<tr>
<td>30.</td>
<td>Stop Ring</td>
</tr>
<tr>
<td>31.</td>
<td>Sprocket Bearing</td>
</tr>
<tr>
<td>32.</td>
<td>Sprocket</td>
</tr>
<tr>
<td>33.</td>
<td>Sprocket Thrust Washer</td>
</tr>
<tr>
<td>34.</td>
<td>Input Main Drive Gear Thrust Washer</td>
</tr>
<tr>
<td>35.</td>
<td>Input Drive Gear Pilot Bearing Cup Plug</td>
</tr>
<tr>
<td>36.</td>
<td>Input Main Drive Gear Assembly</td>
</tr>
<tr>
<td>37.</td>
<td>Input Drive Gear Thrust Bearing Washer</td>
</tr>
<tr>
<td>38.</td>
<td>Input Drive Gear Thrust Bearing Washer</td>
</tr>
<tr>
<td>39.</td>
<td>Low Range Lock Plate</td>
</tr>
<tr>
<td>40.</td>
<td>Indicator Lamp Switch</td>
</tr>
<tr>
<td>41.</td>
<td>Indicator Lamp Switch Seal</td>
</tr>
<tr>
<td>42.</td>
<td>Oil Access Hole</td>
</tr>
<tr>
<td>43.</td>
<td>Case Housing (Front Half)</td>
</tr>
<tr>
<td>44.</td>
<td>Input Drive Gear Bearing</td>
</tr>
<tr>
<td>45.</td>
<td>Input Drive Gear Seal</td>
</tr>
<tr>
<td>46.</td>
<td>Bolt</td>
</tr>
<tr>
<td>47.</td>
<td>Yoke</td>
</tr>
<tr>
<td>48.</td>
<td>Yoke Nut</td>
</tr>
<tr>
<td>49.</td>
<td>Yoke Washer (Rubber)</td>
</tr>
<tr>
<td>50.</td>
<td>Yoke Deflector</td>
</tr>
<tr>
<td>51.</td>
<td>Front Output Shaft Seal</td>
</tr>
<tr>
<td>52.</td>
<td>Bearing Retainer Ring</td>
</tr>
<tr>
<td>53.</td>
<td>Front Output Shaft Bearing</td>
</tr>
<tr>
<td>54.</td>
<td>Shift Sector Spring Screw</td>
</tr>
<tr>
<td>55.</td>
<td>Shift Lever Stop Bolt</td>
</tr>
<tr>
<td>56.</td>
<td>Oil Seal</td>
</tr>
<tr>
<td>57.</td>
<td>Shift Sector and Shaft Retainer</td>
</tr>
<tr>
<td>58.</td>
<td>Shifter Shaft Lever</td>
</tr>
<tr>
<td>59.</td>
<td>Nut</td>
</tr>
<tr>
<td>60.</td>
<td>Shift Sector Detent Spring</td>
</tr>
</tbody>
</table>

Figure 2—New Process 207 Transfer Case

J 33367 Bearing Cup Puller Bridge
J 33826 Rear Output Bushing Installer and Mainshaft Sprocket Bearing Remover
J 33839 Rear Output Bushing Remover
J 33841 Input Drive Gear Roller Bearing Remover

1. Fill plug (16) and drain plug.
2. Yoke nut (49). Discard the nut.
3. Yoke (48).
4. Yoke seal washer (50). Discard the washer.
 - Position the transfer case on end.
 - Position the front case on wood blocks.
 - Shift the transfer case to 4 Lo.
5. Extension housing attaching bolts (13).
 - Tap the shoulder with a soft hammer on the extension housing to break the sealer loose (figure 3).
7. Snap ring (11) for the rear bearing (10) from the main shaft (1). Discard the snap ring (figure 4).
8. Rear retainer attaching bolts (9).
7D2-4 NEW PROCESS 207 TRANSFER CASE

Figure 4—Rear Output Bearing Retaining Ring Removal

- Using a hammer, tap the shoulder on the retainer to break the sealer loose (figure 5).

9. Rear retainer (7) from the case.
10. Pump housing (4) from the case.
11. Pump seal (3) from the pump housing (4). Discard the seal.
12. Case halves retaining bolts (17).
13. Rear case (2) from the front case (44).
14. Front output shaft (21) and drive chain (76) as an assembly.
- Raise the mainshaft slightly for the output shaft to clear the case.
15. Mode fork shaft (73) from the transfer case.
- Pull up on the shaft until it separates from the planetary assembly.
- Remove the drive shaft from the transfer case (figure 8).
16. Main drive shaft (1).

Figure 5—Rear Retainer Removal

Figure 6—Rear Housing Removal

- Pull up on the drive shaft until it separates from the planetary assembly.
- Remove the drive shaft from the transfer case (figure 8).
17. Planetary assembly with the range shift fork (66) from the transfer case (2) (figure 9).
18. Main drive gear thrust washer (34).
19. Main drive gear (37).
20. Input gear thrust bearing (38).
21. Front thrust washer (39) (figure 10).
22. Shift sector detent spring retaining screw (55).
23. Shift sector detent spring (61).
25. Shift shaft lever (59).
27. Seal (57).
28. Shift sector (74) (figure 11).
29. Spacer (75).
30. Locking plate retaining bolts (47).
31. Lock plate (40) (figure 12).

Figure 7—Shift Shaft Removal
1. Main Drive Shaft
5. Oil Pump
6. Speedometer Drive Gear
25. Annulus Gear
27. Synchronizer Assembly
32. Sprocket
66. Range Shift Fork

Figure 8—Main Drive Shaft Removal

32. Input gear pilot bearing (35), using J 29369-1 with a slide hammer (figure 13).
33. Front output shaft seal (52).
34. Input gear seal (46).
35. Rear extension seal (15).
36. Input drive gear caged roller bearings (45).
 • Use J 33841 with J 8092. Press out the bearings (figure 14).
37. Front output shaft rear bearing (20).

Figure 9—Planetary Gear and Range Fork Removal

25. Annulus Gear
66. Range Shift Fork
74. Shift Sector

Figure 10—Input Gear and Bearing Removal

37. Input Main Drive Gear
38. Input Drive Gear Thrust Bearing
39. Input Drive Gear Thrust Bearing Washer

74. Shift Sector
75. Shift Sector Shaft Spacer

Figure 11—Shift Sector Removal

40. Low Range Lock Plate

Figure 12—Low Range Lock Plate Removal
7D2-6 NEW PROCESS 207 TRANSFER CASE

Figure 13—Input Gear Pilot Bearing Removal

- Use J 29369-2 with J 33367 (figure 15).
38. Rear mainshaft bearing (10) from the rear retainer (7) using a hammer and a drift.
39. Front output shaft bearing retaining snap ring (53), using a screwdriver (figure 16).
40. Front output shaft bearing (54), using a hammer and drift.
41. Extension housing bushing (14).
 - Use J 33839 with J 8092. Press the bushing out (figure 17).

MAINSHAFT ASSEMBLY

Remove or Disconnect (Figures 1, 2 and 18)

Tools Required:
J 8092 Driver Handle
J 33826 Mainshaft Sprocket Bearing Remover
1. Speedometer gear (6).
2. Pump gear (5) from the mainshaft (1).

PLANETARY GEAR

Remove or Disconnect (Figure 1, 2, and 19)

1. Snap ring (24) retaining the planetary gear (22) in the annulus gear (25).
2. Outer thrust ring (23). Discard.
3. Planetary gear (22) from the annulus gear (25).

Figure 15—Front Output Shaft Rear Bearing Removal

3. Synchronizer hub retaining snap ring (26) from the mainshaft.
4. Synchronizer hub (27) from the mainshaft.
 - Tap the hub off with a brass hammer.
5. Drive sprocket (32).
6. Thrust washer (33).
7. Caged roller bearings (31) from the drive sprocket (32), using J 33826 and J 8092 (figure 18).
8. Synchronizer keys (28) from the synchronizer hub.
9. Retaining rings (29) from the synchronizer hub (27).

Figure 14—Input Gear Front Bearing Removal

Figure 16—Front Output Shaft Front Bearing Retainer Ring Removal
4. Inner thrust ring (23) from the planetary assembly. Discard the ring.

Figure 17—Extension Housing Bushing Removal

Figure 18—Drive Sprocket Bearing Removal

Figure 19—Planetary Gear Thrust Rings
CLEANING AND INSPECTION

Clean
1. Bearings and rollers.
 • Remove all old lubricant and dirt.
2. Shafts and gears.
 • Remove all old lubricant and dirt.
3. Transfer case.
 • Remove all old lubricant and dirt. Apply compressed air to each oil feed port and channel in each case half to remove obstructions or cleaning solvent residue.
 • Remove all traces of gaskets and sealers.

Inspect
1. Bearings and thrust washers for wear, spalling, brinelling, or corrosion.
2. Rollers for wear, spalling or corrosion.
3. Shaft splines for excessive wear, chipped teeth, or cracks.
4. Shafts for wear, corrosion, cracks, or damage.
5. Gears for excessive wear, chipped teeth, spalling, cracks, or corrosion.
6. Case halves for cracks, porosity, damaged or warped mating surfaces, stripped or damaged threaded holes, and damaged bearing bores.
7. Bearing bores in the input gear, rear output shaft and rear retainers for damage.
8. Low range lock plate teeth for cracks, chipped teeth, or excessive wear.

ASSEMBLY

PLANETARY GEAR

Install or Connect (Figures 1, 2, and 19)
1. Inner thrust ring (23) on the planetary assembly (22).
2. Planetary assembly (22) into the annulus gear (25).
3. Outer thrust ring (23).
4. Snap ring (24).

