1989

Light Duty Truck
Unit Repair Manual

GMC TRUCK

Unit Repair Manual
FOREWORD

This manual includes procedures involved in disassembly and assembly of components listed in the "Table of Contents."

This manual should be kept in a handy place for ready reference. If properly used, it will meet the needs of technicians and vehicle owners.

CAUTION:

These vehicles contain some parts dimensioned in the metric system as well as in the customary system. Some fasteners are metric and are very close in dimension to familiar customary fasteners in the inch system. It is important to note that, during any vehicle maintenance procedures, replacement fasteners must have the same measurements and strength as those removed, whether metric or customary. (Numbers on the heads of metric bolts and on surfaces of metric nuts indicate their strength. Customary bolts use radial lines for this purpose, while most customary nuts do not have strength markings.) Mismatched or incorrect fasteners can result in vehicle damage or malfunction, or possibly personal injury. Therefore, fasteners removed from the vehicle should be saved for re-use in the same location whenever possible. Where the fasteners are not satisfactory for re-use, care should be taken to select a replacement that matches the original. For information and assistance, see your authorized dealer.

No part of this publication may be reproduced, stored in any retrieval system or transmitted, in any form or by any means, including but not limited to electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the GMC Truck Division of General Motors Corp. This includes all text, illustrations, tables and charts.

GMC TRUCK DIVISION
TRUCK & BUS GROUP
General Motors Corporation
Pontiac, Michigan
To reduce the chance of personal injury and/or property damage, the following instructions must be carefully observed.

Proper service and repair are important to the safety of the service technician and the safe, reliable operation of all motor vehicles. If part replacement is necessary, the part must be replaced with one of the same part number or with an equivalent part. Do not use a replacement part of lesser quality.

The service procedures recommended and described in this service manual are effective methods of performing service and repair. Some of these procedures require the use of tools specially designed for the purpose.

Accordingly, anyone who intends to use a replacement part, service procedure or tool, which is not recommended by the vehicle manufacturer, must first determine that neither his safety nor the safe operation of the vehicle will be jeopardized by the replacement part, service procedure or tool selected.

It is important to note that this manual contains various Cautions and Notices that must be carefully observed in order to reduce the risk of personal injury during service or repair, or the possibility that improper service or repair may damage the vehicle or render it unsafe. It is also important to understand that these 'Cautions' and 'Notices' are not exhaustive, because it is impossible to warn of all the possible hazardous consequences that might result from failure to follow these instructions.
The Table of Contents on this page indicates the sections covered in this manual. At the beginning of each individual section is a Table of Contents which gives the page number on which each major subject begins.

When reference is made in this manual to a brand name, number, or specific tool, an equivalent product may be used in place of the recommended item.

All information, illustrations, and specifications contained in this Manual are based on the latest product information available at the time of publication approval. The right is reserved to make changes at any time without notice.
Mr. Goodwrench wants you to have the right parts for your truck—whether you see him for service or whether you do the work yourself.

That's why Mr. Goodwrench wants to have a good stock of genuine GM Parts available. Everything from exclusive GM Goodwrench replacement engines and transmissions to GM Goodwrench Motor Oil that meets or exceeds all specifications for General Motors cars or light trucks. And Mr. Goodwrench has a complete line of GM chemicals for fine care of your GM vehicle. Plus accessories to add convenience—or just a little extra style.

So keep that great GM feeling with genuine GM parts at participating independent Mr. Goodwrench dealers selling Chevrolets, Pontiacs, Oldsmobiles, Buicks, Cadillacs, GMC and Chevy Trucks.

GM QUALITY SERVICE PARTS

[Signature]

Mr. Goodwrench

F05085
SECTION 0A

GENERAL INFORMATION

CONTENTS

SUBJECT PAGE

Service Parts Identification Label OA-1
Vehicle Identification Plate OA-1
Certification Label .. OA-1
Engine Identification Number OA-2
Model Reference ... OA-2
Metric Fasteners .. OA-2
Fastener Strength Identification OA-3
Six Lomed Socket Head Fasteners OA-4
Prevailing Torque Fasteners OA-4
Conversion Table ... OA-10
Decimal and Metric Equivalents OA-11

Figure 1—Service Parts Identification Label

SERVICE PARTS IDENTIFICATION LABEL

The Truck Service Parts Identification Label is provided on all models (figure 1). It is located on the inside of the glove box door (or on an inner body panel for Forward Control models). The Label lists the VIN (Vehicle Identification Number), wheelbase, paint information and all Production options or Special Equipment on the vehicle when it was shipped from the factory. ALWAYS REFER TO THIS INFORMATION WHEN ORDERING PARTS.

VEHICLE IDENTIFICATION NUMBER

The VIN is the legal identifier of the vehicle. On all models except Forward Control, it is located on a plate which is attached to the left top of the instrument panel and can be seen through the windshield from the outside of the vehicle (figure 2). On Forward Control models, the plate is on the dash and toe panel. To find out the manufacturer, model and chassis type, engine type, GVW range, model year, plant code, and sequential number, refer to figure 3.

CERTIFICATION LABEL

The Certification Label shows the GVWR, and the front and rear GAWRs, and the Payload Rating for your vehicle (figure 4).

Gross Vehicle Weight (GVW) is the weight of the originally equipped vehicle and all items added to it after it has left the factory. This would include bodies, winches, booms, etc.; the driver and all occupants; and the load the vehicle is carrying. The GVW must not exceed the GVWR. Also, the front and rear gross axle weights must not exceed the front and rear GAWRs.

The Payload Rating shown on the label is the maximum allowable cargo load (including the weight of the driver and all occupants) that the vehicle can carry based on all
factory installed equipment on the vehicle. The Payload Rating is reduced if any accessories or other equipment is added to the vehicle after final date of manufacture. The weight of these items should be determined and deducted from the Payload Rating.

The vehicle may also have a GCWR (Gross Combination Weight Rating). The GCW (Gross Combination Weight) is the total weight of the loaded tow vehicle (including passengers) and a loaded trailer.

The tires on the vehicle must be the proper size and properly inflated for the load which you are carrying. The vehicle Certification Label shows the originally equipped tire size and recommended inflation pressures.

ENGINE IDENTIFICATION NUMBER

Refer to figures 5, 6 and 7 to determine the location of the engine I.D. number.

MODEL REFERENCE

Refer to figures 8 through 12 for determining vehicle model. C, R, and S models are two wheel drive. K, V, and T models are four wheel drive.

METRIC FASTENERS

Models are primarily dimensioned in the metric system. Many fasteners are metric and are very close in dimension to well-known customary fasteners in the inch system. It is most important that replacement fasteners be of the correct nominal diameter, thread pitch and strength.

Original equipment metric fasteners (except “beauty” bolts, such as exposed bumper bolts, and cross recess head screws) are identified by a number marking indicating the strength of the material in the fastener as outlined later. Metric cross recess screws are identified by a Posidriv or Type 1A shown in figure 13. Either a Phillips head or Type 1A cross recess screwdriver can be used in Posidriv recess screw heads, but Type 1A cross recess screwdrivers will perform better.
NOTICE: Most metric fasteners have a blue color coating. However, this should not be used as positive identification as some fasteners are not color coated.

General Motors Engineering Standards, along with other North American Industries, have adopted a portion of the standard metric fastener sizes defined by ISO (International Standards Organization). This was done to reduce the number of fastener sizes used and yet retain the best strength qualities in each thread size. For example, the customary 1/4-20 and 1/4-28 screws are replaced by the metric M6.0x1 screw which has nearly the same diameter and has 25.4 threads per inch. The thread pitch is in between the customary coarse and fine thread pitches.

Metric and customary thread notation differ slightly. The difference is shown in figure 14.

FASTENER STRENGTH IDENTIFICATION

Most commonly used metric fastener strength properly classes are 9.8 and 10.9 with the class identification embossed on the head of each bolt. Customary (inch) strength classes range from grade 2 to 8 with radial line identification embossed on each bolt head. Markings correspond to two lines less than the actual grade (i.e. grade 7 bolt will exhibit 5 embossed radial lines on the bolt head). Some metric nuts will be marked with single digit strength identification numbers on the nut face. Figure 6 shows the different strength markings.

When replacing metric fasteners, be careful to use bolts and nuts of the same strength or greater than the original fasteners (the same number marking or higher). It is likewise important to select replacement fasteners of the correct size. Correct replacement bolts metric fasteners available in the aftermarket parts channels were designed to metric standards of countries other than the United States, and may be of a lower strength, may not have the numbered head marking system, and may be of a different thread pitch. The metric fasteners used on GM
products are designed to new, international standards that may not yet be manufactured by some non-domestic bolt and nut suppliers. In general, except for special applications, the common sizes and pitches are:

- M6.0 x 1
- M 10 x 1.5
- M8 x 1.25
- M 12 x 1.75

SIX LOBED SOCKET HEAD FASTENERS

Six lobed socket head (Torx) fasteners are used in some applications on vehicles covered in this manual (figure 15). The door striker bolt is of this design.

Tools designed for these fasteners are available commercially. However, in some cases, if the correct tool is not available, a hex socket head wrench may be used.

PREVAILING TORQUE FASTENERS

A prevailing torque nut is designed to develop an interference between the nut and bolt threads. This is most often accomplished by distortion of the top of an all-metal nut by using a nylon patch on the threads in the middle of the hex flat. A nylon insert may also be used as a method of interference between nut and bolt threads (figure 16).

A prevailing torque bolt is designed to develop an interference between bolt and nut threads, or the threads of a tapped hole. This is accomplished by distorting some of the threads or by using a nylon patch or adhesive (figure 16).

RECOMMENDATIONS FOR REUSE:

1. Clean, unrusted prevailing torque nuts and bolts may be reused as follows:
 a. Clean dirt and other foreign material off the nut or bolt.
 b. Inspect the nut or bolt to insure there are no cracks, elongation, or other signs of abuse of overtightening. (If there is any doubt, replace with a new prevailing torque fastener or equal or greater strength.)
 c. Assemble the parts and hand start the nut or bolt.
 d. Observe that, before fastener seats, it develops torque per the chart in figure 13 (if there is any doubt, replace with a new prevailing torque fastener of equal or greater strength).
 e. Tighten the fastener to the torque specified in the appropriate section of this manual.

2. Bolts and nuts which are rusty or damaged should be replaced with new parts or equal or greater strength.
Figure 8—RV Models
G VAN MODELS

RALLY (SPORTVAN)

CUTAWAY VAN

MAGNAVAN (HI-CUBE VAN)

VANDURA (CHEVY VAN)

VALUE VAN (STEP VAN)

FORWARD CONTROL CHASSIS

(STEEL)

VALUE VAN (STEP VAN)

(ALUMINUM)

MOTOR HOME CHASSIS

Figure 9—G and P Models
Figure 10—CK Models

Figure 11—ST Models
Figure 12—M Models

1. Grade 2 (GM 200-M)
2. Grade 5 (GM 280-M)
3. Grade 7 (GM 290-M)
4. Grade 8 (GM 300-M)
5. Manufacturer's Identification
6. Nut Strength Identification
7. Identification Marks (Posidriv Screw Head)

Figure 13—Bolt and Nut Identification

1. Customary Bolt—1/4-20
2. Metric Bolt—M6.0x1
A. 1/4-inch
B. 6 mm
C. 20 Threads Per Inch
D. 1 Thread Per Millimeter
 (25.4 Threads Per Inch)

Figure 14—Thread Notation

1. Internal Drive
2. External Drive

Figure 15—Six Lobed Socket Head Fasteners

T - Internal Drive
E - External Drive
A. Metric Sizes

<table>
<thead>
<tr>
<th></th>
<th>6 & 6.3</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>4, 5</td>
<td>N·m</td>
<td>0.4</td>
<td>0.8</td>
<td>1.4</td>
<td>2.2</td>
<td>3.0</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>In. Lbs.</td>
<td>4.0</td>
<td>7.0</td>
<td>12</td>
<td>18</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>1, 2, 3, 6, 7, 8, 9</td>
<td>N·m</td>
<td>0.4</td>
<td>0.6</td>
<td>1.2</td>
<td>1.6</td>
<td>2.4</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>In. Lbs.</td>
<td>4.0</td>
<td>5.0</td>
<td>10</td>
<td>14</td>
<td>20</td>
<td>28</td>
</tr>
</tbody>
</table>

B. Inch Sizes

<table>
<thead>
<tr>
<th></th>
<th>.250</th>
<th>.312</th>
<th>.375</th>
<th>.437</th>
<th>.500</th>
<th>.562</th>
<th>.625</th>
<th>.750</th>
</tr>
</thead>
<tbody>
<tr>
<td>4, 5</td>
<td>N·m</td>
<td>0.4</td>
<td>0.6</td>
<td>1.4</td>
<td>1.8</td>
<td>2.4</td>
<td>3.2</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>In. Lbs</td>
<td>4.0</td>
<td>5.0</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>27</td>
<td>35</td>
</tr>
<tr>
<td>1, 2, 3, 6, 8, 9</td>
<td>N·m</td>
<td>0.4</td>
<td>0.6</td>
<td>1.0</td>
<td>1.4</td>
<td>1.8</td>
<td>2.6</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>In. Lbs</td>
<td>4.0</td>
<td>5.0</td>
<td>9.0</td>
<td>12</td>
<td>15</td>
<td>22</td>
<td>28</td>
</tr>
</tbody>
</table>

- **A. Metric Sizes**
 - 1. Top Lock Type
 - 2. Center Lock
 - 3. Dry Adhesive Coating
 - 4. Out Of Round Thread
 - 5. Deformed Thread Profile
- **B. Inch Sizes**
 - 1. Top Lock Type
 - 2. Center Lock
 - 3. Dry Adhesive Coating
 - 4. Out Of Round Thread
 - 5. Deformed Thread Profile

Figure 16—Torque Nuts and Bolt Chart
Conversion Table

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to get equivalent number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>LENGTH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inch</td>
<td>25.4</td>
<td>millimeters (mm)</td>
</tr>
<tr>
<td>Foot</td>
<td>0.304 8</td>
<td>meters (m)</td>
</tr>
<tr>
<td>Yard</td>
<td>0.914 4</td>
<td>meters</td>
</tr>
<tr>
<td>Mile</td>
<td>1.609</td>
<td>kilometers (km)</td>
</tr>
<tr>
<td>AREA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inch²</td>
<td>645.2</td>
<td>millimeters² (mm²)</td>
</tr>
<tr>
<td>Foot²</td>
<td>0.092 9</td>
<td>meters² (m²)</td>
</tr>
<tr>
<td>Yard²</td>
<td>0.836 1</td>
<td>meters²</td>
</tr>
<tr>
<td>VOLUME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inch³</td>
<td>16.387</td>
<td>mm³</td>
</tr>
<tr>
<td></td>
<td>16.387</td>
<td>cm³</td>
</tr>
<tr>
<td></td>
<td>0.016 4</td>
<td>liters (l)</td>
</tr>
<tr>
<td>Quart</td>
<td>0.946 4</td>
<td>liters</td>
</tr>
<tr>
<td>Gallon</td>
<td>3.785 4</td>
<td>liters</td>
</tr>
<tr>
<td>Yard³</td>
<td>0.764 6</td>
<td>meters³ (m³)</td>
</tr>
<tr>
<td>MASS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pound</td>
<td>0.453 6</td>
<td>kilograms (kg)</td>
</tr>
<tr>
<td>Ton</td>
<td>907.18</td>
<td>kilograms (kg)</td>
</tr>
<tr>
<td>FORCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kilogram</td>
<td>9.807</td>
<td>newtons (N)</td>
</tr>
<tr>
<td>Ounce</td>
<td>0.278 0</td>
<td>newtons</td>
</tr>
<tr>
<td>Pound</td>
<td>4.448</td>
<td>newtons</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degree Fahrenheit</td>
<td>(°F-32) ÷ 1.8</td>
<td>degree Celsius (C)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to get equivalent number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCELERATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foot/sec²</td>
<td>0.304 8</td>
<td>meter/sec² (m/s²)</td>
</tr>
<tr>
<td>Inch/sec²</td>
<td>0.025 4</td>
<td>meter/sec²</td>
</tr>
<tr>
<td>TORQUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pound-inch</td>
<td>0.112 98</td>
<td>newton-meters (N·m)</td>
</tr>
<tr>
<td>Pound-foot</td>
<td>1.355 8</td>
<td>newton-meters</td>
</tr>
<tr>
<td>POWER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horsepower</td>
<td>0.746</td>
<td>kilowatts (kW)</td>
</tr>
<tr>
<td>PRESSURE OR STRESS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inches of water</td>
<td>0.249 1</td>
<td>kilopascals (kPa)</td>
</tr>
<tr>
<td>Pounds/sq. in.</td>
<td>6.895</td>
<td>kilopascals</td>
</tr>
<tr>
<td>ENERGY OR WORK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTU</td>
<td>1 055</td>
<td>joules (J)</td>
</tr>
<tr>
<td>Foot-pound</td>
<td>1.355 8</td>
<td>joules</td>
</tr>
<tr>
<td>Kilowatt-hour</td>
<td>3 600 000</td>
<td>joules (J = one W)</td>
</tr>
<tr>
<td>or 3.6 x 10⁸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foot candle</td>
<td>1.076 4</td>
<td>lumens/meter² (lm/m²)</td>
</tr>
<tr>
<td>FUEL PERFORMANCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miles/gal</td>
<td>0.425 1</td>
<td>kilometers/liter (km/l)</td>
</tr>
<tr>
<td>Gal/mile</td>
<td>2.352 7</td>
<td>liter/kilometer (l/km)</td>
</tr>
<tr>
<td>VELOCITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miles/hour</td>
<td>1.609 3</td>
<td>kilometers/hr. (km/h)</td>
</tr>
</tbody>
</table>
Decimal and Metric Equivalents

<table>
<thead>
<tr>
<th>Fractions</th>
<th>Decimal In.</th>
<th>Metric mm</th>
<th>Fractions</th>
<th>Decimal In.</th>
<th>Metric mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/64</td>
<td>0.015625</td>
<td>0.39688</td>
<td>33/64</td>
<td>0.515625</td>
<td>13.09687</td>
</tr>
<tr>
<td>1/32</td>
<td>0.03125</td>
<td>0.79375</td>
<td>17/32</td>
<td>0.53125</td>
<td>13.49375</td>
</tr>
<tr>
<td>3/64</td>
<td>0.046875</td>
<td>1.19062</td>
<td>35/64</td>
<td>0.546875</td>
<td>13.89062</td>
</tr>
<tr>
<td>1/16</td>
<td>0.0625</td>
<td>1.58750</td>
<td>9/16</td>
<td>0.5625</td>
<td>14.28750</td>
</tr>
<tr>
<td>5/64</td>
<td>0.078125</td>
<td>1.98437</td>
<td>37/64</td>
<td>0.578125</td>
<td>14.68437</td>
</tr>
<tr>
<td>3/32</td>
<td>0.09375</td>
<td>2.38125</td>
<td>19/32</td>
<td>0.59375</td>
<td>15.08125</td>
</tr>
<tr>
<td>7/64</td>
<td>0.109375</td>
<td>2.77812</td>
<td>39/64</td>
<td>0.609375</td>
<td>15.47812</td>
</tr>
<tr>
<td>1/8</td>
<td>0.125</td>
<td>3.1750</td>
<td>5/8</td>
<td>0.625</td>
<td>15.8750</td>
</tr>
<tr>
<td>9/64</td>
<td>0.140625</td>
<td>3.57187</td>
<td>41/64</td>
<td>0.640625</td>
<td>16.27187</td>
</tr>
<tr>
<td>5/32</td>
<td>0.15625</td>
<td>3.96875</td>
<td>21/32</td>
<td>0.65625</td>
<td>16.66875</td>
</tr>
<tr>
<td>11/64</td>
<td>0.171875</td>
<td>4.36562</td>
<td>43/64</td>
<td>0.671875</td>
<td>17.06562</td>
</tr>
<tr>
<td>3/16</td>
<td>0.1875</td>
<td>4.76250</td>
<td>11/16</td>
<td>0.6875</td>
<td>17.46250</td>
</tr>
<tr>
<td>13/64</td>
<td>0.203125</td>
<td>5.15937</td>
<td>45/64</td>
<td>0.703125</td>
<td>17.85937</td>
</tr>
<tr>
<td>7/32</td>
<td>0.21875</td>
<td>5.55625</td>
<td>23/32</td>
<td>0.71875</td>
<td>18.25625</td>
</tr>
<tr>
<td>15/64</td>
<td>0.234375</td>
<td>5.95312</td>
<td>47/64</td>
<td>0.734375</td>
<td>18.65312</td>
</tr>
<tr>
<td>1/4</td>
<td>0.250</td>
<td>6.3500</td>
<td>3/4</td>
<td>0.750</td>
<td>19.0500</td>
</tr>
<tr>
<td>17/64</td>
<td>0.265625</td>
<td>6.74687</td>
<td>49/64</td>
<td>0.765625</td>
<td>19.44687</td>
</tr>
<tr>
<td>9/32</td>
<td>0.28125</td>
<td>7.14375</td>
<td>25/32</td>
<td>0.78125</td>
<td>19.84375</td>
</tr>
<tr>
<td>19/64</td>
<td>0.296875</td>
<td>7.54062</td>
<td>51/64</td>
<td>0.796875</td>
<td>20.24062</td>
</tr>
<tr>
<td>5/16</td>
<td>0.3125</td>
<td>7.93750</td>
<td>13/16</td>
<td>0.8125</td>
<td>20.63750</td>
</tr>
<tr>
<td>21/64</td>
<td>0.328125</td>
<td>8.33437</td>
<td>53/64</td>
<td>0.828125</td>
<td>21.03437</td>
</tr>
<tr>
<td>11/32</td>
<td>0.34375</td>
<td>8.73125</td>
<td>27/32</td>
<td>0.84375</td>
<td>21.43125</td>
</tr>
<tr>
<td>23/64</td>
<td>0.359375</td>
<td>9.12812</td>
<td>55/64</td>
<td>0.859375</td>
<td>21.82812</td>
</tr>
<tr>
<td>3/8</td>
<td>0.375</td>
<td>9.52500</td>
<td>7/8</td>
<td>0.875</td>
<td>22.22500</td>
</tr>
<tr>
<td>25/64</td>
<td>0.390625</td>
<td>9.92187</td>
<td>57/64</td>
<td>0.890625</td>
<td>22.62187</td>
</tr>
<tr>
<td>13/32</td>
<td>0.40625</td>
<td>10.31875</td>
<td>29/32</td>
<td>0.90625</td>
<td>23.01875</td>
</tr>
<tr>
<td>27/64</td>
<td>0.421875</td>
<td>10.71562</td>
<td>59/64</td>
<td>0.921875</td>
<td>23.41562</td>
</tr>
<tr>
<td>7/16</td>
<td>0.4375</td>
<td>11.11250</td>
<td>15/16</td>
<td>0.9375</td>
<td>23.81250</td>
</tr>
<tr>
<td>29/64</td>
<td>0.453125</td>
<td>11.50937</td>
<td>61/64</td>
<td>0.953125</td>
<td>24.20937</td>
</tr>
<tr>
<td>15/32</td>
<td>0.46875</td>
<td>11.90625</td>
<td>31/32</td>
<td>0.96875</td>
<td>24.60625</td>
</tr>
<tr>
<td>31/64</td>
<td>0.484375</td>
<td>12.30312</td>
<td>63/64</td>
<td>0.984375</td>
<td>25.00312</td>
</tr>
<tr>
<td>1/2</td>
<td>0.500</td>
<td>12.70000</td>
<td>1</td>
<td>1.00</td>
<td>25.40000</td>
</tr>
</tbody>
</table>

Figure 18—Decimal and Metric Equivalents
A-6 AIR CONDITIONING COMPRESSOR

SECTION 1

AIR CONDITIONING

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-6 Air Conditioning Compressor</td>
<td>1B1-1</td>
</tr>
<tr>
<td>V-5 Air Conditioning Compressor</td>
<td>1B2-1</td>
</tr>
<tr>
<td>R-4 Air Conditioning Compressor</td>
<td>1B3-1</td>
</tr>
<tr>
<td>HR-6 Air Conditioning Compressor</td>
<td>1B4-1</td>
</tr>
<tr>
<td>SD-709 Air Conditioning Compressor</td>
<td>1B5-1</td>
</tr>
</tbody>
</table>

SECTION 1B1

A-6 AIR CONDITIONING COMPRESSOR

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>1B1- 1</td>
</tr>
<tr>
<td>Minor Repair to the Compressor</td>
<td>1B1- 3</td>
</tr>
<tr>
<td>Clutch Plate and Hub Assembly Replacement</td>
<td>1B1- 3</td>
</tr>
<tr>
<td>Pulley and Bearing Assembly Replacement</td>
<td>1B1- 4</td>
</tr>
<tr>
<td>Clutch Coil and Housing Assembly Replacement</td>
<td>1B1- 6</td>
</tr>
<tr>
<td>Major Repair to the Compressor</td>
<td>1B1- 7</td>
</tr>
<tr>
<td>Shaft Seal Replacement</td>
<td>1B1- 7</td>
</tr>
<tr>
<td>Pressure Relief Valve Replacement</td>
<td>1B1- 9</td>
</tr>
<tr>
<td>Compressor Disassembly</td>
<td>1B1-10</td>
</tr>
<tr>
<td>Gaging Operation</td>
<td>1B1-12</td>
</tr>
<tr>
<td>Gaging Procedure</td>
<td>1B1-14</td>
</tr>
<tr>
<td>Piston Ring Replacement</td>
<td>1B1-16</td>
</tr>
<tr>
<td>Compressor Assembly</td>
<td>1B1-18</td>
</tr>
<tr>
<td>Leak Testing</td>
<td>1B1-22</td>
</tr>
<tr>
<td>Specifications</td>
<td>1B1-23</td>
</tr>
<tr>
<td>Special Tools</td>
<td>1B1-24</td>
</tr>
</tbody>
</table>

DESCRIPTION

When servicing the Harrison A-6 compressor, prevent dirt or foreign material from getting on or into the compressor parts and system during disassembly or reassembly.

Keep tools and work area clean. Clean the compressor exterior before disassembly. Clean parts with trichloroethylene, naphtha or Stoddard solvent, kerosene or equivalent. Dry with air.

Use a non-lint producing type cloth to clean each part.

Although certain service operations can be performed without removing the compressor from the vehicle, the operations described here are based on bench repair with the compressor removed from the vehicle. They have been prepared in sequence in order of accessibility of the components (figure 1).

For compressor removal and installation, refer to the proper truck service manual.

Do not kink or place excessive tension on lines or hoses.

After removing the compressor from the vehicle, drain and measure the refrigerant oil. Add new 525 viscosity refrigerant oil after repair. Refer to "Specifications."

IDENTIFICATION

An identification label attached to the compressor provides the name of the manufacturer, model number and build code. If the label is removed or becomes dislodged during service operation, reattach it using an adhesive sealant such as Loctite 312 or equivalent.
1B1-2 A-6 AIR CONDITIONING COMPRESSOR

Figure 1—Compressor Component View
MINOR REPAIR TO THE COMPRESSOR

Operations to the clutch plate and hub, pulley and bearing, and coil and housing are covered as “Minor” because they may be performed without purging the system.

Servicing the shaft seal and pressure relief valve are covered in “Major Repair Procedures” because the system must be purged of Refrigerant-12.

Illustrations used in describing these operations show the compressor removed from the vehicle to illustrate the various operations.

When servicing the compressor, remove the components that preliminary diagnosis indicates need servicing. Refer to figure 1 for part name and location.

Keep the work area, tools and parts clean. Use Piston Tray J 9402 (refer to “Special Tools”) for parts removed and for replacement parts.

When a compressor is removed from the vehicle for servicing, drain and measure the amount of oil remaining in the compressor. After servicing, add new 525 viscosity refrigerant oil to the compressor.

CLUTCH PLATE AND HUB ASSEMBLY REPLACEMENT

Remove or Disconnect (Figures 1, 2 and 3)

Tools Required:
J 9396 Compressor Holding Fixture
J 9399 Compressor Shaft Nut Socket

1. Shaft nut (1) with J 9399.

2. Clutch plate and hub assembly (2).

3. Shaft key (36).

Install or Connect (Figures 1, 4 and 5)

Tools Required:
J 9399 Compressor Shaft Nut Socket
J 9480-B Hub and Drive Plate Assembly Installer
J 25030 Clutch Hub Holding Tool

1. Shaft key (36).
Figure 4—Aligning the Drive Plate Key

- Allow the shaft key (36) to extend 4.5 mm (9/4 inch) out of the bottom of the hub keyway (figure 4).
- The shaft key (36) is curved to give an interference fit in the groove.

Important
- Do not drive or pound on the clutch hub or the shaft (39). Internal damage to the compressor may result.

2. Clutch plate and hub assembly (2) (figure 4).
 - Install the clutch plate and hub assembly (2) over the compressor shaft lining up the key slot on the hub with the keyway slot in the shaft.
 - Install J 9480-B on the threaded end of the shaft (figure 5).
 - Back off J 9480-B body to allow the center screw to be threaded against the end of the compressor shaft (39).
 - Hold the center screw with a wrench and tighten the hex portion of J 9480-B body while pressing the hub onto the shaft (39). After tightening the body several turns, remove J 9480-B and check that the shaft key (36) is properly in place in the keyway.
 - Air gap between contact surfaces of the clutch plate and hub assembly (2) and the pulley (6) should be 0.56-1.34 mm (0.022-0.057 inch).
 - Remove J 9480-B.

Figure 5—Installing the Drive Plate

Inspect
- Position of the shaft (39) (even with or slightly above the clutch hub).

3. Shaft nut (1).
 - Use J 9396 to hold the clutch plate and hub assembly (2).

Tighten
- Shaft nut (1) to 27 N m (20 ft. lbs.) with J 9399.
- Hand spin the pulley (6) to check for free rotation.

PULLEY AND BEARING ASSEMBLY REPLACEMENT

Remove or Disconnect (Figures 1, 6 through 9)

Tools Required:
- J 6435 Snap Ring Pliers
- J 8092 Driver Handle
- J 8433 Heavy Duty Pulley Puller
- J 9395 Pulley Puller Adapter
- J 9398-A Pulley Bearing Remover
- J 9481-A Pulley Bearing and Pulley Installer
- J 24092 Pulley Hub Adapter Set

1. Clutch plate and hub assembly (2).
2. Pulley bearing retainer ring (3) with J 6435 (figure 6).
3. Pulley (6).
Install J 9395 over the end of the compressor shaft (39) (figure 7).

Important
- Use J 9395 puller pilot to prevent internal damage to the compressor when removing the pulley. Do not use the pulley directly against the end of the shaft.
- Place J 8433 over J 9395 for the regular V-groove pulley.

4. Bearing (5) from the pulley (6) (figure 8).
- Remove the retaining ring (4).
- Pulley (6) to J 21352 (figure 9).
- Drive the bearing (5) from the pulley (6) with J 9398 and J 8092.

Install or Connect (Figures 1 and 10)

Tools Required:
- J 6435 Snap Ring Pliers
- J 8092 Driver Handle

Figure 6—Removing the Pulley Retainer Ring
- Install J 9395 over the end of the compressor shaft (39) (figure 7).

Important
- Use J 9395 puller pilot to prevent internal damage to the compressor when removing the pulley. Do not use the pulley directly against the end of the shaft.
- Place J 8433 over J 9395 for the regular V-groove pulley.

Figure 7—Removing the Pulley and Bearing

Figure 8—Removing the Pulley and Bearing Retainer Ring
- Place J 24092 over J 9395 for the multi-groove pulley.
- Turn the screw on J 8433 to remove the pulley (6).

Important
- When using J 24092, the puller arms must extend around to the rear side of the pulley. Do not attempt to pull the pulley off by engaging the puller arms in a multi-groove pulley.

Figure 9—Removing the Bearing from the Pulley
1. Bearing (5) to the pulley (6) with J 8092 and J 9481-A (figure 10).
2. Retainer ring (4) to the pulley (6).
3. Pulley (6) and bearing (5) to front head (16) with J 8092 and J 9481-A.
4. Retainer ring (4) to pulley (6) and bearing (5).
5. Pulley retainer ring (3) with J 6435.
6. Clutch plate and hub assembly (2).

- Refer to "Clutch Rotor and Hub Assembly Replacement."

CLUTCH COIL AND HOUSING ASSEMBLY REPLACEMENT

++ Remove or Disconnect (Figure 1)

Tool Required:
J 6435 Snap Ring Pliers
1. Clutch plate and hub assembly (2).
2. Pulley (6).
- Mark or scribe the location of the clutch coil (8) to terminal on the compressor front head (16).
3. Clutch coil assembly (8).
- Coil housing retaining ring (7) with J 6435.
- Using a large screwdriver or small pry bar, pry the clutch coil away from the front head. If necessary, hand impact a blow to the screwdriver handle or pry bar to break the adhesive bond of the clutch coil to the front head.

Clean
- Adhesive from the coil by scraping with a putty knife.
- Remove any adhesive around the three locator hole areas of the front head and around the three clutch coil locator protrusions at the rear of the clutch coil housing.
- Use a suitable solvent to clean the coil.

++ Install or Connect (Figures 11 and 12)

Tool Required:
J 6435 Snap Ring Pliers
1. Adhesive to the clutch coil (8) (figure 11).
• Place the clutch coil “face down” and apply the adhesive in a circular bead around the three coil locator protrusions.

2. Clutch coil (8) to the front head (16) (figure 12).
• Align the coil and housing assembly on the compressor front head (16) so that the electrical terminals line up the marks scribed on the compressor.

3. Coil and housing retainer ring (7) with J 6435.
• Align the coil locator projections on the coil housing with the holes in the front head (16).

4. Pulley and bearing assembly (5 and 6).

5. Clutch plate and hub assembly (2).

MAJOR REPAIR TO THE COMPRESSOR

Service repair procedures to the compressor shaft seal and pressure relief valve or disassembly of the internal compressor mechanism are considered “Major” since the refrigeration system must be purged of refrigerant before proceeding.

If servicing or replacing the internal cylinder and shaft assembly, measure and replace the oil with new 525 viscosity refrigerant oil.

Disassemble the compressor in a clean work area. Use clean tools. Disassembly procedures require proper service tools. Using inadequate equipment may damage the compressor.

Replacement parts are packaged and can be used without cleaning.

Piston shoe discs and shaft thrust races are “numbered.” To determine size and dimension, refer to the chart in this section.

SHAFT SEAL REPLACEMENT

Remove or Disconnect (Figures 1, 13, 14 and 15)

Tools Required:
J 5403 Snap Ring Pliers
J 9392-01 Shaft Seal Remover and Installer
J 9553 Seal Remover
J 22974-A Compressor Shaft Oil Seal Protector
J 23128-A Compressor Shaft Seat Remover and Installer

1. Clutch plate and hub assembly (2).

Clean
• The inside of the compressor front head around the shaft (39). Prevent dust and dirt from entering the compressor.

2. Sleeve retainer (10).

3. Absorbent felt sleeve (11).

4. Shaft seat retaining ring (12) with J 5403 (figure 13).

5. Shaft seat (13) (figure 14).
• Engage J 23128 into the recessed portion of the seat by turning J 23128 to the right (clockwise).
• Lift the seat (13) from the compressor with a rotary motion.

6. Shaft seal (14) (figure 15).
• Place J 22974-A over the end of the shaft (38) to prevent cutting the O-ring (13).
• Insert J 9392-01 over the compressor shaft (39).

Install or Connect (Figures 1, 13 through 16)

Tools Required:
J 5403 Snap Ring Pliers
J 9392-01 Shaft Seal Remover and Installer
J 9393-A Seal Seat Remover and Installer
J 9366 Compressor Shaft Nut Socket
J 9625-A Pressure Test Set with Schrader Valves
J 22974-A Shaft Seal Protector
J 23128-A Ceramic Seal Remover and Installer

• Engage the tabs on the seal (14) by twisting the J 9392-01 downward to the right.

• Engage the tabs and lift the seal (14) out of the shaft (39) cavity. Hold J 22974 in place while removing the seal.

7. O-ring (15) with J 9553-01.
Figure 14—Removing/Installing the Shaft Seal Seat and Seal

1. O-ring (15) with J 33011 (figure 15).
 • Dip the seal (15) into clean 525 viscosity refrigerant oil.
 • Insert J 33011 down into the compressor neck until the tool "bottoms.”
 • Lower the movable slide of J 33011 into the lower groove.

Figure 15—Removing/Installing the Shaft Seal and Seat

13. Seal
15. Seal (O-ring)

Figure 16—Shaft and Seal Position and Correct Position Gaging Guide

1. Retainer (10).
2. Seal seat (14) (figure 15).
 • Coat the seal (14) with clean 525 viscosity refrigerant oil.
 • Mount the seal (14) to J 9392-01 by engaging the tabs of the seal with the tangs of J 9392-01.
 • Place J 22974 over the end of the compressor shaft (39).
 • Slide the seal (14) and J 22974 down onto the compressor shaft (38).
 • Twist J 9392-01 to the right (clockwise) while pushing the seal assembly down the shaft (38) until the seal assembly (14) engages the flats on the shaft and seat in place. Push down to full depth.
 • Disengage J 9392-01 by pressing downward and twisting to the left (counterclockwise).
3. Ceramic seal seat (13) (figure 14).
 • Seal (13) to J 23128.
• Dip the seal (13) into clean 525 viscosity refrigerant oil.
• Install J 23128 and the seal (13) over the compressor shaft (39).
• Push the seal (13) into place with a rotary motion.

Important
- Do not dislodge the O-ring (15).

4. Seal shaft retainer ring (12) with J 5403 (figure 13).
 - Place the flange face against the seal seat.
 - Use the sleeve of J 23128-A to press the ring into its groove.

5. J 9625 to the rear head of the compressor:
 - Gage charging lines or pressurize the suction side (low pressure side) of the compressor with refrigerant to equalize the pressure to the drum pressure.

 - Roll the material into a cylinder, overlapping the ends.
 - Slip the sleeve into the compressor front head with the overlap toward the top of the compressor.
 - With a screwdriver spread the sleeve ends of the sleeve butt at the top vertical centerline.

7. Sleeve retainer (10) with J 23128.
 - Place the flange face against the front end of the sleeve.
 - Press and tap with a mallet to set the retainer and sleeve into place. Place the retainer 0.7937 mm (0.03125-inch) from the face of the compressor neck (figure 16).

8. Clutch plate and hub assembly (2).
 - Refer to "Clutch Plate and Hub Assembly Replacement."

Important
- Using improper procedures, pounding or collisions can damage the shaft seal and the axial plate. If the axial plate is out of position, the carbon face of the shaft seal may not contact the seal seat.
- To check the position of the axial plate on the shaft, remove the clutch driven plate and measure the distance between the front head extension and the flat shoulder on the shaft with a wire gage. The clearance should be 0.66-1.9 mm (0.026-0.075-inch) (figure 16).

- If the shaft has been pushed back in the axial plate (measurement greater than 1.9 mm (0.075-inch), disassemble the compressor and replace the shaft and axial plate assembly, thrust races and thrust bearings.
- If there is too much or not enough air gap between the drive and driven plates, check for shaft dislocation. It will not be possible to service the compressor if the carbon seal is not seating against the seal seat.

9. Shaft nut (1) with J 9399.
 - Place the compressor in a horizontal position with the oil sump down.
 - Rotate the compressor shaft by hand.
 - Leak test with J 23400.
 - Replace shaft nut (1) with a new one.

PRESSURE RELIEF VALVE REPLACEMENT

The pressure relief valve is located at the rear of the compressor.

 européen** Remove or Disconnect (Figure 1)**

1. Valve (56).
2. Seal (57).

Clean
- The valve cavity to remove any dust or dirt before installing a new seal.

Install or Connect (Figure 1)

1. Seal (57) to the compressor.
 - Dip the seal (57) in 525 viscosity refrigerant oil.
2. Valve (56) to the compressor.

Tighten
- Valve (56) to 19 N m (14 ft. lbs.).
COMPRESSOR DISASSEMBLY

Figure 17—Compressor to J 9396

Remove or Disconnect (Figures 1, 17 through 26)

Tools Required:
J 9396 Compressor Holding Fixture
J 9397 Compressing Fixture
J 9402 Piston Assembly Tray
J 21352-A Compressor Support Block

1. J 9396 to a vise.
2. Compressor to J 9396. Secure with thumb screws (figure 17).
3. Nuts (53) from the threaded studs.
4. Rear head (54) (figure 18).
 - Tap around the edge to remove the rear head (54).
5. Suction screen (58).
6. Gears (50 and 51).
 - Mark the face of the gears before removing.
7. Seal (52).
8. Rear discharge valve plate assembly (49) (figure 19).
 - Use two small screwdrivers under the reed retainers to remove the assembly.
 - Do not position the screwdrivers between the reeds and the reed seats.
9. Rear suction reed plate (48) (figure 20).
 - Do not pry up on the horse-shoe shaped reed valves.
10. Oil pick-up tube (44) with J 5139 (figure 21).
11. Seal (45).
12. Compressor to J 21352.

Figure 18—Removing the Rear Head

- Loosen the compressor from J 9396.
- Place J 21352 over the oil pump end of the shaft.
- Holding the support block in position with one hand, lift the compressor from the holding fixture with the other hand.

Figure 19—Removing the Rear Discharge Valve Plate and Seal

- 61. Discharge Reeds
- 62. Reed Retainers
- 63. Screwdriver

Figure 20—Rear Suction Reed Plate

- 49. Reed Plate
- 51. Gear
- 52. Seal
- 54. Rear Head
- 58. Screen

Figure 21—Oil Pick-up Tube with Seal
Invert the compressor and place the shaft end up on the bench with the internal assembly support block resting on the bench.

Important

- To prevent damaging the shaft, do not tap on the end of the compressor shaft to remove the internal mechanism. If the mechanism will not slide out of the compressor shell, tap on the front head with a plastic hammer.

11. Front head assembly (16) from the shell (9).
 - Rest the compressor shell (9) on its side and push the fronthead assembly (16) through the shell (9).

12. Front seal (17).
 - Tap on the outside of the front head (16) with a plastic hammer to overcome the friction of the seal (17) between the fronthead (16) and the shell (9).

13. Front discharge valve plate (18).

15. Suction cross-over plate (46) (figure 22).
 - Pry with a screwdriver between the casting (29) and the cover.

 - Number the piston and the piston bores with the same numbers so the pistons can be installed in their bores (figure 23).
 - Separate the cylinders (29 and 42) with a block of wood and a mallet (figure 24).
 - Do not let the discharge cross-over tube (26) touch the axial plate (39).
 - Do not strike the shaft at either end to separate the upper and lower cylinder halves because the shaft (39) can be damaged.

17. Rear half (42) of the compressor from the pistons (32).

18. Front cylinder half (29) with the piston (32), shaft and axial plate (39) to J 9397.

19. Pistons (32), balls (34) and seats (35) in the order in which the pistons are marked.
 - Place parts in J 9402.
 - Place the pistons (32) in J 9402 with the notch in the casting web at the front end of the piston into the dimpled groove of the J 9402 (figure 25).

20. Rear thrust races (40) and thrust bearing (41) from the shaft (39) (figure 26).

21. Shaft (39) from the front cylinder half (29).
 - If necessary, bend the discharge cross-over tube (26) to remove the shaft (39).

22. Front thrust races (27) and thrust bearing (28).
23. Discharge crossover tube (26) from the cylinder half (29) with locking jaw pliers.

- This is necessary on original factory equipment because the tube ends are swedged into the cylinder halves.

- If previously serviced, the discharge crossover tubes (26) will have a seal and bushing at the end of the tube. Remove these tubes by hand.
1. Needle bearing (21) to the front cylinder (29) with J 9432 (figure 27).
 - Support the cylinder half (29) on J 21352-A.
 - Insert needle bearing (21).
 - Insert J 9432 into the hub end (inner side) of the cylinder head (29) and drive the needle bearing into the cylinder.
 - Production compressors use 1/8- and 5/6-inch needle bearings. The bearings are interchangeable.
 - Remove cylinder half (29) from J 21352-A.
2. J 9397 on J 9396.
3. The front cylinder half (29) in J 9397 flat side down.
 - The front cylinder half (29) has a long slot extending out from the shaft hole. The “legs” of the front cylinder half (29) will point upward.
4. “Zero” thrust race (27), thrust bearing (28) and “zero” thrust race (27) to the front end of the shaft (39) (figure 28).
 - Lubricate the races (27) and the bearing (28) with petroleum jelly.
5. Threaded end of the shaft (39) through the needle bearing (21) in the front cylinder half (29) and allow the thrust race (27) and bearing (28) to rest on the hub of the cylinder.
6. Insert a thrust race on the rear end of the shaft (39) so that it rests on the hub of the axial plate.
 - Lubricate the races and bearing with petroleum jelly.
7. Place the balls (34) into the sockets of number one piston (figure 29).
8. Place the shoe discs (35) over the ball (34) in the front end of the piston.
 - Lubricate the cavity of the shoe disc with 525 refrigerant oil.
 - The front end of the piston (32) has an identifying notch in the casting web.
Important

- Do not install the shoe discs (35) on the rear of the piston (32).
9. Rotate the shaft and axial plate (39) until the high point of the axial plate is over the No. 1 piston cylinder bore.
10. Lift the axial shaft assembly (39) up a little out of front cylinder half (29).
 - Hold the front thrust races and bearing ("zero" race, race bearing, "zero" race) against the axial plate hub.
11. Position the No. 1 piston (32) over the No. 1 cylinder bore (notched end of the piston being on the bottom and the piston straddling the axial plate) and lower the shaft to allow No. 1 piston to drop into its bore (figure 30).
 - Tap the piston into place using a plastic mallet or piece of clean wood and a hammer (figure 31).
12. Repeat step 11 for pistons Nos. 2 and 3.
13. Install the rear cylinder half (42) on the pistons, aligning the cylinder with the discharge cross-over tube hole in the front cylinder.
 - Tap the piston into place using a plastic mallet or piece of clean wood and a hammer (figure 31).
14. Position the discharge cross-over tube opening between a pair of compressing fixture bolts to permit access for the feeler gage.
15. Install the top plate to J 9397.

Tighten

- Nuts to 20 N·m (15 ft. lbs.).

GAGING PROCEDURE

Tools Required:
- J 8001 Dial Indicator Set
- J 9397 Compressing Fixture
- J 9402 Piston Assembly Tray
- J 9661-01 Feeler Tension Gage Set

Two gaging procedures provide the running tolerances. The first procedure determines the size shoe discs to provide at each piston a 0.041-0.061 mm (0.0016-0.0024-inch) total preload between the seats and the axial plate at the tightest place through the 360 degree rotation of the axial plate. The bronze shoe discs are available in 0.013 mm (0.0005-inch) variations.

The second procedure, performed at the rear shaft thrust bearing and race pack, provides a 0.064-0.077 mm (0.0025-0.0030-inch) preload between the hub surfaces of the axial plate, and the front and rear hubs of the cylinder. Fourteen steel thrust races, including a basic "zero" race, are available in 0.013 mm (0.0005-inch) increments. Use J 9661-01 for gaging the shoe disc size. Use J 8001 to determine the thrust race size.

1. Measure the clearance between the rear ball of the No. 1 piston and axial plate in the following manner:
 a. Select a combination of oiled feeler gage leaves to fit snugly between the ball and axial plate.
 b. Attach J 9661-01 to the feeler gage. A distributor point checking scale may be used.
 c. Pull on the spring scale to slide the feeler gage stock out from between the ball and axial plate. Note the reading on spring scale as the
feeler gage is sliding out (figure 32). The reading should be between 1.1 and 2.2 N (4 and 8 ounces).

d. If the reading in step c above is under 1.1 N (4 ounces) or over 2.2 N (8 ounces), reduce or increase the thickness of the feeler gage leaves and repeat steps a through c to obtain a reading of 1.1 N to 2.2 N (4 to 8 ounces). Record the clearance between the ball and axial plate that results in the 1.1 N to 2.2 N (4 to 8 ounces) pull on the spring scale.

2. Rotate the shaft 120 degrees and repeat for the No. 2 cylinder.
 - If the shaft is hard to rotate, install the shaft nut onto the shaft and turn the shaft with a wrench.

3. Rotate the shaft another 120 degrees and repeat for cylinder No. 3.

4. Select a numbered shoe disc corresponding to the minimum feeler gage reading recorded in the three checks:

<table>
<thead>
<tr>
<th>POSITION</th>
<th>POSITION</th>
<th>SELECT AND USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>PISTON NO. 1</td>
<td>.019"</td>
<td>.0195"</td>
</tr>
<tr>
<td>PISTON NO. 2</td>
<td>.020"</td>
<td>.020"</td>
</tr>
<tr>
<td>PISTON NO. 3</td>
<td>.021"</td>
<td>.021"</td>
</tr>
</tbody>
</table>

Figure 33—Service Shoes and Thrust Washers

- Place the shoe discs in J 9402 compartment with the discs corresponding to piston No. 1 and the rear ball pocket position.
- Shoe discs are available in 0.013 mm (0.0005-inch) variations. Eleven sizes are available for field servicing. Shoe discs are marked with the shoe size which corresponds to the last three digits of the part number (figure 33).
- After selecting the shoe size, the matched combination of the shoe disc to the rear ball spherical cavity in the piston must be kept in the proper relationship during disassembly after performing the gaging operation and the final assembly of the internal mechanism.

5. Repeat the gaging procedure for pistons Nos. 2 and 3.

6. Mount a dial indicator on the edge of J 9397 with J 8001.

7. Position the dial indicator on the rear of the shaft (39) and adjust to zero (figure 34).
Front thrust gives the proper clearance.

Checking for shoe thickness “X”.

From the bottom, apply full hand force at the end of the shaft a few times before reading the clearance. This will squeeze the oil out from between the mating parts. Now push upward and record the measurement. Dial indicator increments are 0.03 mm (0.001-inch); estimate the reading to the nearest 0.013 (0.0005-inch).

An alternate method is to use J 9661-01 in selecting a suitable feeler gage leaf until the result is a 1.1 N to 2.2 N (4 to 8 ounces) pull on the scale between the rear thrust bearing and upper (or outer rear) thrust race (figure 35).

If the pull is just less than 1.1 N (4 ounces), add 0.013 mm (0.0005-inch) to the thickness of the feeler stock used to measure the clearance. If the pull on the scale reads just over 2.2 N (8 ounces), then subtract 0.013 mm (0.0005-inch) from the thickness of the feeler stock.

For either method used, select a thrust race with a “number” corresponding to TWO (2) FULL SIZES LARGER than the dial indicator or feeler gage measurement of the amount of end play shown. (If measurement is 0.18 mm (0.007-inch), select a No. 9 or 090 race).

Fifteen thrust races are provided in increments of 0.013 mm (0.0005-inch) thickness and one ZERO gage thickness providing a total of 16 sizes. The thrust race “number” corresponds to the last three digits of the part number. Refer to figure 33.

Remove the nuts from the top plate of the J 9397.

Remove the top plate.

PISTON RING REPLACEMENT

Remove or Disconnect (Figures 1, 36 through 39)

Tool Required:
- J 24608 Teflon Piston Ring Installer
- Piston rings (33) and (37).

Slice through the ring with a knife while holding the blade flat with the piston surface.
- Do not damage the aluminum piston (32) or piston groove.

Clean

Clean the piston and piston ring grooves with a recommended cleaning solvent (trichloroethane, naphtha, Stoddard solvent, kerosene, or equivalent) and blow the piston dry with dry air.

Install or Connect (Figures 1, 36 through 39)

1. Piston (32) to J 24608-2 (figure 36).
 - Set the piston on a clean, flat surface.
2. Piston ring (33) to J 24608-2.
 - Place the dished or dull side down and the glossy side up.
3. Piston ring (33) to piston (32) (figure 37).
Figure 36—Piston Ring Position and Installer Guide

33. Ring (Piston)

J 24608-2

Figure 38—Sizing the Piston Ring

- Push J 24608-5 (installer) down over J 24608-2 (guide).
- If the piston ring is off-positive in the groove, reposition by moving with a fingernail or a blunt-edge tool.
- J 24608-5 (installer) will keep the J 24608-2 (guide) inside when the piston ring is installed on the piston (32).
- Remove the guide from the installer and do not store the guide in the installer because the seal will be stretched and weakened during storage. This can cause the seal not to hold the ring installer segments tight enough to the J 24608-2 (guide) when installing the piston ring (33) to the piston (32).

4. Piston (32) to J 24608-6 (figure 38).
 - Lubricate the piston ring (33) area with 525 viscosity refrigerant oil.
 - Rotate the piston (32) and ring (33) into J 24608-6 at a slight angle until the piston is inserted against the center stop of J 24608-6.

Figure 37—Installing the Piston Ring

Figure 39—Gaging the Piston Ring Size

33. Ring

J 24608-5

J 24608-2

K. Notch

J 24608-1
NOTICE: Do not push the piston and ring assembly into J 24608-6 without positioning and rotating because the needle bearings of the ring sizer may damage the end of the piston.

- Rotate the piston and ring assembly in J 24608-6 several turns until the assembly rotates relatively free in the ring sizer.

5. Piston (32) to J 24608-1 (figure 39).
 - The piston (32) should pass through the ring gage with a two to eight pound force.
6. Repeat for the opposite end of the piston (32).
7. Lubricate both ends of the piston (32) with 525 viscosity refrigerant oil before installing the piston into the cylinder bore.

COMPRESSOR ASSEMBLY

Figure 40—Installing No. 1 Piston

Assemble the cylinder assembly after performing the "Gaging Procedure," choosing the correct shoe discs and thrust races and installing any piston rings. Install new seals supplied in the service kit.

Install or Connect (Figures 1, 40 through 51)

- Support the front half of the cylinder (29) on J 9397.
 1. Shaft and axial plate (39).
 - Place the shaft, threaded-end down, with the front bearing race pack (race and bearing) into the cylinder if this was not done at the end of the "Gaging Procedure."
 2. Balls (34) and shoe discs (35) to the pistons (32).
 - Apply a coat of petroleum jelly to the "numbered" shoe discs.
 3. Piston assembly (32) into the front cylinder half (29) (figure 40).
 - Rotate the axial plate (39) to place the high point above cylinder bore No. 1.

Figure 41—Installing the Discharge Crossover Tube

- Hold the front thrust bearing pack against the axial plate hub.
- Repeat for pistons Nos. 2 and 3.
4. Discharge cross-over tube (26) (figure 41).
 - Face the flattened portion of the tube to the inside of the compressor to allow for axial plate clearance.
5. Rear cylinder half (42) over the shaft (39).
 - Rotate the shaft (39) to position the pistons in a stair-step arrangement.
 - Start the pistons into the cylinder bores.
6. Discharge cross-over tube (26) into the rear half of the cylinder (42).
7. Rear cylinder half (42) over the locating dowel pins (38).
 - After aligning, tap the rear half of the cylinder with a mallet and wood block.
 - If necessary, clamp the cylinder in J 9397 to draw the halves together.
Lubricate all the moving parts with clean 525 viscosity refrigerant oil.

Check for free rotation.

8. Suction cross-over cover (46) (figure 42).
 - Remove J 9397.
 - Compress the cover (46) to start it into the slot.
 - Press on top of the cover (46) until the ends are flush.

9. Seal 925) and bushing (24) to the front end of the discharge cross-over tube (26) (figure 43).
 - Place the internal assembly on J 21352.

10. Dowel pins (20) to the front cylinder (figure 44).

11. Front suction reed plate (19) to the front cylinder half (29) (figure 44).
 - Align the dowel pins (20), suction ports, oil return slot and discharge cross-over tube (26).

12. Front discharge valve plate (18) (figure 45).
 - Align the holes with the dowel pins (20) and the openings in the front suction reed plate (19). The front discharge plate (18) has a large hole in the center.

13. Front head (16) (figure 46).
 - Coat the sealing surfaces on the webs of the compressor front head casting with clean 525 viscosity refrigerant oil.
 - Determine the position of the front head (16) in relation to the dowel pins (20).
 - Mark the position of the dowel pins (20) on the sides of the front head (16) and on the sides of the internal assembly with a grease pencil.
 - Lower the front head (16).
18. Discharge Plate
20. Pin

Figure 45—Installing the Front Discharge Valve Plate

Important
- Do not let the sealing area around the center bore of the head touch the shaft as the head is lowered.
- Do not rotate the front head (16) to line up with the dowel pins because this will contact the reed container.

14. Seal (17) to the front head (16) (figure 47).
 - Lubricate the seal (17) and groove with clean 525 viscosity refrigerant oil.

15. Shell (9) to the internal assembly (figure 48).
 - Coat the inside of the shell (9) with clean 525 viscosity refrigerant oil.
 - Position the shell (9) on the internal assembly.
 - Rest the shell (9) on the seal.
 - With the flat side of a small screwdriver, position the seal (17) in a round, circle shape to the inside of the shell (9).
 - Slide the shell (9) down. Line up the oil sump with the oil intake tube hole.

16. New dowel pins (45) to the rear cylinder half.
 - Remove J 21352.
 - Install the compressor into J 9396.

17. Seal (43) to oil pick-up tube (44).

Figure 46—Installing the Front Head

18. Oil pick-up tube (44) to the compressor (figure 49).
 - Lubricate the oil pick-up tube (44) with clean 525 viscosity refrigerant oil.
 - Place the oil pick-up tube (44) in the cavity.
 - Rotate the compressor assembly to align the tube (44) with the hole in the shell baffle.
Figure 48—Installing the Compressor Shell

19. Seal (31) and bushing (30) to the rear of the discharge cross-over tube (26).
20. Rear suction reed (48) over the dowel pins (45).
 - Place the slot toward the sump.
21. Rear discharge valve plate (49) over the dowel pins (45).
 - Place the reed retainer up.
22. Inner oil pump gear (50) over the shaft (39).
 - Line up the identification marks.
23. Outer oil pump gear (51) over the inner gear (figure 50).
 - Line up the identification marks.
 - Face the compressor oil sump and position the outer gear (51) so that it meshes with the inner gear (50) at the 9 o'clock position. The cavity between the gear teeth will be at the 3 o'clock position.
24. Seal (52) to the discharge valve plate (49).
 - Lubricate the seal (52), shell (9), discharge plate (49) and gears (50 and 51) with 525 viscosity refrigerant oil.
25. Suction screen (58) to the rear head (54).
• Lubricate the surface of the rear head (54) with 525 viscosity refrigerant oil.

26. Rear head (54) to the shell (9) (figure 51).
• Align the two lower threaded compressor mounting holes with the compressor sump.
• Do not let the suction screen (58) fall out of the rear head (54).
• If the rear head (54) will not slide down over the dowel pins (45), twist the front head (16) back and forth by hand until the rear head (54) drops over the dowel pins (45).

Tighten
• Nuts (53) to 35 N·m (25 ft. lbs.).

27. Shaft seal (13) and (14).
• Invert the compressor in J 9396.

28. Clutch coil (8).
29. Pulley (6).
30. Clutch (2).
31. Add the required amount of 525 viscosity refrigerant oil to the compressor.
32. Leak Test.
 Refer to “Leak Testing.”

Tools Required:
 J 5420 Straight Adapter
 J 9396 Compressor Holding Fixture
 J 9459 90 Degree Adapter
 J 9625-A Pressure Test Set with Schrader Valves

1. Install J 9625 on the rear head of the compressor.
2. Attach a center hose of manifold gage set on to a charging station with a refrigerant drum standing in an upright position and open the valve on the drum.
3. Connect the charging station “high” and “low” pressure lines to the correct fittings on J 9625-A, using J 5420 (7/16-inch) gage adapters. Adapters are not necessary if the hoses are equipped with Schrader core depressors.
 • Suction port of the compressor has a large internal opening. The discharge port has a small internal opening into the compressor. The external opening into the compressor is not necessary if the hoses are equipped with Schrader core depressors.
 • Gage adapters are not required to connect to the test plate if the hoses have built-in Schrader depressors.
4. Open the “low” pressure control, “high” pressure control and refrigerant control on charging station to allow refrigerant vapor to flow into the compressor.
5. With J 29547, check for leaks at the pressure relief valve, compressor shell to cylinder, compressor front head seal, rear head seal, oil charge port, and the compressor shaft seal. After checking, shut off the “low” pressure control and the “high” pressure control on the charging station.
6. If an external leak is present, repair and recheck.

7. Loosen the manifold gage hose connections to the gage adapters connected to the “low” and “high” sides and allow the vapor pressure to release slowly from the compressor.
8. Disconnect both of the gage adapters or hoses from J 9625-A.
9. Rotate the complete compressor assembly (not the crankshaft or drive plate hub) end to end several turns to distribute the oil to the cylinder and piston areas.
10. Install the shaft nut on the compressor crankshaft if the drive plate and clutch assembly are not installed.
11. Using a box-end wrench or socket and handle, rotate the compressor crankshaft several turns to ensure the piston assembly lubrication.
12. Connect the charging station “high” pressure line or a “high” pressure gage and J 5420 or J 9459 to the J 9625 high side connector.
13. Attach J 5420 or J 9459 to the suction or “low” pressure port on J 9625-A to open the Schrader-type valve to atmosphere.
 • Gage adapters are not required to connect to the test plate if the hoses have built-in Schrader depressors.
 • Oil will drain out of the compressor suction port adapter if the compressor is positioned with the suction port down.
14. Attach the compressor to J 9396 and clamp the fixture in a vise so that the compressor can be manually turned with a wrench.
15. Using a wrench, rotate the compressor crankshaft about 10 complete revolutions at a speed of about one revolution per second.

NOTICE: Turning the compressor at less than one revolution per second can result in a lower pump up pressure and disqualify a good pumping compressor.

16. Observe the reading on the "high" pressure gage at the completion of the tenth revolution of the compressor.
 - The pressure reading for a good pumping compressor should be 430 kPa (60 psi) or above.
 - A pressure reading of less than 342 kPa (50 psi) would indicate one or more suction and/or discharge valves are leaking, an internal leak, or an inoperative valve.
 - Disassemble the compressor and repair the leak. Assemble and repeat the test. Externally leak test.
17. After testing, release the air pressure from the "high" side and remove J 5420 or J 9459 and J 9625-A.
18. Remove the oil charge screw and drain the oil sump.
19. Allow the compressor to drain for 10 minutes, then charge with the proper amount of oil. The new oil may be poured into the suction port. Torque the charge screw to 20 N m (15 ft. lbs.).
20. If more processing is required, install the shipping plate or J 9625 to keep air, dirt and moisture out of the compressor until installed.

SPECIFICATIONS

COMPRESSOR
- Type — Harrison A-6 compressor
- Displacement: 12.6 Cu. In.
- Rotation: 6 Cylinder Axial
- Belt Tension: Clockwise
- Oil Capacity: 0.284 Kg (10 oz.)

COMPRESSOR CLUTCH COIL
- Ohms at 26°C (80°F): 3.85
- Amps at 26°C (80°F): 3.2 (max.) @ 12 volts
- Clutch: 0.022" to 0.057"

TORQUE SPECIFICATIONS
- Rear Head to Shell Stud Nuts: 34 N m (25 ft. lbs.)
- Shaft Mounting Nut: 27 N m (20 ft. lbs.)
- Pressure Relief Valve: 19 N m (14 ft. lbs.)
- Oil Drain Screw: 20 N m (15 ft. lbs.)
SPECIAL TOOLS

1. J 5139
2. J 5403
3. J 5453
4. J 6083
5. J 6271-01
6. J 9392-01
7. J 9393-A
8. J 9396
9. J 9397
10. J 9398-A
11. J 9399
12. J 9401-A
13. J 9402
14. J 9432
15. J 9459
16. J 9480-B
17. J 9553-01
18. J 9564-01
19. J 9625
20. J 21352
21. J 22974-A
22. J 23128-A
23. J 23500-01
24. J 23600-B
25. J 23640
1. Oil Pickup Tube Remover
2. Snap Ring Pliers
3. Goggles
4. Snap Ring Pliers
5. R-12 Dispensing Valve
6. Shaft Seal Remover & Installer
7. Seal Seat Remover and Installer
8. Compressor Holding Fixture
9. Compressing Fixture
10. Pulley Bearing Remover
11. 9/16-Inch Nut Socket (Thin Walled)
12. Hub and Clutch Drive Plate Assembly Remover
13. Piston Tray
14. Needle Bearing Installer
15. 90° Elbow Adapter
16. Hub and Drive Plate Installer
17. O-ring Remover
18. Feeler Gage Set
19. Compressor Test Set
20. Compressor Support Block
21. Oil Seal Protector
22. Compressor Shaft Seal Installer and Remover
23. Portable Charging Station
24. Belt Tension Gage
25. Pocket Thermometer
26. Pulley Hub Puller Set
27. Oil Injector Line
28. Clutch Hub Holding Tool
29. Straight Adapter
30. Orifice Tube Extractor
31. A/C Powered Leak Detector
32. Battery Powered Leak Detector
33. Compressor Pulley Puller Kit
34. Driver Handle
35. O-ring Installer
V5 AIR CONDITIONING COMPRESSOR

SECTION 1B2

V5 AIR CONDITIONING COMPRESSOR

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>1B2-1</td>
</tr>
<tr>
<td>Theory of Operation</td>
<td>1B2-1</td>
</tr>
<tr>
<td>Minor Repair to the Compressor</td>
<td>1B2-2</td>
</tr>
<tr>
<td>Clutch Plate and Hub Assembly Replacement</td>
<td>1B2-2</td>
</tr>
<tr>
<td>Pulley and Bearing Assembly Replacement</td>
<td>1B2-4</td>
</tr>
<tr>
<td>Clutch Coil Replacement</td>
<td>1B2-7</td>
</tr>
<tr>
<td>Pressure Relief Valve Replacement</td>
<td>1B2-7</td>
</tr>
<tr>
<td>High-Side Pressure and High-Side Low Pressure Cutoff Switches Replacement</td>
<td>1B2-8</td>
</tr>
<tr>
<td>Control Valve Replacement</td>
<td>1B2-9</td>
</tr>
<tr>
<td>Major Repair to the Compressor</td>
<td>1B2-9</td>
</tr>
<tr>
<td>Shaft Seal Replacement</td>
<td>1B2-9</td>
</tr>
<tr>
<td>Front Head Seal, Rear Head Gasket, Rear Valve Plate, Suction Reed Plate and Cylinder to Rear Head Seal Replacement</td>
<td>1B2-10</td>
</tr>
<tr>
<td>Leak Testing</td>
<td>1B2-12</td>
</tr>
<tr>
<td>Specifications</td>
<td>1B2-13</td>
</tr>
<tr>
<td>Special Tools</td>
<td>1B2-14</td>
</tr>
</tbody>
</table>

DESCRIPTION

THEORY OF OPERATION

The V5 is a variable displacement compressor that can match all air conditioning demands under all conditions without cycling (figure 1). The basic compressor mechanism is a variable angle wobble-plate with five axially oriented cylinders. The center of control of the compressor displacement is a bellows actuated control valve located in the rear head of the compressor that senses compressor suction pressure. The wobble-plate angle and compressor displacement are controlled by the crankcase-suction pressure differential. When the A/C capacity demand is high, the suction pressure will be above the control point; the valve will maintain a bleed from crankcase to suction; no crankcase-suction pressure differential; and the compressor will have maximum displacement. When the A/C capacity demand is lower and the suction pressure reaches the control point, the valve will bleed discharge gas into the crankcase and close off a passage from the crankcase to the suction plenum. The angle of the wobble-plate is controlled by a force balance on the five pistons. A slight elevation of the crankcase-suction pressure differential creates a total force on the pistons resulting in a movement about the wobble-plate pivot pin that reduces the plate angle.

The crankcase-suction bleed is routed through the rotating wobble-plate for lubrication of the wobble-plate bearing. The rotation acts as an oil separator, which removes some of the oil from the crankcase-suction bleed, rerouting it to the crankcase where it can lubricate the compressor mechanism.

Up to 113 g (4 oz.) of oil can collect in the crankcase. Therefore, it is important when replacing a compressor that the oil in the old compressor crankcase be drained through the drain plug and measured (discard after recording amount).

All replacement compressors will be shipped with 227 g (8 oz.) of oil in the crankcase. The oil must be drained and retained. Then replace the oil in the same amount as previously recorded from the old compressor. Refer to "Specifications."

IDENTIFICATION

An identification label attached to the compressor provides the name of the manufacturer, model number and build code.

When servicing the V5 compressor, keep dirt and foreign material from getting on or into the compressor parts and system. Clean tools and a clean work area are important for
1B2-2 V5 AIR CONDITIONING COMPRESSOR

Figure 1—Rear Head Details

1. Clutch Coil Terminals
2. High Pressure Relief Valve
3. High Side Low Pressure Switch
4. High Side Cut-Off Switch
5. Compressor Control Valve

Figure 2—Mounting View

proper service. The compressor connections and the outside of the compressor should be cleaned before any "on vehicle" repairs, or before removal of the compressor. The parts must be kept clean at all times and any parts to be reassembled should be cleaned with Trichloroethane, naphtha, stoddard solvent, kerosene or equivalent solvent and dried with dry air. Use only lint free cloths to wipe parts. Drain the compressor and measure the amount of oil. Replace with new 525 viscosity refrigerant oil. Refer to "Specifications."

NOTICE: Remove the oil drain plug to make sure the compressor is drained completely of oil (figure 2).

MINOR REPAIR TO THE COMPRESSOR

CLUTCH PLATE AND HUB ASSEMBLY REPLACEMENT

Clean
• The compressor assembly with solvent and blow dry with dry air.

Remove or Disconnect (Figures 3, 4, and 5)
Tools Required:
 J 33013-B Hub and Drive Plate Remover and Installer
 J 33022 6-Point 13 mm Socket
 J 33027 Clutch Hub Holding Tool
 J 34992 Compressor Holding Fixture
• Clamp J 34992 in a vise and attach the compressor to the holding fixture with thumb screws.
 1. Shaft nut (21) using J 33022 (figure 4).
 • Hold the clutch plate and hub assembly (22) using J 33027.
 2. Clutch plate and hub assembly (22).
 • Thread J 33013-B into the clutch plate and hub assembly (22).
 • Hold the body of J 33013-B with a wrench and tighten the center screw into the remover body (figure 5).
 3. Shaft key (23).
 • Retain shaft key (21) if useable.

Install or Connect (Figure 3)
Tools Required:
 J 33013-B Hub and Drive Plate Remover and Installer
 J 33022 6-Point 13 mm Socket
 J 33027 Clutch Hub Holding Tool
 J 34992 Compressor Holding Fixture

 1. Shaft key (23).
 • Allow the shaft key (23) to extend 3.2 mm (1/8-inch) out of the bottom of the hub keyway (figure 6).
 • The shaft key (23) is curved slightly to give an interference fit in the groove.

Important
• Do not drive or pound on the clutch hub or the shaft. Internal damage to the compressor may result.

2. Clutch plate and hub assembly (22) (figure 7).
 • Make sure the contact surfaces of the clutch plate (22) and the pulley (26) are clean.
 • Remove the forcing screw tip from J 33013-B and reverse the body direction on the center screw.
 • Install J 33013-B with bearing (B) (figure 7).
2. High Pressure Relief Valve
3. High Side Low Pressure Valve
4. High Side Cut-Off Switch
5. Control Valve
21. Shaft Nut
22. Clutch Plate and Hub Assembly
23. Key
24. Pulley Bearing Retainer
25. Pulley Bearing
26. Pulley
27. Clutch Coil Assembly
28. Retainer
29. Seal
30. O-ring
31. Bolt
32. Gasket
33. Front Head
34. Shim
35. Bearing
36. Thrust Washer
37. Seal
38. Shaft and Cylinder Body
39. Seal
40. Suction Reed Plate
41. Valve Plate
42. Gasket
43. Rear Head
44. Seal
45. Retainer
46. Seal

Figure 3—Compressor Components
• Back off J 33013-B body enough to allow the center screw to be threaded against the end of the compressor shaft.
• Hold the center screw with a wrench and tighten the hex portion of J 33013-B body while pressing the hub onto the shaft (38). After tightening the body several turns, remove J 33013-B and check that the shaft key (23) is properly in place in the keyway, then install the clutch plate and hub assembly (22) to its final position.
• Measure the air gap between contact surfaces of the clutch plate and hub assembly (22) and the pulley (26). The gap should be 0.38-0.64 mm (0.015-0.025-inch).
• Remove J 33013-B.

3. Shaft nut (21).

Inspect
• Position of the shaft (even with or slightly above the clutch hub).

Tighten
• Shaft nut (21) to 17 N-m (12 ft. lbs.) with J 33022.
 — Use J 33027 to hold the clutch plate and hub assembly (22).
 — Hand spin the pulley (26) to check for free rotation.
 — Remove the compressor from J 34992.

PULLEY AND BEARING ASSEMBLY REPLACEMENT

Remove or Disconnect (Figures 3, 8, 9, 10 and 11)

Tools Required:
J 6083 Snap Ring Pliers
J 29886 Driver Handle

Figure 4—Removing the Clutch Plate and Hub Assembly
Figure 5—Removing the Shaft Nut
Figure 6—Removing the Clutch Plate and Hub Assembly and Shaft Key
22. Clutch Plate and Hub Assembly
 A. Air Gap 0.38-0.64 mm (.015-.025-inch)
 B. Bearing

Figure 7—Installing the Clutch Plate and Hub Assembly

Figure 9—Installing the Pulley Rotor and Bearing Puller Guide

Figure 8—Removing the Pulley Rotor and Bearing Assembly Retaining Ring

Figure 10—Removing the Pulley Rotor and Bearing Assembly

J 9398-A Pulley Bearing Remover
J 33020 Pulley Puller
J 33023-A Pulley Pilot
1. Clutch plate and hub assembly (22).
2. Pulley bearing retainer (24) using J 6083 (figure 8).
3. Pulley (26).
 • Install J 33023-A to the front head (figure 9).
 • Install J 33020 tangs into the inner circle of slots in the pulley (26) contact surface. Rotate J 33020 clockwise so the tangs will lock into the segments between the slots (figure 10).
 • Hold J 33020 in place and tighten the puller screw against J 33023-A puller pilot to remove the pulley (26) (figure 10).
4. Pulley bearing (25) from the pulley (26) using J 9398-A and J 29886 (figure 11).
 • Remove the forcing screw from J 33020 and
 • with the puller tangs still in place in the pulley slots, turn the assembly upside down onto a flat surface (figure 11).
 • When removing the old pulley bearing (25), allow the staking to remain, then file away the old staked metal for proper fit when installing a new bearing (25) in the pulley bore.

Install or Connect (Figures 4, 12, 13, 14 and 15)
Tools Required:
J 6083 Snap Ring Pliers
J 8433 Puller Bar
J 9481-A Pulley Bearing Installer
J 29886 Threaded Driver Handle
J 33017 Pulley and Bearing Assembly Installer
J 33019 Bearing Staking Tool (with staking pin and retaining band)
1B2–6 V5 AIR CONDITIONING COMPRESSOR

Figure 11—Removing the Bearing from the Pulley Rotor Assembly

J 33023-A Puller Pilot
J 34992 Compressor Holding Fixture
J 21352-A Support Block
1. Pulley (26) on J 21352-A (figure 12).

NOTICE: Do not support the rotor by resting the pulley rim on a flat surface during bearing installation or the rotor face will be bent.

 - J 33019 in the pulley bore (figure 12).
 - Seat the pulley and bearing assembly on J 21352-A to support to the hub under the staking pin location (figure 13).
 - Strike the staking pin with a hammer until a metal stake, similar to the original, is formed down to, but not touching the bearing.
 - Position the stake pin after striking.
 - The staked metal should not contact the outer race of the bearing to prevent the possibility of bending the outer race.
 - Stake 3 places 120 degrees apart (figure 14).

3. Pulley (26) on the front head.
 - Position J 33017 and J 33023-A over the inner race of the bearing (figure 15).
 - Position J 8433 on J 33023 and assemble the through bolts and washers through the puller bar slots and thread them into J 34992 (figure 15).

Figure 12—Installing the Pulley Rotor Bearing

Figure 13—Staking the Pulley Bearing in the Pulley Bore

A. Staking Pin
B. Rubber Band

- The thread of the through bolts should engage the full thickness of the compressor holding fixture.
- Tighten the center screw in J 8433 to force the pulley and bearing assembly onto the compressor front head (33).
- If J 33017 becomes misaligned with the inner race of the bearing, back off J 8433 and relocate center, then continue installation.

4. Pulley bearing retainer (24) using J 6083 (figure 8).
5. Clutch plate and hub assembly (22).
CLUTCH COIL ASSEMBLY REPLACEMENT

Remove or Disconnect (Figures 3 and 16)

Tools Required:
- J 8433 Puller Bar
- J 33023-A Puller Pilot
- J 33025 Clutch Coil Puller Legs

1. Clutch plate and hub assembly (22).
2. Pulley (26).
 - Mark or scribe the location of the clutch coil (27) terminal on the compressor front head (33).
3. Clutch coil assembly (27).
 - Install J 33023-A on the head (33) of the compressor.
 - Install J 8433-1 with J 33025 (figure 16).
 - Tighten J 8433 forcing screw against J 33023-A.

Inspect
- Clutch coil assembly (27). Replace as necessary.

Install or Connect (Figures 3, 17, 18 and 19)

Tools Required:
- J 8433 Puller Bar
- J 33024 Clutch Coil Installer Adapter

1. Clutch coil assembly (27) onto the front head (33) with the terminals positioned at the “marked” location.
 - J 33024 over the internal opening of the clutch coil assembly (27) (figure 17).
 - J 8433 with through bolts, washers and forcing screw over J 33024.
 - Be sure J 8433 and the clutch coil assembly (27) stay “in line” during installation.
 - When the clutch coil assembly (27) is seated on the front head, use a 3 mm (1/8-inch) diameter drift punch to stake the head (33) at 3 places, 120 degrees apart to assure the clutch coil assembly (27) remains in position (figure 18).
 - Stake size should be one half the area of the punch tip and 0.28-0.35 mm (0.010-0.015-inch) deep (figure 19).
2. Pulley (26).
3. Clutch plate and hub assembly (22).

PRESSURE RELIEF VALVE REPLACEMENT

Remove or Disconnect (Figures 1 and 3)
- Be sure the compressor has no charge.
1. Pressure relief valve (2).
2. O-ring seal (46).

Install or Connect (Figures 1 and 3)
- Lubricate the threads of the pressure relief valve (2) and new O-ring seal with 525 viscosity refrigerant oil.
1. Pressure relief valve (2) with new O-ring seal.

Tighten
- Pressure relief valve (2) to 9 N·m (84 in. lbs.).

Important
- Leak test the compressor.
- Refer to “Leak Testing.”
HIGH-SIDE PRESSURE AND HIGH-SIDE LOW-PRESSURE CUTOFF SWITCHES REPLACEMENT

Remove or Disconnect (Figures 1 and 3)

Tool Required:
- J 5403 Snap Ring Pliers
1. Retainers (45) from switches (3) and (4).
2. Switches (3) and (4).
3. O-ring seals (44) from the switch cavities.

Clean
- Switch cavity and O-ring seal groove.

Install or Connect (Figures 1 and 3)

Tools Required:
- J 5403 Snap Ring Pliers
1. O-ring seals (44) to the switch cavity.
 - Dip the O-ring seals into clean 525 refrigerant oil.
2. Switches (3) and (4).
3. Retainers (45).

Figure 16—Removing the Clutch Coil Assembly

Figure 17—Installing the Clutch Coil Assembly

Figure 18—Staking the Clutch Coil to the Front Head
CONTROL VALVE REPLACEMENT

Remove or Disconnect (Figures 1 and 3)

Tools Required:
- J 5403 Snap Ring Pliers
- Retainer ring with J 5403.
- O-ring seal (44).
- Valve (5).

Install or Connect (Figures 1 and 3)

Tools Required:
- J 5403 Snap Ring Pliers
- Valve (5).
- O-ring seal (44).
- Dip the seals into new clean 525 refrigerant oil.
- Retainer (45) with J 5403.

Figure 19—Clutch Coil Staking Locations

MAJOR REPAIR TO THE COMPRESSOR

Replacement of the shaft seal assembly or the pressure relief valve will require the discharge of the vehicle's refrigerating system. Other than clutch repair procedures, the same holds true for any disassembly of the compressor. To discharge the refrigerant, refer to the vehicle service manual.

After servicing, add fresh 525 viscosity refrigerant oil equal to the amount drained from the compressor.

Keep the workbench and work area clean when servicing the compressor, and use proper, clean service tools.

NOTICE: Any attempt to use makeshift or inadequate service tools or equipment may result in damage and/or improper compressor operation.

All parts used for servicing the compressor internally are protected by a preservative and packaged in a manner which does not require cleaning, washing or flushing. The parts can be used in the internal assembly as they are removed from the service package.

SHAFT SEAL REPLACEMENT

Remove or Disconnect (Figures 3, 20, 21, 22 and 23)

Tools Required:
- J 5403 Snap Ring Pliers
- J 9553-01 O-Ring Seal Remover
- J 23128-A Seal Remover and Installer
- J 34614 Shaft Seal Protector
- Clutch plate and hub assembly (22).
- Shaft seal retainer ring using J 5403 (figure 22).
 - Clean the compressor neck area around the shaft (38), the exposed part of the shaft seal (29) and the O-ring seal groove.

Install or Connect (Figures 3, 20, 21, and 22)

Tools Required:
- J 5403 Snap Ring Pliers
- J 33011 O-Ring Seal Installer
- J 34614 Shaft Seal Protector
1. Dip the new O-ring seal in clean 525 viscosity refrigerant oil.
2. O-ring seal using J 33011 (figure 24).
 - Insert J 33011 into the compressor neck until the installer "bottoms."
 - Lower the movable slide of J 33011, releasing the O-ring seal into the lower groove.
 - Rotate J 33011 to seat the O-ring seal and remove J 33011.
 - Dip the shaft lip seal in clean 525 viscosity refrigerant oil and install the shaft lip seal on J 23128-A.
 - Bottom the shaft lip seal into the compressor neck area using J 23128-A.
4. Shaft seal retainer ring using J 5403 (figure 21).
 - Install the flat side of the shaft seal retainer ring against the lip seal.
 - Remove J 34614.

Important
- Leak test the compressor.
- Refer to "Leak Testing."

Clean
- Shaft and inside of the compressor neck area.
- Clutch plate and hub assembly (22).

FRONT HEAD SEAL, REAR HEAD GASKET, REAR VALVE PLATE, SUCTION REED PLATE AND REAR HEAD SEAL REPLACEMENT

1. Clutch plate and hub assembly (22).
7. Rear head (43), head gasket (42), rear valve plate (41), suction reed plate (40) and cylinder-to-rear head seal (39).
 - Using a wood block, tap around the edge of the rear head to remove (figure 25).

Install or Connect (Figures 3, 26 and 27)
Tools Required:
- J 9625-A Pressure Test Set with Schrader Valve
- J 34993 Cylinder Alignment Rods
- J 21352-A Support Block
- Use new seals and gaskets.
- Place the rear head on J 35372 with the control valve (5) at the 6 o'clock position.

1. Cylinder Alignment Rods J 34993 in the mounting holes at the 5 and 11 o'clock positions (figure 26).
2. Gasket (42) (figure 27).
 - Place the elongated hole in the gasket over the rod at the upper left position.
3. Rear valve plate (41).
 - Place the elongated hole in the valve plate over the rod at the upper left position.
4. Suction reed plate (40).
 - Place the elongated hole in the plate over the rod at the upper left position.
 - Remove J 34993 Cylinder Alignment Rod from the hole at the 5 o'clock position.
5. Seals (39 and 37) to the shaft and cylinder body (38) grooves.
 - Dip the seals into 525 viscosity refrigerant oil.
6. Shaft and cylinder body (38) to the rear head (43).
 - Locate the relief boss at the rod in the hole at the upper left position.
7. Bearing (35) and thrust washers (36) in the same order as removed.
8. Shim (34).
9. Front head (33).
 - Locate the relief boss at the pin in the hole at the upper left position.
 - Remove J 34993 Cylinder Alignment Rod from the hole at the upper left position.
10. Through bolts (31) and new gaskets (32).

LEAK TESTING

Tools Required:
- J 9625-A Pressure Test Plate
- J 23500-01 Portable Charging Station
- J 34992 Compressor Holding Fixture

- Be sure the compressor has no oil internally.
1. Install J 9625-A on the rear head of the compressor.
2. Install the center hose of the manifold gage set on J 23500-01 to refrigerant drum standing in an upright position and open the valve on the drum.
3. Install the charging station high and low pressure lines to the corresponding fittings on J 9625-A using gage adapters or hoses equipped with valve depressors. The suction port (low side) of the compressor has a large internal opening. The discharge port (high side) has a smaller internal opening into the compressor.
 - Open the low pressure control, high pressure control and the refrigerant control on the charging station to allow the refrigerant vapor to flow into the compressor.

Important
- Check for leaks at the pressure relief valve (2), compressor front and rear head seals (37) (39), through bolt head gaskets (32) and compressor shaft seal (29).
- After the leak check, shut off the low pressure control and the high pressure control on charging station.
- If an external leak is present, perform the necessary correction and recheck for leaks.
- Loosen the manifold gage hose connections to the gage adapters connected to the low and high sides and allow the vapor pressure to release from the compressor. If valve depressor type hoses are used, loosen the hose connections at the gage manifold to release the vapor pressure from the compressor.
- Disconnect both gage adapters or hoses from J 9625-A.
- Add 85 g (3 oz.) new 525 viscosity refrigerant oil to the compressor assembly. Rotate the complete compressor assembly (not the shaft or drive plate hub) slowly several turns to distribute oil to all cylinder and piston areas.
- Install the shaft nut (21) on the compressor shaft if the pulley assembly and clutch plate and hub assembly are not installed.
- Using a box-end wrench, or a socket and handle, rotate the compressor shaft several turns to lubricate the pistons and cylinder walls.
- Connect the charging station high-pressure line, or a high-pressure gage and gage adapter to J 9625-A high-side connector.
- Attach an adapter or depressor-type hose to the suction or low-pressure port of J 9625-A to open the Schrader-type valve. Oil will drain out of the compressor suction port adapter if the compressor is positioned with the suction port downward.
- Attach the compressor to J 34992 fixture and mount the compressor in a vise so that the compressor will be in a horizontal position and the shaft can be turned with a wrench.
- Rotate the compressor shaft or drive plate hub six to eight complete revolutions at a speed of approximately one revolution per second. A slower rotation can result in a lower pump-up pressure and disqualify a good pumping compressor.
- Observe the reading on the high-pressure gage at the completion of the tenth revolution of the compressor shaft. The pressure reading for a good pumping compressor should be 690 kPa (100 psi) or above. A pressure reading of less than 620 kPa (90 psi) would indicate one or more suction and/or discharge valves leaking, an internal leak, or an inoperative valve. Disassemble the compressor and repair as necessary. Reassemble and repeat the pump-up test.
- Following the pressure pump-up test, release the air pressure from the high side and remove the gage adapters and J 9625-A test plate.
- Tilt the compressor to place the suction and discharge ports downward to allow oil to drain from the compressor.
- Allow a 10-minute drain period and then charge the compressor with the proper amount of oil. Pour the new 525 viscosity refrigerant oil into the suction port.
- If further assembly or processing is required, install a shipping plate or test plate J 9625-A to protect the compressor from contamination.
SPECIFICATIONS

Type — Harrison DA-V5
Displacement..9.2 Cu. In.
Rotation..Clockwise
525 Viscosity Compressor Oil (Full Charge)...227 g (8 oz.)