MAINSHAFT

Install or Connect (Figures 1, 2, 20, and 21)
Tools Required:
J 33828 Front Drive Sprocket Bearing Installer
J 8092 Driver Handle
1. Front drive sprocket bearing (31) into the sprocket (32), using J 33828 and J 8092 (figure 20).
2. Rear drive sprocket bearing (31) into the sprocket (32), using J 33828 and J 8092 (figure 21).
 • Reverse J 33828.
 • Press the bearing into the sprocket until the tool bottoms out. The rear bearing should be recessed after installation.
3. Thrust washer (33) on the mainshaft (1).
4. Drive sprocket (32) on the mainshaft.
5. Block ring (30) on the mainshaft.
6. Synchronizer assembly (27) on the mainshaft.
7. New snap ring (26) on the main shaft.
8. Pump gear (5). Tap the gear with a soft hammer to seat it on the mainshaft.
TRANSFER CASE

- Bearings must be aligned with the bearing oil feed holes.

Install or Connect (Figures 1 and 2)

Tools Required:
- J 8092 Driver Handle
- J 33826 Rear Output Bushing Installer
- J 33829 Pilot Bearing Installer
- J 33830 Front Input Bearing Installer
- J 33831 Input Seal Installer
- J 33832 Front Output Rear Bearing Installer
- J 33833 Output Main Bearing Installer
- J 33834 Front Output Seal Installer
- J 33835 Pump Housing Seal Installer
- J 33843 Extension Housing Seal Installer

1. Lock plate (40) in the transfer case.
 - Coat the case and the lock plate surfaces around the bolt holes with Locktite 515 or equivalent.

2. Lock plate retaining bolts (47).
 - Nut to 35 N·m (25 ft. lbs.).

3. Input gear roller bearings (45) into the transfer case using J 33830 and J 8092. Press the bearings until the tool bottoms in the bore (figure 22).

4. Front output shaft rear bearing (20) using J 33832 and J 8092. Press the bearing until the tool bottoms in the case (figure 23).

5. Front output shaft front bearing (54) using J 33833 and J 8092. Press the bearing until the tool bottoms in the bore.

6. Front output shaft bearing retaining snap ring (53) in the case.

7. Front output shaft seal (52) using J 33834 (figure 24).

8. Input main drive gear seal (46), using J 33831.

9. Spacer (75) on the shift sector shaft.

10. Shift sector (74) in the transfer case.

11. Oil seal (57).

12. Retainer (58).

13. Shifter lever (59).

Tighten
- Nut to 24 N·m (18 ft. lbs.).

13. Shift sector detent spring (61).

15. Pilot bearing (35) into the input gear (37) using J 33829 and J 8092. Press the bearing until the tool bottoms out (figure 25).
16. Input gear front thrust bearing (38 and 39) in the transfer case.
17. Input gear (37) in the transfer case.
18. Planetary gear thrust washer (34) on the input gear (37).
19. Range fork (66) on the planetary assembly.
20. Planetary assembly into the transfer case.
21. Mainshaft (1) into the transfer case.
 • Make sure the thrust washer is aligned with the input gear and planetary assembly before installing the mainshaft.
22. Mode fork (69) on the synchronizer sleeve (27). Rotate until the mode fork is aligned with the range fork.
23. Shift fork shaft (73). Slide the mode fork rail down through the range fork until the shaft is seated in the bore of the transfer case.
24. Drive chain (76) on the front output shaft (21) and the drive sprocket (32).
25. Front output shaft (21) in the transfer case. Slightly raise the mainshaft to seat the output shaft in the case.
26. Magnet into the pocket in the transfer case.
27. Rear case (2) on the front case (44).
 • Apply a 3 mm (½-inch) bead of Loctite 515 or equivalent to the mating surface of the front case.
 • Align the rear case to the front case aligning dowel pins.
28. Case bolts (17).
 • Install the two bolts with washers into the dowel pin holes (figure 26).

Tighten
• Bolts to 31 N m (23 ft. lbs.).
29. Output bearing (10) into the rear retainer (7) using J 33833 and J 8092. Press the bearing until its seated in the bore (figure 27).
30. Pump seal (3) in the pump housing (4) using J 33835 (figure 28).
31. Pump housing (4) in the rear retainer (7).
 • Apply petroleum jelly to the pump housing tabs before installation.
32. 3 mm (½-inch) of Loctite 515 or equivalent to the mating surface of the rear retainer.
33. Retainer (7) to the case.
34. Retainer bolts (9).

Tighten
• Bolts to 24 N m (18 ft. lbs.).
35. New snap ring (11) on the main shaft.
 • Pull up on the main shaft and seat the snap ring in its groove.
36. Bushing (14) in the extension housing (12) using J 33826 and J 8092. Press the bushing in until the tool bottoms in the bore.
37. New seal (15) in the extension housing (12), using J 33843.
38. 3 mm (⅛-inch) of Loctite 515 or equivalent to the mating surface of the extension housing (12).
39. Extension housing (12) to the rear retainer (7).
40. Extension housing retaining bolts (13).

Tighten
- Bolts to 31 N·m (23 ft. lbs.).

41. New front yoke seal washer (50) in the yoke (48).
42. Front yoke (48).
43. New yoke nut (49).

Tighten
- Nut to 150 N·m (110 ft. lbs.).

44. Drain plug (16) and fill plug (16).

Tighten
- Plugs to 47 N·m (35 ft. lbs.).

SPECIFICATIONS

NEW PROCESS 207 TRANSFER CASE

<table>
<thead>
<tr>
<th>Item</th>
<th>N·m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolt—Locking Plate to Transfer Case</td>
<td>34</td>
<td>25</td>
</tr>
<tr>
<td>Nut — Front Output Yoke</td>
<td>150</td>
<td>110</td>
</tr>
<tr>
<td>Switch — Vacuum</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Nut — Shift Lever</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>Bolt — Transfer Case</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Bolt — Rear Retainer</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>Bolt — Extension Housing</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Plug — Drain, Fill</td>
<td>47</td>
<td>35</td>
</tr>
<tr>
<td>Bolt — Adapter to Transfer Case</td>
<td>33</td>
<td>24</td>
</tr>
<tr>
<td>Bolt — Shift Bracket</td>
<td>75</td>
<td>55</td>
</tr>
<tr>
<td>Bolt — Shift Lever Pivot</td>
<td>130</td>
<td>96</td>
</tr>
<tr>
<td>Bolt — Shift Lever Adjusting</td>
<td>41</td>
<td>30</td>
</tr>
<tr>
<td>Lubricant: Dexron® II</td>
<td></td>
<td>4.7 Pints</td>
</tr>
</tbody>
</table>

F-08627 Figure 28—Oil Pump Seal Installation
1. Driver Handle
2. Input Gear Pilot Bearing Remover
3. Front Output Shaft Rear Bearing Remover
4. Bearing Cup Puller Bridge
5. Front Drive Sprocket Bearing Installer
6. Pilot Bearing Installer
7. Front Input Bearing Installer
8. Input Seal Installer
9. Front Output Rear Bearing Installer
10. Output Main Bearing Installer
11. Front Output Seal Installer
12. Pump Housing Seal Installer
13. Rear Output Bushing Remover
14. Input Drive Gear Roller Bearing Remover
15. Extension Housing Seal Installer
SECTION 7D3

NEW PROCESS 208 TRANSFER CASE

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>7D3-2</td>
</tr>
<tr>
<td>Disassembly</td>
<td>7D3-3</td>
</tr>
<tr>
<td>External Components</td>
<td>7D3-3</td>
</tr>
<tr>
<td>Mainshaft Extension</td>
<td>7D3-3</td>
</tr>
<tr>
<td>Internal Components</td>
<td>7D3-3</td>
</tr>
<tr>
<td>Front and Rear Bearings</td>
<td>7D3-3</td>
</tr>
<tr>
<td>Cleaning and Inspection</td>
<td>7D3-7</td>
</tr>
<tr>
<td>Assembly</td>
<td>7D3-7</td>
</tr>
<tr>
<td>Front and Rear Bearings</td>
<td>7D3-7</td>
</tr>
<tr>
<td>Internal Components</td>
<td>7D3-8</td>
</tr>
<tr>
<td>Mainshaft Extension</td>
<td>7D3-9</td>
</tr>
<tr>
<td>External Components</td>
<td>7D3-9</td>
</tr>
<tr>
<td>Specifications</td>
<td>7D3-10</td>
</tr>
<tr>
<td>Special Tools</td>
<td>7D3-11</td>
</tr>
</tbody>
</table>
DESCRIPTION

The Model 208 transfer case is an aluminum case, chain drive, four position unit providing four-wheel drive high and low ranges, a two-wheel high range, and a neutral position. The model 208 is a part-time four-wheel drive unit. Torque input in four-wheel high and low ranges is undifferentiated. The range positions on the Model 208 are selected by a floor mounted gearshift lever.

The model 208 case is a two-piece aluminum case containing front and rear output shaft, two drive sprockets, a shift mechanism and a planetary gear assembly. The drive sprockets are connected and operated by the drive chain. The planetary assembly which consists of a four pinion carrier and an annulus gear provide the four-wheel drive low range when engaged. Reduction ratio is 2.61:1 in this range.

IDENTIFICATION

An identification tag is attached to the rear half of the transfer case. This tag provides the transfer case model number, low range reduction ratio, and assembly number. The information on this tag is necessary for servicing information. If the tag is removed or becomes dislodged during service operations, it should be reattached using an adhesive sealant such as Loctite 312, or equivalent.

POWER FLOW

In all drive range positions input torque is transmitted to the transfer case gear train through the transfer case input gear.

In 2H range, torque flows from the input gear to the planetary assembly and annulus gear which rotates as a unit. Torque is transferred to the mainshaft through the planetary carrier which is splined to the mainshaft. Torque flow continues through the mainshaft and rear yoke which is splined to the mainshaft, and finally to the rear propeller shaft and axle. In 2H range, the sliding clutch remains in a neutral position and does not lock the drive sprocket to the mainshaft. As a result, torque is not transferred to the driven sprocket.

In 4H range, input torque from the input gear is transmitted through the planetary and annulus gear and through the mainshaft in exactly the same fashion as in 2H range. However, in 4H position, the sliding clutch is shifted forward and into engagement with the mainshaft clutch gear. This locks in the drive sprocket to the mainshaft through the sliding clutch. Torque is not transmitted through the drive sprocket to the driven sprocket by the connecting drive chain. Since the front output shaft is splined to the driven sprocket, torque now flows through the front output shaft to the front propeller shaft and axle resulting in high range four-wheel drive.

In 4L range, the path of torque through the transfer case is exactly the same as in 4H range but with one major difference. In 4L range, the annulus gear is shifted forward and into engagement with the lock plate. Since the lock plate is fixed in the case, the annulus gear is held stationary and does not rotate. This causes the planetary pinions to rotate about the annulus gear internal teeth producing a gear reduction ratio of 2.61:1.
EXTERNAL COMPONENTS

Clean
- The transfer case exterior using a solvent and a stiff brush.

Remove or Disconnect (Figures 1 and 2)
1. Fill plug (15).
2. Drain plug (15).
3. Front yoke nut (61). Discard.
4. Main yoke (63).
5. Yoke seal washer (62).
- Turn the transfer case on end. Position the front case on wood blocks. Cut "V" notches in the wood blocks to clear the mounting studs in the front case.
6. Indicator lamp switch (53) and washer.
7. Poppet screw (60).
8. Poppet screw spring (59).
9. Range section plunger (58).

MAINSHAFT EXTENSION

Remove or Disconnect (Figures 1 and 2)
1. Extension bolts (14).
2. Main shaft extension (9) and pump housing (6) as an assembly.
- Tap the retainer from the case using a plastic mallet. Do not pry.
3. Pump housing (6) from the retainer (9).
4. Pump seal (5) from the housing. Discard the seal.
5. Speedometer drive gear (2) from the main shaft (1).
6. Oil pump gear (7) from the main shaft (1).
- Note the position of the pump for assembly reference. The side facing the case interior has a recess in it.

INTERNAL COMPONENTS

Remove or Disconnect (Figures 1, 2, and 3)
1. Case bolts (4).
2. Rear case (3) from the front case (54).
- Insert screwdrivers into the slots cast in the case ends and gently pry upward. Do not attempt to wedge the case halves apart at any point on the mating surfaces.
3. Front output shaft rear thrust bearing assembly (71, 70 and 69).
- Note the position of the bearing and races for assembly reference.
4. Driven sprocket retainer ring (74).
5. Drive sprocket retainer ring (35).
6. Thrust washer (34).
7. Drive sprocket (33), driven sprocket (73) and drive chain (75) as an assembly (figure 3).
- Lift evenly on both sprockets to remove the assembly. The mainshaft roller bearings may drop out of the drive sprocket.
8. Front output shaft (72) and front thrust bearing assembly (69, 70, and 71).
10. Synchronizer (27), mode fork bushings (43 and 42), mode fork (44) and bracket (38) as an assembly. The synchronizer keys may fall free from the hub.
11. Shifter fork shaft (41).
12. Main shaft (1) with the synchronizer hub and retainer ring (26) attached.
14. Thrust washer (23).
15. Annulus gear (22) and range fork (36) as an assembly.
- Turn the fork to the left in order to disengage the fork lug from the range sector and lift the assembly out of the case.
16. Planetary thrust washer (21).
17. Planetary assembly (20).
18. Main shaft thrust bearing (46) from the input gear (49).
19. Input gear (49).
- Lift the gear straight up and out of the case.
20. Input gear thrust bearing (50) and race (51).
- Note the position of the bearing and the race for assembly reference.
21. Range sector operating lever attaching nut (381) and washer (80).
22. Lever (79).
23. Sector shaft seal (68).
25. Range sector (52).
26. Front output shaft seal (65).
27. Input gear seal (56).
28. Lock plate attaching bolts (55).
29. Lock plate (19) from the case.

FRONT AND REAR BEARINGS

Tools Required:
- J 2619-01 Slide Hammer
- J 8092 Driver Handle
- J 26941 Front Output Shaft Rear Bearing Remover
- J 29168 Front Output Shaft Front Bearing Remover
- J 29170 Input Gear Front and Rear Bearing Remover
- J 29369-1 Input Drive Gear Pilot Bearing Remover

Remove or Disconnect (Figures 4 through 7)
1. Main shaft rear bearing (8) from main shaft extension (9). Use a brass drift and mallet.
2. Rear seal (12). Use a brass drift.
3. Front output shaft front bearing (66) using J 8092 and J 29168 (figure 4).
4. Front output shaft rear bearing (76) using J 26941 and J 2619-01 (figure 5).
5. Input gear front/rear bearing (57) using J 8092 and J 29170 (figure 6).
6. Input drive gear pilot bearing using J 2619-01 and J 29369-1 (figure 7).
Figure 1—New Process 208 Transfer Case
1. Main Driveshaft
2. Speedometer Drive Gear
3. Rear Housing
4. Bolt
5. Oil Pump Seal
6. Oil Pump Housing
7. Oil Pump Gear
8. Main Shaft Rear Bearing
9. Main Shaft Extension
10. Vent Pipe
11. Main Shaft Extension Bushing
12. Main Shaft Extension Seal
13. Indicator Switch Wire Clip
14. Bolt
15. Oil Fill/Drain Plug & Gasket
16. Alignment Dowel
17. Dowel Washer
18. Bolt
19. Low Range Lock Plate
20. Planetary Gears Carrier
21. Planetary Gear Thrust Washer
22. Anulus Gear
23. Anulus Gear Thrust Washer
24. Range Fork Center Pad
25. Anulus Gear Retainer Ring
26. Synchronizer Retainer Ring
27. Synchronizer
28. Synchronizer Strut Spring
29. Synchronizer Shift Strut
30. Synchronizer Stop Ring
31. Sprocket Roller Spacer
32. Sprocket Rollet
33. Sprocket
34. Drive Sprocket Thrust Washer
35. Drive Sprocket Retainer Ring
36. Range Fork
37. Range Fork Shift Pin
38. Mode Fork and Spring Retainer
39. Mode Fork Shifter Spring
40. Mode Fork Spring Cup
41. Shifter Fork Shaft
42. Fork End Pad
43. Mode Fork Center Pad
44. Mode Fork
45. Mode Fork Shifter Pin
46. Input Drive Gear Thrust Bearing
47. Input Drive Gear Pilot Bearing
48. Input Drive Gear Plug
49. Input Drive Gear
50. Input Drive Gear Thrust Bearing
51. Input Drive Gear Thrust Washer
52. Range Sector, with Shaft
53. Indicator Lamp Switch and Washer
54. Front Housing
55. Lock Plate Bolt
56. Input Drive Gear Seal
57. Input Drive Gear Bearing
58. Range Sector Plunger
59. Poppet Screw Spring
60. Poppet Screw
61. Front Output Yoke Nut
62. Front Output Yoke Seal Washer
63. Yoke
64. Yoke Deflector
65. Front Output Shaft Seal
66. Front Output Shaft Bearing
67. Range Sector Shaft Oil Seal
68. Sector and Shaft Retainer
69. Outer Thrust Washer
70. Thrust Bearing
71. Inner Thrust Washer
72. Front Output Shaft
73. Sprocket
74. Driven Sprocket Retainer Ring
75. Drive Chain
76. Front Output Shaft Pilot Bearing
77. Anulus Gear Hub Bushing
78. Dowel Pin
79. Lever
80. Washer
81. Nut

Figure 2—New Process 208 Transfer Case
Figure 3—Sprocket and Chain Removal

Figure 4—Front Output Shaft Front Bearing Removal

Figure 5—Front Output Shaft Rear Bearing Removal

Figure 6—Input Gear Bearing Removal

Figure 7—Main Shaft Pilot Bearing Removal
CLEANING AND INSPECTION

Clean
1. Bearings.
 • Remove all old lubricant and dirt.
2. Shafts.
3. Sprockets.
4. Chain.
5. Oil feed ports and channels in each case half. Apply compressed air to each oil feed port and channel in order to remove any obstructions or cleaning solvent residue.

Inspect
1. Bearings and thrust washers for wear, spalling, brinelling, or corrosion.
2. Gear teeth for excessive wear or damage, spalling, cracks, or corrosion.
3. Gear splines for excessive wear, spalling, cracks, twist or corrosion.
4. Shaft splines for excessive wear, spalling, cracks, distortion or corrosion.
5. Retainer rings for excessive wear, distortion or damage.
6. Case halves for damaged or warped mating surfaces, cracks, porosity, or damaged threaded holes.
7. Lock plate teeth for cracks, chips, spalling, or excessive wear.
8. Lock plate hub for cracks or distortion.