TORQUE SPECIFICATIONS
Compressor Suction and Discharge Connector Bolt34 N·m (25 ft. lbs.)
Shaft Nut.. .17 N·m (12 ft. lbs.)
Pressure Relief Valve.. .9 N·m (80 in. lbs.)
Through Bolts... .9 N·m (80 in. lbs.)
Oil Drain Plug... .16 N·m (12 ft. lbs.)
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>J 5403 Snap Ring Pliers</td>
<td>10</td>
<td>J 23128-A Seal Remover and Installer</td>
</tr>
<tr>
<td>2</td>
<td>J 6083 Snap Ring Pliers</td>
<td>11</td>
<td>J 21352-A Pressure Test Plate</td>
</tr>
<tr>
<td>3</td>
<td>J 29886 Driver Handle</td>
<td>12</td>
<td>J 33011 O-ring Seal Installer</td>
</tr>
<tr>
<td>4</td>
<td>J 8433-1 Pulser Bar</td>
<td>13</td>
<td>J 33013-B Hub and Drive Plate Remover and Installer</td>
</tr>
<tr>
<td>5</td>
<td>J 8433-3 Forcing Screw</td>
<td>14</td>
<td>J 34993 Cylinder Alignment Rod</td>
</tr>
<tr>
<td>6</td>
<td>J 9398-A Pulley Bearing Remover</td>
<td>15</td>
<td>J 33017 Pulley and Bearing Assembly Installer</td>
</tr>
<tr>
<td>7</td>
<td>J 9481-A Pulley Bearing Installer</td>
<td>16</td>
<td>J 33019 Bearing Staking Tool</td>
</tr>
<tr>
<td>8</td>
<td>J 9553-01 O-ring Seal Remover</td>
<td>17</td>
<td>J 33020 Pulley Puller</td>
</tr>
<tr>
<td>9</td>
<td>J 9625-A Support Block</td>
<td>18</td>
<td>J 34614 Shaft Seal Protector</td>
</tr>
<tr>
<td>10</td>
<td>J 23128-A Seal Remover and Installer</td>
<td>19</td>
<td>J 33021 6 Point 13 mm Socket</td>
</tr>
<tr>
<td>11</td>
<td>J 21352-A Pressure Test Plate</td>
<td>20</td>
<td>J 33023-A Pulley Pilot</td>
</tr>
<tr>
<td>12</td>
<td>J 33011 O-ring Seal Installer</td>
<td>21</td>
<td>J 33024 Clutch Coil Installer Adapter</td>
</tr>
<tr>
<td>13</td>
<td>J 33013-B Hub and Drive Plate Remover and Installer</td>
<td>22</td>
<td>J 33025 Clutch Coil Puller Legs</td>
</tr>
<tr>
<td>14</td>
<td>J 34993 Cylinder Alignment Rod</td>
<td>23</td>
<td>J 34992 Compressor Holding Fixture</td>
</tr>
<tr>
<td>15</td>
<td>J 33017 Pulley and Bearing Assembly Installer</td>
<td>24</td>
<td>J 33027 Clutch Hub Holding Tool</td>
</tr>
</tbody>
</table>

SPECIAL TOOLS

1. J 5403 Snap Ring Pliers
2. J 6083 Snap Ring Pliers
3. J 29886 Driver Handle
4. J 8433-1 Pulser Bar
5. J 8433-3 Forcing Screw
6. J 9398-A Pulley Bearing Remover
7. J 9481-A Pulley Bearing Installer
8. J 9553-01 O-ring Seal Remover
9. J 9625-A Pressure Test Plate
10. J 23128-A Seal Remover and Installer
11. J 21352-A Support Block
12. J 33011 O-ring Seal Installer
13. J 33013-B Hub and Drive Plate Remover and Installer
14. J 34993 Cylinder Alignment Rod
15. J 33017 Pulley and Bearing Assembly Installer
16. J 33019 Bearing Staking Tool
17. J 33020 Pulley Puller
18. J 34614 Shaft Seal Protector
19. J 33022 6 Point 13 mm Socket
20. J 33023-A Pulley Pilot
21. J 33024 Clutch Coil Installer Adapter
22. J 33025 Clutch Coil Puller Legs
23. J 34992 Compressor Holding Fixture
24. J 33027 Clutch Hub Holding Tool
R-4 AIR CONDITIONING COMPRESSOR

SECTION 1B3

R-4 AIR CONDITIONING COMPRESSOR

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-4 Air Conditioning Compressor</td>
<td>1B3- 1</td>
</tr>
<tr>
<td>General Description</td>
<td>1B3- 1</td>
</tr>
<tr>
<td>Identification</td>
<td>1B3- 2</td>
</tr>
<tr>
<td>Disassembly of The Drive Components</td>
<td>1B3- 2</td>
</tr>
<tr>
<td>Clutch Drive Hub</td>
<td>1B3- 2</td>
</tr>
<tr>
<td>4 Pole Clutch Rotor And/Or Bearing-V-Groove</td>
<td>1B3- 2</td>
</tr>
<tr>
<td>6 Pole Clutch Rotor And/Or Bearing</td>
<td>1B3- 3</td>
</tr>
<tr>
<td>Clutch Coil And/Or Pulley Rim</td>
<td>1B3- 4</td>
</tr>
<tr>
<td>Disassembly Of The Compressor</td>
<td>1B3- 6</td>
</tr>
<tr>
<td>Pressure Relief Valve</td>
<td>1B3- 6</td>
</tr>
<tr>
<td>High Side High Pressure Cutoff Switch</td>
<td>1B3- 6</td>
</tr>
<tr>
<td>Front Head And Main Bearing</td>
<td>1B3- 6</td>
</tr>
<tr>
<td>Compressor Shell</td>
<td>1B3- 6</td>
</tr>
<tr>
<td>Discharge Valve Plate</td>
<td>1B3- 7</td>
</tr>
<tr>
<td>Cleaning And Inspection</td>
<td>1B3- 9</td>
</tr>
<tr>
<td>Cleaning</td>
<td>1B3- 9</td>
</tr>
<tr>
<td>Inspection</td>
<td>1B3- 9</td>
</tr>
<tr>
<td>Compressor Assembly</td>
<td>1B3- 9</td>
</tr>
<tr>
<td>Discharge Valve Plate</td>
<td>1B3- 9</td>
</tr>
<tr>
<td>Compressor Shell</td>
<td>1B3- 9</td>
</tr>
<tr>
<td>Front Head And Main Bearing</td>
<td>1B3- 9</td>
</tr>
<tr>
<td>High Side High Pressure Cutoff Switch</td>
<td>1B3-10</td>
</tr>
<tr>
<td>Pressure Relief Valve</td>
<td>1B3-10</td>
</tr>
<tr>
<td>Assembly of Drive Components</td>
<td>1B3-10</td>
</tr>
<tr>
<td>Shaft Seal</td>
<td>1B3-10</td>
</tr>
<tr>
<td>Clutch Coil And/Or Pulley Rim</td>
<td>1B3-10</td>
</tr>
<tr>
<td>6 Pole Clutch And/Or Bearing</td>
<td>1B3-11</td>
</tr>
<tr>
<td>4 Pole Clutch Rotor And/Or Bearing-V-Groove</td>
<td>1B3-12</td>
</tr>
<tr>
<td>Clutch Drive Hub</td>
<td>1B3-13</td>
</tr>
<tr>
<td>Leak Testing</td>
<td>1B3-14</td>
</tr>
<tr>
<td>Specifications</td>
<td>1B3-15</td>
</tr>
</tbody>
</table>

R-4 AIR CONDITIONING COMPRESSOR

GENERAL DESCRIPTION

The Harrison R-4 compressor is a four cylinder, radial opposed type with 10 cubic inch displacement.

There are two designs of the clutch driver which affect the overhaul procedure: The four pole clutch and the six pole clutch (figures 1 and 2). There are also two types of pulleys used with the R-4 which also affect some procedures.

When servicing the compressor, it is essential that steps be taken to prevent dirt or foreign material from getting on or into the compressor parts and system during disassembly or assembly. Clean tools and clean work area are very important for proper service. The compressor connection areas and the exterior of the compressor should be cleaned off as much as possible prior to any repairs. Parts must be kept clean at all times and any parts to be reassembled should be cleaned with trichloroethene, naphtha, stoddard solvent, kerosene or equivalent solvent and blown dry with dry air. When necessary to use a cloth on any part, it should be of a nonlint producing type.

When the compressor is removed from the vehicle the oil in the compressor must be drained and measured. The oil should then be discarded. If less than 30 ml (1 oz.) is drained from the compressor add 60 ml (2 oz.) of new 525 viscosity oil to the assembly after overhaul. If more than
30 ml (1 oz.) is drained from the compressor, add the same amount of new 525 viscosity oil to the overhauled assembly.

IDENTIFICATION

An identification label attached to the compressor provides the name of the manufacturer and model number (figure 3).

DISASSEMBLY OF THE DRIVE COMPONENTS

CLUTCH DRIVE HUB

Remove or Disconnect (Figures 4, 5, 6 and 7)

Tools Required:
- J 9399 Thin Wall Socket
- J 25008-A Holding Fixture
- J 33027 Clutch Hub Holding Tool
- J 37707 Clutch Plate and Hub Assembly Remover
- Attach J 25008-A to the compressor (figure 5).
- Mount J 25008-A in a vise (figure 6).
1. Shaft nut with J 9399 (figure 6).
 - Hold the clutch plate with J 37707.
2. Clutch drive hub (figure 7).
 - Thread J 37707 into the clutch plate and hub assembly.
3. Shaft key.

4 POLE CLUTCH ROTOR AND/OR BEARING-V-GROOVE

Remove or Disconnect (Figures 4, 8, 9, 10 and 11)

Tools required:
- J 6083 Snap Ring Pliers
- J 9398 Rotor Bearing Remover
R-4 AIR CONDITIONING COMPRESSOR 1B3-3

J 25031 Rotor and Bearing Remover
J 29886 Driver Handle

1. Snap Ring with J 6038 (figure 8).
 • Mark the location of the clutch coil terminals.

Important

• If only the clutch rotor and/or rotor bearing are to be replaced, bend the screw head washer away from the pulley rim and remove the six mounting screws and washers. If the clutch coil or pulley rim is to be removed leave the screws in place.

2. Rotor and bearing assembly.
 • Place J 25031 guide on the compressor shaft (figure 9).
 • Engage the legs of J 25031 into the recessed edge of the rotor hub (figure 10).
 • Tighten the puller screw and remove the clutch rotor and bearing. Do not drop the guide.

3. Bearing from the clutch rotor using J 29886 and J 9398-A (figure 11).

4. File away the old staked metal to provide a clearance for the new bearing.

6 POLE CLUTCH ROTOR AND/OR BEARING

Remove or Disconnect (Figures 4, 12 and 13)

Tools Required:
J 6083 Snap Ring Pliers
J 29886 Driver Handle
J 9398-A Rotor Bearing Remover
J 33020 Pulley Bearing Puller

1. Retainer ring using J 6083.
2. Rotor and bearing assembly.
 • Install J 33020 into the slots in the rotor and rotate the puller (figure 12). Remove the rotor and hub assembly.
4. Screw from the puller. Leave the puller in the rotor.
 • Invert the puller and rotor assembly on a flat surface.

Figure 4—Compressor Component View
5. The bearing from the hub using J 9398-A and J 29886 (figure 13).
6. The staking metal.

CLUTCH COIL AND/OR PULLEY RIM

V-GROOVE DRIVE

1. Pulley rim mounting screws and washers.
2. Pulley rim off the rotor and hub assembly.

POLY-GROOVE DRIVE

1. Clutch coil from the front head using the tools as shown in figure 14.

Tools Required:
- J 8433 Puller
- J 24092 Puller Legs
- J 25031 Guide

Figure 7—Clutch Plate and Hub Removal

Figure 5—Compressor in Holding Fixture

Figure 8—Removing the Rotor and Bearing Assembly Retainer Ring

Figure 6—Removing the Shaft Nut

Figure 9—Installing the Rotor and Bearing Guide
Remove or Disconnect (Figures 15 and 16)

Tools required:
- J 5403 Snap Ring Pliers
- J 9553-01 O-ring Remover
- J 23128-A Seal Remover

1. Retainer ring using J 5403.
2. Shaft seal:
 - Engage the knurled tangs of J 23128-A into the recessed portion of the seal by turning the handle clockwise (figure 15).
3. O-ring using J 9553-01 (figure 16).
DISASSEMBLY OF THE COMPRESSOR

PRESSURE RELIEF VALVE

Remove or Disconnect (Figure 4)
1. Valve.
2. O-ring.

HIGH SIDE HIGH PRESSURE CUTOFF SWITCH

Remove or Disconnect (Figure 4)
Tools Required:
J 5403 Snap Ring Pliers
J 9553-01 O-Ring Remover
1. Protective cap.
2. Retainer ring using J 5403.
3. Switch by pulling on the terminals.
4. O-ring from the switch cavity using J 9553-01.

FRONT HEAD AND MAIN BEARING

Before removing the front head make a mark on the cylinder next to the narrow front head leg position.

COMPRESSOR SHELL

Remove or Disconnect (Figure 20 and 21)
Tool Required: J 25008-A
1. Retainer strap by prying it up (figure 20).
- Install J 25008-A with the step block protrusions engaging the compressor shell. Install the medium length metric thread mounting bolts through the holding fixture and thread them finger tight until the step of the fixture protrusions contact the shell (figure 21). Make sure the step protrusions do not overlap the cylinder, but will pass both sides.
2. Compressor shell.
 • Alternately tighten each screw 1/4 turn. Use care not to cock the shell, as normal removal should not be difficult.
 • Do not turn screws any further than needed. The shell should come off by hand once it clears the O-rings.
3. O-rings.
4. J 25008-A and install it on the opposite side of the cylinder using the short screws with the metric threads.

DISCHARGE VALVE PLATE

++ Remove or Disconnect (Figures 22 and 23)

Tools Required:
J 4245 Snap Ring Pliers
J 25008-A Holding Fixture
1. Valve plate retainer ring using J 4245 (figure 22).
2. Discharge valve plates (figure 23).
C. Alternately tighten the Screws 1/4 Turn
D. Tool Step Contacts the Compressor Shell
19. Seal
J 25008-A

Figure 19—Removing the Bearing from the Front Head

Figure 20—Releasing the Shell Retaining Strap

Figure 21—Removing the Shell

Figure 22—Replacing the Valve Plate Retainer

Figure 23—Replacing the Discharge Plate
CLEANING AND INSPECTION

CLEANING

Clean
1. The frictional surfaces of the clutch plate and the clutch rotor.
2. Shaft seal area thoroughly.
3. Cavity and O-ring groove for the high side high pressure cut-off switch.
4. Front head and cylinder area. Remove any dirt or lint.
5. Compressor shell.

INSPECTION

Inspect
1. Front head for cracks or damage.
2. Compressor shell for cracks or burrs.
3. Staked areas for burrs.

COMPRESSOR ASSEMBLY

All parts required for servicing the internal compressor are protected by a preservation process and packaged in a manner which will eliminate the necessity of cleaning, washing or flushing of the new parts. The parts can be used just as they are removed from the service package. Seals and protective packaging should be left intact until just prior to installation.

DISCHARGE VALVE PLATE

Install or Connect (Figures 22 and 23)
Tools Required:
- J 4245 Snap Ring Pliers
- J 25008-A Holding Fixture
1. Cylinder and shaft assembly in J 25008-A.
2. The discharge valve plates (figure 23).
3. Valve plate retainer rings using J 4245 (figure 22).
 • The valve plates must be tight after the snap rings are installed.

COMPRESSOR SHELL

Install or Connect (Figure 24)
Tools Required:
- J 25008-A Holding Fixture and Shell Installer
1. 525 refrigerant oil to the O-rings.
2. O-rings in the grooves in the cylinder.
3. 525 refrigerant oil to the O-ring surfaces of the shell.
4. Shell on the cylinder. Snug it up to the O-ring.
5. Installer J 25008-A to the holding fixture using long bolts and plate washers. Make the bolts finger tight (figure 24).
 • Align the step projections of the installer to contact evenly on both sides of the shell.
 • Alternately tighten each bolt 1/4 turn. Use care not to cock the shell, as normal installation is not difficult if the shell remains even.
6. Bend the retaining strap down by tapping it gently with a hammer.
 • Remove the shell installer.

FRONT HEAD AND MAIN BEARING

Install or Connect (Figures 17, 18, 25 and 26)
Tools Required:
- J 24895 Bearing Installer
1. The front head, with the neck down, on a flat surface (figure 25).
2. The bearing using J 24895 (figure 25).
 • The installer must seat against the front head to ensure proper clearance.
3. 525 refrigerant oil on the belleville and thrust washers.
4. New thrust washer with the tang pointing up (figure 25).
5. New belleville washer with the high center in the up position (figure 26).
6. New thrust washer with the tang pointing down.
7. 525 refrigerant oil on the O-ring.
8. O-ring into the groove of the front head (figure 18).
9. Front head aligning the marks made at disassembly.
10. Front head mounting screws (figure 17).

Tighten
Screws to 27 N·m (20 ft. lbs.)

HIGH SIDE HIGH PRESSURE CUTOFF SWITCH

Install or Connect (Figure 4)

Tool Required:
J 5403 Snap Ring Pliers
1. New O-ring coated with 525 refrigerant oil.
2. Refrigerant oil in the switch cavity.

ASSEMBLY OF DRIVE COMPONENTS

SHAFT SEAL

Install or Connect (Figures 15 and 27)

Tools Required:
J 5403 Snap Ring Pliers
J 23128-A Seal Installer
J 33011 O-ring Installer
J 34614 Seal Protector
1. New O-ring seal, dipped in 525 refrigerant oil, onto J 33011 (figure 27).
2. O-ring completely down on the shaft until it bottoms.

Important
The seal seat and the seal lip must be free of lint or dirt.
3. Lip seal to J 23128-A.
 • The printed/stamped side of the seal must be engaged with the knurled tangs of J 23128-A so that the flared out side of the seal is facing the compressor.

PRESSURE RELIEF VALVE

Install or Connect (Figure 4)

1. New O-ring coated with 525 refrigerant oil.
2. Valve.

CLUTCH COIL AND/OR PULLEY RIM

V-GROOVE DRIVE

Install or Connect (Figures 28 and 29)

Tools Required:
J 26271-A Rotor and Bearing Installer
J 29886 Driver Handle
R-4 AIR CONDITIONING COMPRESSOR 1B3-11

Figure 27—Installing the Seal

13. Seal (O-ring)

J 33011

F-04839

Figure 28—Installing the Rotor and Bearing Assembly — V-Groove Type

1. The coil, pulley rim and the rotor and bearing assembly (figure 28).
2. Loctite 601 or equivalent on the rim screw threads.
4. The assembly on the front head.
 - Make sure the clutch coil terminals are aligned correctly.

Figure 29—Installing the Rotor and Bearing Assembly — Poly-Groove Type

- Make sure the protrusions on the rear of the coil align with the front head locator holes.
5. Clutch coil assembly using J 26271-A and J 29886 (figure 29).
6. Retaining ring.

POLY-GROOVE DRIVE

Install or Connect (Figure 30)

Tools Required:
 - J 26271-A Rotor and Bearing Installer
 - J 29886 Driver Handle
1. The coil assembly on the front head neck.
 - Align the marks made at disassembly.
2. Rotor and bearing assembly on the front head.
 - Make sure the clutch coil terminals are aligned correctly.
 - Make sure the protrusions on the rear of the coil align with the front head locator holes.
4. Retaining ring.

6 POLE CLUTCH AND/OR BEARING

Install or Connect (Figures 31, 32 and 33)

Tools Required:
 - J 6083 Snap Ring Pliers
 - J 9481-A Pulley and Bearing Installer
1B3-12 R-4 AIR CONDITIONING COMPRESSOR

J 21352-A Support Block
J 25008-A Holding Fixture
J 29886 Driver Handle
J 33019 Bearing Staking Tool

1. Pulley rotor on J 21352-A (Figure 30).

NOTICE: Do not support the rotor by resting the pulley rim on a flat surface during bearing installation since the rotor face will bend.

2. Bearing into the hub bore using J 9481-A and J 29886 (figure 31).

NOTICE: The stake metal should not contact the outer race of the bearing to prevent the possibility of distorting the outer race.

3. Stake the bearing using J 33019 at 120 degree intervals (figure 31).
 - Rotate the assembly on the tool to make sure the staking location is completely supported by the tool.

4. Compressor in J 25008-A and clamp it in a vise.
5. Pulley rotor and bearing to the front head using J 9481-A and J 29886 (figure 32).
7. Clutch plate and hub assembly.

4 POLE CLUTCH ROTOR AND/OR BEARING-V-GROOVE

Install or Connect (Figures 28 and 34)

Tools Required:
- J 6083 Snap Ring Pliers
- J 9481-A Pulley Bearing and Pulley Installer
- J 29886 Driver Handle

1. Bearing to the rotor hub using J 29886 and J 9481-A (figure 33).
2. Stake the bearing.
 - Use a center punch with a 45 degree angle point.
 - Staking depth should be 1.1-1.4mm (0.045-0.055-inch).
 - Stake in three places 120 degrees apart.
5. Loctite 601 or equivalent to screw threads.

Figure 30—Bearing Installation

Figure 32—Pulley Rotor and Bearing Installation
6. Pulley rim mounting screws and washers. Do not tighten.
 • Check that the pulley rim is in line. Adjust if necessary.
7. Tighten the screws to 11 N·m (100 in. lb.).
 • Bend the screw head washers to secure them in place.

CLUTCH DRIVE HUB

Install or Connect (Figures 6, 34 and 35)

Tools Required:
- J 9399 Thin Wall Socket
- J 9480-B Clutch Plate and Hub Installer
- J 33027 Clutch Hub Holding Tool

1. Shaft key in the groove (figure 34).
 • Leave the key about 4.8mm (3/16-inch) out of the keyway.
2. Clutch plate and hub assembly on the shaft while aligning the shaft key and keyway.

NOTICE: To avoid internal damage to the compressor, do not drive or pound on the clutch hub or shaft.

3. J 9480-B on the compressor (figure 35).
 • Tighten until there is 0.5-1.0mm (0.020-0.040-inch) gap between the frictional surfaces of the clutch plate and the clutch rotor.

 • The small diameter boss of the nut goes against the crankshaft shoulder.

Tighten
- Shaft nut to 14 N·m (10 ft. lb.) while holding the clutch plate and hub using J 33027 (figure 6).
LEAK TESTING

Tools Required:
J 9625-A Pressure Test Set
J 5420 Straight Fitting
J 25008-A Holding Fixture
J 23500-01 Portable Charging Station

1. Install J 9625 on the rear head of the compressor.

2. Attach the center hose of the manifold gage set on the charging station to a refrigerant drum standing in an upright position and open the valve on the drum.

3. Connect the charging station high and low pressure lines to corresponding fittings on J 9625-A, using J 5420 if hoses are not equipped with valve depressors.
 - Suction port (low-side) of the compressor has a large internal opening. The discharge port (high-side) has a smaller internal opening into the compressor.

4. Open the low-pressure control, high-pressure control and refrigerant control on the charging station to allow refrigerant vapor to flow into the compressor.

5. Using a leak detector, check for leaks at the pressure relief valve, compressor shell to cylinder, compressor front head seal, and compressor shaft seal. After checking, shut off the low pressure control and high pressure control on the charging station.

6. If an external leak is present, perform the necessary corrective measures and recheck for leaks to make certain the leak has been corrected.

7. Loosen the manifold gage hose connections to J 5420 connected to the low and high sides and allow the vapor pressure to release from the compressor.

8. Disconnect J 5420 from J 9625-A.

9. Rotate the complete compressor assembly (not the crankshaft or drive plate hub) slowly several turns to distribute oil to all cylinder and piston areas.

10. Install a shaft nut on the compressor crankshaft if the drive plate and clutch assembly are not installed.

11. Using a box-end wrench or socket and handle, rotate the compressor crankshaft or clutch drive plate on the crankshaft several turns to ensure piston assembly to cylinder wall lubrication.

12. Connect the charging station high pressure line or a high pressure gage and J 5420 to J 9625-A high side connector.

13. Attach J 5420 to the suction or low pressure port of J 9625-A to open the Schrader-type valve.
 Oil will drain out of the compressor suction port adapter if the compressor is positioned with the suction port downward.

14. Attach the compressor to J 25008-A using metric mounting screws. Clamp the compressor holding fixture in a vise so that the compressor can be manually turned with a wrench.

15. Using a wrench, rotate the compressor crankshaft or drive plate hub 10 complete revolutions at a speed of approximately one-revolution per second.
 Turning the compressor at less than one-revolution per second can result in a lower pump-up pressure and disqualify a good pumping compressor.

16. Observe the reading on HIGH pressure gage at the completion of the tenth revolution of the compressor. The pressure reading for a good pumping compressor should be 344.75 kPa (50 psi) or above. A pressure reading of less than 310.275 kPa (45 psi) would indicate one or more suction and/or discharge valves leaking, an internal leak or an inoperative valve, and the compressor should be disassembled and checked for cause of leak. Repair as needed, reassemble and repeat the pump-up test. Externally leak test.

17. When the pressure pump-up test is completed, release the air pressure from the HIGH side and remove J 5420 and J 9625-A.

18. On the R-4 compressor, tilt the compressor so that the compressor suction and discharge ports are down. Drain the oil from the compressor.

19. Allow the compressor to drain for 10 minutes, then charge with the proper amount of oil. The oil may be poured into the suction port.
 If further assembly or processing is required, a shipping plate or J 9625-A should be installed to keep out air, dirt and moisture until the compressor is installed.
R-4 AIR CONDITIONING COMPRESSOR 1B3–15

SPECIFICATIONS

Type Compressor Harrison Radial 4 Cylinder
Part Numbers ... 1131593
... 1131610
... 1131611
... 1131616
... 1131623
... 3090927
... 3091278
Displacement 10 cubic inches
Rotation ... Clockwise
Clutch Plate to Rotor Gap 0.5-1.0 mm (0.02-0.04 in.)

FASTENERS
Oil Drain Screw.. 17 N·m (13 ft. lbs.)
Pressure Switch ... 10 N·m (88 in. lbs.)
Shaft Nut ... 14 N·m (10 ft. lbs.)
Pressure Relief Valve 17 N·m (13 ft. lbs.)
Front Head Bolts 27 N·m (20 ft. lbs.)
Rim Mounting Screws 11 N·m (100 in. lbs.)
SPECIAL TOOLS

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Snap Ring Pliers (#23 Internal)</td>
<td>J 4245</td>
</tr>
<tr>
<td>2.</td>
<td>Snap Ring Pliers (Internal)</td>
<td>J 5403</td>
</tr>
<tr>
<td>3.</td>
<td>Straight Connector</td>
<td>J 5420</td>
</tr>
<tr>
<td>4.</td>
<td>Snap Ring Pliers (#24 Internal)</td>
<td>J 6083</td>
</tr>
<tr>
<td>5.</td>
<td>Torque Wrench</td>
<td>J 8398</td>
</tr>
<tr>
<td>6.</td>
<td>Compressor Pulley Puller</td>
<td>J 8433</td>
</tr>
<tr>
<td>7.</td>
<td>Rotor Bearing Remover</td>
<td>J 9398-A</td>
</tr>
<tr>
<td>8.</td>
<td>9/16 Inch Thin Wall Socket</td>
<td>J 9399</td>
</tr>
<tr>
<td>9.</td>
<td>Hub and Drive Plate Assembly Installer</td>
<td>J 9480-B</td>
</tr>
<tr>
<td>10.</td>
<td>Pulley Bearing and Pulley Installer</td>
<td>J 9481-A</td>
</tr>
<tr>
<td>11.</td>
<td>O-ring Remover</td>
<td>J 9553-01</td>
</tr>
<tr>
<td>12.</td>
<td>Pressure Plate Connector</td>
<td>J 9625-A</td>
</tr>
<tr>
<td>13.</td>
<td>Compressor Support Block</td>
<td>J 21352-A</td>
</tr>
<tr>
<td>14.</td>
<td>Seal Seat Remover and Installer</td>
<td>J 23128-A</td>
</tr>
<tr>
<td>15.</td>
<td>Pulley Hub Adapter Set</td>
<td>J 24092</td>
</tr>
<tr>
<td>16.</td>
<td>Bearing Installer</td>
<td>J 24895</td>
</tr>
</tbody>
</table>

F-06187
17. Bearing Remover
18. Compressor Shell Remover, Installer and Holding Fixture
19. Rotor and Bearing Puller with Guide
20. Rotor and Bearing Installer
21. Threaded Driver Handle
22. O-ring Installer
23. Bearing Staking Tool
24. Pulley Puller
25. Clutch Hub Holding Tool
26. Shaft Seal Protector
27. Hub and Drive Plate Assembly Remover
28. Not shown: J 23500-01 Portable Charging Station
CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>1B4- 1</td>
</tr>
<tr>
<td>Minor Repair to the Compressor</td>
<td>1B4- 2</td>
</tr>
<tr>
<td>Clutch Plate and Hub Assembly Replacement</td>
<td>1B4- 2</td>
</tr>
<tr>
<td>Pulley and Bearing Assembly Replacement</td>
<td>1B4- 5</td>
</tr>
<tr>
<td>Clutch Coil and Housing Assembly Replacement</td>
<td>1B4- 7</td>
</tr>
<tr>
<td>Major Repair to the Compressor</td>
<td>1B4- 8</td>
</tr>
<tr>
<td>Shaft Seal Replacement</td>
<td>1B4- 9</td>
</tr>
<tr>
<td>High Pressure Relief Valve Replacement</td>
<td>1B4- 9</td>
</tr>
<tr>
<td>Compressor Disassembly—Internal Cylinder and Shaft</td>
<td>1B4-11</td>
</tr>
<tr>
<td>Compressor Assembly—Internal Cylinder and Shaft</td>
<td>1B4-12</td>
</tr>
<tr>
<td>Leak Testing</td>
<td>1B4-15</td>
</tr>
<tr>
<td>Specifications</td>
<td>1B4-16</td>
</tr>
<tr>
<td>Special Tools</td>
<td>1B4-17</td>
</tr>
</tbody>
</table>

DESCRIPTION

The Harrison HR-6 compressor is a fixed displacement axial piston pump, with three double-ended pistons actuated by an axial (swash) plate shaft assembly (figure 1). The main parts are the front and rear cylinder, the shaft and axial swash plate, piston group, and valve mechanisms. The cylinders and heads provide an integral external shell.

The piston group of the compressor is not serviceable. If piston, bearing, ball shoe, shaft and axial plate, or cylinder repair is needed, replace the internal cylinder assembly. All clutch parts, valve mechanisms, and head assemblies are serviceable, plus seals and gaskets.

Refrigerant oil, dispersed in the refrigerant vapor, lubricates the system.

The front head is shown with three integral mounting flange ears (figure 2). These ears have 19 mm flats cast to provide for a wrench to be used as a prying means when tensioning the compressor drive belt.

There are two clutch driver designs for the HR-6 compressor: The clutch driver without a torque cushion and the clutch driver having a thin torque cushion (figures 3 and 4).

Note: When servicing clutch drivers with a torque cushion, the clutch hub holding tool J 25030 is used in place of J 33027.

Keep dirt or foreign material from getting on or into the compressor parts and system. Keep the work area and tools clean.

Keep the parts clean at all times. Clean assembled parts with Trichloroethane, naphtha, Stoddard solvent, kerosene or equivalent solvent and dry with dry air. Use only lint free cloths to wipe parts.

The operations described below are based on bench overhaul with the compressor removed from the truck, except as noted. They have been prepared in order of accessibility of the components. When a compressor is removed from the truck for servicing, the amount of oil remaining in the compressor should be drained, measured and recorded. This oil should then be discarded and an equal amount of new 525 viscosity refrigerant oil added to the compressor.

Note: The service compressor is shipped with 8 oz. of 525 viscosity refrigerant oil. This oil should be drained and retained for replacement oil when service procedures require addition of new oil to compressor.

Most minor repair procedures may be done on the truck without discharging the system. Major repair procedures require that the system be discharged of refrigerant.

IDENTIFICATION

An identification label attached to the compressor provides the name of the manufacturer, model number and build code. If the label is removed or becomes dislodged during service operation, reattach it using an adhesive sealant such as Loctite 312 or equivalent.
MINOR REPAIR TO THE COMPRESSOR

Illustrations show the compressor removed from the vehicle for easier viewing. Remove only the parts that need servicing. Refer to figure 3 for part names and location.

CLUTCH PLATE AND HUB ASSEMBLY REPLACEMENT

Clean
- The compressor assembly with solvent and blow dry with dry air.

Remove or Disconnect (Figures 4, 5 and 6)

Tools Required:
J 33026 Compressor Holding Fixture
J 33027 Clutch Hub Holding Tool
J 33022 6-Point 13 mm Socket
J 33013-B Hub and Drive Plate Remover and Installer
- Clamp J 33026 in a vise and attach the compressor to the holding fixture with thumb screws (figure 5).
1. Shaft nut (1) using J 33022 (figure 5).
 - Hold the clutch plate and hub assembly (2) steady using J 33027.

2. Clutch plate and hub assembly (2).
 - Thread J 33013-B into the clutch plate and hub assembly (2).
 - Hold the body of J 33013-B with a wrench and tighten the center screw into the remover body (figure 6).
3. Shaft key (21).
 - Retain the shaft key (21) if usable.

Inspect
All parts and replace as necessary.

Install or Connect (Figures 4, 7 and 8)

Tools Required:
J 33026 Compressor Holding Fixture
J 33027 Clutch Hub Holding Tool
J 33022 6-Point 13 mm Socket
J 33013-B Hub and Drive Plate Remover and Installer
1. Shaft key (1).
 - Allow the shaft key (21) to extend 3.2 mm (1/8-inch) out of the bottom of the hub keyway (figure 7).
 - The shaft key is curved slightly to give an interference fit in the groove.

A. Without Torque Cushion
B. Thin Torque Cushion

Figure 3 — HR-6 Clutch Driver Designs
Important

- Do not drive or pound on the clutch hub or the shaft (20). Internal damage to the compressor may result.

2. Clutch plate and hub assembly (2) (figure 8).
 - Make sure the contact surfaces of the clutch plate (2) and the pulley (5) are clean.
 - Remove the forcing screw tip from J 33013-B and reverse the body direction on the center screw.
 - Install J 33013-B with bearing (figure 8).
 - Back off J 33013-B body enough to allow the center screw to be threaded against the end of the compressor shaft.
 - Hold the center screw with a wrench and tighten the hex portion of J 33013-B body while pressing the hub onto the shaft. After tightening the body several turns, remove J 33013-B and check that the shaft key (21) is properly in place in the keyway, then install the clutch plate and hub assembly (2) to its final position.
 - Measure the air gap between contact surfaces of the clutch plate and hub assembly (2) and the pulley (5). The gap should be 0.38-0.64 mm (0.015-0.025-inch) (figure 8).
 - Remove J 33013-B.

Inspect

- Position of the shaft (20) (even with or slightly above the clutch hub).
- Use J 33027 to hold the clutch plate and hub assembly (2).

Tighten

- Shaft nut (1) to 16 N-m (12 ft. lbs.) with J 33022.
 - Hand spin the pulley (5) to check for free rotation.
 - Remove the assembly from J 33026.
1B4-4 HR-6 AIR CONDITIONING COMPRESSOR

- Clutch Plate and Hub Assembly
- Pulley (Rotor)
- Key
- Keyway (Shaft)

Figure 5 — Removing the Shaft Nut

Figure 6 — Removing the Clutch Plate and Hub Assembly

Figure 7 — Positioning the Shaft Key, Clutch Plate, and Hub Assembly

Figure 8 — Installing the Clutch Plate and Hub Assembly

A. Air Gap 0.38-0.64 mm (.015-.025 inch)
PULLEY AND BEARING ASSEMBLY REPLACEMENT

Remove or Disconnect (Figures 4, 9, 10, 11 and 12)

Tools Required:
- J 6983 Snap Ring Pliers
- J 29886 Driver Handle
- J 9398-A Pulley Bearing Remover
- J 33020 Pulley Puller
- J 33023-A Pulley Pilot

1. Clutch plate and hub assembly (2).
2. Pulley bearing retainer (3) using J 6083 (figure 9).
3. Pulley (5).
 - Install J 33023-A to the front head (figure 10).
 - Install J 33020 tangs into the inner circle of slots in the pulley (5) contact surface. Rotate J 33020 clockwise so the tangs will lock into the segments between the slots (figure 11).
 - Hold J 33020 in place and tighten the puller screw against J 33023-A puller pilot to remove the pulley (5) (figures 11 and 12).
4. Pulley bearing (4) from the pulley (5) using J 9398-A and J 29886 (figure 12).
 - Remove the forcing screw from J 33020 and with the puller tangs still in place in the pulley slots, turn the assembly upside down onto a flat surface (figure 12).
 - When removing the old pulley bearing (5) allow the staking to remain, then file away the old staked metal for proper fit when installing a new bearing (5) in the pulley bore.

Install or Connect (Figures 4, 13, 14, 15 and 16)

Tools Required:
- J 21352-A Compressor Support Block
- J 9481-A Pulley Bearing Installer
- J 33019 Bearing Staking Tool (with staking pin and retaining band)
- J 33017 Pulley and Bearing Assembly Installer
- J 33023-A Puller Pilot
- J 8433-1 Puller Bar
- J 33026 Compressor Holding Fixture
- J 6083 Snap Ring Pliers

1. Pulley (5) on J 21352-A.

NOTICE: Do not support the rotor by resting the pulley rim on a flat surface during bearing installation or the rotor face will be bent.

2. Pulley bearing (4) into the hub using J 29886, J 9481-A and J 21352-A (figure 13).
 - J 33019-1 in the pulley bore (figure 14).
 - Seat the pulley and bearing assembly on J 21352-A to support to the hub under the staking pin location.
3. Strike the staking pin with a hammer until a metal stake, similar to the original, is formed down to, but not touching the bearing.
 - Position the stake pin after striking.
 - The staked metal should not contact the outer race of the bearing to prevent the possibility of bending the outer race.
 - Stake 3 places 120 degrees apart (figure 15).

3. Pulley (5) on the front head.
 - Position J 33017 and J 33023-A over the inner race of the bearing (figure 16).
 - Position J 8433-1 on J 33023-A and assemble the through bolts and washers through the pulley bar slots and thread them into J 33026 (figure 16).
Figure 16 — Installing the Pulley Bearing Assembly

- The thread of the through bolts should engage the full thickness of J 33026.
- Tighten the center screw in J 8433-1 to force the pulley and bearing assembly onto the compressor front head (11) (figure 16).
- Should J 33017 become misaligned with the inner race of the bearing, back off J 8433-1 and relocate center, then continue installation.

4. Pulley bearing retainer (3) using J 6083 (figure 9).
5. Clutch plate and hub assembly (2).

CLUTCH COIL AND HOUSING ASSEMBLY REPLACEMENT

Remove or Disconnect (Figures 4 and 17)

Tools Required:
- J 8433-1 Puller Bar
- J 08433-3 Puller Screw
- J 33023-A Puller Pilot
- J 33025 Clutch Coil Puller Legs

1. Clutch plate and hub assembly (2).
2. Pulley (5).
 - Mark or scribe the location of the clutch coil (6) to terminal on the compressor front head (11).
3. Clutch coil assembly (6).
 - Install J 33023-A on the head (11) of the compressor.
 - Install J 8433-1 with J-33025 (figure 17).
 - Tighten J 8433-1 forcing screw against J 33025-A.

4. Pulley (5).
4. Clutch plate and hub assembly (2).

Inspect
- Clutch coil assembly (6). Replace as necessary.

Install or Connect (Figures 4, 18, 19 and 20)

Tools Required:
- J 8433-1 Puller Bar
- J 33024 Clutch Coil Installer Adapter
- J 33026 Compressor Holding Fixture

1. Compressor assembly on J 33026.
2. Clutch coil assembly (6) onto the front head (11) with the terminals positioned at the "marked" location.
 - J 33024 over the internal opening of the clutch coil assembly (6).
 - J 8433-1 with through bolts, washers and forcing screw over J 33024.
 - Thread through bolts into J 33026 to full fixture thickness (figure 18).
 - Be sure J 8433-1 and the clutch coil assembly (6) stay "in line" during installation.
 - When the clutch coil assembly (6) is seated on the front head (11), use a 3 mm (1/8-inch) diameter drift punch to stake the head (11) at 3 places, 120 degrees apart to assure the clutch coil assembly (6) remains in position (figure 19).
 - Stake size should be one half the area of the punch tip and 0.28-0.35 mm (0.010-0.015-inch) deep (figure 20).
3. Pulley (5).
4. Clutch plate and hub assembly (2).
MAJOR REPAIR TO THE COMPRESSOR

Replacement of the shaft seal assembly (8, 9, 10) or the pressure relief valve will require the discharge of the vehicle's refrigerating system (figure 21). Other than clutch repair procedures, the same holds true for any disassembly of the compressor. To discharge the refrigerant, refer to the vehicle service manual.

After servicing or repairing the compressor, always add the proper amount of new 525 viscosity refrigerant oil. Refer to “Specifications.”

Keep the workbench and work area clean when servicing the compressor, and use proper, clean service tools.

NOTICE: Any attempt to use makeshift or inadequate service tools or equipment may result in damage and/or improper compressor operation.

All parts used for servicing the compressor internally are protected by a preservative and packaged in a manner which does not require cleaning, washing or flushing. The parts can be used in the internal assembly just as they are removed from the service package.
SHAFT SEAL REPLACEMENT

Remove or Disconnect (Figures 4, 22, 23 and 24)

Tools Required:
- J 5403 Snap Ring Pliers
- J 34614 Shaft Seal Protector
- J 23128-A Seal Remover and Installer
- J 9553-01 O-Ring Seal Remover

1. Clutch plate and hub assembly (2).
 - Install J 34614 over the threaded end of the shaft (20).
2. Shaft seal retainer ring (8) using J 5403 (figure 22).
 - Clean the compressor neck area around the shaft (20), the exposed part of the shaft seal (9) and the O-ring seal groove.
 - Insert J 23128-A into the shaft lip seal, tighten and remove lip seal.
4. O-ring seal (10) using J 9553-01 (figure 24).

Inspect
- Make sure the compressor neck area is clean.
- All parts. Replace as necessary.

Install or Connect (Figures 4 and 25)

Tools Required:
- J 33011 O-Ring Seal Installer
- J 23128-A Seal Seat Remover and Installer
- J 34614 Shaft Seal Protector
- J 5403 Snap Ring Pliers
- Dip the new O-ring seal in clean 525 viscosity refrigerant oil.
- J 34614 onto the shaft (20).
1. O-ring seal using J 33011 (figure 25).
 - Insert J 33011 into the compressor neck until the installer "bottoms."
 - Lower the movable slide of J 33011, releasing the O-ring seal into the lower groove.
 - Rotate J 33011 to seat the O-ring seal and remove J 33011.
2. Shaft lip seal using J 23128-A (figure 23).
 - Dip the shaft lip seal in clean 525 viscosity refrigerant oil and install shaft lip seal on J 23128-A.
 - Bottom the shaft lip seal into the compressor neck area using J 23128-A.

HIGH PRESSURE RELIEF VALVE REPLACEMENT

Remove or Disconnect (Figures 4 and 26)
- Be sure the compressor has no charge.
1. High pressure relief valve (32).
2. O-ring seal (33).

Install or Connect (Figures 4 and 26)
- Lubricate the threads of the high pressure relief valve (32) and new seal with 525 viscosity refrigerant oil.
1. High pressure relief valve (32) with new seal.
2. High pressure relief valve (32) to 9 N-m (84 in. lbs.).

Important
- Leak test the compressor.
- Refer to "Leak Testing."
9. One-Piece Seal
A. J 23128-A Seal Remover and Installer
B. J 34614 Shaft Seal Protector

Figure 23 — Removing or Installing the Shaft Tip Seal

Figure 24 — Removing the Shaft Seal Seat O-Ring

Figure 25 — Installing the Seal Seat O-Ring
COMPRESSOR DISASSEMBLY—INTERNAL CYLINDER AND SHAFT

Remove or Disconnect (Figures 4, 27, 28, 29 and 30)

- Mark the front head (11) alignment with cylinders (16) (23) and rear head (28) alignment.
- Clutch plate and hub assembly (2).
- Pulley (5).
- Clutch coil assembly (6).
- Shaft seal parts (8, 9, 10)
 - Note the compressor alignment marks and use them as a reference for compressor assembly (figure 27).
- Through bolts (7) and gaskets (figure 28).
 - Throw away the gaskets.
 - Hand-support the compressor from below.
 - Remove compressor assembly from J 33026.
- Rear head (28) (figure 29).
 - Using a wood block, tap around the edge of the rear head (28) to ease removal.
 - Mount the compressor on J 33026 front head (11) down (figure 30).
- Head gasket (27).
- Valve plate (26).
- Suction reed plate (25).
- Cylinder seal (24).

Important

- Shaded parts shown in figure 3 are not serviceable. A replacement kit (gut pack) is available.
- Cylinders (23) (16), cylinder seal (22), discharge crossover seal (17), piston group, axial plate shaft assembly (20) and bearings; replace as a kit.

15. Suction reed plate (14).
16. Valve plate (15).
17. Head gasket (12).
18. Front head (11).

Clean
- All parts.

Inspect
- All parts and replace as necessary.

COMPRESSOR ASSEMBLY—INTERNAL CYLINDER AND SHAFT

Install or Connect (Figures 4, 31 through 39)

Tools Required:
- J 21352-A Support Block
- J 33016 Cylinder Alignment Rods
- J 33026 Compressor Holding Fixture
- Use new seals and gaskets.
- Place J 21352-A on the workbench or suitable flat work surface.

1. Rear head (28) onto J 21352-A.
 - Install J 33016 guide pins small diameter ends into the through bolt holes (figure 31).
2. Head gasket (27).
 - Over guide pins into head (28) (figure 32).

Important
- Locate the head gasket (27) to prevent the discharge valve reed retainer on the rear valve plate (26) from hitting the internal segment of the head gasket (27) (figure 32).

3. Valve plate (26).
 - Over the guide pins into position (figure 33).

A. 12 o'clock Reference Position
B. 6 o'clock Reference Position
27. Head Gasket
28. Rear Head

Figure 30 — Installing the O-Ring Seals on the Cylinder Seal Races

Figure 31 — Positioning the J 33016 Guide Pins

Figure 32 — Installing the Rear Head Gasket
4. Suction reed plate (25).
 • Over the guide pins into proper position (figure 34).
 • Be sure all three suction reed tips cover the suction ports in the rear valve plate (26).

5. Cylinder seal (24).
 • Lubricate a new cylinder seal (24) with clean 525 viscosity refrigerant oil and position the seal on the rear cylinder (23) (figure 30). Roll the cylinder seal into the groove. Cylinder (23) surface must be clean at the rear.
 • Apply refrigerant oil to the seal surface of the rear head to ease assembly.

6. Cylinder and shaft assembly (gut pack).
 • Shaded parts shown in figure 3 are not serviceable. A replacement kit (gut pack) is available for replacement.
 • Assemble cylinder and shaft assembly over the guide pins onto the rear head (28) (figure 35).
 • Using both hands, press the cylinder and shaft assembly down into the rear head (28).

Important
 • Center cylinder seal (22) is not serviceable.

7. Cylinder seal (15).
 • Lubricate a new cylinder to front head seal with clean 525 viscosity refrigerant oil and install in the front seal groove (figure 35).

8. Suction reed plate (14).
 • Over J 33016 guide pins (figure 36).
 • Check the alignment.

9. Valve plate (13).
 • Over J 33016 guide pins (figure 37).

10. Head gasket (12).
 • Over J 33016 guide pins (figure 38).

11. Front head (11).
 • Line up mark on front head (11) with the alignment marks on the compressor cylinders and assemble head over J 33016 guide pins (figure 27).
1B4-14 HR-6 AIR CONDITIONING COMPRESSOR

A. 12 o'clock Reference Position
B. Tips of Suction Reeds Must Locate Above Recess in Cylinder at Top
C. Discharge Crossover Opening
15. Cylinder Seal (Front)

Figure 36 — Installing the Front Suction Reed Plate

Important
- Front head (11) is now assembled in the "standard" position and may differ 120 degrees either direction. Assemble front head (11) according to location marked before removal.
- Using both hands, press down on front head (11) for installation over the seal (15) at the front of the cylinder (16).

12. Through bolts (7) with new gaskets.
- Thread four of the through bolts (7) into the rear head (28) before removing J 33016 guide pins. Install two remaining through bolts (7) finger tight.
- Mount the compressor on J 33026 (figure 39).

Tighten
- Six through bolts (7) alternately to 9 N·m (84 in. lbs.).
13. Shaft seal parts (8, 9, 10).

Important
- Add new 525 viscosity refrigerant oil.
- Refer to vehicle service manual for fill quantity.
- Place shaft nut (1) on the shaft (20) and rotate the compressor shaft (20) several times and remove nut (1).

Figure 37 — Installing the Front Valve Plate

Figure 38 — Installing the Seal to the Front Head
LEAK TESTING

Tools Required:
- J 9625-A Pressure Test Plate
- J23500-01 Portable Charging Station
- J 33026 Compressor Holding Fixture

- Be sure the compressor has no oil internally.
1. Install J 9625-A on the rear head of compressor (figure 3).
2. Install the center hose of the manifold gage set on J 23500-01 to a refrigerant drum standing in an upright position and open the valve on the drum.
3. Install the charging station high and low pressure lines to corresponding fittings on J 9625-A using J-5420 gage adapters or hoses equipped with valve depressors. Suction port (low side) of the compressor has large internal opening. Discharge port (high side) has a smaller internal opening into the compressor.
- Open the low pressure control, high pressure control and the refrigerant control on the charging station to allow refrigerant vapor to flow into the compressor.

Important
- Check for leaks at pressure relief valve (32), compressor front and rear head seals (15) (24), center cylinder seal (22), through bolt head gaskets and compressor shaft seal.
- After the leak check, shut off the low pressure control and the high pressure control on charging station.

- If an external leak is present, perform the necessary correction and recheck to assure the correction.
- Loosen the manifold gage hose connections to the gage adapters connected to the low and high sides and allow the vapor pressure to release from the compressor. If valve depressor type hoses are used, loosen the hose connections at gage manifold to release the vapor pressure from the compressor.
- Disconnect both gage adapters or hoses from J 9625-A.
- Add 89 ml (3 oz.) new 525 viscosity refrigerant oil to the compressor assembly. Rotate the complete compressor assembly (not the shaft or drive plate hub) slowly several turns to distribute oil to all cylinder and piston areas.
- Install the shaft nut (1) on the compressor shaft (20) if the pulley assembly and clutch plate and hub assembly are not installed.
- Using a box-end wrench, or a socket and handle, rotate the compressor shaft (20) or clutch plate on the shaft (20) several turns to lubricate the pistons and cylinder walls.
- Connect the charging station high-pressure line, or a high-pressure gage and gage adapter to J 9625-A high-side connector.
- Attach an adapter or depressor-type hose to the suction or low-pressure port of J 9625-A to open the Schrader-type valve. Oil will drain out of the compressor.
suction port adapter if the compressor is positioned with the suction port downward.
- Attach the compressor to the J 33026 fixture and mount the compressor in a vise so that the compressor will be in a horizontal position and the shaft (20) can be turned with a wrench.
- Rotate the compressor shaft (20) or drive plate hub ten complete revolutions at a speed of approximately one revolution per second. A slower rotation can result in a lower pump-up pressure and disqualify a good pumping compressor.
- Observe the reading on the high-pressure gage at the completion of the tenth revolution of the compressor shaft (20). The pressure reading for a good pumping compressor should be 690 kPa (100 psi) or above. A pressure reading of less than 620 kPa (90 psi) would indicate one or more suction and/or discharge valves leaking, an internal leak, or an inoperative valve. Disassemble the compressor and repair as necessary. Reassemble and repeat the pump-up test.
- Following the pressure pump-up test, release the air pressure from the high side and remove the gage adapters and J 9625-A test plate.
- Tilt the compressor to place the suction and discharge ports downward to allow the oil to drain from the compressor.
- Allow a 10-minute drain period and then charge the compressor with the proper amount of oil. Pour the new 525 viscosity refrigerant oil into the suction port.
- If further assembly or processing is required, install a shipping plate or test plate J 9625-A to protect the compressor from contamination.

SPECIFICATIONS

HR-6 COMPRESSOR

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type — Harrison HR-6</td>
<td>6 Cylinder Axial</td>
</tr>
<tr>
<td>Displacement</td>
<td>10.0 Cu. In.</td>
</tr>
<tr>
<td>Rotation</td>
<td>Clockwise</td>
</tr>
<tr>
<td>Clutch Plate Air Gap</td>
<td>0.38-0.64 mm (0.015-0.025 inch)</td>
</tr>
<tr>
<td>Oil Capacity</td>
<td>0.227 Kg (8 oz.)</td>
</tr>
<tr>
<td>Model Number (Gasoline Engine)</td>
<td>1131684</td>
</tr>
<tr>
<td>Model Number (Diesel Engine)</td>
<td>1131678</td>
</tr>
</tbody>
</table>

CLUTCH COIL

- Ohms (at 27°C-80°F)............... 3.56-3.89
- Amps (at 27°C-80°F)............... 3.2 @ 12 Volts

TORQUE SPECIFICATIONS

- Compressor Suction and Discharge Connector Bolt................. 24 N m (18 Ft. Lbs.)
- Through Bolts.. 9 N m (64 In. Lbs.)
- Shaft Nut... 16 N m (12 Ft. Lbs.)
- Pressure Relief Valve................................. 9 N m (84 In. Lbs.)
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Snap Ring Pliers</td>
</tr>
<tr>
<td>2.</td>
<td>Snap Ring Pliers</td>
</tr>
<tr>
<td>3.</td>
<td>Driver Handle</td>
</tr>
<tr>
<td>4.</td>
<td>Puller Bar</td>
</tr>
<tr>
<td>5.</td>
<td>Forcing Screw</td>
</tr>
<tr>
<td>6.</td>
<td>Pulley Bearing Remover</td>
</tr>
<tr>
<td>7.</td>
<td>Rotor Bearing Remover</td>
</tr>
<tr>
<td>8.</td>
<td>Pulley Bearing Installer</td>
</tr>
<tr>
<td>9.</td>
<td>O-ring Seal Remover</td>
</tr>
<tr>
<td>10.</td>
<td>Pressure Test Plate</td>
</tr>
<tr>
<td>11.</td>
<td>Support Block</td>
</tr>
<tr>
<td>12.</td>
<td>Seal Remover and Installer</td>
</tr>
<tr>
<td>13.</td>
<td>Portable Charging Station</td>
</tr>
<tr>
<td>14.</td>
<td>Driver Handle</td>
</tr>
<tr>
<td>15.</td>
<td>Pulley and Bearing Assembly Installer</td>
</tr>
<tr>
<td>16.</td>
<td>Hub and Drive Plate Remover and Installer</td>
</tr>
<tr>
<td>17.</td>
<td>Cylinder Alignment Rods</td>
</tr>
<tr>
<td>18.</td>
<td>Pulley and Bearing Assembly Installer</td>
</tr>
<tr>
<td>19.</td>
<td>Bearing Staking Tool</td>
</tr>
<tr>
<td>20.</td>
<td>Pulley Puller</td>
</tr>
<tr>
<td>21.</td>
<td>6 Point 13 mm Socket</td>
</tr>
<tr>
<td>22.</td>
<td>Puller Pilot</td>
</tr>
<tr>
<td>23.</td>
<td>Clutch Coil Installer Adapter</td>
</tr>
<tr>
<td>24.</td>
<td>Clutch Coil Puller Legs</td>
</tr>
<tr>
<td>25.</td>
<td>Compressor Holding Fixture</td>
</tr>
<tr>
<td>26.</td>
<td>Clutch Hub Holding Tool</td>
</tr>
<tr>
<td>27.</td>
<td>Shaft Seal Protector</td>
</tr>
<tr>
<td>28.</td>
<td>Gage Adapter</td>
</tr>
</tbody>
</table>
SECTION 1B5

SD-709 AIR CONDITIONING COMPRESSOR

CONTENTS

SUBJECT PAGE

Description ... 1B5-1
Inspection .. 1B5-1
Compressor Replacement 1B5-1
Disassembly of the Clutch and Shaft Seal 1B5-1
Assembly of the Clutch and Shaft Seal 1B5-4
Disassembly of the Cylinder Head and Valve Plate 1B5-6
Assembly of the Cylinder Head and Valve Plate 1B5-6
Specifications ... 1B5-7
Fasteners .. 1B5-7
Special Tools ... 1B5-8

DESCRIPTION

The Sandon SD-709 is a belt-driven seven cylinder compressor with an integral clutch. The clutch, shaft seal, cylinder head and valve plate assemblies are fully serviceable.

The compressor can be identified by a label attached to the compressor body giving the part number, model, and manufacturer’s name. The date code is stamped on the front left mounting ear viewed as facing the clutch (figure 1). It will be either a two-digit number or a number-letter combination. The first number gives the year of manufacture. This is followed by one of the numbers 1 through 9, indicating the months January through September. October, November or December are indicated by an X, Y, or Z.

INSPECTION

LEAK CHECK

Before disassembling any compressor components, check for leaks in the following areas:

1. Feel under the seal area between the clutch and compressor to check for oil seeping in the shaft seal area. If so, the seal will have to be replaced.

2. Check for dislocation of the front housing O-ring (protruding section). Replace the compressor.

3. Oil around the cylinder head gasket or fittings. Replace leaking component.

4. Oil around the filler hole. If the O-ring is damaged, it can be replaced. If the threads are stripped, replace the compressor.

5. Oil leaking from cracks in the cylinder block. Replace the compressor.

COMPRESSOR REPLACEMENT

If the compressor needs to be replaced, first drain and measure the oil in the old compressor. Then drain the oil from the new compressor. Measure the new oil equal to the amount drained from the old compressor. Then put the new oil back in the compressor.

DISASSEMBLY OF THE CLUTCH AND SHAFT SEAL

CLUTCH

 Remove or Disconnect (Figures 2 through 9)

Tools Required:

- J 37791 Clutch Front Plate Spanner Wrench
- J 36045 Front Plate Puller
- J 37792 Puller Fingers
- J 8433 Puller Set
- J 37795 Bearing Remover and Installer/Pulley Installer
- J 29886 Driver Handle

* Insert the two pins of the J 37791 into any two threaded holes of the clutch front plate (2). Hold the clutch plate stationary (figure 3).
1B5-2 SD-709 AIR CONDITIONING COMPRESSOR

Figure 1—Date Code

Figure 2—Compressor Components

1. Nut
2. Clutch Plate and Hub Assembly
3. Shims
4. Snap Rings
5. Rotor Pulley
6. Bearing
7. Snap Ring
8. Coil Lead Wire Screw
9. Coil Lead Wire Clamp
10. Coil
11. Cap Screw
12. Cap
13. Valve
14. Seal
15. Cylinder Head
16. Cap
17. Valve Plate Gasket
18. Valve Plate
19. Cylinder Gasket
20. Oil Filler Plug
21. Seal Cage
22. Shaft O-Ring Seal
23. Shaft Seal Seat
24. Retainer
25. Felt Ring Metal Retainer
26. Shaft
27. Shaft Key

Figure 3—Removing the Nut
1. Hex nut using a 19 mm socket.
2. Clutch front plate using J 36045 (figure 4).
 - Align the puller center bolt to the compressor shaft.
 - Thumb tighten the three puller bolts into the threaded holes.
 - Turn the center bolt to the right with the socket wrench until the front plate is loosened.

3. Shaft key (27) by lightly tapping it loose with a slot screwdriver and hammer (figure 5).
4. Internal bearing snap ring (4) with internal type snap ring pliers (figure 6).
5. Rotor pulley assembly.
 - Insert J 37792 into the snap ring groove.
 - Align the thumb head bolts of J 8433 to the puller fingers and tighten.
Figure 9—Removing the Coil Snap Ring

ASSEMBLY OF THE CLUTCH AND SHAFT SEAL

SHAFT SEAL

- Seal cavity thoroughly.
 a. Use R-12 refrigerant. Blow dry.
 b. Wipe with a lint free cloth and clean refrigerant oil. Blow dry.
- J 29640 over the compressor shaft.
 a. Do not touch the new seal lapping surfaces. Dip the mating surfaces in clean refrigerant oil.
- Slots of J 37794 to the new seal cage (21).
- Seals assembly into place in the compressor seal cavity (figure 13).
 a. Twist J 37794 to disengage it from the cage.
- Clean refrigerant oil to the shaft seal seat.
- Shaft seal seat (23) with J 37793 (figure 11).
- Snap ring with the flat side toward the compressor.
- Clutch spacer shims (3).
- Use the originals if possible to give the same gap.
- New felt ring.
 a. If the clutch was not disassembled, reinstall the clutch front plate.

CLUTCH

Install or Connect (Figures 2, 3, 14 and 15)

Tools Required:
- J 37795 Bearing Remover and Installer/Pulley Installer
Figure 10—Removing the Felt Ring Metal Retainer

1. Field coil and snap ring retainer.
 - The coil flange protrusion must match the hole in the front housing to prevent coil movement and to correctly place the lead wire.

2. Coil wire to clip.
 - Clamp the compressor in a vise by the mounting ears or support the compressor on the four mounting ears at the rear of the compressor.

3. Bearing to the rotor with J 37795 and J 29886 (figure 14).

4. Snap ring to the rotor.

3. Rotor pulley (5) to the front housing hub and align.
 - Place J 37795 into the bearing cavity with the outer edge on the rotor bearing outer race.
 - Place J 29886 into the ring (figure 15).
 - Use a hammer to tap the end of J 29886 to guide the rotor until it bottoms out against the compressor front housing hub. Listen for a distinct change of sound during the tapping process.

4. Internal bearing snap ring.

5. Shaft key (27).

6. Front plate assembly.
 - Align the front plate keyway to the compressor shaft key.

7. J 37796 to the compressor shaft.
 - Tap the front plate to the shaft until the plate bottoms to the clutch shims.

8. Shaft hex nut.
 - Hold the plate with J 37791 (figure 3).

Figure 11—Removing the Shaft Seal Seat

Figure 12—Removing the Seal Cage
Tighten
- Nut the 36 N·m (27 ft. lbs.).
- Check the air gap with a feeler gauge. It should be 0.49 to 0.79 mm (0.016 to 0.031 inch). If the gap is not consistent all around, pry up slightly at points of minimum variation. Lightly tap down at points of maximum variation. The gap is determined by the shims. If necessary, add to or remove shims from the shim stack.

DISASSEMBLY OF THE CYLINDER HEAD AND VALVE PLATE

Remove or Disconnect (Figures 2 and 16)
1. Six cylinder head cap screws with a 13 mm wrench.
2. Cylinder head from the valve plate.
 - Use a small hammer and the gasket scraper to tap the outer edge of the head until it is freed from the plate (figure 16).
 - Check the gasket for wear.
3. Valve plate.
 - Position the gasket scraper between the outside edge of the valve plate and the cylinder block and lightly tap the valve plate loose.
 - Inspect the reed valves and discharge retainer. Replace if worn.
4. Gasket material carefully from the valve plate and cylinder head with the gasket scraper.

ASSEMBLY OF THE CYLINDER HEAD AND VALVE PLATE

Important
- Use new gaskets for reassembly.

Install or Connect (Figures 2 and 17)
1. Clean refrigerant oil to the valve plate gasket (17).
2. Gasket to the locating pin holes and oil orifice in the cylinder block.
3. Valve plate (18).
 - Align the valve plate locating pins to the pin holes in the block.
4. Clean refrigerant oil to the top of the valve plate.
5. Cylinder head (15) and cap screws (11).

Tighten
- Screws to 32 N·m (24 ft. lbs.) using the star configuration as shown in figure 17.

Figure 16—Loosening the Valve Plate

Figure 17—Torque Sequence

SPECIFICATIONS

Sanden SD 709 .. P/N 15573115
Application: ... 7.4L Engine, P Truck
Rotation: ... Clockwise
Oil:500 Viscosity Suniso 5GS or equivalent
Capacity: .. Approx. 135 cc (4.6 ounces)
Clutch Hub Air Gap0.49 to 0.79 mm (0.016 to 0.031 in.)

FASTENERS

Shaft Nut36 N·m (27 ft. lbs.)
Cap Screws .. .32 N·m (24 ft. lbs.)
Oil Filler Plug .. .8 N·m (70.8 in. lbs.)
Charge Valve Cap60 N·m (80 ft. lbs.)
SPECIAL TOOLS

1. Puller Set
2. O-Ring Hook
3. Shaft Protector
4. Driver Handle
5. Front Plate Puller
6. Clutch Plate Spanner Wrench
7. Puller Fingers
8. Seal Seat Remover/Installer
9. Seal Remover and Installer
10. Bearing Remover/Installer
11. Shaft Protector
SECTION 3B2

MANUAL STEERING GEAR

NOTICE: These fasteners are important attaching parts in that they could affect the performance of vital components and systems, and/or could result in major repair expense. They must be replaced with one of the same part number or with an equivalent part if replacement becomes necessary. Do not use a replacement part of lesser quality or substitute design. Torque values must be used as specified during reassembly to assure proper retention of these parts.

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>3B2-1</td>
</tr>
<tr>
<td>Saginaw Model 525</td>
<td>3B2-2</td>
</tr>
<tr>
<td>Saginaw Model 535</td>
<td>3B2-6</td>
</tr>
<tr>
<td>Specifications</td>
<td>3B2-10</td>
</tr>
<tr>
<td>Adjustment</td>
<td>3B2-10</td>
</tr>
<tr>
<td>Fastener Torque</td>
<td>3B2-10</td>
</tr>
<tr>
<td>Special Tools</td>
<td>3B2-11</td>
</tr>
</tbody>
</table>

DESCRIPTION

The Saginaw steering gear is the recirculating ball nut and worm type. The worm is located on the lower end of the steering shaft. The ball nut is mounted on the worm and the steel balls act as a rolling thread between the worm and nut to provide a low friction drive between them.

Teeth on the ball nut engage teeth on the pitman shaft sector. The teeth on the ball nut are made so that a tighter fit exists between the ball nut and pitman shaft sector teeth when the front wheels are in the straight ahead position. The sector teeth are slightly tapered so that a proper preload may be obtained by moving the pitman shaft endways by means of a preload adjuster screw which extends through the gear housing side cover. The head of the preload adjuster and a selectively fitted shim fit snugly into a T-slot in the end of the pitman shaft, so that the screw also controls the end play of the shaft.

- The model 525 steering gear is used on G and P model vehicles, (figure 1).
- The model 535 steering gear is used on the CK, S, T and M model vehicles, (figure 5).

For visual identification the 535 gear has a four bolt side cover and the 525 gear has three bolts. The larger (535) gear has a 28.8 mm (1.137-in.) diameter wormshaft measured on the O.D. of the worm thread and a 31.7 mm (1.25-in.) diameter pitman shaft. The smaller (525) gear has a 26.2 mm (1.034-in.) diameter wormshaft and a 28.5 mm (1.125-in.) diameter pitman shaft.
Figure 1—Steering Gear Components — Model 525

1. NUT, WORM BRG. ADJUSTER LOCK
2. ADJUSTER, WORM THRUST BRG.
3. RACE, THRUST BEARING
4. BEARING ASSY. WORM THRUST
5. RETAINER, LOWER BEARING
6. NUT, BALL
7. WORM, STEERING
8. BEARING ASSY, WORM THRUST
9. RACE, THRUST BEARING
10. SEAL, PITMAN SHAFT GREASE
11. HOUSING, STEERING GEAR
12. SEAL, STEERING SHAFT
13. GASKET, HOUSING
14. BUSHING OR NEEDLE BRG. PITMAN SHAFT
15. GEAR, PITMAN SHAFT
16. ADJUSTER, PRELOAD
17. SHIM, PRELOAD ADJUSTER
18. COVER ASSY, HOUSING
19. NUT, PRELOAD ADJUSTER
20. BOLT, FLG. HEX HD
21. SCREW ASSY., BALL GUIDE CLAMP
22. CLAMP, BALL RETURN GUIDE
23. GUIDE, BALL RETURN (4)
24. BALL
25. WASHER, PITMAN SHAFT, SPRING
26. NUT, PITMAN SHAFT

USED ON SOME MODELS
1. REMOVE AND INSTALL WORM SHAFT SEAL GEAR ASSEMBLED

REMOVE

1. Wrap 0.1 mm to 0.2 mm (.005" to .008") shim stock around shaft and insert between shaft and seal. Pry seal out.

INSTALL

1. Install parts as shown.

NOTICE: Do not turn steering wheel hard against "stops" when linkage is disconnected.

2. REMOVE AND INSTALL PITMAN SHAFT AND SIDE COVER

REMOVE

1. Center steering gear.
2. Remove parts as shown.

INSTALL

1. Before installing turn preload adjuster screw counter-clockwise until it bottoms, then back screw off one half turn.
2. Install parts as shown.

Checking end clearance

If clearance is greater than .05 mm (.002") a steering gear lash adjuster kit is available.

LUBRICATION

The steering gear requires .312 kg (11 oz) of lubricant GM4673M or equivalent.

Figure 2—Model 525 — Chart A
REMOVE

1. Loosen lock nut. Use punch against edge of slot.
2. Remove parts as shown.

INSTALL

1. Install parts as shown against edge of slot.
2. Remove parts as shown.

NOTICE: Use care that the ball nut does not run down to either end of the worm. Damage may be done to the ends of the ball guides if the ball nut is allowed to rotate until stopped at the end of the worm.

DISASSEMBLE ASSEMBLE

WORM BEARING ADJUSTER LOCKNUT

WORM BEARING ADJUSTER

BALL GUIDES & CLAMP

BALL NUT

WORMSHAFT

UPPER WORM BEARING

UPPER WORM BEARING CUP

(See below)

LOWER WORM BEARING CUP

LOWER BEARING RETAINER

LOWER WORM BEARING

BALL NUT

WORMSHAFT

BALL GUIDES

BALLS

BALL GUIDE CLAMP

CLAMP SCREWS

5.5 N·m (4 FT. LBS.)

Installing Balls

Assemble wormshaft

Dimension A—Measure land between ball grooves

<table>
<thead>
<tr>
<th>Dim A</th>
<th>Balls per circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>25</td>
</tr>
<tr>
<td>0.10</td>
<td>27</td>
</tr>
<tr>
<td>0.20</td>
<td>27</td>
</tr>
</tbody>
</table>

Figure 3—Model 525 — Chart B
6. ADJUST WORM BEARING PRELOAD

1. Tighten worm bearing adjuster until it bottoms then loosen one-quarter turn.
2. Carefully turn the worm shaft all the way to end of travel then turn back one-half turn.
3. Tighten adjuster plug until torque wrench reads 0.6 to 1.0 N·m (5 to 8 in lbs).
4. Tighten locknut using punch against edge of slot.

7. ADJUST "OVER CENTER" PRELOAD

A. Back off preload adjuster until it stops, then turn it in one full turn.
B. Turn adjuster in until torque to turn stub shaft is 0.5 to 1.2 N·m (4 to 10 in lbs) more than reading #1.

With gear at center of travel, check torque to turn stub shaft (reading #1).

Torque adjuster lock nut to 34 N·m (25 ft lbs). Prevent adjuster screw from turning while torquing lock nut.

Figure 4—Model 525 — Chart C — Adjustment
1. Worm Bearing Adjuster Locknut
2. Worm Bearing Adjuster
3. Lower Worm Bearing Cup
4. Lower Worm Bearing
5. Lower Bearing Retainer
6. Ball Nut
7. Worm Shaft
8. Upper Worm Bearing
9. Upper worm Bearing Cup
10. Pitman Shaft Seal
11. Housing
12. Worm Shaft Seal
13. Side Cover Gasket
14. Pitman Shaft Needle Bearing
15. Pitman Shaft
16. Preload Adjuster
17. Preload Adjuster Shim
18. Side Cover
19. Preload Adjuster Nut
20. Side Cover Bolts
21. Ball Guide Clamp Screw
22. Ball Guide Clamp
23. Ball Guide
24. Balls
25. Washer, Spring
26. Pitman Arm Nut
30. Top Studed Side Cover Bolt (Used on some models)

Figure 5—Steering Gear Components — Model 535
1. REMOVE AND INSTALL WORM SHAFT SEAL GEAR ASSEMBLED

REMOVE
1. Wrap 0.1 mm to 0.2 mm (.005" to .008") shim stock around shaft and insert between shaft and seal. Pry seal out.

INSTALL
1. Install parts as shown.

- **SCREWDRIVER**
- **1" SOCKET**
- **WORM SHAFT SEAL**
- **HOUSING**

Notice: Do not turn steering wheel hard against "stops" when linkage is disconnected.

2. REMOVE AND INSTALL PITMAN SHAFT AND SIDE COVER

REMOVE
1. Center steering gear.
2. Remove parts as shown.

INSTALL
1. Before installing turn preload adjuster screw counterclockwise until it bottoms, then back screw off one half turn.
2. Install parts as shown.

- **SIDE COVER BOLTS**
- **PRELOAD ADJUSTER NUT**
 (If replacing gasket only, do not remove.)
- **SIDE COVER**
- **PRELOAD ADJUSTER**
- **SHIM**
- **FEELER GAUGE**
 (Select to get proper clearance)
- **SIDE COVER GASKET**
- **PITMAN SHAFT**
- **HOUSING**
- **PITMAN SHAFT SEAL**

LUBRICATION
The steering gear requires .315 kg (11 oz) of lubricant GM4673M or equivalent.

Figure 6—Model 535 — Chart A
3. REMOVE AND INSTALL WORMSHAFT AND BALL NUT

REMOVE
1. Loosen lock nut. Use punch against edge of slot.
2. Remove parts as shown.

INSTALL
1. Install parts as shown.

NOTICE: Use care that the ball nut does not run down to either end of the worm. Damage may be done to the ends of the ball guides if the ball nut is allowed to rotate until stopped at the end of the worm.

4. DISASSEMBLE AND ASSEMBLE WORM BEARING ADJUSTER

DISASSEMBLE
1. Pry lower bearing retainer out with screwdriver.
2. Remove cup using J 29369-1 puller and slide hammer.

ASSEMBLE
1. Press cup into adjust using Tool A.
2. Install parts as shown.

5. DISASSEMBLE AND ASSEMBLE WORMSHAFT AND BALL NUT

DISASSEMBLE
1. Disassemble parts as shown.
2. Clean and inspect all parts for excessive wear.

ASSEMBLE
1. Assemble parts as shown.
2. Refer to figure 3 (fig. A) for number of balls used.
6. REMOVE AND INSTALL PITMAN SHAFT SEALS AND BEARING

REMOVE
1. Clean end of housing thoroughly to prevent dirt from entering and be extremely careful not to score the housing bore.
2. Use screwdriver, pry seal from bore.

INSTALL
1. Install parts as shown.

7. ADJUST WORM BEARING PRELOAD

1. Tighten worm bearing adjuster until it bottoms then loosen one-quarter turn.
2. Carefully turn the worm shaft all the way to end of travel then turn back one-half turn.
3. Tighten adjuster plug until torque wrench reads 0.6 to 1.0 N·m (5 to 8 in-lbs).
4. Tighten locknut using punch against edge of slot.

8. ADJUST “OVER CENTER” PRELOAD

A. Back off preload adjuster until it stops, then turn it in one full turn.

With gear at center of travel, check torque to turn stub shaft (reading #1).

B. Turn adjuster in until torque to turn stub shaft is 0.5 to 1.2 N·m (4 to 10 in-lbs) more than reading #1.

Torque adjuster lock nut to 34 N·m (25 ft-lbs) Prevent adjuster screw from turning while torquing lock nut.

Figure 8—Model 535 — Chart C — Adjustment
3B2-10 MANUAL STEERING GEAR

SPECIFICATIONS

ADJUSTMENT

<table>
<thead>
<tr>
<th>Adjustment</th>
<th>Torque to Turn Worm Shaft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worm Bearing</td>
<td>0.6-1.0 N·m, 5-8 in. lbs.</td>
</tr>
<tr>
<td>Over Center Preload</td>
<td>0.5-1.2 N·m, 4-10 in. lbs.</td>
</tr>
<tr>
<td>Total Steering Gear Preload</td>
<td>1.8 N·m, 16 in. lbs.</td>
</tr>
</tbody>
</table>

In excess of Worm Bearing Preload

FASTENER TORQUE

SAGINAW MODEL 525

<table>
<thead>
<tr>
<th>Manual Steering Gear</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear to Frame Bolts</td>
<td>95</td>
<td>70</td>
</tr>
<tr>
<td>Pitman Shaft Nut</td>
<td>251</td>
<td>185</td>
</tr>
<tr>
<td>Side Cover Bolts</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Pitman Shaft Adjusting Screw Locknut</td>
<td>34</td>
<td>25</td>
</tr>
<tr>
<td>Coupling Flange To Gear Pinch Bolt</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Clamp To Ball Nut Screw</td>
<td>5.5</td>
<td>4</td>
</tr>
</tbody>
</table>

SAGINAW MODEL 535

<table>
<thead>
<tr>
<th>Manual Steering Gear</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear to Frame Bolts</td>
<td>95</td>
<td>70</td>
</tr>
<tr>
<td>Side Cover Bolts</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td>Pitman Shaft Adjusting Screw Locknut</td>
<td>30</td>
<td>22</td>
</tr>
<tr>
<td>Clamp to Ball Nut Screw</td>
<td>5.5</td>
<td>4</td>
</tr>
</tbody>
</table>
SPECIAL TOOLS

<table>
<thead>
<tr>
<th></th>
<th>Tool Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Worm Bearing Adjuster Cup Puller</td>
<td>J 29369-1</td>
</tr>
<tr>
<td>2</td>
<td>Pitman Shaft Bearing Remover</td>
<td>J 6278</td>
</tr>
<tr>
<td>3</td>
<td>Pitman Shaft Bearing Installer</td>
<td>J 35469</td>
</tr>
<tr>
<td>4</td>
<td>Worm Bearing Cup Installer</td>
<td>J 35365</td>
</tr>
<tr>
<td>5</td>
<td>Treaded Universal Driver Handle</td>
<td>J 8092</td>
</tr>
</tbody>
</table>

A. Worm Bearing Cup Installer

Dimensions:

- **Tool A**
 - 1.075 x 1.500
 - 11" long
 - 0.438 diameter

F-05814
SECTION 3B3

POWER STEERING

The following notice applies to one or more steps in the assembly procedure of components in this portion of the manual as indicated at appropriate locations by the terminology "NOTICE: Refer to Notice on page 3B3-1 of this Section."

NOTICE: All steering fasteners are important attaching part in that it could affect the performance of vital components and systems, and/or could result in major repair expense. They must be replaced with one of the same part number or with an equivalent part if replacement becomes necessary. Do not use a replacement part of lesser quality or substitute design. Torque values must be used as specified during reassembly to assure proper retention of this part.

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>3B3-2</td>
</tr>
<tr>
<td>Saginaw Integral Power Steering Gear—RV, G, P, ST, M</td>
<td>3B3-2</td>
</tr>
<tr>
<td>Disassembly</td>
<td>3B3-2</td>
</tr>
<tr>
<td>Cleaning and Inspection</td>
<td>3B3-5</td>
</tr>
<tr>
<td>Assembly</td>
<td>3B3-6</td>
</tr>
<tr>
<td>Saginaw Integral Power Steering Gear—CK (GMT 400)</td>
<td>3B3-9</td>
</tr>
<tr>
<td>Saginaw Power Steering Pump—Model TC</td>
<td>3B3-9</td>
</tr>
<tr>
<td>Disassembly</td>
<td>3B3-9</td>
</tr>
<tr>
<td>Cleaning and Inspection</td>
<td>3B3-17</td>
</tr>
<tr>
<td>Assembly</td>
<td>3B3-17</td>
</tr>
<tr>
<td>Saginaw Power Steering Pump Model P</td>
<td>3B3-19</td>
</tr>
<tr>
<td>Disassembly</td>
<td>3B3-19</td>
</tr>
<tr>
<td>Cleaning and Inspection</td>
<td>3B3-19</td>
</tr>
<tr>
<td>Assembly</td>
<td>3B3-20</td>
</tr>
<tr>
<td>Specifications</td>
<td>3B3-21</td>
</tr>
<tr>
<td>Special Tools</td>
<td>3B3-22</td>
</tr>
</tbody>
</table>
The hydraulic power steering system consists of a pump, an oil reservoir, a steering gear, a pressure hose, and a return hose.

The steering gear is made by Saginaw Division, General Motors. The steering gear is identified by a large S cast into the side of the housing. A building date is stamped in the cover. The building date is a four digit number. The first three digits are the Julian day of the year. The remaining digit is the last digit of the year.

The 1989 Interim design will be marked with a X after the build number. This signifies the change in the pitman shaft seal arrangement.

The power steering pump is made by Saginaw Division, General Motors.

The power steering gear (figure 1) has a recirculating ball system which acts as a rolling thread between the wormshaft and the rack piston. The wormshaft is supported by a thrust bearing preload and two conical thrust races at the lower end, and a bearing assembly in the adjuster plug at the upper end. When the wormshaft is turned right, the rack piston moves up in gear. Turning the wormshaft left moves the rack piston down in gear. The rack piston teeth mesh with the sector, which is part of the pitman shaft. Turning the wormshaft turns the pitman shaft, which turns the wheels through the steering linkage.

The control valve in the steering gear directs the power steering fluid to either side of the rack piston. The rack piston converts the hydraulic pressure into a mechanical force. If the steering system becomes damaged and loses hydraulic pressure, the vehicle can be controlled manually.

The hydraulic pump is a vane-type design. There are two types, submerged and nonsubmerged. Submerged pump (P models) have a housing and internal parts that are inside the reservoir and operate submerged in oil. The nonsubmerged pump (TC models with or without reservoir) function the same as the submerged pump except that the reservoir is separate from the housing and internal parts.

There are two bore openings at the rear of the pump housing. The larger opening contains the cam ring, pressure plate, thrust plate, rotor and vane assembly, and end plate. The smaller opening contains the pressure line union, flow control valve, and spring. The flow control orifice is part of the pressure line union. The pressure relief valve inside the flow control valve limits the pump pressure.

SAGINAW INTEGRAL POWER STEERING GEAR—RV, G, P, ST, M

NOTICE: Repair the steering gear in a clean, dust-free location, using clean tools and equipment. Dirt or grit will damage the machined surfaces and result in leakage or damage to the steering gear assembly.

If broken components or foreign materials are found during disassembly of the gear the hydraulic system should be disassembled, inspected, cleaned and flushed before servicing is complete.

The ball nut and control rings (seals) generally need not be replaced unless cut or damaged. If cut or damaged, inspect all mating parts for burrs, cracks, scratches, or damage. Replace or repair as needed.

In some instances, "power steering fluid" will be specified to lubricate parts upon assembly. In these cases, GM Power Steering Fluid, part no. 1050017 or equivalent should be used. DO NOT use brake fluid, automatic transmission fluid, or other non-approved fluids.

DISASSEMBLY

Remove or Disconnect (Figures 1 through 11)

Tools Required:
- J 4245 Internal Snap Ring Pliers
- J 21552 Ball Retainer Tool
- J 8524-1 Bearing Remover
- J 7624 Spanner Wrench
- J 7079-2 Driver
- J 6278 Pitman Shaft Bearing Puller
- J 21552 Rack Piston Arbor

1. Retaining Ring (220) (figure 2).
 - Pry retaining ring out of the housing groove with a screwdriver (figure 3).
2. Plug (219). Turn stud shaft (251) to the left only until the plug is forced out of the cylinder.
3. Seal (218).
4. Plug (215) from the rack piston (214) (figure 4).
5. Bolt (226).
6. Sector shaft assembly (221, 222, 225, 227).
7. 1989 Interim: Dust Seal (253) (figure 1).
8. Retaining ring (205) with J 4245.
9. Washers (207) and seals (208) using a screwdriver.
 - 1989 Interim: Washer (207) and seal (254) (figure 1).
10. Bearing (209). If necessary, use tool J 6278 (figure 5).
11. Rack piston (214) and balls (213).
 - Insert tool J 21552 into the rack piston bore with the pilot of the tool seated into the end of the worm (248).
 - Hold the tool against the worm and turn the stub shaft to the left. The rack piston (214) will be forced onto the tool.
 - Hold the tool and pull the rack piston toward the handle until it is against the flange on the tool. This will prevent the end circuit balls from falling out.
13. Adjuster plug (240) using J 7624 (figure 6).
 - Retaining ring (244) using J 4245.
 - Washer (243), seal (242) and bearing (241).
 - Bearing retainer (234). Pry the retainer with a screwdriver at the raised area (figure 7).
Figure 1—Integral Steering Gear Components — RV, G, P, ST and M Vehicles
3B3-4 POWER STEERING

Figure 2—Unseating the Retaining Ring
A. Hammer
B. Punch
220. Retaining Ring
Figure 5—Removing the Pitman Shaft Bearing
J-6278

Figure 3—Removing the Retaining Ring
A. Screwdriver
B. Punch
220. Retaining Ring
Figure 6—Removing the Adjuster Plug
A. Tool J-7624
240. Adjuster Plug
251. Stub Shaft

Figure 4—Removing the Plug and Piston Rack
A. Socket
215. Plug
J-21552
215

Figure 7—Removing the Bearing Retainer
234. Bearing Retainer
241. Bearing
A. Screwdriver
• Seal (239) and needle bearing (241). Use J 8524-1 and J 7079-2 (figure 8).

14. Valve (250) and wormshaft (248) as an assembly, with both races (246) and bearing (247).
 - Wormshaft (248) from valve assembly (figure 9).
 - Races (246) and bearing (247) from the wormshaft (248).
 - Seal (249).

15. Stub shaft (251) from valve body (250) (figure 10).
 - Hold the assembly and lightly tap the stub shaft against the bench until the shaft cap is free from the valve body.
 - Pull the shaft assembly until the shaft cap clears the valve body by about 6 mm (1/4-inch).
 - Valve spool (252) and seals (230) and (231) (figure 11).

16. Screws (210), clamp (211) and ball guide (212).
 - Balls (213).

CLEANING AND INSPECTION

Clean
- All parts with solvent and blow dry.

Inspect (Figure 1)
1. Pitman shaft and side cover.
 - Bushing.
 - Bushing surfaces in the side cover (225) for scoring. Replace the side cover assembly if necessary.
— Sealing and bearing surfaces of the pitman shaft (221) for roughness, nicks, or other damage. Replace the pitman shaft assembly if necessary.
— Pitman shaft (221) for excessive wear or scoring. Check the sector gear teeth for wear. Replace the pitman shaft assembly if necessary.
— Adjuster screw (222) threads for wear. The adjuster screw must be free to turn with no end play.

2. Rack piston.
— Worm (248) and rack piston (214) grooves and all balls (213) for scoring. BOTH MUST BE REPLACED as a matched assembly.
— Seal (216) and ring (217) for wear.
— Ball return guide halves (212) for cracks and damaged.
— Bearing (247) and races (246) for scoring and excessive wear.
— Rack piston (214) teeth and external ground surfaces for scoring or excessive wear. If either condition exists, replace the rack piston (214) and worm (248).

3. Adjuster plug.
— Spacer (235) for wear or cracks.
— Races (236, 238) for wear or scoring.
— Adjuster plug (240) threads for wear.
— Bearing (237) for wear or scoring.
— Needle bearing (241) for wear, pitting or scoring. Replace if necessary.

4. Valve and stub shaft.
— Seals (231) and rings (232).
— Shaft pin for wear or cracks. If excessively worn or broken, replace the complete valve and shaft assembly.
— Ground surface of the stub shaft (251). If a crocus cloth cannot clean the nicks or burrs, replace the entire valve assembly.
— Outside diameter of the valve spool and inside diameter of the valve body (250). If a crocus cloth cannot clean the nicks or burrs, replace the entire shaft and valve assembly.
— The small notch in the skirt of the valve for wear. If worn replace the complete valve assembly.
— Valve spool inside the valve body (250). The valve spool, when lubricated with steering fluid, must rotate freely without binding. If binding occurs, replace the complete valve and shaft assembly.

ASSEMBLY

install or Connect (Figures 1, 4, and 10 through 14)

Tools Required
- J 4245 Snap Ring Pliers
- J 6217 Valve Connector
- J 21552 Ball Retainer
- J 22407 Bearing Installer
- J 8092 Bearing Driver
- J 7079 Bearing Remover and Installer
- J 8524-1 Driver
- J 7624 Bearing Preload Spanner Wrench

1. Balls (213), alternately by color, in the rack piston (214) (figure 12). Use J 21552 in the rack piston.
 - Lubricate the 24 balls with power steering fluid.
2. Balls (213), alternating by color, in the ball guide (212) (figure 13).
 - Retain the balls in the guide with petroleum jelly.
3. Ball guide (212), clamp (211) and screws (210) to the rack piston (214).
4. Stub shaft (251) into the valve body (250) (figure 10).
 - Lubricate the stub shaft (251) with power steering fluid.
5. Valve spool (252) and seals (230, 231) into the valve body (250).
 - Lubricate the valve spool (252) and seals (230, 231) with power steering fluid before assembling.
6. Valve body (250), seal (249), wormshaft (248), bearing races (246) and roller bearing (247).
7. Seal (239) on the adjuster plug (240).
9. Seal (242), washer (243), and retaining ring (244) in the adjuster plug (240).

Important
- The retainer projections must not extend beyond the washer (243) when the retainer ring (244) is seated. The washer must be free to rotate.
10. Wormshaft, valve assembly into the steering gear housing.
11. Adjuster plug (240) into the steering gear housing. Use spanner wrench J 7624.

Adjust (Figures 15 through 22)

Tools Required:
- J 7624 Spanner Wrench
- J 7754-01 Torque Wrench

1. Bearing preload:
 - Use tool J 7624. Turn the adjuster plug (240) to the left until the plug and bearing (237) are firmly bottomed — about 27 N·m (20 ft. lbs.) (figure 15).
 - Mark the housing in line with one of the holes in the adjuster plug (figure 16).
 - Measure back (to the left) 13 mm (1/2-inch) and re-mark the housing (figure 17).
Rotate the adjuster to the left until the hole in the adjuster is in line with the second mark (figure 18).

NOTICE: Refer to "Notice" on page 3B-1 of this manual.

- Install the adjuster nut (245) and torque the nut to 108 N·m (80 ft. lbs.). Hold the adjuster plug to maintain alignment of the hole with the mark.
- Check the turning torque of the stub shaft, using J 7754-01 and a 12-point socket. The reading should be taken with the beam of the wrench near vertical while turning the wrench to the left at an even rate (figure 19). If the reading is less than 0.45 N·m (4 in. lbs.) or more than 1.15 N·m (10 in. lbs.), repeat the adjustment procedure.
- Lubricate the stub shaft (251) area outside the dust seal (206) with chassis lubricant or an all purpose grease.

2. Rack piston (214) using J 21552 (figure 4).
4. Washers (207) and seals (208) using J 6219 (figure 20).
 - 1989 Interim: Washer (207) and seal (254) using J 6219 (figure 1).
5. Retaining ring (205).
6. Dust seal (253).
7. Gasket (224).
8. Pitman shaft (221), side cover (225), nut (227) assembly.

Adjust (Figure 21)

Tool Required:
J 7754-01 Torque Wrench
- Pitman shaft preload (figure 21).
1. Attach tool J 7754-01 and a 12-point socket on the stub shaft splines.
2. Center the steering gear by turning the stub shaft (251) from right to left and counting the number of turns. Turn the shaft back halfway to the center position.
3. Check the combined ball and bearing preload by turning the torque wrench through the center of travel. Note the highest reading.

4. Tighten the adjusting screw (222) until the torque wrench reads 0.6-1.2 N·m (6-10 in. lbs.) higher than the reading noted in step "3."
 • The total reading should not exceed 2.5 N·m (20 in. lbs.) torque.

NOTICE: Refer to "Notice" on page 3B3-1 of this manual.

5. Re-check the preload after tightening the nut (227).

8. Plug (215), seal (216), ring (217), and seal (218).

9. Plug (219) and retaining ring (220) (figure 22).

SAGINAW INTEGRAL POWER STEERING GEAR—CK (GMT 400)

NOTICE: Repair the steering gear in a clean, dust-free location, using clean tools and equipment. Dirt or grit will damage the machined surfaces and result in leakage or damage to the steering gear assembly.

If broken components or foreign materials are found during disassembly of the gear the hydraulic system should be disassembled, inspected, cleaned and flushed before servicing is complete.

Service information is shown in figures 23, 24, 25, 26 and 27.

The ball nut and control rings (seals) generally need not be replaced unless cut or damaged. If cut or damaged, inspect all mating parts for burrs, cracks, scratches, or damage. Replace or repair as needed.

In some instances, "power steering fluid" will be specified to lubricate parts upon assembly. In these cases, GM Power Steering Fluid, part no. 1050017 or equivalent should be used. DO NOT use brake fluid, automatic transmission fluid, or other non-approved fluids.

SAGINAW POWER STEERING PUMP—MODEL TC

NOTICE: Repair the pump only in a clean, dust-free location, using clean tools and equipment. Dirt or grit will damage the machined surfaces and result in leakage or damage to the pump.

If broken components or foreign materials are found during disassembly of the pump, the hydraulic system should be disassembled, inspected, cleaned and flushed before servicing is complete.

Before beginning disassembly of the pump, remove the reservoir filler cap (when used) and drain the oil from the reservoir by filler cap (when used). Drain the oil from the reservoir by inverting the pump so oil may drain out the filler hole. After the oil is drained from the reservoir, replace the cap.

DISASSEMBLY

1. **Clean**
 - Exterior of the pump with solvent.

2. **Remove or Disconnect (Figures 28 through 39)**
 - Clamp the front hub of the pump in a soft jawed vise.
 1. Clips (26), if equipped.
 - Pry the tab and slide the retaining clip off (figure 29).
 2. Reservoir (24) (figure 30) or return tube (15) (figure 39) depending on model.
 3. O-ring (25).
<table>
<thead>
<tr>
<th>Key No.</th>
<th>Part Name</th>
<th>Key No.</th>
<th>Part Name</th>
<th>Key No.</th>
<th>Part Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HOUSING, STEERING GEAR</td>
<td>19</td>
<td>PLUG, ADJUSTER</td>
<td>37</td>
<td>SCREW ASM. LOCK WASHER & (2)</td>
</tr>
<tr>
<td>2</td>
<td>RACE, THRUST BEARING (WORM)</td>
<td>20</td>
<td>BEARING, NEEDLE</td>
<td>38</td>
<td>PLUG, RACK PISTON</td>
</tr>
<tr>
<td>3</td>
<td>BEARING ASM., ROLLER THRUST (WORM)</td>
<td>21</td>
<td>SEAL, STUB SHAFT</td>
<td>39</td>
<td>SEAL, "O" RING (RACK PISTON)</td>
</tr>
<tr>
<td>4</td>
<td>RACE, THRUST BEARING (WORM)</td>
<td>22</td>
<td>SEAL, STUB SHAFT DUST</td>
<td>40</td>
<td>RING, RACK PISTON</td>
</tr>
<tr>
<td>5</td>
<td>WORM, STEERING</td>
<td>23</td>
<td>RING, RETAINING</td>
<td>41</td>
<td>SEAL, "O" RING (HOUSING END PLUG)</td>
</tr>
<tr>
<td>6</td>
<td>SEAL, "O" RING (STUB SHAFT)</td>
<td>24</td>
<td>NUT, ADJUSTER PLUG LOCK</td>
<td>42</td>
<td>PLUG, HOUSING END</td>
</tr>
<tr>
<td>7</td>
<td>SHAFT, STUB</td>
<td>25</td>
<td>BEARING ASM., NEEDLE (PITMAN SHAFT)</td>
<td>43</td>
<td>RING, RETAINING (HOUSING END PLUG)</td>
</tr>
<tr>
<td>8</td>
<td>SPOOL, VALVE</td>
<td>26</td>
<td>SEAL, PITMAN SHAFT</td>
<td>44</td>
<td>GEAR ASM., PITMAN SHAFT</td>
</tr>
<tr>
<td>9</td>
<td>SEAL, "O" RING (SPOOL)</td>
<td>27</td>
<td>WASHER, SEAL BACK-UP (PITMAN SHAFT)</td>
<td>45</td>
<td>SEAL ASM., GASKET</td>
</tr>
<tr>
<td>10</td>
<td>BODY, VALVE</td>
<td>28</td>
<td>RING, RETAINING (PITMAN SHAFT SEAL)</td>
<td>46</td>
<td>COVER ASM., HOUSING SIDE</td>
</tr>
<tr>
<td>11</td>
<td>RING, VALVE BODY (3)</td>
<td>29</td>
<td>WASHER, PITMAN SHAFT LOCK</td>
<td>47</td>
<td>BOLT, HEX HEAD (SIDE COVER) (4)</td>
</tr>
<tr>
<td>12</td>
<td>SEAL, "O" RING (VALVE BODY) (3)</td>
<td>30</td>
<td>NUT, RACK PISTON</td>
<td>48</td>
<td>NUT, LASH ADJUSTER</td>
</tr>
<tr>
<td>13</td>
<td>RETAINER, BEARING (ADJUSTER)</td>
<td>31</td>
<td>BALL</td>
<td>49</td>
<td>SEAL, PITMAN SHAFT DUST</td>
</tr>
<tr>
<td>14</td>
<td>SPACER, THRUST BEARING (SMALL)</td>
<td>32</td>
<td>WASHER, PITMAN SHAFT LOCK</td>
<td>50</td>
<td>BOOT, PITMAN SHAFT</td>
</tr>
<tr>
<td>15</td>
<td>RACE, UPPER THRUST BEARING (SMALL)</td>
<td>33</td>
<td>NUT, RACK PISTON</td>
<td>51</td>
<td>BOLT, COUPLING PINCH</td>
</tr>
<tr>
<td>16</td>
<td>BEARING, ROLLER THRUST</td>
<td>34</td>
<td>BALL</td>
<td>52</td>
<td>COUPLING, STEERING SHAFT</td>
</tr>
<tr>
<td>17</td>
<td>RACE, UPPER THRUST BEARING (LARGE)</td>
<td>35</td>
<td>GUIDE, BALL RETURN (2)</td>
<td>53</td>
<td>VALVE ASM., CHECK</td>
</tr>
<tr>
<td>18</td>
<td>SEAL, "O" RING (ADJUSTER)</td>
<td>36</td>
<td>CLAMP, BALL RETURN GUIDE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. REMOVE AND INSTALL PITMAN SHAFT AND SIDE COVER

REMOVE
1. If pitman shaft and side cover are to be separated, remove preload adjuster nut.
2. Rotate stub shaft to center gear, then remove parts as shown.

INSTALL
1. If removed, install gasket seal by bending tabs around cover edges.
2. Install parts as shown.

SIDE COVER BOLTS
Torque to 60 Newton Metres (40 Ft Lbs)

PRELOAD ADJUSTER NUT
SIDE COVER
GASKET SEAL
PITMAN SHAFT GEAR
STUB SHAFT
HOUSING ASSEMBLY
PITMAN SHAFT BOOT

Separate pitman shaft and gasket seal from side cover if required.

2. REMOVE AND INSTALL HOUSING END PLUG

REMOVE
1. Remove parts as shown.

INSTALL
1. Install parts as shown.

Open end of retaining ring to be approx. 25 mm (1 inch) from access hole.

Retaining ring access hole (Use Punch)

3. REMOVE AND INSTALL RACK PISTON

REMOVE
1. Remove parts as shown.

INSTALL
1. Install parts as shown.

When installing rack, care should be taken not to cut teflon seal. Rack piston seal compressor J-7576 or J-8947 may be used to compress seal.

Insert ball retainer J-21552. Hold tool tightly against worm while turning stub shaft counter-clockwise. The rack-piston will be forced onto the tool. Remove the rack-piston and ball retainer from the gear housing together.

Figure 24—Removing and Installing the Pitman Shaft
4. REMOVE AND INSTALL ADJUSTER PLUG ASSEMBLY

REMOVE
1. Loosen lock nut.
 Use punch against edge of slots.
2. Remove adjuster plug using spanner wrench J-7624.

ADJUSTER PLUG

INSTALL
1. Install parts as shown.

NOTICE: When installing adjuster plug care should be taken not to cut seals.

5. DISASSEMBLE AND ASSEMBLE ADJUSTER PLUG ASSEMBLY

DISASSEMBLE
1. Disassemble parts as shown

ASSEMBLE
1. Assemble parts as shown

6. REMOVE AND INSTALL BEARING, WORM, AND VALVE ASSEMBLY

REMOVE
1. Grasp stub shaft and remove valve and worm assembly as a unit.
 Separate the valve from the worm.
 Note how the pin in the worm fits the slot in the valve.

INSTALL
1. Install parts as shown.

NOTICE: When reassembling gear make sure angle of thrust races are as shown.

7. DISASSEMBLE AND ASSEMBLE VALVE ASSEMBLY

DISASSEMBLE
1. Disassemble parts as shown.

ASSEMBLE
1. Assemble parts as shown.

A. Loosen shaft cap
 Pull cap out approx. 6 mm (1/4")

B. Remove and install stub shaft
 Tap lightly on wood block
 Pin on shaft and hole in spool (Disengage to remove)

C. Remove and install spool
 Rotate while removing or installing

D. Engage stub shaft
 Lubricate spool and body with power steering fluid.
 Notch must fully engage pin and cap must seat against shoulder.

Figure 25—Removing and Installing the Adjuster Plug Assembly
8. DISASSEMBLE AND ASSEMBLE RACK PISTON

DISASSEMBLE
1. Disassemble parts as shown
2. Clean and inspect all parts for excessive wear

ASSEMBLE
1. Assemble parts as shown

NOTICE: The black balls are smaller than the silver balls. The black and silver balls must be installed alternately into the rack-piston and return guide to maintain rack piston to worm gear preload.

TEFLON SEAL AND 'O' RING—If replaced lubricate new seal and 'O' ring with power steering fluid.

Before assembling rack in housing, ball retainer J-21552 must be inserted into rack to allow removal of worm.

Lubricate balls with power steering fluid. Install balls, through ball return guide hole, while rotating worm counterclockwise.

GUIDE—Alternately install remainder of balls and retain with grease at each end of guide.

CLAMP

SCREW—Tighten to 5 Newton Metres (4 Ft. Lbs.)

9. REMOVE AND INSTALL PITMAN SHAFT SEALS AND BEARING

REMOVE
1. Clean end of housing thoroughly to prevent dirt from entering and be extremely careful not to score the housing bore.
2. Use screw driver to remove pitman shaft dust seal.
3. Remove retaining ring with snap ring pliers J-4245.
4. Using screw driver, pry seals and washers from bore.

INSTALL
1. Coat seal lip and washer face with anhydrous calcium grease.
2. Install parts as shown.

HOUSING ASSEMBLY
Inspect for burrs

SEAL BACK-UP WASHER

PITMAN SHAFT DUST SEAL

REMOVING BEARING
Remove only if it needs replacing.

NEEDLE BEARING

INSTALL
Install Pitman shaft bearing.
Install Pitman shaft seal.

Figure 26—Removing and Installing the Rack Piston and Pitman Shaft Seals and Bearing
10. REMOVE AND INSTALL CHECK VALVE

REMOVE
1. Remove parts as shown.

INSTALL
1. Install parts as shown.

With small screwdriver, pry check valve from housing.

Care should be taken not to damage threads when prying on edge of housing.

Remove check valve.

When gear is on center flat on stub shaft is normally on same side as, and parallel with, side cover.

Using a piece of tubing, 4 inches long, carefully drive the check valve into the housing.

Install check valve.

11. ADJUST THRUST BEARING PRELOAD

A. Before adjusting bearing preload, rotate the stub shaft back and forth to drain all oil from gear.

B. Using spanner wrench J-7624, tighten adjuster plug until thrust bearing is firmly bottomed, 27 Newton Metres (22 Ft. Lbs.).

C. Measure back counterclockwise 13mm (3/8") and place a second mark on housing.

D. Turn adjuster counterclockwise until mark on face of adjuster lines up with second mark on housing.

E. Using punch in notch tighten lock nut securely. Hold adjuster plug to maintain alignment of the marks.

F. With gear at center of travel, check torque to turn stub shaft (reading #1). Prevent adjuster screw from turning while torquing lock nut.

B. Back off preload adjuster until it stops, then turn it in one full turn.

C. Turn adjuster in until torque to turn stub shaft is 0.6 to 1.2 Newton Metres (6 to 10 in. Lbs.) more than reading #1.

Tighten lock nut to 27 Newton Metres (20 Ft. Lbs.)

12. PITMAN SHAFT “OVER-CENTER” SECTOR ADJUSTMENT

When gear is on center flat on stub shaft is normally on same side as, and parallel with, side cover.

Figure 27—Removing and Installing the Check Valve and Adjusting the Thrust Bearing Preload and Pitman Shaft “Over-Center” Sector
A. Used On Some Models
1. Housing
2. Sleeve
3. Dowel Pin
4. O-Ring Seal
5. Pressure Plate Spring
6. O-Ring Seal
7. Pressure Plate
8. Dowel Pin
9. Vane
10. Rotor
11. Pump Ring
12. O-Ring Seal
13. Thrust Plate
14. Thrust Plate Retaining Ring
15. Return Tube
16. Drive Shaft Seal
17. Drive Shaft
18. Bearing
19. Retaining Ring
20. Flow Control Spring
21. Control Valve
22. O-Ring Seal
23. Fitting
24. Reservoir
25. O-Ring Seal
26. Clips
27. CapsticK

Figure 28—Power Steering Pump Components — Model TC

4. Fitting (23) (figure 31).
5. O-ring seal (22).
6. Flow control valve (21).
7. Flow control spring (20).
8. Retaining ring (19) (figure 32).
 • Use suitable snap ring pliers.
9. Driveshaft (17).
10. Bearing (18) (figure 33).
11. Driveshaft seal (16).
 • Pry the seal loose with a flat head screwdriver (figure 34).
12. Retaining ring (14).
 • Insert a punch into the access hole and pry the ring loose (figure 35).
13. Thrust plate (13) (figure 36).
 • Use a 16 mm (5/8-inch) piece of bar stock or suitable brass drift.
15. Pump ring (11) (figure 37).
16. Rotor (10).

Figure 29—Removing the Reservoir Clips
1. Pump Assembly
24. Reservoir Assembly
25. O-Ring Seal
26. Clips
27. Cap Stick

Figure 30—Removing the Reservoir

18. Bearing
17. Drive Shaft
F. Press
G. Support Ring

Figure 33—Remove and Install Driveshaft Bearing

20. Flow Control Spring
21. Flow Control Valve
22. O-Ring Seal
23. Fitting

Figure 31—Removing the Fitting, Control Valve, Spring and Seal

16. Drive Shaft Seal
H. Suitable Socket and a Press

Figure 34—Remove and Install Driveshaft Seal

19. Retaining Ring

Figure 32—Remove and Install Retaining Ring

I. Punch
J. Access Hole

Figure 35—Removing the Retaining Ring
— Rotor slots for burrs and excessive wear at the thrust faces.
— Inner surface of the pump ring (11) for scoring or wear.
— Thrust plate (13) and pressure plate (7) for wear on the plate surfaces.
— If heavy wear is present, or parts are faulty, replace the entire rotating group.

2. Bearing (18). If the bearing is rough or loose, replace it.
— Seal (16) for leakage, cracking, or swelling. If so replace.

3. Driveshaft (17) for excessive burning or scoring.
— Bearing bore for excessive scoring or burning.

4. Control valve (15). It must move smoothly in the valve bore.

ASSEMBLY

Install or Connect (Figures 28, 39 through 45)

1. Return tube (15) (figure 39) or reservoir (24) (figure 28) depending on model.
2. Sleeve (2) (figure 40).
3. Dowel pin (3) (figure 41).
4. O-ring seal (4).
5. Pressure plate spring (5).
6. O-ring seal (6) (figure 42).
7. Pressure plate (7). Mark top of pressure plate directly over the pin hole in the plate.
8. Dowel pin (8).

Important
- Lubricate the O-ring (12), pump ring (11), rotor (10), and vanes (9) with power steering fluid.

9. Vane (9). The rounded edge of the vanes face away from the rotor.

10. Rotor (10). Make sure the counterbore faces the driveshaft end of the housing (figure 43).

11. Pump ring (11). Make sure the identification marks face up (figure 44).

13. Thrust plate (13).
- The dimples in the thrust plate should line up
with the bolt holes in the housing and that the thrust plate engages the pump ring dowel pins.

 - Use a press to compress the thrust plate (figure 45).
 - Opening of ring (14) centered with bolt hole nearest to access hole.

15. Driveshaft seal (16).
 - Use a suitable socket to press seal into housing until it bottoms (figure 34).

16. Bearing (18) onto the driveshaft (17) (figure 33).
 - Slide the assembly into the housing while rotating the driveshaft so that the shaft serrations engage with the rotor.

17. Retaining ring (19). Use a suitable pair of snap ring pliers (figure 32).
 - Make sure the beveled side of ring (19) is properly located.

18. Flow control spring (20).
19. Flow control valve (21).
20. O-ring seal (22).
22. Reservoir (24) (figure 30).
23. Clips (26) (figure 29).

Figure 38—Removing the Sleeve Assembly

Figure 39—Remove and Install Return Tube

Figure 40—Install Sleeve Assembly

Figure 41—Installation of the Pin, Seal and Pressure Plate Spring

Figure 42—Installing of the Pressure Plate
SAGINAW POWER STEERING PUMP—MODEL P

DISASSEMBLY

Remove or Disconnect (Figure 46)
- Clean the exterior of the pump with solvent and crocus cloth.
1. Bolt (71) and fitting (73).
2. Reservoir (70) and seals (69).
3. End plate retaining ring (68) using a screwdriver and punch.
 - End plate (67) and pressure plate spring (66).
4. O-ring (60), Control valve (58), and control valve spring (59).
5. Pressure plate (65). Tap lightly on the driveshaft with a rubber mallet.
6. Pump ring (64) and vanes (63).
 - Shaft retaining ring (62), pump rotor (61) and thrust plate (56).
7. Driveshaft (50).
8. Seal (51) from the housing (53).
 - Dowel pins (55) and O-rings (54).
 - Seal (52).

CLEANING AND INSPECTION

Clean
- All parts with solvent and blow dry.

Inspect (Figure 46)
1. Rotating group components.
 - Vane (63) tips for scoring or wear.
 - Fit of vanes (63) in rotor (61) for sticking or excessive play.
 - Rotor slots for burrs and excessive wear at the thrust faces.
 - Inner surface of the pump ring (64) for scoring or wear.
 - Thrust plate (56) and pressure plate (65) for wear on plate surfaces.
 - If heavy wear is present, or parts are faulty, replace the entire rotating group.
2. Seal (51) for leakage, cracking or swelling. If so, replace seal.
3. Driveshaft (50) for excessive burning or scoring.
4. Control valve (58). It must move smoothly in the valve bore.
3B3–20 POWER STEERING

50. Drive Shaft
51. Seal
52. O-Ring Seal
53. Housing
54. O-Ring Seal
55. Pin
56. Thrust Plate
57. Filler Cap
58. Flow Control Valve
59. Flow Control Spring
60. O-Ring Seal
61. Pump Rotor
62. Shaft Retainer Ring
63. Vane
64. Pump Ring
65. Pressure Plate
66. Pressure Plate Spring
67. Housing End Plate
68. End Plate Retaining Ring
69. Reservoir Seal
70. Reservoir Assembly
71. Bolt or Stud
72. Seal
73. Fitting

Figure 46—Power Steering Pump—Model P

ASSEMBLY

Install or Connect (Figure 46)

Tool Required:
J-7728 Seal Installer

Important
- Lubricate the O-rings (54), pump ring (64), rotor (61) and vanes (63) with power steering fluid.
1. Dowel pins (55) and O-rings (54).
2. Seal (51) using J-7728.
 - O-ring (52).
3. Driveshaft (50) and thrust plate (56).
 - Rotor (61). Make sure the counterbore faces the driveshaft end of the housing.
 - Vanes (63), the rounded edge faces away from the rotor.
 - Shaft retaining ring (62), pump ring (64) and pressure plate (65).
4. O-ring (60), control valve spring (59) and control valve (58).
5. Pressure plate spring (66) and end plate (67).
 - End plate retaining ring (68).
6. Seal (69) and reservoir (70).
7. Bolt (71) and fitting (73).
Integral Power Steering Gear
Pitman Shaft Over Center Preload .. 0.6-1.2 N·m (6-10 in. lbs.)
Pitman Shaft Preload Adjuster Screw Jam Nut 27 N·m (20 in. lbs.)
Side Cover Bolts ... 60 N·m (40 ft. lbs.)
Pitman Shaft Nut .. 244 N·m (180 ft. lbs.)
Ball Return Guide Screws .. 5 N·m (4 ft. lbs.)

Integral Power Steering Gear—CK (GMT 400)
Pitman Shaft Nut .. 250 N·m (180 ft. lbs.)
Side Cover Bolts .. 60 N·m (40 ft. lbs.)
Ball Return Guide Screws .. 5 N·m (4 ft. lbs.)
Pitman Shaft Preload Adjuster Screw Jam Nut 27 N·m (20 ft. lbs.)
SPECIAL TOOLS

<table>
<thead>
<tr>
<th></th>
<th>Tool Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Snap Ring Pliers</td>
<td>J 4245</td>
</tr>
<tr>
<td>2</td>
<td>Valve Connector Installer</td>
<td>J 6217</td>
</tr>
<tr>
<td>3</td>
<td>Ball Retainer</td>
<td>J 21552</td>
</tr>
<tr>
<td>4</td>
<td>Adjuster Plug Bearing Installer</td>
<td>J 8524-1</td>
</tr>
<tr>
<td>5</td>
<td>Driver</td>
<td>J 8092</td>
</tr>
<tr>
<td>6</td>
<td>Spanner Wrench</td>
<td>J 7624</td>
</tr>
<tr>
<td>7</td>
<td>Driver</td>
<td>J 7079-2</td>
</tr>
<tr>
<td>8</td>
<td>Pitman Shaft Bearing Puller</td>
<td>J 6278</td>
</tr>
<tr>
<td>9</td>
<td>Puller (Formerly J 6632)</td>
<td>J 29107</td>
</tr>
<tr>
<td>10</td>
<td>Seal Installer</td>
<td>J 6219</td>
</tr>
<tr>
<td>11</td>
<td>Rack Piston Seal Compressor</td>
<td>J 7576, J 8947</td>
</tr>
<tr>
<td>12</td>
<td>Bearing Installer</td>
<td>J 22407</td>
</tr>
<tr>
<td>13</td>
<td>Seal Installer</td>
<td>J 7728</td>
</tr>
</tbody>
</table>

1. Snap Ring Pliers
2. Valve Connector Installer
3. Ball Retainer
4. Adjuster Plug Bearing Installer
5. Driver
6. Spanner Wrench
7. Driver
8. Pitman Shaft Bearing Puller
9. Puller (Formerly J 6632)
10. Seal Installer
11. Rack Piston Seal Compressor
12. Bearing Installer
13. Seal Installer
SECTION 4B

REAR AXLE

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 1/2 and 7 5/8-inch Ring Gear Axles</td>
<td>4B1-1</td>
</tr>
<tr>
<td>8 1/2-inch Ring Gear Axle</td>
<td>4B2-1</td>
</tr>
<tr>
<td>9 1/2-inch Ring Gear Axle</td>
<td>4B3-1</td>
</tr>
<tr>
<td>10 1/2-inch Ring Gear Axle</td>
<td>4B4-1</td>
</tr>
<tr>
<td>Dana Rear Axles</td>
<td>4B5-1</td>
</tr>
<tr>
<td>12 Inch Ring Gear Axle (Rockwell)</td>
<td>4B6-1</td>
</tr>
<tr>
<td>Locking Differentials</td>
<td>4B7-1</td>
</tr>
</tbody>
</table>

SECTION 4B1

7 1/2 AND 7 5/8-INCH RING GEAR AXLES

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>4B1-1</td>
</tr>
<tr>
<td>Checking the Axle Before Disassembly</td>
<td>4B1-2</td>
</tr>
<tr>
<td>Disassembly of the Rear Axle</td>
<td>4B1-2</td>
</tr>
<tr>
<td>Cleaning</td>
<td>4B1-2</td>
</tr>
<tr>
<td>Inspection</td>
<td>4B1-4</td>
</tr>
<tr>
<td>Assembly of the Rear Axle</td>
<td>4B1-5</td>
</tr>
<tr>
<td>Gear Tooth Pattern Check</td>
<td>4B1-10</td>
</tr>
<tr>
<td>Adjustments Affecting Tooth Contact</td>
<td>4B1-10</td>
</tr>
<tr>
<td>Specifications</td>
<td>4B1-11</td>
</tr>
<tr>
<td>Special Tools</td>
<td>4B1-12</td>
</tr>
</tbody>
</table>

DESCRIPTION

The corporate 7 1/2 and 7 5/8-inch ring gear rear axle uses a conventional ring and pinion gear set to transmit the driving force of the engine to the rear wheels. This gear set transfers this driving force at a 90 degree angle from the propeller shaft to the drive shafts.

This axle is semi-floating. The axle shafts are supported at the wheel end of the shaft by a roller bearing that is pressed into the housing. The shafts are retained into the housing by retaining clips within the differential. The pinion gear is supported by two tapered roller bearings. The pinion depth is set by a shim pack located between the gear end of the pinion and the roller bearing that is pressed onto the pinion. The pinion bearing preload is set by crushing a collapsible spacer between the bearings in the axle housing.

The ring gear is bolted onto the differential case with 10 left-hand thread bolts.

The differential case is supported in the axle housing by two tapered roller bearings. The differential and ring gear are located in relationship to the pinion by using selective shims and spacers between the bearing and the axle housing. To move the ring gear, shims are deleted from one side and an equal amount are added to the other side. These shims are also used to preload the bearings which are pressed onto the differential case. Two bearing caps are used to hold the differential into the rear axle housing.

The differential is used to allow the wheels to turn at different rates of speed while the rear axle continues to transmit the driving force. This prevents tire scuffing when going around corners and prevents premature wear on internal axle parts.

The rear axle is sealed with a pinion seal, a seal at each axle shaft end, and by a gasket between the rear cover and the axle housing.

All corporate rear axles are identified by the part number on the right axle tube near the carrier. The carrier cover does not have a drain plug.
CHECKING THE AXLE BEFORE DISASSEMBLY

Inspect

- Remove the axle cover from the rear axle and drain the axle lubricant into a suitable container.
1. The ring gear backlash. Refer to "Backlash Adjustment" in this section. This information can be used to determine the cause of the axle problem. It will also help when setting up the shim packs for locating and preloading the differential case.
2. The case for metal chips and shavings. Determine where these chips and shavings come from, such as a broken gear or bearing cage.
- Determine the cause of the axle problem before disassembly if possible.

DISASSEMBLY OF THE REAR AXLE

Remove or Disconnect (Figure 1)

Tools Required:
- J 8107-2 Differential Side Bearing Remover Plug
- J 22888 Side Bearing Remover
- J 8614-01 Pinion Flange Remover
- J 25320 Rear Pinion Bearing Remover
- Place the rear axle in a suitable support.
1. The differential cover bolts (35) and the differential cover (34).
- Drain the gear lubricant into a proper container.
2. Axle shafts (2). Refer to the proper service manual.
3. Outer wheel bearings and seals. Refer to the proper service manual.
4. Pinion shaft lock screw (30).
5. Pinion shaft (29).
6. Differential pinion and side gears (26).
- Roll the pinion gears out of the case with the pinion thrust washers (27).
- Remove the side gears and the side gear thrust washers (28). Mark the gears and the differential case as left and right.
- Mark the caps and the housing as left and right.

NOTICE: Be careful when prying the differential case out of the axle housing so as not to damage the cover gasket surface. The differential case must be supported when it is being removed to prevent the case from falling and damaging the case.
- Pry the case from the axle housing at the differential "window" (figure 2).
10. Bearing outer races (22), shims (21), and spacers (23).
- Mark the races and the shims as left and right, and place them with the bearing caps.
11. Differential side bearings using J 8107-2 and J 22888 (figure 3).
- The jaws of J 22888 must pull from beneath the bearing cone and not the cage.
12. Ring gear bolts (25).
- Ring gear bolts use left-handed threads.

NOTICE: Do not pry the ring gear from the case. This will damage the ring gear and the differential case.
13. Ring gear (20) from the differential.
- Drive the ring gear off with a brass drift if necessary.

Inspect

- Drive pinion bearing preload (figure 4).
- The pinion assembly for looseness by moving it back and forth. (Looseness indicates excessive bearing wear).
14. Pinion flange nut (11) and washer (12) using J 8614-01 to hold the pinion flange.
15. Pinion flange using J 8614-01.
16. Pinion (20) from the axle housing.
- Thread the pinion nut halfway onto the pinion.
- Replace the differential cover (34) with two bolts (35) to keep the pinion from falling to the floor.
- Drive the pinion out of the housing with a hammer and a soft drift.
- Remove the cover (34) and the pinion (20).
17. Collapsible spacer (17) from the pinion (figure 5).
18. Outer seal (14) and outer pinion bearing (15).
19. Inner bearing (18) and shim (19) from the pinion.
- Press the bearing off the pinion using J 25320 (figure 6).
- Remove the shim.
20. Bearing cups (15) and (18) from the axle housing using a hammer and a punch in the slots provided for this purpose.
- Work the cups out of the housing evenly, moving the punch back and forth between one side of the cup and the other.

CLEANING

Do not steam clean drive parts having ground and polished surfaces such as gears, bearings, and shafts. These parts should be cleaned in a suitable solvent. All parts should be disassembled before cleaning.

Parts should be thoroughly dried immediately after cleaning. Use soft, clean, lintless rags. Parts may be dried with compressed air. Do not allow the bearings to spin while drying them with compressed air.
1. Brake Drum
2. Axle Shaft
3. “C” Lock
4. Wheel Stud
5. Backing Plate Bolt
6. Brake Assembly
7. Axle Shaft Oil Seal
8. Axle Shaft Bearing
9. Axle Housing
10. Axle Air Vent
11. Pinion Nut
12. Washer
13. Pinion Flange
14. Pinion Oil Seal
15. Pinion Outer Bearing
16. Plug
17. Collapsible Spacer
18. Pinion Inner Bearing
19. Shim
20. Pinion and Ring Gear Set
21. Shim
22. Differential Side Bearing
23. Spacer
24. Differential Case
25. Ring Gear Bolt
26. Differential Gears
27. Pinion Thrust Washers
28. Side Gear Thrust Washers
29. Pinion Shaft
30. Pinion Shaft Lock Bolt
31. Bearing Cap
32. Bolt
33. Gasket
34. Cover
35. Bolt

Figure 1—Rear Axle Components
It is very important to carefully and thoroughly inspect all drive unit parts before reassembly.

Thorough inspection of the drive parts for wear or stress and subsequent replacement of worn parts will eliminate costly drive component repair after reassembly.

AXLE HOUSING

- The carrier bore for nicks or burrs that would prevent the outer diameter of the pinion seal from sealing. Remove any burrs that are found.
- The bearing cup bores for nicks or burrs. Remove any burrs that are found.
- The housing for cracks. Replace the housing if any cracks are found.
- The housing for foreign material such as metal chips, dirt, or rust. Refer to “Cleaning” in this section.

DIFFERENTIAL

- Pinion gear shaft for unusual wear.
- Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
- Thrust washers for wear.
- The fit of the differential side gears in the differential case.
- The fit of the side gears on the axle shafts.
- Differential case for cracks and scoring.
- Replace all worn parts.

A. The opening in the tool must be supported.
PINION AND RING GEAR

Inspect
- Pinion and ring gear teeth for cracking, chipping, scoring, or excessive wear.
- Pinion splines for wear.
- Pinion flange splines for wear.
- The fit of the pinion on the pinion flange.
- The sealing surface of the pinion flange for nicks, burrs, or rough tool marks which would cause damage to the seals' inside diameter and result in an oil leak.
- Replace all worn or broken parts.
- Ring and pinion gears are matched sets and are both replaced any time a replacement of either is necessary.

BEARINGS

Inspect
- Bearings visually and by feel.
- The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.
- The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.
- Bearing cups for wear, cracks, brinelling and scoring.
- Bearings and cups are only replaced as sets.
- If the rear axle was operated for an extended period of time with very loose bearings, the ring gear and drive pinion will also require replacement.
- Low mileage bearings may have minute scratches and pits on the rollers and the bearing cups from the initial pre-load. Do not replace a bearing for this reason.
- Bearing cups for cracks or chips.

SHIMS

Inspect
- Shims for cracks and chips. Damaged shims should be replaced with an equally sized service shim.

ASSEMBLY OF THE REAR AXLE

Install or Connect (Figures 1, 7 and 8)
Tools Required:
- J 7817 Front Pinion Bearing Cup Installer
- J 7818 Rear Pinion Bearing Cup Installer
- J 8092 Driver Handle
- Pinion bearing cups (15) and (18) using J 7817, J 7818 and J 8092.

PINION DEPTH ADJUSTMENT (Figure 9)
Tools Required:
- J 21777-40 Rear Pilot Washer
- J 21777-42 Front Pilot Washer
- J 21777-43 Stud Assembly — Bolt
- J 21777-45 Side Bearing Discs
- J 23597-1 Arbor
- J 23597-11 Gage Plate
- J 8001 Dial Indicator
Tighten

- Stud nut to 2.2 N·m (20 in. lbs).

6. Rotate the gage plate and bearings several complete revolutions to seat the bearings.

7. Tighten the stud nut until a torque of 1.6 to 2.2 N·m (15 to 25 in. lbs.) is obtained to keep the gage plate in rotation.

8. Assembly J 21777-45, J 23597-11, and J 8001 to the differential bearing bores as shown in figure 9.
 - The bearing bores must be clean and burr free.

9. Install the side bearing caps and tighten the bolts finger tight.

10. Rotate the gage plate until the gaging areas are parallel with the disks.

11. Position the gage shaft assembly in the carrier so that the dial indicator rod is centered on the gage area of the gage block.

12. Set the dial indicator at zero. Push the indicator down on the indicator shaft until the needle rotates approximately ¾ of a turn to the right. Tighten the dial indicator in this position.

13. Rotate the gage shaft slowly back and forth until the dial indicator reads the greatest deflection (when the indicator needle is centered between moving to the left and to the right).

14. At the point of greatest deflection, set the dial indicator to zero. Repeat the rocking action of the gage shaft to verify the zero setting.

15. Rotate the gage shaft until the dial indicator rod does not touch the gage block.

16. Record the actual number on the dial indicator and not the number which represents how far the needle travels. This is the nominal pinion setting.

 EXAMPLE: If the indicator needle moved to the left 1.70 mm (0.067-inch) to a dial reading of 0.84 mm (0.033-inch) as shown in figure 10, record the dial reading of 0.84 mm (0.033-inch) not 1.70 mm (0.067-inch).

 The dial indicator should be in the 0.50 to the 1.27 mm (0.020 to 0.050-inch) range.

17. Check the pinion face for a pinion adjustment mark. This mark indicates the best running position for the pinion from the nominal setting.

 - If the pinion is stamped with a plus number, add that many thousandths to the nominal setting. If the nominal setting is 0.033-inch and the pinion is marked +2, the correct shim depth would be 0.033-inch + 0.002-inch = 0.035-inch.
 - If the pinion is stamped with a minus number, subtract that many thousandths from the nominal setting. If the nominal setting is 0.033-inch and the pinion is marked -2, the correct shim depth would be 0.033-inch - 0.002-inch = 0.031-inch.
 - If the pinion has no plus or minus marked on the pinion, use the nominal pinion setting to select a shim.

18. Remove bearing caps (31) and depth gaging tools.

19. Install the correct pinion shim (19) according to this procedure to the pinion.

Differential Case Assembly

Install or Connect (Figure 1)

Tools Required:
- J 25299 Differential Side Bearing Installer
- J 8092 Driver Handle
- J 8107-2 Differential Side Bearing Remover Plug

- Lubricate all parts with rear axle lubricant.

1. Side gear thrust washers (28) to the side gears (26).

2. Side gears (28) to the differential case (24).
 - Place the side gears in place on the same side as removed.

3. Pinion gears (28) to the differential without the thrust washers (27).
 - Rotate the pinion gears toward the differential opening just enough to slide in the pinion thrust washers.

4. Pinion thrust washers (27).
 - Rotate the pinion gears in stages gradually pulling the ring gear onto the differential case.

5. Pinion shaft.

6. Pinion shaft screw.
 - Check that the mating surfaces of the differential case and the ring gear are clean and burr free.

7. Ring gear (20) to the differential case (24) (figure 11).
 - Thread two left-hand threaded studs into the ring gears on opposite sides.
 - Place the ring gear onto the case, and align the studs with the holes in the case.

 - Tighten the ring gear bolts alternately in stages gradually pulling the ring gear onto the differential case.

Tighten

- The ring gear bolts in sequence to 120 N·m (90 ft. lbs.).

9. Differential side bearings (22) using J 25299, J 8092, and J 8107-2 (figure 12).
 - Place J 8107-2 into the differential on the side opposite of bearing installation to protect the differential case.
 - Drive the bearing onto the case using J 25299 and J 8092.

10. Differential case (24) to the axle housing. Refer to "Side Bearing Pre-Load Adjustment" in this section.

Side Bearing Pre-Load Adjustment

- The side bearing pre-load adjustment must be made before installing the pinion.
- The case side bearing pre-load is adjusted by changing the thickness of both the left and right shims equally. This will maintain the original backlash.
• Production shims are cast iron and are not to be reused. Measure the production shims and spacers one at a time, and add the measurements together to obtain the sizes of the left and right shim packs.
• Service spacers are 4.32 to 4.37 mm (0.170 to 0.172-inch) thick.
• Service shims are available from 1.02 mm to 2.54 mm (0.040 to 0.100-inch) in increments of 0.101 mm (0.004-inch).
• Be sure that the side bearing surfaces are clean and free of burrs.

1. Place the case with the bearing cups installed into the axle housing (figure 1).
 • Lubricate the axle bearings with axle lubricant.
2. Insert the service spacer between the bearing cup and the axle housing. Place the chamfered edge against the housing.
3. Install the left bearing cap and bearing cap bolts. Do not tighten the bolts.
4. Select one or two shims totaling the amount needed as shown in figure 13.

A. Dial indicator and arbor positioned on the gage block.
B. Measurement after the arbor is moved off of the gage block.

Figure 10—Checking Pinion Depth

Figure 11—Aligning the Ring Gear Studs

Figure 12—Installing the Side Bearing
5. Install the shim(s) between the right bearing cup and the service shim.
 • The left bearing race and spacer must be against the left side of the housing.
6. Determine bearing pre-load by inserting progressively larger feeler gage sizes between the right service spacer and shim.
 • Push the feeler gage downward so that it contacts the shim at the top and bottom, and then contacts the axle housing.
 • Rotate the case while using the feeler gage. This will assure an accurate reading.
 • The weight of the case will cause a light drag. Do not mistake this drag for bearing preload.
 • Start with a thin feeler gage to obtain a feel for when preload begins. It will be necessary to work the case in or out and to the left in order to insert the feeler gage.
 • The point just before additional drag begins is the correct feeler gage thickness. This is the zero setting without pre-load.
7. Remove the left bearing cap and shim(s) from the axle housing. Measure the shims using a micrometer. The shim pack needed is the total of the shim(s) and the feeler gage. An additional pre-load of 0.10 mm (0.004-in) will be added to each side of the differential case after the backlash adjustment is made.
9. Install the pinion. Refer to “Pinion Installation” in this section.

PINION INSTALLATION

Install or Connect

Tools Required:
J 5590 Rear Pinion Bearing Cone Installer
J 23911 Pinion Oil Seal Installer
J 8614-01 Pinion Flange Remover

• The bearing cups should have been installed in "Pinion Depth Adjustment," in this section.
1. The pinion inner bearing (18) using J 5590 (figure 14).

Figure 13—Shim Thickness Chart

Figure 14—Installing the Pinion Inner Bearing

- Drive the bearing until the bearing cone seats on the pinion shims.
- Lubricate the pinion bearings with axle lubricant.
3. Pinion (20) to the axle housing.
4. Outer pinion bearing (15) onto the pinion using J 5590.
 • Hold the pinion forward from inside the case while driving the bearing onto the pinion.
5. Pinion oil seal (14) using J 23911.
6. The pinion flange (13) to the pinion by tapping it with a rawhide hammer until a few threads show through the pinion flange.
7. The pinion washer (12) and a new nut (11) while holding the pinion flange with J 8614-01.

Tighten

• The nut until the pinion end play is just taken up. Rotate the pinion while tightening the nut to seat the bearings. Once there is no end play in the pinion, the preload torque should be checked.
• Remove J 8614-01. Using an inch-pound torque wrench, check the pinion preload by rotating the pinion with the wrench (figure 15).
Preload should be at or below 2.7 to 3.6 N·m (24 to 32 in. lbs.) on new bearings, or 1.0 to 1.4 N·m (8 to 12 in. lbs.) for used bearings.

- If the preload torque is below the preloads given above, continue torquing the nut in small increments. Check the preload after each tightening. Each tightening increases the bearing preload by several pounds. If the bearing preload is exceeded, the pinion will have to be removed, and a new collapsible spacer installed.

- Once a preload of 2.7 to 3.6 N·m (24 to 32 in. lbs.) has been obtained, rotate the pinion several times to assure that the bearings have seated. Recheck the preload, and adjust if necessary.

BACKLASH ADJUSTMENT
1. Install the differential case, bearing cups, spacers, and shims as determined from the “Side Bearing Preload Adjustment” earlier in this section.

2. Rotate the case several times to seat the bearings.

3. Install a dial indicator to the case using a magnetic base.

4. Place the indicator stem at the heel end of a tooth (figure 16).
 - Set the dial indicator so that the stem is in line with the gear rotation and perpendicular to the tooth angle.

5. Install the differential bearing caps (31) and bolts (32).

 [Diagram of differential case]

8. If the backlash is not within specifications, move the ring gear in or out from the pinion by increasing the thickness of one shim, and decreasing the thickness of the other shim by the same amount. This will maintain the correct rear axle side bearing preload.

 - Moving 0.05 mm (0.002-inch) worth of shim from one side of the differential to the other will change the backlash adjustment by 0.03 mm (0.001-inch).

9. When the backlash is correctly adjusted, remove the bearing caps and the shim packs.

10. Select a shim 0.10 mm (0.004-inch) thicker than the one removed from the left side. Insert this shim between the spacer and the left bearing race (figure 17).

11. Install the left bearing cap and bolts.
 - Do not tighten.

12. Select a shim 0.10 mm (0.004-inch) thicker than the one removed from the right side. Insert the shim between the spacer and the right bearing race, and drive the shim into place (figure 17).

13. Install the right side bearing cap, and bolts.

 [Diagram of differential bearing preload shim]

 - Moving 0.05 mm (0.002-inch) worth of shim from one side of the differential to the other will change the backlash adjustment by 0.03 mm (0.001-inch).

14. Recheck the backlash and correct as necessary.

FINAL ASSEMBLY

Install or Connect
1. Drive axles. Refer to the proper service manual.

2. A new cover gasket and the cover (34).

 [Diagram of differential case]

 - The cover bolts (35) to 27 N·m (20 ft. lbs.).

3. Axle housing to the vehicle. Refer to the proper service manual.

4. Lubricant to the rear axle.
Backlash is adjusted by means of the side bearing adjusting shims which move the entire case and ring gear assembly closer to, or farther from, the drive pinion. (The adjusting shims are also used to set side bearing preload).

If the thickness of the right shim is increased (along with decreasing the left shim thickness), backlash will increase.

The backlash will decrease if the left shim thickness is increased (along with a decrease in right shim thickness).

Figure 18—Gear Tooth Nomenclature

GEAR TOOTH PATTERN CHECK

Checking the ring gear to pinion tooth pattern is to be done only after setting up the axle according to the methods in this section. The pattern check is NEVER to be used as an initial check, or instead of checking pinion depth and backlash adjustments. This check is only to be used to verify the correct adjustment of the gear set after setup.

1. Wipe all oil out of the carrier, and carefully clean each tooth of the ring gear (figure 18).
2. Use gear marking compound 1052351 or equivalent and apply this mixture sparingly to all ring gear teeth, using a medium-stiff brush. When properly used, the area of pinion tooth contact will be visible when hand load is applied.
3. Tighten the bearing cap bolts to the specified torque.
4. Expand the brake shoes until a torque of 40 to 50 ft. lbs. is required to turn the pinion.

 A test made without loading the gears will not give a satisfactory pattern. Turn the pinion flange with a wrench so that the ring gear rotates one full revolution, then reverse the rotation so that the ring gear rotates one revolution in the opposite direction.
5. Observe the pattern on the ring gear teeth and compare this with figure 19.

ADJUSTMENTS AFFECTING TOOTH CONTACT

Two adjustments can be made which will affect tooth contact pattern: backlash, and the position of the drive pinion in the carrier. The effects of bearing preloads are not readily apparent on hand loaded tooth contact pattern tests, however, these adjustments should be within specifications before proceeding with backlash and drive pinion adjustments.

The position of the drive pinion is adjusted by increasing or decreasing the distance between the pinion head and the centerline of the ring gear. Decreasing the distance will move the pinion closer to the centerline of the ring gear. Increasing the distance will move the pinion farther away from the centerline of the ring gear.
SPECIFICATIONS

7 1/2 AND 7 5/8-INCH RING GEAR AXLE

<table>
<thead>
<tr>
<th>FASTENER</th>
<th>N·m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Gear Bolts</td>
<td>120</td>
<td>90</td>
</tr>
<tr>
<td>Bearing Cap Bolts</td>
<td>75</td>
<td>55</td>
</tr>
<tr>
<td>Axle Cover Bolts</td>
<td>27</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPACER AND SHIM SIZES</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Side Bearing Spacer</td>
<td>0.170-inch</td>
</tr>
<tr>
<td>Differential Side Bearing Shim Kits</td>
<td>0.040-0.044-inch</td>
</tr>
<tr>
<td></td>
<td>0.046-0.050-inch</td>
</tr>
<tr>
<td></td>
<td>0.052-0.056-inch</td>
</tr>
<tr>
<td></td>
<td>0.058-0.062-inch</td>
</tr>
<tr>
<td></td>
<td>0.064-0.070-inch</td>
</tr>
<tr>
<td></td>
<td>0.072-0.078-inch</td>
</tr>
<tr>
<td></td>
<td>0.080-0.086-inch</td>
</tr>
<tr>
<td></td>
<td>0.088-0.094-inch</td>
</tr>
<tr>
<td></td>
<td>0.096-0.100-inch</td>
</tr>
<tr>
<td>Pinion Bearing Shim Kits</td>
<td>0.025-0.029-inch</td>
</tr>
<tr>
<td></td>
<td>0.030-0.034-inch</td>
</tr>
<tr>
<td></td>
<td>0.035-0.039-inch</td>
</tr>
<tr>
<td></td>
<td>0.040-0.045-inch</td>
</tr>
<tr>
<td>Lubricant</td>
<td>80W-90 GL-5</td>
</tr>
</tbody>
</table>
SPECIAL TOOLS

<table>
<thead>
<tr>
<th>No.</th>
<th>Tool Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Front Pinion Bearing Cup Installer</td>
<td>J-7817</td>
</tr>
<tr>
<td>2.</td>
<td>Rear Pinion Bearing Cup Installer</td>
<td>J-7818</td>
</tr>
<tr>
<td>4.</td>
<td>Pinion Flange Remover</td>
<td>J-8614-01</td>
</tr>
<tr>
<td>5.</td>
<td>Side Bearing Remover</td>
<td>J-22888</td>
</tr>
<tr>
<td>6.</td>
<td>Rear Pinion Bearing Cone Installer</td>
<td>J-5590</td>
</tr>
<tr>
<td>7.</td>
<td>Pinion Oil Seal Installer</td>
<td>J-23911</td>
</tr>
<tr>
<td>8.</td>
<td>Differential Side Bearing Installer</td>
<td>J-25299</td>
</tr>
<tr>
<td>9.</td>
<td>Rear Pinion Bearing Remover</td>
<td>J-25320</td>
</tr>
<tr>
<td>10.</td>
<td>Driver Handle</td>
<td>J-8092</td>
</tr>
<tr>
<td>11.</td>
<td>Dial Indicator</td>
<td>J-8001</td>
</tr>
</tbody>
</table>

Refer to Figure 9 for these tools:
- J-21777-40 Rear Pilot Washer
- J-21777-42 Front Pilot Washer
- J-21777-43 Stud Assembly—Bolt
- J-21777-45 Side Bearing Discs
- J-23597-1 Arbor
- J-23597-11 Gauge Plate
DESCRIPTION

The corporate 81/2-inch ring gear rear axle uses a conventional ring gear and pinion gear set to transmit the driving force of the engine to the rear wheels. This gear set transfers this driving force at a 90 degree angle from the propeller shaft to the drive shafts.

This axle is semi-floating. The axle shafts are supported at the wheel end of the shaft by a roller bearing that is pressed into the housing. The shafts are retained into the housing by retaining clips within the differential. The pinion gear is supported by two tapered roller bearings. The pinion depth is set by a shim pack located between the gear end of the pinion and the roller bearing that is pressed onto the pinion. The pinion bearing preload is set by crushing a collapsible spacer between the bearings in the axle housing.

The ring gear is bolted onto the differential case with left-hand thread bolts.

The differential case is supported in the axle housing by two tapered roller bearings. The differential and ring gear are located in relationship to the pinion by using selective shims between the bearing and the axle housing. To move the ring gear, shims are deleted from one side and an equal amount are added to the other side. These shims are also used to preload the bearings which are pressed onto the differential case. Two bearing caps are used to hold the differential into the rear axle housing.

The differential is used to allow the wheels to turn at different rates of speed while the rear axle continues to transmit the driving force. This prevents tire scuffing when going around corners and prevents premature wear on internal axle parts.

The rear axle is sealed with a pinion seal, a seal at each axle shaft end, and by a gasket between the rear cover and the axle housing.

All corporate rear axles are identified by the part number on the right axle tube near the carrier. The carrier cover does not have a drain plug.
1. Axle Housing 21. Pinion Gear
2. Air Vent 22. Side Gear
3. Plug 23. Ring Gear Bolt
5. Inner Pinion Bearing 25. Nut
7. Ring and Pinion Gear Set 27. Axle Shaft Bearing
9. Shim Pack (including spacer) 29. Brake Backing Plate
12. Cover 32. Wheel Stud
14. Bolt 34. "C" Clip
15. Pinion Shaft Lock Screw 35. Pinion Nut
16. Washer 36. Washer
17. Pinion Shaft 37. Pinion Flange
18. Bolt 38. Pinion Seal
20. Pinion Thrust Washer

Figure 1—Rear Axle Components
• Refer to "Checking the Axle Before Disassembly" in this section.
4. Pinion shaft lock screw (15).
5. Pinion shaft (17).
6. Differential pinion (21) and side gears (22).
 • Roll the pinion gears out of the case with the pinion thrust washers (20).
 • Remove the side gears and the side gear thrust washers (19). Mark the gears and the differential case as left and right.
7. Differential bearing cap bolts (18).
8. Differential bearing caps (10).
 • Mark the caps and the housing as left and right.

NOTICE: Be careful when prying the differential case out of the axle housing so as not to damage the cover gasket surface. The differential case must be supported when it is being removed to prevent the case from falling and damaging the case.
 • Pry the case from the axle housing at the differential "window" (figure 2).
10. Bearing outer races (8) and shims (9).
 • Mark the races and the shims as left and right, and place them with the bearing caps.
11. Differential side bearings (8) using J8107-4 and J22888 (figure 3).
 • The jaws of J22888 must pull from beneath the bearing cone and not the cage. Use the slots provided for the puller.
12. Ring gear bolts (23).
 • Ring gear bolts use left-handed threads.

NOTICE: Do not pry the ring gear from the case. This will damage the ring gear and the differential case.
13. Ring gear (7) from the differential case.
 • Drive the ring gear off with a brass drift if necessary.

Figure 2—Prying the Differential Case

Figure 3—Removing Differential Side Bearing

- Drive pinion bearing preload (figure 4).
- For looseness of pinion assembly by moving it back and forth. (This indicates excessive bearing wear).
14. Pinion flange nut (35) and washer (36) using J8614-01 to hold the pinion flange (figure 5).
15. Pinion flange using J8614-01 (figure 6).
16. Pinion (7) from the axle housing.
 • Thread the pinion nut halfway onto the pinion.
 • Replace the differential cover (12) with two bolts (14) to keep the pinion from falling to the floor.
 • Drive the pinion out of the housing with a hammer and a soft drift (figure 7).
17. Collapsible spacer (4) from the pinion.
18. Outer pinion seal (38) and bearing (39).
19. Inner bearing (5) and shim (6) from the pinion.
 • Press the bearing off the pinion using J8612-B (figure 8).
 • Remove the shim.
Figure 5—Removing the Drive Pinion Nut

20. Bearing cups (5) and (39) from the axle housing using a hammer and a punch.
 • Work the cups out of the housing evenly, moving the punch back and forth between one side of the cup and the other. Use the slots provided for this purpose.

Figure 6—Removing the Pinion Flange

Figure 7—Removing the Drive Pinion

CLEANING

Do not steam clean drive parts having ground and polished surfaces such as gears, bearings, and shafts. These parts should be cleaned in a suitable solvent. All parts should be disassembled before cleaning.

Parts should be thoroughly dried immediately after cleaning. Use soft, clean, lintless rags. Parts may be dried with compressed air. Do not allow the bearings to spin while drying them with compressed air.

INSPECTION

It is very important to carefully and thoroughly inspect all drive unit parts before reassembly.

Thorough inspection of the drive parts for wear or stress and subsequent replacement of worn parts will eliminate costly drive component repair after reassembly.

AXLE HOUSING

Inspect

1. The carrier bore for nicks or burrs that would prevent the outer diameter of the pinion seal from sealing. Remove any burrs that are found.
2. The bearing cup bores for nicks or burrs. Remove any burrs that are found.
3. The housing for cracks. Replace the housing if any cracks are found.
4. The housing for foreign material such as metal chips, dirt, or rust. Refer to "Cleaning" in this section.

DIFFERENTIAL

Inspect

1. Pinion gear shaft for unusual wear.
2. Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
3. Thrust washers for wear.
4. The fit of the differential side gears in the differential case.
• The fit of the side gears on the axle shafts.
• Differential case for cracks and scoring.
• Replace all worn parts.

PINION AND RING GEAR

Inspect

• Pinion and ring gear teeth for cracking, chipping, scoring, or excessive wear.
• Pinion splines for wear.
• Pinion flange splines for wear.
• The fit of the pinion on the pinion flange.
• The sealing surface of the pinion flange for nicks, burrs, or rough tool marks which would cause damage to the seals' inside diameter and result in an oil leak.
• Replace all worn or broken parts.
• Ring and pinion gears are matched sets and are both replaced any time a replacement of either is necessary.

BEARINGS

Inspect

• Bearings visually and by feel.
• The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.
• The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.
• Bearing cups for wear, cracks, brinelling and scoring.
• Bearings and cups are only replaced as sets.
• If the rear axle was operated for an extended period of time with very loose bearings, the ring gear and drive pinion will also require replacement.
• Low mileage bearings may have minute scratches and pits on the rollers and the bearing cups from the initial preload. Do not replace a bearing for this reason.
• Bearing caps for cracks or chips.

SHIMS

Inspect

• Shims for cracks and chips. Damaged shims should be replaced with an equally sized service shim.

ASSEMBLY OF THE REAR AXLE

Install or Connect

Tools Required:
- J 8608 Rear Pinion Bearing Cup Installer
- J 8611-01 Front Pinion Bearing Cup Installer
- J 8092 Driver Handle
1. Front pinion bearing cup (39) using J 8611-01 and J 8092 (figure 9).
2. Rear pinion bearing cup (5) using J 8608 and J 8092 (figure 10).

PINION DEPTH ADJUSTMENT

Tools Required:
- J 8001 Dial Indicator Gage Set
- J 21777-1 Arbor
- J 21777-29 Gage Plate
- J 21777-35 Rear Pilot Washer
- J 21777-42 Front Pilot Washer
- J 21777-43 Stud Assembly — Bolt
- J 21777-45 Side Bearing Disc
1. Clean all the gage parts.
2. Lubricate the front and rear pinion bearings with axle lubricant.
3. Place the bearings (39) and (5) into the pinion bearing cups.
5. Hold the stud stationary at the flats of the stud.

Tighten

• Stud nut to 2.2 N·m (20 in. lbs.).
6. Rotate the gage plate and bearings several complete revolutions to seat the bearings.
Figure 11—Gage Plate Tools

7. Tighten the stud nut until a torque of 1.6 to 2.2 N·m (15 to 25 in. lbs.) is obtained to keep the gage plate in rotation.

8. Assemble J 21777-45, J 21777-1 Arbor, and J 8001 to the differential bearing bore as shown in figure 12.
 • The bearing bores must be clean and burr free.

9. Install the side bearing caps, and tighten the bolts finger tight.

10. Rotate the gage plate until the proper gaging area is parallel with the disks.

11. Position the gage shaft assembly in the carrier so that the dial indicator rod is centered on the gage area of the gage block.

12. Set the dial indicator at zero. Push the indicator down on the indicator shaft until the needle rotates approximately 3/4 of a turn to the right. Tighten the dial indicator in this position.

13. Rotate the gage shaft slowly back and forth until the dial indicator reads the greatest deflection (when the indicator needle is centered between movement to the left and to the right).

14. At the point of greatest deflection, set the dial indicator to zero. Repeat the rocking action of the gage shaft to verify the zero setting.

15. Rotate the gage shaft until the dial indicator rod does not touch the gage block.

16. Record the actual number on the dial indicator and not the number which represents how far the needle travels. This is the nominal pinion setting.

 EXAMPLE: If the indicator needle moved to the left 1.70 mm (0.067-inch) to a dial reading of 0.84 mm (0.033-inch) as shown in figure 13, record the dial reading of 0.84 mm (0.033-inch) not 1.70 mm (0.067-inch).

17. Check the pinion face for a pinion adjustment mark. This mark indicates the best running position for the pinion from the nominal setting.

 • If the pinion is stamped with a plus number, add that many thousandths to the nominal setting. If the nominal setting is 0.033-inch and the pinion is marked +2, the correct shim depth would be 0.033-inch + 0.002-inch = 0.035-inch.

 • If the pinion is stamped with a minus number, subtract that many thousandths from the nominal setting. If the nominal setting is 0.033-inch and the pinion is marked -2, the correct shim depth would be 0.033-inch – 0.002-inch = 0.031-inch.

 • If the pinion has no plus or minus marked on the pinion, use the nominal pinion setting to select a shim.

18. Remove bearing caps (10) and depth gaging tools.

19. Install the correct pinion shim (6) to the pinion according to this procedure.

PINION INSTALLATION

Tools Required:

- J 8809-01 Rear Pinion Bearing Cone Installer
- J 22388 Pinion Oil Seal Installer
- J 8614-01 Pinion Flange Remover
- J 5590 Rear Pinion Bearing Cone Installer
- J 5590 Rear Pinion Bearing Cone Installer

• The bearing cups should have been installed in “Pinion Depth Adjustment” in this section.

1. The pinion inner bearing (5) using J 8609-01.
 • Press the bearing onto the pinion until the bearing cone seats on the pinion shims.

3. Pinion (7) to the axle housing.

4. Outer pinion bearing (39) onto the pinion using J 5590.
 • Hold the pinion forward from inside the case while driving the bearing onto the pinion.

5. Pinion oil seal (38) using J 22388 (figure 14).

6. Pinion flange (37) to the pinion by tapping it with a rawhide hammer until a few threads show through the pinion flange.

7. Pinion washer (36) and a new nut (35) while holding the pinion flange with J 8614-01 (figure 15).
Dial indicator and arbor positioned on the gage block.
A. Measurement after the arbor is moved off of the gage block.

Figure 13—Checking Pinion Depth

Tighten

- The nut until the pinion end play is just taken up. Rotate the pinion while tightening the nut to seat the bearings. Once there is no end play in the pinion, the preload torque should be rechecked.
- Remove J 8614-01. Using an inch-pound torque wrench, check the pinion preload by rotating the pinion with the wrench. Preload should be at or below 2.3 to 2.8 N·m (20 to 25 in. lbs.) on new bearings, or 1.1 to 1.7 N·m (10 to 15 in. lbs.) for used bearings (figure 16).
- If the preload torque is below the preloads given above, continue torquing the nut in small increments. Check the preload after each tightening. Each tightening increases the bearing preload by several pounds. If the bearing preload is exceeded, the pinion will have to be removed, and a new collapsible spacer installed.
- Once the preload has been obtained, rotate the pinion several times to assure that the bearings have seated. Recheck the preload, and adjust if necessary.

Figure 14—Installing the Pinion Oil Seal

Figure 15—Installing the Pinion Flange
DIFFERENTIAL CASE ASSEMBLY

Install or Connect (Figure 1)

Tools Required:
- J 8107-4 Differential Side Bearing Remover Plug
- J 8092 Driver Handle
- J 22761 Differential Side Bearing Installer

- Lubricate all parts with rear axle lubricant.

1. Side gear thrust washers (19) to the side gears (22).
2. Side gears (22) to the differential case (24).
 - Place the side gears in place on the same side as removed.
3. Pinion gears (21) to the differential without the thrust washers (20).
 - Place one pinion gear onto the side gears so that the holes in the pinion gears are 180 degrees apart.
 - Rotate the pinion gears into place, and verify that the pinion gears line up with the pinion shaft holes.
4. Pinion thrust washers (20).
 - Rotate the pinion gears toward the differential opening just enough to slide in the pinion thrust washers.
 - Check that the mating surfaces of the differential case and the ring gear are clean and burr free.
5. Ring gear (7) to the differential case (24).
 - Thread two left-hand threaded studs into the ring gear on opposite sides (figure 17).
 - Place the ring gear onto the case, and align the holes in the case with the studs.
 - Press the ring gear onto the case far enough to start the bolts using J 8107-4 to protect the differential from the press ram (figure 18).
6. New ring gear bolts (23).
 - Tighten the ring gear bolts alternately in stages gradually pulling the ring gear onto the differential case.

SIDE BEARING PRE-LOAD ADJUSTMENT

- The differential side bearing preload is adjusted by changing the thickness of both the left and right shims equally. This will maintain the original backlash.
- Production shims are cast iron and are not to be reused.
- Service spacers are 0.170 to 0.172-inch thick.
• Service shims are available from 0.040 to 0.100-inch.
• Be sure that the side bearing surfaces are clean and free of burrs.

Tool Required:
J 22779 Side Bearing Backlash Gage

1. Place the differential case and the bearing cups into the axle housing.
 • Lubricate the axle bearings with axle lubricant.
 • Support the case to keep it from falling into the axle housing.
2. Install the strap from J 22779 on the left bearing with the cap bolts. Tighten the bolts snugly.
3. Push the ring gear towards the pinion.
 • Engage the ring gear with the pinion tightly, to a backlash of 0.000 to 0.001-inch.
4. Insert J 22779 between the axle housing and the left bearing cup (figure 20).
5. Move the tool back and forth in the bore while turning the adjusting nut to the right until a noticeable drag is produced (figure 21).
 • Tighten the lock bolt on the side of the tool.
6. Install a service spacer (9) and a service shim (9) between the right bearing cup and the axle housing.
7. Determine bearing preload by inserting progressively larger feeler gage sizes between the carrier and the service shim.
 • Push the feeler gage downward so that it contacts the shim at the top and bottom, and then contacts the axle housing.
 • The point just before additional drag begins is the correct feeler gage thickness. This is the zero setting without preload.
8. Remove the strap, J 22779, the service spacer, service shim, feeler gage, and differential case from the axle housing.
9. Measure J 22779 in three places using a micrometer. Average the readings (figure 22).
10. Add the dimensions of the right side service spacer, service shim, and the feeler gage.

Figure 19—Installing the Side Bearing

Figure 20—Installing Side Bearing Gaging Tool

Figure 21—Measuring Side Bearing Shim Requirements

Figure 22—Measuring the Gage Plate Thickness
11. For an initial backlash setting, move the ring gear away from the pinion by subtracting 0.010-inch from the ring gear side shim pack and adding 0.010-inch to the shim pack on the opposite side.

12. To obtain the proper preload on the side bearings add 0.10 mm (0.004-inch) to the measurement of each shim pack.

13. Install the differential. Refer to "Backlash Adjustment" in this section.

BACKLASH ADJUSTMENT

1. Install the differential case, bearing cups, spacers, and shims as determined from the "Side Bearing Preload Adjustment" earlier in this section (figure 23).
 - Tap the final shim into position, using a soft faced hammer.
 - Rotate the case several times to seat the bearings.
 - Install a dial indicator to the case using a magnetic base.
 - Place the indicator stem at the heel end of a tooth.
 - Set the dial indicator so that the stem is in line with the gear rotation and perpendicular to the tooth angle (figure 24).
 - Install the differential caps (10) and bolts (18).

2. Tighten
 - The bolts to 80 N·m (60 ft. lbs.).

6. Check and record the backlash at three or four points around the ring gear.
 - The pinion must be held stationary when checking backlash.
 - The backlash should be the same at each point within 0.05 mm (0.002-inch). If the backlash varies more than 0.05 mm (0.002-inch), check for burrs, a distorted case flange, uneven bolting conditions, or foreign matter between the case and the ring gear.

7. Backlash at the minimum lash point measured should be between 0.13 and 0.23 mm (0.005 and 0.009-inch) for all new gear sets.

8. If the backlash is not within specifications, move the ring gear in or out from the pinion by increasing the thickness of one shim, and decreasing the thickness of the other shim by the same amount. This will maintain the correct rear axle side bearing preload.
 - Moving 0.003-inch worth of shim from one side of the differential to the other will change the backlash adjustment by 0.002-inch.

9. Recheck the backlash and correct as necessary.

FINAL ASSEMBLY

1. Drive axles. Refer to the proper service manual.
2. A new cover gasket and the cover (12).

3. Tighten
 - The cover bolts (14) to 27 N·m (20 ft. lbs.).

4. Axle housing to the vehicle. Refer to the proper service manual.
5. Lubricant to the rear axle.

GEAR TOOTH PATTERN CHECK

Checking the ring gear to pinion tooth pattern is to be done only after setting up the axle according to the methods in this section. The pattern check is NEVER to be used as an initial check, or instead of checking pinion depth and backlash adjustments. This check is only to be used to verify the correct adjustment of the gear set after setup.

1. Wipe all oil out of the carrier, and carefully clean each tooth of the ring gear (figure 25).
2. Use gear marking compound 1052351 or equivalent and apply this mixture sparingly to all ring gear teeth, using a medium-stiff brush. When properly used, the area of pinion tooth contact will be visible when hand load is applied.
3. Tighten the bearing cap bolts to the specified torque.
4. Expand the brake shoes until a torque of 40 to 50 ft. lbs. is required to turn the pinion.

A test made without loading the gears will not give a satisfactory pattern. Turn the pinion flange with a wrench so that the ring gear rotates one full revolution, then reverse the rotation so that the ring gear rotates one revolution in the opposite direction.

5. Observe the pattern on the ring gear teeth and compare this with figure 26.

ADJUSTMENTS AFFECTING TOOTH CONTACT

Two adjustments can be made which will affect tooth contact pattern: backlash, and the position of the drive pinion in the carrier. The effects of bearing preloads are not readily apparent on hand loaded tooth contact pattern tests; however, these adjustments should be within specifications before proceeding with backlash and drive pinion adjustments.

The position of the drive pinion is adjusted by increasing or decreasing the distance between the pinion head and the centerline of the ring gear. Decreasing the distance will move the pinion closer to the centerline of the ring gear. Increasing the distance will move the pinion farther away from the centerline of the ring gear.

Backlash is adjusted by means of the side bearing adjusting shims which move the entire case and ring gear assembly closer to, or farther from, the drive pinion. (The adjusting shims are also used to set side bearing preload).

If the thickness of the right shim is increased (along with decreasing the left shim thickness), backlash will increase.

The backlash will decrease if the left shim thickness is increased (along with a decrease in right shim thickness).
SPECIFICATIONS

8\(\frac{1}{2}\)-INCH RING GEAR AXLE

<table>
<thead>
<tr>
<th>FASTENER</th>
<th>N·m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Gear Bolts</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>Bearing Cap Bolts</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>Axle Cover Bolts</td>
<td>27</td>
<td>20</td>
</tr>
</tbody>
</table>

SPACER AND SHIM SIZES

<table>
<thead>
<tr>
<th>Spacing/Size Description</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Side Bearing Spacer</td>
<td>0.170-inch</td>
</tr>
<tr>
<td>Differential Side Bearing Shim Kits</td>
<td>0.064-0.070-inch</td>
</tr>
<tr>
<td></td>
<td>0.072-0.078-inch</td>
</tr>
<tr>
<td></td>
<td>0.080-0.086-inch</td>
</tr>
<tr>
<td></td>
<td>0.088-0.094-inch</td>
</tr>
<tr>
<td></td>
<td>0.096-0.100-inch</td>
</tr>
<tr>
<td></td>
<td>0.052-0.056-inch</td>
</tr>
<tr>
<td></td>
<td>0.058-0.063-inch</td>
</tr>
<tr>
<td></td>
<td>0.040-0.044-inch</td>
</tr>
<tr>
<td></td>
<td>0.046-0.050-inch</td>
</tr>
<tr>
<td>Pinion Bearing Shim Kits</td>
<td>0.020-0.024-inch</td>
</tr>
<tr>
<td></td>
<td>0.025-0.029-inch</td>
</tr>
<tr>
<td></td>
<td>0.030-0.034-inch</td>
</tr>
<tr>
<td></td>
<td>0.035-0.039-inch</td>
</tr>
<tr>
<td>Lubricant</td>
<td>.80W-90 GL-5</td>
</tr>
</tbody>
</table>
SPECIAL TOOLS

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Front Pinion Bearing Cup Installer</td>
<td>J-8611-01</td>
</tr>
<tr>
<td>2.</td>
<td>Rear Pinion Bearing Cone Remover</td>
<td>J-8612-B</td>
</tr>
<tr>
<td>3.</td>
<td>Dial Indicator Set</td>
<td>J-8092</td>
</tr>
<tr>
<td>4.</td>
<td>Driver Handle</td>
<td>J-8609-01</td>
</tr>
<tr>
<td>5.</td>
<td>Rear Pinion Bearing Cone Installer</td>
<td>J-8614-01</td>
</tr>
<tr>
<td>6.</td>
<td>Pinion Flange Remover</td>
<td>J-8107-4</td>
</tr>
<tr>
<td>7.</td>
<td>Differential Side Bearing Remover Plug</td>
<td>J-8001</td>
</tr>
<tr>
<td>8.</td>
<td>Pinion Oil Seal Installer</td>
<td>J-8608</td>
</tr>
<tr>
<td>9.</td>
<td>Rear Pinion Bearing Cone Installer J-21777-1 Arbor</td>
<td>J-22888</td>
</tr>
<tr>
<td>10.</td>
<td>Side Bearing Backlash Gauge</td>
<td>J-22399</td>
</tr>
<tr>
<td>11.</td>
<td>Rear Pinion Bearing Cone Installer J-21777-29 Gauge Plate</td>
<td>J-22761</td>
</tr>
<tr>
<td>12.</td>
<td>Rear Pinion Bearing Remover Plug J-21777-35 Rear Pilot Washer</td>
<td>J-22779</td>
</tr>
<tr>
<td>13.</td>
<td>Side Bearing Remover</td>
<td>J-5590</td>
</tr>
<tr>
<td>14.</td>
<td>Pinion Oil Seal Installer J-21777-42 Front Pilot Washer</td>
<td>F-04660</td>
</tr>
<tr>
<td>15.</td>
<td>Rear Pinion Bearing Remover Plug J-21777-43 Stud Assembly—Bolt</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Side Bearing Disc</td>
<td>J-21777-45 Side Bearing Disc</td>
</tr>
</tbody>
</table>
SECTION 4B3
9 1/2-INCH RING GEAR

DESCRIPTION

The corporate 9 1/2-inch ring gear rear axle uses a conventional ring and pinion gear set to transmit the driving force of the engine to the rear wheels. This gear set transfers this driving force at a 90 degree angle from the propeller shaft to the drive shafts.

This axle is semi-floating. The axle shafts are supported at the wheel end of the shaft by a roller bearing that is pressed into the housing. The shafts are retained into the housing by retaining clips within the differential. The pinion gear is supported by two tapered roller bearings. The pinion depth is set by a shim pack located between the gear end of the pinion and the roller bearing that is pressed onto the pinion. The pinion bearing preload is set by crushing a collapsible spacer between the bearings in the axle housing.

The ring gear is bolted onto the differential case with left-hand thread bolts.

The differential case is supported in the case by two tapered roller bearings. The differential and ring gear are located in relationship to the pinion by using selective shims between the bearing and the axle housing. To move the ring gear, shims are deleted from one side and an equal amount are added to the other side. The differential bearing preload is set by a threaded differential bearing adjusting nut located between the axle housing and the differential bearing cap. Two bearing caps are used to hold the differential into the rear axle housing.

The differential is used to allow the wheels to turn at different rates of speed while the rear axle continues to transmit the driving force. This prevents tire scuffing when going around corners and prevents premature wear on internal axle parts.

The rear axle is sealed with a pinion seal, a seal at each axle shaft end, and by RTV sealant between the rear cover and the axle housing.

All corporate rear axles are identified by the part number on the right axle tube near the carrier. The carrier cover does not have a drain plug.

CHECKING THE AXLE BEFORE DISASSEMBLY

Inspect

- Remove the axle cover from the rear axle and drain the axle lubricant into a suitable container.

1. The ring gear backlash. Refer to “Backlash Adjustment” in this section. This information can be used to determine the cause of the axle problem. It will also help when setting up the shim packs for locating and preloading the differential case.

2. The case for metal chips and shavings. Determine where these chips and shavings come from, such as a broken gear or bearing cage.

- Determine the cause of the axle problem before disassembly if possible.

DISASSEMBLY OF THE REAR AXLE

Remove or Disconnect (Figure 1)

Tools Required:
- J 8107-3 Differential Side Bearing Remover Plug
- J 22888 Differential Side Bearing Remover
- J 8614-01 Pinion Flange Remover
- J 22910-01 Rear Pinion Bearing Cone Remover

- Place the rear axle in a suitable support.

1. The differential cover bolts (24) and the differential cover (25).

- Drain the gear lubricant into a proper container.

2. Axle shafts (3). Refer to the proper service manual.

3. Outer wheel bearings (5) and seals (14). Refer to the proper service manual.
4. Pinion shaft lock screw (29).
5. Pinion shaft (28).
6. Differential pinion (31) and side gears (33).
 • Roll the pinion gears out of the case with the pinion thrust washer (30).
 • Remove the side gears and the side gear thrust washers (32). Mark the gears and the differential case as left and right.
7. Adjusting nut lock bolt (18).
8. Adjusting nut lock (16).
 • Loosen the adjusting nut (17).
 • Mark the caps and the housing as left and right.

NOTICE: Be careful when prying the differential case out of the axle housing so not to damage the cover gasket surface. The differential case must be supported when it is being removed to prevent the case from falling and damaging the case.

 • Pry the case from the axle housing at the differential “window” (figure 2).
12. Bearing outer races (21), shims (21) and bearing adjusting nut (17).
 • Mark the races and the shims as left and right, and place them with the bearing caps.
13. Differential side bearings using J 8107-3 and J 22888 (figure 3).
 • The jaws of J 22888 must pull from beneath the bearing cone and not the cage. Use the slots provided for this purpose.
14. Ring gear bolts (26).
 • Ring gear bolts use left-handed threads.
NOTICE: Do not pry the ring gear from the case. This will damage the ring gear and the differential case.

15. Ring gear (15) from the differential.
 - Drive the ring gear off with a brass drift if necessary.

Inspect
 - Drive pinion bearing preload (figure 4).
 - Pinion assembly for looseness by moving it back and forth. (Looseness indicates excessive bearing wear).

16. Pinion flange nut (6) and washer (7) using J 8614-01 to hold the pinion flange (figure 5).
17. Pinion flange using J 8614-01 (figure 6).
18. Pinion (15) from the axle housing.
 - Thread the pinion nut halfway onto the pinion.
 - Replace the differential cover (34) with two bolts (35) to keep the pinion from falling to the floor.
CLEANING

Do not steam clean drive parts having ground and polished surfaces such as gears, bearings, and shafts. These parts should be cleaned in a suitable solvent. All parts should be disassembled before cleaning.

Parts should be thoroughly dried immediately after cleaning. Use soft, clean, lintless rags. Parts may be dried with compressed air. Do not allow the bearings to spin while drying them with compressed air.

INSPECTION

It is very important to carefully and thoroughly inspect all drive unit parts before reassembly.

Thorough inspection of the drive parts for wear or stress and subsequent replacement of worn parts will eliminate costly drive component repair after reassembly.

AXLE HOUSING

Inspect

- The carrier bore for nicks or burrs that would prevent the outer diameter of the pinion seal from sealing. Remove any burrs that are found.
- The bearing cup bores for nicks or burrs. Remove any burrs that are found.
- The housing for cracks. Replace the housing if any cracks are found.
- The housing for foreign material such as metal chips, dirt, or rust. Refer to “Cleaning” in this section.

DIFFERENTIAL

Inspect

- Pinion gear shaft for unusual wear.
- Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
- Thrust washers for wear.
- The fit of the differential side gears in the differential case.
- The fit of the side gears on the axle shafts.
- Differential case for cracks and scoring.
- Replace all worn parts.

PINION AND RING GEAR

Inspect

- Pinion and ring gear teeth for cracking, chipping, scoring, or excessive wear.
- Pinion splines for wear.
- Pinion flange splines for wear.
- The fit of the pinion on the pinion flange.
- The sealing surface of the pinion flange for nicks, burrs, or rough tool marks which would cause damage to the seals’ inside diameter and result in an oil leak.
- Replace all worn or broken parts.
- Ring and pinion gears are matched sets and are both replaced any time a replacement of either is necessary.

BEARINGS

Inspect

- Bearings visually and by feel.
- The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.
- The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.
- Bearing cups for wear, cracks, brinelling and scoring.
- Bearings and cups are only replaced as sets.
If the rear axle was operated for an extended period of time with very loose bearings, the ring gear and drive pinion will also require replacement.

Low mileage bearings may have minute scratches and pits on the rollers and the bearing cups from the initial preload. Do not replace a bearing for this reason.

Bearing caps for cracks or chips.

SHIMS

Inspect

Shims for cracks and chips. Damaged shims should be replaced with an equally sized service shim.

ASSEMBLY OF THE REAR AXLE

Install or Connect (Figures 9 and 10)

Tools Required:
- J 7817 Front Pinion Bearing Cup Installer
- J 22306 Rear Pinion Bearing Cup Installer

1. Front pinion bearing cup (10) using J 7817 and J 8092.
2. Rear pinion bearing cup (13) using J 22306 and J 8092.

PINION DEPTH ADJUSTMENT

Tools Required:
- J 8001 Dial Indicator Gage Set
- J 21777-1 Arbor
- J 21777-8 Rear Pilot Washer
- J 21777-42 Front Pilot Washer
- J 21777-43 Stud Assembly — Bolt
- J 21777-85 Gage Plate
- J 21777-86 Side Bearing Disc

Clean all the gage parts.

Lubricate the front and rear pinion bearings with axle lubricant.

Place the bearings (10) and (13) into the pinion bearing cups.

Install J 21777-8, J 21777-42, J 21777-85 and J 21777-43 to the pinion bore (figure 11).

Hold the stud stationary at the flats of the stud.

- Stud nut to 2.2 N m (20 in. lbs.).

Rotate the gage plate and bearings several complete revolutions to seat the bearings.

Tighten the stud nut until a torque of 1.6 to 2.2 N m (15 to 25 in. lbs.) is obtained to keep the gage plate in rotation.

Assemble J 21777-86, J 21777-1 Arbor, and J 8001 to the differential bearing bore as shown in figure 12.

- The bearing bores must be clean and burr free.

Install the side bearing caps, and tighten the bolts finger tight.

Rotate the gage plate until the proper gaging area is parallel with the disks.

Position the gage shaft assembly in the carrier so that the dial indicator rod is centered on the gaging area of the gage block.
12. Set the dial indicator at zero. Push the indicator down on the indicator shaft until the needle rotates approximately \(\frac{3}{4} \) of a turn to the right. Tighten the dial indicator in this position (figure 13).

13. Rotate the gage shaft slowly back and forth until the dial indicator reads the greatest deflection (when the indicator needle is centered between movement to the left and to the right).

14. At the point of greatest deflection, set the dial indicator to zero. Repeat the rocking action of the gage shaft to verify the zero setting.

15. Rotate the gage shaft until the dial indicator rod does not touch the gage block.

16. Record the actual number on the dial indicator and not the number which represents how far the needle travels. This is the nominal pinion setting. EXAMPLE: If the indicator needle moved to the left 1.70 mm (0.067-inch) to a dial reading of 0.84 mm (0.033-inch) as shown in figure 13, record the dial reading of 0.84 mm (0.033-inch) not 1.70 mm (0.067-inch).

17. Check the pinion face for a pinion adjustment mark. This mark indicates the best running position for the pinion from the nominal setting.
 - If the pinion is stamped with a plus number, add that many thousandths to the nominal setting. If the nominal setting is 0.033-inch and the pinion is marked +2, the correct shim depth would be 0.033-inch + 0.002-inch = 0.035-inch.
 - If the pinion is stamped with a minus number, subtract that many thousandths from the nominal setting. If the nominal setting is 0.033-inch and the pinion is marked -2, the correct shim depth would be 0.033-inch - 0.002-inch = 0.031-inch.
 - If the pinion has no plus or minus marked on the pinion, use the nominal pinion setting to select a shim.

18. Remove bearing caps (10) and depth gaging tools.

19. Install the correct pinion shim (6) to the pinion according to this procedure.
PINION INSTALLATION

Install or Connect

Tools Required:
J 22388 Pinion Oil Seal Installer
J 22804-1 Pinion Oil Seal Spacer
J 5590 Rear Pinion Bearing Cone Installer

- The bearing cups should have been installed in "Pinion Depth Adjustment" in this section.
1. Install or connect the pinion inner bearing (13) to the pinion.
 • Press the bearing onto the pinion until the bearing cone seats on the pinion shim(s) (figure 14).
2. Install or connect a new collapsible spacer (11).
 • Lubricate the pinion bearings with axle lubricant.
3. Install or connect pinion (15) to the axle housing.
4. Install or connect the outer pinion bearing (10) onto the pinion using J 5590.
 • Hold the pinion forward from inside the case while driving the bearing onto the pinion.
5. Install or connect pinion oil seal (9) using J 22388 and J 22804-01 (figure 15).
6. Install or connect the pinion flange (8) to the pinion by tapping it with a rawhide hammer until a few threads show through the pinion flange.
7. Install or connect the pinion washer (7) and a new nut (6) while holding the pinion flange with J 8614-01 (figure 16).

Tighten

- The nut until the pinion end play is just taken up. Rotate the pinion while tightening the nut to seat the bearings. Once there is no end play in the pinion, the preload torque should be rechecked.
- Remove J 8614-01. Using an inch-pound torque wrench, check the pinion preload by rotating the pinion with the wrench. Preload should be 2.3 to 2.8 N·m (20 to 25 in. lbs.) on new bearings, or 1.1 to 1.7 N·m (10 to 15 in. lbs.) for used bearings (figure 17).
- If the preload torque is below the preloads given above, continue torquing the nut in small increments. Check the preload after each
tightening. Each tightening increases the bearing preload by several pounds. If the bearing preload is exceeded, the pinion will have to be removed, and a new collapsible spacer installed.

- Once the preload has been obtained, rotate the pinion several times to assure that the bearings have seated. Recheck the preload, and adjust if necessary.

DIFFERENTIAL CASE ASSEMBLY

Install or Connect (Figure 1)

Tools Required:
- J 8107-3 Differential Side Bearing Removal Plug
- J 8092 Driver Handle
- J 29710 Differential Side Bearing Installer

- Lubricate all parts with rear axle lubricant.

1. Side gear thrust washers (32) to the side gears (33).
2. Side gears (33) to the differential case (27).
 - Place the side gears in place on the same side as removed.
3. Pinion gears (31) to the differential without the thrust washers (30).
 - Place the pinion gears onto the side gears so that the holes in the pinion gears are 180 degrees apart.
 - Rotate the pinion gears into place, and verify that the pinion gears line up with the pinion shaft holes.
4. Pinion thrust washers (30).
 - Rotate the pinion gears toward the differential opening just enough to slide in the pinion thrust washers.
 - Check that the mating surfaces of the differential case and the ring gear are clean and burr free.
5. Ring gear (15) to the differential case (27).
 - Thread two left-hand threaded studs into the ring gear on opposite sides.
 - Place the ring gear onto the case, and align the holes in the case with the studs (figure 18).
 - Press the ring gear onto the case far enough to start the bolts using J 8107-3 to protect the differential from the press ram (figure 19).
6. New ring gear bolts (26).
 - Tighten the ring gear bolts alternately in stages gradually pulling the ring gear onto the differential case.

Tighten
- The ring gear bolts in sequence to 145 N·m (105 ft. lbs.).

7. Differential side bearings (22) using J 29710, J 8107-3 and J 8092 (figure 20).
 - Place J 8107-3 into the differential on the side opposite of bearing installation to protect the differential case.
 - Drive the bearing onto the case using J 29710 and J 8092.
SIDEBEARINGPRELOADADJUSTMENT

- The differential side bearing preload is adjusted by an adjusting nut in the differential bearing bore. The bore and the bearing cap provide the mating threads for the bearing nut.
- The differential must be initially preloaded in order to determine the backlash of the gear set. After the backlash has been set, the final bearing preload is set.

Install or Connect

Tool Required:
J24429 Side Bearing Backlash Spanner Wrench

1. The bearing cups (22) to the differential bearings in their original locations.
2. Differential assembly to the axle housing.
3. Bearing shims (21).
 • Push the case away from the pinion towards the axle housing.
4. Adjusting nut (17).
 • Tighten the adjusting nut using J24429.
 • Turn the pinion to seat the bearings.
 • Back off the adjusting nut.
5. Bearing caps (19) and bolts (20) in their original positions.
 • Assemble the caps loosely.
 • Turn the adjusting nut until the nut contacts the shim. Then tighten the nut three additional slots (figure 21).
6. Adjusting nut lock (16) and lock bolt (18).
7. Measure the ring gear to pinion backlash. Refer to “Backlash Adjustment” in this section.