ASSEMBLY

FRONT AND REAR BEARINGS

Install or Connect (Figures 8 through 12)

Tools Required:
J 8092 Driver Handle
J 29174 Mainshaft Bearing Installer
J 29169 Input Gear Bearing Installer
J 29163 Front Output Shaft Rear Bearing Installer
J 29167 Front Output Shaft Front Bearing Installer
J 29162 Extension Oil Sealer Installer
J 7818 Rear Output Bearing Installer
1. Input drive gear pilot bearing (47) using J 8092 and J 29174 (figure 8).

Figure 8—Main Shaft Pilot Bearing Installation

2. Input gear rear bearing (57) using J 8092 and J 29169 (figure 9).

Figure 9—Input Gear Bearing Installation

• Check that the oil feed hole is not covered.
• Make sure the bearing is seated flush with the edge of the oil hole.

3. Input gear front bearing (57) using J 8092 and J 29169.

4. Front output shaft pilot bearing (76) using J 8092 and J 29163 (figure 10).
• Check that the oil feed hole is not covered.
• The bearing is seated flush with the edge of the case bore to allow room for the thrust bearing assembly.

5. Front output shaft front bearing (66) using J 8092 and J 29167 (figure 11).

6. Mainshaft rear bearing (8) using J 8092 and J 7818 (figure 12).
The shielded side of the bearing faces the interior of the case.

INTERNAL COMPONENTS

Install or Connect (Figures 1, 2, and 13)

1. Lock plate (19).
 - Coat the case and the lock plate surfaces around the bolt holes with Loctite 515 sealant or equivalent.
 - Position the new lock plate in the case.
 - Align the bolt holes.
2. Lock plate attaching bolts (55).
 - Coat the new lock plate attaching bolts with Loctite 271 sealant, or equivalent.

Tighten

- Bolts to 41 N·m (30 ft. lbs.).
- Input gear race (51) in the front case.
- Thrust bearing (50).
- Input gear (49).
- Main shaft thrust bearing (46) in the input gear (49).
- Range sector (52).
- Range sector shaft oil seal (67).
- Range sector shaft retainer (68).
- Operating lever (79) on the range sector shaft.
- Shaft washer (80).
- Lock nut (81).

Tighten

- Nut to 24 N·m (18 ft. lbs.).
- Planetary assembly (20) over the input gear (49). Be sure the planetary is fully seated and meshed with the gear (figure 13).
- Planetary thrust washer (21) on the planetary hub (20).
15. Pads (42, 24) in the range fork (36).
16. Range fork (36) in the annulus gear (22).
17. Annulus gear (22) over the planetary assembly (20). The range fork lug should be fully inserted in the range sector slot.
18. Annulus gear retainer ring (25).
 • Align the shaft bores in the case and range fork.
 • Install the shift shaft.
20. Mainshaft (1). The mainshaft thrust bearing (46) must be properly seated in the input gear before installing the mainshaft.
21. Synchronizer (27) and the mode fork (44) as an assembly. Position the synchronizer keys before installing the synchronizer.
22. Synchronizer stop ring (30).
23. Sprocket roller spacer (31).
 • Coat the mainshaft with petroleum jelly.
24. First row of bearing rollers (32); 60 rollers in the row.
25. Sprocket roller spacer (31).
26. Second row of bearing rollers (32); 60 rollers in the row.
27. Sprocket roller spacer (31).
28. Front output shaft front thrust bearing assembly (69, 70, 71) in the front case.
 • The installation sequence is: thick race, thrust bearing, and thin race. The thick race is next to the case.
29. Front output shaft (72).
30. Sprockets (73, 33) and the drive chain (75) as an assembly.
 • Position the sprockets in the chain.
 • Align the sprockets with the shafts.
 • Install the assembly. The drive sprocket is installed with the tooth side of the sprocket facing the case interior.
31. Drive sprocket thrust washer (34).
32. Sprocket retainer ring (35).
33. Driven sprocket retainer ring (74).
34. Front output shaft rear thrust bearing assembly (69, 70, 71) on the front output shaft.
 • The sequence is thin race, thrust bearing, thick race. The thick race is next to the housing.
35. Oil pump gear (7) on the mainshaft. Be sure the recessed side of the pump face downward toward the case interior.
36. Speedometer drive gear (2) on the mainshaft.
37. Magnet in the front case.
38. Spring (39) on the shift shaft (41).
39. Retainer (38) on the shaft shaft (41).
40. Loctite 515 sealant, or equivalent, to the mating surface of the main shaft extension (9).
41. Main shaft extension (9).
 • Align the extension and case index marks before installing the extension.
42. Case bolts (4).
 • Align the case bolt holes and alignment dowels before installing the bolts.
 • Install flat washers (17) on the two bolts (18) installed at the opposite ends of the case.

Figure 14—Rear Output Bearing Seal Installation

2 Tighten
 • The bolts alternately and evenly to 31 N m (23 ft. lbs.).

MAINSHAFT EXTENSION

Tool Required:
J 29162 Rear Output Bearing Seal Installer

Install or Connect (Figure 1, 2, and 14)
1. Pump seal (5).
2. Petroleum jelly to the pump housing tabs.
3. Pump housing (6) in the main shaft extension (9).
4. Loctite 515 sealant, or equivalent, to the mating surface of the main shaft extension (9).
5. Main shaft extension (9).
 • Align the extension and case index marks before installing the extension.

2 Tighten
 • Bolts to 31 N m (23 ft. lbs.).

7. Extension oil seal (12) in the extension bore using J 29162 (figure 14).
 • Coat the seal lip with petroleum jelly before installing the seal.

EXTERNAL COMPONENTS

1. Washer on the indicator switch (53).
2. Indicator switch (53).

2 Tighten
 • Switch to 24 N m (18 ft. lbs.).
3. Loctite 515 sealant to the poppet screw (60).
4. Range sector plunger (58), spring (59), and screw (60).
Tighten

- Screw to 31 N·m (23 ft. lbs.)
- Plug to 24 N·m (18 ft. lbs.)

Drain plug and gasket (15).

Front case output shaft oil seal (65) in the shaft bore.

Front yoke seal washer (62).

Front yoke (63).

Yoke nut (61).

Tighten

- Nut to 163 N·m (120 ft. lbs.)

Fill plug (15).

Tighten

- Plug to 24 N·m (18 ft. lbs.)

10. 10 pints of Dexron II into the transfer case.

11. Fill plug (15).

SPECIFICATIONS

NEW PROCESS 208 TRANSFER CASE

<table>
<thead>
<tr>
<th>Item</th>
<th>N·m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lock Plate Retaining Bolt</td>
<td>41</td>
<td>30</td>
</tr>
<tr>
<td>Range Sector Shaft Retaining Nut</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>Transfer Case Bolts</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Extension Bolts</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Indicator Switch</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>Poppet Screw</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Drain Plug</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>Front Yoke Nut</td>
<td>163</td>
<td>120</td>
</tr>
<tr>
<td>Fill Plug</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>Lubricant: Dexron® II</td>
<td></td>
<td>10 Pints</td>
</tr>
</tbody>
</table>
SPECIAL TOOLS

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>J 2619-01</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>J 7818</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>J 8092</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>J 26941</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>J 29162</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>J 29163</td>
<td>12</td>
</tr>
</tbody>
</table>

1. Slide Hammer
2. Rear Output Bearing Installer
3. Driver Handle
4. Front Output Shaft Rear Bearing Remover
5. Extension Oil Seal Installer
6. Front Output Shaft Rear Bearing Installer
7. Front Output Shaft Front Bearing Installer
8. Front Output Shaft Rear Bearing Remover
9. Input Gear Bearing Installer
10. Input Gear Front and Rear Bearing Remover
11. Mainshaft Bearing Installer
12. Input Drive Gear Pilot Bearing Remover F-05820
NEW PROCESS 241 TRANSFER CASE

DESCRIPTION

The Model 241 transfer case is an aluminum case, chain drive, four position unit providing four-wheel drive high and low ranges, a two-wheel high range, and a neutral position. The model 241 is a part-time four-wheel drive unit. Torque input in four-wheel high and low ranges is undifferentiated. The range positions on the Model 241 are selected by a floor mounted gearshift lever.

The case is a two-piece aluminum case containing front and rear output shafts, two drive sprockets, a shift mechanism and a planetary gear assembly. The drive sprockets are connected and operated by the drive chain. The planetary assembly which consists of a six pinion carrier and an annulus gear provide the four-wheel drive low range when engaged. Reduction ratio is 2.72:1 in this range (figures 1 and 2).

IDENTIFICATION

An identification tag is attached to the rear half of the transfer case (figure 3). This tag provides the transfer case model number, low range reduction ratio, and assembly number. The information on this tag is necessary for servicing information. If the tag is removed or becomes dislodged during service operations, it should be reattached using an adhesive sealant such as Loctite 242, or equivalent.

POWER FLOW

In all drive range positions input torque is transmitted to the transfer case gear train through the transfer case input gear.

In 2H range, torque flows from the input gear to the range shift hub and main shaft. Torque flow continues through the slip yoke which is splined to the mainshaft, and finally to the rear propeller shaft and axle. In 2H range, the mode synchronizer remains in the neutral position and does not lock the drive sprocket to the mainshaft. As a result, torque is not transferred to the driven sprocket.

In 4H range, input torque from the input gear is transmitted to the mainshaft in exactly the same fashion as in 2H range. However, in 4H position, the mode synchronizer sleeve is shifted into engagement with the clutch teeth of the drive sprocket. This locks the drive sprocket to the mainshaft through the synchronizer. Torque is transmitted through the drive sprocket to the driven sprocket by the connecting drive chain. Since the front output shaft is splined to the driven sprocket, torque flows through the front output shaft to the front propeller shaft and axle resulting in high range four-wheel drive.

In 4L range, the path of torque through the transfer case is exactly the same as in 4H range but with one major difference. In 4L range the range shift hub is shifted into engagement with the planetary carrier. This causes the input gear to rotate the planetary pinions inside the annulus gear, causing the planetary carrier, range shift hub and mainshaft to rotate at a gear reduction ration of 2.72:1.
Figure 1—New Process 241 Transfer Case Components
1. Oil Seal	43. Input Retainer Bolt
2. Bushing	44. Input Bearing Retainer
3. Rear Extension Housing Bolts/Case Bolts	45. Front Case Half
4. Rear Extension	46. Indicator Lamp Switch
5. Retainer Snap Ring	47. O-Ring Seal
6. Front Output Bearing	48. Shift Rail
7. Pump Retainer Housing	49. Pads
8. Pump Retainer Housing	50. Pads (Center)
10. Retainer (Snap Ring)	52. Fork Shift Spring
11. Speedometer Tone Wheel	53. Pin
12. Oil Pump	54. Mode Shift Fork
13. Oil Pump Seal	55. Sector With Shaft
14. O-Ring	56. Bushing
15. Plug	57. Range Fork Pin
16. Bolt	58. Chain
17. Rear Case Half	59. Retainer Snap Ring
18. Oil Pump Pick Up Tube	60. Retainer Snap Ring
19. Mainshaft	61. Front Output Bearing
20. Drive Sprocket	62. Annulus Gear
21. Front Output Shaft	63. Shift Lever Bearing
22. Driven Sprocket	64. Washer
23. Retainer (Snap Ring)	65. Shift Lever
25. Magnet	67. O-Ring Seal
26. Oil Tube Connector	68. Poppet Screw
27. Washer	69. O-Ring Seal
28. Main Drive Synchronizer Stop Ring	70. Selection Plunger
29. Synchronizer Sleeve	71. Poppet Spring
30. Strut	72. Front Output Shaft Seal
31. Synchronizer Hub	73. Deflector
32. Spring Retainer	74. Front Output Flange
33. Dowel	75. Rubber Sealing Washer
34. Range Shift Hub	76. Washer
35. Pump Pick Up Screen	77. Nut Front Output Flange
36. Planetary Carrier	78. Carrier Lock Ring
37. Thrust Washer	79. Oil Pump Screw
38. Input Gear	80. Identification Tag
39. Retainer Snap Ring	81. Synchronizer Assembly
40. Input Bearing	82. Drive Sprocket Bearing
41. Retainer Snap Ring	83. Mode Synchronizer Hub Snap Ring
42. Input Bearing Retainer Seal	84. Mainshaft Pilot Bearing

Figure 2—New Process 241 Transfer Case Components
DISASSEMBLY OF THE TRANSFER CASE

EXTERNAL COMPONENTS

Clean
- The transfer case exterior using a solvent and a stiff brush.

Remove or Disconnect (Figures 1, 2, 3 and 4)
1. Front output flange nut (77), washer (76), rubber sealing washer (75) and front output flange (74) from the front output shaft.
2. Indicator lamp switch (46) and O-ring seal (47).
3. Speedometer sensor (9) and seal.
4. Poppet screw (68), O-ring seal (69), poppet spring (71) and poppet plunger (70).

MAINSHAFT EXTENSION AND OIL PUMP HOUSING

Remove or Disconnect (Figures 1, 2, 3 and 4)
1. Rear extension housing bolts (3) and rear extension (4).
2. Bearing retainer (snap ring) (5) from the mainshaft (19).
3. Pump retainer housing bolts (7).
4. Pump retainer housing bolts are shouldered.
5. Retainer (snap ring) (10), speedometer tone wheel (11) and retainer (snap ring) (10) from the mainshaft (19).
6. Case bolts (3) from the case halves.
 - Note two longer case bolts and washers go into doweled case holes (33).
 - Separate case halves. Insert screwdrivers into the slots cast in the case ends and pry apart. Do not attempt to wedge the case halves apart at any point on the mating surfaces.
 - Be careful not to damage the oil pump (12) (located in the rear case half) while removing the rear case half (17).

INTERNAL COMPONENTS

Remove or Disconnect (Figures 5, 6 and 7)
Tools Required:
- J 2619-5 Slide Hammer
- J 8092 Driver Handle
- J 22912-1 Bearing Remover
- J 29369-1 Needle Bearing Remover
- J 29369-2 Needle Bearing Remover
38. Input Gear
44. Input Bearing Retainer
46. Indicator Light Switch

63. Shift Lever Nut
65. Shift Lever
74. Front Output Flange

Figure 4—Front View — 241 Transfer Case

25. Magnet
45. Front Case Half
54. Mode Fork
55. Sector With Shaft
81. Synchronizer Assembly

48. Shift Rail
51. Range Fork
52. Mode Fork Spring
54. Mode Fork
55. Sector With Shaft
63. Shift Lever Nut
65. Lever

Figure 5—Mode Fork and Shaft Assembly
Figure 6—Shift Rail Assembly
Oil pump (12), pickup tube (18), O-ring (14) and pump pickup filter (35) from the rear case half (figure 7).

Fork shift spring (52).

Retainer (snap ring) (23) from the front output shaft (21).

Mainshaft (19), chain (58), and driven sprocket (22) from the front case half (45) as a unit. Mode shift fork (54) and shift rail (48) will be removed with the mainshaft.

Retainer (snap ring) (41) from the mainshaft (19).

Synchronizer assembly (81). Drive sprocket (20) from the mainshaft (19) (figure 5).

Range shift fork (51) and range shift hub (34) and sector with shaft (55) from the planetary carrier (36).

• It is necessary to rotate the sector with shaft (55) to obtain clearance when removing the range fork (51) (figure 6).

Shift lever nut (63), washer (64), shift lever (65), plastic washer (66) and the O-ring seal (67) from the front case half (45).

Input bearing retainer bolts (43) and input bearing retainer (44) from the front case half (45).

Bearing retainer (snap ring) (39).

Planetary carrier (36) and the input gear (38) from the annulus gear (62) using a soft faced hammer.

Retainer ring (snap ring) (41) from the input gear (38).

Input bearing (40) from the input gear (38) with J 22912-1 (Bearing Remover).

• Carrier lock ring (78).

• Thrust washer (37).

Drive sprocket bearing (82) from the drive sprocket (20) using J 29369-1 and J 2619-01.

Needle bearings (84) from the input gear (38) using J 29369-2, J 9276-21 and J 2619-01 (figure 8).

Front output bearing retainer ring (snap ring) (60).

Front output shaft seal (72) from the front case half (45).
21. Front output rear bearing (24) from the rear case half (17).
 • Insert J 29369-2 behind the needle bearings.
 • Using J 2619-5, hammer the bearing from the case (figure 9).
22. Mainshaft bearing (6) from the oil pump retainer (8).
23.Magnets (25) from the front case half (45).

Disassemble

• Scribe location of synchronizer hub and sleeve to aid in assembly.

CLEANING AND INSPECTION

Clean

1. Bearings.
 • Remove all old lubricant and dirt.
2. Shafts.
3. Sprockets.
4. Chain.
5. Oil feed ports and channels in each case half. Apply compressed air to each oil feed port and channel in order to remove any obstructions or cleaning solvent residue.
6. All mating and sealing surfaces.

Inspect

1. Bearings and thrust washers for wear, spalling, brinelling, or corrosion.
2. Gear teeth for excessive wear or damage, spalling, cracks, or corrosion.
3. Gear splines for excessive wear, spalling, cracks, twist or corrosion.
4. Shaft splines for excessive wear, spalling, cracks, distortion or corrosion.
5. Retainer rings for excessive wear, distortion or damage.
6. Case halves for damaged or warped mating surfaces, cracks, porosity, or damaged threaded holes.
7. Synchronizer stop ring for cracks, chips, spalling, or excessive wear.
8. Synchronizer hub and sleeve for cracks, chips, spalling, or excessive wear.
9. Pads on the mode fork and the range fork for wear, distortion.
10. Oil pump gears and case halves for wear, spalling, cracks, and damage. Replace complete assembly if there is wear.
11. Input gear, planetary carrier and range shift hub tooth chamfers for excessive wear.
Figure 10—Installing the Needle Bearings to the Front Drive Sprocket

BEARING AND SEAL REPLACEMENT

Install or Connect

Tools Required:
- J 8092 Driver Handle
- J 36370 Drive Gear Needle Bearing Installer
- J 36371 Front and Rear Output Shaft Bearing Installer
- J 36372 Input Gear Bearing Installer (Needle Bearing)
- J 36373 Input Gear Bearing Installer (Ball Bearing)

- Use ATF or equivalent where needed in assembly.

1. Needle bearings (82) to the drive sprocket (20) using J 36370 and J 8092 (figure 10).
 - Drive the bearings into the driven sprocket so that it is flush on the synchronizer side.
2. Needle bearing (24), to the rear case half (17) using J 36372 and J 8092.
 - Bearing must be flush with the boss on case housing.
3. Bearing (61) to the front case half (45) using J 36371.
4. Retainer (60) (figures 11 and 12).
5. Bearing (6) to the pump retainer housing (8) using J 36371 (figures 13 and 14).
6. Bearing (84) to the input gear (38) using J 36372 and J 8092.
7. Thrust washer (37).
8. Carrier lock ring (78).
9. Retainer (39).
10. Bearing (40) to the input gear (38) using J 36372.
11. Retainer ring (snap ring) (41) to the input gear (38).
12. Oil seal (1) to the rear extension (4).
13. Input bearing retainer seal (42) to the input bearing retainer (44).
14. Front output shaft seal (72) to the front case half (45).
15. Magnet (25) into front case half (45).
INTERNAL COMPONENTS

Assemble

1. Synchronizer hub (31) to the synchronizer sleeve (29) along with the three struts (30).
 - Align the previously made scribe marks.
2. Spring retainer (32) to the synchronizer sleeve (29).
3. Main drive synchronizer stop ring (28) to the synchronizer sleeve (29).