BACKLASHADJUSTMENT

1. Install a dial indicator to the case using a magnetic base.
2. Place the indicator stem at the heel end of a tooth.
 • Set the dial indicator so that the stem is in line with the gear rotation and perpendicular to the tooth angle.
3. Check and record the backlash at three or four points around the ring gear (figure 22).
 • The pinion must be held stationary when checking backlash.
 • The backlash should be the same at each point within 0.05 mm (0.002-inch). If the backlash varies more than 0.05 mm (0.002-inch), check for burrs, a distorted case flange, uneven bolting conditions, or foreign matter between the case and the ring gear.
4. Backlash at the minimum lash point measured should be between 0.125-0.200 mm ± 0.050 mm (0.005-0.008-inch ± 0.002-inch).
5. If the reading is too high, increase the shim pack between the differential flange side of the case and the axle housing (opposite the adjusting nut side).
6. If the reading is too low, decrease the shim pack between the differential flange side of the case and the axle housing (opposite the adjusting nut side).
7. Adjust the side bearing preload. Refer to “Side Bearing Preload Adjustment” earlier in this section.

FINAL ASSEMBLY

Install or Connect (Figure 1)

1. Drive axles. Refer to the proper service manual.
2. RTV to the axle housing cover.
3. Cover (25) and bolts (24) to the axle housing.

Tighten

- The cover bolts (24) to 27 N·m (20 ft. lbs.).

4. Axle housing to the vehicle. Refer to the proper service manual.
5. Lubricant to the rear axle.
distance will move the pinion closer to the centerline of the ring gear. Increasing the distance will move the pinion farther away from the centerline of the ring gear.

Backlash is adjusted by means of the side bearing adjusting shims which move the entire case and ring gear assembly closer to, or farther from, the drive pinion. (The adjusting shims are also used to set side bearing preload).

If the thickness of the right shim is increased (along with decreasing the left shim thickness), backlash will increase.

The backlash will decrease if the left shim thickness is increased (along with a decrease in right shim thickness).

Adjustments Affecting Tooth Contact

Two adjustments can be made which will affect tooth contact pattern: backlash, and the position of the drive pinion in the carrier. The effects of bearing preloads are not readily apparent on hand loaded tooth contact pattern tests; however, these adjustments should be within specifications before proceeding with backlash and drive pinion adjustments.

The position of the drive pinion is adjusted by increasing or decreasing the distance between the pinion head and the centerline of the ring gear. Decreasing the
Figure 24—Gear Tooth Pattern
SPECIFICATIONS

9 1/2-INCH RING GEAR AXLE

<table>
<thead>
<tr>
<th>FASTENER</th>
<th>N·m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Gear Bolts</td>
<td>145</td>
<td>105</td>
</tr>
<tr>
<td>Bearing Cap Bolts</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>Axle Cover Bolts</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Adjusting Nut Lock Bolt</td>
<td>30</td>
<td>22</td>
</tr>
</tbody>
</table>

SPACER AND SHIM SIZES

<table>
<thead>
<tr>
<th>SIZE</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Side Bearing Spacer</td>
<td>.0.170-inch</td>
</tr>
<tr>
<td></td>
<td>0.040-0.044-inch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIZE</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Side Bearing Shim Kits</td>
<td>5.59 mm (0.220-inch)</td>
</tr>
<tr>
<td></td>
<td>5.64 mm (0.222-inch)</td>
</tr>
<tr>
<td></td>
<td>5.69 mm (0.224-inch)</td>
</tr>
<tr>
<td></td>
<td>5.74 mm (0.226-inch)</td>
</tr>
<tr>
<td></td>
<td>5.79 mm (0.228-inch)</td>
</tr>
<tr>
<td></td>
<td>5.84 mm (0.230-inch)</td>
</tr>
<tr>
<td></td>
<td>5.89 mm (0.232-inch)</td>
</tr>
<tr>
<td></td>
<td>5.94 mm (0.234-inch)</td>
</tr>
<tr>
<td></td>
<td>5.99 mm (0.236-inch)</td>
</tr>
<tr>
<td></td>
<td>6.05 mm (0.238-inch)</td>
</tr>
<tr>
<td></td>
<td>6.10 mm (0.240-inch)</td>
</tr>
<tr>
<td></td>
<td>6.15 mm (0.242-inch)</td>
</tr>
<tr>
<td></td>
<td>6.20 mm (0.244-inch)</td>
</tr>
<tr>
<td></td>
<td>6.25 mm (0.246-inch)</td>
</tr>
<tr>
<td></td>
<td>6.30 mm (0.248-inch)</td>
</tr>
<tr>
<td></td>
<td>6.35 mm (0.250-inch)</td>
</tr>
<tr>
<td></td>
<td>6.40 mm (0.252-inch)</td>
</tr>
<tr>
<td></td>
<td>6.45 mm (0.254-inch)</td>
</tr>
<tr>
<td></td>
<td>6.50 mm (0.256-inch)</td>
</tr>
<tr>
<td></td>
<td>6.55 mm (0.258-inch)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIZE</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinion Bearing Shim Kit</td>
<td>0.5080-0.5842 mm (0.020-0.023-inch)</td>
</tr>
<tr>
<td></td>
<td>0.6096-0.7112 mm (0.024-0.028-inch)</td>
</tr>
<tr>
<td></td>
<td>0.7366-0.8382 mm (0.029-0.033-inch)</td>
</tr>
<tr>
<td></td>
<td>0.8636-0.9398 mm (0.034-0.037-inch)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIZE</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lubricant</td>
<td>.80W-90 GL-5</td>
</tr>
</tbody>
</table>
SPECIAL TOOLS

1. Differential Side Bearing Plug
2. Pinion Oil Seal Spacer
3. Side Bearing Adjustment Spanner
4. Rear Pinion Bearing Cone Remover
5. Rear Pinion Bearing Cone Installer
6. Front Pinion Bearing Cup Installer
7. Driver Handle
8. Dial Indicator
9. Differential Side Bearing Installer
10. Side Bearing Remover
11. Rear Pinion Bearing Cone Installer
12. Pinion Oil Seal Installer
13. Pinion Flange Remover
14. J-22306 Rear Pinion Bearing Cup Installer (Not Illustrated)

Refer to Figure 53 for these tools:
- J-21777-1 Arbor
- J-21777-8 Rear Pilot Washer
- J-21777-42 Front Pilot Washer
- J-21777-43 Stud Assembly — Bolt
- J-21777-85 Gauge Plate
- J-21777-86 Side Bearing Disc

SECTION 4B4
10½-INCH RING GEAR

DESCRIPTION

The corporate 10½-inch ring gear rear axle uses a conventional ring and pinion gear set to transmit the driving force of the engine to the rear wheels. This gear set transfers this driving force at a 90 degree angle from the propeller shaft to the drive shafts.

This axle is full-floating. The axle shaft is supported at the wheel ends by the wheel hubs. The bolts that attach the shaft to the hub, support the axle at the hub. The splined end of the shaft is supported by the differential.

The pinion gear is supported in a pinion cage by three bearings: a pinion front bearing, a pinion rear bearing, and pilot bearing. The pinion cage is separate from the axle housing. Selective shims are used between the pinion cage and the axle housing to set the pinion depth. The pinion bearing preload is set by crushing a collapsible spacer between the front and rear bearings in the pinion cage.

The ring gear is bolted onto the differential case with left-hand thread bolts.

The differential case is supported in the case by two tapered roller bearings. The differential and ring gear are located in relationship to the pinion by using two different bearing adjusting nuts. These allow the differential to be moved from side to side by adjusting the nuts in or out. The differential side bearing preload is accomplished by tightening the differential bearing adjusting nuts after the ring gear backlash has been set. Two bearing caps are used to hold the differential into the rear axle housing as well as to supply half of the threads for the bearing adjusting nuts.

The differential is used to allow the wheels to turn at different rates of speed while the rear axle continues to transmit the driving force. This prevents tire scuffing when going around corners and prevents premature wear on internal axle parts.

The rear axle is sealed with a pinion seal, a gasket at each axle shaft end, and by a gasket between the rear cover and the axle housing.

All corporate rear axles are identified by the part number on the right axle tube near the carrier. The carrier cover does not have a drain plug.

CHECKING THE AXLE BEFORE DISASSEMBLY

Inspect

Remove the axle cover from the rear axle and drain the axle lubricant into a suitable container.

1. Ring gear backlash. Refer to "Backlash Adjustment" in this section. This information can be used to determine the cause of the axle problem. It will also help when setting up the shim packs for locating and preloading the differential case.

2. Case for metal chips and shavings. Determine where these chips and shavings come from; such as a broken gear or bearing cage.

Determine the cause of the axle problem before disassembly if possible.
DISASSEMBLY OF THE REAR AXLE

Remove or Disconnect (Figure 1)

Tools Required:
- J 8107 Side Bearing Remover Plug
- J 22888 Differential Side Bearing Remover
- J 8614-01 Pinion Flange Remover
- J 22912-01 Rear Pinion Cone Remover

1. Place the rear axle in a suitable support.
2. Remove the differential cover bolts (25) and the differential cover (24).
3. Drain the gear lubricant into a proper container.
4. Adjusting nut lock bolts (22).
5. Loosen the adjusting nuts (19).
6. Differential bearing cap bolts (28) and washers (27).
7. Mark the caps and the housing as left and right.
8. Adjusting nuts (19) and bearing cups (18).
9. Mark the nuts and cups as left and right.
 • The jaws of J 22888 must pull from beneath the bearing cone and not the cage.
 • Scribe a mark across the differential case.
11. Ring gear bolts (36) and washers (35).

NOTICE: Do not pry the ring gear from the case. This will damage the ring gear and the differential case.

12. Ring gear (14) from the differential.
13. Case halves.
14. Differential side gears (29) and thrust washers (30).
 • Mark the gears and the case halves as left and right.
15. Differential pinion spider (33).
16. Differential pinion gears (32) and thrust washers (31) from the spider (33).

CLEANING

Do not steam clean drive parts having ground and polished surfaces such as gears, bearings, and shafts. These parts should be cleaned in a suitable solvent. All parts should be disassembled before cleaning.

Parts should be thoroughly dried immediately after cleaning. Use soft, clean, lintless rags. Parts may be dried with compressed air. Do not allow the bearings to spin while drying them with compressed air.

INSPECTION

It is very important to carefully and thoroughly inspect all drive unit parts before reassembly.

Thorough inspection of the drive parts for wear or stress and subsequent replacement of worn parts will eliminate costly drive component repair after reassembly.

AXLE HOUSING

Inspect
- The carrier bore for nicks or burrs that would prevent the outer diameter of the pinion seal from sealing. Remove any burrs that are found.
- The bearing cup bores for nicks or burrs. Remove any burrs that are found.
- The housing for cracks. Replace the housing if any cracks are found.
- The housing for foreign material such as metal chips, dirt, or rust. Refer to “Cleaning” in this section.

DIFFERENTIAL

Inspect
- Pinion gear shaft for unusual wear.
- Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
- Thrust washers for wear.
- The fit of the differential side gears in the differential case.
- The fit of the side gears on the axle shafts.
- Differential case for cracks and scoring.
- Replace all worn parts.
Figure 1—Rear Axle Components
Figure 2—Removing the Differential Side Bearings

Figure 3—Checking Pinion Preload

Figure 4—Removing the Pinion Cage

Figure 5—Removing the Drive Pinion Nut

Figure 6—Removing the Pinion Flange

Figure 7—Pressing the Drive Pinion from the Cage
PINION AND RING GEAR

inspect

- Pinion and ring gear teeth for cracking, chipping, scoring, or excessive wear.
- Pinion splines for wear.
- Pinion flange splines for wear.
- The fit of the pinion on the pinion flange.
- The sealing surface of the pinion flange for nicks, burrs, or rough tool marks which would cause damage to the seals' inside diameter and result in an oil leak.
- Replace all worn or broken parts.
- Ring and pinion gears are matched sets and are both replaced any time a replacement of either is necessary.

BEARINGS

inspect

- Bearings visually and by feel.
 - The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.
 - The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.
 - Bearing cups for wear, cracks, brinelling and scoring.
 - Bearings and cups are only replaced as sets.
 - If the rear axle was operated for an extended period of time with very loose bearings, the ring gear and drive pinion will also require replacement.
 - Low mileage bearings may have minute scratches and pits on the rollers and the bearing cups from the initial preload. Do not replace a bearing for this reason.
 - Bearing caps for cracks or chips.

SHIMS

inspect

- Shims for cracks and chips. Damaged shims should be replaced with an equally sized service shim.

ASSEMBLY OF THE REAR AXLE

PINION ASSEMBLY

Install or Connect (Figure 1)

Tools Required:
J 24433 Rear Pinion Bearing Cone Installer
J 8092 Driver Handle
J 8608 Outer Pinion Bearing Cup Installer
J 8614-01 Pinion Flange Holder

- Lubricate all parts with axle lubricant.
 1. Pinion rear bearing (13) onto the pinion.
 - Press the bearing onto the pinion using J 24433 (figure 10).
2. Outer pinion bearing cup (6) using J 8608 and J 8092.
3. Inner pinion bearing cup (13) using J 24432 and J 8092.
4. A new collapsible spacer (12) to the pinion.
5. Pinion (14) into the pinion gage (10).
6. Pinion outer bearing (6) onto the pinion.
 • Press the bearing onto the pinion.
7. Pinion oil seal (5) using J 24434 and J 8092.
8. Pinion flange oil deflector (4) and pinion flange (3) to the pinion splines.
9. Washer (2) and a new pinion nut (1).
 • Place the pinion cage assembly into the vice.
10. Flange holder J 8614-01 to the pinion flange.

 Tighten (Figure 11)
 • The nut until the pinion end play is just taken up. Rotate the pinion while tightening in order to seat the bearings. Once there is no end play in the pinion, the preload torque should be checked.
 • Remove J 8614-01. Using an inch-pound torque wrench, check the pinion preload by rotating the pinion with the wrench. Preload should be at or below 2.8 to 4.0 N·m (25 to 35 in. lbs.) for new bearings, or 0.56 to 1.7 N·m (5-15 in. lbs.) for used bearings (figure 12).
 • If the preload torque is below the preloads given above, continue torquing the nut in small increments. Check the preload after each tightening. Each tightening increases the bearing preload by several pounds. If the bearing preload is exceeded, the pinion will have to be removed, and a new collapsible spacer installed.
 • Once the preload has been obtained, rotate the pinion several times to assure that the bearings have seated. Recheck the preload, and adjust if necessary.
11. Pinion cage (10) to the axle housing. Refer to "Pinion Installation" in this section.

PINION INSTALLATION

Install or Connect

Tools Required:
J 34943 Pinion Pilot Bearing Installer
J 8092 Driver Handle
1. Pinion pilot bearing (15) using J 34943 and J 8092 (figure 13).
 • Bolt the guide plate to the axle housing.
 • Place the bearing (15) onto the guide.
 • Drive the bearing into the housing. The part number of the bearing must face the pinion flange.
 • Measure the pinion bearing shims (11). If a new pinion and ring gear set is installed, the pinion bearing shim pack must be adjusted.
 • Examine the heads of the new and old drive pinions. Compare these codes, and adjust the pinion bearing shim pack accordingly. The chart in figure 14, shows the proper adjustment to be made to the shim pack.
 • Pinion service shims are available in sizes from 0.006 to 0.024-inch.
 • If the original pinion is being used, the original pinion shims should also be used.
2. Pinion bearing shims (11) to the pinion cage.
 • The shims, housing, and cage must be clean.
3. The pinion cage (10) to the axle housing (figure 15).
4. Cage bolts (7).

Tighten
 • The bolts to 88 N·m (65 ft. lbs.).

DIFFERENTIAL CASE ASSEMBLY

Install or Connect (Figure 1)

Tools Required:
J 24429 Side Bearing Adjustment Spanner
J 8092 Driver Handle
J 8107 Side Bearing Puller Plug
• Lubricate all parts with rear axle lubricant.
1. Differential pinion gears (32) and thrust washers (31) to the spider (33).
2. Differential side gears (29) and thrust washers (30) to the differential case halves in their original locations.

3. Differential spider (33) to the differential.

4. The case halves.
 - Align the scribe marks on the case halves.
 - Check that the mating surfaces of the differential case and the ring gear are clean and burr free.

5. Ring gear (14) to the differential (figure 16).
 - Thread two left-hand threaded studs into the ring gear on opposite sides.
 - Place the ring gear onto the case, and align the holes in the case with the studs.
 - Press the ring gear onto the case far enough to start the bolts using J 8107 to protect the differential from the press ram.

 - Tighten the ring gear bolts alternately in stages gradually pulling the ring gear onto the differential case.
4B4-8 10½-INCH RING GEAR

Tighten
- The ring gear bolts in sequence to 163 N·m (120 ft. lbs.).

7. Differential side bearings (18) using J 24429 and J 8092 (figure 17).
- Place J 8107 into the differential on the side opposite of bearing installation to protect the differential case.
- Drive the bearing onto the case using J 24429 and J 8092.

8. Differential case (34) to the axle housing. Refer to “Side Bearing Preload Adjustment” in this section.

SIDE BEARING PRELOAD ADJUSTMENT
- The differential side bearing preload is adjusted by two adjusting nuts in the differential bearing bore. The bore and the bearing cap provide the mating threads for the bearing nut.
- The differential must be initially preloaded in order to determine the backlash of the gear set. After the backlash has been set, the final bearing preload is set.

Install or Connect (Figure 18)

Tool Required:
J 24429 Side Bearing Backlash Spanner Wrench
1. The bearing cups (20) to the differential bearings in their original locations.
2. Differential assembly to the axle housing.
3. Adjusting nuts (19).
4. Bearing caps (20) and bolts (28) in their original positions.
- Assembly the caps loosely.
- Loosen the right side adjusting nut, and tighten the left side nut using J 24429 until the ring gear contacts the drive pinion. Do not force the gears into contact. This is the zero lash point.
- Back off the left adjusting nut approximately two slots to obtain the initial backlash adjustment.
5. Adjusting nut lock (21) and lock bolt (22) to the left nut.

Backlash Adjustment
1. Install a dial indicator to the case using a magnetic base (figure 19).
2. Place the indicator stem at the heel end of a tooth.
- Set the dial indicator so that the stem is in line with the gear rotation and perpendicular to the tooth angle.
3. Check and record the backlash at three or four points around the ring gear.
- The pinion must be held stationary when checking backlash.
- The backlash should be the same at each point within 0.05 mm (0.002-inch). If the backlash varies more than 0.05 (0.002-inch), check for burrs, a distorted case flange, uneven bolting conditions, or foreign matter between the case and the ring gear.
4. The backlash at the minimum lash point measured should be between 0.125-0.200 mm (0.005-0.008-inch). The maximum acceptable reading is 0.076-0.203 mm (0.003-0.008-inch).
5. If the reading is too high, remove the adjusting nut locks, and loosen the right nut one slot, and tighten the left nut one slot (figure 18).

6. If the reading is too low, remove the adjusting nut locks, and loosen the left nut one slot, and tighten the right nut one slot.

- The side bearing preload will remain set, as long as the adjusting nut is tightened an equal amount to the nut which was loosened.

FINAL ASSEMBLY

Install or Connect (Figure 1)

1. Drive axles. Refer to the proper service manual.
2. Cover gasket (23) and cover (24) to the housing.
3. Cover bolts (25).
4. Axle housing to the vehicle. Refer to the proper service manual.
5. Lubricant to the rear axle.

GEAR TOOTH PATTERN CHECK

Checking the ring gear to pinion tooth pattern is to be done only after setting up the axle according to the methods in this section. The pattern check is NEVER to be used as an initial check, or instead of checking pinion depth and backlash adjustments. This check is only to be used to verify the correct adjustment of the gear set after setup.

1. Wipe all oil out of the carrier, and carefully clean each tooth of the ring gear (figure 20).
2. Use gear marking compound 1052351 or equivalent and apply this mixture sparingly to all ring gear teeth, using a medium-stiff brush. When properly used, the area of pinion tooth contact will be visible when hand load is applied.
3. Tighten the bearing cap bolts to the specified torque.

ADJUSTMENTS AFFECTING TOOTH CONTACT

Two adjustments can be made which will affect tooth contact pattern: backlash, and the position of the drive pinion in the carrier. The effects of bearing preload are not readily apparent on hand loaded tooth contact pattern tests; however, these adjustments should be within specifications before proceeding with backlash and drive pinion adjustments.

The position of the drive pinion is adjusted by increasing or decreasing the distance between the pinion head and the centerline of the ring gear. The shim is used in the rear axle to compensate for manufacturing tolerances. Decreasing the distance will move the pinion closer to the centerline of the ring gear. Increasing the distance will move the pinion farther away from the centerline of the ring gear.

Backlash is adjusted by means of the side bearing adjusting shims and/or adjusting nuts, which move the entire case and ring gear assembly closer to, or farther from, the drive pinion. (The adjusting shims are also used to set side bearing preload.)

If the thickness of the right shim is increased (along with decreasing the left shim thickness), backlash will increase.

The backlash will decrease if the left shim thickness is increased (along with a decrease in right shim thickness).
Figure 21—Gear Tooth Pattern
SPECIFICATIONS

10 1/2-INCH RING GEAR AXLE (CORPORATE)

<table>
<thead>
<tr>
<th>FASTENER</th>
<th>N·m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Gear Bolts</td>
<td>163</td>
<td>120</td>
</tr>
<tr>
<td>Bearing Cap Bolts</td>
<td>183</td>
<td>135</td>
</tr>
<tr>
<td>Axle Cover Bolts</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Adjusting Nut Lock Bolts</td>
<td>30</td>
<td>22</td>
</tr>
</tbody>
</table>

SPACER AND SHIM SIZES

<table>
<thead>
<tr>
<th>SIZE</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.006-inch</td>
<td>0.007-inch</td>
</tr>
<tr>
<td>0.008-inch</td>
<td>0.009-inch</td>
</tr>
<tr>
<td>0.010-inch</td>
<td>0.011-inch</td>
</tr>
<tr>
<td>0.012-inch</td>
<td>0.013-inch</td>
</tr>
<tr>
<td>0.014-inch</td>
<td>0.015-inch</td>
</tr>
<tr>
<td>0.016-inch</td>
<td>0.017-inch</td>
</tr>
<tr>
<td>0.018-inch</td>
<td>0.019-inch</td>
</tr>
<tr>
<td>0.020-inch</td>
<td>0.021-inch</td>
</tr>
<tr>
<td>0.022-inch</td>
<td>0.023-inch</td>
</tr>
<tr>
<td>0.024-inch</td>
<td></td>
</tr>
</tbody>
</table>

Lubricant .. 80W-90 GL-5
Special Tools

<table>
<thead>
<tr>
<th>No.</th>
<th>Tool Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pinion Flange Remover</td>
<td>J-8614-01</td>
</tr>
<tr>
<td>2.</td>
<td>Side Bearing Remover</td>
<td>J-22888</td>
</tr>
<tr>
<td>3.</td>
<td>Rear Pinion Bearing Cup Installer</td>
<td>J-8608</td>
</tr>
<tr>
<td>4.</td>
<td>Driver Handle</td>
<td>J-8092</td>
</tr>
<tr>
<td>5.</td>
<td>Rear Pinion Bearing Cone Installer</td>
<td>J-24433</td>
</tr>
<tr>
<td>6.</td>
<td>Side Bearing Adjustment Spanner</td>
<td>J-24429</td>
</tr>
<tr>
<td>7.</td>
<td>Rear Pinion Bearing Cone Remover</td>
<td>J-22912-01</td>
</tr>
<tr>
<td>8.</td>
<td>Pinion Pilot Bearing Installer</td>
<td>J-8092</td>
</tr>
</tbody>
</table>

1. Pinion Flange Remover
2. Side Bearing Remover
3. Rear Pinion Bearing Cup Installer
4. Driver Handle
5. Rear Pinion Bearing Cone Installer
6. Side Bearing Adjustment Spanner
7. Rear Pinion Bearing Cone Remover
8. Pinion Pilot Bearing Installer (Not Illustrated)
The Dana 9 3/4-inch ring gear rear axle uses a conventional ring and pinion gear set to transmit the driving force of the engine to the rear wheels. This gear set transfers this driving force at a 90 degree angle from the propeller shaft to the drive shafts.

This axle is full-floating. The axle shaft is supported at the wheel ends by the wheel hubs. The bolts that attach the shaft to the hub, support the axle at the hub. The splined end of the shaft is supported by the differential.

The pinion gear is supported by two tapered roller bearings. The pinion depth is set by a shim pack between the inner pinion bearing cup and the rear axle housing. The pinion bearing preload is set by a shim pack at the front of the axle housing between the bearing cone and the pinion gear.

The ring gear is bolted onto the differential case with right-hand thread bolts.

The differential case is supported in the case by two tapered roller bearings. The differential and ring gear are located in relationship to the pinion by using selective shims between the bearings and the differential case. To move the ring gear, shims are deleted from one side and an equal amount are added to the other side. Differential side bearing preload is set by the axle housing. (The axle housing is spread to remove the differential from the housing). When the spreader is removed, the housing sets the bearing preload.

Two bearing caps are used to hold the differential into the rear axle housing.

The differential is used to allow the wheels to turn at different rates of speed while the rear axle continues to transmit the driving force. This prevents tire scuffing when going around corners and prevents premature wear on internal axle parts.

The rear axle is sealed with a pinion seal, a hub seal, and RTV between the differential cover and the rear axle housing.

All Dana axles are identified by the part number on the right axle tube next to the manufacturing date which is next to the carrier. The model number is cast on the ear of the carrier. The carrier cover does not have a drain plug.

CHECK THE AXLE BEFORE DISASSEMBLY

- **Inspect**

 1. Remove the axle cover from the rear axle and drain the axle lubricant into a suitable container.
 2. The ring gear backlash. Refer to “Backlash Adjustment” in this section. This information can be used to determine the cause of the axle problem. It will also help when setting up the shim packs for locating and preloading the differential case.
 3. The case for metal chips and shavings. Determine where these chips and shavings come from, such as a broken gear or bearing cage.
Determine the cause of the axle problem before disassembly if possible.

DISASSEMBLY OF THE REAR AXLE

Remove or Disconnect (Figure 1)

Tools Required:
- J 24385-01 Differential Housing Spreader
- J 29721 Differential Side Bearing Remover
- J 29721-70 Side Bearing Adapters
- J 8107-3 Side Bearing Puller Plug
- J 8614-01 Pinion Flange Holder

Place the rear axle in a suitable support.
1. The differential cover bolts (17) and the differential cover (14) (figure 2).
 - Drain the gear lubricant into a proper container.
2. Axle shafts (38). Refer to the proper service manual.
3. Bearing cap bolts (19) (figure 3).
 - The mating letters are stamped on the caps and the axle housing. The caps are to be reassembled exactly as removed.
 - Assemble J 24385-01 to the differential housing as shown in figure 4.
 - Assemble the dial indicator as shown in figure 4. Preset the gage at least 0.020-inch, and then rotate the gage housing to zero the dial.

NOTICE: Do not spread the differential carrier more than 0.38 mm (0.015-inch). Over-spreading the carrier can damage or distort the carrier.

- Spread the carrier while examining the dial indicator. Do not spread the carrier more than 0.38 mm (0.015-inch).
5. Differential case (22) from the carrier (1) using two pry bars (figure 5).
6. The spreader J 24385-01 from the carrier (1).
7. Bearing cups (20).
 - Mark the cups as left and right, and place them with the proper bearing caps.
8. Differential side bearings (20) using J 29721, J 29721-70, and J 8107-3 (figure 6).
 - Mark the bearings as left and right, and place them with the proper bearing caps and cups.
 - Mark the shims as left or right.
10. Ring gear bolts (23).
 - Place shop towels over the vice jaws. Put the differential case in the vice (figure 7).
 NOTICE: Do not pry the ring gear from the case, this will damage the ring gear and the differential case.
11. Ring gear (2) from the differential case using a rawhide hammer.
 - Ring gear (2) from the vise.
 - Put the differential case in the vise.
12. Lock pin (29) from the differential using a hammer and a punch (figure 8).
13. Pinion shaft (28) using a hammer and a brass drift (figure 9).
14. Differential pinion gears (24) and thrust washers (26).
 - Rotate the side gears until the pinion gears are in the opening of the differential (figure 10).
15. Differential side gears (25) and thrust washers (27).
 - Mark the gears and washers as left and right.
 - Replace the carrier cover (14) using two bolts (17) to keep the pinion from falling to the floor.

Inspect

- Drive pinion bearing preload (figure 11).
- For looseness of the pinion assembly by moving it back and forth. (Looseness indicates excessive bearing wear).
16. Pinion nut (12) and washer (11) using J 8614-01 to hold the pinion (figure 12).
17. Pinion flange (10) using J 8614-01 (figure 13).
18. Pinion (2) from the carrier using a rawhide hammer to tap the pinion (figure 14).
19. Carrier cover (14) and the pinion (2).
20. Pinion preload shims (6).
 - Keep the shims together on the bench.
21. Pinion seal (9).
22. Pinion outer bearing (7) and oil slinger (8).
23. Bearing cups (3) and (7) from the axle housing using a hammer and a punch (figure 15).
 - Work the cups out of the housing evenly, moving the punch back and forth between one side of the cup and the other.
24. Pinion adjusting shims (4) and baffle (5).
 - Keep the shims together on the bench.
25. Pinion inner bearing (3) using J 29721 and J 29721-70 (figure 16).

CLEANING

Do not steam clean drive parts having ground and polished surfaces such as gears, bearings, and shafts. These parts should be cleaned in a suitable solvent. All parts should be disassembled before cleaning.

Parts should be thoroughly dried immediately after cleaning. Use soft, clean, lintless rags. Parts may be dried with compressed air. Do not allow the bearings to spin while drying them with compressed air.

INSPECTION

It is very important to carefully and thoroughly inspect all drive unit parts before reassembly.

Thorough inspection of the drive parts for wear or stress and subsequent replacement of worn parts will eliminate costly drive component repair after reassembly.
Figure 1—Rear Axle Components
Figure 2—Removing the Axle Cover

Figure 3—Removing the Bearing Cap

Figure 4—Spreading the Differential Case

Figure 5—Removing the Differential

Figure 6—Removing the Differential Side Bearings

Figure 7—Removing the Ring Gear
Figure 8—Removing the Lock Pin

Figure 9—Removing the Pinion Shaft

Figure 10—Removing the Pinion Gears

Figure 11—Checking the Pinion Preload

Figure 12—Removing the Drive Pinion Nut

Figure 13—Removing the Pinion Flange
AXLE HOUSING

Inspect

- The carrier bore for nicks or burrs that would prevent the outer diameter of the pinion seal from sealing. Remove any burrs that are found.
- The bearing cup bores for nicks or burrs. Remove any burrs that are found.
- The housing for cracks. Replace the housing if any cracks are found.
- The housing for foreign material such as metal chips, dirt, or rust. Refer to "Cleaning" in this section.

DIFFERENTIAL

Inspect

- Pinion gear shaft for unusual wear.
- Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
- Thrust washers for wear.
- The fit of the differential side gears in the differential case.
- The fit of the side gears on the axle shafts.
- Differential case for cracks and scoring.
- Replace all worn parts.

PINION AND RING GEAR

Inspect

- Pinion and ring gear teeth for cracking, chipping, scoring, or excessive wear.
- Pinion splines for wear.
- Pinion flange splines for wear.
- The fit of the pinion on the pinion flange.
- The sealing surface of the pinion flange for nicks, burrs, or rough tool marks which would cause damage to the seals' inside diameter and result in an oil leak.
- Replace all worn or broken parts.
- Ring and pinion gears are matched sets and are both replaced any time a replacement of either is necessary.

BEARINGS

Inspect

- Bearings visually and by feel.
- The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.
- The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.
- Bearing cups for wear, cracks, brinelling and scoring.
- Bearings and cups are only replaced as sets.
- If the rear axle was operated for an extended period of time with very loose bearings, the ring gear and drive pinion will also require replacement.
- Low mileage bearings may have minute scratches and pits on the rollers and the bearing cups from the initial preload. Do not replace a bearing for this reason.
- Bearing caps for cracks or chips.
SHIMS

Inspect
- Shims for cracks and chips. Damaged shims should be replaced with an equally sized service shim.

ASSEMBLY OF THE REAR AXLE

PINION ASSEMBLY

DIFFERENTIAL CASE ASSEMBLY

Install or Connect (Figure 1)
- Lubricate all parts with rear axle lubricant.
 1. New side gear thrust washers (27) to the side gears (25).
 2. Side gears (25) to the differential case.
 - Place the side gears in place on the same side as removed (figure 17).
 3. Pinion gears (24) to the differential without the thrust washers (26).
 - Place the pinion gears onto the side gears so that the holes in the pinion gears are 180 degrees apart.
 - Rotate the pinion gears into place, and verify that the pinion gears line up with the pinion shaft holes.
 4. New pinion thrust washers (26).
 - Rotate the pinion gears toward the differential opening just enough to slide in the pinion thrust washers.
 5. Pinion shaft (28).
 - Align the lock pin holes in the case and the shaft.
 - Peen metal from the case over the lock pin.
 - Check that the mating surfaces of the differential case and the ring gear are clean and burr free.
 7. Ring gear (20 to the differential case (22).
 - Thread two studs into the ring gear on opposite sides.

DETERMINING TOTAL DIFFERENTIAL SHIM PACK SIZE

1. Assemble the differential case (22) to the axle housing. The pinion must not be installed.
2. Mount a dial indicator having a minimum travel of 0.200-inch with a magnetic base on the ring gear bolt side of the housing (figure 21).

3. Force the differential assembly as far as possible in the direction towards the indicator.

4. Preload the dial indicator one half of its travel. Place the tip of the indicator on a flat surface on the differential, just next to a ring gear bolt. Mark this location with a piece of chalk.

5. Zero the dial indicator.

6. Force the differential assembly in the opposite direction as far as it will go. Repeat this step until the same reading is obtained. Record the number of thousandths that the dial indicator traveled, not the reading on the dial. This will be the measurement of the shim pack without the bearing preload (which will be added later).

7. Remove the dial indicator from the axle.

8. Remove the differential case from the axle housing.
 • Do not remove the master bearings from the differential.

PINION DEPTH ADJUSTMENT

Tools Required:
- D-120 Master Pinion Block (Miller)
- D-116-1 Pinion Height Block (Miller)
- D-116-2 Master Discs (Miller)
- D-115-3 Arbor (Miller)
- D-115 Scooter Gage (Miller)

1. Clean the carrier bores and all the tools. The pinion bore must be free of nicks and dirt.

2. Install D-120 to the pinion bore (figure 22).

4. Install the arbor and discs into the axle housing (figure 23).

5. Install D-116-1 onto D-120 and against the arbor (figure 24).

6. Place D-115 onto the height block (figure 25).
 • Place the gage on the lower step of the height block. Push the gage down on the height block. While applying pressure, set the dial indicator at zero.

7. Slide the gage over the arbor (figure 26).
8. Record the reading at the point of greatest deflection (when the dial indicator needle is centered between movement to the left and to the right).
 • This reading indicates the amount of shims needed for a nominal pinion setting. The pinion marking may change the pinion depth by adding or deleting shims from the nominal pinion setting.
 • A positive (+) pinion marking indicates that the distance between the ring gear centerline and the pinion head must increase by the number of thousandths marked on the pinion. This means that the shim pack will decrease by the same number of thousandths.
 • A negative (-) pinion marking indicates that the distance between the ring gear centerline and the pinion head must decrease by the number of thousandths marked on the pinion. This means that the shim pack will increase by the same number of thousandths.
 • A pinion etched zero (0) will use the nominal setting as determined in this procedure.
9. Measure each shim separately with a micrometer and add them together to obtain the total shim pack thickness. If a baffle (5) or slinger is used, these must also be measured and included in the shim pack (figure 27).

PINION INSTALLATION

Install or Connect
Tools Required:
- J 7818 Front Pinion Bearing Cup Installer
- J 5590 Rear Pinion Bearing Cone Installer
- D-111 Cup Installer (Miller)
- C-4171 Handle (Miller)
- J 8092 Handle
- J 8614-01 Pinion Flange Remover

1. Place the required amount of shims (and baffle if used) in the inner bearing bore.
2. Drive the inner bearing cup into the axle assembly using D-111 and C-4171. The cup must be seated on the shims (figure 28).
3. Drive the outer bearing cup into the axle assembly using J 7818 and J 8092 (figure 29).
4. Inner bearing cone (and slinger if used) on pinion. Drive the bearing onto the pinion shaft using J 5590 (figure 30).
5. Pinion into the axle housing.
6. Outer pinion bearing (7) (and slinger if used).
 • Do not assemble the preload shims or pinion oil seal at this time.
7. Pinion flange (10).
8. Washer (11) and pinion nut (12).

Tighten

- The nut (12) while holding the pinion with J 8614-01. Tighten the nut until it requires a torque of 1.13 N·m (10 in. lbs.) to rotate the pinion (figure 31). Rotate the pinion several times to seat the bearings and assure a more accurate reading pinion depth setting.

 • Place the discs and arbor into the differential bearing bore.
 • Place the pinion height block on top of the pinion.
 • Set the dial indicator at zero (0) and slide the scooter gage across the arbor (figure 32).
 • The indicator will turn to the right or to the left at the point of greatest deflection, depending on the pinion marking.
 • The needle will move to the left if the pinion is marked (+).
 • The needle will move to the right if the pinion is marked (−).
 • If the indicator reading is within 0.05 mm (0.002-inch) of the pinion marking, the pinion is correctly set. If the pinion depth does not meet specifications, change the shim pack by the amount the indicator needle is from the pinion marking.
10. Preload shims (6).
 • Install the shims that were removed, or measure the old shims and replace them with new shims if necessary.

11. Outer bearing (7) and slinger (8).
 • Apply a light coat of axle lubricant to the pinion seal lip.

12. Outer pinion oil seal (9) using D-163 (National) sealer installer (figure 33).

13. Pinion flange (10).

14. Washer (11) and a new pinion nut (12).

Tighten (Figures 34 and 35)

- The nut (12) while holding the pinion with J 8614-01. Tighten the nut until it requires a torque of 2.26-4.53 N·m (20-40 in. lbs.) to rotate the pinion.
- Remove shims to increase the preload.
- Add shims to decrease the preload.

ASSEMBLING THE DIFFERENTIAL TO THE AXLE HOUSING

Tools Required:
- J 23690 Differential Side Bearing Installer
- J 8092 Driver Handle
- J 24385-01 Differential Carrier Spreader

1. Assemble the differential case (22) with master bearings installed to the axle housing. The pinion must be installed.

2. Mount a dial indicator having a minimum travel of 0.200-inch with a magnetic base on the ring gear bolt side of the housing (figure 36).

3. Place the indicator tip on the chalk mark made earlier.

4. Force the ring gear into mesh with the pinion. Rock the ring gear to allow the teeth of the gears to mesh.

5. While the force is still applied to the differential case, set the dial indicator to zero.

6. Force the differential case away from the pinion gear to obtain an indicator reading. Repeat this action until a consistent reading is obtained. This will be the size of the left shim pack.
7. Remove the indicator and the differential case from the carrier.
8. Remove the master bearings from the differential case.
9. Using the total shim pack size determined earlier, (Refer to "Determining Total Differential Shim Pack Size" in this section) subtract the reading found in step 6 from the total reading. The reading found in step 6 will be the shim size on the ring gear side. The remaining portion of the shim pack will be used on the side opposite the ring gear. Add an additional 0.38 mm (0.015-inch) of shims to the side opposite the ring gear to preload the bearings.
10. Place the proper shims on the differential side bearing hub (ring gear side) and drive the differential bearing onto the hub using J 23690 and J 8092 (figure 37).
11. Place the proper shims on the differential side bearing hub (opposite the ring gear) and drive the differential bearing onto the hub using J 23690 and J 8092.
12. Assemble J 24385-01 to the axle housing as shown in figure 38.
13. Assemble the dial indicator as shown in figure 38. Preset the gage at least 0.020-inch, and then rotate the indicator housing to zero the dial.

NOTICE: Do not spread the differential carrier more than 0.38 mm (0.015-inch). Over-spreading the carrier can damage or distort the carrier.

14. Spread the carrier while examining the dial indicator.
15. Remove the dial indicator.
16. Place the bearing cups (20) onto the bearings.
17. Install the differential assembly into the carrier.
 * Use a rawhide hammer to seat the differential assembly in the axle housing (figure 39).
18. Remove the spreader.
19. Install the bearing caps (18) in their original positions.
20. Install the bearing cap bolts (19).
CHECKING BACKLASH
1. Mount a dial indicator with a magnetic base to the axle housing as shown in figure 40.
2. Place the indicator tip at the heel end of the tooth.
3. Check the backlash at three equally spaced points. The backlash should be 0.13-0.23 mm (0.005-0.009-inch). The measurement must not vary more than 0.05 mm (0.002-inch) between the points checked.
4. High backlash is corrected by moving the ring gear closer to the pinion.
5. Low backlash is corrected by moving the ring gear away from the pinion.

6. To adjust the backlash, the differential case must be removed from the housing, then the differential bearings removed, and the proper number of shims moved from one side to the other.

FINAL ASSEMBLY
Install or Connect
1. Drive axles. Refer to the proper service manual.
2. RTV to the axle cover.
3. Axle cover (14) to the housing (figure 41).
4. Axle housing to the vehicle. Refer to the proper service manual.
5. Lubricant to the rear axle (after the RTV has cured).

10 1/2-INCH RING GEAR

DESCRIPTION
The Dana 10 1/2-inch ring gear rear axle uses a conventional ring and pinion gear set to transmit the driving force of the engine to the rear wheels. The gear set transfers this driving force at a 90 degree angle from the propeller shaft to the drive shafts.

This axle is full-floating. The axle shaft is supported at the wheel ends by the wheel hubs. The bolts that attach the shaft to the hub, support the axle at the hub. The splined end of the shaft is supported by the differential.

The pinion gear is supported by two tapered roller bearings. The pinion depth is set by a shim pack between the inner pinion bearing cup and the rear axle housing. The pinion bearing preload is set by a shim pack at the front of the axle housing between the yoke and the pinion gear.

The ring gear is bolted onto the differential case with right-hand thread bolts.

The differential case is supported in the case by two tapered roller bearings. The differential and ring gear are located in relationship to the pinion by using selective shims between the bearings and the differential case. To move the ring gear, shims are deleted from one side and an equal amount are added to the other side. Differential side bearing preload is set by the differential shim packs.

Two bearing caps are used to hold the differential into the rear axle housing.

The differential is used to allow the wheels to turn at different rates of speed while the rear axle continues to transmit the driving force. This prevents tire scuffing when going around corners and prevents premature wear on internal axle parts.

The rear axle is sealed with a pinion seal, a hub seal, and a gasket between the differential cover and the rear axle housing.

Two models of the Dana 10 1/2-inch are covered here: the B or U Model, and the Heavy Duty Model.
All Dana axles are identified by the part number on the right axle tube next to the carrier. The model number is cast on the carrier. The carrier cover does not have a drain plug. There is a fill plug on the cover.

CHECK THE AXLE BEFORE DISASSEMBLY

Inspect

- Remove the axle cover from the rear axle and drain the axle lubricant into a suitable container.
- The ring gear backlash. Refer to "Backlash Adjustment" in this section. This information can be used to determine the cause of the axle problem. It will also help when setting up the shim packs for locating and preloading the differential case.
- The case for metal chips and shavings. Determine where these chips and shavings come from, such as a broken gear or bearing case.
- Determine the cause of the axle problem before disassembly if possible.

DISASSEMBLY OF THE REAR AXLE

Remove or Disconnect (Figure 42)

Tools Required:
- J 24385-01 Differential Housing Spreader
- J 29721 Differential Side Bearing Remover
- J 29721-70 Side Bearing Adapters
- J 8107-3 Side Bearing Puller Plug
- D-166 Differential Case Holding Fixture
- J 8614-01 Pinion Flange Holder
- Place the axle in a suitable support.
- The differential cover bolts (17) and the differential cover (14) (figure 43).
 - Drain the gear lubricant into a proper container.
- Axle shafts (40). Refer to the proper service manual.

3. Bearing cap bolts (19) (figure 44).
 - The mating letters are stamped on the caps and the axle housing. The caps are to be reassembled exactly as removed.
 - Assemble J 24385-01 to the differential housing as shown in figure 45.
 - Assemble the dial indicator as shown in figure 45. Preset the gage at least 0.020-inch, and then rotate the gage housing to zero the dial.
 - Spread the carrier while examining the dial indicator. Do not spread the carrier more than 0.38 mm (0.015-inch). Over-spreading the carrier can damage or distort the carrier.
- Spread the carrier while examining the dial indicator. Do not spread the carrier more than 0.38 mm (0.015-inch).
5. Differential case (22) from the carrier (1) using two pry bars (figure 46).
6. The spreader J 24385-01 from the carrier (1).
7. Bearing cups (20).
 • Mark the cups as left and right, and place them with the proper bearing caps.
8. Differential side bearings (20) using J 29721, J 29721-70, and J 8107-3 (figure 47).
 • Mark the bearings as left and right, and place them with the proper bearing caps and cups.
 • Mark the shims as left or right.
10. Ring gear bolts (23).
 • Place shop towels over the vise jaws. Put the differential case in the vise (figure 48).

NOTICE: Do not pry the ring gear from the case, this will damage the ring gear and the differential case.

11. Ring gear (2) from the differential case using a rawhide hammer.
 • Ring gear (2) from the vise.
 • Put the differential case on D-166 (Miller tool) and put the holding fixture into the vise.

12. Lock pin (29) from the differential using a hammer and a punch (figure 49).
 • Turn the differential over on D-166.
13. Pinion shaft (28) using a hammer and a brass drift (figure 50).
14. Differential pinion gears (24) and thrust washers (26).
 • Rotate the side gears until the pinion gears are in the opening of the differential (figure 51).
15. Differential side gears (25) and thrust washers (27).
 • Mark the gears and washers as left and right.
 • Replace the carrier cover (14) using two bolts (17) to keep the pinion from falling to the floor.

Inspect

- Drive pinion bearing preload (figure 52).
- Pinion assembly for looseness by moving it back and forth. (Looseness indicates excessive bearing wear).
16. Pinion nut (12) and washer (11) using J 8614-01 to hold the pinion (figure 53).
17. Pinion flange (10) using J 8614-01 (figure 54).
18. Pinion (2) from the carrier using a rawhide hammer to tap the pinion (figure 55).
19. Carrier cover (14) and the pinion (2).
20. Pinion preload shims (6).
 • Keep the shims together on the bench.
21. Pinion seal (9).
22. Pinion outer bearing (7) and oil slinger (8).
23. Bearing cups (3) and (7) from the axle housing using a hammer and a punch (figure 56).
 • Work the cups out of the housing evenly, moving the punch back and forth between one side of the cup and the other.
24. Pinion adjusting shims (4) and baffle (5).
 • Keep the shims together on the bench.
25. Pinion inner bearing (3) using J 29721 and J 29721-70 (figure 57).
CLEANING

Do not steam clean drive parts having ground and polished surfaces such as gears, bearings, and shafts. These parts should be cleaned in a suitable solvent. All parts should be disassembled before cleaning.

Parts should be thoroughly dried immediately after cleaning. Use soft, clean, lintless rags. Parts may be dried with compressed air. Do not allow the bearings to spin while drying them with compressed air.

INSPECTION

It is very important to carefully and thoroughly inspect all drive unit parts before reassembly.

Thorough inspection of the drive parts for wear or stress and subsequent replacement of worn parts will eliminate costly drive component repair after reassembly.

AXLE HOUSING

Inspect

- The carrier bore for nicks or burrs that would prevent the outer diameter of the pinion seal from sealing. Remove any burrs that are found.
- The bearing cup bores for nicks or burrs. Remove any burrs that are found.
- The housing for cracks. Replace the housing if any cracks are found.
- The housing for foreign material such as metal chips, dirt, or rust. Refer to “Cleaning” in this section.

DIFFERENTIAL

Inspect

- Pinion gear shaft for unusual wear.
- Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
- Thrust washers for wear.
- The fit of the differential side gears in the differential case.
- The fit of the side gears on the axle shafts.
- Differential case for cracks and scoring.
- Replace all worn parts.

PINION AND RING GEAR

Inspect

- Pinion and ring gear teeth for cracking, chipping, scoring, or excessive wear.
- Pinion splines for wear.
- Pinion flange splines for wear.
- The fit of the pinion on the pinion flange.
- The sealing surface of the pinion flange for nicks, burrs, or rough tool marks which would cause damage to the seals’ inside diameter and result in an oil leak.
- Replace all worn or broken parts.
- Ring and pinion gears are matched sets and are both replaced any time a replacement of either is necessary.
Bearing Inspection

- The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.
- The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.
- Bearing cups for wear, cracks, brinelling and scoring.
- Bearings and cups are only replaced as sets.
- If the rear axle was operated for an extended period of time with very loose bearings, the ring gear and drive pinion will also require replacement.
- Low mileage bearings may have minute scratches and pits on the rollers and the bearing cups from the initial preload. Do not replace a bearing for this reason.
- Bearing caps for cracks or chips.

Shim Inspection

- Shims for cracks and chips. Damaged shims should be replaced with an equally sized service shim.

Assembly of the Rear Axle

Differential Case Assembly

Install or Connect (Figure 42)

Tools Required:
- D-136 Master Differential Bearings (Miller) H.D.
- D-117 Master Differential Bearings (Miller)
- Lubricate all parts with rear axle lubricant.

1. New side gear thrust washers (27) to the side gears (25).
2. Side gears (25) to the differential case.
 - Place the side gears in place on the same side as removed (figure 58).
3. Pinion gears (24) to the differential without the thrust washers (26).
 - Place the pinion gears onto the side gears so that the holes in the pinion gears are 180 degrees apart.
 - Rotate the pinion gears into place, and verify that the pinion gears line up with the pinion shaft holes.
4. New pinion thrust washers (26).
 - Rotate the pinion gears toward the differential opening just enough to slide in the pinion thrust washers.
5. Pinion shaft (28).
 - Align the lock pin holes in the case and the shaft.
 - Peen metal from the case over the lock pin.
 - Check that the mating surfaces of the differential case and the ring gear are clean and burr free.
7. Ring gear (2) to the differential case (22).
 - Thread two studs into the ring gear on opposite sides.
 - Press the ring gear onto the case, and align the holes in the case with the studs.
8. New ring gear bolts (23) (figure 60).
 - Tighten the ring gear bolts alternately in stages gradually pulling the ring gear onto the differential case.

Tighten

- The new ring gear bolts in sequence to 149 N·m (110 ft. lbs.). Refer to “Specifications” for bolt information.
 - Refer to “Determining Total Shim Pack Size” in this section.
DETERMINING TOTAL DIFFERENTIAL SHIM
PACK SIZE — B OR U MODEL
1. Assemble the differential case (22) to the axle housing. The pinion must not be installed.
2. Mount a dial indicator having a minimum travel of 0.200-inch with a magnetic base on the ring gear bolt side of the housing (figure 62).
3. Force the differential assembly as far as possible in the direction towards the indicator.
4. Preload the dial indicator one half of its travel. Place the tip of the indicator on a flat surface on the differential, just next to a ring gear bolt. Mark this location with a piece of chalk.
5. Zero the dial indicator, while still forcing the differential towards the dial indicator.
6. Force the differential assembly in the opposite direction as far as it will go. Repeat this step until the same reading is obtained. Record the number of thousandths that the dial indicator traveled, not the reading on the dial. This will be the measurement of the shim pack without the bearing preload (which will be added later).

DETERMINING TOTAL DIFFERENTIAL SHIM
PACK SIZE — HEAVY DUTY MODEL
1. Assemble the differential case (22) to the axle housing. The pinion must not be installed.
2. Mount a dial indicator having a minimum travel of 0.200-inch with a magnetic base on the ring gear bolt side of the housing (figure 62).
3. Install the outboard spacer between the master bearing and the axle housing on the ring gear side.
4. Force the differential assembly as far as possible in the direction towards the indicator.
5. Preload the dial indicator one half of its travel. Place the tip of the indicator on a flat surface of the differential, just next to a ring gear bolt. Mark this location with a piece of chalk.
6. Zero the dial indicator, while still forcing the differential towards the dial indicator.
7. Force the differential assembly in the opposite direction as far as it will go. Repeat this step until the same reading is obtained. Record the number of thousandths that the dial indicator traveled, not the reading on the dial. This reading plus the spacer measurement will be the thickness of the spacer and shims required.
8. Remove the dial indicator from the axle.
9. Remove the differential case from the axle housing.
10. Remove the spacer (43) from the housing.
• Do not remove the master bearings from the differential.

PINION DEPTH ADJUSTMENT
Tools Required:
- D-120 Master Pinion Block (Miller) (60 and 70U)
- D-137 Master Pinion Block (70B and 70 H.D.)
- D-116-1 Pinion Height Block (Miller)
- D-116-2 Master Discs (Miller)
- D-115-3 Arbor (Miller)
1. Clean the carrier bores and all the tools. The pinion bore must be free of nicks and dirt.
2. Install D-120 or D-137 to the pinion bore (figure 63).
3. Place D-116-2 onto D-115-3 (figure 64).
4. Install the arbor and discs into the axle housing.
5. Install D-116-1 onto D-120 and against the arbor (figure 65).
6. Place D-115 onto the height block (figure 66).
 - Place the gage on the upper step of the height block. Push the gage down on the height block. While applying pressure, set the dial indicator at zero.
7. Slide the gage over the arbor (figure 67).
8. Record the reading at the point of greatest deflection (when the dial indicator needle is centered between movement to the left and to the right).
This reading indicates the amount of shims needed for a nominal pinion setting. The pinion marking may change the pinion depth by adding or deleting shims from the nominal pinion setting.

- A positive (+) pinion marking indicates that the distance between the ring gear centerline and the pinion head must increase by the number of thousandths marked on the pinion. This means that the shim pack will decrease by the same number of thousandths.
- A negative (-) pinion marking indicates that the distance between the ring gear centerline and the pinion head must decrease by the number of thousandths marked on the pinion. This means that the shim pack will increase by the same number of thousandths.
- A pinion etched zero (0) will use the nominal setting as determined in this procedure.

9. Measure each shim separately with a micrometer and add them together to obtain the total shim pack thickness. If a baffle (5) or slinger is used, these must also be measured and included in the shim pack (figure 68).

PINION INSTALLATION

++ Install or Connect

Tools Required:
- J 7818 Front Pinion Bearing Cup Installer
- J 5590 Rear Pinion Bearing Cone Installer
- C-4204 Cup Installer (Miller)
- C-4171 Handle (Miller)
- J 8092 Handle
- J 8614-01 Pinion Flange Remover
- D-116-1 Pinion Height Block
- D-116-2 Arbor Discs
- D-115-3 Arbor
- D-115-2 Scooter Gage Block

1. Place the required amount of shims (and baffle if used) in the inner bearing bore.

2. Drive the inner bearing cup into the axle assembly using C-4204 and C-4171. The cup must be seated on the shims (figure 69).

3. Drive the outer bearing cup into the axle assembly using J 7818 and J 8092 (figure 70).

4. Inner bearing cone (and slinger if used) on pinion. Drive the bearing onto the pinion shaft using J 5590 (figure 71).

- If installing a new bearing, be certain that it is the same width as the old bearing.

5. Pinion into the axle housing.

6. Outer pinion bearing (7) (and slinger if used).

- Do not assemble the preload shims or pinion oil seal at this time.

7. Pinion flange (10).

8. Washer (11) and pinion nut (12).

- **Tighten**
 - The nut (12) while holding the pinion with J 8614-01. Tighten the nut until it requires a torque of 1.13 Nm (10 in. lbs.) to rotate the
Figure 71—Installing the Inner Bearing

Pinion (figure 72). Rotate the pinion several times to seat the bearings and assure a more accurate reading pinion depth setting.

 • Place the discs and arbor into the differential bearing bore.
 • Place the pinion height block on top of the pinion.
 • Set the dial indicator at zero (0) and slide the scooter gage across the arbor (figure 73).
 • The indicator will turn to the right or to the left at the point of greatest deflection, depending on the pinion marking.
 • The needle will move to the left if the pinion is marked (+).
 • The needle will move to the right if the pinion is marked (-).
 • If the indicator reading is within 0.05 mm (0.002-inch) of the pinion marking, the pinion is correctly set. If the pinion depth does not meet specifications, change the shim pack by the amount the indicator needle is from the pinion marking.

10. Preload shims (6).
 • Install the shims that were removed, or measure the old shims and replace them with new shims if necessary.

11. Outer bearing (7) and slinger (8).
 • Apply a light coat of axle lubricant to the pinion seal lip.

12. Outer pinion oil seal (9) using D-163 (National) sealer installer (figure 74).

13. Pinion flange (10).

14. Washer (11) and a new pinion nut (12).

Tighten (Figures 75 and 76)

• The nut (12) while holding the pinion with J 8614-01. Tighten the nut until it requires a torque of 2.26-4.53 N·m (20-40 in. lbs.) to rotate the pinion.
ASSEMBLING THE DIFFERENTIAL TO THE AXLE HOUSING — B OR U MODEL

Tools Required:
- J 23690 Differential Side Bearing Installer
- J 8092 Driver Handle
- J 24385-01 Differential Carrier Spreader

1. Assemble the differential case (22) with master bearings installed to the axle housing. The pinion must be installed.
2. Mount a dial indicator having a minimum travel of 0.200-inch with a magnetic base on the ring gear bolt side of the housing (figure 77).
3. Place the indicator tip on the chalk mark made earlier.
4. Force the ring gear into mesh with the pinion. Rock the ring gear to allow the teeth of the gears to mesh.
5. With the force still applied to the differential case, set the dial indicator to zero.
6. Force the differential case away from the pinion gear to obtain an indicator reading. Repeat this action until a consistent reading is obtained.
7. Remove the indicator and the differential case from the carrier.
8. Remove the master bearings from the differential case.
9. Using the total shim pack size determined earlier, (Refer to “Determining Total Differential Shim Pack Size” in this section) subtract the reading found in step 6 from the total reading. The reading found in step 6 will be the shim size on the ring gear side. The remaining portion of the shim pack will be used on the side opposite the ring gear. Add an additional 0.38 mm (0.015-inch) of shims to the side opposite the ring gear to preload the bearings.
10. Place the proper shims on the differential side bearing hub (ring gear side) and drive the differential bearing onto the hub using J 23690 and J 8092 (figure 78).
 - If installing a new bearing, be certain that it is the same width as the old bearing.
11. Place the proper shims on the differential side bearing hub (opposite the ring gear) and drive the differential bearing onto the hub using J 23690 and J 8092.
 - If installing a new bearing, be certain that it is the same width as the old bearing.
12. Assemble J 24385-01 to the axle housing as shown in figure 79.
13. Assemble the dial indicator as shown in figure 79. Preset the gage at least 0.020-inch, and then rotate the indicator housing to zero the dial.

NOTICE: Do not spread the differential carrier more than 0.38 mm (0.015-inch). Over-spreading the carrier can damage or distort the carrier.

14. Spread the carrier while examining the dial indicator.
15. Remove the dial indicator.
16. Place the bearing cups (20) onto the bearings.
17. Install the differential assembly into the carrier.
 - Use a rawhide hammer to seat the differential assembly in the axle housing (figure 80).
18. Remove the spreader.
19. Install the bearing caps (18) in their original positions.
20. Install the bearing cap bolts (19).

Tighten
- The bearing cap bolts (19) to 115 N·m (85 ft. lbs.).

ASSEMBLING THE DIFFERENTIAL TO THE AXLE HOUSING — HEAVY DUTY MODELS

Tools Required:
- J 23690 Differential Side Bearing Installer
- J 8092 Driver Handle
- J 24385-01 Differential Carrier Spreader
- C-4205 Preload Shim Installer
- C-4171 Universal Handle
1. Assemble the differential case (22) with master bearings installed to the axle housing. The pinion must be installed.
2. Install the spacer (used before) between the master bearing and the axle housing.
3. Mount a dial indicator having a minimum travel of 0.200-inch with a magnetic base on the ring gear bolt side of the housing (figure 77).
4. Place the indicator tip on the chalk mark made earlier.
5. Force the ring gear into mesh with the pinion. Rock the ring gear to allow the teeth of the gears to mesh.
6. With the force still applied to the differential case, set the dial indicator to zero.
7. Force the differential case away from the pinion gear to obtain an indicator reading. Repeat this action until a consistent reading is obtained.
8. Remove the indicator and the differential case from the carrier.
9. Remove the master bearings from the differential case.
10. Using the total shim pack size determined earlier, (refer to “Determining Total Differential Shim Pack Size” in this section) subtract the reading found in step 7 from the total reading. The reading found in step 7 will be the shim size on the ring gear side. The remaining portion of the shim pack will be used on the side opposite the ring gear. Add an additional 0.015-inch worth of shim for differential bearing preload and backlash.
11. Place the proper shims on the differential side bearing hub (ring gear side) and drive the differential bearing onto the hub using J 23690 and J 8092 (figure 78).
 - If installing a new bearing, be certain that it is the same width as the old bearing.
12. Determine the proper size of the shim pack by subtracting the spacer size from the remaining amount of shims necessary (determined in step 10).
13. Place the proper shims on the differential side bearing hub (ring gear side) and drive the differential bearing onto the hub using J 23690 and J 8092.
 - If installing a new bearing, be certain that it is the same width as the old bearing.
14. Assemble J 24385-01 to the axle housing as shown in figure 79.
15. Assemble the dial indicator as shown in figure 161. Preset the gage at least 0.020-inch, and then rotate the indicator housing to zero the dial.

NOTICE: Do not spread the differential carrier more than 0.38 mm (0.015-inch). Over-spreading the carrier can damage or distort the carrier.

16. Spread the carrier while examining the dial indicator.
17. Remove the dial indicator.
18. Place the bearing cups (20) onto the bearings.
19. Install the differential assembly into the carrier (figure 80).

20. Drive the outboard spacers (43) into the proper sides using C-4205 and C-4171.
21. Remove the spreader.
22. Install the bearing caps (18) in their original positions.
23. Install the bearing cap bolts (19).

Tighten
- The bearing cap bolts (19) to 115 N·m (85 ft. lbs.).

CHECKING BACKLASH
1. Mount a dial indicator with a magnetic base to the axle housing as shown in figure 81.
2. Place the indicator tip at the heel end of the tooth.
3. Check the backlash at three equally spaced points. The backlash should be 0.13-0.23 mm (0.005-0.009-inch). The measurement must not vary more than 0.05 mm (0.002-inch) between the points checked.
4. High backlash is corrected by moving the ring gear closer to the pinion.
5. Low backlash is corrected by moving the ring gear away from the pinion.
6. To adjust the backlash, the differential case must be removed from the housing, then the differential bearings removed, and the proper number of shims moved from one side to the other.

FINAL ASSEMBLY

Install or Connect
1. Drive axles. Refer to the proper service manual.
2. RTV to the axle cover.
3. Axle cover (14) to the housing (figure 82).

Tighten
- The cover bolts (17) to 47 N·m (35 ft. lbs.).
4. Axle housing to the vehicle. Refer to the proper service manual.
5. Lubricant to the rear axle after the RTV has cured.
SPECIFICATIONS

9 3/4-INCH RING GEAR AXLE

<table>
<thead>
<tr>
<th>FASTENER</th>
<th>N-m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Gear Bolts</td>
<td>150</td>
<td>110</td>
</tr>
<tr>
<td>Bearing Cap Bolts</td>
<td>115</td>
<td>85</td>
</tr>
<tr>
<td>Axle Cover Bolts</td>
<td>47</td>
<td>35</td>
</tr>
<tr>
<td>Differential Bearing Adjusting Shim</td>
<td>0.003-inch</td>
<td>0.005-inch</td>
</tr>
<tr>
<td>Outer Pinion Bearing Shim</td>
<td>0.003-inch</td>
<td>0.005-inch</td>
</tr>
<tr>
<td>Inner Pinion Bearing Shim</td>
<td>0.003-inch</td>
<td>0.005-inch</td>
</tr>
<tr>
<td>Lubricant</td>
<td>80W-90 GL-5</td>
<td></td>
</tr>
</tbody>
</table>

SHIM SIZES

<table>
<thead>
<tr>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.003-inch</td>
</tr>
<tr>
<td>0.005-inch</td>
</tr>
<tr>
<td>0.010-inch</td>
</tr>
<tr>
<td>0.030-inch</td>
</tr>
</tbody>
</table>

10 1/2-INCH RING GEAR AXLE

<table>
<thead>
<tr>
<th>FASTENER</th>
<th>N-m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Gear Bolts</td>
<td>142</td>
<td>105</td>
</tr>
<tr>
<td>Bearing Cap Bolts</td>
<td>115</td>
<td>85</td>
</tr>
<tr>
<td>Axle Cover Bolts</td>
<td>47</td>
<td>35</td>
</tr>
<tr>
<td>Lubricant</td>
<td>80W-90 GL-5</td>
<td></td>
</tr>
</tbody>
</table>

SHIM SIZES

<table>
<thead>
<tr>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.003-inch</td>
</tr>
<tr>
<td>0.005-inch</td>
</tr>
<tr>
<td>0.010-inch</td>
</tr>
<tr>
<td>0.030-inch</td>
</tr>
</tbody>
</table>

Inner Pinion Bearing Cup and Cone

- B and H.D. Models: 1.4375-inch wide
- U Model: 1.1875-inch wide

Differential Bearing Cup and Cone

- B and U Models: 1.0000-inch wide
- H.D. Model: 1.1875-inch wide
Special Tools

<table>
<thead>
<tr>
<th>No.</th>
<th>Tool Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Master Discs (Miller)</td>
<td>J-8107-03</td>
</tr>
<tr>
<td>2</td>
<td>Arbor (Miller)</td>
<td>J-7818</td>
</tr>
<tr>
<td>3</td>
<td>Pinion Height Block (Miller)</td>
<td>C-4171</td>
</tr>
<tr>
<td>4</td>
<td>Scooter Gage (Miller)</td>
<td>D-117</td>
</tr>
<tr>
<td>5</td>
<td>Master Pinion Bearings (Miller)</td>
<td>D-116-1</td>
</tr>
<tr>
<td>6</td>
<td>Master Pinion Block (Miller)</td>
<td>J-5590</td>
</tr>
<tr>
<td>7</td>
<td>Cup Installer (Miller)</td>
<td>D-115</td>
</tr>
<tr>
<td>8</td>
<td>Handle (Miller)</td>
<td>J-8092</td>
</tr>
<tr>
<td>9</td>
<td>Differential Side Bearing Removal Plug</td>
<td>D-116-2</td>
</tr>
<tr>
<td>10</td>
<td>Rear Pinion Bearing Cup Installer</td>
<td>D-115-3</td>
</tr>
<tr>
<td>11</td>
<td>Driver Handle</td>
<td>D-117</td>
</tr>
<tr>
<td>12</td>
<td>Rear Pinion Bearing Cone Installer</td>
<td>D-116-1</td>
</tr>
<tr>
<td>13</td>
<td>Pinion Flange Remover</td>
<td>D-115</td>
</tr>
<tr>
<td>14</td>
<td>Differential side Bearing Installer</td>
<td>D-117</td>
</tr>
<tr>
<td>15</td>
<td>Differential Side Bearing Remover</td>
<td>J-23690</td>
</tr>
<tr>
<td>16</td>
<td>Differential Carrier Spreader</td>
<td>J-29721</td>
</tr>
<tr>
<td>17</td>
<td>Side Bearing Adapters</td>
<td>J-29721-70</td>
</tr>
</tbody>
</table>

1. Master Discs (Miller)
2. Arbor (Miller)
3. Pinion Height Block (Miller)
4. Scooter Gage (Miller)
5. Master Pinion Bearings (Miller)
6. Master Pinion Block (Miller)
7. Cup Installer (Miller)
8. Handle (Miller)
9. Differential Side Bearing Removal Plug
10. Rear Pinion Bearing Cup Installer
11. Driver Handle
12. Rear Pinion Bearing Cone Installer
13. Pinion Flange Remover
14. Differential side Bearing Installer
15. Differential Side Bearing Remover
16. Differential Carrier Spreader
17. Side Bearing Adapters
SPECIAL TOOLS

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Master Discs (Miller)</td>
<td>10.</td>
</tr>
<tr>
<td>2.</td>
<td>Arbor (Miller)</td>
<td>11.</td>
</tr>
<tr>
<td>3.</td>
<td>Pinion Height Block (Miller)</td>
<td>12.</td>
</tr>
<tr>
<td>4.</td>
<td>Scooter Gage (Miller)</td>
<td>13.</td>
</tr>
<tr>
<td>5.</td>
<td>Master Pinion Bearings (Miller)</td>
<td>14.</td>
</tr>
<tr>
<td>6.</td>
<td>Master Pinion Block (Miller)</td>
<td>15.</td>
</tr>
<tr>
<td>7.</td>
<td>Cup Installer (Miller)</td>
<td>16.</td>
</tr>
<tr>
<td>8.</td>
<td>Handle (Miller)</td>
<td>17.</td>
</tr>
</tbody>
</table>

1. D-116-2
2. D-115-3
3. D-116-1
4. D-115
5. D-136 or D-117 (Heavy Duty Axles)
6. D-120
7. C-4204
8. C-4171
9. 4205
10. J-8107-3
11. J-8092
12. J-7817
13. J-5590
14. J-8614-01
15. J-23690
16. J-29721
17. J-24385-01
18. J-29721-70

F-04664
DESCRIPTION

The Rockwell 12-inch ring gear rear axle uses a conventional ring and pinion gear set to transmit the driving force of the engine to the rear wheels. This gear set transfers this driving force at a 90 degree angle from the propeller shaft to the drive shafts.

This axle is full-floating. The axle shaft is supported at the wheel ends by the wheel hubs. The rear axle shaft is held into the rear axle by an axle cap bolted to the hub. The splined end of the shaft is supported by the differential.

This axle uses a differential carrier, separate from the axle housing. This differential carrier holds the entire drive gear set, the differential bearings and adjusting nuts, and the differential bearing caps. The pinion cage is separate from the axle housing. Selective shims are used between the pinion cage and the axle housing to set the pinion depth.

The ring gear is bolted onto the differential case with right-hand thread bolts.

The differential is used to allow the wheels to turn at different rates of speed while the rear axle continues to transmit the driving force. This prevents tire scuffing when going around corners and prevents premature wear on internal axle parts.

The rear axle is sealed with a pinion seal, a gasket at each axle shaft end, and by a gasket between the rear axle housing and the differential carrier.

The Rockwell axle is identified by the model number on the carrier. This axle has a separate carrier, an overhung pinion, and incorporates disk brakes.

DISASSEMBLY OF THE REAR AXLE

Remove or Disconnect (Figures 1 and 2)

Tools Required:
- J 22912 Split Type Puller Plate
- J 7804-01 Pinion Flange Puller
- J 22912 Rear Pinion Bearing Remover
- J 3453 Pinion Flange Holding Bar

1. Axle shafts. Refer to the proper service manual.
2. Carrier to housing bolts (47) and washers (45).
 - Loosen but do not remove the two upper bolts to keep the carrier from falling.
3. Carrier (46) from the axle housing.
 - Using a roller jack, support the carrier, and remove it from the axle housing.
 - Use a rawhide hammer to break the carrier loose from the housing.
 - Remove the two upper bolts (47).
 - Place the carrier in a suitable holding fixture (figure 3).
Figure 1—Rear Axle Components
1. Bolt
2. Washer
3. Hub Cap
4. Gasket
5. Axle Shaft
6. Adjusting Nut
7. Lock Ring
8. Thrust Washer
9. Wheel Hub
10. Thrust Spacer
11. Bearing
12. Retaining Ring
13. Rotor
14. Bearing
15. Hub Oil Seal
16. Deflector
17. Bolt
18. Brake Caliper Bracket
19. Bolt
20. Axle Housing
21. Bracket
22. Axle Vent
23. Bolt
24. Washer
25. Bearing Cap
26. Nut
27. Washer
28. Bracket
29. Plug
30. Gasket
31. Pin
32. Adjusting Nut
33. Bearing
34. Nut
35. Washer
36. Differential Case
37. Pinion and Ring Gear Set
38. Side Gear Thrust Washer
39. Ring Gear Bolt
40. Pinion Spider
41. Pinion Gears
42. Pinion Thrust Washers
43. Side Gears
44. Bolt
45. Washer
46. Carrier
47. Bolt
48. Thrust Block Screw
49. Nut
50. Pinion Depth Shims
51. Retaining Ring
52. Bearing
53. Bearing
54. Pinion Cage
55. Washer
56. Bolt
57. Bearing
58. Pinion Oil Seal
59. Deflector
60. Pinion Flange
61. Washer
62. Nut
63. Backing Plate

Figure 2—Rear Axle Components

- Loosen the jam nut (49) and back off the thrust block adjusting screw (48) (figure 4).
- Center punch one differential carrier leg and bearing cap to identify the cap for reassembly (figure 5).
- Bearing cap bolts (23).
- Bearing caps (25) (figure 6).
- Adjusting nuts (32).
- Differential and gear assembly (36) from the carrier (figure 7).
- Scribe a mark across the differential case halves.

- Differential case bolts (44).
- The top case half (36) (figure 8).
- Side gears (43) and thrust washers (38) (figure 9).
- Pinion gears (41) and thrust washers (42).
- Differential pinion spider (40).
- Ring gear nuts (34), washers (35), and bolts (39).
- Ring gear (37) from the differential case.
- Differential side bearings (33) using J 22912 and an arbor press (figure 10).
 - Mark the bearings as left and right.

Figure 3—Carrier in the Repair Stand

Figure 4 — Loosening the Thrust Adjusting Screw
16. Pinion shaft nut (62) and washer (61) using J 3453 to hold the pinion yoke (figure 11).
17. Pinion yoke (60) using J 7804-01 (figure 12).
18. Pinion cage (54) from the carrier by using bolts in the puller holes of the cage. Thread the bolts in, to push the cage away from the carrier (figure 13).
19. Shim pack (50) from the cage.
 * Wire the shims together.
20. Pinion gear (37) from the cage by pressing it out in an arbor press.
21. Pinion oil seal (58) from the pinion cage.
22. Outer bearing (57) from the cage.
23. Inner bearing (53) from the pinion using J 22912 and an arbor press (figure 14).
24. Pilot bearing retaining ring (51).
25. Pilot bearing (52) from the pinion gear (37) using J 22912.

CLEANING

Do not steam clean drive parts having ground and polished surfaces such as gears, bearings, and shafts. These parts should be cleaned in a suitable solvent. All parts should be disassembled before cleaning.

Parts should be thoroughly dried immediately after cleaning. Use soft, clean, lintless rags. Parts may be dried with compressed air. Do not allow the bearings to spin while drying them with compressed air.

INSPECTION

It is very important to carefully and thoroughly inspect all drive unit parts before reassembly.

Through inspection of the drive parts for wear or stress and subsequent replacement of worn parts will eliminate costly drive component repair after reassembly.
AXLE HOUSING
Inspect
- The carrier bore for nicks or burrs that would prevent the outer diameter of the pinion seal from sealing. Remove any burrs that are found.
- The bearing cup bores for nicks or burrs. Remove any burrs that are found.
- The housing for cracks. Replace the housing if any cracks are found.
- The housing for foreign material such as metal chips, dirt, or rust. Refer to “Cleaning” in this section.

DIFFERENTIAL
Inspect
- Pinion gear shaft for unusual wear.
- Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
- Thrust washers for wear.
- The fit of the differential side gears in the differential case.
- The fit of the side gears on the axle shafts.
- Differential case for cracks and scoring.
- Replace all worn parts.

PINION AND RING GEAR
Inspect
- Pinion and ring gear teeth for cracking, chipping, scoring, or excessive wear.
- Pinion splines for wear.
- Pinion flange splines for wear.
- The fit of the pinion on the pinion flange.
- The sealing surface of the pinion flange for nicks, burrs, or rough tool marks which would cause damage to the seals’ inside diameter and result in an oil leak.
- Pinion cages for cracks, imperfections, corrosion, pits and grooves.
- Replace all worn or broken parts.
- Ring and pinion gears are matched sets and are both replaced any time a replacement of either is necessary.

BEARINGS
Inspect
- Bearings visually and by feel. The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.
- The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.
- Bearing cups for wear, cracks, brinelling and scoring.
- Bearings and cups are only replaced as sets.
- If the rear axle was operated for an extended period of time with very loose bearings, the ring gear and drive pinion will also require replacement.
- Low mileage bearings may have minutes scratches and pits on the rollers and the bearing cups from the initial preload. Do not replace a bearing for this reason.

DIFFERENTIAL
Inspect
- Pinion gear shaft for unusual wear.
- Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
- Thrust washers for wear.
- The fit of the differential side gears in the differential case.
- The fit of the side gears on the axle shafts.
- Differential case for cracks and scoring.
- Replace all worn parts.

PINION AND RING GEAR
Inspect
- Pinion and ring gear teeth for cracking, chipping, scoring, or excessive wear.
- Pinion splines for wear.
- Pinion flange splines for wear.
- The fit of the pinion on the pinion flange.
- The sealing surface of the pinion flange for nicks, burrs, or rough tool marks which would cause damage to the seals’ inside diameter and result in an oil leak.
- Pinion cages for cracks, imperfections, corrosion, pits and grooves.
- Replace all worn or broken parts.
- Ring and pinion gears are matched sets and are both replaced any time a replacement of either is necessary.

BEARINGS
Inspect
- Bearings visually and by feel. The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.
- The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.
- Bearing cups for wear, cracks, brinelling and scoring.
- Bearings and cups are only replaced as sets.
- If the rear axle was operated for an extended period of time with very loose bearings, the ring gear and drive pinion will also require replacement.
- Low mileage bearings may have minutes scratches and pits on the rollers and the bearing cups from the initial preload. Do not replace a bearing for this reason.

ASSEMBLY OF THE REAR AXLE

PINION ASSEMBLY
Install or Connect (Figures 1 and 2)
Tools Required:
J 23723 Bearing Installer
J 3453 Flange Holding Bar
J 3154-04 Seal Installer
- Lubricate all parts with axle lubricant.
1. Pinion rear bearing (57) onto the pinion.
 - Press the bearing onto the pinion using J 23723.
2. Pinion pilot bearing (52) onto the pinion.
 - Press the bearing onto the pinion.
3. Bearing lock ring (51).
 - The ring must seat in the pinion ring land.
4. Pinion (37) into the cage (54).
5. Spacer over the pinion shaft.
6. Pinion front bearing (57).
 - Press the bearing onto the pinion using J 23723.
 - Rotate the cage several times to initially seat the bearings.
 - Place the pinion assembly in a press, and apply a load of 11 tons.
 - Wrap a soft wire around the cage and pull on the line with a pound scale. Measure the rotating torque, not the starting torque (figure 15).
 - The rotating torque should be 5 to 15 in. lbs. To determine the inch pounds:
 - Determine the diameter of the pinion cage in inches.
12-INCH RING GEAR (ROCKWELL) 4B6–7

Figure 16—Installing the Pinion Flange

- Divide the diameter by 2 to find the radius in inches.
- Multiply the radius by the number of pounds on the scale.
- Use a thinner spacer to increase bearing preload, and a thicker spacer to decrease bearing preload.
7. Pinion flange (60) to the pinion (figure 16).
 - Press the flange onto the pinion.
8. Pinion washer (61) and nut (62) using J 3453 to hold the pinion (figure 17).
 - Nut (62) to 325 N·m (240 ft. lbs.).

Figure 17—Installing the Pinion Nut

12. Pinion washer (61) and a new nut (62) using J 3453 to hold the pinion (figure 17).
 - Nut (62) to 325 N·m (240 ft. lbs.).

PINION INSTALLATION

Install or Connect

- Measure the pinion bearing shims (50). If a new pinion and ring gear set is installed, the pinion bearing shim pack must be adjusted.
- Examine the heads of the new and old drive pinions. Compare these codes, and adjust the pinion bearing shim pack accordingly. The chart in figure 20, shows the proper adjustment to be made to the shim pack.
- If the original pinion is being used, the original pinion shims should also be used.
1. Pinion bearing shims (50) to the pinion cage.
 - The shims, housing, and cage must be clean.
2. The pinion cage (54) to the axle housing.
3. Cage bolts (56).

Tighten
- Bolts to 48 N·m (35 ft. lbs.).

DIFFERENTIAL CASE ASSEMBLY

Install or Connect
- Lubricate all parts with rear axle lubricant.
1. Differential pinion gears (41) and thrust washers (42) to the spider (40) (figure 21).
2. Differential side gears (43) and thrust washers (38) to the differential case halves in their original locations.
3. Differential spider (40) to the differential.
4. The case halves (figure 22).
 - Align the scribe marks on the case halves.
5. Case bolts (44).

6. Ring gear (37) to the differential.
 - Thread two studs into the ring gear on opposite sides.
 - Place the ring gear onto the case, and align the holes in the case with the studs.
7. New ring gear bolts (44).
 - Tighten the ring gear bolts alternately in stages gradually pulling the ring gear onto the differential case.

Tighten
- Bolts (44) to 61 N·m (45 ft. lbs.).
- Check that the mating surfaces of the differential case and the ring gear are clean and burr free.
- The ring gear must be heated before assembly to the differential case. Heat the ring gear in water to 160° — 180° F for 10 minutes before assembly.
8. Differential side bearings (33).
DIFFERENTIAL INSTALLATION

Install or Connect
1. Bearing cups (33) to the carrier (36).
4. Cap bolts (23).

Tighten
- Bolts to 176 N·m (130 ft. lbs.).
- The bearing cups must have a hand fit in the bearing bores: If the fit is too tight, rework the bore with emery cloth, until a hand fit is obtained (figure 23).

Remove or Disconnect
1. Cap bolts (23).
2. Bearing caps (25).
3. Adjusting nuts (32).
4. Bearing cups (33).

Install or Connect
- Lubricate all parts with axle lubricant.
1. Bearing cups (33) onto the bearings.
2. Differential assembly (36) to the carrier.
 - Turn the nuts hand-tight against the bearing cups.
 - Tap lightly into position.
5. Cap bolts (23).

Tighten
- Bolts to 176 N·m (130 ft. lbs.).

CHECKING RING GEAR RUN OUT

Measure
1. Ring gear run out.
 - Mount a dial indicator to the carrier. The dial indicator stem should rest on the back face of the ring gear.
 - Loosen the adjusting nut opposite the ring gear enough to notice end play on the indicator.
 - Tighten the same adjusting nut just enough to have 0.000-inch end play on the indicator.
 - Rotate the gear, and check for run out. If the run out exceeds 0.008-inch, remove the differential, and determine the cause.

BACKLASH ADJUSTMENT
- The differential side bearing preload is adjusted by two adjusting nuts in the differential bearing bore. The bore and the bearing cap provide the mating threads for the bearing nut.
- The differential must be initially preloaded in order to determine the backlash of the gear set. After the backlash has been set, the final bearing preload is set.
4B6-10 12-INCH RING GEAR (ROCKWELL)

FINAL ASSEMBLY

Install or Connect

1. Carrier (46) to the axle housing. Refer to the proper service manual.

2. Drive axles. Refer to the proper service manual.

3. The axle housing to the vehicle. Refer to the proper service manual.

4. Lubricant to the rear axle.

SPECIFICATIONS

12-INCH RING GEAR AXLE (ROCKWELL)

<table>
<thead>
<tr>
<th>FASTENER</th>
<th>N·m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piston Nut</td>
<td>325</td>
<td>240</td>
</tr>
<tr>
<td>Pinion Cage Bolts</td>
<td>48</td>
<td>35</td>
</tr>
<tr>
<td>Case Half Bolts</td>
<td>61</td>
<td>45</td>
</tr>
<tr>
<td>Ring Gear Bolts</td>
<td>136</td>
<td>100</td>
</tr>
<tr>
<td>Bearing Cap Bolts</td>
<td>176</td>
<td>130</td>
</tr>
</tbody>
</table>

SHIM SIZES

<table>
<thead>
<tr>
<th></th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive Pinion Bearing Retainer Shim</td>
<td>0.003-inch, 0.005-inch</td>
</tr>
<tr>
<td>Outer Pinion Bearing Shim</td>
<td>0.003-inch, 0.005-inch, 0.010-inch, 0.030-inch</td>
</tr>
<tr>
<td>Inner Pinion Bearing Shim</td>
<td>0.003-inch, 0.005-inch, 0.010-inch</td>
</tr>
<tr>
<td>Drive Pinion Bearing Spacer</td>
<td>0.172-inch, 0.173-inch, 0.174-inch, 0.175-inch, 0.176-inch, 0.177-inch, 0.183-inch, 0.189-inch, 0.195-inch, 0.201-inch</td>
</tr>
</tbody>
</table>

Lubricant ... 80W-90 GL-5
SPECIAL TOOLS

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>![Image 1]</td>
<td>J-3154-04</td>
</tr>
<tr>
<td>2.</td>
<td>![Image 2]</td>
<td>J-3453</td>
</tr>
<tr>
<td>3.</td>
<td>![Image 3]</td>
<td>J-23723-7</td>
</tr>
<tr>
<td>5.</td>
<td>![Image 5]</td>
<td>J-22912-01</td>
</tr>
</tbody>
</table>

1. Seal Installer Set
2. Flange Holding Bar
3. Differential Side Bearing Installer
4. Yoke Remover
5. Rear Pinion Bearing Cone Remover

Special Tools
SECTION 4B7

LOCKING DIFFERENTIAL

CONTENTS

SUBJECT PAGE
Locking Differentials ... 4B7-1
7 1/2, 7 5/8, 8 1/2 and 9 1/2-Inch Ring Gear 4B7-1
10 1/2-Inch Ring Gear ... 4B7-5
Specifications ... 4B7-9
Special Tools .. 4B7-10

LOCKING DIFFERENTIALS

7 1/2, 7 5/8, 8 1/2 AND 9 1/2-INCH RING GEAR

DISASSEMBLY OF THE DIFFERENTIAL

Remove or Disconnect (Figure 1)

Tools Required:
J 26252 Governor Remover
1. Governor bushing (4) using J 26252 (figure 2).
2. The C-clips that hold the latching bracket in place on the bracket shaft.
 • Move the bracket down the shaft.
3. Latching bracket bushing (5) using J 26252.
4. Latching bracket (11), shaft, and spring from the case.
5. Governor assembly (11) from the case.
6. Stop pin (2) (9 1/2-inch only).
7. Lockscrew (3).
8. Pinion shaft (18).
9. Differential pinion gears (7) and pinion thrust washers (6).
 • Roll the gears out of the case by rotating one of the side gears.
10. Thrust block (17).
11. Right side gear (10).
12. Right disc pack (9) and side thrust washer.
13. Left side gear (21), cam plate (16), and disc pack (12) as an assembly (cam unit).
14. Side gear thrust washer (13).

CAM UNIT DISASSEMBLY - 7 1/2 AND 8 1/2-INCH

Remove or Disconnect (Figures 1 and 3)

1. Snap ring (22).
2. Clutch plates.
4. Wave spring.
5. Cam plate (16).
6. Cam side gear (21).

CAM UNIT DISASSEMBLY - 9 1/2-INCH

Tools Required:
J 22912-01 Bearing Remover
- Measure and record the overall length of the gear assembly from the front of the gear to the back of the thrust sleeve (14) including the side gear washer (13).
2. Thrust sleeve (14) using J 22910-01.
 • Press the sleeve from the side gear (figure 4).
3. Lock plates.
4. Wave spring.
5. Cam plate (16).
6. Cam side gear (21).

CLEANING AND INSPECTION

Clean
- All parts with solvent.

Inspect
- All parts for excessive wear and breakage.
- Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
- Thrust washer for wear.
- The fit of the side gears on the axle shafts.
- Differential case for cracks and scoring.
- Thrust sleeve for excessive wear. Do not replace the thrust sleeve unless necessary. Inspect the side gear bore for scoring. If scoring is present, replace the entire differential.
- Replace parts as necessary.
Figure 1—Differential Components

- **A.** 7\(\frac{1}{2}\)-Inch Ring Gear
- **B.** 8\(\frac{1}{2}\)-Inch Ring Gear
- **C.** 9\(\frac{1}{2}\)-Inch Ring Gear
- **1.** Differential Case
- **2.** Stop Pin (9\(\frac{1}{2}\) Only)
- **3.** Lock Screw
- **4.** Governor Bushing
- **5.** Latching Bracket Bushing
- **6.** Pinion Thrust Washer
- **7.** Pinion Gear
- **8.** Side Gear Thrust Washer
- **9.** Clutch Plates
- **10.** Side Gear
- **11.** Latching Bracket
- **12.** Clutch Plates
- **13.** Side Gear Thrust Washer
- **14.** Side Thrust Sleeve (9\(\frac{1}{2}\) Only)
- **15.** Wave Washer
- **16.** Cam Plate
- **17.** Thrust Block
- **18.** Pinion Shaft
- **19.** Guide Clip
- **20.** Guide Clip
- **21.** Side Cam Gear
- **22.** Retaining Ring
- **23.** Governor

Figure 2—Removing the Governor Bushings

Figure 3—Removing the Retaining Ring
CAM UNIT ASSEMBLY - 7 1/2 AND 8 1/2-INCH

Install or Connect

1. Cam plate (16) to the cam side gear (21).
2. Wave spring.
3. Clutch plates (7 1/2 - 7 5/16 - 8 plates. 8 1/2 - 10 plates.)
 - Alternate the plates as shown in figure 2.
4. Snap ring.
5. Guide clips (20) to the plates.
 - Use grease in the clips to hold them in place on the plates.