Install or Connect

1. Drive sprocket (20) to the mainshaft (19).
2. Planetary input gear assembly (38) into the annulus gear (62) using a soft faced hammer.
3. Bearing retainer (snap ring) (39) to the input bearing (40).
4. Input bearing retainer bolts (43) and input bearing retainer (44) to the front case half (45).
 - Apply RTV or equivalent on bearing retainer mating surfaces.
 - Apply Loctite 242 or equivalent on bearing retainer bolts.

Tighten

- Bolts (3) to 19 N·m (14 ft. lbs.).
5. Sector with shaft (55) into the front case half (45).
6. Shift lever O-ring (67), plastic washer (66), shift lever (65), washer (64), and nut (63) to the front case half (figure 15).
7. Range shift hub (34) and the range shift fork into the front case half (45).
8. Synchronizer assembly, mode shift fork (54) and rail into the front case half (45) (figure 16).
9. Front output shaft (21) to the front case half (45).
10. Driven sprocket (22) into the chain (58).
11. Drive sprocket (20) and mainshaft (19) into the chain (58).
 - It is necessary to rotate the sector to align the range shift fork.
12. Retainer (snap ring) (23) onto the front output.
13. Fork shift spring (52) onto the mode shift rail (48).
14. Oil pump pick up tube (18), oil tube connector (26) and pump pick up screen (35) into the rear case half (17) (figure 17).
15. Oil tube O-ring (14) onto the oil pump pick up tube (18).

NOTICE: Do not damage the O-ring during assembly as this could result in pump failure.

16. Oil pump (12) to the oil pump pick up tube (18).
 - Apply RTV sealer to the case mating surfaces.
17. Rear case (17) over mainshaft (19) and onto the front case half (45).
 - Be careful not to damage the oil pump (12) while installing the rear case half (figure 7).
18. Case bolts (3) into case halves.
 - Apply Loctite 242 or equivalent to case bolts.
 - The two longer case bolts and washers to into doweled case holes (33) (figure 17).
7D4-10 NEW PROCESS 241 TRANSFER CASE

Figure 15—Sector with Shaft

2. **Tighten**
 - Bolts to 31 N.m (23 ft. lbs.).

19. Pump retainer housing (8) and pump housing bolts (7) to the rear case half (17).
 - Apply Loctite 242 or equivalent on pump housing bolt threads.
 - Pump housing bolts are shouldered (7).

20. **Tighten**
 - Bolts to 41 N.m (30 ft. lbs.).

21. Input bearing retainer (snap ring) (5) to the mainshaft (19).

22. Retainer (snap ring) (10), speedometer tone wheel (11) and retainer (snap ring) (10) to the mainshaft (19).

22. Rear extension housing (4) and extension housing bolts (3) to the pump retainer housing (8).
 - Apply RTV sealer to the mating surfaces.
 - Apply Loctite 242 or equivalent on the extension housing bolts.

Figure 16—Synchronizer Hub Assembly and Mode Fork

2. **Tighten**
 - Bolts to 31 N.m (23 ft. lbs.).

EXTERNAL COMPONENTS

Install or Connect

1. Selection plunger (70), poppet spring (71), O-ring seal (69) and poppet screw (68) to the front case half (45).

2. **Tighten**
 - Poppet screw to 31 N.m (23 ft. lbs.).

2. Speedometer sensor (9) and O-ring to the pump retainer housing (8).

2. **Tighten**
 - Sensor to 31 N.m (23 ft. lbs.).

3. Indicator lamp switch (46) and O-ring (47) to the front case housing.

4. **Tighten**
 - Switch to 24 N.m (17 ft. lbs.).

4. Front output flange (74), rubber sealing washer (75), washer (76) and flange nut (77).

4. **Tighten**
 - Nut (26) to 149 N.m (110 ft. lbs.).
Figure 17—Oil Pump, Pickup, Screen, Doweled Case Holes
Figure 18—241 Transfer Case Cut Away
1. Extension Housing Oil Seal
2. Bushing
3. Rear Extension Housing Bolts/Case Bolts
4. Rear Extension Housing
5. Retainer (Snap Ring)
6. Front Output Bearing
7. Pump Retainer Housing Bolts
8. Pump Retainer Housing
10. Retainer (Snap Ring)
11. Speedometer Tone Wheel
12. Oil Pump
13. Oil Pump Seal
16. Bolt
17. Rear Case Half
18. Oil Pump Pick Up Tube
19. Mainshaft
20. Drive Sprocket
21. Front Output Shaft
22. Driven Sprocket
23. Retainer (Snap Ring)
24. Front Output Rear Bearing
27. Washer
28. Main Drive Synchronizer Stop Ring
29. Synchronizer Sleeve
30. Strut
31. Synchronizer Hub
32. Spring Retainer
33. Dowel
34. Range Shift Hub
36. Planetary Carrier
37. Thrust Washer
38. Input Gear
39. Retainer Snap Ring
40. Input Bearing
41. Retainer (Snap Ring)
42. Input Bearing Retainer Seal
43. Input Bearing Retainer Bolt
44. Input Bearing Retainer
45. Front Case Half
58. Chain
59. Retainer (Snap Ring)
60. Retainer (Snap Ring)
61. Front Output Bearing
62. Annulus Gear
63. Shift Lever Nut (Prev. Torque)
64. Washer
65. Shift Lever
66. Washer (Plastic)
67. O-Ring Seal
72. Front Output Shaft Seal
73. Deflector
74. Front Out Flange
75. Rubber Sealing Washer
76. Washer
77. Front Output Flange Nut
78. Carrier Lock Ring
79. Oil Pump Screw
83. Mode Synchronizer Hub Snap Ring
85. Mainshaft Pilot Bearing

Figure 19—241 Transfer Case Cut Away
7D4-14 NEW PROCESS 241 TRANSFER CASE

SPECIFICATIONS
NEW PROCESS 241 TRANSFER CASE

<table>
<thead>
<tr>
<th>Component</th>
<th>N·m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Shaft Retainer Bolts</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>Shift Selector Lever Nut</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Shift Selector Light Switch</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Case Half Bolts</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Pump Housing Bolts</td>
<td>41</td>
<td>30</td>
</tr>
<tr>
<td>Mainshaft Extension Housing Bolts</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Speedometer Pick-up Switch</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Front Propeller Shaft Flange Bolts</td>
<td>149</td>
<td>110</td>
</tr>
<tr>
<td>Drain and Fill Plugs</td>
<td>47</td>
<td>35</td>
</tr>
<tr>
<td>Lubricant: Dexron® II</td>
<td></td>
<td>4.6 Pints</td>
</tr>
</tbody>
</table>

SPECIAL TOOLS

1. Slide Hammer
2. Slide Hammer
3. Driver Handle
4. Bearing Remover
5. Output Shaft Bearing Remover
6. Output Shaft Bearing Remover
7. Slide Hammer Adapter
8. Bearing Installer/Remover
9. Front and Rear Output Shaft Bearing Installer
10. Driver Sprocket Needle Bearing Installer
11. Input Gear Needle Bearing Installer
12. Input Gear Ball Bearing Installer
SECTION 7D5
NEW PROCESS 231 H.D.
TRANSFER CASE

DESCRIPTION
The Model 231 heavy duty transfer case is an aluminum case, chain drive, four position unit providing four-wheel drive high and low ranges, a two-wheel high range, and a neutral position. This model is a part-time four-wheel drive unit. Torque input in four-wheel high and low ranges is undifferentiated. The range positions are selected by a floor mounted gear shift lever.

The case is a two-piece aluminum case containing front and rear output shafts, two drive sprockets, a shift mechanism and a planetary gear assembly. The drive sprockets are connected and operated by the drive chain. The planetary assembly which consists of a 6-pinion planetary (3-pinion planetary 231) carrier and an annulus gear provide the four-wheel drive low range when engaged. Reduction ratio is 2.72:1 in this range.

IDENTIFICATION
An identification tag is attached to the rear half of the transfer case (figure 1). This tag provides the transfer case model number, low range reduction ratio, and assembly number. The information on this tag is necessary for servicing information. If the tag is removed or becomes dislodged during service operations, it should be reattached using an adhesive sealant such as Loctite 242 or equivalent.

POWER FLOW
In all drive range positions input torque is transmitted to the transfer case gear train through the transfer case input gear.

In 2H range, torque flows from the input gear to the range shift hub and main shaft. Torque flow continues through the slip yoke which is splined to the mainshaft, and finally to the rear propeller shaft and axle. In 2H range, the mode synchronizer remains in the neutral position and does not lock the drive sprocket to the mainshaft. As a result, torque is not transferred to the driven sprocket.

In 4H range, input torque from the input gear is transmitted to the mainshaft in exactly the same fashion as in 2H range. However, in 4H position, the mode synchronizer sleeve is shifted into engagement with the clutch teeth of the drive sprocket. This locks the drive sprocket to the mainshaft through the synchronizer. Torque is transmitted through the drive sprocket to the driven sprocket by the connecting drive chain. Since the front output shaft is splined to the driven sprocket, torque flows through the front output shaft to the front propeller shaft and axle resulting in high range four-wheel drive.

In 4L range, the path of torque through the transfer case is exactly the same as in 4H range but with one major difference. In 4L range the range shift hub is shifted into engagement with the planetary carrier. This causes the input gear to rotate the planetary pinions inside the annulus gear, causing the planetary carrier, range shift hub and mainshaft to rotate at a gear reduction ratio of 2.72:1.
DISASSEMBLY OF THE TRANSFER CASE

EXTERNAL COMPONENTS

Clean
- The transfer case exterior using a solvent and a stiff brush.

Remove or Disconnect (Figure 2, 3, and 4)
1. Front output yoke nut (77), washer (76), rubber sealing washer (75) and front output flange (74) from the front output shaft.
2. Indicator lamp switch (46) and O-ring seal (47).
3. Poppet screw (68), O-ring seal (69), poppet spring (71) and poppet plunger (70).

MAINSHAFT EXTENSION AND OIL PUMP HOUSING

Remove or Disconnect (Figures 2, 3, and 4)
1. Rear extension housing bolts (3) and rear extension (4).
2. Bearing retainer (snap ring) (5) from the mainshaft (19).
3. Pump retainer housing bolts (7).
4. Pump retainer housing (8) from the rear case half (17).
5. Speedometer drive gear (11) from the mainshaft (19).
6. Case bolts (3) from the case halves.
 • Note two longer case bolts and washers go into doweled case holes (33).
 • Separate case halves. Insert screwdrivers into the slots cast in the case ends and pry apart. Do not attempt to wedge the case halves apart at any point on the mating surfaces.
 • Be careful not to damage the oil pump (12) (located in the rear case half) while removing the rear case half (17).

INTERNAL COMPONENTS

Remove or Disconnect (Figures 3, 4, and 5 through 9)

Tools Required:
- J 8092 Driver Handle
- J 36370 Bearing Installer/Remover
- J 29170 Bearing Remover
- J 29369-1 Bearing Remover
- J 9276-21 Adapter
- J 2619-01 Slide Hammer
- J 33790 Bearing Remover

1. Oil pump (12) pickup tube (18), O-ring (14) and pump pickup filter (35) from the rear case half (figure 9).
2. Fork shift spring (52).
3. Mainshaft (19), chain (58), and driven sprocket (22) from the front case half (45) as an unit. Mode shift fork (51) and shift rail (48) will be removed with the mainshaft.
4. Retainer (snap ring) (83) from the mainshaft (19).
5. Synchronizer assembly (81). Drive sprocket (20) from the mainshaft (19) (figure 6).
6. Range shift fork (51) and range shift hub (34) and sector with shaft (55) from the planetary carrier (36).
 • It is necessary to rotate the sector with shaft (55) to obtain clearance when removing the range fork (51) (figure 7).
7. Shift lever nut (63), washer (64), shift lever (65), plastic washer (66) and the O-ring seal (67) from the front case half (45).
8. Input bearing retainer bolts (43) and input bearing retainer (44) from the front case half (45).
9. Bearing retainer (snap ring) (39)
10. Planetary carrier (36) and the input gear (38) from the annulus gear (62) using a soft faced hammer.
11. Input bearing (40) from the front case half (45) using J 36370 and J 8092.
12. Drive sprocket bearings (82) from the drive sprocket (20) using J 29170 and J 8092.
13. Needle bearings (84) from the input gear (38) using J 29369-1, J 9276-21 and J 2619-01 (figure 8).
14. Front output shaft seal (72) from the front case half (45).
15. Mainshaft bearing (6) from the oil pump retainer (8) using J 33790.
16. Magnets (25) from the front case half (45).

Disassemble

• Mark location of synchronizer hub and sleeve to aid in assembly.
1. Main drive synchronizer stop ring (28) from the synchronizer sleeve (29).
2. Spring retainer (32) from the synchronizer sleeve (29).
3. Synchronizer hub (31) from the synchronizer (29).
4. Oil pump screws (79) from the oil pump (12).
5. Inner gear.
Figure 3—New Process 231 H.D. Transfer Case Components
<table>
<thead>
<tr>
<th>Part Description</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil Seal</td>
<td>1</td>
</tr>
<tr>
<td>Bushing</td>
<td>2</td>
</tr>
<tr>
<td>Rear Extension Housing Bolts/Case Bolts</td>
<td>3</td>
</tr>
<tr>
<td>Rear Extension</td>
<td>4</td>
</tr>
<tr>
<td>Retainer Snap Ring</td>
<td>5</td>
</tr>
<tr>
<td>Front Output Bearing</td>
<td>6</td>
</tr>
<tr>
<td>Pump Retainer Housing Bolts</td>
<td>7</td>
</tr>
<tr>
<td>Pump Retainer Housing</td>
<td>8</td>
</tr>
<tr>
<td>Speedometer Drive Gear</td>
<td>11</td>
</tr>
<tr>
<td>Oil Pump</td>
<td>12</td>
</tr>
<tr>
<td>Oil Pump Seal</td>
<td>13</td>
</tr>
<tr>
<td>O-Ring</td>
<td>14</td>
</tr>
<tr>
<td>Plug</td>
<td>15</td>
</tr>
<tr>
<td>Bolt</td>
<td>16</td>
</tr>
<tr>
<td>Rear Case Half</td>
<td>17</td>
</tr>
<tr>
<td>Oil Pump Pick Up Tube</td>
<td>18</td>
</tr>
<tr>
<td>Mainshaft</td>
<td>19</td>
</tr>
<tr>
<td>Drive Sprocket</td>
<td>20</td>
</tr>
<tr>
<td>Front Output Shaft</td>
<td>21</td>
</tr>
<tr>
<td>Front Output Rear Bearing</td>
<td>24</td>
</tr>
<tr>
<td>Magnet</td>
<td>25</td>
</tr>
<tr>
<td>Oil Tube Connector</td>
<td>26</td>
</tr>
<tr>
<td>Washer</td>
<td>27</td>
</tr>
<tr>
<td>Main Drive Synchronizer Stop Ring</td>
<td>28</td>
</tr>
<tr>
<td>Synchronizer Sleeve</td>
<td>29</td>
</tr>
<tr>
<td>Strut</td>
<td>30</td>
</tr>
<tr>
<td>Synchronizer Hub</td>
<td>31</td>
</tr>
<tr>
<td>Spring Retainer</td>
<td>32</td>
</tr>
<tr>
<td>Dowel</td>
<td>33</td>
</tr>
<tr>
<td>Range Shift Hub</td>
<td>34</td>
</tr>
<tr>
<td>Pump Pick Up Screen</td>
<td>35</td>
</tr>
<tr>
<td>Planetary Carrier</td>
<td>36</td>
</tr>
<tr>
<td>Thrust Washer</td>
<td>37</td>
</tr>
<tr>
<td>Input Gear</td>
<td>38</td>
</tr>
<tr>
<td>Retainer Snap Ring</td>
<td>39</td>
</tr>
<tr>
<td>Input Bearing</td>
<td>40</td>
</tr>
<tr>
<td>Input Bearing Retainer Seal</td>
<td>42</td>
</tr>
<tr>
<td>Input Retainer Bolt</td>
<td>43</td>
</tr>
<tr>
<td>Input Bearing Retainer</td>
<td>44</td>
</tr>
<tr>
<td>Front Case Half</td>
<td>45</td>
</tr>
<tr>
<td>Indicator Lamp Switch</td>
<td>46</td>
</tr>
<tr>
<td>O-Ring Seal</td>
<td>47</td>
</tr>
<tr>
<td>Shift Rail</td>
<td>48</td>
</tr>
<tr>
<td>Pads</td>
<td>49</td>
</tr>
<tr>
<td>Pads (Center)</td>
<td>50</td>
</tr>
<tr>
<td>Range Shift Fork</td>
<td>51</td>
</tr>
<tr>
<td>Fork Shift Spring</td>
<td>52</td>
</tr>
<tr>
<td>Pin</td>
<td>53</td>
</tr>
<tr>
<td>Mode Shift Fork</td>
<td>54</td>
</tr>
<tr>
<td>Sector With Shaft</td>
<td>55</td>
</tr>
<tr>
<td>Bushing</td>
<td>56</td>
</tr>
<tr>
<td>Range Fork Pin</td>
<td>57</td>
</tr>
<tr>
<td>Chain</td>
<td>58</td>
</tr>
<tr>
<td>Retainer Snap Ring</td>
<td>59</td>
</tr>
<tr>
<td>Retainer Snap Ring</td>
<td>60</td>
</tr>
<tr>
<td>Front Output Bearing</td>
<td>61</td>
</tr>
<tr>
<td>Annulus Gear</td>
<td>62</td>
</tr>
<tr>
<td>Shift Lever Nut, Prev. Torque</td>
<td>63</td>
</tr>
<tr>
<td>Washer</td>
<td>64</td>
</tr>
<tr>
<td>Shift Lever</td>
<td>65</td>
</tr>
<tr>
<td>Washer Plastic</td>
<td>66</td>
</tr>
<tr>
<td>O-Ring Seal</td>
<td>67</td>
</tr>
<tr>
<td>Poppet Screw</td>
<td>68</td>
</tr>
<tr>
<td>O-Ring Seal</td>
<td>69</td>
</tr>
<tr>
<td>Selection Plunger</td>
<td>70</td>
</tr>
<tr>
<td>Poppet Spring</td>
<td>71</td>
</tr>
<tr>
<td>Front Output Shaft Seal</td>
<td>72</td>
</tr>
<tr>
<td>Deflector</td>
<td>73</td>
</tr>
<tr>
<td>Front Output Yoke</td>
<td>74</td>
</tr>
<tr>
<td>Rubber Sealing Washer</td>
<td>75</td>
</tr>
<tr>
<td>Washer</td>
<td>76</td>
</tr>
<tr>
<td>Nut Front Output Yoke</td>
<td>77</td>
</tr>
<tr>
<td>Carrier Lock Ring</td>
<td>78</td>
</tr>
<tr>
<td>Oil Pump Screw</td>
<td>79</td>
</tr>
<tr>
<td>Identification Tag</td>
<td>80</td>
</tr>
<tr>
<td>Synchronizer Assembly</td>
<td>81</td>
</tr>
<tr>
<td>Drive Sprocket Bearing</td>
<td>82</td>
</tr>
<tr>
<td>Mode Synchronizer Hub Snap Ring</td>
<td>83</td>
</tr>
<tr>
<td>Mainshaft Pilot Bearing</td>
<td>84</td>
</tr>
</tbody>
</table>