CAM UNIT ASSEMBLY - 9 1/2-INCH

Install or Connect

1. Cam plate (16) to the cam side gear (21).
2. Wave spring.
3. Clutch plates.
 - Alternate the plates as shown in figure 1.
4. Thrust sleeve (14).
 - Press the thrust sleeve flush with the side gear disc splines.
5. Guide clips (20) to the plates.
 - Use grease in the clips to hold them in place on the plates.
 - If the side gear or thrust sleeve has been replaced, measure and record the overall length of the gear assembly from the front of the gear to the back of the thrust sleeve (14) including the side gear washer (13).
 - Compare this reading with the reading obtained earlier in this section.
 - If the new reading is more than 0.003-inch higher or lower than the original, select a thrust washer that will return the reading closest to the original reading.

ADJUSTMENT OF THE DIFFERENTIAL

- If it is necessary to replace the cam gear, the right side gear, or the thrust block, the entire differential must be adjusted. The differential is adjusted by using selective thickness thrust washers behind each side gear, and a selective thickness thrust block between the side gears.
- It is important to build up the differential properly, as the proper clearances between parts is necessary for the proper operation of the units.
- There are three adjustments to be made:
 1. Left side gear backlash.
 2. Right side gear backlash.
 3. Thrust block clearance.

Left Side Gear Backlash Adjustment

1. Install the cam unit and thrust washer (13) to the flange end of the case.
2. Place the pinion gears (7) and thrust washers into the differential.
 - Align them with the pinion shaft hole.
3. Press down the side gear, and install the pinion shaft (18) and lock screw (3).
 - If the side gear cannot be pressed down far enough to install the pinion shaft replace the thrust washer with a thinner washer.
4. Rotate the pinion gear closest to the lock screw so that one of the teeth is pointing downward (perpendicular to the ring gear flange).
5. Insert a large tapered tool such as a screwdriver firmly between the side gear and the pinion shaft.
6. Mount a dial indicator to the ring gear flange, and place the stem of the indicator on one of the teeth on the pinion gear closest to the lock screw (figure 5).
7. Pull the pinion gear firmly into its seat, and rotate the gear back and forth while reading the dial indicator. Record the reading.
8. Repeat steps 4 - 7 on the opposite pinion gear.
9. The backlash should be between 0.254 and 0.457 mm (0.010 and 0.018-inch).
10. If the backlash is too high, use a thicker thrust washer.
11. If the backlash is too low, use a thinner thrust washer.

Right Side Gear Backlash Adjustment

1. Assemble the clutch plates.
 - Alternate the plates as shown in figure 1.
2. Assemble the guide clips (19) to the plates.
 - Use grease in the clips to hold them in place on the plates.
3. Install the thrust washer (8), clutch plate assembly (9), and right side gear to the differential.
4. Place the pinion gears (7) and thrust washers (6) into the differential.
 - Align them with the pinion shaft hole.
5. Press down the side gear, and install the pinion shaft (18) and lock screw (3).
 - If the side gear cannot be pressed down far enough to install the pinion shaft, replace the thrust washer with a thinner washer.
6. Rotate the pinion gear closest to the lock screw so that one of the teeth is pointing downward (perpendicular to the ring gear flange).
7. Insert a large tapered tool such as a screwdriver firmly between the side gear and the pinion shaft.
8. Mount a dial indicator to the ring gear flange, and place the stem of the indicator on one of the teeth on the pinion gear closest to the lock screw (figure 5).
9. Pull the pinion gear firmly into its seat, and rotate the gear back and forth while reading the dial indicator. Record the reading.
10. Repeat steps 6 through 9 on the opposite pinion gear.
11. The backlash should be between 0.051 and 0.243 mm (0.002 - 0.010-inch).
12. If the backlash is too high, use a thicker thrust washer.
13. If the backlash is too low, use a thinner thrust washer.

Thrust Block Clearance Adjustment

Install or Connect

1. Left thrust washer (13) to the differential.
2. Cam unit to the differential.
3. Right thrust washer (8) to the differential.
4. Right clutch plates with guide clips (19).
 - Assemble alternatively as shown in figure 1.
5. Right side gear (10).
6. Thrust block (17), thrust washer (6), and pinion gear (7).
 - Place the pinion gears into the differential 180 degrees apart.
 - Rotate the gears and thrust block into position.

Measure

- Remove the telescoping gage.
1. Measure the telescoping gage with a micrometer.
2. Measure the original thrust block at the outer corner with a micrometer (figure 7).
 - If the thrust block thickness is not 0.000 to 0.006-inch less than the side gear spread, adjust the clearance by:
LOCKING DIFFERENTIALS 4B7-5

Figure 8—Governor and Latching Bracket

- The open side of the thrust block must face toward the small window opening.
7. Pinion shaft (18).
 - Tighten to specifications after it's in the vehicle.
9. Governor assembly (23) and latching bracket (11).
 - The straight end of the latching bracket spring must be over and outside the governor assembly shaft (figure 8).
10. Stop pin (2) (9½-inch)
 - Press the pin flush with the case.
11. Governor bushing (4).
 - Use the bushing with a straight hole, not a tapered hole.
 - Press the bushing in far enough to give 0.004 to 0.020-inch shaft end play.
12. Latching bracket bushing (5).
 - Press in far enough to eliminate all end play.

10½-INCH RING GEAR

DISASSEMBLY OF THE DIFFERENTIAL

Remove or Disconnect (Figure 9)

Tools Required:
J 22912-01
1. The ring gear and differential side bearings. Refer to "Disassembly of the Rear Axle" under the "10½-inch Ring Gear" heading.
 - Set the unit on the right side case half.
3. Case halves (figure 10).
 - Pry the halves apart at the yoke hole location.
 - Hold the side gear in the left side case half.
4. Governor assembly (48).
5. Latching bracket assembly (43).
7. Left side clutch pack and guide clips (47).
8. Left thrust washer (45).
9. Reaction blocks (41), pinion yoke (42), pinion gears (39), and pinion thrust washers (38).
10. Right cam unit from the differential.
11. Right thrust washer (36).
 - Measure and record the overall length of the gear assembly from the front of the gear to the back of the thrust sleeve (35) including the side gear washer (36).
12. Thrust sleeve (35) using J 22912-01.
 - Press the sleeve from the side gear (figure 11).
13. Clutch plates.
15. Wave spring.
16. Cam plate (33).
17. Cam side gear (40)

CLEANING AND INSPECTION

Clean
- All parts with solvent.

Inspect
- All parts for excessive wear and breakage.
- Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
- Thrust washers for wear.
- The fit of the side gears on the axle shafts.
- Differential case for cracks and scoring.
- Thrust sleeve for excessive wear. Do not replace the thrust sleeve unless necessary. Inspect the side gear bore for scoring. If scoring is present, replace the entire differential.
- If any damage to the differential case is found, the entire differential must be replaced.
- Replace parts as necessary.

CAM UNIT ASSEMBLY

Install or Connect (Figure 9)

1. Cam plate (33) to the cam side gear (40).
2. Wave spring.
3. Clutch plates.
 - Alternate the plates, and position the wave spring as shown in figure 12.
4. Thrust sleeve (35).
 - Press the thrust sleeve flush with the side gear disc spline.
5. Guide clips (34) to the plates.
 - Use grease in the clips to hold them in place on the plates.
- If the side gear or thrust sleeve has been replaced, measure and record the overall length of the gear to the back of the thrust sleeve (35) including the side gear thrust washer (36).
- Compare this reading with the reading obtained earlier in this section.
- If the new reading is more than 0.003-inch higher or lower than the original, select a thrust washer that will return the reading closest to the original reading.
ADJUSTMENT OF THE DIFFERENTIAL

- If it is necessary to replace the cam gear, the right hand side gear, or the reaction blocks, the entire differential must be adjusted. The differential is adjusted by using selective thickness thrust washers behind each side gear, and selective thickness reaction blocks between the side gears.
- It is important to build up the differential properly. The proper clearance between parts is necessary for the proper operation of the unit.
• There are three adjustments to be made:
 (1) Left side gear backlash.
 (2) Right side gear backlash.
 (3) Thrust block clearance.

Right Side Gear Backlash Adjustment
1. Install the cam unit and thrust washer (36) to the right case half.
2. Clamp the cam unit in place using a set of washers, nut, and a bolt long enough to hold the cam unit in place (figure 13).
3. Place the pinion gears and thrust washers on the pinion yoke.
4. Install the yoke firmly to the differential case half (figure 14).
5. Loosen the nut, and index one pinion gear tooth to point downward (perpendicular to the case half face). Tighten the nut.
6. Mount a dial indicator on the case half face using a magnetic base (figure 15).
7. Place the stem of the dial indicator on the pinion gear tooth.

Figure 11—Removing the Thrust Sleeve

Figure 12—Cam Unit Components

Figure 13—Clamping the Cam Unit In Place

Figure 14—Installing the Pinion Yoke

Figure 15—Measuring Backlash
8. Pull the pinion gear firmly into its seat, and rotate the gear back and forth while reading the dial indicator. Record the reading.
• Do not unseat the pinion yoke. This will make the backlash reading inaccurate.
9. Repeat steps 5 - 8 on the other 2 pinions. Record the readings.
10. The backlash should be between 0.254 and 0.457 mm (0.010 and 0.018-inch).
11. If the backlash is too high, use a thicker thrust washer.
12. If the backlash is too low, use a thinner thrust washer.

Left Side Gear Backlash Adjustment
1. Assemble the clutch plates.
• Alternate the plates as shown in figure 12.
2. Assemble the guide clips (47) to the plates.
• Use grease in the clips to hold them in place on the plates.
3. Install the thrust washer (45), clutch plate assembly (44), and left side gear to the differential.
4. Clamp the side gear in place using a set of washers, a nut, and a bolt long enough to hold the side gear in place (figure 13).
5. Place the pinion gears and thrust washers on the pinion yoke.
6. Install the yoke firmly to the differential case half.
7. Loosen the nut, and index one pinion gear tooth to point downward (perpendicular to the case half face). Tighten the nut.
8. Mount a dial indicator on the case half face using a magnetic base (figure 15).
9. Place the stem of the dial indicator on the pinion gear tooth.
10. Pull the pinion gear firmly into its seat, and rotate the gear back and forth while reading the dial indicator. Record the reading.
• Do not unseat the pinion yoke. This will make the backlash reading inaccurate.
11. Repeat steps 7 - 10 on the other 2 pinions. Record the readings.
12. The backlash should be between 0.051 and 0.254 mm (0.002 and 0.010-inch).
13. If the backlash is too high, use a thicker thrust washer.
14. If the backlash is too low, use at thinner thrust washer.

Reaction Block Clearance Adjustment
1. Left thrust washer, plates and side gear. Bolt them into position. Refer to "Left Side Gear Backlash Adjustment".
2. Right thrust washer and cam assembly. Bolt them into position. Refer to "Right Side Gear Backlash Adjustment".
• Measure the distance from the side gear face to the case half face (figure 16).
• The thickness of the straight edge must be subtracted from the reading.
• Add the measurement of both sides together. This is the side gear spread.

ASSEMBLY OF THE DIFFERENTIAL
1. Right thrust washer.
2. Right cam unit. Refer to "Cam Unit Assembly".
3. Reaction blocks (41), pinion yoke (42), pinion gears (39), and pinion thrust washers (38).
4. Left thrust washer (45).
• Assemble the plates as shown in figure 9 and 12.
LOCKING DIFFERENTIALS 4B7-9

5. Left side gear (46)
6. Latching bracket assembly (43).
7. Governor assembly (48).
 • The straight end of the latching bracket spring must be over and outside the governor assembly shaft.

8. Case halves (31) together.
 • Hold the side gear in the left side case half.
10. The ring gear and differential side bearings. Refer to "Assembly of the Rear Axle" under the "10 1/2-Inch Ring Gear" heading.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>FASTENER</th>
<th>N·m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Lockscrew</td>
<td>36</td>
<td>27</td>
</tr>
<tr>
<td>7 1/2, 7 5/8, and 8 1/2-inch</td>
<td>50</td>
<td>37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THRUST BLOCK SIZES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color Code</td>
</tr>
<tr>
<td>Purple</td>
</tr>
<tr>
<td>White</td>
</tr>
<tr>
<td>Brown</td>
</tr>
<tr>
<td>Yellow</td>
</tr>
<tr>
<td>Orange</td>
</tr>
<tr>
<td>Pink</td>
</tr>
<tr>
<td>Green</td>
</tr>
<tr>
<td>Blue</td>
</tr>
<tr>
<td>Black</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REACTION BLOCK SIZES — 10 1/2-INCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color Code</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RIGHT HAND SIDE GEAR THRUST WASHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 1/2, 7 5/8, 8 1/2 and 9 1/2 Inch Axles</td>
</tr>
<tr>
<td>0.10-inch</td>
</tr>
<tr>
<td>0.15-inch</td>
</tr>
<tr>
<td>0.20-inch</td>
</tr>
<tr>
<td>0.25-inch</td>
</tr>
<tr>
<td>0.30-inch</td>
</tr>
<tr>
<td>0.35-inch</td>
</tr>
<tr>
<td>0.40-inch</td>
</tr>
<tr>
<td>0.45-inch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEFT HAND SIDE GEAR THRUST WASHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 1/2-Inch, 7 5/8-Inch</td>
</tr>
<tr>
<td>0.022-inch</td>
</tr>
<tr>
<td>0.027-inch</td>
</tr>
<tr>
<td>0.032-inch</td>
</tr>
<tr>
<td>0.036-inch</td>
</tr>
<tr>
<td>0.040-inch</td>
</tr>
<tr>
<td>—</td>
</tr>
<tr>
<td>0.044-inch</td>
</tr>
<tr>
<td>0.048-inch</td>
</tr>
<tr>
<td>0.052-inch</td>
</tr>
</tbody>
</table>

Lubricant ... 80w90 GL-5
(Do not use limited slip additive.)
1. Rear Pinion Bearing Cone Remover
2. Locking Differential Governor Remover
SECTION 4C
FRONT AXLE

CONTENTS

SUBJECT PAGE
8 1/2-Inch Ring Gear Front Axle ... 4C1-1
9 3/4-Inch Ring Gear Front Axle ... 4C2-1
T Truck Front Axle .. 4C3-1
K Truck Front Axle .. 4C4-1

SECTION 4C1
8 1/2-INCH RING GEAR

CONTENTS

SUBJECT PAGE
Description .. 4C1-1
Disassembly of Axle .. 4C1-2
Inspection .. 4C1-2
Disassembly .. 4C1-2
Cleaning and Inspection ... 4C1-5
Cleaning ... 4C1-5
Inspection ... 4C1-5
Assembly of Axle .. 4C1-6
Pinion Bearing Cup Installation ... 4C1-6
Pinion Depth Adjustment ... 4C1-7
Pinion Installation .. 4C1-7
Differential Case Assembly ... 4C1-7
Side Bearing Preload Adjustment ... 4C1-9
Backlash Adjustment ... 4C1-10
Gear Tooth Contact Pattern Check .. 4C1-11
Final Assembly ... 4C1-12
Specifications ... 4C1-13
Special Tools .. 4C1-14

DESCRIPTION

The GM 8 1/2-inch ring gear front axle uses a conventional ring gear and pinion gear set to transmit the driving force of the engine to the wheels. This gear set transfers this driving force at a 90 degree angle from the propeller shaft to the drive shafts.

This axle is full-floating. The shafts are retained in the housing by retaining clips in the hubs.

The pinion gear is supported by two tapered roller bearings. The pinion depth is set by a shim pack located between the gear end of the pinion and the roller bearing that is pressed onto the pinion. The pinion bearing preload is set by crushing a collapsible spacer between the bearings in the axle housing.

The ring gear is bolted onto the differential case with left-hand thread bolts.

The differential case is supported in the axle housing by two tapered roller bearings. The differential and ring gear are located in relationship to the pinion by using selective shims between the bearing and the axle housing. To move the ring gear, shims are deleted from one side and an equal amount area added to the other side. These shims are also used to preload the bearings,
which are pressed onto the differential case. Two bearing caps are used to hold the differential into the front axle housing.

The differential is used to allow the wheels to turn at different rates of speed while the front axle continues to transmit the driving force. This prevents tire scuffing when going around corners and prevents premature wear on internal axle parts.

The front axle is sealed with a pinion seal, a seal at each axle shaft, and by a gasket between the front cover and the axle housing.

All GM front axles are identified by the part number on the right axle tube near the carrier. The carrier cover does not have a drain plug.

DISASSEMBLY OF AXLE

INSPECTION

Perform the following checks before disassembling the axle.

1. Remove the axle cover from the axle and drain the axle lubricant into a suitable container.
2. Check the ring gear backlash. Refer to "Backlash Adjustment." This information can be used to determine the cause of the axle problem. It will also help when setting up the shim packs for locating and preloading the differential case.
3. Inspect the case for metal chips. Determine where the metal chips come from, such as a broken gear or bearing cage.
4. Determine the cause of the axle problem before disassembly if possible.

DISASSEMBLY

Remove or Disconnect (Figure 1)

Tools Required:

- J 8107-4 Differential Side Bearing Remover Plug
- J 22888 Differential Side Bearing Remover
- J 8614-01 Pinion Flange Remover
- J 8612-B Rear Pinion Bearing Cone Remover

Place the axle in a suitable support.

1. Differential cover bolts (14) and differential cover (12).
 - Drain the gear lubricant into a proper container.
3. Pinion shaft lock screw (15).
4. Pinion shaft (17).
5. Differential pinion (21) and side gears (22).
 - Roll the pinion gears out of the case with the pinion thrust washers (20).
 - Remove the side gears and the side gear thrust washers (19). Mark the gears and the differential case as left and right.
7. Differential bearing caps (10).
 - Mark the caps and the housing as left and right.

NOTICE: Be careful when prying the differential case out of the axle housing so as not to damage the cover gasket surface. The differential case must be supported when it is being removed to prevent the case from falling and damaging the case.

8. Differential carrier (24)
 - Pry the case from the axle housing at the differential "window" (figure 2).
9. Bearing outer races (8) and shims (9).
 - Mark the races and the shims as left and right, and place them with the bearing caps.
10. Differential side bearings (8) using J 8107-4 and J 22888 (figure 3).
 - The jaws of J 22888 must pull from beneath the bearing cone and not the cage.
11. Ring gear bolts (23).
 - Ring gear bolts use left-hand threads.

NOTICE: Do not pry the ring gear from the case. This will damage the ring gear and the differential case.

12. Ring gear (7) from the differential case.
 - Drive the ring gear off with a brass drift.

13. Pinion flange nut (35) and washer (36) using J 8614-01 to hold the pinion flange (figure 5).
14. Pinion flange using J 8614-01 (figure 6).
15. Pinion (7) from the axle housing.
 - Thread the pinion nut halfway onto the pinion.
 - Replace the differential cover (12) with two bolts (14) to keep the pinion from falling to the floor.
 - Drive the pinion out of the housing with a hammer and a soft drift (figure 7).
16. Collapsible spacer (4) from the pinion.
17. Outer pinion seal (38) and bearing (39).
18. Inner bearing (5) and shim (6) from the pinion.
 - Press the bearing off the pinion using J 8612-B (figure 8).
 - Remove the shim.
19. Bearing cups (5) and (39) from the axle housing using a hammer and a punch.
1. Axle Housing
2. Air Vent
3. Collapsible Spacer
4. Inner Pinion Bearing
5. Shim Pack (including spacer)
6. Bearing Cap
7. Ring and Pinion Gear Set
8. Differential Side Bearing
9. Differential Case
10. Axle Housing
11. Gasket
12. Cover
13. Bolt
14. Bolt
15. Pinion Shaft Lock Screw
16. Pinion Shaft
17. Pinion Nut
18. Washer
19. Pinion Thrust Washer
20. Pinion Thrust Washer
21. Pinion Gear
22. Side Gear
23. Ring Gear Bolt
24. Differential Case
25. Axle Shaft Seal
26. Pinion Nut
27. Washer
28. Pinion Flange
29. Pinion Seal
30. Outer Pinion Bearing
31. Axle Housing
32. Gasket
33. Cover
34. Bolt
35. Pinion Shaft Lock Screw
36. Pinion Shaft
37. Pinion Nut
38. Washer
39. Pinion Thrust Washer
40. Pinion Thrust Washer
41. Pinion Gear
42. Side Gear
43. Ring Gear Bolt
44. Differential Case
45. Axle Shaft Seal
46. Pinion Nut
47. Washer
48. Pinion Flange
49. Pinion Seal
50. Outer Pinion Bearing

Figure 1—Front Axle Components

Figure 2—Prying the Differential Case from the Axle Housing

Figure 3—Removing Differential Side Bearing
• Work the cups out of the housing evenly, moving the punch back and forth between one side of the cup and the other.

20. Axle seals.
CLEANING AND INSPECTION

CLEANING

- Do not steam clean drive parts having ground and polished surfaces such as gears, bearings, and shafts. These parts should be cleaned in a suitable solvent. All parts should be disassembled before cleaning.
- Parts should be thoroughly dried immediately after cleaning. Use soft, clean, lintless rags. Parts may be dried with compressed air. Do not allow the bearings to spin while drying them with compressed air.

INSPECTION

It is very important to carefully and thoroughly inspect all drive unit parts before assembly.

Through inspection of the drive parts for wear or stress and subsequent replacement of worn parts will eliminate costly drive component repair after reassembly.

AXLE HOUSING

- Carrier bore for nicks or burrs that would prevent the outer diameter of the pinion seal from sealing. Remove any burrs that are found.
- Bearing cup surfaces for nicks or burrs. Remove any burrs that are found.
- Housing for cracks. Replace the housing if any cracks are found.
- Housing for foreign material such as metal chips, dirt, or rust. Refer to “Cleaning” in this section.

DIFFERENTIAL

- Pinion gear shaft for unusual wear.
- Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
- Thrust washers for wear.
- Fit of the differential side gears in the differential case.
- Fit of the side gears on the axle shafts.
- Differential case for cracks and scoring.
- Replace all worn parts.

PINION AND RING GEAR

- Pinion and ring gear teeth for cracking, chipping, scoring, or excessive wear.
- Pinion splines for wear.
- Pinion flange splines for wear.
- Fit of the pinion on the pinion flange.
- Sealing surface of the pinion flange for nicks, burrs, or rough tool marks which would cause damage to the seals’ inside diameter and result in an oil leak.
- Replace all worn or broken parts.
- Ring and pinion gears are matched sets and are both replaced any time a replacement of either is necessary.

BEARINGS

- Bearings visually and by feel. The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.
- The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.
- Bearing cups for wear, cracks, brinelling and scoring.
- Bearings and cups are only replaced as sets.
- If the front axle was operated for an extended period of time with very loose bearings, the ring gear and drive pinion will also require replacement.
- Low mileage bearings may have minute scratches and pits on the rollers and the bearing cups from the initial preload. Do not replace a bearing for this reason.
- Bearing caps for cracks or chips.

SHIMS

- Shims for cracks and chips. Damaged shims should be replaced with an equally sized service shim.
ASSEMBLY OF AXLE

PINION BEARING CUP INSTALLATION

Tools Required:
J 8608 Rear Pinion Bearing Cup Installer
J 8611-01 Front Pinion Bearing Cup Installer
J 8092 Driver Handle

1. Front pinion bearing cup using J 8611-01 and J 8092 (figure 9).
2. Rear pinion bearing cup using J 8608 and J 8092 (figure 10).

PINION DEPTH ADJUSTMENT

Tools Required:
J 8001 Dial Indicator Set
J 21777-1 Arbor
J 21777-29 Plate
J 21777-35 Rear Pilot Washer
J 21777-42 Front Pilot Washer
J 21777-43 Stud Assembly - Bolt
J 21777-45 Side Bearing Disc

1. Clean all the gage parts.
2. Lubricate the front and rear pinion bearings with axle lubricant.
3. Place the bearings (5) and (39) into the pinion bearing cups.
5. Hold the stud stationary at the flats of the stud. Tighten the stud nut to 2.2 N·m (20 in. lbs.).
6. Rotate the gage plate and bearings several complete revolutions to seat the bearings.
7. Tighten the stud nut until a torque of 1.6 to 2.8 N·m (15 to 25 in lbs.) is obtained to keep the gage plate in rotation.
8. Assemble J 21777-45, J 21777-1 Arbor, and J 8001 to the differential bearing bore as shown in figure 12.
 - The bearing bores must be clean and burr free.
9. Install the side bearing caps, and tighten the bolts finger tight.
10. Rotate the gage plate until the proper gaging area is parallel with the disks.
11. Position the gage shaft assembly in the carrier so that the dial indicator rod is centered on the gaging area of the gage block.
12. Set the dial indicator at zero. Push the indicator down on the indicator shaft until the needle rotates 3/4 of a turn to the right. Tighten the dial indicator in this position.
13. Rotate the gage shaft slowly back and forth until the dial indicator reads the greatest deflection (when the indicator needle is centered between movement to the left and the right).

14. At the point of greatest deflection, set the dial indicator to zero. Repeat the rocking action of the gage shaft to verify the zero setting.

15. Rotate the gage shaft until the dial indicator rod does not touch the gage block.

16. Record the actual number on the dial indicator and not the number which represents how far the needle travels. This is the nominal pinion setting.

Example: If the indicator needle moved to the left 1.70 mm (0.067-inch) to a dial reading of 0.84 mm (0.033-inch) as shown in figure 13, record the dial reading of 0.84 mm (0.033-inch) not 1.70 mm (0.067-inch).

17. Check the pinion face for a pinion adjustment mark. This mark indicates the best running position for the pinion from the nominal setting.
- If the pinion is stamped with a plus number, add that many thousandths to the nominal setting. If the nominal setting is 0.033-inch and the pinion is marked +2, the correct shim depth would be 0.033-inch + 0.002-inch = 0.035-inch.
- If the pinion is stamped with a minus number, subtract that many thousandths from the nominal setting. If the nominal setting is 0.033-inch and the pinion is marked -2, the correct shim depth would be 0.033-inch - 0.002-inch = 0.031-inch.
- If the pinion has no plus or minus marked on the pinion, use the nominal pinion setting to select a shim.

18. Remove bearing caps and depth gaging tools.

19. Install the correct pinion shim to the pinion according to this procedure.

PINION INSTALLATION

Install or Connect

Tools Required:
- J 8609-01 Rear Pinion Bearing Cone Installer
- J 22388 Pinion Oil Seal Installer
- J 8614-01 Pinion Flange Remover
- J 5590 Rear Pinion Bearing Cone Installer

- The bearing cups should have been installed in "Pinion Depth Adjustment" in this section.

1. The pinion inner bearing (5) using J 8609-01.
 - Press the bearing onto the pinion until the bearing cone seats on the pinion shims.
3. Pinion (7) to the axle housing.
4. Outer pinion bearing (39) onto the pinion using J 5590.
 - Hold the pinion forward from inside the case while driving the bearing onto the pinion.
5. Pinion oil seal (38) using J 22388 (figure 14).
6. The pinion flange (37) to the pinion by tapping it with a rawhide hammer until a few threads show through the pinion flange.
7. The pinion washer (36) and a new nut (35) while holding the pinion flange with J 8614-01 (figure 15).

Tighten

- The nut until the pinion end-play is just taken up. Rotate the pinion while tightening the nut to seat the bearings. Once there is no end-play in the pinion, the preload torque should be checked.
- Remove J 8614-01. Using an inch-pound torque wrench, check the pinion preload by rotating the pinion with the wrench. Preload should be 2.2 to 2.8 N·m (20 to 25 in. lbs.) on new bearings, or 1.1 to 1.6 N·m (10 to 15 in. lbs.) for used bearings (figure 16).
- If the preload torque is below the preloads given above, continue torquing the nut in small increments. Check the preload after each tightening. Each tightening increases the bearing preload by several pounds. If the bearing preload is exceeded, the pinion will have to be removed, and a new collapsible spacer installed.
- Once the preload has been obtained, rotate the pinion several times to make sure that the bearings have seated. Recheck the preload, and adjust if necessary.

DIFFERENTIAL CASE ASSEMBLY

Install or Connect (Figure 1)

Tools Required:
- J 8107-4 Differential Side Bearing Remover Plug
- J 8092 Driver Handle
J 22761 Differential Side Bearing Installer

- Lubricate all parts with rear axle lubricant.

1. Axle seals.
2. Side gear thrust washers (19) to the side gears (22).
3. Side gears (22) to the differential case (24).
 - Place the side gears in place on the same side as removed.
4. Pinion gears (21) to the differential without the thrust washers (20).
 - Place the pinion gears onto the side gears so that the holes in the pinion gears are 180 degrees apart.
 - Rotate the pinion gears into place, and verify that the pinion gears line up with the pinion shaft holes.
5. Pinion thrust washers (20).

- Rotate the pinion gears toward the differential opening just enough to slide in the pinion thrust washers.
- Check that the mating surfaces of the differential case and the ring gear are clean and burr free.

6. Ring gear (7) to the differential case (24).
- Thread two left-hand threaded studs into the ring gear on opposite sides (figure 17).
- Place the ring gear onto the case, and align the holes in the case with the studs.

Figure 13—Checking Pinion Depth

- Figure 14—Installing the Pinion Oil Seal
- Figure 15—Installing the Pinion Flange
8 1/2-INCH RING GEAR 4C1-9

7. New ring gear bolts (23).
 • Tighten the ring gear bolts alternately in stages gradually pulling the ring gear onto the differential case.

8. Differential side bearings (8) using J 22761, J 8107-4 and J 8092 (figure 19).
 • Place J 8107-4 into the differential on the side opposite of the bearing installation to protect the differential case.
 • Drive the bearing onto the case using J 22761 and J 8092.

9. Differential case (24) to the axle housing. Refer to "Side Bearing Preload Adjustment" in this section.

SIDE BEARING PRELOAD ADJUSTMENT

Tool Required:
J 22779 Side Bearing Backlash Gage
• The differential side bearing preload is adjusted by changing the thickness of both the left and right shims equally. This will maintain the original backlash.
• Production shims are cast iron and are not to be reused.
• Service spacers are available from 4.32 to 4.37 mm (0.170 to 0.172-inch) thick.
• Service shims are available in kits from 0.040 to 0.070-inch.
• Be sure that the side bearing surfaces are clean and free of burrs.
1. Place the differential case and the bearing cups into the axle housing.
 • Lubricate the axle bearings with axle lubricant.
Support the case to keep it from falling into the axle housing.
2. Install the strap from J 22779 on the left bearing with the cap bolts. Tighten the bolts snugly.
3. Push the ring gear towards the pinion.
 - Engage the ring gear with the pinion tightly to obtain a backlash of .000 mm to 0.0254 mm (0.000 to 0.001-inch).
4. Insert J 22779 between the axle housing and the left bearing cup (figure 20).
5. Move the tool back and forth in the bore while turning the adjusting nut to the right until a noticeable drag is produced (figure 21).
 - Tighten the lock bolts on the side of the tool.
 - Leave the tool in place.
6. Install a service spacer (9) and a service shim (9) between the right bearing cup and the axle housing.
7. Determine bearing preload by inserting progressively larger feeler gage sizes between the carrier and the service shim.

Figure 20—Installing Side Bearing Gaging Tools

- Push the feeler gage downward so that it contacts the shim at the top and bottom, and then contacts the axle housing.
- The point just before additional drag begins is the correct feeler gage thickness. This is the zero setting without preload.
8. Remove the strap, J 22779, the service spacer, service shim, feeler gage, and differential case from the axle housing.
9. Measure J 22779 in three places using a micrometer. Average the readings (figure 22).
10. Add the dimensions of the service spacer, service shim, and the feeler gage.
11. For an initial backlash setting, move the ring gear away from the pinion by subtracting 0.010-inch from the ring gear side shim pack and adding 0.010-inch to the shim pack on the opposite side.
12. To obtain the proper preload on the side bearings add 0.10 mm (0.004-inch) to the measurement of each shim pack.
13. Install the differential. Refer to "Backlash Adjustment" in this section.

BACKLASH ADJUSTMENT

1. Install the differential case, bearing cups, spacers, and shims as determined from the "Side Bearing Preload Adjustment" earlier in this section (figure 23).
 - Tap the final shim into position, using a soft faced hammer.
2. Rotate the case several times to seat the bearings.
3. Install a dial indicator to the case using a magnetic base.
4. Place the indicator stem at the heel end of a tooth.
 - Set the dial indicator so that the stem is in line with the gear rotation and at a right angle to the tooth angle (figure 24).
5. Install the differential caps (10) and bolts (18).
Tighten

- The bolts to 80 N·m (60 ft·lbf).

6. Check and record the backlash at three or four points around the ring gear.

- The pinion must be held stationary when checking backlash.
- The backlash should be the same at each point within 0.05 mm (0.002-inch). If the backlash varies more than 0.05 mm (0.002-inch), check for burrs, a distorted case flange, uneven bolting conditions, or foreign matter between the case and the ring gear.

7. The backlash at the minimum lash point measured should be between 0.13 and 0.23 mm (0.005 and 0.009) for all new gear sets, 0.08 and 0.28 mm (0.003 and 0.011-inch) for used gear sets.

8. If the backlash is not within specifications, move the ring gear in or out from the pinion by increasing the thickness of one shim, and decreasing the thickness of the other shim by the same amount. This will maintain the correct front axle side bearing preload.

- Moving 0.003-inch worth of shims from one side of the differential to the other will change the backlash adjustment by approximately 0.002-inch.

9. Recheck the backlash and correct as necessary.

GEAR TOOTH CONTACT PATTERN CHECK

Before final assembly of the differential, a gear tooth contact pattern check should be performed.

It should be noted that a gear tooth contact pattern check is NOT a substitute for adjusting pinion depth and backlash as previously outlined. It is a final check to verify the correct running position of the ring gear and the drive pinion. Gear sets which are not positioned properly may be noisy, or have a short life, or both. With a pattern check, the best contact between the ring gear and the drive pinion for low noise level and long life can be assured.

GEAR TOOTH TERMS

The side of the ring gear tooth which curves outward, or is convex, is referred to as the “drive” side. The concave side is the “coast” side. The end of the tooth nearest center of ring gear is referred to as the “toe” end. The end of the tooth farthest away from the center is the “heel” end. The toe end of tooth is smaller than the heel end, (figure 25).

TEST

1. Wipe oil out of carrier and carefully clean each tooth of the ring gear.
2. Use gear marking compound and apply this mixture sparingly to all ring gear teeth using a medium stiff brush. When properly used, the area of pinion tooth contact will be visible when hand load is applied.
3. Tighten the bearing cap bolts to specifications.
4. Apply a load until a torque of 54-70 N·m (40-50 ft. lbs.) is required to turn the pinion.

A test made without loading the gears will not give a satisfactory pattern. Turn the companion flange with a wrench so that the ring gear rotates one full revolution then reverse the rotation so that the ring gear rotates one revolution in the opposite direction. Excessive turning of the ring gear is not recommended.

5. Observe the pattern on the ring gear teeth and compare with figure 26.

ADJUSTMENTS AFFECTING TOOTH CONTACT

Two adjustments can be made which will affect the tooth contact pattern. These are backlash and the position of the drive pinion (pinion depth) in the carrier. The effects of bearing preloads are not easily seen on hand loaded teeth pattern tests; however, these adjustments should be within specifications before proceeding with the backlash and the drive pinion adjustments.

It may be necessary to adjust both pinion depth and the backlash to obtain the correct pattern.

The position of the drive pinion is adjusted by increasing or decreasing the shim thickness between the pinion head and the inner race of the rear bearing. The shim is used in the differential to compensate for manufacturing tolerances. Increasing the shim thickness will move the pinion closer to the centerline of the ring gear. Decreasing the shim thickness will move the pinion farther away from the centerline of the ring gear.

Backlash is adjusted by means of the side bearing adjusting shims which moves the entire case and ring gear assembly closer to, or farther from the drive pinion. (The adjusting shims are also used to set side bearing preload). To increase backlash, increase the right shim and decrease the left shim an equal amount. To decrease backlash decrease the right shim and increase the left shim an equal amount.

It is important that the contact pattern be centrally located up and down on the face of the ring gear teeth.

FINAL ASSEMBLY

Install or Connect (Figure 1)

2. New cover gasket and the cover (12).

Tighten

- Cover bolts (14) to 27 N·m (20 ft. lbs.)
SPECIFICATIONS

8\(\frac{1}{2}\) INCH RING GEAR FRONT AXLE

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Fastener</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Gear Bolts</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>Bearing Cap Bolts</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>Axle Cover Bolts</td>
<td>27</td>
<td>20</td>
</tr>
</tbody>
</table>

AVAILABLE SHIM AND SPACER SIZES

<table>
<thead>
<tr>
<th>Differential Side Bearing Spacer</th>
<th>.064 - .070-inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Side Bearing Kits</td>
<td>.064 - .070-inch</td>
</tr>
<tr>
<td></td>
<td>.046 - .050-inch</td>
</tr>
<tr>
<td></td>
<td>.052 - .056-inch</td>
</tr>
<tr>
<td></td>
<td>.058 - .063-inch</td>
</tr>
<tr>
<td></td>
<td>.072 - .078-inch</td>
</tr>
<tr>
<td></td>
<td>.080 - .086-inch</td>
</tr>
<tr>
<td></td>
<td>.088 - .094-inch</td>
</tr>
<tr>
<td></td>
<td>.096 - .100-inch</td>
</tr>
<tr>
<td>Pinion Bearing Shim Kits</td>
<td>.020 - .024-inch</td>
</tr>
<tr>
<td></td>
<td>.025 - .029-inch</td>
</tr>
<tr>
<td></td>
<td>.030 - .034-inch</td>
</tr>
<tr>
<td></td>
<td>.035 - .039-inch</td>
</tr>
</tbody>
</table>

PINION PRELOAD AND BACKLASH

<table>
<thead>
<tr>
<th>Pinion Preload (New Bearings)</th>
<th>2.2-2.8 N·m (20-25 in. lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Used Bearings)</td>
<td>1.1-1.6 N·m (10-15 in. lbs.)</td>
</tr>
<tr>
<td>Backlash (New Gears)</td>
<td>0.13-0.23 mm (0.005-0.009-in.)</td>
</tr>
<tr>
<td>Backlash (Used Gears)</td>
<td>0.08-0.28 mm (0.003-0.011-in.)</td>
</tr>
<tr>
<td></td>
<td>Tool Code</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>J 8611-01</td>
</tr>
<tr>
<td>2</td>
<td>J 8612-B</td>
</tr>
<tr>
<td>3</td>
<td>J 8092</td>
</tr>
<tr>
<td>4</td>
<td>J 8001</td>
</tr>
<tr>
<td>5</td>
<td>J 8609-01</td>
</tr>
<tr>
<td>6</td>
<td>J 8614-01</td>
</tr>
<tr>
<td>7</td>
<td>J 8107-4</td>
</tr>
<tr>
<td>8</td>
<td>J 8608</td>
</tr>
<tr>
<td>9</td>
<td>J 22888</td>
</tr>
<tr>
<td>10</td>
<td>J 22399</td>
</tr>
<tr>
<td>11</td>
<td>J 22761</td>
</tr>
<tr>
<td>12</td>
<td>J 22779</td>
</tr>
<tr>
<td>13</td>
<td>J 5590</td>
</tr>
</tbody>
</table>

Not Shown:
- J-21777-1 Arbor
- J-21777-29 Gauge Plate
- J-21777-35 Rear Pilot Washer
- J-21777-42 Front Pilot Washer
- J-21777-43 Stud Assembly—Bolt
- J-21777-45 Side Bearing Disc
SECTION 4C2

9 3/4-INCH RING GEAR FRONT AXLE

CONTENTS

SUBJECT PAGE
Description ... 4C2-1
Disassembly of Axle .. 4C2-2
 Inspection .. 4C2-2
 Disassembly .. 4C2-2
Cleaning and Inspection ... 4C2-7
 Cleaning .. 4C2-7
 Inspection .. 4C2-7
Assembly of Axle .. 4C2-8
 Differential Case Assembly ... 4C2-8
 Determining Total Differential Shim Pack Size ... 4C2-9
 Pinion Depth Adjustment ... 4C2-9
 Pinion Installation ... 4C2-11
 Assembling the Differential Housing to the Axle Housing .. 4C2-13
 Checking Backlash.. 4C2-14
 Final Assembly .. 4C2-14
Specifications .. 4C2-15
Special Tools ... 4C2-16

DESCRIPTION

The Dana 9 3/4-inch ring gear front axle uses a conventional ring and pinion gear set to transmit the driving force of the engine to the front wheels. This gear set transfers this driving force at a 90 degree angle from the propeller shaft to the drive shafts.

The pinion gear is supported by two tapered roller bearings. The pinion depth is set by a shim pack between the inner pinion bearing cup and the front axle housing. The pinion bearing preload is set by a shim pack at the front of the axle housing between the yoke and the pinion gear.

The ring gear is bolted onto the differential case with left-hand thread bolts.

The differential case is supported in the case by two tapered roller bearings. The differential and ring gear are located in relationship to the pinion by using selective shims between the bearings and the differential case. To move the ring gear, shims are deleted from one side and an equal amount are added to the other side. Differential side bearing preload is set by the axle housing. (The axle housing is spread to remove the differential from the housing.) When the spreader is removed, the housing sets the bearing preload.

Two bearing caps are used to hold the differential into the front axle housing.

The differential is used to allow the wheels to turn at different rates of speed while the front axle continues to transmit the driving force. This prevents tire scuffing when going around corners and prevents premature wear on internal axle parts.

The front axle is sealed with a pinion seal, an axle seal, and RTV sealer between the differential cover and front axle housing.

All Dana axles are identified by the part number located on the right axle tube next to the manufacturing date which is next to the carrier. The carrier cover does not have a drain plug. Oil is drained by removing the cover.
DISASSEMBLY OF AXLE

INSPECTION

Perform the following checks before disassembling the axle.

1. Remove the axle cover from the axle and drain the axle lubricant into a suitable container.
2. Check the ring gear backlash. Refer to "Backlash Adjustment." This information can be used to determine the cause of the axle problem. It will also help when setting up the shim packs for locating and preloading the differential case.
3. Inspect the case for metal chips. Determine where the metal chips come from, such as a broken gear or bearing cage.
4. Determine the cause of the axle problem before disassembly if possible.

DISASSEMBLY

Remove or Disconnect (Figure 1)

Tools Required:
J 24385-01 Differential Housing Spreader
J 29721 Differential Side Bearing Remover
J 29721-70 Side Bearing Adapters
J 8107-3 Side Bearing Puller Plug
J 8614-10 Pinion Flange Holder

- Place the axle in a suitable support.
1. The differential cover bolts (17) and the differential cover (14) (figure 2).
- Drain the gear lubricant into a proper container.
3. Bearing cap bolts (19) (figure 3).
 - The mating letters are stamped on the caps and the axle housing. The caps are to be reassembled exactly as removed.
 - Assemble J 24385-01 to the differential housing as shown in figure 4.
 - Assemble the dial indicator as shown in figure 4. Preset the gage at least 0.50 mm (0.020-inch), and then rotate the gage housing to zero the dial.

NOTICE: Do not spread the differential carrier more than 0.38 mm (0.015-inch). Over-spreading the carrier can damage or distort the carrier.

- Spread the carrier while examining the dial indicator. Do not spread the carrier more than 0.38 mm (0.015-inch).
5. Differential case (22) from the carrier (1) using two pry bars (figure 5).
6. The spreader J 24385-01 from the carrier (1).
7. Bearing cups (20).
 - Mark the cups as left and right, and place them with the proper bearing caps.
8. Differential side bearings (20) using J 29721 and J 29721-70 and J 8107-3 (figure 6).
 - Mark the shims as left or right.
10. Ring gear bolts (23), and discard.
 - Place shop towels over the vise jaws. Put the differential case in the vise (figure 7).

NOTICE: Do not pry the ring gear from the case; this will damage the ring gear and the differential case.

11. Ring gear (2) from the differential case using a rawhide hammer.
 - Ring gear (2) from the vise.
 - Put the differential case in the vise.
12. Lock pin (29) from two differential using a hammer and a punch (figure 8).
13. Pinion shaft (28) using a hammer and a brass drift (figure 9).
14. Differential pinion gears (24) and thrust washers (26).
 - Rotate the side gears until the pinion gears are in the opening of the differential (figure 10).
15. Differential side gears (25) and thrust washers (27).
 - Mark the gears and washers as left and right.
 - Replace the carrier cover (14) using two bolts (17) to keep the pinion from falling to the floor.

Inspect

- Drive pinion bearing preload (figure 11).
- Pinion assembly for looseness by moving it back and forth. (Looseness indicates excessive bearing wear.)
16. Pinion nut (12) and washer (11) using J 8614-01 to hold the pinion (figure 12).
17. Pinion flange (10) using J 8614-01 (figure 13).
18. Pinion (2) from the carrier using a rawhide hammer to tap the pinion (figure 14).
19. Carrier cover (14) and the pinion (2).
20. Pinion preload shims (6).
 - Keep the shims together on the bench.
21. Pinion seal (9).
22. Pinion outer bearing (7) and oil slinger (8).
23. Bearing cups (3) and (7) from the axle housing using a hammer or a punch (figure 15).
 - Work the cups out of the housing evenly, moving the punch back and forth between one side of the cup and the other.
24. Pinion adjusting shims (4) and baffle (5).
 - Keep the shims together on the bench.
25. Pinion inner bearing (3) using J 29721 and J 29721-70 (figure 16).
Figure 1—Front Axle Components
Figure 2—Removing the Axle Cover
Figure 3—Removing the Bearing Cap
Figure 4—Spreading the Differential Case
Figure 5—Removing the Differential
Figure 6—Removing the Differential Side Bearings
Figure 7—Removing the Ring Gear
Figure 8—Removing the Lock Pin

Figure 9—Removing the Pinion Shaft

Figure 10—Removing the Pinion Gears

Figure 11—Checking the Pinion Preload

Figure 12—Drive Pinion Nut Removal

Figure 13—Pinion Flange Removal
4C2-6 9 3/4-INCH RING GEAR FRONT AXLE

Figure 14—Removing the Pinion

Figure 15—Removing the Bearing Cups

Figure 16—Removing the Pinion Inner Bearing
CLEANING AND INSPECTION

CLEANING

Do not steam clean drive parts having ground and polished surfaces such as gears, bearings, and shafts. These parts should be cleaned in a suitable solvent. All parts should be disassembled before cleaning.

Parts should be thoroughly dried immediately after cleaning. Use soft, clean, lintless rags. Parts may be dried with compressed air. Do not allow the bearings to spin while drying them with compressed air.

It is very important to carefully and thoroughly inspect all drive unit parts before reassembly. Thorough inspection of the drive parts for wear or stress and subsequent replacement of worn parts will eliminate costly drive component repair after reassembly.

INSPECTION

AXLE HOUSING

Inspect
- The carrier bore for nicks or burrs that would prevent the outer diameter of the pinion seal from sealing. Remove any burrs that are found.
- The bearing cup surfaces for nicks or burrs. Remove any burrs that are found.
- The housing for cracks. Replace the housing if any cracks are found.
- The housing for foreign material such as metal chips, dirt, or rust. Clean as necessary, as outlined previously.

DIFFERENTIAL

Inspect
- Pinion gear shaft for unusual wear.
- Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
- Thrust washers for wear.
- The fit of the differential side gears in the differential case.
- The fit of the side gears on the axle shafts.
- Differential case for cracks and scoring.
- Replace all worn parts.

PINION AND RING GEAR

Inspect
- Pinion and ring gear teeth for cracking, chipping, scoring, or excessive wear.
- Pinion splines for wear.
- Pinion flange splines for wear.
- The fit of the pinion on the pinion flange.
- The sealing surface of the pinion flange for nicks, burrs, or rough tool marks which would cause damage to the seals’ inside diameter and result in an oil leak.
- Replace all worn or broken parts.
- Ring and pinion gears are matched sets and are both replaced any time a replacement of either is necessary.

BEARINGS

Inspect
- Bearings visually and by feel. The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.
- The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.
- Bearing cups for wear, cracks, brinelling and scoring.
- If the rear axle was operated for an extended period of time with very loose bearings, the ring gear and drive pinion will also require replacement.
- Low mileage bearings may have minute scratches and pits on the rollers and the bearing cups from the initial preload. Do not replace a bearing for this reason.
- Bearing caps for cracks or chips.
- Bearings and cups are only replaced as sets.

SHIMS

Inspect
- Shims for cracks and chips. Worn or damaged shims should be replaced with an equally sized service shim.
ASSEMBLY OF AXLE

Important
- Lubricate all seal lips, bearings, gears, and bearing surfaces with axle lubricant prior to assembly.

DIFFERENTIAL CASE ASSEMBLY

Install or Connect (Figure 1)
Tool Required:
- D-160, Axle Shaft Seal Installer (Miller)
- Axle shaft seals, using D-160 (figure 17)
1. Axle shaft seals, using D-160 (figure 17).
2. New side gear thrust washer (27) to the side gears (25).
3. Side gears (25) to the differential case.
 - Place the side gears in place on the same side as removed (figure 18).

4. Pinion gears (24) to the differential without the thrust washers (26).
 - Place the pinion gears onto the side gears so that the holes in the pinion gears are 180 degrees apart.
 - Rotate the pinion gears into place, and verify that the pinion gears line up with the pinion shaft holes.
5. New pinion thrust washers (26).
 - Rotate the pinion gears toward the differential opening just enough to slide in the pinion thrust washers.
6. Pinion shaft (28).
 - Align the lock pin holes in the case and the shaft.
7. Lock pin (29) (figure 19).
 - Peen metal from the case over the lock pin.
 - Check that the mating surfaces of the differential case and the ring gear are clean and burr free.
8. Ring gear (2) to the differential case (22).
 - Thread two studs into the ring gear on opposite sides.
 - Press the ring gear onto the case, and align the holes in the case with the studs.

Important
- Always use new bolts at assembly.
- Always use the correct service bolts. Do not attempt to use a substitute bolt.
- Tighten the ring gear bolts alternately in stages gradually pulling the ring gear onto the differential case.

Tighten
- The ring gear bolts in sequence to 142-156 N·m (105 - 115 ft. lbs.).
DETERMINING TOTAL DIFFERENTIAL SHIM PACK SIZE

1. Assemble the differential case (22) to the axle housing. The pinion must not be installed.
2. Mount a dial indicator having a minimum travel of 5 mm (0.200-inch) with a magnetic base on the ring gear bolt side of the housing (figure 22).
3. Force the differential assembly as far as possible in the direction towards the indicator.
4. Preload the dial indicator one half of its travel. Place the tip of the indicator on a flat surface of the differential, just next to a ring gear bolt. Mark this location with a piece of chalk.
5. Zero the dial indicator.
6. Force the differential assembly in the opposite direction as far as it will go. Repeat this step until the same reading is obtained. Record the number of thousandths that the dial indicator traveled, not the reading on the dial. This will be the measurement of the shimpack without the bearing preload (which will be added later).
7. Remove the dial indicator from the axle.
8. Remove the differential case from the axle housing. If you do not remove the master bearings from the differential.

PINION DEPTH ADJUSTMENT

Tools Required:
- D-120 Master Pinion Block (Miller)
- D-116-1 Pinion Height Block (Miller)
- D-116-2 Master Discs (Miller)
- D-115-3 Arbor (Miller)
- D-115 Scooter Gage (Miller)

1. Clean the carrier bores and all the tools. The pinion bore must be free of nicks and dirt.
2. Install D-120 to the pinion bore (figure 23).
4. Install the arbor and discs into the axle housing (figure 24).
5. Install D-116-1 onto D-120 and against the arbor (figure 25).
6. Place D-115 onto the height block (figure 26).
 - Place the gage on the lower step of the height block. Push the gage down on the height block. While applying pressure, set the dial indicator at zero.
7. Slide the gage over the arbor (figure 27).
8. Record the reading at the point of greatest deflection (when the dial indicator needle is centered between movement to the left and to the right).
This reading indicates the amount of shims needed for a nominal pinion setting. The pinion marking may change the pinion depth by adding or deleting shims from the nominal pinion setting.

- A positive (+) pinion marking indicates that the distance between the ring gear centerline and the pinion head must increase by the number of thousandths marked on the pinion. This means that the shim pack will decrease by the same number of thousandths.

- A negative (-) pinion marking indicates that the distance between the ring gear centerline and the pinion head must decrease by the number of thousandths marked on the pinion. This means that the shim pack will increase by the same number of thousandths.

- A pinion etched zero (0) will use the nominal setting as determined in this procedure.
9. Measure each shim separately with a micrometer and add them together to obtain the total shim pack thickness. If a baffle (5) or slinger is used, these must also be measured and included in the shim pack (figure 28).

PINION INSTALLATION

Install or Connect

Tools Required:
- J 7818 Front Pinion Bearing Cup Installer
- J 5590 Rear Pinion Bearing Cone Installer
- D-111 Rear Cup Installer (Miller)
- C-4171 Handle (Miller)
- J 8092 Handle
- J 8614-01 Pinion Flange Remover
- D-116-1 Pinion Height Block (Miller)
- D-116-2 Master Disc (Miller)
- D-115-3 Master Disc (Miller)
- D-115 Scooter Gage (Miller)
- D-163 Seal Installer (Miller)

1. Place the required amount of shims (and baffle if used) in the inner bearing bore.
2. Drive the inner bearing cup into the axle assembly using D-111 and C-4171. The cup must be seated on the shims (figure 29).
3. Drive the outer bearing cup into the axle assembly using J 7818 and J 8092 (figure 30).
4. Inner bearing cone (and slinger if used) on the pinion. Drive the bearing onto the pinion shaft using J 5590 (figure 31).
5. Pinion into the axle housing.
6. Outer pinion bearing (7) and thrust washer (8).
 - Do not assemble the preload shims or pinion oil seal at this time.
7. Pinion flange (10).
8. Washer (11) and pinion nut (12).

Tighten

- The nut (12) while holding the pinion with J 8614-01. Tighten the nut until it requires a
torque of 1.13 N·m (10 in. lbs.) to rotate the pinion (figure 32). Rotate the pinion several times to seat the bearings and assure a more accurate reading pinion depth setting.

 • Place the discs and arbor into the differential bearing bore.
 • Place the pinion height block on top of the pinion.
 • Set the dial indicator at zero and slide the scooter gage across the arbor (figure 33).
 • The indicator will turn to the right or to the left at the point of greatest deflection, depending on the pinion marking.
 • The needle will move to the left if the pinion is marked (+).
 • The needle will move to the right if the pinion is marked (-).
 • If the indicator reading is within 0.05 mm (0.002-inch) of the pinion marking, the pinion is correctly set. If the pinion depth does not meet specifications, change the shim pack by the amount the indicator needle is from the pinion marking.

10. Preload shims (6).
 • Install the shims that were removed, or measure the old shims and replace them with new shims if necessary.

11. Outer bearing (7) and slinger (8).
 • Apply a light coat of axle lubricant to the pinion seal lip.

12. Outer pinion oil seal (9) using D-163 (figure 34).

13. Pinion flange (10).

14. Washer (11) and a new pinion nut (12).

Tighten (Figure 35 and 36)

- The nut (12) while holding the pinion with J 8614-01. Tighten the nut until it requires a torque of 2.26 - 4.53 N·m (20 - 40 in. lbs.) to rotate the pinion.
- Remove shims to decrease the preload.
ASSEMBLING THE DIFFERENTIAL TO THE AXLE HOUSING

Tools Required:
- J 23690 Differential Side Bearing Installer
- J 8092 Driver Handle
- J 24385-01 Differential Carrier Spreader

1. Assemble the differential case (22) with master bearings installed to the axle housing. The pinion must be installed.

2. Mount a dial indicator having a minimum travel of 5 mm (0.200-inch) with a magnetic base on the ring gear bolt side of the housing (figure 37).

3. Place the indicator tip on the chalk mark made earlier.

4. Force the ring gear into mesh with the pinion. Rock the ring gear to allow the teeth of the gears to mesh.

5. With the force still applied to the differential case, set the dial indicator to zero.

6. Force the differential case away from the pinion gear to obtain an indicator reading. Repeat this action until a consistent reading is obtained. This will be the size of the left shim pack.

7. Remove the indicator and the differential case from the carrier.

8. Remove the master bearings from the differential case.

9. Using the total shim pack size determined earlier, (Refer to "Determining Total Differential Shim Pack Size" in this section) subtract the reading found in step 6 from the total reading. The reading found in step 6 will be the shim size on the ring gear side. The remaining portion of the shim pack will be used on the side opposite the ring gear. Add an additional 0.38 mm (0.015-inch) of shims to the side opposite the ring gear to preload the bearings.

10. Place the proper shims on the differential side bearing hub (ring gear side) and drive the differential bearing onto the hub using J 23690 and J 8092 (figure 38).

11. Place the proper shims on the differential side bearing hub (opposite the ring gear) and drive the differential bearing onto the hub using J 23690 and J 8092 (figure 38).

12. Assemble J 24385-01 to the axle housing as shown in figure 39.

13. Assemble the dial indicator as shown in figure 39. Preset the gage at least 5 mm (0.020-inch), and then rotate the indicator housing to zero the dial.

NOTICE: Do not spread the differential carrier more than 0.38 mm (0.015-inch). Over-spreading the carrier can damage or distort the carrier.

14. Spread the carrier while examining the dial indicator.

15. Remove the dial indicator.

16. Place the bearing cups (20) onto the bearings.

17. Install the differential assembly into the carrier.
Use a rawhide hammer to seat the differential assembly in the axle housing (figure 40).

18. Remove the spreader.
19. Install the bearing caps (18) in their original positions.
20. Install the bearing cap bolts (19).

Tighten
- Bearing cap bolts (19) to 115 N·m (85 ft. lbs.).

CHECKING BACKLASH

1. Mount a dial indicator with a magnetic base to the axle housing as shown in figure 41.
2. Place the indicator tip at the heel end of the tooth.
3. Check the backlash at three equally spaced points. The backlash should be 0.13 - 0.23 mm (0.005 - 0.009-inch). The measurement must not vary more than 0.05 mm (0.002-inch) between the points checked.

4. High backlash is corrected by moving the ring gear closer to the pinion.
5. Low backlash is corrected by moving the ring gear away from the pinion.
6. To adjust the backlash, the differential case must be removed from the housing, then the differential bearings removed, and the proper number of shims moved from one side to the other.

FINAL ASSEMBLY

Install or Connect (Figure 1)

1. Drive axles, as outlined in the proper Light Duty Truck Service Manual.
2. Axle cover (14) to the housing.
 - Make sure the sealing surfaces on the cover and housing are clean and free of grease and oil.
 - Apply a bead of RTV sealer (GM part no. 1052366 or equivalent) to the cover, inboard of the bolt holes. Install the cover while the sealer is still wet.
3. Cover bolts (17).
 Tighten
 - Bolts to 47 N·m (35 ft. lbs.).
SPECIFICATIONS

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Fastener</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Gear Bolts</td>
<td>150</td>
<td>110</td>
</tr>
<tr>
<td>Bearing Cap Bolts</td>
<td>115</td>
<td>85</td>
</tr>
<tr>
<td>Axle Cover Bolts</td>
<td>47</td>
<td>35</td>
</tr>
</tbody>
</table>

AVAILABLE SHIM SIZES

- Differential Bearing Adjusting Shim: 0.003-inch, 0.005-inch, 0.010-inch, 0.030-inch
- Outer Pinion Bearing Shim: 0.003-inch, 0.005-inch, 0.010-inch, 0.030-inch
- Inner Pinion Bearing Shim: 0.003-inch, 0.005-inch, 0.010-inch

PINION PRELOAD AND BACKLASH

- Pinion Preload: 2.26-4.53 N·m (20-40 in. lbs.)
- Backlash: 0.13-0.23 mm (0.005-0.009-in.)
1. Master Discs (Miller)
2. Arbor (Miller)
3. Pinion Height Block (Miller)
4. Scooter Gage (Miller)
5. Master Pinion Bearings (Miller)
6. Master Pinion Block (Miller)
7. Cup Installer (Miller)
8. Handle (Miller)
9. Differential Side Bearing Removal Plug
10. Rear Pinion Bearing Cup Installer
11. Driver Handle
12. Rear Pinion Bearing Cone Installer
13. Pinion Flange Remover
14. Differential side Bearing Installer
15. Differential Side Bearing Remover
16. Differential Carrier Spreader
17. Side Bearing Adapters
DESCRIPTION

The axle used on T model vehicles has a center disconnect feature which allows shifting into and out of four wheel drive when the vehicle is in motion under most conditions.

The axle uses a conventional ring gear and pinion gear set to transmit the driving force of the engine to the wheels. This gear set transfers this driving force at a 90 degree angle from the propeller shaft to the drive shafts.

The pinion gear is supported by two tapered roller bearings. The pinion depth is set by a shim pack located between the gear end of the pinion and the roller bearing that is pressed onto the pinion. The pinion bearing preload is set by crushing a collapsible spacer between the pinion bearings in the axle housing.

The ring gear is bolted onto the differential case with left-hand thread bolts.

The differential case is supported in the axle housing by two tapered roller bearings. The differential and ring gear are located in relationship to the pinion by using threaded adjusters.

The differential is used to allow the wheels to turn at different rates of speed while the front axle continues to transmit the driving force. This prevents tire scuffing when going around corners and prevents premature wear on internal axle parts.

The axle identification number is located on a tag attached to the right axle tube.
DISASSEMBLY OF AXLE

INSPECTION

Perform the following checks before disassembling the axle.

1. Remove the fill plug from the axle and drain the axle lubricant into a suitable container.
2. Check the ring gear backlash. Refer to “Backlash Adjustment.” This information can be used to determine the cause of the axle problem. It will also help when setting up the shim packs for locating and preloading the differential case.
3. Inspect the case and oil for metal chips. Determine where the metal chips come from, such as a broken gear or bearing cage.
4. Determine the cause of the axle problem before disassembly if possible.

DISASSEMBLY

Disassemble (Figure 1 through 15)

Tools Required:
- J 8614-01 Pinion Flange Remover
- J 21551 Bearing Remover
- J 22912-01 Pinion Bearing Cone Remover
- J 29307 Slide Hammer
- J 33791 Bushing Remover
- J 33792 Side Bearing Adjuster Wrench
- J 33837 Pinion Bearing Cup Remover Kit
- J 34011 Output Shaft Pilot Bearing Remover
- Bolts (6), shift cable housing (11), and spring (14).
- Tube (5) and thrust washer (7).
- Shaft (1) with deflector (2).
 - Clamp the axle tube (5) in a vise. Clamp ONLY on the mounting flange.
 - Strike the inside of the shaft flange with a brass hammer to dislodge the shaft.
- Carrier connector (9) with retaining ring (8).
- Right seal (3) and bearing (4), using J 29369-2 and J 29307 (figure 3).
- Seal (15) from the tube (5). Pry out with a screwdriver.
- Thrust washer (20).
- Sleeve (22) and output shaft (23).
- Differential pilot bearing (21) from the output shaft, using J 34011 (figure 4).
- Washer (24).
- Shaft (59), and deflector (2).
 - Pry with a screwdriver between the shaft flange and carrier head while striking the flange with a soft face hammer (figure 5).
- Bolts (58) and cover (57).
- Left seal (3).
- Bolts (28).
- Separate the carrier case (29).
 - Insert a screwdriver into the slots provided and pry to separate the case (figure 6).
- Differential case (35).
- Bolts (18) and lock tabs (19) from the side bearing adjuster sleeves (32) (figure 7).

19. Bearing cups (33) and sleeves (32) from the case.
 - Turn the sleeves (32) using J 33792 until the cups are pushed out of the case (figure 8).
21. Pinion flange nut (46) and washer (45) using J 8614-01 (figure 10).
 - Mount the left carrier case half in J 33837-1 (figure 11).
22. Flange (44) and deflector (43) using J 33837-1 and J 33837-3 (figure 11).
23. Pinion (37), with spacer (40), pinion bearing (39) and shim (38).
24. Spacer (40) from the pinion.
25. Bearing (39) from the pinion. Use J 22912-01 and a press (figure 12).
27. Bearing and cup (41) and seal (42), using J 33837-1, J 33837-3, and J 33837-6.
 - Insert J 33837-6 into the pinion bore.
 - Thread the forcing screw (J 33837-3) into J 33837-6.
 - Turn the forcing screw to pull the parts from the case.
28. Inner bearing cup by pushing it out using J 33837-1, J 33837-3, and J 33837-6 (figure 13).
29. Bolt (36) and shaft (52) from the differential case (35).
30. Differential pinion gears (56) and thrust washers (55).
31. Side gears (54) and thrust washers (53).
 - Mark the side gears and case so they can be installed in their original location.
32. Bolts (34).
33. Ring gear (37).
 - Do not pry between the ring gear and the case. Drive the gear off with a brass drift and hammer.
34. Side bearings (33), using J 22912-01 (31) (figure 14).
Figure 1—Axle Components
4C3-4 T TRUCK FRONT AXLE

<table>
<thead>
<tr>
<th>Part</th>
<th>Part</th>
<th>Part</th>
<th>Part</th>
<th>Part</th>
<th>Part</th>
<th>Part</th>
<th>Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Seal</td>
<td>30. Bearing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2—Axle Components

![Figure 2](F-05786)

Figure 3—Removing the Axle Tube Bearing and Seal

![Figure 3](F-05786)

Figure 4—Removing the Output Shaft Pilot bearing

![Figure 4](F-05787)

Figure 5—Removing the Axle Shaft

![Figure 5](F-01389)
Figure 6—Separating the Carrier Case Halves

Figure 7—Removing the Lock Tabs

Figure 8—Removing the Side Bearing Cup

Figure 9—Remove the Sleeve Bearing

Figure 10—Removing the Pinion Nut
4C3-6 T TRUCK FRONT AXLE

Figure 11—Remove the Pinion Flange

Figure 12—Removing the Pinion Bearing

Figure 13—Removing the Inner Pinion Bearing Cup

Figure 14—Removing the Differential Side Bearings

Figure 15—Replacing the Case Bushings
CLEANING AND INSPECTION

CLEANING

Do not steam clean drive parts having ground and polished surfaces such as gears, bearings, and shafts. These parts should be cleaned in a suitable solvent. All parts should be disassembled before cleaning.

Parts should be thoroughly dried immediately after cleaning. Use soft, clean, lintless rags. Parts may be dried with compressed air. Do not allow the bearings to spin while drying them with compressed air.

INSPECTION

It is very important to carefully and thoroughly inspect all drive unit parts before assembly.

Thorough inspection of the drive parts for wear or stress and subsequent replacement of worn parts will eliminate costly drive component repair after reassembly.

AXLE HOUSING

Inspect

- Carrier bore for nicks or burrs that would prevent the outer diameter of the pinion seal from sealing. Remove any burrs that are found.
- Bearing cup surfaces for nicks or burrs. Remove any burrs that are found.
- Housing for cracks. Replace the housing if any cracks are found.
- Housing for foreign material such as metal chips, dirt, or rust. Refer to “Cleaning” in this section.

DIFFERENTIAL

Inspect

- Pinion gear shaft for unusual wear.
- Pinion gear and side gear teeth for wear, cracks, scoring, spalling.
- Thrust washers for wear.
- The fit of the differential side gears in the differential case.
- Fit of the side gear on the axle shafts.
- Differential case for cracks and scoring.
- Replace all worn parts.

PINION AND RING GEAR

Inspect

- Pinion and ring gear teeth for cracking, chipping, scoring, or excessive wear.
- Pinion splines for wear.
- Pinion flanges splines for wear.
- Fit of the pinion on the pinion flange.
- Sealing surface of the pinion flange for nicks, burrs, or rough tool marks which would cause damage to the seals’ inside diameter and result in an oil leak.
- Replace all worn or broken parts.
- Ring and pinion gears are matched sets and are both replaced any time a replacement of either is necessary.

BEARINGS

Inspect

- Bearings visually and by feel. The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.
- The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.
- Bearing cups for wear, cracks, brinelling and scoring.
- Bearings and cups are only replaced as sets.
- If the front axle was operated for an extended period of time with very loose bearings, the ring gear and drive pinion will also require replacement.
- Low mileage bearings may have minute scratches and pits on the rollers and the bearing cups from the initial preload. Do not replace a bearing for this reason.
- Bearing caps for cracks or chips.

THRUST WASHERS, SHIMS AND ADJUSTER SLEEVES

Inspect

- Shims and thrust washers for cracks and chips. Damaged shims should be replaced with an equally sized service shim.
- Adjuster sleeves for damaged threads. Replace if required.

SHIFT MECHANISM

Inspect (Figures 1 and 2)

- Carrier connector (9) for damaged splines and teeth. Replace as required.
- Shift fork (17) for wear, scoring, and damage to thrust surfaces. Replace if needed.
- Sleeve (22) and inner output shaft (23) for damaged splines and teeth. Replace if necessary.
- Spring (16) for breakage.
ASSEMBLY OF AXLE

Important
- Lubricate all the seal lips, bearings, gears, and bearing surfaces with axle lubricant prior to assembly.

DIFFERENTIAL CASE ASSEMBLY

Install or Connect (Figures 1, 2 and 16)
Tool Required:
- J 33790 Side Bearing Installer

1. Thrust washers (53) and side gears (54) into the differential case (35).
 - If the same gears and washers are being used, install them on the same side as they were removed from.

2. Pinion gears (56).
 - Position one pinion gear (56) between the side gears and rotate the gears until the pinion gear is directly opposite the opening in the case.
 - Place the other pinion gear (56) between the side gears, making sure the hole in both pinion gears line up.

3. Thrust washers (55).
 - Rotate the pinion gears toward the opening just enough to permit the sliding in of the thrust washers.

4. Shaft (52) and bolt (36).

5. Ring gear (37) onto the differential case (35).

Important
- Always install new bolts. Never reuse the old bolts.

Tighten
- Bolts (34) alternating in progressive steps to 80 N-m (60 ft. lbs.).

7. Side bearings (33), using J 33790 (figure 16).

PINION BEARING CUP INSTALLATION

Install or Connect (Figures 1, 2, 17 and 18)
Tool Required:
- J 33837 Pinion Bearing Remover and Installer

1. Bearing cup (41) into the case using J 33837-1, J 33837-3, and J 33837-4 (figure 17).

2. Bearing cup (39) into the case using J 33837-1, J 33837-3, and J 33837-4 (figure 18).
PINION DEPTH ADJUSTMENT

Tools Required:
- J 33838 Pinion Depth Setting Gage
- J 29763 Dial Indicator

1. Refer to figure 1.
2. Pinion depth is adjusted by selecting a shim (38) of the proper thickness.
3. Lubricate the inner and outer pinion bearings liberally with axle lubricant.
4. Hold the pinion bearings in position and install J 33838 and J 29763 (figure 19). Set the dial indicator at ZERO, then position it in J 33838. Push the dial indicator downward until the needle rotates approximately three turns to the right.
5. Tighten the dial indicator in this position.
6. Set the button of J 33838 on the differential bearing bore (figure 19).
7. Rotate the tool slowly back and forth until the dial indicator reads the lowest point of the bore. Set the dial indicator to ZERO. Repeat the rocking action of the tool to verify the ZERO setting.
8. After the ZERO setting is obtained and verified, move the tool button out of the differential side bearing bore (figure 19). Record the dial indicator reading.
9. The dial indicator reading is equal to the required shim size. Example: If the dial indicator reads 0.84 mm in step 8, a 0.84 mm shim is required. Available shim sizes are listed in "Specifications."
10. Remove the tools and bearing cones.

PINION INSTALLATION

Install or Connect (Figure 1, 2, 10, 20 and 21)

Tools Required:
- J 33785 Bearing Installer
- J 8614-01 Pinion Flange Remover
- J 33792 Seal Installer

1. Shim (38) to the pinion gear (37).
 - The shim must be of the proper size, as selected previously.
2. Bearing (39) onto the pinion gear (37) using J 33785 (figure 20).
3. New spacer (40) onto the pinion gear (37).
4. Bearing (41) into the case.
5. Pinion gear, with bearing and spacer, to the case.
6. Deflector (43), flange (44), washer (45) and nut (46).
 - Apply PST sealant (GM part number 1052080 or equivalent) to the pinion gear threads and on both sides of the washer.
 - Tighten nut (46) until no end play is detectable while holding the flange (44) with J 8614-01 (figure 10).
 - No further tightening should be attempted until bearing preload has been checked.

Measure
- Pinion bearing preload. Use an inch pound torque wrench (figure 22). The correct preload is 1.7-2.8 N·m (15-25 in. lbs.).

DIFFERENTIAL ASSEMBLY INSTALLATION

Install or Connect (Figures 1, 2, 23, 24 and 25)

Tools Required:
- J 33788 Bearing Installer
- J 23423-A Bearing Cup Installer
- J 33792 Side Bearing Adjuster Wrench

1. Bearings (30) into the sleeves (32) using J 33788 (figure 23).
2. Sleeves (32) into the carrier case (29). Thread in all the way.
3. Side bearing cups (33) into the carrier case (29) using J 23423-A.
4. Differential assembly to the carrier case.
 - Place the differential case assembly (35) into the carrier case half which contains the pinion gear.
 - Turn the left sleeve (32) in toward the differential case using J 33792 (figure 24).
5. Carrier case halves (29). Do not use any sealer at this time.
 - If the carrier halves do not make complete contact, back out the right hand adjusting sleeve (32). Use J 33792 (figure 24).
6. Four bolts (28) (figure 25).

Tighten
- Bolts (28) to 50N N·m (37 ft. lbs.).

ADJUSTING BACKLASH

Tools Required:
- J 33792 Side Bearing Adjuster Wrench
- J 34047 Dial Indicator Adapter
- J 25025-1 Dial Indicator Stand
- J 8001-1 Dial Indicator Clamp

1. Refer to figures 1 and 2.
2. Tighten the right sleeve (32) to 140 N·m (100 ft. lbs.). Use J 33792 (figure 24).
3. Tighten the left sleeve (32) to 140 N·m (100 ft. lbs.). Use J 33792 (figure 24).
4. Mark the location of the adjusting sleeves in relation to the carrier halves (figure 26), so the notches in the adjusting sleeves can be counted when turned.
5. Turn the right adjusting sleeve OUT two notches using J 33792.
A. Button Located in Bearing Bore
B. Button Moved Out of Bearing Bore

Figure 19—Measuring Pinion Depth
6. Turn the left adjusting sleeve IN one notch using J 33792.
7. Rotate the pinion several times to seat the bearings.
8. Install J 34047, J 25025-1 and J 8001-1 (figure 27).
9. Place the indicator stem at the heel end of a tooth.
10. Check and record the backlash at three or four points around the ring gear.
 - The pinion must be held stationary when checking backlash.
 - The backlash should be the same at each point within 0.05 mm (0.002-inch). If the backlash varies more than 0.05 mm (0.002-inch), check for burrs, a distorted case flange, uneven bolting conditions, or foreign matter between the case and the ring gear.
 - Gear backlash should be between 0.08-0.25 mm (0.003-0.010-inch) with a preferred specification of 0.13-0.18 mm (0.005-0.007-inch).
 - If the backlash is incorrect, adjust the sleeves as necessary. Always maintain the "one notch" preload on the side bearings. EXAMPLE: If it is necessary to turn the RIGHT sleeve IN one notch, the LEFT sleeve must be turned OUT one notch.

MEASURING BACKLASH (ALTERNATE METHOD)
1. Use this method if the tools specified previously are not available.
2. If the specified tools are not available, it is possible to read backlash at the pinion flange as follows:
3. Install a dial indicator so the button contacts the outer edge of the pinion flange. The plunger must be at a right angle to the pinion flange (figure 28).
4. Move the pinion flange through its free play while holding the differential carrier. Record the dial indicator reading.
5. DIVIDE THE DIAL INDICATOR READING BY 2 to obtain the actual backlash when using this method. Example: A dial indicator reading of 0.16 mm means that there is actually 0.08 mm backlash.
6. Follow the steps for adjusting backlash outlined previously.
Before final assembly of the differential, a gear tooth contact pattern check should be performed. It should be noted that a gear tooth contact pattern check is NOT a substitute for adjusting pinion depth and backlash as previously outlined. It is a method to verify the correct running position of the ring gear and the drive pinion. Gear sets which are not positioned properly may be noisy, or have a short life, or both. With a pattern check, the best contact between the ring gear and the drive pinion for low noise level and long life can be assured.

GEAR TOOTH NOMENCLATURE

The side of the ring gear tooth which curves outward, or is convex, is referred to as the “drive” side. The concave side is the “coast” side. The end of the tooth nearest the center of ring gear is referred to as the “toe” end. The end of the tooth farthest away from the center is the “heel” end. The toe end of the tooth is smaller than the heel end, (figure 29).

TEST

1. Wipe oil out of carrier and carefully clean each tooth of the ring gear.
2. Use gear marking compound and apply this mixture sparingly to all ring gear teeth using a medium stiff brush. When properly used, the area of pinion tooth contact will be visible when hand load is applied.
3. Apply a load until a torque of 54-70 N·m (40-50 ft. lbs.) is required to turn the pinion. A test make without loading the gears will not give a satisfactory pattern. Turn the companion flange with a wrench so that the ring gear rotates one full revolution then reverse the rotation so that the ring gear rotates one revolution in the opposite direction. Excessive turning of the ring gear is not recommended.
4. Observe the pattern on the ring gear teeth and compare with figure 30.

ADJUSTMENTS AFFECTING TOOTH CONTACT

Two adjustments can be made which will affect the tooth contact pattern. These are backlash and the position of the drive pinion (pinion depth) in the carrier. The effects of bearing preloads are not easily seen on hand loaded teeth pattern tests. These adjustments should be within specifications before proceeding with the backlash and the drive pinion adjustments.

It may be necessary to adjust both pinion depth and the backlash to obtain the correct pattern.

The position of the drive pinion is adjusted by increasing or decreasing the shim thickness between the pinion head and the inner race of the rear bearing. The shim is used in the differential to compensate for manufacturing tolerances. Increasing the shim thickness will move the pinion closer to the center line of the ring gear.

Backlash is adjusted by means of the side bearing adjusting sleeves which move the entire case and ring gear assembly closer to, or farther from the drive pinion. (The adjusting sleeves are also used to set side bearing preload.) To increase backlash, turn the left sleeve in and turn the right sleeve out an identical amount. To decrease backlash, turn the right sleeve in and turn the left sleeve out an identical amount.

It is important that the contact pattern be centrally located up and down on the face of the ring gear teeth.

FINAL ASSEMBLY

Remove or Disconnect (Figures 1, 2 and 25)

1. Four case bolts (figure 25).
2. Right carrier case half.

Clean

* Sealing surfaces on the carrier case halves. Remove all oil and grease. Use a chlorinated solvent, such as carburetor cleaner.

Install or Connect (Figure 1, 2 and 31 through 34)

Tools Required:

J 33844 Bearing Installer
J 33893 Axle Seal Installer
J 33799 Shift Housing Seal Installer
J 33842 Differential Pilot Bearing Installer
J 33791 Case Bushing Installer

* Apply a bead of sealer (GM part number 1052357 [Loctite 514] or equivalent) to one carrier case surface.
1. Right carrier case (29).
2. Bolts (28).

Tighten

* Bolts to 47 N·m (35 ft. lbs.),
* Make sure the sleeves (32) are in the proper position, as marked previously.
1. Bolts (18) and locks (19).
4C3-14 T TRUCK FRONT AXLE

Figure 30—Gear Tooth Contact Pattern

Tighten
- Bolts to 8.0 N·m (70 in. lbs.).

4. Left seal (3) to the cover (57). Fully support the seal bore area of the cover while installing the seal.

Clean
- All oil and grease from the cover and carrier sealing surfaces. Use carburetor cleaner or equivalent.
- Apply sealer (GM part no 1052357 [Loctite 514] or equivalent) to the cover.

5. Cover (57) and bolts (58).

Tighten
- Bolts to 25 N·m (18 ft. lbs.).

6. Shaft (59) with deflector (2). Tap into place.
11. Washer (24) to the output shaft (23).
12. Output shaft to the carrier assembly.
13. Sleeve (22).
- The flat, non-chamfered side faces the carrier. The chamfered side faces the axle tube.
14. Thrust washer (20). Use grease to hold it in place.
15. Spring (16) and shift shaft and fork (17).
16. Thrust washer (7). Use grease to hold it in place. Align the notch and tab (figure 34).
17. Shaft (1) to the tube (5).
18. Carrier connector (9) with retainer (8). Tap into place.
- Remove all oil and grease from the tube and carrier gasket surfaces. Use carburetor cleaner or equivalent.
- Apply sealer (GM part no. 1052357 [Loctite 514] or equivalent) to the carrier.

19. Tube assembly (5) to the carrier.
20. Two upper bolts (6). Leave finger tight.
21. Shift cable housing (11) and remaining bolts (6).

Tighten
- Bolts to 47 N·m (35 ft. lbs.).

Inspect (Figure 35)

Tool Required:
- J 33798 Engagement Tool

- Operation of the shift mechanism. Insert J 33798 into the shift fork. Turn the axle shaft while engaging and disengaging the shift mechanism with the tool. The mechanism should operate smoothly. If not, remove the tube and check for damaged or improperly installed parts.
SPECIFICATIONS

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Fastener</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
<th>In. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable Housing and Tube Attaching Bolts</td>
<td>25</td>
<td>18</td>
<td>—</td>
</tr>
<tr>
<td>Left Hand Output Shaft Cover Bolts</td>
<td>25</td>
<td>18</td>
<td>—</td>
</tr>
<tr>
<td>Carrier Case Bolts</td>
<td>47</td>
<td>35</td>
<td>71</td>
</tr>
<tr>
<td>Adjusting Sleeve Lock Bolts</td>
<td>80</td>
<td>60</td>
<td>—</td>
</tr>
<tr>
<td>Differential Ring Gear Bolts</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AVAILABLE SHIM SIZES

<table>
<thead>
<tr>
<th>Pinion Shim Kits</th>
<th>0.53-0.64 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.66-0.79 mm</td>
</tr>
<tr>
<td></td>
<td>0.81-0.94 mm</td>
</tr>
</tbody>
</table>

PINION PRELOAD AND BACKLASH

<table>
<thead>
<tr>
<th>Pinion Preload</th>
<th>1.7-2.8 N·m (15-25 in.lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backlash (preferred)</td>
<td>0.08-0.25 mm (0.003-0.010-inch)</td>
</tr>
<tr>
<td></td>
<td>0.13-0.18 mm (0.005-0.007-inch)</td>
</tr>
</tbody>
</table>
SPECIAL TOOLS

| | | | | | | | | | | | | | | | | | | |
| 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | 11. | 12. | 13. | 14. | 15. | 16. | 17. | 18. |

1. J-21551
2. J-29763
3. J-33782
4. J-33785
5. J-33788
6. J-33790
7. J-33792
8. J-22912-01
9. J-33799
10. J-33837
11. J-33838
12. J-33842
13. J-33844
14. J-33893
15. J-34011
17. J-8614-01
18. J-23423-A
SPECIAL TOOLS

<table>
<thead>
<tr>
<th>Number</th>
<th>Tool Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Slide Hammer</td>
<td>J 29307</td>
</tr>
<tr>
<td>2</td>
<td>Bushing Remover</td>
<td>J 33791</td>
</tr>
<tr>
<td>3</td>
<td>Dial Indicator Set</td>
<td>J 34037</td>
</tr>
<tr>
<td>4</td>
<td>Dial Indicator</td>
<td>J 8001</td>
</tr>
<tr>
<td>5</td>
<td>Dial Indicator Stand (Part of J 25025-B)</td>
<td>J 25025-1</td>
</tr>
<tr>
<td>6</td>
<td>Engagement Tool</td>
<td>J 33798</td>
</tr>
</tbody>
</table>

1. Slide Hammer
2. Bushing Remover
3. Dial Indicator Set
4. Dial Indicator
5. Dial Indicator Stand (Part of J 25025-B)
6. Engagement Tool
SECTIONS 4C4

K TRUCK FRONT AXLE

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
</table>
| Description | 4C4-
| Disassembly of Axle | 4C4- |
| Inspection | 4C4- |
| Disassembly | 4C4- |
| Cleaning and Inspection | 4C4- |
| Cleaning | 4C4- |
| Inspection | 4C4- |
| Assembly of Axle | 4C4- |
| Pinion Bearing Cup Installation | 4C4- |
| Pinion Depth Adjustment | 4C4- |
| Pinion Installation | 4C4- |
| Differential Case Assembly | 4C4- |
| Adjusting Backlash | 4C4- |
| Gear Tooth Contact Pattern Check | 4C4- |
| Carrier Case Assembly | 4C4- |
| Axle Tube Assembly | 4C4- |
| Final Assembly | 4C4- |
| Drive Axle Assembly | 4C4- |
| Outer Deflecting Ring Replacement | 4C4- |
| Outer Joint Seal Replacement | 4C4- |
| Outer Joint Assembly Replacement | 4C4- |
| Inner Tripot Seal Replacement | 4C4- |
| Specifications | 4C4- |
| Special Tools | 4C4- |
DESCRIPTION

The front axle on K model vehicles has a center disconnect feature which, under most conditions, allows shifting into and out of four wheel drive when the vehicle is in motion. It is operated by a thermal actuator solenoid.

The axle uses a conventional ring and pinion gear set to transmit the driving force of the engine to the wheels. The pinion gear is supported by two tapered roller bearings. The pinion depth is set by a shim located between the gear end of the pinion and the roller bearing that is pressed onto the pinion. The pinion bearing preload is set by crushing a collapsible spacer between the pinion bearings in the axle housing.

The ring gear is bolted onto the differential case with left-hand thread bolts.

The differential is used to allow the wheels to turn at different rates of speed while the front axle continues to transmit the driving force. This prevents tire scuffing when going around corners and prevents premature wear on internal axle parts.

The differential case is supported in the axle housing by two tapered roller bearings. The differential and ring are located in relationship to the pinion by using threaded adjusters.

The axle identification number is located on a tag attached to the right axle tube.

The axle is produced with 8 ¼ inch and 9 ¼ inch ring gears. The 8 ¼ inch ring gear is used on K15-25 models; the 9 ¼ inch ring gear is used on K35 models.

The drive axles are completely flexible assemblies consisting of inner and outer constant velocity (CV) joints protected by thermoplastic boots and connected by an axle shaft.

DISASSEMBLY OF AXLE

INSPECTION

Perform the following checks before disassembling the axle.

1. Remove the drain plug from the axle and drain the axle lubricant into a suitable container.
2. Check the ring gear backlash. Refer to "Adjusting Backlash." This information can be used to determine the cause of the axle problem. It will also help when setting up the shim packs for locating and preloading the differential case.
3. Inspect the case for metal chips. Determine where the metal chips come from, such as a broken gear or bearing cage.
4. Determine the cause of the axle problem before disassembly if possible.

DISASSEMBLY

Remove or Disconnect (Figures 1 through 19)

Tools Required:

- J 29369-1 Bearing Remover (K15-25 Models)
- J 29369-2 Bearing Remover (K35 Models)
- J 29307 Slide Hammer
- J 34011 Pilot Bearing Remover
- J 36599 Adjusting Sleeve Wrench
- J 36515 Adjuster Wrench (K35 Models)
- J 8614-01 Pinion Flange Remover
- J 36608 Holding Fixture and Pinion Service Tool
- J 8512-B Pinion Bearing Remover (K15-25 Models)
- J 36606 Pinion Bearing Remover (K35 Models)
- J 22888-D Side Bearing Puller
- J 8107-2 Side Bearing Puller Pilot (K15-25 Models)
- J 36597 Side Bearing Puller Pilot (K35 Models)
- J 36616 Bushing Replacer

1. Solenoid (10)
2. Indicator Switch (13)
3. Bolts (6).
4. Tube (5) with shaft (1).
5. Sleeve (22).
6. Shift shaft (18), damper spring (17), shift fork (16), and clip (15) assembly.
7. Spring (14).
8. Shim (20).
9. Carrier connector (9) with retainer ring (8) (K15-25 models).
- Clamp the tube (5) in a vise. Clamp only on the mounting flange.
- Strike the inside of the shaft (1) flange with a brass hammer to dislodge the carrier connector.
10. Snap ring (12) and washer (11) and thrust washer (7) (K35 models) (figure 5).
11. Shaft (1) with deflector (2).
12. Seal (3) and bearing (4). Use J 29361-1 (K15-25 models) or J 29369-2 (K35 models) with J 29307 (figure 6).
13. Output shaft (23).
15. Shaft (59) with deflector (2). Pry on the shaft flange on one side while tapping with a soft faced hammer on the other side (figure 8).
18. Bolts (28).
19. Right side carrier half (29). Tap on the cast lugs provided.
- Pry up on the locks (51) (right side only on K35).
21. Bolt (64) and lock (63) (K35 models).
Figure 1—Front Axle Components (K-15-25 Models)
22. Sleeve(s) (32) and side bearing (33) cups (right side only on K35).
 • Turn the sleeve(s) to push the bearing cup(s) out of the bore(s). Use J 36599 (figure 9).
23. Adjuster plug (61) with side bearing cup (33) and O-ring (62) (K35 models). Use J 36615 (figure 10).
25. Flat Washer (45).
26. Flange (44) with deflector (43). Use J 8614-01 (figure 12).
 • Mount the left carrier case in J 36598. Be sure to use the adapter plate (J 36598-6) for K15-25 models.
27. Pinion (37) with shim (38), bearing cone (39), and spacer (40). Use J 36598 (figure 13).
28. Spacer (40) from the pinion.
29. Pinion bearing (39). Use J 8612-B (K15-25 models) or J 36606 (K35 models) and a press (figure 14).
30. Shim (38).
31. Seal (42), and bearing cup and cone (41). Use J 36598 (figure 15).
33. Side bearings (33). Use J 22888-D and J 8107-2 (K15-25 models) or J 36597 (K35 models) (figure 17).
34. Ring gear bolts (34).
 • Ring gear bolts have left-handed threads.

NOTICE: Do not pry the ring gear from the case. This will damage the ring gear and the differential case.

35. Ring gear (37) from the differential case.
 • Drive the ring gear off with a brass drift.
36. Roll pin (36) (K15-25 models). Drive out with a drift and hammer (figure 18).
37. Bolt (24) (K35 models).
38. Shaft (52).
39. Differential pinion gears (56) and side gears (54).
 • Roll the pinion gears out of the case with the pinion thrust washers (55).
 • Remove the side gears and the side gear thrust washers (53). Mark the gears and the differential case as left and right.
 • Remove spacer (57) (K35 models only).
40. Vent plug (60). Use a 6-point deep socket.
Figure 3 — Front Axle Components (K35 Models)
4C4-6 K TRUCK FRONT AXLE

1. Shaft
2. Deflector
3. Seal
4. Bearing
5. Tube
6. Bolt
7. Thrust Washer
8. Solenoid
9. Washer
10. Snap Ring
11. Indicator Switch
12. Spring
13. Clip
14. Shift Fork
15. Damper Spring
16. Shaft
17. Shift Shaft
18. Shim
19. Differential Pilot Bearing
20. Shim
21. Differential Case
22. Sleeve
23. Output Shaft
24. Bolt
25. Plug
26. Washer
27. Pin
28. Bolt
29. Carrier Case
30. Bearing
31. Insert
32. Sleeve
33. Side Bearing
34. Bolt
35. Differential Case
36. Ring and Pinion Gears
37. Shim
38. Bearing
39. Spacer
40. Bearing
41. Seal
42. Flange
43. Washer
44. Nut
45. Bushing
46. Lock
47. Shaft
48. Side Gear
49. Thrust Washer
50. Differential Pinion Gear
51. Spacer
52. Bolt
53. Shaft
54. Thrust Washer
55. Side Gear
56. Differential Pinion Gear
57. Spacer
58. Bolt
59. Shaft
60. Vent Plug
61. Adjuster Plug
62. O-Ring
63. Lock
64. Bolt

Figure 4—Front Axle Components (K35 Models)

Figure 5—Removing the Snap Ring (K35 Models)

Figure 6—Removing the Axle Bearing
Figure 7—Removing the Pilot Bearing

Figure 8—Removing the Left Shaft

Figure 9—Turning the Adjuster Sleeve

Figure 10—Turning the Adjuster Plug (K35 Models)

Figure 11—Removing the Pinion Nut
Figure 12—Removing the Pinion Flange

Figure 13—Removing the Pinion

Figure 14—Removing the Pinion Bearing

Figure 15—Removing the Outer Pinion Bearing and Seal

Figure 16—Removing the Inner Bearing Cup

Figure 17—Removing the Side Bearings
CLEANING AND INSPECTION

CLEANING

- Do not steam clean drive parts having ground and polished surfaces such as gears, bearings, and shafts. These parts should be cleaned in a suitable solvent. All parts should be disassembled before cleaning.
- Parts should be thoroughly dried immediately after cleaning. Use soft, clean, lintless rags. Parts may be dried with compressed air. Do not allow the bearings to spin while drying them with compressed air.

INSPECTION

It is very important to carefully and thoroughly inspect all drive unit parts before assembly.

Through inspection of the parts for wear or stress and replacement of worn parts will help prevent costly drive component repair after reassembly.

AXLE HOUSING

Inspect
- Carrier bore for nicks or burrs that would prevent the outer diameter of the pinion seal from sealing. Remove any burrs that are found.

DIFFERENTIAL

Inspect
- Pinion gear shaft for unusual wear.
- Pinion gear and side gear teeth for wear, cracks, scoring, and spalling.
- Thrust washers for wear.
- Fit of the differential side gears in the differential case.
- Fit of the side gears on the axle shafts.
- Differential case for cracks and scoring.

PINION AND RING GEAR

Inspect
- Pinion and ring gear teeth for cracking, chipping, scoring, or excessive wear.
- Pinion splines for wear.
- Pinion flange splines for wear.
- Fit of the pinion on the pinion flange.
4C4-10 K TRUCK FRONT AXLE

- Sealing surface of the pinion flange for nicks, burrs, or rough tool marks which would cause damage to the seals' inside diameter and result in an oil leak.
- Replace all worn or broken parts.
- Ring and pinion gears are matched sets and are both replaced any time a replacement of either is necessary.

BEARINGS

Inspect

- Bearings visually and by feel. The bearings should feel smooth when oiled and rotated while applying as much hand pressure as possible.
- The large end of the bearing rollers for wear. This is where tapered roller bearing wear is most evident.
- Bearing cups for wear, cracks, brinelling and scoring.
- Bearings and cups are only replaced as sets.
- If the axle was operated for an extended period of time with very loose bearings, the ring gear and drive pinion will also require replacement.
- Low mileage bearings may have minute scratches and pits on the rollers and the bearing cups from the initial preload. Do not replace a bearing for this reason.
- Bearing caps for cracks or chips.

SHIMS, THRUST WASHERS AND ADJUSTER SLEEVES

Inspect

- Shims and thrust washers for cracks and chips. Damaged shims should be replaced with an equally sized service shim.
- Adjuster sleeves for damaged threads. Replace if required.

SHIFT MECHANISM

Inspect (Figures 1 through 4)

- Carrier connector (9) (if used) for damaged splines and teeth. Replace as required.
- Shift fork (17) for wear, scoring, and damage to thrust surfaces. Replace if needed.
- Sleeve (22) and inner output shaft (23) for damaged splines and teeth. Replace if necessary.
- Spring (16) for breakage.
- Solenoid (13) and indicator switch (13) for damage and frayed wiring.

SOLENOID CHECK

- Apply 12 volt battery voltage to the solenoid terminals. The plunger should extend within several seconds.
- Disconnect the solenoid from the power source. The plunger should retract within several seconds.
- If the solenoid does not operate as specified, it should be replaced.

ASSEMBLY OF AXLE

Important

- Apply axle lubricant to all bearings, seal lips, gears, thrust washers, and bearing surfaces at assembly.

PINION BEARING CUP INSTALLATION

Install or Connect (Figures 1 through 4, 20, and 21)

Tool Required:
J 36598 Holding Fixture and Pinion Service Tool
Mount the left carrier case in J 36598. Use the J 36598-6 adapter plate for K15-25 models. Tighten the attaching bolts securely.
1. Outer bearing cup (40). Use the forcing screw and J 36598-3 (K15-25) or J 36598-4 (K35) (figure 20).
2. Inner bearing cup (39).
 - Remove J 36598-3 or J 36598-4 from the forcing screw.
 - Place pilot J 36598-15 in the pinion seal bore.
 - Extend the forcing screw through the pinion bore.
 - Install J 36598-3 (K15-25 models) or J 36598-4 (K35 models) on the forcing screw (figure 21).

Figure 20—Installing the Outer Pinion Bearing Cup

- Rotate the forcing screw until the installer is snug against the bearing cup. Rotate the tool several times to make sure the bearing cup is not cocked in the bore.
- Pull the bearing cup into place with the forcing screw (figure 21).
PINION DEPTH ADJUSTMENT

Tools Required:
- J 36601 Pinion Depth Setting Gage
- J 29763 Dial Indicator

1. Refer to figures 1 through 4 and 22.
2. Pinion depth is adjusted by selecting a shim (38) of the proper thickness.
3. Lubricate the pinion bearings liberally with axle lubricant.
5. Install the pinion bearings and hold them in place.
6. Insert the threaded rod of J 36601 through the pinion bearings.
7. Tighten the nut while holding the threaded rod with a wrench to adjust bearing preload. Adjust the nut to obtain a preload of 1.0-1.6 N m (10-15 in. lbs.). Measure using an inch pound torque wrench. Rotate the shaft several times to make sure the bearings have seated, then measure again.
8. Push the dial indicator downward until the needle rotates about three turns.
9. Measure using an inch pound torque wrench (figure 25). The correct preload is 1.7-2.8 N m (15-25 in. lbs.).

DIFFERENTIAL CASE ASSEMBLY

Tools Required:
- J 22761 Side Bearing Installer (K15-25 Models)
- J 29710 Side Bearing Installer (K35 Models)
- J 8092 Driver Handle

1. Side gear spacer (57) (K-35 models only), thrust washers (53), and side gears (54) into the differential case (35).
2. Install the side gear spacer on the left-hand shaft. K15-25 models do not have a spacer.
3. If the same gears and washers are being used,
A. Button Located In Bore
B. Bearing Swung Out of Bore
C. Nut
D. Washer
E. Pilot
F. Flats
39. Bearing (Inner Pinion)
41. Bearing (Outer Pinion)

Figure 22—Measuring Pinion depth
install them on the same side from which they were removed.

2. Pinion gears (56).
 - Position one pinion gear (56) between the side gears and rotate the gears until the pinion gear is directly opposite the opening in the case.
 - Place the other pinion gear (56) between the side gears, making sure the hole in both pinion gears line up.

3. Thrust washers (55).
 - Rotate the pinion gears toward the opening just enough to permit the sliding in of the thrust washers.

4. Shaft (52) and pin (36) (K15-25 models) or bolt (24) (K35 models).

5. Ring gear (37) onto the differential case (35).

6. Bolts (34). The bolts have left hand threads.

Important
- Always install new bolts. Never reuse the old bolts.

Tighten
- Bolts (34) alternating in progressive steps to 120 N-m (88 ft. lbs.).

7. Side bearing (33), using J 22761 (K15-25 models) or J 29710 (K35 models) and J 8092 (figure 26).

DIFFERENTIAL ASSEMBLY INSTALLATION

1. Bearings (30) to the sleeves (32) and/or adjuster plug (61) (K35 models). Use J 8092 and J 36612 (K15-25 models) or J 36613 (K35 models) (figure 27).
2. New O-ring (62) to the adjuster plug (61) (K35 models).

3. Sleeves (32) and/or adjuster plug (61) to the carrier case (29).
 - K35 models: Use J 36599 for the right sleeve (figure 28). Use J 36615 for the adjuster plug (figure 29).

4. Side bearing cups (33). Use J 36603 with J 8092 (figure 30).

5. Differential assembly to the carrier case half.
 - Place the differential assembly into the carrier case half which contains the pinion gear.
 - Turn the left sleeve (32) (K15-25 models) or adjuster plug (61) (K35 models) in until backlash is felt between the ring and pinion.
 - K35 models: Use J 36615 (figure 29).
 - Remove the carrier case from J 36598.

6. Carrier case halves. Do not use sealer at this time.
 - If the carrier halves do not make complete contact, back out the right sleeve (32). Use J 36599 (figure 28).

7. Bolts (28). Tighten to 47 N·m (35 ft. lbs.).

ADJUSTING BACKLASH

Tools Required:
- J 34047 Dial Indicator Set
- J 8001 Dial Indicator Set
- J 34047-3 Dial Indicator Adapter
Figure 31—Measuring Backlash at the Ring Gear

1. Refer to figures 1 through 4.
2. Tighten the right sleeve (32) to 140 N-m (100 ft. lbs.). Use J 36599 (figure 28).
3. Tighten the left sleeve (32) (K15-25 models) or adjuster plug (61) (K35 models) to 140 N-m (100 ft. lbs.).
 • Use J 36599 (K15-25 models) (figure 28).
 • Use J 36615 (K35 models) (figure 29).
4. Mark the location of the adjusting sleeves in relation to the carrier halves, so the notches in the adjusting sleeves can be counted when turned.
5. Turn the right sleeve OUT two notches.
6. Turn the left sleeve (K15-25 models) or adjuster plug (K35 models) IN one notch.
7. Rotate the pinion several times to seat the bearings.
8. Install J 34047-3 into the filler plug hole. Install J 34047-1 and J 8001-1 as shown in figure 31.
9. Place the indicator stem at the heel end of a tooth.
10. Check and record the backlash at three or four points around the ring gear.
 • The pinion must be held stationary when checking backlash.
 • The backlash should be the same at each point within 0.05 mm (0.002-inch). If the backlash varies more than 0.05 mm (0.002-inch), check for burrs, a distorted case flange, uneven bolting conditions, or foreign matter between the case and the ring gear.
 • Gear backlash should be between 0.08-0.25 mm (0.003-0.010 inch) with a preferred specification of 0.13-0.18 mm (0.005-0.007-inch).
 • If the backlash is incorrect, adjust the sleeves as necessary. Always maintain the “one notch” preload on the side bearings. Example: If it is necessary to turn the RIGHT sleeve IN one notch, the LEFT sleeve must be turned OUT one notch.
 • To increase backlash, turn the left sleeve in, and turn the right sleeve out an identical amount. To decrease backlash, turn the right sleeve in and turn the left sleeve out an identical amount.
 • Changing the sleeves one notch will change backlash about 0.08 mm (0.003-inch).

MEASURING BACKLASH (ALTERNATE METHOD)
1. Use this method if the tools specified previously are not available.
2. If the specified tools are not available, it is possible to read backlash at the pinion flange, as follows:
3. Install a dial indicator so the button contacts the outer edge of the pinion flange. The plunger must be at a right angle to the pinion flange (figure 32).
4. Move the pinion flange through its free play while holding the differential carrier. Record the dial indicator reading.
5. DIVIDE THE DIAL INDICATOR READING BY 2 to obtain the actual backlash when using this method.
Example: A dial indicator reading of 0.16 mm means that there is actually 0.08 mm backlash.

6. Follow the steps for adjusting backlash outlined previously.

GEAR TOOTH CONTACT PATTERN CHECK

Before final assembly of the differential, a gear tooth contact pattern check should be performed.

It should be noted that a gear tooth contact pattern check is NOT a substitute for adjusting pinion depth and backlash as previously outlined. It is a final check to verify the correct running position of the ring gear and the drive pinion. Gear sets which are not positioned properly may be noisy, or have a short life, or both. With a pattern check, the best contact between the ring gear and the drive pinion for low noise level and long life can be assured.

GEAR TOOTH TERMS

The side of the ring gear tooth which curves outward, or is convex, is referred to as the “drive” side. The concave side is the “coast” side. The end of the tooth nearest the center of ring gear is referred to as the “toe” end. The end of the tooth farthest away from the center is the “heel” end. The toe end of the tooth is smaller than the heel end (figure 33).

TEST

1. Wipe oil out of carrier and carefully clean each tooth of the ring gear.
2. Apply gear marking compound sparingly to all ring gear teeth using a medium stiff brush. When properly used, the area of pinion tooth contact will be visible when hand load is applied.
3. Apply a load until a torque of 54-70 N·m (40-50 ft. lbs.) is required to turn the pinion.

A test made without loading the gears will not give a satisfactory pattern. Turn the companion flange with a wrench so that the ring gear rotates one full revolution then reverse the rotation so that the ring gear rotates one revolution in the opposite direction. Excessive turning of the ring gear is not recommended.

4. Observe the pattern on the ring gear teeth and compare with figure 34.

ADJUSTMENTS AFFECTING TOOTH CONTACT

Two adjustments can be made which will affect the tooth contact pattern. These are backlash and the position of the drive pinion (pinion depth) in the carrier. The effects of bearing preloads are not easily seen on hand loaded teeth pattern tests. These adjustments should be within specifications before proceeding with the backlash and the drive pinion adjustments.

It may be necessary to adjust both pinion depth and the backlash to obtain the correct pattern.

The position of the drive pinion is adjusted by increasing or decreasing the shim thickness between the pinion head and the inner race of the rear bearing. The shim is used in the differential to compensate for manufacturing tolerances. Increasing the shim thickness will move the pinion closer to the centerline of the ring gear. Decreasing the shim thickness will move the pinion farther away from the centerline of the ring gear.

Backlash is adjusted by means of the side bearing adjusting sleeves which move the entire case and ring gear assembly closer to, or farther from the drive pinion. (The adjusting sleeves are also used to set side bearing preload). To increase backlash turn the left sleeve in and turn the right sleeve out an identical amount. To decrease backlash, turn the right sleeve in and turn the left sleeve out an identical amount.

It is important that the contact pattern be centrally located up and down on the face of the ring gear teeth.

CARRIER CASE ASSEMBLY

Install or Connect (Figures 1 through 4)

- Bend the lock (51) over the sleeves (32). (Right side only on K35 models).
- Bolt (64) and lock (63) (K35 models).

Remove or Disconnect (Figures 1 through 4)

1. Bolts (28).
2. Right carrier case half.

Clean

- Carrier case and axle tube sealing surfaces. Remove all grease and oil. Use carburetor cleaner or equivalent.

Install or Connect (Figures 1 through 4, 19, and 35).

Tools Required:

J 36600 Output Shaft Seal Installer (K15-25)
J 22833 Output-Shaft Seal Installer (K35).
J 33842 Pilot Bearing Installer
J 36616 Bushing Replacer Set
- Apply a bead of sealer (GM part no. 1052942 [Loctite 518] or equivalent) to one carrier case half sealing surface.
 1. Right carrier case half (29).
 2. Bolts (28).

Tighten
- Bolts (28) to 47 N·m (35 ft. lbs.).

3. Left seal (3). Use J 36600 (K15-25 models) or J 22833 (K35 models). Drive into place with a soft faced hammer.
4. Shaft (59) with deflector (2). Drive in place with a brass hammer.
5. Bearing (21) to the output shaft (23). Use J 33842 (figure 35).
6. Output shaft (23) to the carrier.
7. Vent plug (60). Use a small amount of sealer (GM part no. 1052942 [Loctite 518] or equivalent) on the threads.

AXLE TUBE ASSEMBLY

ASSEMBLY

Install or Connect (Figures 1 through 4 and 36)

Tools Required:
- J 36609 Bearing Installer
- J 36600 Seal Installer (K15-25 Models)
- J 22833 Seal Installer (K35 Models)

2. Seal (3). Use J 36600 (K15-25 models) or J 22833 (K35 models) (figure 36).
3. Shaft (1) with deflector (2) to the axle tube.
4. Washer (7). Align the tabs with the slots in the tube.
5. Gear (9) with retaining ring (8) (K15-25 models). Drive gear into place with a plastic hammer.

6. Washer (11) and new snap ring (12) (K35 models). Make sure the snap ring seats properly in the groove.

OUTPUT SHAFT SHIM SELECTION
- Refer to figures 1 through 4.
- It is necessary to select the proper size output shaft shim (20) if any of the following components were replaced:
 — Shaft (1).
 — Tube (5).
 — Output shaft (23).
 — Carrier case (29).
 — Ring and pinion gears (37).
 — Differential case (35).
 — Bearings (33).
 — Carrier connector (9) (K15-25 models).

Preferred Method:
- Tool Required:
 J 34672 Depth Gage (or equivalent)
 1. Refer to figures 37 and 38.
 2. Push on the inner end of the shaft (1), and move the shaft outboard as far as it will go. The shaft must be in this position when measuring dimension "A".
 3. Measure dimension "A". Use J 34672 or equivalent (figure 38).
 - K15-25: Tube flange machined surface to inner surface of connector (9).
 - K35: Tube flange machined surface to inner surface of axle shaft shoulder.
 4. Measure dimension "B".
 - Carrier machined surface to outer surface of output shaft (23).
 5. Subtract dimension "A" from dimension "B".
 6. The correct shim size will be one size smaller than the figure obtained in step 5. Examples:
 - If the figure obtained in step 5 was 3.53 mm, use a 3.30 mm shim.
 - If the figure obtained in step 5 was 3.30 mm, use a 2.70 mm shim (K15-25 models) or 2.80 mm shim (K35 models).

Alternate Method
Use ONLY if proper tools for calculating the shim size are not available.

Install or Connect (Figures 1 through 4)
1. Original shim (20) to the shaft (1). Use grease to hold it in place.
2. Assembled axle tube and shaft to the carrier. Use no sealer at this time.
3. Bolts (6). Tighten to 40 N·m (30 ft. lbs.).

Measure (Figure 39)
- Tool Required:
 J 8001 Dial Indicator (or equivalent)
 Shaft (1) end play.
 1. Install a dial indicator (J 8001 or equivalent) on the axle tube end. The plunger of the indicator must be at a right angle to the axle flange (figure 39).
 2. Move the shaft (1) back and forth and read the end play. Correct end play is 0.03-0.51 mm (0.001-0.020-inch).
 3. If end play is incorrect, install a thicker or thinner shim as needed to bring end play into the specified range.

Remove or Disconnect (Figures 1 through 4)
1. Bolts (6).
2. Axle tube assembly.

FINAL ASSEMBLY

Clean (Figures 1 through 4)
- Sealing surfaces of the tube (5) and carrier assembly. Remove all oil and grease. Use carburetor cleaner or equivalent.

Install or Connect (Figures 1 through 4)
1. Shim (20), as selected previously, to the output shaft (23). Use grease to hold it in place.
2. Sleeve (22).
4. Shift shaft (18), spring (17), shift fork (16), and clip (15) assembly to the carrier case.
 - Damper spring fits into shift fork indentation.
 - Make sure clip is seated in groove of shift shaft.
 - Apply a bead of sealer (GM part no. 1052942 [Loctite 518] or equivalent) to the tube (5) sealing surface.
3. Assembled tube (5) to the carrier assembly.
4. Bolts (6).
C. Measure with Axle Shaft Forced Outboard
 1. Shaft
 5. Tube
 9. Carrier Connector
 23. Output Shaft
 29. Carrier Case

Figure 37—Measuring to Calculate Shim Size
Figure 38—Measuring to Calculate Shim Size

Figure 39—Measuring Axle Shaft End Play

Tighten
- Bolts (6) to 40 N·m (30 ft. lbs.).

Inspect (Figure 40)
- Shift mechanism operation. Insert a drift into the actuator hole in the axle tube. Rotate the axle flange while moving the shift fork with the drift. The shift mechanism should work smoothly, without bind.

5. Solenoid (10). Apply sealer (GM part no. 1052942 [Loctite 518] or equivalent) to the threads. Tighten to 22 N·m (16 ft. lbs.).

6. Switch (13). Apply sealer (GM part no. 1052942 [Loctite 518] or equivalent) to the threads. Tighten to 5.0 N·m (45 in. lbs.).

7. Axle lubricant, as specified in the proper Truck Service Manual.

8. Drain and fill plugs (25) with sealing washers (26). Tighten to 33 N·m (24 ft. lbs.).
Figure 40—Checking the Shift Mechanism

DRIVE AXLE ASSEMBLY

OUTER DEFLECTING RING REPLACEMENT

- **Remove or Disconnect (Figures 41, 42 and 43)**
 - Clamp the axle shaft (12) in a vice.
 - Use soft metal or wood to protect the shaft.
 1. Deflecting ring (19) from C/V outer race (18) with a brass drift and a hammer as shown and discard (figure 42).

- **Install or Connect**
 - Position and square up the deflecting ring (19) at the press diameter of C/V outer race (18).
 - Using a 3” pipe coupling (K10/20) or 4” pipe coupling (K30), M24x2.0 nut and fabricated sheet metal sleeve as shown in figure 43, tighten nut until deflector (19) bottoms against shoulder of C/V outer race (18).

OUTER JOINT SEAL REPLACEMENT

- **Remove or Disconnect (Figures 41 and 44 through 47)**

Tools Required:
- J 8059 Snap Ring Pliers
- J 35910 Seal Clamp Tool
- J 36652 Swage Clamp Tool

1. Large swage ring (9) from the C/V joint, using a chisel and discard.

 Important
 Do not cut through the seal (13) and damage the sealing surface of C/V outer housing (18) with the chisel.

2. Small seal-retaining clamp (11) on axle shaft with a side cutter and discard.
 - Separate the joint seal (13) from the C/V joint race (18) at large diameter and slide the seal away from joint along the axle shaft (12).
 - Wipe excess grease from face of C/V inner race (16).
 - Spread the ears on the race retaining ring (14) with J 8059 as shown and remove the C/V joint assembly from the axle shaft (12).

3. Seal (13) from the axle shaft (12).
 - Disassemble the joint and flush grease prior to installing the new seal. Refer to "Outer Joint Assembly Replacement."
Figure 41—Front Drive Axle Components
Install or Connect

1. Install or Connect

- Small seal-retaining clamp (11) on the neck of the new seal (13). Do not crimp.
- Slide the seal (13) onto the axle shaft (12) and position the neck of the seal in the seal groove on the axle shaft.
- Crimp the seal-retaining clamp (11) with J 35910 to 136 N m (100 ft. lbs.) (figure 46).
- Place approximately half of the grease provided inside the seal (13) and repack the C/V with the remaining grease.

2. Install or Connect

- Pinch by hand slightly to distort into an oval shape and slide onto large diameter of the seal (13).
- Push C/V joint onto axle shaft (12) until retaining ring (14) is seated in groove on axle shaft.
- Slide large diameter of the seal (13) with the large swage ring (9) in place over the outside of the C/V joint race (18) and locate the lip of the seal in the housing groove.

Figure 42—Removing Outer Deflector Ring

Figure 43—Installing Outer Deflector Ring

Figure 44—Removing C/V Joint

Figure 45—Installing C/V Joint

Figure 46—Installing Seal Retaining Clamp
OUTER JOINT ASSEMBLY REPLACEMENT

Disassemble (Figures 41, 48, 49 and 50)

- Perform steps 1 through 3 in "Outer Joint Seal Replacement" in this section.
- Use a brass drift and a hammer to gently tap on the C/V joint cage (17) until it is tilted enough to remove the first chrome alloy ball (15) (see figure 48).
- Tilt the cage (17) in opposite direction to remove opposing ball (15).
- Repeat this process until all six balls (15) are removed.
- Position the cage (17) and the inner race (16) 90° to the center line of the outer race (18) and align the cage windows with the lands of the outer race (see figure 49).
- Separate the cage (17) and the inner race (16) from the outer race (18).
- Rotate the inner race (16) 90° to the center line of the cage (17) with the lands of the inner race aligned with the windows of the cage (see figure 50).
- Pivot the inner race (16) into the cage (17) window and remove the inner race.

Assemble

- Put a light coat of recommended grease on the ball grooves of the inner race (16) and the outer race (18).
- Reverse the steps of the disassembly procedure.
K TRUCK FRONT AXLE 4C4-25

Figure 48—Removing C/V Joint Balls

15. Ball
16. Inner Race
17. Cage
18. Outer Race

15. Ball
16. Inner Race
17. Cage
18. Outer Race

- **Important**
 Be sure that the retaining ring side of the inner race (16) face the axle shaft (12).
- Perform steps 1 through 3 in "Outer Joint Seal Replacement" Install or Connect.

INNER TRI-POT SEAL REPLACEMENT

- **Remove or Disconnect** (Figures 41, 47, 51, 52, 53 and 54)

 Tools Required:
 J 8059 Snap Ring Pliers
 J 35910 Seal Clamp Tool
 J 36652 Swage Clamp Tool

1. Large swage ring (9) from the tri-pot joint, using a chisel, and discard.

- **Important**
 Do not cut through the seal (10) with the chisel and damage the sealing surface of the tri-pot outer housing (1).

2. Small seal-retaining clamp (11) from the axle shaft (12) with a side cutter and discard.

- Separate seal (10) from the tri-pot housing (1) at the large diameter and slide the seal away from the joint along the axle shaft (12).

3. Tri-pot housing (1) from the spider (3) and shaft (12).

- Spread the spacer ring (8) with J 8059 and slide the spacer ring and the tri-pot spider (3) back on the axle shaft (12) as shown (figure 51).

4. Shaft retaining ring (2) from the groove on the axle shaft (12) and slide the spider assembly off the shaft.

- **Important**
 Handle the tri-pot spider assembly with care or the tri-pot balls and needle rollers may separate from the spider trunions.

- **Important**
 Be sure that the counterbored face of the tri-pot spider (3) faces the end of the shaft (12).

Figure 49—Separating Outer Race and Cage

- **Important**
 Do not crimp.

- Slide the seal (10) onto the shaft (12) and position the neck of the seal in the seal groove on the axle shaft (12).

- Crimp seal retaining clamp (11) with J 35910 to 136 N·m (100 Lbs. Ft.).

- Spacer ring (8) on the axle shaft (12) and beyond the second groove as shown (figure 52).

- Slide the tri-pot spider assembly against the spacer ring (8) and the shaft (12).

Figure 50—Separating Inner Race and Cage

- **Important**
 Handle the tri-pot spider assembly with care or the tri-pot balls and needle rollers may separate from the spider trunions.

- Remove the spacer ring (8) and the seal (10) from the axle shaft (12).

- Flush grease from the housing.

install or Connect

1. Small seal-retaining clamp (11) on the neck of the seal (10).

- **Important**
 Be sure that the counterbored face of the tri-pot spider (3) faces the end of the shaft (12).

- Do not crimp.

2. Slide the seal (10) onto the shaft (12) and position the neck of the seal in the seal groove on the axle shaft (12).

- Crimp seal retaining clamp (11) with J 35910 to 136 N·m (100 Lbs. Ft.).

- Spacer ring (8) on the axle shaft (12) and beyond the second groove as shown (figure 52).

- Slide the tri-pot spider assembly against the spacer ring (8) and the shaft (12).
SLIDE SPACER RING AND SPIDER ASSEMBLY BACK ON SHAFT. REMOVE RETAINING RING AND SLIDE SPIDER ASSEMBLY OFF OF SHAFT.

2. Shaft Retaining Ring
8. Spacer
12. Axle Shaft

Figure 51—Removing Spider Assembly

SLIDE SPACER RING INTO GROOVE ON AXLE SHAFT

8. Spacer Ring
12. Axle Shaft

Figure 52—Installing Spider Assembly

1. Tri-Pot Housing Assembly
12. Axle Shaft

Figure 53—Installing Tri-pot to Housing

4. Shaft retaining ring (2) in the groove of the axle shaft (12) with J 8059.
- Slide the tri-pot spider (3) towards the end of the shaft (12) and reseat the spacer ring (8) in the groove on the axle.
- Place approximately half of the grease provided in the seal (10) and use the remainder to repack the tri-pot housing (1).
- Pinch the swage ring (9) by hand slightly to distort it into an oval shape and slide it onto the large diameter of the seal (13).
- Slide the tri-pot housing (1) over the tri-pot spider assembly on the shaft (12) (figure 53).
- Slide the large diameter of the seal (10) with the large swage ring (9) in place over the outside of the tri-pot housing (1) and locate the lip of the seal in the housing groove.
- Position the tri-pot assembly at the proper vehicle dimension as shown in figure 54.

Important:
The seal (13) must not be dimpled, stretched or out of shape in any way. If the seal is not shaped correctly, slide the swage ring (9) off the seal and onto the housing (1). Carefully insert a thin flat blunt tool (no sharp edges) between the seal opening and the housing to equalize pressure. Shape the seal properly by hand and remove the tool.
- Return the swage ring (9) to position on the seal (13).
- Refer to the chart in figure 47 and select the proper size swage clamp tool J 36652.
- Mount the swage clamp tool in the vice and proceed as follows:
 — Position the inboard end of the axle assembly in the tool.
 — Place the top half of the proper size tool on the lower half of tool and check for proper alignment and dimension (figures 47 and 54).
 — Insert the bolts and tighten by hand until snug.

Figure 54—Tri-pot Seal Installation Measurements
Important

Make sure that the seal (10), housing (1) and swage ring (9) all remain in alignment (figure 47).
— Continue to tighten each bolt 180° at a time, alternating until both sides are bottomed.
• Remove the axle assembly from the tool.

SPECIFICATIONS

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>FASTENER</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
<th>In. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Gear Bolts</td>
<td>120</td>
<td>88</td>
<td>—</td>
</tr>
<tr>
<td>Carrier Case Bolts</td>
<td>47</td>
<td>35</td>
<td>—</td>
</tr>
<tr>
<td>Axle Tube Bolts</td>
<td>40</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Actuator</td>
<td>22</td>
<td>16</td>
<td>—</td>
</tr>
<tr>
<td>Front Axle Switch</td>
<td>5.0</td>
<td>—</td>
<td>45</td>
</tr>
<tr>
<td>Drain and Fill Plugs</td>
<td>33</td>
<td>24</td>
<td>—</td>
</tr>
<tr>
<td>Seal Retaining Clamp</td>
<td>136</td>
<td>100</td>
<td>—</td>
</tr>
</tbody>
</table>

AVAILABLE SHIM SIZES

Pinion Shaft Shims
(K15-25 Models) ... 0.020-0.024-inch
(K35 Models) ... 0.025-0.029-inch
(K35 Models) ... 0.030-0.034-inch
(K35 Models) ... 0.035-0.039-inch
(K35 Models) ... 0.508-0.5842 mm
(K35 Models) ... 0.6096-0.7112 mm
(K35 Models) ... 0.7366-0.8382 mm
(K35 Models) ... 0.8386-0.9398 mm

Output Shaft Shims
K15-25 Models ... 1.27, 1.78, 2.29, 2.70, 3.30, 3.81 mm
K35 Models ... 1.80, 2.30, 2.80, 3.30, 3.80, 4.30, 4.80 mm

PINION PRELOAD AND BACKLASH

Pinion Preload ... 1.7-2.8 N·m (15-25 in. lbs.)
Backlash ... 0.08-0.25 mm (0.003-0.010-in.)
(Preferred) ... 0.13-0.18 mm (0.005-0.007-in.)
<table>
<thead>
<tr>
<th>No.</th>
<th>Tool/Part Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Slide Hammer</td>
</tr>
<tr>
<td>2</td>
<td>Output Shaft Bearing Installer (K15-25)</td>
</tr>
<tr>
<td>3</td>
<td>Output Shaft Bearing Installer (K35)</td>
</tr>
<tr>
<td>4</td>
<td>Driver Handle</td>
</tr>
<tr>
<td>5</td>
<td>Side Bearing Puller Pilot (K15-25)</td>
</tr>
<tr>
<td>6</td>
<td>Side Bearing Puller Pilot (K35)</td>
</tr>
<tr>
<td>7</td>
<td>Pinion Bearing Remover (K15-25 Models)</td>
</tr>
<tr>
<td>8</td>
<td>Pinion Bearing Remover (K35 Models)</td>
</tr>
<tr>
<td>9</td>
<td>Pinion Flange Remover</td>
</tr>
<tr>
<td>10</td>
<td>Case Bushing Replacer</td>
</tr>
<tr>
<td>11</td>
<td>Differential Side Bearing Installer (K15-25 Models)</td>
</tr>
<tr>
<td>12</td>
<td>Differential Side Bearing Installer (K35 Models)</td>
</tr>
<tr>
<td>13</td>
<td>Differential Side Bearing Puller</td>
</tr>
<tr>
<td>14</td>
<td>Axle Tube Bearing Installer</td>
</tr>
<tr>
<td>15</td>
<td>Axle Tube Bearing and Seal Remover (K15-25 Models)</td>
</tr>
<tr>
<td>16</td>
<td>Axle Tube Bearing and Seal Remover (K35 Models)</td>
</tr>
<tr>
<td>17</td>
<td>Differential Pilot Bearing Installer</td>
</tr>
<tr>
<td>18</td>
<td>Differential Pilot Bearing Remover</td>
</tr>
<tr>
<td>No.</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
</tr>
<tr>
<td>19</td>
<td>Pinion Bearing Installer (K15-25 Models)</td>
</tr>
<tr>
<td>20</td>
<td>Pinion Bearing Installer (K35 Models)</td>
</tr>
<tr>
<td>21</td>
<td>Pinion Seal Installer</td>
</tr>
<tr>
<td>22</td>
<td>Axle Seal Installer (K15-25 Models)</td>
</tr>
<tr>
<td>23</td>
<td>Axle Seal Installer (K35 Models)</td>
</tr>
<tr>
<td>24</td>
<td>Holding Fixture and Pinion Service Tool</td>
</tr>
<tr>
<td>25</td>
<td>Dial Indicator Adapter</td>
</tr>
<tr>
<td>26</td>
<td>Side Bearing Adjuster Wrench</td>
</tr>
<tr>
<td>27</td>
<td>Pinion Depth Setting Gage</td>
</tr>
<tr>
<td>28</td>
<td>Dial Indicator</td>
</tr>
<tr>
<td>29</td>
<td>Dial Indicator</td>
</tr>
<tr>
<td>30</td>
<td>Depth Gage</td>
</tr>
<tr>
<td>31</td>
<td>Side Bearing Adjuster Wrench</td>
</tr>
<tr>
<td>32</td>
<td>Dial Indicator Set</td>
</tr>
<tr>
<td>33</td>
<td>Clamp Swage Tool Set</td>
</tr>
<tr>
<td>34</td>
<td>Drive Axle Seal Clamp Pliers</td>
</tr>
<tr>
<td>35</td>
<td>Side Bearing Cup Installer</td>
</tr>
<tr>
<td>36</td>
<td>Side Bearing Cup Installer</td>
</tr>
</tbody>
</table>
SECTION 5
BRAKES

The following notice applies to one or more steps in the assembly procedure of components in this portion of the manual as indicated at appropriate locations by the terminology NOTICE: See 'Notice' on page 5-1 of this section.

NOTICE: This fastener is an important attaching part in that it could affect the performance of vital components and systems, and/or could result in major repair expense, it must be replaced with one of the same part number or with an equivalent part if replacement becomes necessary. Do not use a replacement part of lesser quality or substitute design. Torque values must be used as specified during reassembly to assure proper retention of this part.

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic Booster</td>
<td>.5- 1</td>
</tr>
<tr>
<td>Bendix Hydro-Boost</td>
<td>.5- 1</td>
</tr>
<tr>
<td>Master Cylinders</td>
<td>.5- 4</td>
</tr>
<tr>
<td>Composite Master Cylinder</td>
<td>.5- 4</td>
</tr>
<tr>
<td>Cast Iron Master Cylinder</td>
<td>.5- 4</td>
</tr>
<tr>
<td>Bendix Master Cylinder</td>
<td>.5- 6</td>
</tr>
<tr>
<td>Vacuum Boosters</td>
<td>.5- 9</td>
</tr>
<tr>
<td>Single Diaphragm Vacuum Booster</td>
<td>.5- 9</td>
</tr>
<tr>
<td>Tandem Diaphragm Vacuum Booster</td>
<td>.5-11</td>
</tr>
<tr>
<td>Specifications</td>
<td>.5-14</td>
</tr>
<tr>
<td>Special Tools</td>
<td>.5-15</td>
</tr>
</tbody>
</table>

HYDRAULIC BOOSTER

BENDIX HYRDO-BOOST

Remove or Disconnect (Figure 1)

Bendix Hydro Boost Model has identifying information stamped into the housing near the inlet line.

CAUTION: The accumulator contains compressed gas. Always use proper tools and follow recommended procedures or personal injury may result. Do not apply heat to accumulator. Do not attempt to repair an inoperative accumulator, always replace with a new accumulator. Dispose of an inoperative accumulator by drilling a 1/16-inch diameter hole through the end of the accumulator can opposite the "O" ring.

Tools Required:
J 26889 Accumulator Compressor
- Place J 26889 over the end of the accumulator and install a nut onto the stud (figure 2).
- Depress the accumulator with a C-clamp.
- Insert a punch into the hole on the housing.
1. Retainer (1).
 - Release the C-clamp.
 - Remove J 26889.
2. Accumulator (2) and O-ring (3).
3. Retainer (4).
4. Plug (5), O-ring (6) and spring (7) (figure 3).
5. Retainer (26).
6. Output pushrod (28), baffle (27), piston return spring (25) and retainer (24).
- Saw off the eyelet of the pedal rod (20).
8. Nut (18) and bracket (17).
9. Bolts (9).
 - Separate the cover (16) from the housing (8).
10. Seals (14 and 15).
11. Piston assembly (22) and seal (23).
12. Spool valve (13).
 - Make a wire hook to aid in the removal.
14. Return line fitting (12) and seal (10).

Clean
- All the parts with power steering fluid.

Inspect
- Spool valve and spool valve bore for corrosion, nicks and scoring. If found, replace the complete booster. Discoloration of the spool or bore is not harmful and is no cause for replacement.
- Housing and cover sealing surface for corrosion, or nicks.
- Tube seat in the housing for burrs, nicks or corrosion. Replace if needed (figures 5 and 6).
Install or Connect (Figure 1)

Tools Required:
- J 26889 Accumulator Compressor
- J 24551-A Seal Protector
- J 25083 Seal Protector

NOTICE: For steps 8 and 9 see "Notice" on page 5-1 of this section.

- Lubricate all the seals and metal friction points with power steering fluid.

1. Seal (10) and return line fitting (12).
2. Accumulator valve (11).
3. Spool valve (13).
4. Seal (23) and piston assembly (22) by using J 24551-A or J 25083 (figure 7).
 - Lubricate the tool with clean power steering fluid.
5. Seal (14) onto the piston assembly (22).
6. Seal (15) onto the housing (8).
7. Cover (16).
8. Bolts (9).

Figure 1—Hydro-Boost Components

Figure 2—Removing the Accumulator

Figure 3—Removing the Plug and Spring
8. Housing
11. Accumulator Valve
 A. Wire Hook

Figure 4—Removing the Accumulator Valve

9. Bracket (17) and nut (18).
11. Output pushrod (28), baffle (27), piston return spring (25) and retainer (24) by using J 24551-A or J 25083 (figure 8).
12. Retainer (26).
13. Spring (7), O-ring (6) and plug (5) (figure 3).
15. O-ring (3) and accumulator (2) by using J 26889 and a C-clamp (figure 2).
16. Retainer (1).
17. Jam nut from the repair kit onto the pedal rod.
18. Eyelet onto the pedal rod.

Figure 7—Installing the Piston Assembly

Adjust
- Eyelet to the required length. Refer to HYDRAULIC BRAKES (SEC. 5A) in the 1989 Light Duty Truck Service Manual.
MASTER CYLINDERS

COMPOSITE MASTER CYLINDER

The Delco-Moraine Composite Master Cylinder has identifying information stamped into the front outlet tube. The first and second digits are the build code. The third digit indicates the year it was built (a 5 means 1985 or a 6 means 1987). The last digits indicate the day it was built (271 means it was the 271st day of the production year).

NOTICE: Do not hone the master cylinder bore. When the brake master cylinder is overhauled, it is recommended that the cylinder body be replaced rather than "cleaned up" by honing the bore. The master cylinder has a hard, highly polished "bearingized" surface, which is produced by diamond boring followed by ball or roller burnishing under heavy pressure. Honing will destroy this surface which will cause rapid wear of rubber cups.

NOTICE: Do not use kerosene, gasoline, or any other unapproved solvents for cleaning or flushing master cylinder and components. The use of these as solvents or any other with a trace of mineral oil will damage rubber parts.

Remove or Disconnect (Figures 9 and 10)

1. Cover (1).
2. Diaphragm (2).
 • Drain all the brake fluid from the reservoir.
3. Reservoir (3) and grommets (4) (figure 11).
 • Clamp the mounting flange of the cylinder in a vise and pry the reservoir off with a bar.
4. Snap ring (11).
5. Primary piston assembly (12).

CAUTION: In the following step if air pressure is used to remove the secondary piston, place the open end of the cylinder bore approximately 25 mm (1-inch) from a padded workbench or other surface to catch the piston when it comes out of the bore. Apply low air pressure very carefully to ease the piston out of the bore. Never point the open end of the bore at anyone when applying air pressure. The piston may come out of the bore with considerable force and cause personal injury.
6. Secondary piston (9).
 • With the rear port plugged apply a small amount of air pressure to the front port.
7. Seals (8 and 10).
8. Spring (6) and spring retainer (7).

Clean

• All the metal parts in denatured alcohol.
• All the rubber parts in clean brake fluid.
• Stained or discolored cylinder bore with crocus cloth.

Install or Connect (Figures 9 and 10)

1. Spring (6) and spring retainer (7).
2. Seals (8 and 10) onto the secondary piston (9).
3. Secondary piston (9).
4. Primary piston assembly (12).
5. Snap ring (11).
 • The primary piston must be compressed when installing the snap ring.
7. Reservoir (3) (figures 12 and 13).
 • Press on the body while using a rocking motion.
8. Diaphragm (2) into the cover (1).
9. Cover (1).

CAST IRON MASTER CYLINDER

The Delco-Moraine Cast Iron Master Cylinder has identifying information stamped into the front outlet tube. The first and second digits are the build code. The third digit indicates the year it was built (a 5 means 1985 or a 7 means 1987). The last digits indicate the day it was built (271 means it was the 271st day of the production year).

NOTICE: Do not hone the master cylinder bore. When the brake master cylinder is overhauled, it is recommended that the cylinder body be replaced rather than "cleaned up" by honing the bore. The master cylinder has a hard, highly polished "bearingized" surface, which is produced by diamond boring followed by ball or roller burnishing under heavy pressure. Honing will destroy this surface which will cause rapid wear of rubber cups.

NOTICE: Do not use kerosene, gasoline, or any other unapproved solvents for cleaning or flushing master cylinder and components. The use of these as solvents or any other with a trace of mineral oil, will damage rubber parts.

Remove or Disconnect (Figure 14)

1. Cover (22).
2. Diaphragm (23).
 • Drain all the brake fluid from the reservoir.
3. Snap ring (31).
4. Primary piston assembly (30) (figure 15).
CAUTION: In the following step if air pressure is used to remove the secondary piston, place the open end of the cylinder bore approximately 25 mm (1-inch) from a padded workbench or other surface to catch the piston when it comes out of the bore. Apply low air pressure very carefully to ease the piston out of the bore. Never point the open end of the bore at anyone when applying air pressure. The piston may come out of the bore with considerable force and cause personal injury.

5. Secondary piston (28).
 - With the rear port plugged apply a small amount of air pressure to the front port.

7. Spring retainer (26) and primary seal (27).
8. Spring (25).
9. Tube seats (if necessary) (figure 17).
 - Thread a self-tapping screw into the tube seat and remove with locking jaw pliers.

Clean
- All the metal parts in denatured alcohol.
- All the rubber parts in clean brake fluid.
- Stained or discolored cylinder bore with crocus cloth.

Inspect
- Diaphragm for cuts, cracks, or a swollen condition.
- Cylinder bore for scoring or corrosion. If corrosion is present, replace the cylinder. Do not attempt to hone the bore.

Install or Connect (Figure 14)
- Lubricate all the seals and cylinder bore with clean brake fluid.
 1. Spring (25).
 2. Primary seal (27) and spring retainer (26) onto the secondary piston (28) (figure 16).
 3. Secondary seals (29) onto the secondary piston (28).
5. Primary piston assembly (30).
 - The primary piston must be compressed to install the snap ring.
7. Diaphragm (23) into the cover (22).
8. Cover (22).

BENDIX MASTER CYLINDER

The Bendix Master Cylinder has identifying information stamped into the front surface of the body. The first digit indicates the plant where it was built. The second digit indicates the year it was built (a 5 means 1985 or a 6 means 1986). The last digits indicate the day it was built (271 means the 271st day of the production year).

NOTICE: Do not hone the master cylinder bore. When the brake master cylinder is overhauled, it is recommended that the cylinder body be replaced rather than “cleaned up” by honing the bore. The master cylinder has a hard, highly polished “bearingized” surface, which is produced by diamond boring followed by ball or roller burnishing under heavy pressure. Honing will destroy this surface which will cause rapid wear of rubber cups.

NOTICE: Do not use kerosene, gasoline, or any other unapproved solvents for cleaning or flushing master cylinder and components. The use of these as solvents or any other with a trace of mineral oil will damage rubber parts.
BRAKES 5-7

21. Bail
22. Cover
23. Diaphragm
24. Body
25. Spring
26. Spring Retainer
27. Primary Seal
28. Secondary Piston
29. Secondary Seals
30. Primary Piston Assembly
31. Snap Ring

Figure 14—Cast Iron Master Cylinder Components

Remove or Disconnect (Figure 19)

1. Cover (41).
2. Diaphragm (42).
 - Drain all the brake fluid from the reservoir.
3. Bolts (54) and reservoir (44).
4. O-ring (55) and compensating valve seals (45).
5. Valve poppets (46) and springs (47).
 - Depress the primary piston with a smooth rounded end tool.
6. Snap ring (52).
7. Primary piston assembly (51) and piston return spring (50).

CAUTION: In the following step if air pressure is used to remove the secondary piston, place the open end of the cylinder bore approximately 25 mm (1-inch) from a padded workbench or other surface to catch the piston when it comes out of the bore. Apply low air pressure very carefully to ease the piston out of the bore. Never point the open end of the bore at anyone when applying air pressure. The piston may come out of the bore with considerable force and cause personal injury.
8. Secondary piston assembly (49).
 - With the front port plugged, apply a small amount of air pressure to the front compensating valve port.

Clean
- All the metal parts in denatured alcohol.
- All the rubber parts in clean brake fluid.
Figure 15—Cast Iron Master Cylinder Components

- A stained or discolored cylinder bore with crocus cloth.

Inspect
- Diaphragm for cuts, cracks, or a swollen condition.
- Cylinder bore for scoring or corrosion. If corrosion is present, replace the cylinder. Do not attempt to hone the bore.

Install or Connect (Figure 19)
- Lubricate all the seals and cylinder bore with clean brake fluid.
 1. Secondary spring (48).
 2. Secondary piston assembly (49).
 3. Piston return spring (50).

4. Primary piston assembly (51) and snap ring (52).
 - The primary piston must be depressed to install the snap ring.
5. O-ring (55) and springs (47).
6. Valve poppets (46) and compensating valve seals (45).
 - Depress and hold the primary piston assembly with a smooth rounded end tool.
7. Reservoir (44).

NOTICE: See “Notice” on page 5-1 of this section.

8. Bolts (54).

Tighten
- Bolts to 18 N·m (13 ft. lbs.).
9. Diaphragm (42) into the cover (41).
10. Cover (41).
VACUUM BOOSTERS

Delco-Moraine Vacuum Boosters have a build date on a small paper label glued onto the front housing. The first digit indicates the year it was built (a 5 means 1985 or a 6 means 1986). The last digits indicate the day it was built (271 means the 271st day of production year).

SINGLE DIAPHRAGM VACUUM BOOSTER

Remove or Disconnect (Figure 20)

Tool Required:
J 23456 Power Brake Booster Disassembly and Reassembly Fixture

1. Boot (1) and silencer (2).
2. Vacuum check valve (3) and grommet (4).
3. Front housing seal (5).
 - Scribe a mark across the front and rear housings to aid in assembly.
 - Use J 23456 to apply force in a counter clockwise direction to unlock the housings (figure 21).
4. Return spring (9) and power piston group.
5. Power piston bearing (6) from the rear housing (7).
6. Reaction body retainer (25).
7. Piston rod (10) and reaction retainer (11).
8. Filter (12) using an awl or similar tool.
10. Diaphragm (14) from the diaphragm support (15).

Grasp the outside edge of the diaphragm support (15) and diaphragm (14). Hold the pushrod (19) down against a hard surface.
Use a slight force or impact to dislodge the diaphragm retainer (13).

Inspect
All parts for corrosion, nicks, cracks, cuts, scoring, distortion or excessive wear. Replace parts as necessary.
Use crocus cloth to polish away minor corrosion of the housings or diaphragm support.

Clean
All parts in clean denatured alcohol.
Do not immerse the power piston and pushrod assembly in alcohol.
Dry with unlubricated compressed air.
1. Boot
2. Silencer
3. Vacuum check Valve
4. Grommet
5. Front Housing Seal
6. Power Piston Bearing
7. Rear Housing
8. Front Housing
9. Return Spring
10. Piston Rod (Gaged)
11. Reaction Retainer
12. Filter
13. Diaphragm Retainer
14. Diaphragm
15. Diaphragm Support
16. Power Piston and Pushrod Assembly
19. Pushrod
25. Reaction Body Retainer

Figure 20—Single Diaphragm Vacuum Booster Components

Install or Connect (Figure 20)

Tools Required:
- J 23456 Power Brake Booster Disassembly and Reassembly Tool
- J 28458 Power Piston Seal Protector
- J 22647 Pushrod Height Gage

1. Diaphragm (14) into the diaphragm support (15).
 - Lubricate the inside diameter of the diaphragm lip with a thin layer of silicone grease.
2. Diaphragm and diaphragm support onto the power piston and pushrod assembly.
3. New diaphragm retainer (13) (figure 22).
 - Seat the retainer using J 28458.
4. Filter (12), reaction retainer (11) and piston rod (10).
5. Reaction body retainer (25).

6. Power piston bearing (6) into the rear housing.
 - Lubricate the inside and outside of the bearing with silicone grease.
7. Power piston group into the rear housing (7).
8. Return spring (9).
9. Front housing to the rear housing.
 - Align the marks made during disassembly.
 - Use J 23456 to apply force in a clockwise direction to lock the front and rear housings.
 - Stake the housing at two tabs 180 degrees apart (figure 23).
 - Do not stake a tab that has previously been staked.
 - Assembly can be aided by connecting a vacuum source to the booster.
10. Grommet (4) and vacuum check valve (3).
Figure 24—Gaging the Piston Rod

11. Front housing seal (5).
12. Silencer (2) and boot (1).
 • Gage the piston rod using J 22647 (figure 24). If not within limits, obtain a service adjustable piston rod.

TANDEM DIAPHRAGM VACUUM BOOSTER

Remove or Disconnect (Figure 25)

Tool Required:
J 23456 Power Brake Booster Disassembly and Reassembly Fixture

1. Boot (1) and silencer (2).
2. Vacuum check valve (3) and grommet (4).
3. Front housing seal (7).
 • Scribe a mark on the front and rear housings to aid in assembly.
 • Unlock the front and rear housings using J 23456 (figure 21).
4. Return spring (11) and power piston group (38) (figure 26).
5. Primary piston bearing (8) from the rear housing (9).
6. Piston rod (12), reaction retainer (13) and power head silencer (14).
7. Power piston assembly (41) along with the pushrod (32) (figure 27).
 • Grasp the assembly at the outside edge of the housing divider (19) and diaphragms (16 and 20).
 • Hold with the pushrod (32) down against a hard surface.
 • Use a slight force or impact to dislodge the diaphragm retainer (15).
8. Primary diaphragm (16) and primary support plate (17) from the housing divider (19).
9. Primary diaphragm (16) from the primary support plate (17).
10. Secondary diaphragm (20) and secondary support plate (21) from the housing divider (19).
11. Secondary piston bearing (18) from the housing divider (19).

12. Secondary diaphragm (20) from the secondary support plate (21).
13. Reaction body retainer (24).
15. Reaction disc (22) and reaction piston (23) from the reaction body (25).
16. Air valve spring (26) and reaction bumper (27) from the end of the air valve pushrod (32).
17. Retaining ring (26) from the air valve pushrod assembly (32).
18. Air valve pushrod assembly (32) by inserting a screwdriver through the pushrod eyelet and pulling it straight out.
 • Considerable force will be required.
19. Filter (29), retainer (30) and O-ring (31) from the air valve pushrod assembly (32).

Inspect

• All parts for corrosion, nicks, cracks, cuts, scoring, distortion or excessive wear. Replace parts as necessary.
• Use crocus cloth to polish away minor corrosion of the housings or diaphragm support.

Clean

• All parts in clean denatured alcohol.
 — Do not immerse the power piston and pushrod assembly in alcohol.
• Dry with unlubricated compressed air.

Install or Connect (Figure 25)

Tools Required:
J 23456 Power Brake Booster Disassembly and Reassembly Fixture

11. Front housing seal (5).
12. Silencer (2) and boot (1).
 • Gage the piston rod using J 22647 (figure 24). If not within limits, obtain a service adjustable piston rod.

Figure 23—Staking the Tabs

- Lubricate the inside and outside diameters of the grommet and front housing seal with a thin layer of silicone.
1. Lubricated O-ring (31) onto the air valve pushrod assembly (32).
2. Air valve pushrod assembly (32) into the power piston (41).
3. Retainer (30) and seat.
4. Filter (29) over the pushrod eyelet and into the power piston (41) (figure 27).
5. Retaining ring (28) onto the air valve pushrod assembly (32).
6. Reaction bumper (27) and air valve spring (26).
7. Reaction piston (23) and reaction disc (22) into the reaction body (25).
8. Reaction body (25).
9. Reaction body retainer (24).
 - Lubricate the inside diameter of the secondary diaphragm (20) lip, inside diameter of the primary diaphragm (16) lip and the secondary piston bearing (18) with a thin layer of silicone grease.
10. Secondary diaphragm (20) into the secondary support plate (21).
11. Secondary diaphragm (20) and support plate (21) over the power piston assembly (41) and pushrod (32) (figure 28).
 - Use J 28458 as a guide to protect the power piston.
12. Secondary piston bearing (18) into the housing divider (19) with the flat surface of the bearing on the same side as the six raised lugs on the divider.
13. Secondary piston bearing (18) and housing divider (19) over the power piston assembly (41) and pushrod (32). Use J 28458 as a guide (figure 29).
14. Primary diaphragm (16) into the primary support plate (17).
 - Fold the primary diaphragm (16) up, away from the primary support plate (17).
15. Primary diaphragm (16) and support plate (17) over the power piston assembly (41) and pushrod (32).
 - Fold the primary diaphragm (16) back into position and pull the outside edge of the diaphragm over the formed flange of the housing divider (19).
8. Primary Piston Bearing
9. Rear Housing
10. Front Housing
11. Return Spring
38. Power Piston Group

Figure 26—Booster Inner Components

- Check that the beads on the secondary diaphragm (20) are seated evenly around the complete circumference.
16. New diaphragm retainer (15) and seat using J 28458.
17. Silencer (14), reaction retainer (13) and piston rod (12).
 - Lubricate the inside and outside diameters of primary piston bearing (8) with silicone grease.
18. Primary piston bearing (8) into the rear housing (9).
19. Power piston group (38) into the rear housing (9).
20. Return spring (11).
 - Align the scribe marks on housings (9 and 10).
 - Lock the front and rear housings using J 23456 (figure 21).
 - Stake the housing after locking. Stake two tabs 180 degrees apart (figure 23).
 - Do not stake a tab that has been previously staked.
 - Assembly can be aided by connecting a vacuum source to the booster.
 - Lubricate the inside and outside diameters of the grommet (4) and front housing seal (7) with a thin layer of silicone grease.
21. Grommet (4) and vacuum check valve (3).
22. Front housing seal (7).
23. Silencer (2) and boot (1).
 - Gage the piston rod (figure 24).

Figure 27—Power Piston Group

- Use J 22647. If not within limits, obtain a service adjustable piston rod.
A. Diaphragm Lip
20. Secondary Diaphragm
41. Power Piston Assembly

Figure 28—Assembling the Secondary Diaphragm and Support

18. Secondary Piston Bearing
19. Housing Divider
20. Secondary Diaphragm
41. Power Piston Assembly

Figure 29—Assembling the Housing Divider

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydro-Boost Housing to Cover Bolts</td>
<td>30</td>
<td>22</td>
</tr>
<tr>
<td>Hydro-Boost Nut</td>
<td>149</td>
<td>110</td>
</tr>
</tbody>
</table>
SPECIAL TOOLS

<table>
<thead>
<tr>
<th>Number</th>
<th>Tool Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>J 22647</td>
<td>Power Brake Push Rod Height Gage</td>
</tr>
<tr>
<td>2.</td>
<td>J 24551-A</td>
<td>Piston Seal Protector</td>
</tr>
<tr>
<td>3.</td>
<td>J 25083</td>
<td>Piston Seal Protector</td>
</tr>
<tr>
<td>4.</td>
<td>J 23456</td>
<td>Power Brake Booster Disassembly and Reassembly Tool</td>
</tr>
<tr>
<td>5.</td>
<td>J 26889</td>
<td>Accumulator Piston</td>
</tr>
<tr>
<td>6.</td>
<td>J 6217</td>
<td>Valve Connector Seat Installer</td>
</tr>
<tr>
<td>7.</td>
<td>J 28458</td>
<td>Power Piston Seal Protector</td>
</tr>
</tbody>
</table>

- **1.** Power Brake Push Rod Height Gage
- **2.** Piston Seal Protector
- **3.** Piston Seal Protector
- **4.** Power Brake Booster Disassembly and Reassembly Tool
- **5.** Accumulator Piston
- **6.** Valve Connector Seat Installer
- **7.** Power Piston Seal Protector
GENERAL INFORMATION

STATEMENT ON CLEANLINESS AND CARE

- An engine is a combination of many machined, honed, polished and lapped surfaces with very fine tolerances.
- Whenever valve train components, cylinder head, cylinder, crankshaft, or connecting rod components are removed for service, they should be retained in order. At the time of installation, they should be installed in the same locations and with the same mating surfaces as when removed.
- Any time air cleaner, carburetor, or TBI unit is removed, the intake opening must be covered. If a diesel engine is being serviced, the recommended cover (J 29664-2) should be used. This will protect against the entrance of foreign material which could follow the intake passage into the cylinder and cause extensive damage when the engine is started.
- When any internal engine parts are serviced, care and cleanliness are important. A liberal coating of engine oil should be applied to friction areas during assembly to protect and lubricate the surfaces on initial operation. Throughout this section, it should be understood that proper cleaning and protection of machined surfaces and friction areas is part of the repair procedure. This is considered standard shop practice even if not specifically stated.
- On diesel engines, whenever the fuel injection pump or lines are removed or disconnected, care must be taken to prevent the entry of dirt into the pump, lines, and injectors. The entry of even small amounts of dirt or other foreign material into the fuel injection system may cause serious damage.

USE OF RTV SEALER AND ANAEROBIC GASKET ELIMINATOR

Two types of sealer are commonly used in engines covered by this manual. These are RTV sealer and anaerobic "gasket eliminator" sealer.

It is important that these sealers be applied properly and in the proper place to prevent oil leaks. THE TWO TYPES OF SEALER ARE NOT INTERCHANGEABLE. Use the sealer recommended in the procedure.

- RTV (room temperature vulcanizing) sealer is used where a non-rigid part is assembled to a rigid part. Common examples are oil pans and rocker arm covers.
- Anaerobic gasket eliminator hardens in the absence of air. This sealer is used where two rigid parts (such as castings) are assembled together. When two rigid parts are disassembled and no sealer or gasket is readily noticeable, the parts were probably assembled using gasket eliminator.

USING RTV SEALER

1. Do not use RTV when extreme temperatures are expected, such as exhaust manifold, head gasket or where gasket eliminator is specified.
2. When separating components sealed with RTV, use a rubber mallet and "bump" the part sideways to shear the RTV sealer. "Bumping" should be done at bends or reinforced areas to prevent distortion of parts. RTV is weaker in shear (lateral) strength than in tensile (vertical) strength. Attempting to pry or pull components apart may result in damage to the part.
3. Surfaces to be resealed must be clean and dry. Remove all traces of oil and RTV. Clean with a chlorinated solvent such as carburetor spray cleaner. Do not use petroleum cleaners such as mineral spirits; they leave a film onto which RTV will not stick.
4. Apply RTV to one of the clean surfaces. Use a bead size as specified in the procedure. Run the bead to the inside of any bolt holes. Do not allow the sealer in any blind threaded holes, as it may prevent the bolt from seating properly or cause damage when the bolt is tightened.
5. Assemble while RTV is still wet (within 3 minutes). Do not wait for RTV to skin over.
6. Torque bolts to specifications. Do not over-torque.

USING ANAEROBIC GASKET ELIMINATOR

1. Clean surfaces to be resealed with a chlorinated solvent to remove all oil, grease and old material.
2. Apply a continuous bead of gasket eliminator to one flange.
3. Spread bead evenly with your finger to get a uniform coating on the complete flange.
4. Assemble parts in the normal manner and torque immediately to specifications.

Important
- Anaerobic sealed joints that are partially torqued and allowed to cure more than five minutes may result in incorrect shimming of the joint.

REPLACING ENGINE GASKETS

CAUTION: Composite type gaskets are used in some areas of the engine assembly. These gaskets have a thin metal core. Use caution when removing or handling composite gaskets to help avoid personal injury.
CYLINDER BORES, PISTONS, RINGS, AND CONNECTING RODS

MEASURING CYLINDER BORE TAPER AND OUT-OF-ROUND (ALL MODELS)

Tool Required:
J 8087 Cylinder Bore Gage
(or equivalent)

• If one or more cylinder bores are rough, scored or worn beyond limits, it will be necessary to smooth or true up such bores to fit new pistons.
• No attempt should be made to cut down oversize pistons to fit cylinder bores as this will destroy the surface treatment and affect the weight. The smallest possible oversize service pistons should be used and the cylinder bores should be honed to size for proper clearances.

1. Refer to "Specifications" in the proper section for tolerances.
2. Set the gage so that the thrust pin must be forced in about 7 mm (1/4-inch) to enter the gage in the cylinder bore.
3. Center the gage in the cylinder and turn the dial to "0."
4. Carefully work the gage up and down the cylinder to determine taper and turn it to different points around the cylinder wall to determine the out-of-round condition (figure 1). Measure the bore both parallel to and at right angles to the engine centerline. Measure at the top, middle and bottom of the bore and note the readings.
5. Recondition the cylinder bore as necessary, as outlined later.

CYLINDER BORE RECONDITIONING (2.5 L ENGINES)

1. Measure the cylinder bore for out of round and taper as outlined previously.
2. Refer to figure 2. Measure dimension “A” at 13 mm (1/2-inch) below the head gasket surface. Measure dimension “B” at 100 mm (4-inches) below the head gasket surface.

Cylinder bores can be measured by setting the cylinder gage dial at zero in the cylinder at the point of desired measurement. Lock the dial indicator at zero before removing from the cylinder, and measure across the gage contact points with outside micrometer, with the gage at the same zero setting when removed from the cylinder (figure 3).

3. If dimension “A” is larger than dimension “B” by 0.13 mm (0.005-inch), the cylinder should be bored for oversize piston and rings.

If relatively few bores require correction, it will not be necessary to rebore all cylinders to the same oversize in order to maintain engine balance. All oversize service pistons are held to the same weights as standard size pistons.
6A-4 GENERAL ENGINE MECHANICAL

If honing is not required, the cylinder bores should be cleaned with a hot water and detergent wash. Apply clean engine oil to the bore after cleaning.

CYLINDER BORE RECONDITIONING (2.8 L ENGINES)

1. Measure the cylinder bore for out of round and taper as outlined previously.
2. Refer to figure 2. Measure for wear at the top of the bore (point "A"), and at the bottom (point "B").
 Cylinder bores can be measured by setting the cylinder gage dial at zero in the cylinder at the point of desired measurement. Lock the dial indicator at zero before removing from the cylinder, and measure across the gage contact points with outside micrometer, with the gage at the same zero setting when removed from the cylinder (figure 3).
3. If the cylinders are found to exceed the specified out-of-round or taper, honing or boring will be necessary. Any cylinders that were found to have less than 0.13 mm (0.005-inch) wear or taper may not entirely clean up when fitted to a high limit piston. If it is desired to entirely clean up the bore in these cases, it will be necessary to rebore for an oversize piston. If more than 0.13 mm (0.005-inch) taper or wear, they should be bored and honed to the smallest oversize that will permit complete resurfacing of all cylinders.
4. Fine vertical scratches made by ring ends will not, by themselves, cause excessive oil consumption; therefore, honing to remove them is unnecessary.
5. If the bore is glazed but otherwise serviceable, break the glaze lightly with a hone and replace the piston rings.
 Make sure the honing stones are clean, sharp and straight. Move the hone slowly up and down to produce a 45 to 65 degree cross-hatch pattern. Clean the bore thoroughly with soap and water. Dry and rub in clean engine oil, then re-measure.
6. If honing is not required, the cylinder bores should be cleaned with a hot water and detergent wash. Apply clean engine oil to the bore after cleaning.

BORING

1. Before the honing or reboring operation is started, measure all new pistons with the micrometer contacting at points exactly 90 degrees from the piston pin centerline. Some pistons must be measured at a specified distance from the piston crown. Refer to the proper section for additional instructions. Then select the smallest piston for the first fitting. The slight variation usually found between pistons in a set may provide for correction in case the first piston is fitted too free.
2. Before using any type of boring bar, the top of the cylinder block should be filed to remove any dirt or burrs. This is very important. If not checked, the
boring bar may be tilted which would result in the rebored cylinder wall not being at right angles to the crankshaft.

3. The instructions furnished by the manufacturer of the equipment being used should be carefully followed.

4. When reboring cylinders, all crankshaft bearing caps must be in place and tightened to the proper torque to avoid distortion of bores in the final assembly. Always be sure the crankshaft is out of the way of the boring cutter when boring each cylinder. Crankshaft bearings and other internal parts must be covered or taped to protect them during the boring or honing operation.

5. When taking the final cut with a boring bar, leave 0.03 mm (0.001-inch) on the diameter for finish honing to give the required position to the cylinder clearance specifications. (The honing or boring operation must be done carefully so that the specified clearance between pistons, rings, and cylinder bores is maintained.)

Important

- Refer to the proper section for additional information.

HONING

1. When the cylinders are to be honed, follow the hone manufacturer's recommendations for the use of the hone and cleaning and lubrication during honing. Use only clean, sharp stones of the proper grade for the amount of material to be removed. Dull, dirty stones cut unevenly and generate excessive heat. When using coarse or medium grade stones use care to leave sufficient metal so that all stone marks may be removed with the fine stones used for finishing to provide proper clearance.

2. Occasionally during the honing operation, the cylinder bore should be thoroughly cleaned and the piston selected for the individual cylinder check for correct fit.

3. When honing to eliminate taper in the cylinder, full strokes of the hone in the cylinder should be made in addition to checking measurement at the top, middle and bottom of the bore repeatedly.

NOTICE: Handle the pistons with care and do not attempt to force them through the cylinder until the cylinder has been honed to the correct size as the piston can be distorted through careless handling.

4. When finish honing a cylinder bore to fit a piston, the hone should be moved up and down at a sufficient speed to obtain very fine uniform surface finish marks in a cross-hatch pattern of the specified angle.
 - 2.5 L: 45 degrees
 - 2.8 L: 20 to 32 degrees
 - All others: 45 to 65 degrees

5. The finish marks should be clean but not sharp, free from imbedded particles and torn or folded metal.

6. By measuring the piston to be installed at the sizing point specified in the proper section, and adding the average of the clearance specification, the finish hone cylinder measurement can be determined. It is important that both the block and piston be measured at normal room temperature.

7. It is of the greatest importance that refinished cylinder bores are trued up to have the less than the specified out-of-round or taper. Each bore must be final honed to remove all stone or cutter marks and provide a smooth surface.

8. Refer to "Specifications" in the proper section for piston to bore clearance tolerances.

9. After final honing and before the piston is checked for fit, clean the bores with hot water and detergent. Scrub with a stiff bristle brush and rinse thoroughly with hot water. It is essential that a good cleaning operation be performed. If any of the abrasive material is allowed to remain in the cylinder bores, it will wear the new rings and cylinder bores in addition to the bearings lubricated by the contaminated oil. After washing, the dry bore should then be brushed clean with a power-driven fiber brush.

10. Permanently mark the piston for the cylinder to which it has been fitted.

11. Apply clean engine oil to each bore to prevent rusting.

PISTON AND CONNECTING ROD ASSEMBLIES

DISASSEMBLY (ALL EXCEPT 6.2 L ENGINES)

- Remove or Disconnect (Figures 4, 5 and 6)

Tools Required

- J 25220 Ring Expander (or equivalent)
- J 24086 Piston Pin Remover and Installer

1. Piston rings. Use J 25220 (figure 5). In most cases the rings should be discarded and replaced with new ones at assembly.

2. Connecting rod bearing inserts. If the inserts are to be reused, place them in a rack so they may be reinstalled in their original connecting rod and cap.

3. Piston pin (figure 6).
 - Place the piston/connecting rod on support fixture J 24086-20. Make sure the connecting rod is fully supported. Use J 24086-900 and J 24086-280 for 2.8 L pistons.
 - Place remover J 24086-8 (J 24086-88A for 2.8 L pistons) on the support fixture.
 - Press out the piston pin.

DISASSEMBLY (6.2 L ENGINES)

- Disassemble (Figures 5 and 7)

Tool Required:

- J 25220 Ring Expander (or equivalent)

1. Piston rings. Use J 25220 (figure 5).
2. Connecting rod bearing inserts. If the inserts are to be reused, place them in a rack so they can be installed in their original connecting rod and cap.

4. Piston pin. Slide the pin from the piston.

5. Piston from the connecting rod.
CLEANING AND INSPECTION

Clean
- Piston.
 - Remove all varnish and carbon deposits. DO NOT USE A WIRE BRUSH.
 - Remove the carbon from the ring grooves. Use a ring groove cleaning tool.
 - Oil control ring groove holes.

Inspect
- Piston pin bore in the piston and connecting rod. Check for scuffing, burrs, etc.
- Piston for scratches, wear, etc.
- Connecting rod for cranks, nicks, etc. If a suitable jig is available, check the connecting rod for a bent or twisted condition.
- Piston.
 - Ring land for cracking, wear, etc.
 - Ring grooves for burrs, nicks, etc.
 - Skirts and pin bosses for cracking.
 - Skirts for scuffing.
- Connecting rod bearing inserts for scratches or deep pitting.

MEASURING PISTON PIN TO PISTON CLEARANCE (ALL EXCEPT 6.2 L)

Measure (Figures 8 and 9)
1. Piston pin diameter (figure 8). Check against "Specifications."
2. Piston pin to piston clearance.
 - Measure the piston pin hole diameter (figure 9).
 - Subtract the piston pin diameter from the piston pin hole diameter to obtain the clearance.
 - Replace the piston and piston pin if the clearance exceeds specifications. The piston and piston pin are a matched set and are not available separately.

MEASURING PISTON PIN TO PISTON PIN BUSHING CLEARANCE (6.2 L ENGINES)

Clean
- Piston pin and bushing. The parts must be free of oil and dirt.

Measure (Figures 8 and 10)
1. Piston pin diameter (figure 8). Check against "Specifications."
2. Piston pin bushing ID. Use an inside micrometer (figure 10).
3. Piston pin to bushing clearance. Subtract the piston pin diameter from the piston pin bushing ID. Compare with "Specifications." If the clearance is excessive, try a new piston pin. If the clearance is
PISTON SELECTION
(2.5 L AND 2.8 L ENGINES)

1. Check the used piston to cylinder bore clearance.

Measure (Figures 11 and 12)
- Cylinder bore diameter. Use a telescoping bore gage, located 65 mm (2 1/2-inches) below the top of the cylinder bore (figure 11).
- Piston diameter. Measure the piston skirt at a right angle to the piston pin, at the centerline of the piston pin (figure 12).
- Subtract the piston diameter from the cylinder bore diameter to determine piston to bore clearance.

TOOL REQUIRED:
J 24086 Piston Pin Remover and Installer Set

PISTON SELECTION
(ALL EXCEPT 2.5 L AND 2.8 L ENGINES)

1. Check the used piston to cylinder bore clearance.

Assessing Cylinder Bore Diameter

- Use a new piston pin, the connecting rod must be replaced. Replacement bushings are not available.

PISTON SELECTION
(2.5 L AND 2.8 L ENGINES)

2. If the used piston is not acceptable, determine if a new piston can fit the cylinder bore.
3. If a new piston does not bring the clearance within tolerances, the cylinder bore must be reconditioned.
4. Mark the piston to identify the cylinder for which it was fitted.

ASSEMBLY

Assembling the Piston and Connecting Rod
(All except 6.2 L Engines)

Assemble (Figure 13)

Tool Required:
J 24086 Piston Pin Remover and Installer Set

1. Piston and connecting rod.
- The piston and connecting rod must be installed in the proper position.
 - 2.5 L Engines: The raised notch side of the connecting rod must be opposite the notch in the piston crown.
 - 2.8 L Engines: The bevel on the connecting rod should face the outside of the engine.
 - 4.8 L Engines: The flat side of the piston crown depression and the connecting rod bearing tang slot must be on the same side.
 - All Others: The valve cutouts in the piston crown must be opposite the connecting rod bearing tangs.
- Lubricate the piston pin holes in the piston and connecting rod with engine oil.
- Install the pin guide (item E, figure 13) to hold the piston and connecting rod together. Be sure to use the proper pin guide. Refer to the instructions supplied with the tool.

2. Piston pin.
- Insert the piston pin into the piston pin hole.
- Place the assembly on the support fixture (figure 13).
- Adjust the piston pin installer (J 24086-9) to the correct length, using the letter-number scale on the installer adjuster (figure 13). This is necessary to insure that the piston pin is pressed into the piston to the correct depth. Refer to the instructions supplied with the tool for the proper setting.
- Lock the adjuster in place with the lock ring.

NOTICE: After the installer hub bottoms on the support assembly, do not exceed 35,000 kPa (5,000 psi) pressure, as this could cause damage to the tool.

- Place the adjuster in the support fixture. Press the piston pin into place (until the adjustable installer bottoms in the support fixture).
The piston must be installed with the piston crown indent on the same side as the connecting rod bearing tang slots (figure 14).

2. Piston pin. Apply engine oil to the pin and push into place.

Inspect
- Snap rings for proper assembly. Rotate the snap rings to make sure that they are seated in their grooves.

Installing the Piston Rings (All Except 6.2 L)

Measure (Figures 4 and 16)
- Ring end gap as follows:
 1. Select rings comparable in size to the piston being used.
 2. Slip the compressing ring in the cylinder bore; then press the ring down into the cylinder bore about 7 mm (1/4-inch) above ring travel. Be sure the ring is square with the cylinder wall.
 3. Measure the space or gap between the ends of the ring with a feeler gage (figure 16).
 4. Refer to "Specifications" in the proper section for correct gap.
 5. If the gap between the ends of the ring is not as specified, remove the ring and try another for fit.

Assembling the Piston and Connecting Rod (6.2 L Engines)

Assemble (Figures 7, 14, and 15)

Tool Required
J 29134-A Piston Pin Clip Installer
1. Piston to the connecting rod.
Inspect (Figures 17)

- Ring fit as follows:
 1. Fit each compression ring to the piston on which it is going to be used.
 2. Slip the outer surface of the top and second compression ring into the respective piston ring groove (figure 17), to make sure that the ring is free. If binding occurs at any point, the cause should be determined. If binding is caused by the ring groove, correct by depressing the groove with a fine cut file. If the binding is caused by a distorted ring, check a new ring.

Assemble (Figures 4 and 5)

Tool Required:
- J 25220 Ring Expander (or equivalent)

- All compression rings are marked on the upper side of the ring. When installing the compression rings, make sure the MARKED SIDE IS TOWARD THE TOP OF THE PISTON.
The oil control rings are three piece types, consisting of two rails and an expander. Expander. Lower rail. Upper rail. Upper compression ring. Use J 25220 (figure 5). Lower compression ring. Use J 25220 (figure 5). Flex all rings to make sure the rings are free. If binding occurs at any point the cause should be determined. If binding is caused by the ring groove, correct by dressing the groove with a fine cut file. If binding is caused by a distorted ring, check a new ring.

Measure (Figure 18)
- Ring clearance. Use a feeler gage as shown in figure 18. Compare with "Specifications" in the proper section.

Installing the Piston Rings
(6.2 L Engines)
- All compression rings are marked on the upper side of the ring. When installing the compression rings, make sure the MARKED SIDE IS TOWARD THE TOP OF THE PISTON.
CAMSHAFT BEARINGS REPLACEMENT (2.5 L AND 6.2 L ENGINES)

Refer to the proper section.

CAMSHAFT BEARINGS REPLACEMENT (ALL EXCEPT 2.5 L AND 6.2 L ENGINES)

Inspect

- Camshaft bearings for scratches, pits, or loose fit in their bores. Replace the camshaft bearings if necessary.

Disassemble (Figures 19 and 20)

Tool Required

J 6098-01 Camshaft Bearing Remover and Installer

1. Rear camshaft plug or cap.
2. Inner camshaft bearings. Use J 6098-01 (figure 19).
 - Insert the pilot into the front camshaft bearing bore.
 - Slide the puller screw, with the nut and washer, through the pilot.
 - Insert the bearing tool into the inner camshaft bearing bore, with the shoulder of the tool against the bearing.
 - Hold the puller screw with a wrench. Turn the nut with a second wrench to pull the camshaft bearing from its bore.
 - Repeat this procedure to remove the remaining inner camshaft bearings. Note that the rear inner bearing must be removed with the pilot fitted into the rear camshaft bearing.
3. Outer camshaft bearing. Use J 6098-01 (figure 20).

Clean

- Camshaft bearing bores in the block.

Assemble (Figures 19, 20, and 21)

Tool Required

J 6098-01 Camshaft Bearing Remover and Installer

- The outer camshaft bearings must be installed first. These bearings serve as guides for the pilot, and help center the inner bearings during the installation process.
- Be sure to fit the correct cam bearing into the bore. The cam bearing bores vary in size.

A. Checking oil hole alignment with brass rod. Make rod as shown using \(\frac{3}{32} \)" rod about 762 mm (30") long.
1. Outer camshaft bearings. Drive the bearings into place using J 6098-01 (figure 20).

Important
- Make sure the camshaft bearing hole (or holes) align with the oil hole (or holes) in the block. On some engines, the oil holes may be difficult to see. If so, use a piece of 2 mm (3/32-inch) rod as shown in figure 21 to check alignment.

2. Inner camshaft bearing. Use tool J 6098-01 (figure 19).
- Assemble the tool with the pilot engaged in the front bearing and the pilot flange against the front face of the block.
- Slide the puller screw, with nut and washer, through the pilot.
- Place the new bearing on the bearing tool. Hold the bearing tool and bearing against the bearing bore. Align the bearing oil hole with the oil hole in the block.
- Thread the puller screw into the bearing tool enough to hold the tool and bearing in place. Holding the puller screw with a wrench, turn the nut with a second wrench to pull the camshaft bearing into place.
- Remove the puller screw, pilot, and bearing tool.

Important
- Make sure the camshaft bearing hole (or holes) align with the oil hole (or holes) in the block. If it is difficult to see the alignment, use a piece of brass rod as described in step 1.

3. Camshaft rear plug or cap.
- All engines except 2.8 L engines:
 - Coat a new camshaft plug with sealer (Loctite #592 or equivalent).
 - Install the plug flush to 0.80 mm (1/32-inch) deep.
- 2.8 L engines:
 - Clean all RTV from the cap and block.
 - Apply a 3 mm (3/64-inch) bead of RTV sealant (GM part no. 1052366 or equivalent) to the machined groove on the block.
 - Install the cap while the RTV is still wet.
 - Install the retaining bolts and tighten.

HYDRAULIC LIFTERS

Two types of hydraulic lifters are used in engines covered by this manual – flat type and roller type. Service procedures are similar for both types.

Hydraulic lifters are serviced only as an assembly. No internal parts are available. Service is limited to a disassembly, cleaning and test operation. It is understood that most technicians discard any suspicious valve lifters. This information is offered for those who may wish to overhaul and test valve lifters.

Important
- Whenever the camshaft needs to be replaced, a new set of hydraulic lifters must also be installed (except 2.5 L engines).

INSPECTION BEFORE DISASSEMBLY

Inspect (Figures 22, 23, and 24)
- Lifter body (221) for scuffing and scoring. If the lifter body wall is worn or damaged, the mating hydraulic lifter bore in the cylinder block should also be checked.
- Check the fit of each valve lifter in its mating bore in the block. If the clearance is excessive, try a new lifter.
- Push rod seat. If worn, inspect the pushrod. Replace the pushrod, if worn.

HYDRAULIC LIFTER OVERHAUL

Disassemble (Figures 21 through 26)
1. Retainer (figure 25).
 - Push the pushrod seat (228) down, using a pushrod.
 - Pry out the retainer with a screwdriver.
2. Pushrod seat (228).
4. Plunger (226) and plunger spring (222).
 - If the plunger is stuck, turn the lifter body upside down and tap it on a flat surface.
5. Check ball retainer (223), check ball spring (224), and check ball (225). Pry the check ball retainer from the plunger, using a small screwdriver (figure 26).
Clean
- All parts in CLEAN solvent. Remove all gum and varnish deposits.

Inspect (Figures 22, 23, and 24)
- Plunger (226) for scoring and wear.
- Pushrod seat (228). If worn or rough, also check the mating pushrod.

Assemble (Figures 22, 23, 24, 27, and 28)
- Absolute cleanliness is necessary when assembling the hydraulic lifters. Use only...
clean, lint-free shop rags. Work with clean hands, on a clean work surface.

1. Check ball (225) to the small hole in the bottom of the plunger (226).
2. Check ball spring (225) to the check ball retainer (223).
3. Check ball retainer (223) with check ball spring (224) to the plunger (226). Make sure the spring rests on the ball. Carefully press the retainer into position in the plunger with the blade of a small screwdriver (figure 27). Make sure it seats tightly against the plunger.
4. Plunger spring (222) to the check ball retainer (223).
5. Lifter body (221) to the plunger (226).
 - Slide the lifter body over the plunger, being careful to line up the oil feed holes in the lifter body and plunger.
 - Invert the assembly (open end up).
 - Fill the assembly with SAE 10 oil.

6. Metering valve (227) and pushrod seat (228).
7. Retainer.
 - Push down on the pushrod seat (228), using a pushrod. Remove the 1.5 mm (1/16-inch) drift.
 - The lifter is completely assembled, and ready to be installed or tested.

VALVE LIFTER LEAK-DOWN RATE TEST (FLAT TYPE LIFTERS ONLY)

Tool Required:
J 5790 Hydraulic Lifter Leakdown Tester

Tool J 5790 (figure 29) is available for very accurately checking the leakdown rate of the overhauled valve lifters. This tool applies a measured load to the valve lifter, and measures the amount of valve lifter travel under load. Instructions for use are furnished with the tool, along with a supply of special test oil.

1. Fill tester cup to approximately one inch from top with the special fluid which is available from tester manufacturer.
3. Adjust the ram (with the weight arm clear of the ram) so that the point is positioned on the set line (marked "S"). Tighten the jam nut to maintain the setting.
4. Operate the lifter through full travel of the plunger by pumping the weight arm to fill the lifter with test fluid and force out air.

Important
- Lifter must be completely submerged at all times.
- Continue pumping for several strokes after definite resistance is felt.

5. Raise the weight arm to allow the plunger spring to expand fully; lower the arm onto the ram and commence turning the crank slowly (1 revolution every 2 seconds).

6. Time indicator travel from the lower line (first line above the set line) to the line marked 0.094 or $3/32$-inch, while rotating the cup with crank. The lifter is satisfactory if the rate is between 12 and 90 seconds.

CYLINDER HEAD

DISASSEMBLY

- Disassemble
 - Valves and components. Refer to the proper section.

CLEANING AND INSPECTION

- **Clean (Figures 30 and 31)**
 - Tools Required:
 - J 8089 Wire Brush
 - J 8101 Valve Guide Cleaning Tool
 - Carbon from the combustion chambers. Use J 8089 (figure 30).
 - Valve guides. Use J 8101 (figure 31).
 - Valve stems and heads on a wire wheel.
 - Carbon and old gasket from the cylinder head gasket surface.

- **Inspect**
 - Cylinder head for cracks in the exhaust ports, combustion chambers, or external cracks to the coolant chamber. Gasket surfaces should be free of damage.
 - Valves for burning, pitting, or warpage. Grind or replace as needed. Refer to "Valve Grinding." Check the valve stems for scoring or excessive wear. Stems must not be bent.

 - Rocker arm studs (if used) for wear, damage or improper fit.
 - Valve seats for pitting or other damage. Grind or reface as needed.
 - Rotators (if used). The rotators should rotate smoothly, without bind.

- **Measure (Figures 32, 33, and 34)**
 - Tools Required:
 - J 8001 Dial Indicator (or equivalent)
 - J 8056 Valve Spring Tester
 - Valve stem to guide bore clearance.
 - Excessive valve stem to guide bore clearance will cause excessive oil consumption and may cause valve breakage. Insufficient clearance will result in noisy and sticky functioning of the valve and disturb engines smoothness.
 - Clamp a Dial Indicator J 8001 (or equivalent) on one side of the cylinder head rocker arm cover gasket rail (figure 32).
 - Locate the indicator so that movement of the valve stem from side to side (crosswise to the head) will cause a direct movement of the indicator stem. The indicator stem must contact the side of the valve stem just above the valve guide bore.
 - Drop the valve head about 1.6 mm ($1/8$-inch) off the valve seat.
- Move the stem of the valve from side to side using light pressure to obtain a clearance reading. If clearance exceeds specifications, it will be necessary to ream valve guide bores for oversize valves as outlined later in this manual.
 - Valve spring tension. Use J-8056 or equivalent (figure 33).
 - Compress the springs, with dampers removed, to the specified height and check against the specifications chart. Springs should be replaced if not within 44 N (10 lbs.) of the specified load.
 - Valve spring length (figure 34). Replace the spring if the length is not as specified.