Figure 4—New Process 231 H.D. Transfer Case
Figure 5—Oil Pump, Pickup Tube and Screen

Figure 6—Mode Fork and Shaft Assembly

Figure 7—Shift Rail Assembly

12. Oil Pump
17. Rear Case Half
18. Oil Pump Pickup Tube
35. Oil Filter

25. Magnet
45. Front Case Half
54. Mode Fork
55. Sector With Shaft
81. Synchronizer Assembly

48. Shift Rail
51. Range Fork
52. Mode Fork Spring
54. Mode Fork
55. Sector With Shaft
63. Shift Lever Nut
65. Lever
CLEANING AND INSPECTION

1. Clean
 - Remove all old lubricant and dirt.
2. Shafts.
3. Sprockets.
4. Chain.
5. Oil feed ports and channels in each case half. Apply compressed air to each oil feed port and channel in order to remove any obstructions or cleaning solvent residue.
6. All mating and sealing surfaces.

1. Inspect
 - Bearings and thrust washers for wear, spalling, brinelling, or corrosion.
2. Gear teeth for excessive wear or damage, spalling, cracks, or corrosion.
3. Gear splines for excessive wear, spalling, cracks, twist or corrosion.
4. Shaft splines for excessive wear, spalling, cracks, distortion or corrosion.
5. Retainer rings for excessive wear, distortion or damage.
6. Case halves for damaged or warped mating surfaces, cracks, porosity, or damaged threaded holes.
7. Synchronizer stop ring for cracks, chips, spalling, or excessive wear.
8. Synchronizer hub and sleeve for cracks, chips, spalling, or excessive wear.
9. Pads on the mode fork and the range fork for wear, distortion.
10. Oil pump gears and case halves for wear, spalling, cracks, and damage. Replace complete assembly if there is wear.
11. Input gear, planetary carrier and range shift hub tooth chamfers for excessive wear.

ASSEMBLY OF TRANSFER CASE

BEARING AND SEAL REPLACEMENT

1. Install or Connect (Figures 10, 11, and 12)
 - Use ATF or equivalent where needed in assembly.

 - Needle bearings (82) to the drive sprocket (20) using J 36370 and J 8092 (figure 10).
 - Needle bearing (24), to the rear case half (17) using J 36372 and J 8092.
 - Bearing must be flush with the boss on case housing.
 - Bearing (61) to the front case half (45) using J 9092 and J 33833.
 - Bearing (84) to the input gear (38) using J 36372 and J 8092.

Tools Required:
- J 8092 Driver Handle
- J 36370 Bearing Installer
- J 33833 Bearing Installer
- J 36372 Bearing Installer
- J 33843 Seal Installer
- J 33831 Seal Installer

NEW PROCESS 231 H.D. TRANSFER CASE 7D5-7
7D5-8 NEW PROCESS 231 H.D. TRANSFER CASE

Assemble (Figures 13, 14, and 15)
1. Synchronizer hub (31) to the synchronizer sleeve (29) along with the three struts (30).
 • Align the previously made scribe marks.
2. Spring retainer (32) to the synchronizer sleeve (29).
3. Main drive synchronizer stop ring (28) to the synchronizer sleeve (29).

Install or Connect
1. Drive sprocket (20) to the mainshaft (19).
2. Planetary input gear assembly (38) into the annulus gear (62) using a soft faced hammer.
3. Bearing retainer (snap ring) (39) to the input bearing (40).
4. Input bearing (40) to the front case half (45).
5. Input bearing retainer bolts (43) and input bearing retainer (44) to the front case half (45).
 • Apply RTV or equivalent on bearing retainer mating surfaces.
 • Apply Loctite 242 or equivalent on bearing retainer bolts.

Tighten
• Bolts (43) to 19 N·m (14 ft. lbs.).
6. Sector with shaft (55) into the front case half (45).
7. Shift lever O-ring (67), plastic washer (66), shift lever (65), washer (64), and nut (63) to the front case half (figure 13).

Tighten
• Nut (63) to 27 N·m (20 ft. lbs.).
8. Range shift hub (34) and the range shift fork into the front case half (45).
 • It is necessary to rotate the sector to align the range shift fork.
9. Synchronizer assembly, mode shift fork (54) and rail into the front case half (45) (figure 14).
10. Front output shaft (21) to the chain (58).
11. Drive sprocket (20) and mainshaft (19) into the chain (58).
 • Mainshaft (19), drive sprocket (20), driven sprocket (22) and chain (58) are installed as a unit.
12. Fork shift spring (52) onto the mode shift rail (48).
13. Oil pump pick up tube (18), oil tube connector (26) and pump pick up screen (35) into the rear case half (17) (figure 15).
14. Oil tube O-ring (14) onto the oil pump pick up tube (18).

NOTICE: Do not damage the O-ring during assembly as this could result in pump failure.

15. Oil pump (12) to the oil pump pick up tube (18).
 • Apply RTV sealer to the case mating surfaces.
16. Rear case (17) over mainshaft (19) and onto the front case half (45).
 • Be careful not to damage the oil pump (12) while installing the rear case half.
17. Case bolts (3) into case halves.
 • Apply Loctite 242 or equivalent to case bolts.

18. Pump retainer housing (8) and pump housing bolts (7) to the rear case half (17).
 • Apply Loctite 242 or equivalent on pump housing bolt threads.

Tighten

- N·m (23 ft. lbs.).

19. Input bearing retainer (snap ring) (5) to the mainshaft (19).
20. Retainer (snap ring) (10), speedometer gear (11) and retainer (snap ring) (10) to the mainshaft (19).
21. Rear extension housing (4) and extension housing bolts (3) to the pump retainer housing (8).
 • Apply RTV sealer to the mating surfaces.
 • Apply Loctite 242 or equivalent on the extension housing bolts.

Tighten

- N·m (23 ft. lbs.).
EXTERNAL COMPONENTS

Install or Connect (Figures 1 and 2)

1. Selection plunger (70) poppet spring (71), O-ring seal (69) and poppet screw (68) to the front case half (45).

Tighten

- Poppet screw to 31 N·m (23 ft. lbs.).
- Indicator lamp switch (46) and O-ring (47) to the front case housing.

Tighten

- Switch to 24 N·m (17 ft. lbs.).
- Front output flange (74), rubber sealing washer (75), washer (76) and flange nut (77).

SPECIFICATIONS

NEW PROCESS 231 H.D. TRANSFER CASE

<table>
<thead>
<tr>
<th>Component</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Shaft Retainer Bolts</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>Shift Selector Lever Nut</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Shift Selector Light Switch</td>
<td>24</td>
<td>17</td>
</tr>
<tr>
<td>Case Half Bolts</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Pump Housing Bolts</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Mainshaft Extension Housing Bolts</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Fill and Drain Plugs</td>
<td>47</td>
<td>35</td>
</tr>
<tr>
<td>Front Propeller Shaft Flange Bolts</td>
<td>149</td>
<td>110</td>
</tr>
<tr>
<td>Lubricant: Dexron II</td>
<td>2.5 pints</td>
<td>2.5 pints</td>
</tr>
</tbody>
</table>
SPECIAL TOOLS

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>J 2619-01</td>
<td>J 8092</td>
<td>J 29170</td>
<td>J 29369-1</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>J 33932</td>
</tr>
<tr>
<td>10</td>
<td>J 9276-21</td>
<td>J 33932</td>
<td>J 33833</td>
<td>J 33833</td>
</tr>
<tr>
<td>11</td>
<td>J 33843</td>
<td>J 33833</td>
<td>J 33843</td>
<td>J 33790</td>
</tr>
<tr>
<td>12</td>
<td>J 33790</td>
<td>J 33833</td>
<td>J 33843</td>
<td>J 33790</td>
</tr>
<tr>
<td>13</td>
<td>J 33833</td>
<td>J 33833</td>
<td>J 33833</td>
<td>J 33833</td>
</tr>
<tr>
<td>14</td>
<td>J 33833</td>
<td>J 33833</td>
<td>J 33833</td>
<td>J 33833</td>
</tr>
</tbody>
</table>

1. Slide Hammer
2. Slide Hammer
3. Driver Handle
4. Bearing Remover
5. Bearing Remover
6. Output Shaft Bearing Remover
7. Adapter
8. Bearing Installer/Remover
9. Bearing Installer
10. Bearing Installer
11. Seal Installer
12. Extension Housing Seal Installer
13. Bearing Installer
14. Bearing Remover