REPAIR

VALVE GRINDING

Valves that are pitted must be refaced to the proper angle. Valve stems which show excessive wear, or valves that are warped excessively must be replaced. When a valve head which is warped excessively is refaced, a knife edge will be ground on part or all of the valve head due to the amount of metal that must be removed to completely
Figure 34—Measuring Valve Spring Length

reface. Knife edges lead to breakage, burning or preignition due to heat localizing on this knife edge. If the edge of the valve head is less than 0.80 mm (1/32-inch) after grinding (figure 35), replace the valve.

Several different types of equipment are available for refacing valves. The recommendation of the manufacturer of the equipment being used should be carefully followed to attain proper results.

Refer to “Specifications” in the proper section for valve face angle specifications.

VALVE SEAT GRINDING

Reconditioning the valve seats is very important, because the seating of the valves must be perfect for the engine to deliver the power and performance built into it.

Another important factor is the cooling of the valve head. Good contact between each valve and its seat will insure that heat will be properly carried away.

Several different types of equipment are available for reseating valve seats. The recommendations of the manufacturer of the equipment being used should be carefully followed to attain proper results.

NOTICE: Valve seats on 2.5 L and 6.2 L engines are induction hardened. Excessive removal of stock may result in damage to the valve seats.

4.8 L, small block, and 7.4 L engines are equipped with hardened, non-replaceable valve seat inserts.

REAMING VALVE GUIDES

The valve guides used in engines covered by this manual are simply holes bores into the cylinder head. The valve guides are therefore not replaceable.

If the valve stem to bore clearance as measured previously in this manual is excessive, the valve guides should be reamed and a valve with an oversize stem installed.

Available oversize valves are as follows. Nominal dimensions are given.

— 2.5 L:
 — Intake: 0.08 mm (0.003-inch), 0.13 mm (0.005-inch).
 — Exhaust: 0.08 mm (0.003-inch).
— 2.8 L, 4.8 L, 5.0 L, 5.7 L, 7.4 L:
 — Intake and exhaust: 0.08 mm (0.003-inch), 0.38 mm (0.015-inch), 0.76 mm (0.030-inch).
— 4.3 L:
 — Intake: 0.08 mm (0.003-inch), 0.38 mm (0.015-inch), 0.76 mm (0.030-inch).
 — Exhaust: 0.08 mm (0.003-inch), 0.38 mm (0.015-inch).
— 6.2 L:
 — Intake and exhaust: 0.08 mm (0.003-inch), 0.38 mm (0.015-inch).

Select a reamer which will provide a straight, clean bore through the guide’s entire length (figure 36).

Reamer availability is as follows. Sizes given are nominal.

• All engines except 6.2 L and 7.4 L:
 — J 5830-1: 0.08 mm (0.003-inch) oversize.
 — J 6621: 0.13 mm (0.005-inch) oversize.
 — J 5830-2: 0.38 mm (0.015-inch) oversize.
 — J 5830-3: 0.76 mm (0.030-inch) oversize.
 — These reamers (except J 6621) also available in Reamer Set J 5830-02.
• 6.2 L and 7.4 L engines:
 — J 7049-1: 0.08 mm (0.003-inch) oversize.
 — J 7049-2: 0.38 mm (0.015-inch) oversize.
 — J 7049-3: 0.76 mm (0.030-inch) oversize.
 — These reamers also available in Reamer Set J 7049.

ASSEMBLY

• Assemble

 Valves and components. Refer to the proper section.
MEASURING MAIN BEARING CLEARANCE

Main bearings are of the precision insert type and do not use shims for adjustment. If clearances are found to be excessive, new upper and lower inserts will be required.

The simplest, most accurate way to measure main bearing clearance is with the use of gaging plastic. This wax-like material compresses evenly between the bearing and journal surfaces without damaging them. Proceed as follows:

![Diagram](image)

Clean
- All oil from the crankshaft journal and main bearing inserts.

Install or Connect (Figure 37)
- Refer to the proper section for additional information.
 1. Main bearing inserts and crankshaft, as outlined in the proper section.
 2. Gaging plastic.
 - Begin with the rear main bearing.
 - Wipe the oil from the crankshaft journal and the lower main bearing insert.

![Diagram](image)

Figure 37—Placing the Gaging Plastic on the Bearing Journal
- Place a piece of gaging plastic the full width of the lower bearing insert (parallel to the crankshaft) on the journal (figure 37). Do not rotate...
Figure 38—Measuring the Gaging Plastic

The crankshaft while the gaging plastic is between the bearing and journal.

3. Main bearing cap and bolts.
 - Tighten
 • Bolts to "Specifications."

Remove or Disconnect
 • Main bearing cap.
 DO NOT REMOVE THE GAGING PLASTIC FROM THE JOURNAL OR LOWER MAIN BEARING INSERT.

Measure (Figure 38)
 • Gaging plastic as follows:
 1. The flattened gaging plastic will be found adhering to either the lower bearing insert or journal.

 2. On the edge of the gaging plastic envelope there is a graduated scale. Without removing the gaging plastic, measure its compressed width (at the widest point) with the graduations on the gaging plastic envelope (figure 38).

 3. If the flattened gaging plastic tapers toward the middle or ends, there is a difference in clearance indicating taper, low spot or other irregularity of the bearing or journal. Be sure to measure the journal with a micrometer if the flattened gaging plastic indicates more than 0.001-inch (0.0005-inch on 2.5 L engines) difference.

 4. Normally main bearing journals wear evenly and are not out-of-round. However, if a bearing is being fitted to an out-of-round journal, be sure to fit to the maximum diameter of the journal. If the bearing is fitted to the minimum diameter and the journal is excessively out-of-round, interference between the bearing and the journal will result in rapid bearing failure.

 5. If the bearing clearance is within specifications, the bearing is satisfactory. If the clearance is not within specifications, replace the bearing. Always replace both upper and lower inserts as a unit.

 6. A standard or undersize bearing may produce the proper clearance. Refer to the proper section for bearing availability. If not, it will be necessary to regrind the crankshaft journal for use with the next undersize bearing. Do not grind rolled fillet crankshafts, such as used on 2.5 L, 2.8 L, and 6.2 L engines. After selecting the new bearing, recheck the clearance.

 7. Remove the flattened gaging plastic.

 8. Perform the preceding steps on the remaining main bearings.

MEASURING CONNECTING ROD BEARING CLEARANCE

Connecting rod bearings are of the precision insert type and do not use shims for adjustment. DO NOT FILE RODS OR ROD CAPS. If clearances are found to be excessive, a new bearing (both upper and lower halves) will be required.

The simplest, most accurate way to measure connecting rod bearing clearance is with the use of gaging plastic. This wax-like material compresses evenly between the bearing and journal surfaces with damaging them. Proceed as follows.

Clean
 • All oil from the crankshaft journal and the connecting rod bearing inserts.

Install or Connect (Figure 39)
 • Refer to the proper section for additional information on connecting rod bearing sizing.

1. Connecting rod with the upper connecting rod bearing insert to the crankshaft journal.

2. A piece of gaging plastic the length of the bearing (parallel to the crankshaft) on the journal (figure 39). The plastic gage should be positioned in the middle of the upper and lower bearing insert. (Bearings are eccentric and false readings could occur if placed elsewhere.)

Important
 • If a bearing is being fitted to an out-of-round crankpin, be sure to fit the maximum diameter of the crankpin. If the bearing is fitted to the minimum diameter and the crankpin is exces-
A. Measure Widest Point of Gaging Plastic with Graduated Scale

Figure 39—Placing the Gaging Plastic on the Connecting Rod Journal

- sively out-of-round, interference between the bearing and the crankpin will result in rapid bearing failure.
- 3. Connecting rod cap with the lower connecting rod bearing insert. DO NOT TURN THE CRANKSHAFT WITH THE GAGING PLASTIC INSTALLED.

4. Connecting rod cap nuts.

Tighten
- Nuts to "Specifications." Refer to the proper section.

Important
- The gaging plastic will be found sticking either to the journal or lower connecting rod bearing insert. Do not remove it at this time.

Figure 40—Measuring the Gaging Plastic

Measure (Figure 40)
- Gaging plastic at its widest point, using the scale at the gaging plastic envelope (figure 40).
- If the clearance exceeds specifications, select a new, correct size, connecting rod bearing and remeasure the clearance.
- A standard or undersize bearing may produce the proper clearance. Refer to the proper section for bearing availability.
- Do not attempt to use shims or file the bearing to obtain the needed clearance.
- If clearance cannot be brought to within specifications, recondition or replace the crankshaft. (Do not recondition a rolled fillet crankshaft, such as used on 2.5 L, 2.8 L, and 6.2 L engines.)

Remove or Disconnect
- Gaging plastic.
<table>
<thead>
<tr>
<th>Tool Number</th>
<th>Tool Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>J 8087</td>
<td>Cylinder Bore Gage</td>
</tr>
<tr>
<td>2</td>
<td>J 25220</td>
<td>Ring Expander</td>
</tr>
<tr>
<td>3</td>
<td>J 24086</td>
<td>Piston Pin Replacer Set</td>
</tr>
<tr>
<td>4</td>
<td>J 29134-A</td>
<td>Piston Pin Clip Installer</td>
</tr>
<tr>
<td>5</td>
<td>J 6098-01</td>
<td>Camshaft Bearing Replacer</td>
</tr>
<tr>
<td>6</td>
<td>J 8089</td>
<td>Hydraulic Lifter Leakdown Tester</td>
</tr>
<tr>
<td>7</td>
<td>J 8101</td>
<td>Wire Brush</td>
</tr>
<tr>
<td>8</td>
<td>J 8001</td>
<td>Valve Guide Cleaning Tool</td>
</tr>
<tr>
<td>9</td>
<td>J 8056</td>
<td>Dial Indicator</td>
</tr>
<tr>
<td>10</td>
<td>J 29664</td>
<td>Valve Spring Tester</td>
</tr>
<tr>
<td>11</td>
<td>J 6621</td>
<td>Intake Opening Cover</td>
</tr>
<tr>
<td>12</td>
<td>J 5830-02</td>
<td>0.13 mm (0.005-inch) Oversize Valve Guide Reamer (2.5 L Engines)</td>
</tr>
<tr>
<td>13</td>
<td>J 7049</td>
<td>Valve Guide Reamer Set (All Engines Except 6.2 L and 7.4 L), Consists of:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>— J-5830-1: 0.08 mm (0.003-inch) oversize</td>
</tr>
<tr>
<td></td>
<td></td>
<td>— J-5830-2: 0.38 mm (0.015-inch) oversize</td>
</tr>
<tr>
<td></td>
<td></td>
<td>— J-5830-3: 0.76 mm (0.030-inch) oversize</td>
</tr>
<tr>
<td>14</td>
<td>J 5830-02</td>
<td>Valve Guide Reamer Set (6.2 L and 7.4 L Engines). Consists of:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>— J-7049-1: 0.08 mm (0.003-inch) oversize</td>
</tr>
<tr>
<td></td>
<td></td>
<td>— J-7049-2: 0.38 mm (0.015-inch) oversize</td>
</tr>
<tr>
<td></td>
<td></td>
<td>— J-7049-3: 0.76 mm (0.030-inch) oversize</td>
</tr>
</tbody>
</table>
SECTION 6A1

2.5 LITER L4 ENGINE

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>6A1-2</td>
</tr>
<tr>
<td>Engine Lubrication.</td>
<td>6A1-2</td>
</tr>
<tr>
<td>Disassembly of the Engine</td>
<td>6A1-4</td>
</tr>
<tr>
<td>Tools and Shop Equipment</td>
<td>6A1-4</td>
</tr>
<tr>
<td>Accessory Removal</td>
<td>6A1-4</td>
</tr>
<tr>
<td>Cleaning</td>
<td>6A1-4</td>
</tr>
<tr>
<td>Parts Identification.</td>
<td>6A1-4</td>
</tr>
<tr>
<td>Draining the Engine</td>
<td>6A1-4</td>
</tr>
<tr>
<td>Intake Manifold Removal</td>
<td>6A1-6</td>
</tr>
<tr>
<td>Exhaust Manifold Removal</td>
<td>6A1-6</td>
</tr>
<tr>
<td>Thermostat Housing Removal</td>
<td>6A1-6</td>
</tr>
<tr>
<td>Water Pump Removal</td>
<td>6A1-6</td>
</tr>
<tr>
<td>Valve Train Component Removal</td>
<td>6A1-9</td>
</tr>
<tr>
<td>Cylinder Head Removal</td>
<td>6A1-10</td>
</tr>
<tr>
<td>Crankshaft Pulley Hub Removal</td>
<td>6A1-10</td>
</tr>
<tr>
<td>Oil Pan Removal</td>
<td>6A1-11</td>
</tr>
<tr>
<td>Oil Pump Driveshaft Removal</td>
<td>6A1-11</td>
</tr>
<tr>
<td>Oil Pump Removal</td>
<td>6A1-11</td>
</tr>
<tr>
<td>Front Cover Removal</td>
<td>6A1-11</td>
</tr>
<tr>
<td>Piston and Connecting Rod Removal</td>
<td>6A1-11</td>
</tr>
<tr>
<td>Flywheel Removal</td>
<td>6A1-12</td>
</tr>
<tr>
<td>Crankshaft Removal</td>
<td>6A1-12</td>
</tr>
<tr>
<td>Crankshaft Rear Oil Seal Removal (Without Removing Crankshaft)</td>
<td>6A1-12</td>
</tr>
<tr>
<td>Main Bearing Removal (Without Removing the Crankshaft)</td>
<td>6A1-13</td>
</tr>
<tr>
<td>Camshaft Removal</td>
<td>6A1-13</td>
</tr>
<tr>
<td>Cleaning, Inspection, and Repair</td>
<td>6A1-14</td>
</tr>
<tr>
<td>Block</td>
<td>6A1-14</td>
</tr>
<tr>
<td>Cylinder Bores</td>
<td>6A1-14</td>
</tr>
<tr>
<td>Piston and Connecting Rod Assemblies</td>
<td>6A1-15</td>
</tr>
<tr>
<td>Piston Selection</td>
<td>6A1-15</td>
</tr>
<tr>
<td>Intake and Exhaust Manifold</td>
<td>6A1-15</td>
</tr>
<tr>
<td>Camshaft</td>
<td>6A1-16</td>
</tr>
<tr>
<td>Camshaft Bearings</td>
<td>6A1-17</td>
</tr>
<tr>
<td>Front Cover</td>
<td>6A1-17</td>
</tr>
<tr>
<td>Water Pump</td>
<td>6A1-18</td>
</tr>
<tr>
<td>Oil Pan and Rocker Arm Covers</td>
<td>6A1-18</td>
</tr>
<tr>
<td>Oil Pump</td>
<td>6A1-18</td>
</tr>
<tr>
<td>Valve Train Components</td>
<td>6A1-19</td>
</tr>
<tr>
<td>Cylinder Head</td>
<td>6A1-19</td>
</tr>
<tr>
<td>Thermostat and Housing</td>
<td>6A1-21</td>
</tr>
<tr>
<td>Crankshaft and Bearings</td>
<td>6A1-21</td>
</tr>
<tr>
<td>Assembly of Engine</td>
<td>6A1-22</td>
</tr>
<tr>
<td>Prior to Assembly</td>
<td>6A1-22</td>
</tr>
<tr>
<td>Crankshaft and Main Bearing Installation</td>
<td>6A1-22</td>
</tr>
<tr>
<td>Crankshaft Rear Oil Seal and Retainer Installation</td>
<td>6A1-23</td>
</tr>
<tr>
<td>Main Bearing Installation (Without Removing the Crankshaft)</td>
<td>6A1-24</td>
</tr>
<tr>
<td>Camshaft Installation</td>
<td>6A1-24</td>
</tr>
<tr>
<td>Front Cover Installation</td>
<td>6A1-24</td>
</tr>
<tr>
<td>Crankshaft Pulley Hub Installation</td>
<td>6A1-25</td>
</tr>
<tr>
<td>Piston and Connecting Rod Installation</td>
<td>6A1-25</td>
</tr>
<tr>
<td>Oil Pump Installation</td>
<td>6A1-26</td>
</tr>
</tbody>
</table>
CONTENTS (CONT.)

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly of Engine Cont.</td>
<td>6A1-27</td>
</tr>
<tr>
<td>Oil Pan Installation</td>
<td>6A1-27</td>
</tr>
<tr>
<td>Oil Pump Driveshaft Installation</td>
<td>6A1-27</td>
</tr>
<tr>
<td>Cylinder Head Installation</td>
<td>6A1-27</td>
</tr>
<tr>
<td>Valve Train Component Installation</td>
<td>6A1-29</td>
</tr>
<tr>
<td>Water Pump Installation</td>
<td>6A1-29</td>
</tr>
<tr>
<td>Thermostat Housing Installation</td>
<td>6A1-30</td>
</tr>
<tr>
<td>Intake Manifold Installation</td>
<td>6A1-30</td>
</tr>
<tr>
<td>Exhaust Manifold Installation</td>
<td>6A1-30</td>
</tr>
<tr>
<td>Flywheel Installation</td>
<td>6A1-30</td>
</tr>
<tr>
<td>Engine Accessory Installation</td>
<td>6A1-30</td>
</tr>
<tr>
<td>Engine Set-Up and Testing</td>
<td>6A1-30</td>
</tr>
<tr>
<td>Specifications</td>
<td>6A1-33</td>
</tr>
<tr>
<td>Special Tools</td>
<td>6A1-36</td>
</tr>
</tbody>
</table>

DESCRIPTION

The GM 2.5 L engine is an inline four cylinder, overhead valve, with cast iron block and head. The crankshaft is supported by five main bearings, with crankshaft thrust taken at the number five (rear) bearing. The camshaft is supported by three bearings and is gear driven. The valve train consists of roller type hydraulic lifters, pushrods, and ball pivot type rocker arms. The valve guides are integral in the cylinder head. The connecting rods have precision insert type crankpin bearings. The piston pins are a press fit in the connecting rods. The pistons are cast aluminum alloy. The piston pins are a floating fit in the pistons.

For engine identification information, refer to GENERAL INFORMATION (SEC. 0A).

ENGINE LUBRICATION

The oil pump is gear driven from the camshaft (figure 1). Oil is drawn from the oil pan through a pickup screen and tube. A bypass valve in the pickup screen insures adequate oil flow if the screen becomes restricted. The gear type oil pump has a pressure regulator valve which controls lubrication system pressure by bypassing excess oil back to the oil pan sump. Pressurized oil from the oil pump flows to the full flow filter. A bypass valve allows oil to bypass the filter if it becomes clogged or restricted. Oil then flows into an oil passage which runs along the right side of the block and intersects the lifter bosses. Oil from this passage is then routed to the crankshaft main bearings and camshaft bearings through smaller drilled passages. Oil is supplied to the connecting rod bearings by holes drilled in the crankshaft. Oil is supplied to the rocker arms through holes in the hydraulic lifters which feed oil up the pushrods to the rocker arms. The oil is metered by discs under the pushrod seat. Many internal engine parts have no direct oil feed and are supplied by either gravity or splash from other direct feed components. Timing gears are lubricated by oil which is supplied through a passage from the front of the camshaft to a calibrated nozzle above the crankshaft gear.
Figure 1—Engine Lubrication Diagram

A. Oil Pump Drive Gear Oiling
B. Oil Pressure Sending Unit
C. Splash Oiling
D. Full Flow Oil Filter
E. Filter Bypass System
6A1-4 2.5 LITER L4 ENGINE

DISASSEMBLY OF THE ENGINE

1. Outer Engine Heat Stove	17. Cylinder Head Gasket
2. Bolt	18. Intake Valve
4. Stud	20. Plug
5. Exhaust Manifold	21. Gasket
7. Exhaust Manifold Gasket	24. Cylinder Head
8. Stud	25. Cylinder Head Bolt
10. Coolant Fitting	27. Cylinder Head Bolt
11. Gasket	28. Valve Spring Cap
12. Thermostat	29. Valve Stem Oil Seal
13. Thermostat Housing	30. Valve Keys
15. Hose Clamp	32. Rocker Arm Ball
16. Hose	33. Valve Rocker Arm
34. Valve Stem Oil Shield	35. Valve Spring
36. Intake Valve Stem Seal	37. Washer
38. Intake Manifold Bolt	39. Plug
40. Plug	41. Intake Manifold Stud
42. Intake Manifold	43. Intake Manifold
44. Intake Manifold Gasket	45. Push Rod Guide
46. Cylinder Head Bolt	47. Push Rod
48. Rocker Arm Cover	

Figure 2—Cylinder Head, Manifolds, and Components

TOOLS AND SHOP EQUIPMENT

A clean, well lit work area should be available. Other necessary aids include: a suitable parts cleaning tank, compressed air supply, trays to keep parts and fasteners organized, and an adequate set of hand tools.

An approved engine repair stand will aid the work and help prevent personal injury or damage to engine compartments.

Special tool are illustrated throughout this section, and are listed at its end. These tools (or their equivalents) are specially designed to quickly and safely accomplish the operations for which they are intended. The use of these tools will also minimize possible damage to engine components.

Some precision measuring tools are required for inspection of certain critical components. Torque wrenches will be necessary for correct assembly of various parts.

CLEANING

Remove the engine accessories before cleaning to provide better access to engine exterior surfaces. After removing the TBI unit, distributor, fuel pump, oil filter, etc., cover the openings with tape to prevent the entry of water, solvent, and dirt.

Methods used to clean the engine will depend on the aids which are available. Steam cleaning, pressure washing, or solvent cleaning are some acceptable methods. Allow the engine to dry before beginning the work.

It is important that the engine be as clean as possible to prevent dirt from entering critical areas during disassembly.

PARTS IDENTIFICATION

Refer to figure 2 through 5.

DRAINING THE ENGINE

1. Oil drain plug (73). Allow the oil to drain.
2. Oil filter.
3. Oil pan drain plug to 34 N-m (25 ft. lbs.).
Figure 3—Cylinder Head, Manifolds, and Components
50. Push Rod Cover
51. Piston and Pin
52. Piston Rings
53. Connecting Rod
54. Connecting Rod Bolt
55. Connecting Rod Bearings
56. Connecting Rod Nut
57. Oil Level Indicator
58. Oil Level Indicator Tube
59. Seal
60. Guide Retainer Stud
61. Plug
62. Plug
63. Pin
64. Block Drain Bolt
65. Timing Indicator Stud
66. Bolt
67. Flywheel
68. Spacer
69. Clutch Pilot Bearing
70. Crankshaft Insert
71. Crankshaft Rear Oil Seal
72. Crankshaft Rear Bearing
73. Oil Pan Drain Screw
74. Gasket
75. Bolt
76. Oil Pan
77. Oil Pump
78. Nut
79. Pin
80. Spring
81. Bolt
82. Oil Pump Cover
83. Oil Pump Cover Gasket
84. Bolt
85. Oil Pressure Regulator Valve
86. Crankshaft Bearings
87. Crankshaft Gear
88. Crankshaft
89. Key
90. Timing Indicator
91. Oil Pump Shaft Lower Bearing
92. Plug
93. Timing Gear Oil Nozzle
94. Bolt
95. Crankshaft Pulley
96. Bolt
97. Crankshaft and Power Steering Pulley
98. Bolt
99. Washer
100. Crankshaft Pulley Hub
101. Front Cover Seal
102. Front Cover
103. Screw
104. Camshaft Gear
105. Camshaft Thrust Bearing
106. Camshaft Gear Spacing Ring
107. Key
108. Camshaft
109. Camshaft Bearing
110. Bolt
111. Coolant Pump
112. Gasket
113. Oil Pump Shaft Upper Bearing
114. Oil Pump Drive Shaft Gear
115. Oil Pump Drive Shaft
116. Connecting Rod Cap
117. Bolt
118. Oil Pump Drive Shaft Cover Plate
119. Block
120. Cylinder Head Dowel Pin
121. Hydraulic Roller Lifter
122. Valve Lifter Guide
123. Lifter Guide Retainer
124. Main Bearing Cap
125. Bolt
126. Rear Main Bearing Cap

Figure 4—Block and Components

INTAKE MANIFOLD REMOVAL

Remove or Disconnect (Figure 6)
1. Vacuum lines and electrical connectors, as needed.
2. Intake manifold bolts and washers.
3. Intake manifold.
4. Gasket.

EXHAUST MANIFOLD REMOVAL

Remove or Disconnect (Figure 7)
1. Thermac heat stove pipe at the exhaust manifold.
2. Oxygen sensor wire. Remove the oxygen sensor only if the exhaust manifold is to be replaced.
3. Exhaust manifold bolts and washers.
4. Exhaust manifold and gasket.

THERMOSTAT HOUSING REMOVAL

Remove or Disconnect (Figure 5)
1. Thermostat bypass hose.
2. Thermostat housing bolts.
3. Thermostat housing and gasket.

WATER PUMP REMOVAL

Remove or Disconnect (Figure 8)
1. Fan and fan clutch.
2. Water pump pulley.
4. Water pump.
5. Gasket.
Figure 5—Block and Components
37. Washer
38. Bolt
42. Stud
43. Intake Manifold
44. Gasket

Figure 6—Intake Manifold Components

2. Bolt
3. Stud
5. Exhaust Manifold
7. Gasket

Figure 7—Exhaust Manifold Components
VALVE TRAIN COMPONENT REMOVAL

Tools Required:
J 34144-A Rocker Arm Cover Remover
J 3049 Valve Lifter Remover (Plier Type)

Remove or Disconnect (Figures 2, 3, 9, 10, 11, and 12)

1. Rocker arm cover bolts.

2. Rocker arm cover. Use J 34144-A (figure 9).

3. Bolts (31), balls (32), rocker arms (33), pushrods (47) and pushrod guides (45).
 • Every effort should be made to insure that these mating parts are installed in their original locations during assembly. A simple valve train component organizer rack can be made from a piece of wood, as shown in figure 10.

4. Pushrod cover nuts, studs, and the cover (50).
 • Unscrew the four nuts from the cover attaching studs, reverse two of the nuts so the washers face outward and screw them back onto the inner two studs. Assemble the two remaining nuts to the same two inner studs with washers facing inward. Using a small wrench on the inner nut, on each stud, jam the two nuts tightly together. Again, using the small wrench on the inner nut, unscrew the studs until the cover breaks loose.
 • After breaking the cover loose, remove the jammed nuts from each stud. Remove the cover from the studs.

5. Retainers (123).

 • Remove the valve lifters one at a time and place them in the organizer rack. The valve lifters must be installed in the same bore from which they were removed.
 • A stuck valve lifter can be removed using J 3049.
CYLINDER HEAD REMOVAL

Remove or Disconnect (Figure 13)

1. Bolts (25 and 27).

2. Cylinder head (24). Use care when handling the cylinder head to prevent damage to the gasket surfaces.

3. Gasket (17).

CRANKSHAFT PULLEY HUB REMOVAL

Remove or Disconnect (Figure 5 and 14)

1. Bolt (98) and washer (99).

2. Pulleys (96 and 97) and hub (100).
2.5 LITER L4 ENGINE 6A1-11

89. Key
94. Bolt
95. Crankshaft Pulley
96. Bolt
97. Crankshaft and Power Steering Pulley
98. Bolt
99. Washer
100. Crankshaft Pulley Hub

Figure 14—Timing Gear Cover and Components

OIL PAN REMOVAL

Remove or Disconnect (Figure 5)
1. Bolts (75).
2. Oil pan (76).
 • If the rocker arm cover adheres to the block, try to shear the sealant from the block by bumping the end of the oil pan with a rubber mallet. If the cover will not come loose, carefully pry until loose. DO NOT DISTORT THE SEALING FLANGE.

OIL PUMP DRIVESHAFT REMOVAL

Remove or Disconnect (Figures 5 and 15)
1. Bolts (117).
2. Plate (118).
3. Bearing (113).
4. Shaft and gear assembly (115 and 114).

OIL PUMP REMOVAL

Remove or Disconnect (Figure 5)
1. Bolts (84) and nut (78) at oil screen bracket.
2. Oil pump (77).

FRONT COVER REMOVAL

Remove or Disconnect (Figures 5 and 14)
1. Timing gear cover bolts (94).
2. Timing gear cover (102).
 • If the timing gear cover adheres to the cylinder head, carefully pry it loose. DO NOT DISTORT THE SEALING FLANGE.

PISTON AND CONNECTING ROD REMOVAL

Remove or Disconnect (Figures 5, 16 and 17)
1. Ridge (or deposits) at the top of the cylinder as follows:
 • Turn the crankshaft until one piston is at the bottom of its stroke. Place a soft cloth on top of the piston.

Figure 15—Oil Pump Drive Shaft
Using the manufacturer’s directions, install a ridge reamer into the top of the cylinder. Perform the cutting operation.

After the ridge and/or deposits are removed, remove the ridge reamer. Turn the crankshaft until the piston is at the top of its stroke. Remove the cloth and the cuttings.

Repeat this procedure for each piston.

2. Connecting rod caps (116) as follows: Take note of the arrangement of the connecting rod (53) markings, to insure proper reassembly. Use a silver pencil to mark the parts if necessary.

To avoid mismatching the connecting rods and connecting rod caps, remove only one connecting rod cap at a time. Place the piston at the bottom of its stroke.

Remove the nuts (56).

Remove the connecting rod cap.

Install two sections of 10 mm (¾-inch) rubber hose over the connecting rod studs. This will prevent the connecting rod studs from scratching the bore or crankshaft journal during the removal process.

3. Connecting rod (53) and piston (51) from the block.

Push the connecting rod and piston from the block being careful not to let the connecting rod contact the cylinder bore.

Loosely assemble the connecting rod cap (116) onto the connecting rod.

Take note of, or mark the connecting rod and piston assembly and the cylinder bore to assure that each assembly is returned to its original bore.

Repeat this procedure on the remaining connecting rod assemblies.

FLYWHEEL REMOVAL

1. Flywheel bolts (66).
2. Flywheel (67).
3. Spacer (68).

CRANKSHAFT REMOVAL

The main bearings and rear oil seal can be replaced without removing the crankshaft, as outlined later in this section.

1. Crankshaft timing gear (87).
2. Bolts (125).
3. Main bearing caps (124 and 126).
4. Crankshaft (88). Lift the crankshaft straight up, taking care to avoid damage to the crankshaft journals and thrust flange surfaces.
5. Seal (71).
6. Main bearing inserts (figure 19).

 • If the main bearing inserts are to be reused, mark them to insure they are installed in their original positions before removal.
2.5 LITER L4 ENGINE 6A1-13

Figure 18—Crankshaft and Bearing Components

71. Crankshaft Rear Oil Seal
72. Crankshaft Rear Bearing
86. Crankshaft Bearings
88. Crankshaft
124. Main Bearing Cap
125. Bolt
126. Rear Main Bearing Cap

Figure 19—Removing the Upper Main Bearing Insert

Figure 20—Removing the Camshaft Thrust Plate Bolts

CRANKSHAFT REAR OIL SEAL REMOVAL (WITHOUT REMOVING CRANKSHAFT)

Remove or Disconnect (Figure 5)

NOTICE: Care must be taken not to damage the crankshaft outside diameter surface with the pry tool.

1. Rear crankshaft oil seal.
 - Pry the seal out with a screwdriver. Take care not to scratch the crankshaft.

MAIN BEARING REMOVAL (WITHOUT REMOVING THE CRANKSHAFT)

Remove or Disconnect

Tool Required:
J 8080 Main Bearing Remover/Installer

1. Main bearing caps (124 and 126).
 - Check the main bearing caps for location markings. Mark the caps if necessary. The caps must be returned to their original locations during assembly.
2. Lower main bearing inserts (86) from the main bearing caps.
3. Upper main bearing inserts (86).
 - Insert J 8080 into the crankshaft oil hole.
 - Rotate the crankshaft to "turn" the bearing out of the block.

CAMSHAFT REMOVAL

Remove or Disconnect (Figures 5, 20 and 21)

- Turn the camshaft (108) until the bolts (103) are visible through the holes in the camshaft gear (104).
 1. Bolts (103).
 2. Camshaft (108). Pull the camshaft out of the block. Support the camshaft carefully when removing to prevent damage to the camshaft bearings.
CLEANING, INSPECTION, AND REPAIR

A solvent tank, large enough to hold the larger engine parts, will be needed along with various bristle brushes and a gasket scraper. A source of compressed air will be helpful in the cleaning operations.

Precision measuring tools will be required for the inspection procedure. These include: micrometers, cylinder bore gage, feeler gages, dial indicator set, etc. The inspection work, performed with the proper method and tools, is most important. The rebuilt engine cannot be expected to perform properly if parts worn beyond acceptable limits are reused.

BLOCK

Clean (Figure 5)
1. Block (119) in solvent.
2. Block gasket surfaces.
3. Cylinder bores.
4. Oil galleries and passages.
5. Scale deposits from the coolant passages.

Inspect
1. All expansion plugs for looseness or leakage.
2. Valve lifter bores for deep scratches and varnish deposits.
3. Block for cracks, especially in the following areas:
 - Cylinder walls.
 - Coolant jackets.
 - Main bearing webs.
 - Engine mount bosses.
4. Main bearing bores and main bearing caps (124 and 126).
 - All main bearing bores should be round and have a uniform inside diameter at all of the bearing supports.
 - The area where the main bearing inserts (86 and 72) contact the main bearing bore should be smooth.

Measure (Figure 22)
- Head gasket surface distortion. Use a straight edge and a feeler gage to check for flatness of the milled surface at the top of the cylinder block. The surface...
must be flat within 0.10 mm (0.004-inch) to assure that the gasket will provide a tight seal between the cylinder head and the block.

CYLINDER BORES

For information regarding cylinder bore measuring and reconditioning, refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

PISTON AND CONNECTING ROD ASSEMBLIES

For information regarding disassembly, cleaning and inspection and assembly of piston and connecting rod assemblies, refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

For piston selection information, refer to “Piston Selection” in this section.

PISTON SELECTION

In order to select the proper piston for each bore, it is necessary to measure the outside diameter of the piston and the inside diameter of the bore. Once the diameters have been measured, the difference between the bore diameter and the piston diameter will be the piston to bore clearance.

1. Check the used piston to cylinder bore clearance.

 Measure (Figures 23 and 24)

 - Cylinder bore diameter using a telescoping bore gage. Measure the bore parallel to the crankshaft at the gaging point which is 57.15 mm (2.25-inch) from the top of the cylinder bore. By measuring at this point, the smallest bore diameter will be obtained.
 - Piston diameter with a micrometer. Measure the piston skirt at a right angle to the piston pin, at the centerline of the piston pin, which is 46.037 mm (1 13/ie-inch) from the piston crown. By measuring at this point, the largest piston diameter will be obtained.

 Subtract the piston diameter from the cylinder bore diameter to determine the piston to bore clearance.

 Refer to “Specifications” at the end of this section to determine if the piston clearance is in the acceptable range.

2. If the used piston is not acceptable, determine if a new piston can fit the cylinder bore.

3. If a new piston does not bring the clearance within tolerances, the cylinder bore must be reconditioned.

4. Mark the piston to identify the cylinder for which it was fitted.

Figure 22—Checking the Block Gasket Surface

Figure 23—Measuring the Piston Diameter

Figure 24—Measuring Cylinder Bore Diameter
INTAKE AND EXHAUST MANIFOLDS

Clean
- Old pieces of gasket from the gasket surfaces.

Inspect
- Manifolds for cracks, broken flanges, etc.
- Gasket surfaces for heavy scratches.

CAMSHAFT

Inspect (Figure 5)
- Camshaft lobes and journals for scratches, pitting, scoring, and wear.
- Timing gear for damaged or missing teeth.

Measure (Figures 25 through 27)
Tool Required:
J 7872 Dial Indicator (or equivalent)
- Camshaft runout. Mount the camshaft between centers or in V-blocks. Using tool J 7872 (or equivalent), check the intermediate camshaft journals. If runout exceeds 0.020-inch, the camshaft is excessively bent and should be replaced, along with the camshaft bearings.

- Camshaft journal out of round. Use a micrometer. If the journals are more than 0.001-inch out of round, replace the camshaft.

- Camshaft journal diameter. Use a micrometer. The proper diameter is 1.869-inch.

- Thrust plate (105) to camshaft (108) clearance. This clearance governs camshaft end play. Use a feeler gage. The proper clearance is 0.0015-inch to 0.0050-inch. If the clearance is less than 0.0015-inch replace the spacer ring (106). If the clearance is more than 0.0050-inch, replace the thrust plate (105).

Disassemble (Figure 28)
1. Gear (104) from the camshaft.

- Place the camshaft gear in a press. Support the camshaft gear. DO NOT support the thrust plate.
Figure 29—Installing the Camshaft Gear

NOTICE: The thrust plate must be positioned so that the woodruff key (107) does not damage it during the removal operation.

- Press the camshaft (108) out of the camshaft gear.
2. Thrust plate (105).

Assemble (Figure 29)
- Support the camshaft on the back of the front journal in an arbor press using press plate adapters.
- Lubricate the thrust plate with engine oil.
1. Woodruff key (107).
2. Spacer (106).
3. Thrust plate (105).
- Make sure that the timing mark is to the outside.
- Press the camshaft gear onto the camshaft until it bottoms on the spacer (106).
- Remove the camshaft from the press.

Measure (Figure 27)
- Camshaft to thrust plate clearance using a feeler gage. The correct clearance is 0.0015-inch to 0.0050-inch.

CAMSHAFT BEARINGS

Remove or Disconnect (Figure 30)

Tool Required:
J 33049 Universal Camshaft Bearing Remover and Installer
1. Expansion plug.
 - Drive out the plug from inside the block at the rear camshaft bearing.
2. Front and rear bearings (109) using J 33049.
 - Drive the bearings towards the center of the block.
3. Center bearing using J 33049.
 - Drive the bearing towards the rear of the engine.

Inspect
- Front cover for cracks, large dents, etc.
- Sealing flange for straightness.

Disassemble (Figure 5)
- Seal (101). Pry the seal out with a screwdriver.

Assemble (Figure 31)

Tool Required:
J 34995 Crankshaft Front Cover Oil Seal Installer
- New seal (101) using tool J 34995.
 - Support the inside of the front cover around the seal bore area.

FRONT COVER

- Old RTV sealant from the sealing flange.
6A1-18 2.5 LITER L4 ENGINE

Figure 31—Installing the Front Crankshaft Seal

- Press the seal into place. The open end of the seal faces inside the front cover.
- Lubricate the seal lips with grease.

WATER PUMP

Clean

- Old gasket from the gasket surface.

Important

- Do not immerse the pump in solvent. The solvent may enter the pump’s permanently lubricated bearings, dissolve the bearings’ lubricant supply, and cause premature bearing failure.

Inspect

- Water pump shaft for roughness and end play. If the shaft does not turn smoothly, or if there is excessive end play, replace the water pump.
- Water pump body at the drain hole. If there is evidence of coolant leakage, the water pump shaft seal is leaking, and the water pump should be replaced.

Figure 32—Oil Pump Components

OIL PUMP

Disassemble (Figure 32)

1. Cover screws (81).
2. Cover (82).
3. Gasket (83).
 - Mark the gear teeth so the pump gears can be installed with the same gear teeth indexed.
4. Drive gear and shaft (128).
5. Idler gear (127).
7. Spring (80).
8. Pressure relief valve (85).
 - Do not remove the pickup screen and pipe unless replacement is required.
 - The pickup pipe is a press fit in the pump body.
 - Do not try to remove the screen from the pipe. The pickup screen and pipe is serviced as an assembly only.

Clean

- All parts in clean solvent and blow dry with compressed air.

Inspect

- Pump body (77) and cover (82) for cracks or other damage.
- Gears (127 and 128) for wear.

OIL PAN AND ROCKER ARM COVER

Clean

- Parts in solvent. Remove all sludge and varnish.
- Old RTV sealant from the sealing flange

Inspect

- Gasket flanges for bending or damage.
- Oil pan for rock damage or cracks.
- Drain plug threads for stripping.
— Drive gear and shaft (128) for looseness in the pump body (77).
— Inside of the cover (82) for wear that would permit oil to leak past the ends of the gears.
— The pump gears and body are not serviced separately.
— Pressure relief valve (85) for fit. The regulator valve should slide freely in its bore without sticking or binding.

Assemble (Figures 32 and 33)

Tool Required:
J 21882 Oil Suction Pipe Installer
1. Pressure relief valve (85).
2. Spring (80).
3. Spring retaining pin (79).
4. Drive gear and shaft (128).
5. Idler gear (127) in the pump body (77) with the smooth side of the gear toward the pump cover opening. Index the marks made during disassembly.
7. Cover (82) and screws (81).

Tighten

- Screws to 14 N·m (10 ft. lbs.).
- Turn the driveshaft by hand to check for smooth operation.

NOTICE: Be careful of twisting, shearing or collapsing the pipe while installing in the pump.

8. Pick-up screen and pipe (129) (if removed).
 - If the pickup screen and pipe assembly was removed, it should be replaced with a new part. Loss of press fit condition could result in an air leak and loss of oil pressure.
 - Mount the oil pump in a soft-jawed vise.
 - Apply sealer to the end of the pipe.
 - Tap the pickup screen and pipe into place, using tool J 21882 and a hammer.
 - The pump screen must be parallel with the bottom of the oil pan when installed.

VALVE TRAIN COMPONENTS

PUSHRODS, PUSHROD GUIDES, ROCKER ARMS AND BALLS

Clean

- Parts in solvent. Blow dry with compressed air.
- Make sure the oil passages in the pushrods are clear.

Inspect (Figures 3 and 10)

- Rocker arms (33) and balls (32) at their mating surfaces. These surfaces should be smooth and free from scoring or other damage.
- Rocker arm (33) areas which contact the valve stems, and the sockets which contact the pushrods (47). These areas should be smooth and free of damage and wear.
- Pushrods (47) for bending. Roll the pushrod on a flat surface to determine if it is bent. Replace if necessary.
- Ends of the pushrods (47) for scoring or roughness.

VALVE LIFTERS

For information regarding valve lifters refer to GENERAL ENGINE MECHANICAL (SEC. 6A) of this manual.

CYLINDER HEAD

Information regarding cylinder head disassembly and assembly is covered under this procedure. For information regarding cleaning and inspection, and measuring of the cylinder head as well as valve measuring and grinding and valve guide reconditioning, refer to GENERAL ENGINE MECHANICAL (SEC. 6A) in this manual.
Disassemble (Figures 34 and 35)

Tool Required:
J 8062 Valve Spring Compressor

1. Valve keepers (30).
 - Compress the valve spring using J 8062.
 - Remove the valve keepers.
 - Remove the tool.

2. Cap (28).

3. Valve spring (35) and shield (34).

4. Valve stem oil seals (29).

5. Valves (18 and 19). Place them in a rack so they can be returned to their original position at assembly.

6. Valve stem seal (36).

For information on cylinder head measuring and reconditioning, refer to GENERAL ENGINE MECHANICAL (SEC. 6A) in this manual.

Assemble (Figures 34, 35 and 36)

Tools Required:
J 8062 Valve Spring Compressor
J 22330 Valve Stem Seal Checker and Tester

1. New valve stem seals (36).
 - Lubricate the seal in order to aid in assembly.

2. Valves (18 and 19).
 - Lubricate the valve stems with engine oil.
 - Insert the valves into the proper ports.

3. Valve spring (35) and shield (34).

5. Valve keepers (30).
Make sure that the keepers seat properly in the groove.
• Repeat the preceding steps on the remaining valves.
• Check each valve seal using J 22330. Wet the suction cup portion of the tool lightly with engine oil. Place the suction cup over the valve stem cover and push the tool down to create a vacuum. If the vacuum remains at the tool, the seal is properly installed. If a vacuum cannot be obtained, or if the seal will not hold a vacuum, it may have been damaged or improperly installed.

Measure
• Valve spring installed height.
 — Use a narrow, thin scale. A cutaway scale may be helpful.
 — Measure from the valve shim or spring seat to the top of the valve cap.
 — If this measurement exceeds the figure given in “Specifications,” install valve spring seat shims of sufficient thickness (between the spring and cylinder head) to give the desired measurement. Never shim the spring to give an installed height under the specified figure.

THERMOSTAT AND HOUSING
The thermostat is located in a housing bolted to the front of the cylinder head.

A thermostat consists of a restriction valve controlled by a thermostatic element. The restriction valve cranks or just starts to open at a predetermined temperature and continues to open as the engine coolant temperature increases. To assure proper cooling and engine warm-up it is important that the correct thermostat be used. Refer to the proper Truck Service Manual for the correct thermostat application.

Disassemble (Figure 3)
1. Bolts (8 and 9).
2. Water outlet (10).
3. Thermostat (12).
4. Gasket (11).

Inspect (Figure 3)
• Water outlet (10) and housing (13) for cracks or damage.

Assemble (Figure 3)
1. Thermostat (12).
2. Gasket (11).
3. Water outlet (10).
4. Bolts (8 and 9).

Tighten
• Bolts (8 and 9) to 23 N·m (17 ft·lbs.).
• Mount the crankshaft in V-blocks or between centers.
• Use a dial indicator as shown.
• If the main bearing journals are misaligned, the crankshaft is bent and must be replaced along with the main bearings.

ASSEMBLY OF ENGINE

PRIOR TO ASSEMBLY

The importance of cleanliness during the assembly procedure cannot be overstressed. Dirt will cause premature wear of the rebuilt engine.

Lubricate all moving parts lightly with engine oil or engine assembly lubricant (unless specified otherwise) during assembly. This will provide initial lubrication when the engine is started.

CRANKSHAFT AND MAIN BEARING INSTALLATION

Service bearing inserts are available in standard size and 0.001-inch undersize.

Install or Connect (Figures 5 and 39)

1. Upper main bearing inserts (86 and 72) to the block.
 - If any previously used or undersized bearings are used, make absolutely certain that they are fitted to the proper journal.
2. Crankshaft (88). Take care not to damage the thrust areas.
3. Lower bearing inserts (86 and 72) to the bearing caps.

Measure

- Main bearing clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) in this manual.
3. Engine oil to the lower main bearing inserts.

4. Main bearing caps (except the rear cap) with the selected lower main bearing inserts (86 and 72). Be sure to put the main bearing cap in their original positions, with the arrows facing the front of the engine.

5. Bolts (125). Make sure the special bolt, which retains the oil pump pickup tube and screen is installed in the proper position. (#4 main bearing cap, camshaft side hole.)

Tighten

- Main bearing cap bolts to 88 N·m (65 ft. lbs.).

6. Rear main bearing cap to the block.

7. Rear main bearing cap bolts. Tighten the bolts temporarily to 14 N·m (10 ft. lbs.).

Measure (Figure 40)

- Crankshaft end play, as follows:
 - Tap the end of the crankshaft first rearward then forward with a lead hammer. This will line up the rear main bearing and crankshaft thrust surfaces.
 - Tighten the rear main bearing cap bolts to 88 N·m (65 ft. lbs.).
 - With the crankshaft forced forward, measure at the front end of the rear main bearing with a feeler gage. The proper clearance is 0.09 - 0.20 mm (0.0035 - 0.0085-inch).

Inspect

- Crankshaft for binding. Try turning the crankshaft to check for binding. If the crankshaft does not turn freely, loosen the main bearing cap bolts, one pair at a time, until the tight bearing is located. Burrs on the

CRANKSHAFT REAR OIL SEAL INSTALLATION

Install or Connect (Figures 5 and 41)

Tool Required:
- J 34924-A Seal Installer
- Crankshaft rear oil seal using J 34924.

1. Lubricate the seal inside diameter with engine oil.
2. Slide the seal over the mandrel of the tool, until the dust lip (back of seal), mates squarely against the collar.
3. Lubricate the seal outside diameter with engine oil.
4. Position the tool with the seal in place against the crankshaft. Align the dowel with the alignment hole in the crankshaft. Tighten the screws firmly.
5. Turn the T-handle of the tool until the collar seats firmly against the crankcase. This will insure that the seal is seated properly.
6. Loosen the T-handle fully. Loosen the screws and remove the tool.

Figure 41—Installing the Rear Crankshaft Oil Seal

Bearing cap, foreign matter between the insert and the block or the bearing cap, or a faulty insert could cause a lack of clearance at the bearing.
MAIN BEARING INSTALLATION
(WITHOUT REMOVING THE CRANKSHAFT)

Install or Connect (Figures 5 and 42)

Tool Required:
J 8080 Main Bearing Remover/Installer

1. Upper main bearing inserts.
 - Insert tool J 8080 into a crankshaft main bearing hole.
 - Apply engine oil to the proper sized inserts.
 - Insert the plain end of the insert (without the bearing tang) of the insert between the crankshaft and the notched side of the block.
 - Rotate the crankshaft to "roll" the insert into the block.
 - Remove the tool.

2. Lower main bearing inserts to the main bearing caps.
 - Make sure the inserts are of the proper size.
 - Apply engine oil to the inserts.

Measure
- Main bearing clearance and crankshaft end play. Refer to "Crankshaft and Main Bearing Installation" in this section.

CAMSHAFT INSTALLATION

Install or Connect (Figure 3, 43, and 44)

- Coat the camshaft lobes with Engine Oil Supplement (GM part number 1051396) or equivalent. Coat the bearing journals with engine oil.

1. Camshaft (108) into the block (119). Take care not to damage the camshaft bearings (109).

CAMSHAFT INSTALLATION

Install or Connect (Figure 3, 43, and 44)

- Coat the camshaft lobes with Engine Oil Supplement (GM part number 1051396) or equivalent. Coat the bearing journals with engine oil.

1. Camshaft (108) into the block (119). Take care not to damage the camshaft bearings (109).

FRONT COVER INSTALLATION

Install or Connect (Figures 5, 45 and 46)

Tool Required:
J 34995 Crankshaft Front Cover Oil Seal Installer

1. Tool J 34995 into the front cover seal.
 - Apply a 10 mm (3/8-inch) wide by 5 mm (3/16-inch) thick bead of RTV sealer to the oil pan at the timing gear cover sealing surface.
 - Apply a 6 mm (1/4-inch) by 3 mm (3/32-inch) thick bead of RTV to the timing gear cover at the block sealing surface. Refer to figure 45.

WARNING: The correct tool must be used to align the timing gear cover so that the front crankshaft seal is properly centered around the crankshaft. The seal must be centered to prevent damage during hub installation.

2. Timing gear cover, with J 34995 in place, to the block.
CRANKSHAFT PULLEY HUB INSTALLATION

Install or Connect (Figures 5 and 47)
1. Crankshaft pulley and hub. Slide the hub on the crankshaft until it bottoms against the crankshaft gear.
2. Bolt (98) and washer (99).

Tighten
- Hub retaining bolt to 220 N·m (160 ft. lbs.).

PISTON AND CONNECTING ROD INSTALLATION

Install or Connect (Figures 5, 48 and 49)

Tool Required:
- J 8037 Piston Ring Compressor
- Make sure the cylinder walls are clean. Lubricate the cylinder wall lightly with engine oil.
- Make sure the piston is installed in the matching cylinder. Refer to “Piston and Connecting Rod Assemblies” in this section.

1. Connecting rod bearing inserts (55).
 - Be certain that the inserts are the proper size.
 - Install the bearing inserts in the connecting rod and connecting rod cap.
 - Lubricate the bearings with engine oil.
2. Piston and connecting rod to the proper bore.
 - With the connecting rod cap removed. Install two sections of 10 mm (3/8-inch) rubber hose over the connecting rod studs.
 - Locate the piston ring end gaps as shown in figure 48. Lubricate the piston and rings with engine oil.
 - Without disturbing the ring end gap location, install J 8037 over the piston.
 - The piston must be installed so that the notch in the piston faces the front of the engine.
 - Place the piston in its matching bore. Using light blows with a hammer handle, tap the piston down into its bore. At the same time, guide the connecting rod into position on the crankpin. Hold the ring compressor against the block until all the rings have entered the cylinder bore.

CONNECTING ROD BEARING SELECTION

Service bearings are available in standard size and 0.001-inch undersize for use with new and used standard sized crankshafts. The 2.5 L engine is designed with a rolled fillet on the crankshaft journal to increase crankshaft strength. Do not grind a crankshaft with a rolled fillet. Undersize bearings other than 0.001-inch undersize are not available.

Measure
- Connecting rod bearing clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).
89. Key
94. Bolt
95. Crankshaft Pulley
96. Bolt
97. Crankshaft and Power Steering Pulley
98. Bolt
99. Washer
100. Crankshaft Pulley Hub

FINAL ASSEMBLY

+-+ Install or Connect (Figure 5)

- Apply engine oil to the connecting rod bearing inserts (55) and crankshaft journal.

1. Connecting rod cap (116) with the lower connecting rod bearing insert (55).

2. Nuts (56).

Tighten

- Nuts (56) to 40 N-m (30 ft. lbs.).

Measure (Figure 50)

- Connecting rod side clearance. Use a feeler gage between the connecting rod and the crankshaft. The correct clearance is 0.15–0.60 mm (0.006–0.022-inch).

OIL PUMP INSTALLATION

+-+ Install or Connect (Figure 5)

1. Oil pump.

- Align the oil pump shaft with the tang on the oil pump driveshaft.

- Position the oil pump over the oil pump driveshaft lower bushing. No gasket is used. The oil pump should slide easily into place.

ENGINE LEFT ENGINE FRONT ENGINE RIGHT

<table>
<thead>
<tr>
<th>A</th>
<th>Oil-Ring Rail Gaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>2nd Compression Ring Gap</td>
</tr>
<tr>
<td>C</td>
<td>Notch In Piston</td>
</tr>
<tr>
<td>D</td>
<td>Oil Ring Spacer Gap</td>
</tr>
<tr>
<td>(Tang In Hole Or Slot With Arc)</td>
<td></td>
</tr>
</tbody>
</table>
| E | Top Compression Ring Gap | B-07895

Figure 47—Timing Gear Cover and Components

Figure 48—Piston Ring Gap Location

Figure 49—Installing the Piston
2. Oil pump bolts (84) and nut (78).

Tighten
- Bolts to 25 N·m (18 ft. lbs.)
- Nut to 42 N·m (31 ft. lbs.)

OIL PAN INSTALLATION

Install or Connect (Figures 5 and 51)
- Apply RTV sealant to the oil pan flange and block. Refer to figure 51.
 1. Oil pan (76).
 2. Bolts (75).

OIL PUMP DRIVESHAFT INSTALLATION

Install or Connect (Figures 5 and 52)
1. Shaft and gear assembly (115 and 114). Turn the shaft until it indexes the oil pump shaft pilot properly in the oil pump body.
2. Bearing (113).
3. Plate (118). Apply RTV to the plate as shown in figure 52.

Tighten
- Bolts to 14 N·m (120 in. lbs.).

CYLINDER HEAD INSTALLATION

Install or Connect (Figures 3 and 53)
- Make sure the block and cylinder head sealing surfaces are clean.
 1. Head gasket to the block. Install over the dowel pins.
 2. Cylinder head. Carefully guide the head into place over the dowel pins. This may require an assistant.
 3. Cylinder head bolts. Refer to figure 53.
Cylinder head bolts should be washed in solvent and dry at the time of installation. All residual oil should be wiped from the cylinder head mating surfaces.

- Coat the threads of bolt 9 with sealing compound (Part Number 1052080 or equivalent).
- Apply a light coat of engine oil to the threads and underside of the bolt heads of bolts 1 through 8.

Tighten

1. All head bolts to 25 N·m (18 ft. lbs.) in the specified sequence (refer to figure 53).

2. All head bolts except number 9 to 35 N·m (26 ft. lbs.). Number 9 bolt should be tightened to 25 N·m (18 ft. lbs.). Tighten the bolts in the specified sequence.

3. All head bolts, 90 degrees (¼ turn). Tighten the bolts in the specified sequence.
VALVE TRAIN COMPONENT INSTALLATION

Install or Connect (Figures 3, 5, 54, 55 and 56)

- Lubricate the hydraulic lifters (121) with Engine Oil Supplement (GM part number 1051396) or equivalent.

1. Hydraulic lifters (121) into their mating bores in the block.
2. Hydraulic lifter guides (122).
3. Retainers (123) and studs (60).

Tighten
- Studs (60) to 10.0 N·m (90 in. lbs.).
4. Pushrod cover (50).
 - Apply a 5mm (3/16-inch) bead of RTV sealant to the pushrod cover as shown in figure 56.
5. Pushrod cover nuts.
6. Pushrods (47). Seat the pushrods into the sockets of the hydraulic lifters.
 - Coat the mating surfaces of the rocker arms (33) and balls (32) with a molybdenum disulfide grease.
7. Rocker arms (33).

Tighten
- Bolts to 30 N·m (22 ft. lbs.). DO NOT OVERTIGHTEN.
10. Rocker arm cover to the cylinder head. Install the cover while the RTV is still wet (within 10 minutes).
11. Rocker arm cover bolts.

WATER PUMP INSTALLATION

Install or Connect (Figure 57 and 58)

1. Gasket.
2. Water pump.
4. Water pump pulley.
INTAKE MANIFOLD INSTALLATION

Install or Connect (Figure 59)
1. Gasket.
 - Apply sealant to the bolts indicated in figure 59.
2. Intake manifold.
3. Intake manifold bolts and washers.

Tighten
 - Intake manifold bolts to 34 N-m (25 ft. lbs.).
4. Vacuum lines and electrical connectors, as needed.

EXHAUST MANIFOLD INSTALLATION

Install or Connect (Figure 60)
1. Exhaust manifold and a new gasket.
2. Exhaust manifold bolts and washers.

Tighten
 - Exhaust manifold bolts. Use the tightening sequence and the specifications shown in figure 60.
3. Oxygen sensor wire.
4. Thermaic heat stove pipe.

FLYWHEEL INSTALLATION

Install or Connect (Figure 5)
1. Spacer (68).
2. Flywheel (67).

Tighten
 - Flywheel bolts (66).
 - Automatic transmissions: 75 N-m (55 ft. lbs.).
 - Manual transmissions: 90 N-m (65 ft. lbs.).

ENGINE ACCESSORY INSTALLATION

Install the engine accessories (distributor, TBI unit oil filter, generator, etc.) as directed in the proper Truck Service Manual. Connect all vacuum hoses and electrical equipment the same way as removed.

ENGINE SETUP AND TESTING

1. After overhaul, the engine should be tested before installing it in the vehicle. If a suitable test stand is not available, the following procedure can be used after the engine is installed in the vehicle.
37. Washer
38. Bolt
42. Stud
43. Intake Manifold
44. Gasket

Figure 59—Intake Manifold Installation

Tightening Sequence
Tighten bolts in number sequence as shown. Or, “A” group bolts can be tightened first, then “B” group bolts.

Torque Specifications
“A” Group Bolts: 50 N·m (36 Ft. Lbs.)
“B” Group Bolts: 43 N·m (32 Ft. Lbs.)

Figure 60—Exhaust Manifold Installation
2. Fill the crankcase with the proper quantity and grade of oil. Refer to the proper Truck Service Manual or Owner's and Driver's Manual for this information. Fill the cooling system with the proper coolant.

3. With the ignition “OFF” or disconnected, crank the engine several times. Listen for any unusual noises or evidence that any parts are binding.

4. Start the engine and listen for unusual noises. Run the engine at about 1000 rpm until the engine is at operating temperature.

5. Listen for improperly adjusted valves or sticking lifters, or other unusual noises.

6. Check for oil and coolant leaks while the engine is running.

7. Using the proper Truck Service Manual or Emission Control Label for specifications, adjust the ignition timing and idle rpm.
SPECIFICATIONS

ENGINE SPECIFICATIONS
All Specifications are in INCHES unless otherwise noted.

<table>
<thead>
<tr>
<th>GENERAL DATA:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Displacement</td>
</tr>
<tr>
<td>RPO</td>
</tr>
<tr>
<td>Bore</td>
</tr>
<tr>
<td>Stroke</td>
</tr>
<tr>
<td>Compression Ratio</td>
</tr>
<tr>
<td>Firing Order</td>
</tr>
<tr>
<td>Oil Pressure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CYLINDER BORE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
</tr>
<tr>
<td>Out Of Round</td>
</tr>
<tr>
<td>Taper—Thrust Side</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PISTON:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PISTON RING:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ROPE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Groove Clearance</th>
<th>Top</th>
<th>0.002-0.003</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Second</td>
<td>0.001-0.003</td>
</tr>
<tr>
<td>OIL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Groove Clearance</td>
<td>0.015-0.0.55</td>
<td></td>
</tr>
<tr>
<td>Gap</td>
<td>0.020-0.060</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PISTON PIN:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
</tr>
<tr>
<td>Clearance in Piston</td>
</tr>
<tr>
<td>Fit In Rod</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OIL PUMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear Lash</td>
</tr>
<tr>
<td>Gear Pocket Depth</td>
</tr>
<tr>
<td>Gear Pocket Diameter</td>
</tr>
<tr>
<td>Gear Length</td>
</tr>
<tr>
<td>Gear Diameter</td>
</tr>
<tr>
<td>Gear Side Clearance</td>
</tr>
<tr>
<td>End Clearance</td>
</tr>
</tbody>
</table>

F6340
All specifications are in INCHES unless otherwise noted.

CRANKSHAFT:

<table>
<thead>
<tr>
<th>Component</th>
<th>Diameter</th>
<th>Taper</th>
<th>Out of Round</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
<td>2.300</td>
<td>0.0005</td>
<td>0.0005</td>
</tr>
<tr>
<td>Journal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main Bearing Clearance</td>
<td>0.0005–0.0022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crankshaft End Play</td>
<td>0.0035–0.0085</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crankpin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crankpin Diameter</td>
<td>2.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crankpin Taper</td>
<td>0.0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crankpin Out of Round</td>
<td>0.0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rod Bearing Clearance</td>
<td>0.0005–0.0026</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rod Side Clearance</td>
<td>0.006–0.002</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAMSHAFT:

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lobe Lift (Intake and Exhaust)</td>
<td>0.232</td>
</tr>
<tr>
<td>End Play</td>
<td>0.015–0.0050</td>
</tr>
<tr>
<td>Journal Diameter</td>
<td>1.869</td>
</tr>
<tr>
<td>Journal Clearance</td>
<td>0.0007–0.0027</td>
</tr>
</tbody>
</table>

VALVE SYSTEM:

<table>
<thead>
<tr>
<th>Component</th>
<th>Valves Type</th>
<th>Lifter Leak — Down Rate</th>
<th>Lifter Body Diameter</th>
<th>Lifter Bore Diameter</th>
<th>Lifter Clearance in Bore</th>
<th>Plunger Travel</th>
<th>Pushrod Length</th>
<th>Valve Lash</th>
<th>Rocker Arm Ratio</th>
<th>Face Angle (Intake & Exhaust)</th>
<th>Seat Angle (Intake & Exhaust)</th>
<th>Seat Runout (Intake & Exhaust)</th>
<th>Seat Width</th>
<th>Stem Clearance</th>
<th>Stem Diameter</th>
<th>Valve Pressure</th>
<th>Valve Spring Free Length</th>
<th>Valve Spring Installed Height</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hydraulic</td>
<td>12–90 Seconds with 50 lb. load</td>
<td>0.8420–0.8427</td>
<td>0.8435–0.8445</td>
<td>0.0025</td>
<td>0.125</td>
<td>8.299</td>
<td>NOT ADJUSTABLE</td>
<td>1.75:1</td>
<td>45°</td>
<td>46°</td>
<td>0.002</td>
<td>0.035–0.075</td>
<td>0.0010–0.0025</td>
<td>0.3133–0.3138</td>
<td>71–78 lbs. @ 1.440</td>
<td>158–170 lbs. @ 1.040</td>
<td>1.440</td>
</tr>
<tr>
<td>Intake</td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td></td>
</tr>
</tbody>
</table>
SPECIFICATIONS (CONT.)

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
<th>In. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Bearing Cap Bolts</td>
<td>88</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Connecting Rod Nuts</td>
<td>40</td>
<td>30</td>
<td>90</td>
</tr>
<tr>
<td>Oil Pan Bolts (All)</td>
<td>10.0</td>
<td>—</td>
<td>90</td>
</tr>
<tr>
<td>Oil Pump to Block Bolts</td>
<td>25</td>
<td>18</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pickup Tube Nut</td>
<td>42</td>
<td>31</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pump Cover Bolts</td>
<td>14.0</td>
<td>120</td>
<td>—</td>
</tr>
<tr>
<td>Pushrod Cover Nuts</td>
<td>10.0</td>
<td>90</td>
<td>—</td>
</tr>
<tr>
<td>Crankshaft Pulley to Hub Bolts</td>
<td>34</td>
<td>25</td>
<td>—</td>
</tr>
<tr>
<td>Crankshaft Pulley Hub to Crankshaft Bolt</td>
<td>220</td>
<td>160</td>
<td>—</td>
</tr>
<tr>
<td>Flywheel Bolts (Automatic)</td>
<td>75</td>
<td>55</td>
<td>—</td>
</tr>
<tr>
<td>Flywheel Bolts (Manual)</td>
<td>90</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Intake Manifold Bolts</td>
<td>34</td>
<td>25</td>
<td>—</td>
</tr>
<tr>
<td>Exhaust Manifold Bolts (Front and Rear Exhaust Tubes)</td>
<td>43</td>
<td>32</td>
<td>—</td>
</tr>
<tr>
<td>(Center Exhaust Tube)</td>
<td>50</td>
<td>36</td>
<td>—</td>
</tr>
<tr>
<td>Distributor Clamp Bolt</td>
<td>17</td>
<td>13</td>
<td>—</td>
</tr>
<tr>
<td>Water Outlet Housing Bolts</td>
<td>25</td>
<td>18</td>
<td>—</td>
</tr>
<tr>
<td>Thermostat Housing Bolts</td>
<td>33</td>
<td>24</td>
<td>—</td>
</tr>
<tr>
<td>Water Pump</td>
<td>23</td>
<td>17</td>
<td>—</td>
</tr>
<tr>
<td>Timing Gear Cover Bolts</td>
<td>10.0</td>
<td>—</td>
<td>90</td>
</tr>
<tr>
<td>Rocker Arm Bolts</td>
<td>30</td>
<td>22</td>
<td>—</td>
</tr>
<tr>
<td>Cylinder Head Bolts - See Text</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Camshaft Thrust Plate Bolts</td>
<td>10.0</td>
<td>—</td>
<td>90</td>
</tr>
<tr>
<td>Rocker Arm Cover Bolts</td>
<td>8.5</td>
<td>—</td>
<td>75</td>
</tr>
<tr>
<td>Hydraulic Lifter Guide Retainer Stud</td>
<td>10.0</td>
<td>—</td>
<td>90</td>
</tr>
</tbody>
</table>
SPECIAL TOOLS

<table>
<thead>
<tr>
<th>No.</th>
<th>Tool Description</th>
<th>Code</th>
<th>Tool Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Piston Ring Compressor</td>
<td>J-8037</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Front Crankshaft Seal Installer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Main Bearing Replacer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Valve Spring Compressor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Cam Bearing Replacer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Oil Pump Pickup Tube Installer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Rocker Arm Cover Remover</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Rear Crankshaft Oil Seal Installer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Valve Seal Checker</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Hydraulic Lifter Remover</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Dial Indicator</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Piston Ring Compressor
2. Front Crankshaft Seal Installer
3. Main Bearing Replacer
4. Valve Spring Compressor
5. Cam Bearing Replacer
6. Oil Pump Pickup Tube Installer
7. Rocker Arm Cover Remover
8. Rear Crankshaft Oil Seal Installer
9. Valve Seal Checker
10. Hydraulic Lifter Remover
11. Dial Indicator
SECTION 6A2

2.8 LITER V-6

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>6A2-2</td>
</tr>
<tr>
<td>Engine Lubrication</td>
<td>6A2-2</td>
</tr>
<tr>
<td>Disassembly</td>
<td>6A2-6</td>
</tr>
<tr>
<td>Tools and Shop Equipment</td>
<td>6A2-6</td>
</tr>
<tr>
<td>Accessory Removal</td>
<td>6A2-6</td>
</tr>
<tr>
<td>Cleaning</td>
<td>6A2-7</td>
</tr>
<tr>
<td>Draining the Engine</td>
<td>6A2-7</td>
</tr>
<tr>
<td>Air Injection Tube Removal</td>
<td>6A2-7</td>
</tr>
<tr>
<td>EGR Valve Removal</td>
<td>6A2-7</td>
</tr>
<tr>
<td>Exhaust Manifold Removal</td>
<td>6A2-7</td>
</tr>
<tr>
<td>Rocker Arm Cover Removal</td>
<td>6A2-7</td>
</tr>
<tr>
<td>Intake Manifold Removal</td>
<td>6A2-7</td>
</tr>
<tr>
<td>Valve Train Component Removal</td>
<td>6A2-8</td>
</tr>
<tr>
<td>Cylinder Head Removal</td>
<td>6A2-8</td>
</tr>
<tr>
<td>Torsional Damper Removal</td>
<td>6A2-8</td>
</tr>
<tr>
<td>Front Cover and Water Pump Removal</td>
<td>6A2-9</td>
</tr>
<tr>
<td>Oil Pan Removal</td>
<td>6A2-9</td>
</tr>
<tr>
<td>Oil Pump Removal</td>
<td>6A2-9</td>
</tr>
<tr>
<td>Timing Chain and Camshaft Sprocket Removal</td>
<td>6A2-9</td>
</tr>
<tr>
<td>Camshaft Removal</td>
<td>6A2-10</td>
</tr>
<tr>
<td>Piston and Connecting Rod Removal</td>
<td>6A2-10</td>
</tr>
<tr>
<td>Flywheel Removal</td>
<td>6A2-11</td>
</tr>
<tr>
<td>Crankshaft Removal</td>
<td>6A2-11</td>
</tr>
<tr>
<td>Main Bearing Removal (Without Removing Crankshaft)</td>
<td>6A2-11</td>
</tr>
<tr>
<td>Cleaning, Inspection, and Repair</td>
<td>6A2-12</td>
</tr>
<tr>
<td>Block</td>
<td>6A2-12</td>
</tr>
<tr>
<td>Piston and Connecting Rod Assemblies</td>
<td>6A2-13</td>
</tr>
<tr>
<td>Intake and Exhaust Manifolds</td>
<td>6A2-13</td>
</tr>
<tr>
<td>Camshaft</td>
<td>6A2-14</td>
</tr>
<tr>
<td>Camshaft Bearings</td>
<td>6A2-14</td>
</tr>
<tr>
<td>Timing Chain and Sprockets</td>
<td>6A2-14</td>
</tr>
<tr>
<td>Front Cover</td>
<td>6A2-14</td>
</tr>
<tr>
<td>Water Pump</td>
<td>6A2-15</td>
</tr>
<tr>
<td>Oil Pan and Rocker Arm Covers</td>
<td>6A2-15</td>
</tr>
<tr>
<td>Oil Pump</td>
<td>6A2-15</td>
</tr>
<tr>
<td>Valve Train Components</td>
<td>6A2-16</td>
</tr>
<tr>
<td>Hydraulic Lifters</td>
<td>6A2-16</td>
</tr>
<tr>
<td>Cylinder Head</td>
<td>6A2-16</td>
</tr>
<tr>
<td>Thermostat and Water Outlet</td>
<td>6A2-18</td>
</tr>
<tr>
<td>Crankshaft and Bearings</td>
<td>6A2-18</td>
</tr>
<tr>
<td>Assembly of Engine</td>
<td>6A2-19</td>
</tr>
<tr>
<td>Prior to Assembly</td>
<td>6A2-19</td>
</tr>
<tr>
<td>Crankshaft and Main Bearing Installation</td>
<td>6A2-19</td>
</tr>
<tr>
<td>Rear Crankshaft Oil Seal Installation</td>
<td>6A2-20</td>
</tr>
<tr>
<td>Camshaft, Timing Chain and Sprocket Installation</td>
<td>6A2-21</td>
</tr>
<tr>
<td>Front Cover and Water Pump Installation</td>
<td>6A2-21</td>
</tr>
</tbody>
</table>
DESCRIPTION

GM 2.8L engines are 60-degree V6 type, overhead valve, water cooled, with cast iron block and heads.

The crankshaft is supported by four precision insert main bearings, with crankshaft thrust taken at the number three bearing.

The camshaft is supported by four plain type bearings and is chain driven. Motion from the camshaft is transmitted to the valves by hydraulic lifters, pushrods, and ball type rocker arms. The valve guides are integral in the cylinder head.

The connecting rods are forged steel, with precision insert type crankpin bearings. The piston pins are a press fit in the connecting rods.

The pistons are cast aluminum alloy. The piston pins are a floating fit in the piston.

For Engine Identification, refer to GENERAL INFORMATION (SEC. 0A) in this manual.

ENGINE LUBRICATION

Lubrication schematics are shown in figures 1 through 4. The gear type oil pump is driven from the distributor shaft, which is gear driven from the camshaft. Oil is drawn into the oil pump through a pickup screen and pipe.

Pressurized oil is routed to the oil filter. In case of excessive oil pressure, a bypass valve is provided. From the filter, oil is routed to the main oil gallery which supplies the left bank valve lifters with oil. From the left gallery, oil is directed to the camshaft bearings and the right oil gallery.

Oil flows from the hydraulic lifters through the hollow pushrods to the rocker arms. Oil from the overhead drains back to the crankcase through oil drain holes.

The timing chain is drip fed from the front camshaft bearing. The pistons and piston pins are lubricated by oil splash.
Figure 1—Engine Lubrication Diagram
A. Typical For Front And Rear Oiling
 From Left Bank To Right Bank

Figure 2—Engine Lubrication Diagram
A. Lubrication Begins
B. 189° Duration Of Lubrication
C. End Of Lubrication
D. Lubrication Ends 154° BTDC
E. Cylinders 2, 4 And 6
F. 190° Duration Of Lubrication
G. Lubrication Ends 134° BTDC
H. For Cylinders 1, 3 And 5
J. Views Showing Intermittent Oiling Of
 Connecting Rod Bearing Through Groove
 On Upper Half Of Main Bearings

Figure 3—Engine Lubrication Diagram
A clean, well lit work area should be available. Other necessary equipment includes: A suitable parts cleaning tank, compressed air supply, trays to keep parts and fasteners organized, and an adequate set of hand tools.

An approved engine repair stand will aid the work and help prevent personal injury or damage to engine components.

Special tools are illustrated throughout this section, and are listed at its end. These tools (or their equivalents) are specially designed to quickly and safely accomplish the operations for which they are intended. The use of these tools will also minimize possible damage to engine components.

Some precision measuring tools are required for inspection of certain critical components. Torque wrenches will be necessary for correct assembly of various parts.

This manual assumes that the engine accessories have been removed. These accessories may include one or more of the following:

- Hydraulic Pump
- AIR Pump
- Generator
- Air Conditioning Compressor
- Cooling Fan
- Distributor
- TBI Unit

It is beyond the scope of this section to detail the many different accessory installations. Refer to the proper Truck Service Manual for this information.

Diagrams of emission and vacuum hose routings, wiring harness routing, accessory drive belt layout, etc., should be made before removing accessories.
CLEANING

Remove the engine accessories before cleaning, to provide better access to engine exterior surfaces. After removing the TBI unit, distributor, etc., cover the openings with tape to prevent the entry of water, solvent, and dirt.

Methods used to clean the engine will depend on the aids which are available. Steam cleaning, pressure washing, or solvent cleaning are some acceptable methods. Allow the engine to dry before beginning the work.

It is important that the engine be as clean as possible to prevent dirt from entering critical areas during disassembly.

DRAINING THE ENGINE

++ Remove or Disconnect
1. Oil pan plug and allow the oil pan to drain.
2. Oil filter.
3. Block drains and allow the coolant to drain.

++ Install or Connect
1. Oil pan drain plug and washer.
2. Block drain plugs.

Tighten
- Block drain plug to 12 N·m (9 ft. lbs.).

AIR INJECTION TUBE REMOVAL

++ Remove or Disconnect (Figure 5)
1. Nut (75).
2. Air injection tube from the manifold.

EGR VALVE REMOVAL

++ Remove or Disconnect (Figure 6)
1. Bolts (80).
2. EGR valve (81).
3. Gasket (82).

EXHAUST MANIFOLD REMOVAL

++ Remove or Disconnect (Figure 7)
1. Oil dipstick tube.
2. Bolts or studs.
3. Exhaust manifold.

ROCKER ARM COVER REMOVAL

++ Remove or Disconnect (Figure 8)
1. Rocker arm cover nuts (1) and reinforcements (2).
2. Rocker arm cover and gasket.
 - If the cover sticks to the head, bump the end of the cover. If the cover still does not come loose, carefully pry until loose. DO NOT DISTORT THE SEALING FLANGE.

INTAKE MANIFOLD REMOVAL

++ Remove or Disconnect
1. Intake manifold bolts and nuts.
2. Intake manifold.
 - Pull the intake manifold up.
 - Do not attempt to loosen the manifold by prying under the gasket surface with any tool.
VALVE TRAIN COMPONENT REMOVAL

- Remove or Disconnect (Figure 9)

Tools Required:
- J 3049, Hydraulic Lifter Remover (Plier Type)
- or
- J 9290-1, Hydraulic Lifter Remover (Slide Hammer Type)

1. Nuts (6), balls (8), rocker arms (7), and pushrods (9).
 - Every effort should be made to insure that these mating parts are installed in their original locations during assembly. A simple valve train organizer can be made from a piece of wood.

2. Lifters (10).
 - Remove the lifters one at a time and place them in an organizer rack. The lifters must be installed into the same bore from which they were removed.
 - A stuck lifter can be removed using J 3049 (figure 10) or J 9290-01 (figure 11).

CYLINDER HEAD REMOVAL

- Remove or Disconnect

1. Bolts.
2. Cylinder heads.
 - Use care when handling the cylinder heads to prevent damage to rocker arm studs or gasket sealing surface.

TORSIONAL DAMPER REMOVAL

NOTICE: The inertial weight section of the torsional damper is assembled to the hub with a rubber sleeve. The removal and installation procedures must be followed (with proper tools) or movement of the inertia weight section of the hub will destroy the tuning of the torsional damper and the engine timing reference.

The torsional damper has three timing notches on the inertia ring. The number one cylinder timing reference mark will be identified by a dab of white paint. If a new damper assembly is installed, mark the new assembly in
2.8 LITER V-6 6A2-9

Figure 9—Valve Train Components

the same place for future reference. Number one cylinder reference is the first clockwise mark from the keyway when viewing the engine from the front.

Figure 11—Removing the Hydraulic Lifter (Typical)

FRONT COVER AND WATER PUMP REMOVAL

Remove or Disconnect

Tool Required:
J 23523-E or J 24420-B, Puller
1. Torsional damper retaining bolt.
2. Drive pulley from the damper.
3. Damper using J 23523-E or J 24420-B.

OIL PAN REMOVAL

Remove or Disconnect

1. Bolts and studs from the oil pan.
2. Oil pan.

OIL PUMP REMOVAL

Remove or Disconnect (Figure 12)

1. Bolt (40).
2. Pump (41).
3. Shaft (42).

TIMING CHAIN AND CAMSHAFT SPROCKET REMOVAL

Remove or Disconnect

1. Chain damper.
2. Sprocket to camshaft bolts.
3. Camshaft sprocket and chain.
 • If the sprocket does not come off easily, a light blow on the lower edge of the sprocket (with a plastic mallet only) should dislodge the sprocket.
CAMSHAFT REMOVAL

+++ Remove or Disconnect (Figure 13)

- Camshaft by pulling lightly and turning.

 Important

- All camshaft bearing journals are the same diameter and care must be exercised in removing the camshaft to avoid bearing damage.

PISTON AND CONNECTING ROD REMOVAL

+++ Remove or Disconnect

1. Ridge or deposits from the upper end of the cylinder bores.
 - Turn the crankshaft until the piston is at BDC.
 - Place a cloth on top of the piston.
 - Perform the cutting operation with a ridge reamer (figure 14).
 - Turn the crankshaft until the piston is at TDC.
 - Remove the cloth and cuttings.
 - Use a silver pencil or quick drying paint to mark the cylinder number on all pistons, connecting rods, and caps. Starting at the front of the crankcase, the cylinders in the right bank are numbered 1-3-5 and the left bank is numbered 2-4-6.
2. Connecting rod cap and bearing.

3. Connecting rod and piston (figure 15).
 - Install guide hose over the threads of the rod studs to prevent damage to the bearing journal and rod studs.

FLYWHEEL REMOVAL

Remove or Disconnect

1. Bolts.
2. Retainer (automatic transmission only).
3. Flywheel.

CRANKSHAFT REMOVAL

Remove or Disconnect (Figure 16)

- Check the main bearing clearance before removing the crankshaft. Refer to "Crankshaft and Main Bearing Installation" later in this section.
- The main bearings and rear oil seal can be replaced without removing the crankshaft as outlined later in this section.

1. Bolts (85).
2. Main bearing caps (86).
3. Crankshaft from the cylinder block.
 - Lift the crankshaft straight up, taking care to avoid damage to the crankshaft journals and thrust flange surfaces.
A solvent tank, large enough to hold the larger engine parts, will be needed along with various bristle brushes and a gasket scraper. A source of compressed air will be helpful in the cleaning operations.

Precision measuring tools will be required for the inspection procedure. These include: micrometers, cylinder bore gage, feeler gages, dial indicator set, etc. The inspection work, performed with the proper method and tools, is most important. The rebuilt engine cannot be expected to perform properly if parts worn beyond acceptable limits are reused.

BLOCK

Clean

1. Block in solvent.
2. Block gasket surfaces.
3. Cylinder bores.
4. Oil galleries and passages.
 - Remove the oil gallery plugs.
5. Scale deposits from the coolant passages.

Inspect

1. All expansion plugs for lack of fit or leakage.
2. Valve lifter bores for deep scratches and varnish deposits.
3. Block for cracks.
 - Cylinder walls.
 - Coolant jackets.
 - Main bearing webs.
 - Engine mount bosses.
4. Main bearing bores and main bearing caps.
 - All main bearing bores should be rounded and uniform in ID at all bearing supports.

5. Deck surface for flatness. Use a straightedge and feeler gage. Minor irregularities may be carefully machined. If more than 0.25 mm (0.010-inch) must be removed, replace the block.

6. Oil pan rail and timing cover attaching area for nicks. Minor irregularities may be cleaned up with a flat file.

7. Transmission case mating surface.

Important

- If the transmission case mounting surface is not flat, a broken flexplate may result.

CYLINDER BORES

Inspect

- Cylinder bores for scoring or other damage.

Measure

- Cylinder bore taper and out-of-round. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

Cylinder Bore Reconditioning

Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).
2.8 LITER V-6 6A2-13

PISTON AND CONNECTING ROD ASSEMBLIES

Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) and perform the following:

- **Disassemble**
 - Components as required.
- **Clean**
 - Components as outlined.
- **Inspect**
 - Components as outlined.
- **Measure**
 - Piston pin diameter and clearance.
 - Piston to bore clearance, and fit the pistons.
 1. Remove rings from the pistons to be fitted.
 - It is not necessary to remove the connecting rods from the pistons.
 - If an excessive amount of varnish or carbon appears as a ridge at the top of the cylinder, remove it by scraping or sanding.
 2. Wipe the bores and pistons clean. Select a piston and rod assembly for the bore to be fitted and position it down into the bore with the top of the piston down. The piston should slide freely through the bore by its own weight when the piston skirt is 12 to 25 mm from the top of the bore. Use care to make sure the piston is not damaged when it slides through the bore. If the piston does not slide through the bore, it is too tight and another piston should be selected. Mark the proper piston and bore for assembly.
 3. After a piston has been selected which will slide freely through the bore, determine if it is too loose.
 - Place a feeler gage (0.060 mm for used pistons, 0.050 mm for new pistons) at least 150 mm long and not over 12 mm wide into the bore with the selected piston. Hold the feeler gage to the top of the bore.
 - Position the selected piston into the bore (top down) until the skirt is 12 to 25 mm from the top of the block. The feeler gage must be 90 degrees from the piston pin. If the piston hangs on the feeler gage and does not fall free, the piston is correctly fitted to the bore. If the piston slides freely through the bore, it is too small and a larger piston is required. Mark the proper piston and bore for assembly.
 4. When checking more than one bore, it is possible that a piston that does not fit one bore will fit another.
- **Assemble**
 - Components as outlined.

Important

- Each connecting rod and bearing cap should be marked, beginning at the front of the engine. Cylinders 2, 4 and 6 are at the left bank and, 1, 3 and 5 are the right bank. The numbers on the connecting rod and bearing cap must be on the same side when installed in the cylinder bore. If a connecting rod is ever transposed from block or cylinder to another, new connecting rod bearings should be fitted and the connecting rod should be numbered to correspond with the new cylinder number.

INTAKE AND EXHAUST MANIFOLDS

- **Clean**
 - Old pieces of gasket from the gasket surfaces.
 - Excessive carbon build-up in the exhaust passages of the intake manifold.
 - Scale and deposits from the coolant passages of the intake manifold.
 - EGR passage of excessive carbon deposits.
- **Inspect (Figure 18)**
 - Manifolds for cracks, broken flanges, and gasket surface damage.
 - Alignment of manifold flanges. Use a straight edge and feeler gage. If the flanges are out of alignment by more than 0.1 mm (0.005-inch), the manifold is warped and should be replaced.

Figure 18—Checking Manifold Flange Alignment

- **Measure**
 - Ring end gap and ring clearance.
- **Inspect**
 - Ring fit.
CAMSHAFT

Important
- Whenever the camshaft needs to be replaced, a new set of lifters must also be installed.

Inspect
- Camshaft lobes and journals for scratches, pitting, scoring, and wear.

Measure
- Camshaft journal diameter (figure 19). The proper diameter is listed in "Specifications."

CAMSHAFT BEARINGS

Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) for replacement procedures.

TIMING CHAIN AND SPROCKETS

Inspect
- Sprockets for chipped teeth and wear.
- Timing chain for damage.
- It should be noted that excessively worn sprockets will rapidly wear a new chain. Likewise, an excessively worn chain will rapidly wear a new set of sprockets.
- Timing chain for wear.
 - If the chain can be pulled out more than 9.5 mm (3/8-inch), from the damper, replace the chain.

CRANKSHAFT SPROCKET REPLACEMENT

Remove or Disconnect (Figure 20)

Tool Required:
- J 5825-A Crankshaft Sprocket Puller
1. Crankshaft sprocket using J 5825-A.
2. Key (if necessary).

FRONT COVER

Clean
- Old gasket from the gasket surfaces.

Inspect
- Timing tab marker for damage.
- Front cover for damage, dents, or cracks.

Remove or Disconnect
- Oil seal from the front cover.
 - Pry the seal out with a large screwdriver.
Install or Connect

Tool Required:
- J 35468, Seal Installer
- New seal so that the open end of the seal is toward the inside of the cover.
 - Drive the seal into position with J 35468.
 - Support the cover at the seal area.
- Lubricate the seal with engine oil before installing the torsional damper.

WATER PUMP

Clean
- Old gasket from the gasket surface.

Important
- Do not immerse the pump in solvent. The solvent may enter the pump's permanently lubricated bearings, dissolve the bearings' lubricant supply, and cause premature bearing failure.

Inspect
- Water pump shaft for roughness and end play. If the shaft does not turn smoothly, or if there is excessive end play, replace the water pump.
- Water pump body at the drain hole. If there is evidence of coolant leakage, the water pump shaft seal is leaking and the water pump should be replaced.

OIL PAN AND ROCKER ARM COVERS

Clean
- Parts in solvent. Remove all sludge and varnish.
- Old gaskets from the gasket surfaces.

Inspect
- Gasket flanges for bending or damage.
- Rubber grommets and parts on the rocker arm cover for deterioration.
- Oil pan for rock damage or cracks.
- Oil pan baffle for lack of fit.
- Drain plug threads for stripping.

OIL PUMP

Remove or Disconnect (Figure 21)
1. Pump cover attaching bolts (186) and the pump cover (182).
2. Mark the gear teeth so the pump gears can be installed with the same gear teeth indexed.
3. Idler gear (188), drive gear (181) and shaft (103) from the pump body.
4. Pressure relief valve retaining pin (185).
5. Pressure relief valve spring (184).
6. Pressure relief valve (183).

Install or Connect (Figure 21)

Tool Required:
- J 21882, Pick-Up Tube and Screen Installer
1. Pressure regulator valve.
2. Spring.
3. Spring retaining pin.
4. Drive gear and shaft.
5. Idler gear.
 - Index the marks made during disassembly.
6. Cover and screws.
Tighten
• Screws to 9.0 N·m (80 in. lbs.).
• Turn the drive shaft by hand to check for smooth operation.

NOTICE: Be careful of twisting, shearing or collapsing the pipe while installing in the pump.

7. Pick-up screen and pipe (if removed) (figure 22).
 • If the pick-up screen and pipe assembly was removed, it should be replaced with a new part. Loss of press fit condition could result in an air leak and loss of oil pressure.
 • Mount the oil pump in a soft jawed vise.
 • Apply sealer to the end of the pipe.
 • Tap the pick-up screen and pipe into place, using J 21882 and a hammer.
 • The pump screen must be parallel with the bottom of the oil pan when installed.

8. Oil pump drive shaft (103) and connector (104).

VALVE TRAIN COMPONENTS

PUSHRODS, ROCKER ARMS, BALLS, AND NUTS

Clean
• Parts in solvent. Blow dry with compressed air.
• Make sure the oil passages in the pushrods are clear.

Inspect
• Rocker arms and balls at their mating surfaces. These surfaces should be smooth and free from scoring or other damage.
• Rocker arm areas which contact the valve stems and the sockets which contact the pushrods. These areas should be smooth and free of damage and wear.
• Rocker arm nuts.

• Pushrods for bending. Roll the pushrod on a flat surface to determine if it is bent. Replace if necessary.
• Pushrod ends for scoring or roughness.

HYDRAULIC LIFTERS
Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

CYLINDER HEAD

DISASSEMBLY
Remove or Disconnect (Figures 23 and 24)

Tool Required:
J 8062, Valve Spring Compressor

1. Valve keepers (22).
 • Compress the springs with J 8062 (figure 24).
 • Remove the keepers.
 • Remove J 8062.

2. Caps (23), oil shedder (24), and springs.

3. O-ring seals (26) and seals (25) (if used).

4. Valves (20 and 21).
 • Place the valves in a rack so they can be returned to their original position at assembly.

CLEANING AND INSPECTION OF COMPONENTS
Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) and perform the following.

Clean
• Components as outlined.

Inspect
• Components as outlined.

Measure
• Valve stem clearance.
• Valve spring tension and free length.
Other information outlined includes:
• Valve and seat grinding.
2.8 LITER V-6 6A2-17

20. Intake Valve
21. Exhaust Valve
22. Valve Keepers
23. Valve Cap
24. Oil Shedder
25. Seal
26. O-Ring

Figure 23—Valves and Components

20
21
22
23
24
25
26

Figure 24—Compressing the Valve Springs

90. Rocker Arm Stud
91. Pushrod Guide

Figure 25—Rocker Arm Studs

- Valve guide reaming.

ROCKER ARM STUD AND PUSHROD GUIDE REPLACEMENT

The rocker arm studs are threaded in place.

trzym

1. Rocker arm studs (90) using a deep socket.
2. Pushrod guide (91).

Install or Connect

1. Pushrod guide (91).
2. Rocker arm studs (90) using a deep socket.

Tighten

- Rocker arm studs to 65 N·m (48 ft. lbs.).

ASSEMBLY

Install or Connect (Figures 23 and 24)

Tool Required:
J 8062, Valve Spring Compressor
1. Valves (20 and 21).
 - Lubricate the valve stems with engine oil.
 - Insert the valves into the proper seats.
2. Seals (25) (intake only).
 - Install the seals over the valve stems and seat them against the head.
4. Oil shedder (24).
5. Caps (23).
6. O-ring seals (26) and valve keepers (22).
A. Grind out this portion. B-05248

Figure 26—Scale for Checking Valve Spring Installed Height

- Compress the valve spring using J 8062 (figure 24). Compress the spring enough so the lower valve stem groove can be seen clearly.
- Push a new O-ring seal (26) onto the valve stem. The seal is to be installed on the stem's lower groove. Make sure the seal is flat and not twisted.
- Apply a small amount of grease to the area of the upper valve stem groove. Assemble the two valve keepers using the grease to hold the keys in place. Make sure the keepers seat properly in the groove.
- Release the compressor tool. Make sure the valve keepers stay in place.
- Repeat the preceding steps on the remaining valves.

Measure
- Valve spring installed height of each valve spring as follows.
 1. Use a narrow thin scale. A cutaway scale (figure 26) may be helpful.
 2. Measure from the top of the spring damper "feet" to the bottom of the oil shedder on the exhaust valve or to the bottom of the valve cap on the intake valve.
 3. If this measurement exceeds the figure given in "Specifications," install valve spring seat shims approximately 0.75 mm (0.03-inch) thickness (between the spring and cylinder head). NEVER shim the spring so as to give an installed height under the specified figure.

THERMOSTAT AND WATER OUTLET

Remove or Disconnect (Figure 27)
1. Bolts.
2. Water outlet.
4. Thermostat.

Inspect
- Water outlet for cracks.

Install or Connect (Figure 27)
1. Thermostat.
2. New gasket.
3. Water outlet.
4. Bolts.

Tighten
- Bolts for 21 N·m (15 ft. lbs.).

CRANKSHAFT AND BEARINGS

CLEANING AND INSPECTION

Clean
- Crankshaft with solvent.
 - Do not scratch the bearing journals.
 - Blow all sludge from the oil passages with compressed air.
- Main bearing inserts. Wipe free of oil with a soft cloth.

Inspect
- Crankshaft for cracks. Use the magnalux method, if available.
- Crankpins, main bearing journals and thrust surfaces for scoring, nicks, or damage caused by lack of lubrication.
- Main bearing inserts for scoring or other damage. In general, the lower inserts (except the #1 bearing) show greater wear and the most distress from fatigue. If the lower insert shows evidence of wear or damage, both the upper and lower inserts must be replaced.

Measure
- Main bearing and connecting rod journal diameters (figure 28). Compare with "Specifications." Replace the crankshaft if necessary.
- Main bearing and connecting rod journals for taper and out-of-round (figure 28). If the journals are tapered or out-of-round more than 0.005 mm, replace the crankshaft.
Crankshaft run-out.
- Mount the crankshaft in V-blocks or between centers.
- Use a dial indicator.
- If the main journals are misaligned more than 0.025 mm, the crankshaft is bent and must be replaced, along with the main bearing.

ASSEMBLY OF ENGINE

PRIOR TO ASSEMBLY

The importance of cleanliness during the assembly procedure cannot be overstressed. Dirt will cause premature wear of the rebuilt engine.

Lubricate all moving parts lightly with engine oil or engine assembly lubricant (unless specified otherwise) during assembly. This will provide initial lubrication when the engine is started.

CRANKSHAFT AND MAIN BEARING INSTALLATION

Main bearings are of the precision insert type and do not use shims for adjustment. If clearances are excessive, a new bearing plus both upper and lower inserts will be required. Service main bearings are available in standard size, 0.016, and 0.032 mm undersize. Service rod bearings are available in standard size and 0.026 mm undersize.

Selective fitting of both rod and main bearing inserts is necessary in production to obtain close tolerances. For this reason you may find one half of a standard insert with one half of a 0.032 mm undersize insert which will decrease the clearance 0.016 mm from using a full standard bearing.

Install or Connect

1. Upper main bearing inserts to the block.
 - Important
 - If any undersized bearings are used, make sure they are fitted to the proper journals.
2. Crankshaft.
3. Lower main bearing inserts to the main bearing caps.

Measure

- Main bearing clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).
- Apply engine oil to the main bearing inserts.
4. New O-ring (if used) into the rear main bearing cap.
5. Thin coat of anaerobic sealant (GM Part No. 1052756 or equivalent) to the rear main bearing cap (figure 29).
 - Do not allow sealer on the crankshaft or the seal.
6. A small amount of RTV sealant (GM Part No. 1052942 or equivalent) to the rear 4 mm of the rear bearing cap sealing surface (figure 29).
 - Do not allow sealer on the crankshaft or the seal.
7. Main bearing caps with arrows pointing toward the front of the engine.

8. Main bearing cap bolts.

Tighten

- All main bearing caps EXCEPT NUMBER THREE CAP to 95 N·m (70 ft. lbs.).
- Number three main bearing cap to 15 N·m (11 ft. lbs.). Then tap the end of the crankshaft rearward and then forward with a lead hammer to line up the rear main bearing and crankshaft thrust surfaces.
- All main bearing caps to 95 N·m (70 ft. lbs.).

Measure (Figure 30)

- Crankshaft end play.
 1. Tap the end the crankshaft first rearward then forward with a lead hammer. This will line up the rear main bearing and crankshaft thrust surfaces.
 2. With the crankshaft forced forward, measure at the front end of the number three main bearing with a feeler gage (figure 30). The proper clearance is 0.06 to 0.21 mm.

Inspect

- Crankshaft for binding. Try turning the crankshaft to check for binding. If the crankshaft does not turn freely, loosen the main bearing cap bolts, one pair at a time, until the tight bearing is located. Burrs on the bearing cap, foreign matter between the insert and the block or the bearing cap, or a faulty insert could cause a lack of clearance at the bearing.

Figure 30—Measuring Crankshaft End Play

Figure 31—Installing the Crankshaft Oil Seal

REAR CRANKSHAFT OIL SEAL INSTALLATION

Install or Connect

Tool Required:

- J 34686, Seal Installer

1. Light coat of oil to the inside diameter of the new seal.

2. New seal over the mandril of J 34686 until the dust lip (back of the seal) bottoms against the collar of the tool (figure 31).

3. J 34686 to the crankshaft by hand or torque the attaching screws to 4 N·m (3 ft. lbs.).
 - Align the dowel pin of J 34686 with the dowel pin hole in the crankshaft.

4. Light coat of oil to the outside diameter of the seal.

5. Seal into the bore.
 - Turn the “T” handle of the tool so the collar pushes the seal into the bore.
 - Turn the handle until the collar of the tool is tight against the cylinder block to seat the seal properly.
 - Loosen the “T” handle until it comes to a stop.
 - Remove the attaching screws.
2.8 LITER V-6 6A2-21

Figure 32—Replacing the Camshaft

CAMSHAFT, TIMING CHAIN AND SPROCKET INSTALLATION

Install or Connect (Figures 32 and 33)
- Coat the camshaft lobes and journals with a high quality engine oil supplement (GM Engine Oil Supplement or equivalent).
- When a new camshaft is installed, install new oil and filter. It is also recommended that all valve lifters be replaced to insure durability of the camshaft lobes and lifter feet.

1. Camshaft:

 Important
 - All camshaft bearing journals are the same diameter and care must be exercised in installing the camshaft to avoid bearing damage.

2. Timing chain onto the sprocket.
 - Lubricate the thrust surface with "Molykote" or equivalent.

3. Sprocket onto the camshaft.
 - Hold the sprocket vertically with the chain hanging down and align the marks on the camshaft and crankshaft sprockets.
 - Align the dowel in the camshaft with the dowel hole in the sprocket.

4. Bolts (30).
 - Draw the camshaft sprocket onto the camshaft using the mounting bolts.

 Tighten
 - Bolts (30) to 23 N·m (17 ft. lbs.).

5. Chain damper (31).

 Tighten
 - Bolts (32) to 21 N·m (15 ft. lbs.).

FRONT COVER AND WATER PUMP INSTALLATION

Install or Connect
- Lubricate the lips of the front crankshaft oil seal with engine oil.

1. New gasket.
 - Make sure all sealing surfaces are clean.
 - Take care not to damage sealing surfaces.
 - Lightly coat both sides of the lower 5 mm of the gasket with anaerobic sealant (GM Part No. 1052080 or equivalent).

2. Front cover.
3. Water pump.
4. Bolts and stud.

 Tighten
 - Bolts and stud to specification.

TORSIONAL DAMPER INSTALLATION

NOTICE: The inertial weight section of the torsional damper is assembled to the hub with a rubber sleeve. The installation procedure must be followed (with proper tools) or movement of the inertia weight section of the hub will destroy the tuning of the torsional damper and the engine timing reference.
The torsional damper has three timing notches on the inertia ring. The number one cylinder timing reference mark will be identified by a dab of white paint. If a new damper assembly is installed, mark the new assembly in the same place for future reference. Number one cylinder reference is the first clockwise mark from the keyway when viewing the engine from the front.

Install or Connect

Tool Required:
J 29113, Torsional Damper Installer

1. Engine oil to the front cover seal contact area on the damper.
2. Sealant (GM Part No. 1052366 or equivalent) on the key and the keyway.
3. Damper over the key on the crankshaft.
4. Pull the damper onto the crankshaft:
 - Install J 29113 into the crankshaft so at least 6 mm (1/4-inch) of thread is engaged.
 - Pull damper into position and remove J 29113 from the damper.
5. Torsional damper retaining bolt.
6. Drive pulley to the damper.

PISTON AND CONNECTING ROD INSTALLATION

CONNECTING ROD BEARING SELECTION
Connecting rod bearings are of the precision insert type and do not use shims for adjustment. Do not file rods or rod caps. If clearances are excessive install a new bearing. Service bearings are available in standard size and 0.013 mm and 0.026 mm undersize for use with new and used standard size crankshafts.

Install or Connect

Tool Required:
J 8037, Ring Compressor

1. Lubricate the cylinder walls lightly with engine oil.
2. Make sure the piston is installed in the proper cylinder with the notch forward.
3. Connecting rod bearing inserts.
 - Be certain that the inserts are of the proper size.
 - Install the inserts in the connecting rod and connecting rod cap.
4. Piston and connecting rod to the proper bore.
 - Install guide hose over the threads of the rod studs to prevent damage to the bearing journal and rod studs.
 - Locate the ring end gaps as shown in figure 34.
 - Lubricate the piston and rings with engine oil.
 - Without disturbing the ring end gap location, install J 8037 over the piston.
 - Use a hammer handle to tap the piston down into its matching bore (figure 35).
 - The notch in the piston crown must face the front of the engine.

Figure 34—Piston Ring End Gap Location

- While tapping the piston into its bore, guide the connecting rod into position on the crankpin. Hold the ring compressor against the block until all rings have entered the cylinder bore.

Important

- Each connecting rod and bearing cap should be marked, beginning at the front of the engine. Cylinders 2, 4, and 6 are the left bank and, 1, 3, and 5 are the right bank. The
numbers on the connecting rod and bearing cap must be on the same side when installed in the cylinder bore. If a connecting rod is ever transposed from one block or cylinder to another, new connecting rod bearings should be fitted and the connecting rod should be numbered to correspond with the new cylinder number.

3. Connecting rod cap with bearing insert.

- **Measure**
 - Connecting rod bearing clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

- **Tighten**
 - Connecting rod cap nuts to 53 N·m (39 ft. lbs.).

- **Measure**
 - Connecting rod side clearance (figure 36). The proper clearance is 0.16 to 0.64 mm.

OIL PUMP INSTALLATION

- **Install or Connect (Figure 37)**
 1. Pump and shaft with retainer to the rear main bearing cap.
 - Align the top end of the hexagon extension shaft with the hexagon socket on the lower end of the distributor drive gear.
 2. Bolt (40).

- **Tighten**
 - Bolt to 41 N·m (30 ft. lbs.).

OIL PAN INSTALLATION

- **Clean**
 - Sealing surfaces on the engine and oil pan.

- **Install or Connect (Figure 38)**

 NOTICE: Before installing the oil pan, check that the sealing surfaces on the pan, cylinder case, and front cover are clean and free of oil. Make sure that all RTV is removed from blind attaching holes.

 1. Gasket.
 - Apply sealer (GM Part No. 1052914 or equivalent) to the area shown in figure 38.
 2. Oil pan to the cylinder block.
 3. Reinforcement (37), nuts, bolts, and studs.

- **Tighten**
 - Bolts (36) to 25 N·m (18 ft. lbs.).
 - Bolts and studs (35) and nuts (38) to 10 N·m (7 ft. lbs.).
Tighten

- All bolts to 55 N·m (40 ft. lbs.), using the sequence shown in figure 39.
- In sequence, tighten all bolts an additional 90 degrees (¼-turn).

Important

- Replace all hydraulic lifters if a new camshaft was installed.

Install or Connect (Figure 40)

- Lubricate the hydraulic lifter bodies and feet with Engine Oil Supplement (GM Part No. 1051396 or equivalent).

1. Hydraulic lifters (10) to the block.
2. Pushrods (9).
 - Seat the pushrods into the socket in the hydraulic lifters.
 - Coat the mating surfaces of the rocker arms (7) and balls (8) with “Molykote” or equivalent.
3. Rocker arms.
4. Balls (8).
5. Nuts (6).
VALVE ADJUSTMENT

1. Crank the engine until the mark on the torsional damper lines up with the "O" mark on the timing tab and the engine in the number one firing position. This may be determined by placing fingers on the number one valve as the mark on the damper comes near the "O" mark on the timing tab. If the rocker arms are not moving, the engine is in the number one firing position. If the rocker arms move as the mark comes up to the timing tab, the engine is in the number four firing position and should be turned over one more time to reach the number one position.

2. With the engine in the number one firing position as determined above, the following valves may be adjusted:
 - Exhaust: 1, 2, 3
 - Intake: 1, 5, 6

 (Even numbered cylinders are in the left bank; odd numbered cylinders are in the right bank, when viewed from the rear of the engine).

3. Back out the adjusting nut until lash is felt at the pushrod then turn in the adjusting nut until all lash is removed. This can be determined by rotating the pushrod while turning the adjusting nut (figure 41). When the play has been removed, turn the adjusting nut in one and one-half additional turns (to center the lifter plunger).

4. Crank the engine one revolution until the timing tab "O" mark and vibration damper mark are again in alignment. This is the number four firing position. The following valves may be adjusted:
 - Exhaust: 4, 5, 6
 - Intake: 2, 3, 4

INTAKE MANIFOLD INSTALLATION

Install or Connect (Figure 42)

1. RTV to the front and rear sealing surfaces on the block. Apply a 5 mm (3/16-inch) bead of RTV (part number 1052917 or equivalent) to the front and rear of the block as shown.
 - Make sure that no oil or water is present on the surfaces to be sealed.

2. Gaskets to the cylinder head.
 - Gaskets are marked Right Side or Left Side and "This Side Up". Use them only as indicated to maintain design efficiency of the engine.
 - Hold the gaskets in place by extending the bead of RTV 6 mm (1/4-inch) from the block sealing surfaces up onto the gasket ends.
 - The new gaskets will have to be cut where indicated to install behind the pushrods. Cut only the areas where necessary.

3. Intake manifold.
 - Make sure the areas between the case ridges and the intake manifold are completely sealed.

4. Intake manifold bolts and nuts.

 Tighten
 - Nuts and bolts to 21 N-m (15 ft. lbs.) in the sequence shown in figure 42. Then re-torque in the same sequence.

ROCKER ARM COVER INSTALLATION

Clean
- All traces of old gasket from the rocker arm cover and cylinder head.

Inspect
- Rocker arm cover sealing surfaces for distortion. Replace if necessary.

Install or Connect (Figure 43)

1. Rocker arm cover and gasket.
 - Apply a 5 mm (3/16-inch) dab of RTV sealant (GM Part No. 1052917 or equivalent) at the point where the inlet manifold meets the head.

2. Rocker arm cover nuts and reinforcements.

 Tighten
 - Nuts to 8 N-m (6 ft. lbs.).
EXHAUST MANIFOLD INSTALLATION

- Clean
 - Mating surfaces of the manifold and cylinder head.

- Install or Connect (Figure 44)
 1. Manifold.
 2. Bolts and studs.

- Tighten
 - Bolts to 34 N·m (25 ft·lbf).

EGR VALVE INSTALLATION

- Install or Connect (Figure 6)
 1. Gasket (82).
 2. EGR valve (81).
 3. Bolts (80).

- Tighten
 - Bolts to 25 N·m (18 ft·lbf).
AIR INJECTION TUBE INSTALLATION

Install or Connect (Figure 5)
1. Air injection tube (76).
2. Nut (75).

Tighten
- Air injection tube to 34 N·m (25 ft. lbs.).
- Nuts (75) to 25 N·m (18 ft. lbs.).

FLYWHEEL INSTALLATION

Install or Connect
1. Flywheel.
2. Retainer (automatic transmission only).

Tighten
- Bolts to 70 N·m (52 ft. lbs.).

ENGINE ACCESSORY INSTALLATION

Install the engine accessories (distributor, TBI unit, oil filter, generator, etc.) as directed in the proper Truck Service Manual. Connect all vacuum hoses and electrical equipment the same way as removed.

ENGINE SET-UP AND TESTING

1. After overhaul, the engine should be tested before installation in the vehicle. If a suitable test stand is not available, the following procedure can be used after the engine is installed in the vehicle.
2. Fill the crankcase with the proper quantity and grade of oil.

Important
- If a new camshaft or hydraulic lifters were installed, add Engine Oil Supplement (GM Part No. 1051396) or equivalent to the engine oil.
- Fill the cooling system with the proper coolant.
- With the ignition "OFF," or disconnected, crank the engine several times. Listen for any unusual noises or evidence that any parts are binding.
- Start the engine and listen for unusual noises.
- Run the engine at about 1000 RPM until the engine is at operating temperature.
- Listen for improperly adjusted valves or sticking lifters, and other unusual noises.
- Check for oil and coolant leaks while the engine is running.
- Using the proper Truck Service Manual or Emission Control Label for specifications, adjust the ignition timing and idle speed.
SPECIFICATIONS

ENGINE SPECIFICATIONS

All Specifications are in MILLIMETERS unless otherwise noted.

GENERAL DATA:

<table>
<thead>
<tr>
<th>Type</th>
<th>60° V-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement</td>
<td>2.8L</td>
</tr>
<tr>
<td>RPO</td>
<td>LL2</td>
</tr>
<tr>
<td>Bore</td>
<td>89.0</td>
</tr>
<tr>
<td>Stroke</td>
<td>76.0</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>8.9:1</td>
</tr>
<tr>
<td>Firing Order</td>
<td>1-2-3-4-5-6</td>
</tr>
<tr>
<td>Oil Pressure</td>
<td>69 kPa @ 500 RPM; 205-380 kPa @ 2000 RPM (10 psi @ 500 RPM; 30-55 psi @ 2000 RPM)</td>
</tr>
</tbody>
</table>

CYLINDER BORE:

<table>
<thead>
<tr>
<th>Diameter</th>
<th>88.992–89.070</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out Of Round</td>
<td>0.02 (Maximum)</td>
</tr>
<tr>
<td>Taper—Thrust Side</td>
<td>0.02 (Maximum)</td>
</tr>
</tbody>
</table>

PISTON:

| Clearance | 0.017–0.043 |

PISTON RING:

<table>
<thead>
<tr>
<th>Groove Clearance</th>
<th>Top</th>
<th>0.030–0.070</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Second</td>
<td>0.040–0.095</td>
</tr>
<tr>
<td>Gap</td>
<td>Top</td>
<td>0.25–0.50</td>
</tr>
<tr>
<td></td>
<td>Second</td>
<td>0.25–0.50</td>
</tr>
<tr>
<td>Groove Clearance</td>
<td>OIL</td>
<td>0.199 (Maximum)</td>
</tr>
<tr>
<td></td>
<td>Gap</td>
<td>0.51–1.40</td>
</tr>
</tbody>
</table>

PISTON PIN:

<table>
<thead>
<tr>
<th>Diameter</th>
<th>22.9937–23.0015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearance</td>
<td>0.0065–0.0091</td>
</tr>
<tr>
<td>Fit In Rod</td>
<td>0.0187–0.0515 (Press)</td>
</tr>
</tbody>
</table>

F-6524
SPECIFICATIONS

ENGINE SPECIFICATIONS (CONT.)

All specifications are in MILLIMETERS unless otherwise noted.

CRANKSHAFT

<table>
<thead>
<tr>
<th>Main Journal</th>
<th>Diameter - 3 Dots</th>
<th>67.241-67.249</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diameter - 2 Dots</td>
<td>67.249-67.257</td>
</tr>
<tr>
<td></td>
<td>Diameter - 1 Dot</td>
<td>67.257-67.265</td>
</tr>
<tr>
<td></td>
<td>Taper</td>
<td>0.005 (Maximum)</td>
</tr>
<tr>
<td></td>
<td>Out of Round</td>
<td>0.005 (Maximum)</td>
</tr>
</tbody>
</table>

| Main Bearing Clearance | 0.041–0.081 |
| Crankshaft End Play | 0.06–0.21 |

Crankpin

Diameter - 2 Dots	50.758–50.771
Diameter - 1 Dot	50.771–50.784
Taper	0.005 (Maximum)
Out of Round	0.005 (Maximum)

| Rod Bearing Clearance | 0.035–0.095 |
| Rod Side Clearance | 0.16–0.64 |

CAMSHAFT:

<table>
<thead>
<tr>
<th>Lift</th>
<th>Intake</th>
<th>6.65</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exhaust</td>
<td>6.94</td>
</tr>
</tbody>
</table>

| Journal Diameter | 47.44–47.49 |
| Journal Clearance| 0.026–0.101 |

VALVE SYSTEM:

<table>
<thead>
<tr>
<th>Lifter</th>
<th>Hydraulic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocker Arm Ratio</td>
<td>1.50:1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valve Lash</th>
<th>Intake</th>
<th>One And One Half Turns Down From Zero Lash</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exhaust</td>
<td></td>
</tr>
</tbody>
</table>

Face Angle (Intake & Exhaust)	45°
Seat Angle (Intake & Exhaust)	46°
Seat Runout (Intake & Exhaust)	0.05

Seat Width	Intake	1.25–1.50
	Exhaust	1.60–1.90
Stem Clearance	0.026–0.068	

Valve Free Length	48.5
Valve Spring Pressure Closed	391 @ 40
N @ mm Open	867 @ 30
Installed height	40
Valve Spring	47.2
Damper Approx. # of Coils	4
SPECIFICATIONS (CONT.)

<table>
<thead>
<tr>
<th>Item</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocker Arm Cover Bolts</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Intake Manifold Bolts</td>
<td>21</td>
<td>15</td>
</tr>
<tr>
<td>Exhaust Manifold Bolts</td>
<td>34</td>
<td>25</td>
</tr>
<tr>
<td>Cylinder Head Bolts</td>
<td>95</td>
<td>70</td>
</tr>
<tr>
<td>Torsional Damper Bolt</td>
<td>95</td>
<td>70</td>
</tr>
<tr>
<td>Timing Chain Damper</td>
<td>21</td>
<td>15</td>
</tr>
<tr>
<td>Front Cover Bolt</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>Oil Pan Bolts (Rear Two)</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>Oil Pan Bolts, Studs and Nuts</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Oil Pump Bolt</td>
<td>41</td>
<td>30</td>
</tr>
<tr>
<td>Camshaft Sprocket Bolts</td>
<td>23</td>
<td>17</td>
</tr>
<tr>
<td>Connecting Rod Cap Nuts</td>
<td>53</td>
<td>39</td>
</tr>
<tr>
<td>Oil Filter Adapter</td>
<td>85</td>
<td>63</td>
</tr>
<tr>
<td>Main Bearing Cap Bolts</td>
<td>95</td>
<td>70</td>
</tr>
<tr>
<td>Flywheel Bolts</td>
<td>70</td>
<td>52</td>
</tr>
<tr>
<td>Spark Plugs</td>
<td>30</td>
<td>22</td>
</tr>
<tr>
<td>Water Outlet Bolts</td>
<td>21</td>
<td>15</td>
</tr>
<tr>
<td>Water Pump Nut</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Water Pump Bolt (M6 x 1.0)</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Water Pump Bolts (M8 x 1.25)</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>EGR Valve</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>Oil Pump Cover Screws</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Rocker Arm Studs</td>
<td>65</td>
<td>48</td>
</tr>
<tr>
<td>Air Injection Tube</td>
<td>34</td>
<td>25</td>
</tr>
<tr>
<td>Air Injection Tube Nut</td>
<td>25</td>
<td>18</td>
</tr>
</tbody>
</table>
SPECIAL TOOLS

1. Hydraulic Lifter Remover (Plier Type)
2. Crankshaft Sprocket Installer
3. Crankshaft Sprocket Puller
4. Valve Spring Compressor
5. Ring Compressor
6. Main Bearing Remover/Installer
7. Pick-up Tube and Screen Installer
8. Hydraulic Lifter Remover (Slide Hammer Type)
9. Puller
10. Puller
11. Torsional Damper Installer
12. Seal Installer
13. Seal Installer
6A2-32 2.8 LITER V-6
SECTION 6A3
4.3 LITER V-6

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>6A3-2</td>
</tr>
<tr>
<td>Engine Lubrication</td>
<td>6A3-2</td>
</tr>
<tr>
<td>Disassembly</td>
<td>6A3-5</td>
</tr>
<tr>
<td>Tools and Shop Equipment</td>
<td>6A3-5</td>
</tr>
<tr>
<td>Accessory Removal</td>
<td>6A3-5</td>
</tr>
<tr>
<td>Cleaning</td>
<td>6A3-5</td>
</tr>
<tr>
<td>Draining The Engine</td>
<td>6A3-5</td>
</tr>
<tr>
<td>EGR Valve Removal</td>
<td>6A3-5</td>
</tr>
<tr>
<td>Exhaust Manifold Removal</td>
<td>6A3-5</td>
</tr>
<tr>
<td>Rocker Arm Cover Removal</td>
<td>6A3-6</td>
</tr>
<tr>
<td>Intake Manifold Removal</td>
<td>6A3-6</td>
</tr>
<tr>
<td>Valve Train Component Removal</td>
<td>6A3-6</td>
</tr>
<tr>
<td>Cylinder Head Removal</td>
<td>6A3-7</td>
</tr>
<tr>
<td>Torsional Damper Removal</td>
<td>6A3-7</td>
</tr>
<tr>
<td>Oil Pan Removal</td>
<td>6A3-7</td>
</tr>
<tr>
<td>Oil Pump Removal</td>
<td>6A3-7</td>
</tr>
<tr>
<td>Front Cover Removal</td>
<td>6A3-7</td>
</tr>
<tr>
<td>Camshaft Removal</td>
<td>6A3-7</td>
</tr>
<tr>
<td>Piston and Connecting Rod Removal</td>
<td>6A3-8</td>
</tr>
<tr>
<td>Flywheel Removal</td>
<td>6A3-9</td>
</tr>
<tr>
<td>Rear Crankshaft Oil Seal Removal</td>
<td>6A3-9</td>
</tr>
<tr>
<td>Rear Crankshaft Oil Seal Retainer Removal</td>
<td>6A3-9</td>
</tr>
<tr>
<td>Crankshaft Removal</td>
<td>6A3-9</td>
</tr>
<tr>
<td>Main Bearing Removal (Without Removing Crankshaft)</td>
<td>6A3-10</td>
</tr>
<tr>
<td>Cleaning, Inspection, and Repair</td>
<td>6A3-10</td>
</tr>
<tr>
<td>Block</td>
<td>6A3-10</td>
</tr>
<tr>
<td>Piston and Connecting Rod Assembly</td>
<td>6A3-10</td>
</tr>
<tr>
<td>Intake and Exhaust Manifolds</td>
<td>6A3-11</td>
</tr>
<tr>
<td>Camshaft</td>
<td>6A3-11</td>
</tr>
<tr>
<td>Camshaft Bearings</td>
<td>6A3-11</td>
</tr>
<tr>
<td>Timing Chain and Sprockets</td>
<td>6A3-11</td>
</tr>
<tr>
<td>Front Cover</td>
<td>6A3-12</td>
</tr>
<tr>
<td>Water Pump</td>
<td>6A3-12</td>
</tr>
<tr>
<td>Oil Pan and Rocker Arm Covers</td>
<td>6A3-12</td>
</tr>
<tr>
<td>Oil Pump</td>
<td>6A3-12</td>
</tr>
<tr>
<td>Valve Train Components</td>
<td>6A3-13</td>
</tr>
<tr>
<td>Hydraulic Lifters</td>
<td>6A3-13</td>
</tr>
<tr>
<td>Cylinder Head</td>
<td>6A3-13</td>
</tr>
<tr>
<td>Thermostat and Water Outlet</td>
<td>6A3-16</td>
</tr>
<tr>
<td>Crankshaft and Bearings</td>
<td>6A3-16</td>
</tr>
<tr>
<td>Assembly of Engine</td>
<td>6A3-17</td>
</tr>
<tr>
<td>Prior to Assembly</td>
<td>6A3-17</td>
</tr>
<tr>
<td>Crankshaft and Main Bearing Installation</td>
<td>6A3-17</td>
</tr>
<tr>
<td>Rear Crankshaft Oil Seal Retainer Installation</td>
<td>6A3-17</td>
</tr>
<tr>
<td>Rear Crankshaft Oil Seal Installation</td>
<td>6A3-18</td>
</tr>
<tr>
<td>Camshaft, Timing Chain and Sprocket Installation</td>
<td>6A3-18</td>
</tr>
</tbody>
</table>
DESCRIPTION

GM 4.3L engines are 90-degree V6 type, overhead valve, water cooled, with cast iron block and heads.

The crankshaft is supported by four precision insert main bearings, with crankshaft thrust taken at the number four (rear) bearing.

The camshaft is supported by four plain type bearings and is chain driven. Motion from the camshaft is transmitted to the valves by hydraulic lifters, pushrods, and ball type rocker arms. The valve guides are integral in the cylinder head.

The connecting rods are forged steel, with precision insert type crankpin bearings. The piston pins are a press fit in the connecting rods.

The pistons are cast aluminum alloy. The piston pins are a floating fit in the piston.

For identification, refer to GENERAL INFORMATION (SEC. 0B).

ENGINE LUBRICATION

Lubrication schematics are shown in figures 1 and 2. The gear type oil pump is driven from the distributor shaft, which is gear driven from the camshaft. Oil is drawn into the oil pump through a pickup screen and pipe.

Pressurized oil is routed to the oil filter. In case of excessive oil pressure, a bypass valve is provided. Filtered oil flows into the main gallery and then to the camshaft and crankshaft bearings. The valve lifter oil gallery supplies oil to the valve lifters. Oil flows from the hydraulic lifters through the hollow pushrods to the rocker arms. Oil from the overhead drains back to the crankcase through oil drain holes.

The timing chain is drip fed from the front camshaft bearing. The pistons and piston pins are lubricated by oil splash.
Figure 1—Engine Lubrication Diagram
A. Regulator Valve (Shown in Open Position)
B. Suction
C. Oil Pressure Switch
D. Valve Lifter Gallery
E. Main Oil Gallery
F. Bypass Valve

Figure 2—Engine Lubrication Diagram
DISASSEMBLY

Cooling Fan
Distributor
Carburetor
TBI Unit

It is beyond the scope of this section to detail the many different accessory installations. Refer to the proper Truck Service Manual for this information.

Diagrams of emission and vacuum hose routings, wiring harness routing, accessory drive belt layout, etc., should be made before removing accessories.

CLEANING

Remove the engine accessories before cleaning, to provide better access to engine exterior surfaces. After removing the carburetor, TBI unit, distributor, fuel pump, etc., cover the openings with tape to prevent the entry of water, solvent and dirt.

Methods used to clean the engine will depend on the aids which are available. Steam cleaning, pressure washing, or solvent cleaning are some acceptable methods. Allow the engine to dry before beginning the work.

It is important that the engine be as clean as possible to prevent dirt from entering critical areas during disassembly.

DRAINING THE ENGINE

Remove or Disconnect
1. Oil pan plug and allow the oil pan to drain.
2. Oil filter.
3. Block drains and allow the coolant to drain.

Install or Connect
1. Oil pan plug and washer.
2. Block drain plugs.

Tighten
• Block drain plugs to 14 N·m (10 ft. lbs.).

EGR VALVE REMOVAL

Remove or Disconnect
1. Bolts.
2. EGR valve.

EXHAUST MANIFOLD REMOVAL

Remove or Disconnect
1. Exhaust manifold bolts, washers, and tab washers.
2. Heat shield (if equipped).
3. Exhaust manifold.
ROCKER ARM COVER REMOVAL

↔️ Remove or Disconnect (Figure 3)

1. Rocker arm cover bolts.
2. Rocker arm cover and gaskets.

INTAKE MANIFOLD REMOVAL

↔️ Remove or Disconnect

1. Intake manifold bolts.
2. Intake manifold and gaskets.

VALVE TRAIN COMPONENT REMOVAL

↔️ Remove or Disconnect (Figure 4)

1. Rocker arm nuts, balls, rocker arms, and pushrods.

❗️ Important

- Store used components in order so they can be reassembled in the same location.

2. Bolts (40).
3. Retainer (41) with restrictors (46).

- Remove the lifters one at a time and place them in an organizer rack. The lifters must be installed into the same bore from which they were removed.
CYLINDER HEAD REMOVAL

Remove or Disconnect

1. Spark plugs.
2. Cylinder head bolts.
3. Cylinder heads.
4. Head gaskets.

TORSIONAL DAMPER REMOVAL

Remove or Disconnect (Figure 5)

Tool Required:
J 23523-E, Torsional Damper Puller and Installer
1. Torsional damper bolt.
2. Torsional damper using J 23523-E.
3. Crankshaft key (if necessary).

OIL PAN REMOVAL

Remove or Disconnect (Figure 6)

1. Oil pan bolts, nuts, and reinforcements.
2. Oil pan and gasket.

OIL PUMP REMOVAL

Remove or Disconnect

1. Oil pump to main bearing cap bolt.
2. Oil pump.

FRONT COVER REMOVAL

Remove or Disconnect

1. Front cover bolts and reinforcements.
2. Front cover.
3. Front cover to block gasket.

CAMSHAFT REMOVAL

Remove or Disconnect (Figures 7 and 8)

1. Camshaft sprocket bolts.
2. Camshaft sprocket and timing chain. The sprocket is a light interference fit on the camshaft. Tap the sprocket on its lower edge to loosen it.
3. Screws (88) and thrust plate (87).

- Install two or three 5/16 inch bolts 100-125 mm (4-5 inches) long into the camshaft threaded holes. Use these bolts to handle the camshaft (figure 8).
- Pull the camshaft from the block. Use care to prevent damage to the camshaft bearings.
PISTON AND CONNECTING ROD REMOVAL

++ Remove or Disconnect (Figures 9 and 10)

Tool Required:
J 5239, Guide Set.

1. Ridge or deposits from the upper end of the cylinder bores.
 - Turn the crankshaft until the piston is at BDC.
 - Place a cloth on top of the piston.
 - Perform the cutting operation with a ridge reamer (figure 9).
 - Turn the crankshaft until the piston is at TDC.
 - Remove the cloth and cuttings.
 - Mark the cylinder number on all pistons, connecting rods, and caps. Starting at the front, the cylinders on the left bank are numbered 1-3-5 and the right bank is numbered 2-4-6.

2. Connecting rod cap. Check the connecting rod and cap for identification marks. Mark the parts if required. The connecting rod and cap must be kept together as mating parts.

3. Connecting rod and piston.
 - Attach J 5239 to the connecting rod bolts (figure 10).
 - Use the long guide rod of J 5239 to push the connecting rod and piston out of the bore.

Figure 7—Camshaft and Components

Figure 8—Replacing the Camshaft

Figure 9—Removing the Cylinder Ridge
4.3 LITER V-6 6A3-9

FLYWHEEL REMOVAL

Remove or Disconnect
1. Flywheel bolts.
2. Flywheel.

REAR CRANKSHAFT OIL SEAL REMOVAL

Remove or Disconnect

NOTICE: Care should be taken when removing the rear crankshaft oil seal so as not to nick the crankshaft sealing surface.

• Rear crankshaft oil seal. Insert a screwdriver into the notches provided in the seal retainer and pry the seal out (figure 11).

REAR CRANKSHAFT OIL SEAL RETAINER REMOVAL

Remove or Disconnect (Figure 12)
1. Screws (81).
2. Seal retainer (82).
3. Gasket (84).

Crankshaft Removal

Remove or Disconnect

• Check the main bearing clearance before removing the crankshaft. Refer to “Crankshaft and Main Bearing Installation” later in this section.

• The main bearings and rear oil seal can be replaced without removing the crankshaft as outlined later in this section.

1. Main bearing cap bolts.
2. Main bearing caps.
3. Crankshaft from the cylinder block.

• Lift the crankshaft straight up, taking care to avoid damage to the crankshaft journals and thrust flange surfaces.
MAIN BEARING REMOVAL
(WITHOUT REMOVING CRANKSHAFT)

Remove or Disconnect

Tool Required:
J 8080, Main Bearing Remover/Installer

1. **Main bearing caps.**
 - Check the main bearing caps for location markings. Mark the caps if necessary. The caps must be returned to their original locations during assembly.
2. **Lower main bearing inserts from the main bearing caps.**
3. **Upper main bearing inserts.**
 - Insert J 8080 into the crankshaft oil hole (figure 13).
 - Rotate the crankshaft to turn the bearing insert out of the block.

CLEANING, INSPECTION, AND REPAIR

A solvent tank, large enough to hold the larger engine parts, will be needed along with various bristle brushes and a gasket scraper. A source of compressed air will be helpful in the cleaning operations.

Precision measuring tools will be required for the inspection procedure. These include: micrometers, cylinder bore gage, feeler gages, dial indicator set, etc. The inspection work, performed with the proper method and tools, is most important. The rebuilt engine cannot be expected to perform properly if parts worn beyond acceptable limits are reused.

BLOCK

Clean
1. Block in solvent.
2. Block gasket surfaces.
3. Cylinder bores.
4. Oil galleries and passages.
5. Scale deposits from the coolant passages.

Inspect
1. All expansion plugs for lack of fit or leakage.
2. Valve lifter bores for deep scratches and varnish deposits.
3. Block for cracks.
 - Cylinder walls.
 - Coolant jackets.
 - Main bearing webs.
 - Engine mount bosses.
4. Main bearing bores and main bearing caps.
 - All main bearing bores should be rounded and uniform in ID at all bearing supports.
 - The area where the main bearing inserts contact the main bearing bore should be smooth.

— If a main bearing cap is damaged and requires replacement, replace it.
5. Head gasket surface for flatness. Use a straightedge and feeler gage. Minor irregularities may be carefully machined. If more than 0.25 mm (0.010-inch) must be removed, replace the block.
6. Oil pan rail and timing cover attaching area for nicks. Minor irregularities may be cleaned up with a flat file.

CYLINDER BORE

Inspect
- Cylinder bores for scoring or other damage.

Measure
- Cylinder bore taper and out-of-round. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

Cylinder Bore Reconditioning
Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

PISTON AND CONNECTING ROD ASSEMBLY

Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) and perform the following:

Disassemble
- Components as required.

Clean
- Components as outlined.

Inspect
- Components as outlined.
Measure
- Piston pin diameter and clearance.
- Piston to bore clearance, and fit pistons as outlined.

Assemble
- Components as outlined.

Important
- Each connecting rod and bearing cap should be marked, beginning at the front of the engine. Cylinders 1, 3 and 5 are at the left bank, and 2, 4 and 6 are the right bank. The numbers on the connecting rod and bearing cap must be on the same side when installed in the cylinder bore. If a connecting rod is ever transposed from block or cylinder to another, new connecting rod bearings should be fitted and the connecting rod should be numbered to correspond with the new cylinder number.

Inspect
- Ring end gap and ring clearance.
- Ring fit.

INTAKE AND EXHAUST MANIFOLDS

Clean
- Old pieces of gasket from the gasket surfaces.
- Excessive carbon build-up in the exhaust passages of the intake manifold.
- Scale and deposits from the coolant passages of the intake manifold.
- EGR passage of excessive carbon deposits.

Inspect (Figure 14)
- Manifolds for cracks, broken flanges, and gasket surface damage.

CAMSHAFT

Important
- Whenever the camshaft needs to be replaced, a new set of lifters must also be installed.

Inspect
- Camshaft lobes and journals for scratches, pitting, scoring, and wear.

Measure
- Camshaft journal diameter (Figure 15). The proper diameter is listed in “Specifications.”

CAMSHAFT BEARINGS
Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) for replacement procedures.

TIMING CHAIN AND SPROCKETS

Inspect
- Sprockets for chipped teeth and wear.
- Timing chain for damage.
- It should be noted that excessively worn sprockets will rapidly wear a new chain. Likewise, an excessively worn chain will rapidly wear a new set of sprockets.

CRANKSHAFT SPROCKET REPLACEMENT

Remove or Disconnect (Figure 16)
Tool Required:
- J 5825-A Crankshaft Sprocket Puller
 1. Crankshaft sprocket using J 5825-A.
 2. Key (if necessary).
Install or Connect

Tool Required:
- J 5590, Crankshaft Sprocket Installer
- New seal so that the open end of the seal is toward the inside of the cover.
 - Drive the seal into position with J 35468.
 - Support the cover at the seal area.
- Lubricate the seal with engine oil before installing the torsional damper.

WATER PUMP

Clean
- Old gasket from the gasket surface.

Important
- Do not immerse the pump in solvent. The solvent may enter the pump’s permanently lubricated bearings, dissolve the bearings; lubricant supply, and cause premature bearing failure.

Inspect
- Water pump shaft for roughness and end play. If the shaft does not turn smoothly, or if there is excessive end play, replace the water pump.
- Water pump body at the drain hole. If there is evidence of coolant leakage, the water pump shaft seal is leaking and the water pump should be replaced.

OIL PUMP

Clean
- Parts in solvent. Remove all sludge and varnish.
- Old gaskets from the gasket surfaces.

Inspect
- Gasket flanges for bending or damage.
- Rubber grommets and parts on the rocker arm cover for deterioration.
- Oil pan for rock damage or cracks.
- Oil pan baffle for lack of fit.
- Drain plug threads for stripping.

OIL PAN AND ROCKER ARM COVERS

Clean
- Old gasket from the gasket surfaces.

Inspect
- Front cover for damage, dents, or cracks.
- Rubber grommets and parts on the rocker arm cover for deterioration.
- Oil pan for rock damage or cracks.
- Oil pan baffle for lack of fit.
- Drain plug threads for stripping.

FRONT COVER

Clean
- Old gasket from the gasket surfaces.

Inspect
- Front cover for damage, dents, or cracks.

Remove or Disconnect
- Oil seal from the front cover.
 - Pry the seal out with a large screw driver.
 - Be careful not to distort the front cover.

Install or Connect (Figure 16)

Tool Required:
- J 5590, Crankshaft Sprocket Installer
- 1. Key (if removed).

Figure 16—Replacing the Crankshaft Sprocket
Figure 17—Oil Pump Components

- The pickup pipe is a press fit in the pump body.
- Do not try to remove the screen from the pipe. The pickup screen and pipe is serviced as an assembly only.

Clean
- All parts in clean solvent and blow dry with compressed air.

Inspect (Figure 17)
- Pump body (2) and cover (5) for cracks or other damage.
- Gears (3 and 4) for wear.
- Drive gear and shaft (3) for lack of fit in the pump body (2).
- Inside of the cover (5) for wear that would permit oil to leak past the ends of the gears. The pump gears, cover, and body are not serviced separately. If the parts are damaged or worn, replace the entire oil pump assembly.
- Pickup screen and pipe (10) for damage to the screen, pipe or relief grommet.
- Pressure relief valve (6) for fit. The regulator valve should slide freely in its bore without sticking or binding.

Install or Connect (Figure 17)

Tool Required:
- J 21882, Pickup Tube and Screen Installer

1. Pressure regulator valve.
2. Spring.
3. Spring retaining pin.
4. Drive gear and shaft.
5. Idler gear.
6. Index the marks made during disassembly.
7. Cover and screws.

Tighten
- Screws to 5.0 N-m (84 in. lbs.).
- Turn the drive shaft by hand to check for smooth operation.

NOTICE: Be careful of twisting, shearing or collapsing the pipe while installing the pump.

7. Pickup screen and pipe (if removed) (figure 18).
- If the pickup screen and pipe assembly was removed, it should be replaced with a new part. Loss of press fit condition could result in an air leak and loss of oil pressure.
- Mount the oil pump in a soft jawed vise.
- Apply sealer to the end of the pipe.
- Tap the pickup screen and pipe into place, using J 21882 and a hammer.
- The pump screen must be parallel with the bottom of the oil pan when installed.

8. Oil pump drive shaft and connector (1).

VALVE TRAIN COMPONENTS

PUSHRODS, ROCKER ARMS, BALLS, AND NUTS

Clean
- Parts in solvent. Blow dry with compressed air.
- Make sure the oil passages in the pushrods are clear.

Inspect
- Rocker arms and balls at their mating surfaces. These surfaces should be smooth and free from scoring or other damage.
- Rocker arm areas which contact the valve stems and the sockets which contact the pushrods. These areas should be smooth and free of damage and wear.
- Rocker arm nuts.
- Pushrods for bending. Roll the pushrod on a flat surface to determine if it is bent. Replace if necessary.
- Pushrod ends for scoring or roughness.

HYDRAULIC LIFTERS
Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

CYLINDER HEAD

Remove or Disconnect (Figures 19 and 20)

Tool Required:
- J 8062, Valve Spring Compressor

1. Valve keepers (20).
- Compress the springs with J 8062 (figure 20).
- Remove the keepers.
- Remove J 8062.
2. Cap (21), shield (22), seal (24), and damper (25), and spring (26) (intake valve).
3. Rotator (28), shield (22), seal (24), and damper (25), and spring (26) (exhaust valve).
4. O-ring seals (23).
5. Valves (27 and 29).
- Place the valves in a rack so they can be returned to their original position at assembly.
CLeaning and Inspection of Components

Refer to General Engine Mechanical (Sec. 6A) and perform the following.

Clean
- Components as outlined.

Inspect
- Components as outlined.

Measure
- Valve stem clearance.
- Valve spring tension and free length.
Other information outlined includes:
- Valve and seat grinding.
- Valve guide reaming.

Rocker Arm Stud Replacement

++ Remove or Disconnect (Figure 21)

Tool Required:
J 5802-01, Rocker Arm Stud Remover

Figure 18—Installing the Oil Pump Screen

Figure 19—Valves and Components

Figure 20—Compressing the Valve Springs

Figure 21—Removing the Rocker Arm Stud
Installing the Rocker Arm Stud

- Rocker arm stud.
 - Place J 5802-01 over the rocker arm stud.
 - Install a nut and flat washer.
 - Turn the nut to remove the stud.

Install or Connect (Figure 22)

Tools Required:
- J 5715, Reamer (0.003-inch oversize)
- J 6036, Reamer (0.013-inch oversize)
- J 6880, Rocker Arm Stud Installer

NOTICE: Do not attempt to install an oversize rocker arm stud without reaming the stud hole as this could damage the cylinder head.

- Ream the hole to the proper size for the replacement oversize rocker arm stud. Use J 5715 for 0.003-inch oversize studs; J 6036 for 0.013-inch oversize stud (figure 23).
- Coat lower end (press-fit area) of rocker arm stud with hypoid axle lubricant.
- Rocker arm stud. Use J 6880 (figure 22). Stud is installed to proper depth when the tool bottoms on the cylinder head.

ASSEMBLY

Install or Connect (Figures 19, 20, and 24)

Tools Required:
- J 8062, Valve Spring Compressor
- J 23738-A, Vacuum Pump

Figure 23—Reaming the Rocker Arm Stud Bore

1. Valves (27 and 29).
 - Lubricate the valve stems with engine oil.
 - Insert the valves into the proper seats.
2. Seal (24) (intake valve only).
 - Install the seal over the valve stem and seat it against the head.
3. Springs and dampers.
4. Shields (22).
5. Cap (21) or rotator (28).
6. O-ring seals (23) and valve keepers (20).

Figure 24—Checking the Valve Seals
• Compress the valve spring using J 8062 (figure 20). Compress the spring enough so the lower valve stem groove can be seen clearly.
• Push a new O-ring seal (23) onto the valve stem. The seal is to be installed on the stem's lower groove. Make sure the seal is flat and not twisted.
• Apply a small amount of grease to the area of the upper valve stem groove. Assemble the two valve keepers using the grease to hold the keys in place. Make sure the keepers seat properly in the groove.
• Release the compressor tool. Make sure the valve keepers stay in place.
• Repeat the preceding steps on the remaining valves.
• Check each O-ring seal for leakage (figure 24).
 • Place the suction cup supplied with J 23738-A over the shield.
 • Connect J 23738-A to the suction cup and apply a vacuum. Watch the vacuum pump gage. No air should be able to leak past the seal. If the seal will not hold a vacuum, it may have been damaged or improperly installed.

Measure
• Valve spring installed height of each spring as follows.
 1. Use a narrow thin scale. A cutaway scale may be helpful.
 2. Measure from the top of the shim or the spring to the top of the shield.
 3. If this measurement exceeds the figure given in “Specifications,” install valve spring seat shims approximately 1.6 mm (\(\frac{1}{16}\)-inch) thick (between the spring and cylinder head). NEVER shim the spring so as to give an installed height under the specified figure.

THERMOSTAT AND WATER OUTLET

Remove or Disconnect
1. Bolts.
2. Water outlet.
4. Thermostat.

Inspect
• Water outlet for cracks.

Install or Connect
1. Thermostat.
2. New gasket.
3. Water outlet.
4. Bolts.

Tighten
• Bolts to 28 N·m (21 ft. lbs.).

CRANKSHAFT AND BEARINGS

Clean
• Crankshaft with solvent.
 — Do not scratch the bearing journals.
 — Blow all sludge from the oil passages with compressed air.
• Main bearing inserts. Wipe free of oil with a soft cloth.

Inspect
• Crankshaft for cracks. Use the magnafux method, if available.
• Crankpins, main bearing journals and thrust surfaces for scoring, nicks, or damage caused by lack of lubrication.
• Main bearing inserts for scoring or other damage. In general, the lower inserts (except the #1 bearing), show greater wear and the most distress from fatigue. If, upon inspection, the lower insert is suitable for use, it can be assumed that the upper insert is also satisfactory. If the lower insert shows evidence of wear or damage, both the upper and lower inserts must be replaced.

Measure
• Main bearing and connecting rod journal diameters (figure 25). Compare with “Specifications.” Grind or replace the crankshaft if necessary.
• Main bearing and connecting rod journals for taper and out-of-round (figure 25). If the journals are tapered more than 0.001-inch or out-of-round more than 0.002-inch, grind or replace the crankshaft.
• Crankshaft run-out.
 • Mount the crankshaft in V-blocks or between centers.
 • Use a dial indicator.
 • If the main journals are misaligned, the crankshaft is bent and must be replaced, along with the main bearing.
ASSEMBLY OF ENGINE

PRIOR TO ASSEMBLY

The importance of cleanliness during the assembly procedure cannot be overstressed. Dirt will cause premature wear of the rebuilt engine.

Lubricate all moving parts lightly with engine oil or engine assembly lubricant (unless specified otherwise) during assembly. This will provide initial lubrication when the engine is started.

CRANKSHAFT AND MAIN BEARING INSTALLATION

Main bearings are of the precision insert type and do not use shims for adjustment. If clearances are excessive, a new bearing plus both upper and lower inserts will be required. Service bearings are available in standard size and 0.001-inch, 0.002-inch, 0.009-inch, 0.010-inch, and 0.020-inch undersize.

Selective fitting of both rod and main bearing inserts is necessary in production to obtain close tolerances. For this reason you may find one half of a standard insert with one half of a 0.001-inch undersize insert which will decrease the clearance 0.0005-inch from using a full standard bearing.

Some engines may have rear main bearings that are 0.008-inch wider than standard across the thrust faces.

- The crankshaft on these engines can be identified by ".008" stamped on the rear counterweight.
- If the rear main bearings are replaced, they must have the proper distance between thrust faces to obtain proper crankshaft end play.

Install or Connect

1. Upper main bearing inserts to the block

Important
- If any undersized bearings are used, make sure they are fitted to the proper journals.

2. Crankshaft.

3. Lower main bearing inserts to the main bearing caps.

Measure
- Main bearing clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).
- Apply engine oil to the main bearing inserts.

4. Main bearing caps (except rear cap) and bolts to the block.

Tighten
- Main bearing cap bolts to 100 N·m (75 ft. lbs.).

5. Rear main bearing cap.

- Apply engine oil to the bearing inserts.

6. Rear main bearing cap bolts.

Tighten
- Bolts to 14 N·m (10 ft. lbs.).

REAR CRANKSHAFT OIL SEAL RETAINER INSTALLATION

Clean
- Gasket surfaces on the block and seal retainer.

Install or Connect (Figure 27)

1. New gasket (84) to the block.

- It is not necessary to use sealant to hold the gasket in place.
REAR CRANKSHAFT OIL SEAL INSTALLATION

Install or Connect (Figure 28)
Tool Required:
J 35621 Seal Installer
- Rear crankshaft oil seal.
 - Lubricate the inner and outer diameter of the seal with engine oil.
 - Install the seal on J 35621.
 - Position J 35621 against the crankshaft. Thread the attaching screws into the tapped holes in the crankshaft.

CAMSHAFT, TIMING CHAIN AND SPROCKET INSTALLATION

Install or Connect (Figures 29, 30, and 31)
- Coat the camshaft lobes and journals with a high quality engine oil supplement (GM Engine Oil Supplement or equivalent).
 1. Two or three 5/16-18 bolts 100-125 mm (4-5 inches) long into the camshaft threaded holes. Use these bolts to handle the camshaft.
 2. Camshaft to the engine (figure 30). Handle the camshaft carefully to prevent damage to the camshaft bearings.
 3. Thrust plate (87) and screws (88).

FRONT COVER INSTALLATION

Install or Connect
1. Front cover gasket to the front cover.
 - Use gasket cement to hold the gasket in place.
2. Front cover to the engine.
3. Front cover bolts and reinforcements.

TORSIONAL DAMPER INSTALLATION

Install or Connect (Figure 32)
Tool Required:
J 23523-E, Torsional Damper Puller and Installer
1. Crankshaft key (if removed).
NOTICE: The inertia weight section of the torsional damper is assembled to the hub with rubber type material. The correct installation procedures (with the proper tool) must be followed or movement of the inertia weight section of the hub will destroy the tuning of the torsional damper.

2. Stud (item A, figure 32) to the crankshaft. Thread the stud fully into the tapped hole in the crankshaft.
Figure 33—Piston Ring End Gap Locations

3. Torsional damper over the end of the stud. Align the keyway in the torsional damper shaft with the crankshaft key.

4. Bearing, washer and nut (figure 28).
 - Turn the nut to pull the vibration damper into place.
 - Remove the tool.

5. Torsional damper bolt and washer.

 Tighten
 - Bolt to 95 N·m (70 ft. lbs.).

PISTON AND CONNECTING ROD INSTALLATION

CONNECTING ROD BEARING SELECTION

Connecting rod bearings are of the precision insert type and do not use shims for adjustment. DO NOT FILE RODS OR ROD CAPS. If clearances are excessive install a new bearing. Service bearings are available in standard size and 0.0014 mm undersize for use with new and used standard size crankshafts.

Install or Connect (Figures 33 through 35)

Tools Required:
J 5239, Connecting Rod Guide Set
J 8037, Ring Compressor
- Lubricate the cylinder walls lightly with engine oil.
- Make sure the piston is installed in the matching cylinder.

1. Connecting rod bearings.
 - Be certain that the bearing inserts are of the proper size.
 - Install the bearing inserts in the connecting rod and connecting rod cap.
 - Lubricate the bearings with engine oil.

2. Piston and connecting rod to the proper bore.
 - With the connecting rod cap removed, install J 5239 onto the connecting rod studs.
• Locate the piston ring end gaps as shown in figure 33. Lubricate the piston and rings with engine oil.
• Without disturbing the ring end gap location, install J 8037 over the piston (figure 34).
• The piston must be installed so that the notch in the piston faces the front of the engine (figure 33).
• Place the piston in its matching bore. The connecting rod bearing tang slots must be on the side opposite the camshaft. Using light blows with a hammer handle, tap the piston down into its bore (figure 34). At the same time, from beneath the vehicle guide the connecting rod to the crankpin with J 5239 (figure 35). Hold the ring compressor against the block until all rings have entered the cylinder bore.
• Remove J 5239 from the connecting rod bolts.

Important
• Each connecting rod and bearing cap should be marked, beginning at the front of the engine. Cylinders 1, 3 and 5 are at the left bank and 2, 4 and 6 are the right bank. The numbers on the connecting rod and bearing cap must be on the same side when installed in the cylinder bore. If a connecting rod is ever transposed from one block or cylinder to another, new connecting rod bearings should be fitted and the connecting rod should be numbered to correspond with the new cylinder number.

3. Connecting rod cap with bearing insert.

Measure
• Connecting rod bearing clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

Tighten
• Connecting rod cap nuts to 60 N·m (45 ft. lbs.).

Measure
• Connecting rod side clearance (figure 36). The proper clearance is 0.006 to 0.014-inch.

OIL PUMP INSTALLATION

Install or Connect (Figure 37)
• Align the slot in the oil pump shaft with the tang on the distributor shaft.
• The oil pump should slide easily into place.
• No gasket is used.

2. Oil pump to main bearing cap bolt.

Tighten
• Oil pump to main bearing cap bolt to 90 N·m (65 ft. lbs.).

CYLINDER HEAD INSTALLATION

1. Clean
• Gasket surfaces on the block and cylinder head.

Install or Connect (Figure 38)

1. Head gasket.
• If a steel gasket is used, coat both sides of the gasket with sealer. Spread the sealer thin and even.
• Do not use sealer on composition steel-asbestos gaskets.
• Place the gasket over the block dowel pins with the head up.

2. Cylinder head. Carefully guide the cylinder head into place over the dowel pins and gasket.

3. Cylinder head bolts. Coat threads of the cylinder head bolts with sealing compound (GM part number 1052080 or equivalent) and install finger-tight.

Tighten
• Cylinder head bolts, a little at a time, using the sequence shown in figure 38. The proper torque is 90 N·m (65 ft. lbs.).
Figure 37—Oil Pan Installation

- A: Forward
- B: Sealant
- 70: Gasket
- 71: Reinforcement
4.3 LITER V-6 6A3-23

Figure 38—Cylinder Head Bolt Tightening Sequence

VALVE TRAIN COMPONENT INSTALLATION

Important
- Replace all hydraulic lifters if a new camshaft was installed.

Install or Connect (Figure 39)
- Lubricate the hydraulic lifter bodies and feet with Engine Oil Supplement (GM Part No. 1051396 or equivalent).
 1. Hydraulic lifters to the block.
 2. Restrictors (46) and retainer (41) with bolts (40).
- **Tighten**
 - Bolts (40) to 16.4 N·m (145 in. lbs.).
 3. Pushrods.
 - Seat the pushrods into the socket in the hydraulic lifters.
 - Coat the mating surfaces of the rocker arms and balls with "Molykote" or equivalent.
 4. Rocker arms.
 5. Balls.

VALVE ADJUSTMENT

1. Crank the engine until the mark on the torsional damper lines up with the “O” mark on the timing tab and the engine in the number one firing position. This may be determined by placing fingers on the number one valve as the mark on the damper comes near the "O" mark on the timing tab. If the rocker arms are not moving, the engine is in the number one firing position. If the rocker arms move as the mark comes up to the timing tab, the engine is in the number four firing position and should be turned over one more time to reach the number one position.
2. With the engine in the number one firing position as determined above, the following valves may be adjusted:
 - Exhaust: 1, 5, 6.
 - Intake: 1, 2, 3.

Even numbered cylinders are in the right bank; odd numbered cylinders are in the left bank, when viewed from the rear of the engine.
3. Back out the adjusting nut until lash is felt at the pushrod then turn in the adjusting nut until all lash is removed. This can be determined by rotating the pushrod while turning the adjusting nut. When the play has been removed, turn the adjusting nut in one full additional turn (to center the lifter plunger).
4. Crank the engine one revolution until the timing tab “O” mark and torsional damper mark are again in alignment. This is the number four firing position. The following valves may be adjusted:
 - Exhaust: 2, 3, 4.
 - Intake: 4, 5, 6.

INTAKE MANIFOLD INSTALLATION

Install or Connect (Figures 40 and 41)

1. Gaskets to the cylinder head with the port blocking plates facing the rear of the engine.
2. RTV to the front and rear sealing surfaces on the block. Apply a 5 mm (3/16-inch) bead of RTV (GM Part No. 1052366 or equivalent) to the front and rear of the block as shown in figure 40. Extend the bead 13 mm (1/2-inch) up each cylinder head to seal and retain the gaskets.
3. Intake manifold to the engine.
4. Intake manifold bolts.
- **Tighten**
 - Bolts to 48 N·m (35 ft. lbs.) using the tightening sequence shown in figure 41.

ROCKER ARM COVER INSTALLATION

Install or Connect (Figure 42)

1. Rocker arm cover and new gasket.
2. Rocker arm cover bolts and washers.
- **Tighten**
 - Rocker arm cover bolts to 10.2 N·m (90 in. lbs.).

EXHAUST MANIFOLD INSTALLATION

Install or Connect (Figure 43)

1. Exhaust manifold.
2. Heat shield (if removed).
3. Exhaust manifold bolts, washers, and tab washers.
- **Tighten**
 - Bolts on center exhaust tube to 36 N·m (26 ft. lbs.).
FLYWHEEL INSTALLATION

- Install or Connect
 1. Flywheel.
 2. Flywheel bolts.

- Tighten
 - Bolts to 100 N·m (75 ft. lbs.).

ENGINE ACCESSORY INSTALLATION

Install the engine accessories (distributor, carburetor, oil filter, generator, etc.) as directed in the proper Truck Service Manual. Connect all vacuum hoses and electrical equipment the same way as removed.
ENGINE SET-UP AND TESTING

1. After overhaul, the engine should be tested before installation in the vehicle. If a suitable test stand is not available, the following procedure can be used after the engine is installed in the vehicle.

2. Fill the crankcase with the proper quantity and grade of oil.

--- Important ---
- If a new camshaft or hydraulic lifters were

--- Initial Tightening Sequence ---

--- Final Tightening Sequence ---

--- Figure 40 — Intake Manifold Installation ---

--- Figure 41 — Intake Manifold Bolt Tightening Sequence ---

--- Figure 42 — Rocker Arm Cover Installation ---
6A3-26 4.3 LITER V-6

60. Heat Shield
61. Washer
62. Tab Washer
63. Bolt/Stud

Figure 43—Exhaust Manifold Components

installed, add Engine Oil Supplement (GM part no. 1051396) or equivalent to the engine oil.

3. Fill the cooling system with the proper coolant.
4. With the ignition "OFF," or disconnected, crank the engine several times. Listen for any unusual noises or evidence that any parts are binding.
5. Start the engine and listen for unusual noises.
6. Run the engine at about 1000 rpm until the engine is at operating temperature.
7. Listen for improperly adjusted valves or sticking lifters, and other unusual noises.
8. Check for oil and coolant leaks while the engine is running.
9. Using the proper Truck Service Manual or Emission Control Label for specifications, adjust the ignition timing, idle rpm and mixture, and governor settings, if so equipped.
SPECIFICATIONS

ENGINE SPECIFICATIONS

All Specifications are in INCHES unless otherwise noted.

<table>
<thead>
<tr>
<th>GENERAL DATA:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>V6</td>
</tr>
<tr>
<td>Displacement</td>
<td>4.3L (262 Cu. In.)</td>
</tr>
<tr>
<td>RPO</td>
<td>LB4</td>
</tr>
<tr>
<td>Bore</td>
<td>4.00</td>
</tr>
<tr>
<td>Stroke</td>
<td>3.48</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>9.3:1</td>
</tr>
<tr>
<td>Firing Order</td>
<td>1 - 6 - 5 - 4 - 3 - 2</td>
</tr>
<tr>
<td>Oil Pressure (Minimum)</td>
<td>6 psi @ 1000 RPM; 18 psi @ 2000 RPM; 24 psi @ 4000 RPM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CYLINDER BORE:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>3.9995 - 4.0025</td>
</tr>
<tr>
<td>Out Of Round</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Service</td>
<td>0.002 (Maximum)</td>
</tr>
<tr>
<td>Taper</td>
<td>0.0005 (Maximum)</td>
</tr>
<tr>
<td>Production Thrust Side</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Relief Side</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Service</td>
<td>0.001 (Maximum)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PISTON:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearance</td>
<td>0.0007:0.0017</td>
</tr>
<tr>
<td>Production</td>
<td>0.0027 (Maximum)</td>
</tr>
<tr>
<td>Service Limit</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PISTON RING:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPRESSION Groove</td>
<td>0.0012:0.0032</td>
</tr>
<tr>
<td>Clearance Production</td>
<td></td>
</tr>
<tr>
<td>Service Limit</td>
<td></td>
</tr>
<tr>
<td>Top 2nd</td>
<td>Hi Limit Production + 0.001</td>
</tr>
<tr>
<td>Gap</td>
<td>0.010:0.020</td>
</tr>
<tr>
<td>Production Top</td>
<td></td>
</tr>
<tr>
<td>Service Limit</td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td>Hi Limit Production + 0.010</td>
</tr>
<tr>
<td>OIL Groove</td>
<td>0.002:0.007</td>
</tr>
<tr>
<td>Clearance Service Limit</td>
<td></td>
</tr>
<tr>
<td>Hi Limit Production + 0.001</td>
<td></td>
</tr>
<tr>
<td>Gap</td>
<td>0.015:0.055</td>
</tr>
<tr>
<td>Production Service Limit</td>
<td></td>
</tr>
<tr>
<td>Hi Production + 0.010</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PISTON PIN:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>0.9270:0.09273</td>
</tr>
<tr>
<td>Clearance</td>
<td>0.0002:0.0007</td>
</tr>
<tr>
<td>In Piston Service Limit</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Fit In Rod</td>
<td>0.0008:0.0016 Interference</td>
</tr>
</tbody>
</table>
SPECIFICATIONS

ENGINE SPECIFICATIONS (CONT.)

All specifications are in INCHES unless otherwise noted.

<table>
<thead>
<tr>
<th>DISPLACEMENT:</th>
<th>4.3L</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRANKSHAFT:</td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td></td>
</tr>
<tr>
<td>#1</td>
<td>2.4484-2.4493</td>
</tr>
<tr>
<td>#2, #3</td>
<td>2.4481-2.4490</td>
</tr>
<tr>
<td>#4</td>
<td>2.4479-2.4488</td>
</tr>
<tr>
<td>Taper</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td></td>
</tr>
<tr>
<td>#1</td>
<td>0.0008-0.0020</td>
</tr>
<tr>
<td>#2, #3</td>
<td>0.0011-0.0023</td>
</tr>
<tr>
<td>#4</td>
<td>0.0016-0.0032</td>
</tr>
<tr>
<td>Service Limit</td>
<td></td>
</tr>
<tr>
<td>#1</td>
<td>0.0010-0.0015</td>
</tr>
<tr>
<td>#2, #3</td>
<td>0.0010-0.0025</td>
</tr>
<tr>
<td>#4</td>
<td>0.0025-0.0035</td>
</tr>
<tr>
<td>Main Bearing Clearance</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td></td>
</tr>
<tr>
<td>#1</td>
<td>0.0008-0.0020</td>
</tr>
<tr>
<td>#2, #3</td>
<td>0.0011-0.0023</td>
</tr>
<tr>
<td>#4</td>
<td>0.0016-0.0032</td>
</tr>
<tr>
<td>Service Limit</td>
<td></td>
</tr>
<tr>
<td>#1</td>
<td>0.0010-0.0015</td>
</tr>
<tr>
<td>#2, #3</td>
<td>0.0010-0.0025</td>
</tr>
<tr>
<td>#4</td>
<td>0.0025-0.0035</td>
</tr>
<tr>
<td>Crankshaft End Play</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td></td>
</tr>
<tr>
<td>0.002-0.006</td>
<td></td>
</tr>
<tr>
<td>Service Limit</td>
<td></td>
</tr>
<tr>
<td>0.006-0.014</td>
<td></td>
</tr>
<tr>
<td>CAMSHTAFT:</td>
<td></td>
</tr>
<tr>
<td>Lobe</td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>0.357</td>
</tr>
<tr>
<td>Lift ± 0.002</td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td>0.390</td>
</tr>
<tr>
<td>Journal Diameter</td>
<td></td>
</tr>
<tr>
<td>1.8682-1.8692</td>
<td></td>
</tr>
<tr>
<td>Camshaft End Play</td>
<td></td>
</tr>
<tr>
<td>0.004-0.012</td>
<td></td>
</tr>
<tr>
<td>VALVE SYSTEM:</td>
<td></td>
</tr>
<tr>
<td>Lifter</td>
<td></td>
</tr>
<tr>
<td>Hydraulic</td>
<td></td>
</tr>
<tr>
<td>Rocker Arm Ratio</td>
<td></td>
</tr>
<tr>
<td>1.50:1</td>
<td></td>
</tr>
<tr>
<td>Valve Lash</td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td></td>
</tr>
<tr>
<td>One Turn Down From Zero Lash</td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td></td>
</tr>
<tr>
<td>Face Angle (Intake & Exhaust)</td>
<td>45°</td>
</tr>
<tr>
<td>Seat Angle (Intake & Exhaust)</td>
<td>46°</td>
</tr>
<tr>
<td>Seat Runout (Intake & Exhaust)</td>
<td>0.002 (Maximum)</td>
</tr>
<tr>
<td>Seat Width</td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>1/32-1/16</td>
</tr>
<tr>
<td>Exhaust</td>
<td>1/16-3/32</td>
</tr>
<tr>
<td>Stem Clearance</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>0.0010-0.0027</td>
</tr>
<tr>
<td>Exhaust</td>
<td>0.0010-0.0027</td>
</tr>
<tr>
<td>Service</td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td></td>
</tr>
<tr>
<td>High Limit Production + 0.001</td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td></td>
</tr>
<tr>
<td>High Limit Production + 0.002</td>
<td></td>
</tr>
<tr>
<td>Valve Spring Pressure (Outer)</td>
<td></td>
</tr>
<tr>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>76-84 lbs. @ 1.70-in.</td>
<td></td>
</tr>
<tr>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>194-206 lbs. @ 1.25-in.</td>
<td></td>
</tr>
<tr>
<td>Free Length</td>
<td></td>
</tr>
<tr>
<td>2.03</td>
<td></td>
</tr>
<tr>
<td>Installed Height</td>
<td></td>
</tr>
<tr>
<td>± 1/32"</td>
<td></td>
</tr>
<tr>
<td>1 7/32</td>
<td></td>
</tr>
<tr>
<td>Valve Spring Damper</td>
<td></td>
</tr>
<tr>
<td>Free Length</td>
<td>1 86</td>
</tr>
<tr>
<td>Approx. # of Coils</td>
<td>4</td>
</tr>
</tbody>
</table>
SPECIFICATIONS (CONTINUED)

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>N·m</th>
<th>FT. LBS.</th>
<th>IN. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocker Arm Cover Bolts</td>
<td>10.2</td>
<td>—</td>
<td>90</td>
</tr>
<tr>
<td>Intake Manifold Bolts</td>
<td>48</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Exhaust Manifold Bolts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Center Two Bolts</td>
<td>36</td>
<td>26</td>
<td>—</td>
</tr>
<tr>
<td>- All Others</td>
<td>28</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Cylinder Head Bolts</td>
<td>90</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Torsoonal Damper Bolt</td>
<td>95</td>
<td>70</td>
<td>—</td>
</tr>
<tr>
<td>Front Cover Bolts</td>
<td>13.6</td>
<td>—</td>
<td>120</td>
</tr>
<tr>
<td>Oil Pan Nuts</td>
<td>22.6</td>
<td>—</td>
<td>200</td>
</tr>
<tr>
<td>Oil Pan Bolts</td>
<td>41.3</td>
<td>—</td>
<td>100</td>
</tr>
<tr>
<td>Oil Pump Bolt</td>
<td>90</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Rear Crankshaft Oil Seal Retainer Screws and Nuts</td>
<td>15.3</td>
<td>—</td>
<td>135</td>
</tr>
<tr>
<td>Camshaft Sprocket Bolts</td>
<td>28</td>
<td>21</td>
<td>—</td>
</tr>
<tr>
<td>Connecting Rod Cap Nuts</td>
<td>60</td>
<td>45</td>
<td>—</td>
</tr>
<tr>
<td>Oil Filter Adapter Bolts</td>
<td>20</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>Main Bearing Cap Bolts</td>
<td>110</td>
<td>80</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pump Cover Bolts</td>
<td>9.0</td>
<td>—</td>
<td>80</td>
</tr>
<tr>
<td>Flywheel Bolts</td>
<td>100</td>
<td>75</td>
<td>—</td>
</tr>
<tr>
<td>Spark Plugs</td>
<td>30</td>
<td>22</td>
<td>—</td>
</tr>
<tr>
<td>Water Outlet Bolts</td>
<td>28</td>
<td>21</td>
<td>—</td>
</tr>
<tr>
<td>Water Pump Bolts</td>
<td>40</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Flywheel Housing Bolts</td>
<td>44</td>
<td>32</td>
<td>—</td>
</tr>
<tr>
<td>Hydraulic Lifter Restrictor Retainer Bolts</td>
<td>16.4</td>
<td>—</td>
<td>145</td>
</tr>
<tr>
<td>Oil Pan Studs to Oil Seal Retainer or Crankcase</td>
<td>1.7</td>
<td>—</td>
<td>15</td>
</tr>
<tr>
<td>Camshaft Thrust Plate</td>
<td>11.9</td>
<td>—</td>
<td>105</td>
</tr>
</tbody>
</table>
1. Torsional Damper Remover and Installer
2. Valve Spring Compressor
3. Crankshaft Seal Installer
4. Main Bearing Replacer
5. Piston Ring Compressor
6. Guide Set
7. Vacuum Pump
8. Stud Remover
9. Reamer (0.003-inch oversize)
10. Reamer (0.013-inch oversize)
11. Stud Installer
12. Crankshaft Gear Puller
13. Crankshaft Gear Installer
14. Rear Crankshaft Seal Installer
SECTION 6A4
4.8 LITER L6
CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>6A4-2</td>
</tr>
<tr>
<td>Disassembly</td>
<td>6A4-4</td>
</tr>
<tr>
<td>Tools and Shop Equipment</td>
<td>6A4-4</td>
</tr>
<tr>
<td>Accessory Removal</td>
<td>6A4-4</td>
</tr>
<tr>
<td>Cleaning</td>
<td>6A4-4</td>
</tr>
<tr>
<td>Parts Identification</td>
<td>6A4-4</td>
</tr>
<tr>
<td>Draining the Engine</td>
<td>6A4-8</td>
</tr>
<tr>
<td>Air Manifold and Injection Tube Removal</td>
<td>6A4-8</td>
</tr>
<tr>
<td>Manifold Removal</td>
<td>6A4-8</td>
</tr>
<tr>
<td>Thermostat Housing Removal</td>
<td>6A4-9</td>
</tr>
<tr>
<td>Water Pump Removal</td>
<td>6A4-9</td>
</tr>
<tr>
<td>Valve Train Component Removal</td>
<td>6A4-10</td>
</tr>
<tr>
<td>Cylinder Head Removal</td>
<td>6A4-10</td>
</tr>
<tr>
<td>Torsional Damper Removal</td>
<td>6A4-10</td>
</tr>
<tr>
<td>Oil Pan Removal</td>
<td>6A4-10</td>
</tr>
<tr>
<td>Oil Pump Removal</td>
<td>6A4-10</td>
</tr>
<tr>
<td>Timing Gear Cover Removal</td>
<td>6A4-11</td>
</tr>
<tr>
<td>Piston and Connecting Rod Removal</td>
<td>6A4-11</td>
</tr>
<tr>
<td>Flywheel Removal</td>
<td>6A4-11</td>
</tr>
<tr>
<td>Crankshaft Removal</td>
<td>6A4-12</td>
</tr>
<tr>
<td>Crankshaft Rear Oil Seal Removal (Without Removing Crankshaft)</td>
<td>6A4-12</td>
</tr>
<tr>
<td>Main Bearing Removal (Without Removing Crankshaft)</td>
<td>6A4-12</td>
</tr>
<tr>
<td>Camshaft Removal</td>
<td>6A4-13</td>
</tr>
<tr>
<td>Cleaning, Inspection, and Repair</td>
<td>6A4-14</td>
</tr>
<tr>
<td>Block</td>
<td>6A4-14</td>
</tr>
<tr>
<td>Main Bearing Cap Replacement</td>
<td>6A4-14</td>
</tr>
<tr>
<td>Cylinder Bores</td>
<td>6A4-15</td>
</tr>
<tr>
<td>Piston and Connecting Rod Assemblies</td>
<td>6A4-15</td>
</tr>
<tr>
<td>Intake and Exhaust Manifolds</td>
<td>6A4-15</td>
</tr>
<tr>
<td>Camshaft</td>
<td>6A4-16</td>
</tr>
<tr>
<td>Camshaft Bearings</td>
<td>6A4-17</td>
</tr>
<tr>
<td>Timing Gear Cover</td>
<td>6A4-17</td>
</tr>
<tr>
<td>Water Pump</td>
<td>6A4-17</td>
</tr>
<tr>
<td>Oil Pan and Rocker Arm Cover</td>
<td>6A4-18</td>
</tr>
<tr>
<td>Oil Pump</td>
<td>6A4-18</td>
</tr>
<tr>
<td>Valve Train Components</td>
<td>6A4-19</td>
</tr>
<tr>
<td>Cylinder Head</td>
<td>6A4-19</td>
</tr>
<tr>
<td>Thermostat and Housing</td>
<td>6A4-21</td>
</tr>
<tr>
<td>Torsional Damper</td>
<td>6A4-22</td>
</tr>
<tr>
<td>Crankshaft and Bearings</td>
<td>6A4-22</td>
</tr>
<tr>
<td>Oil Filter Relief Valve Replacement</td>
<td>6A4-23</td>
</tr>
<tr>
<td>Assembly of Engine</td>
<td>6A4-23</td>
</tr>
<tr>
<td>Prior to Assembly</td>
<td>6A4-23</td>
</tr>
<tr>
<td>Crankshaft Rear Oil Seal Installation</td>
<td>6A4-23</td>
</tr>
<tr>
<td>Main Bearing Installation (With Crankshaft Installed)</td>
<td>6A4-25</td>
</tr>
<tr>
<td>Crankshaft and Main Bearing Installation</td>
<td>6A4-25</td>
</tr>
<tr>
<td>Camshaft Installation</td>
<td>6A4-26</td>
</tr>
<tr>
<td>Timing Gear Cover Installation</td>
<td>6A4-26</td>
</tr>
<tr>
<td>Torsional Damper Installation</td>
<td>6A4-27</td>
</tr>
<tr>
<td>Piston and Connecting Rod Installation</td>
<td>6A4-27</td>
</tr>
<tr>
<td>Oil Pump Installation</td>
<td>6A4-28</td>
</tr>
</tbody>
</table>
DESCRIPTION

The connecting rods are forged steel, with precision insert type crankpin bearings. The piston pins are a press fit in the connecting rods.

The pistons are case aluminum alloy. The piston pins are a floating fit in the pistons.

Lubrication schematics are shown in figures 1 and 2. The gear type oil pump is driven through an extension shaft from the distributor drive shaft, which is gear driven from the camshaft. Oil is drawn into the oil pump through a pickup screen and pipe (figure 2). Pressurized oil is routed to the oil filter. In case of excessive backpressure at the oil filter, a bypass valve is provided. This valve will allow oil flow to the main oil gallery at the right side of the block (figure 1). This gallery supplies oil to the camshaft bearings, hydraulic lifters, and main bearings. The connecting rods are supplied oil from the main bearings by means of drilled passages in the crankshaft. The valve train is supplied with oil by the hydraulic lifters. Oil is pumped from the lifters through the hollow pushrods to the rocker arms. Oil drains back to the crankcase through oil drain holes and the pushrod holes. The piston, piston pin, and timing gears are lubricated by oil splash.

For engine identification, refer to GENERAL INFORMATION (SEC. 6A).
Figure 2—Lubrication Diagram (Front View)

A. Oil Pressure Sending Unit
B. Distributor Shaft Oiling
C. Splash Oiling
D. Filter Bypass System
E. Full Flow Oil Filter
TOOLS AND SHOP EQUIPMENT

A clean, well lit work area should be available. Other necessary aids include: A suitable parts cleaning tank, compressed air supply, trays to keep parts and fasteners organized, and an adequate set of hand tools.

An approved engine repair stand will aid the work and help prevent personal injury or damage to engine compartments.

Special tools are illustrated throughout this section, and are listed at its end. These tools (or their equivalents) are specially designed to quickly and safely accomplish the operations for which they are intended. The use of these tools will also minimize possible damage to engine components.

Some precision measuring tools are required for inspection of certain critical components. Torque wrenches will be necessary for correct assembly of various parts.

ACCESSORY REMOVAL

This manual assumes that the engine accessories have been removed. These accessories may include one or more of the following:

- Hydraulic Pump
- Generator
- Distributor
- AIR Pump
- Cooling Fan
- Carburetor

It is beyond the score of this manual to detail the many different accessory installations. Refer to the proper Truck Service Manual for this information.

Diagrams of emission and vacuum hose routings, wiring harness routings, accessory drive belt layout, etc., should be made before removing accessories.

CLEANING

Remove the engine accessories before cleaning to provide better access to engine exterior surfaces. After removing the carburetor, distributor, fuel pump, oil filter, etc., cover the openings with tape to prevent the entry of water, solvent, and dirt.

Methods used to clean the engine will depend on the aids which are available. Steam cleaning, pressure washing, or solvent cleaning are some acceptable methods. Allow the engine to dry before beginning the work.

It is important that the engine be as clean as possible to prevent dirt from entering critical areas during disassembly.

PARTS IDENTIFICATION

Refer to figures 3 through 6.
Figure 4—Cylinder Head, Manifolds, and Components
Figure 5—Block and Components
Figure 6—Block and Components
DRAINING THE ENGINE

Remove or Disconnect (Figure 5)
- Oil pan drain plug (144). Allow the oil to drain.
- Oil filter (174).
- Block drain plug (131). Allow the coolant to drain.

Install or Connect (Figure 5)
- Oil pan drain plug (144) and washer (143).

Tighten
- Oil pan drain plug (144) to 24 N·m (18 ft. lbs.).
- Block drain plug (31).

Tighten
- Block drain plug (131) to 12.7 N·m (112 in. lbs.).

AIR MANIFOLD AND INJECTION TUBE REMOVAL

Remove or Disconnect (Figures 7 and 8)
1. Air manifold (182).
 - Unscrew the fittings.
 - Remove the air manifold.
2. Air injection tubes (183).
 - The air injection tubes are a push fit.
 - If the air injection tubes will not come out, they may be easier to remove after the manifolds (31 and 37) are removed, as described later.

MANIFOLD REMOVAL

The intake and exhaust manifolds are removed as an assembly. Instructions for separating and replacing the manifolds are outlined later in this section.

Remove or Disconnect (Figures 4, 9, and 10)
1. Heat stove (191) if used (figure 9).
 - Remove the bolt (190).
4.8 LITER L6 6A4-9

Figure 11—Thermostat Housing and Water Pump Installed

- Remove the heat stove (191).

2. PCV hose.

3. Bolts (35), nuts (30), washers (29) and clamps (34).

4. Intake manifold (31) and exhaust manifold (37) as an assembly.

5. Gasket (27).

THERMOSTAT HOUSING REMOVAL

Remove or Disconnect (Figures 4 and 11)

1. Bolts (51).

2. Thermostat housing (50).

3. Gasket (49).

WATER PUMP REMOVAL

Remove or Disconnect (Figures 5 and 11)

1. Bolts (170).

2. Water pump (171).

3. Gasket (169).

Figure 12—Valve Train Component Rack

VALVE TRAIN COMPONENT REMOVAL

Remove or Disconnect (Figures 3, 4, 12, 13, and 14)

Tools Required:

- J-3049 Valve Lifter Remover (Plier Type)
- J-9290-01 Valve Lifter Remover (Slide Hammer Type)

Figure 13—Removing the Valve Lifters
Figure 14—Removing the Valve Lifters

1. Rocker arm cover (7).
 - If the rocker arm cover adheres to the cylinder head (26), try to shear the gasket by bumping the end of the cover with a rubber mallet. If the cover will not come loose, carefully pry until loose. **DO NOT DISTORT THE SEALING FLANGE.**

2. Nuts (11), balls (12), rocker arms (13) and pushrods (20).
 - Every effort should be made to insure that these mating parts are installed in their original locations during assembly. A simple valve train component organizer rack can be made from a piece of wood, as shown in figure 12.

3. Bolts (178) and pushrod covers (179).

5. Hydraulic lifters (100).
 - Remove the lifters one at a time and place them in the organizer rack. The lifters must be installed in the same bore from which they were removed.
 - A stuck lifter can be removed using J-3049 (figure 13) or J-9290-01 (figure 14).

Figure 15—Removing the Torsional Damper

CYLINDER HEAD REMOVAL

鬣 Removes or Disconnect (Figure 4)

1. Bolts (21).
2. Cylinder head (26). Use care when handling the cylinder head to prevent damage to the gasket surfaces.
3. Gasket (33).

TORSIONAL DAMPER REMOVAL

鬣 Removes or Disconnect (Figures 5 and 15)

Tool Required:

J-23523-E Torsional Damper Remover/Installer

1. Bolt (160) and washers (159 and 161).

OIL PAN REMOVAL

鬣 Removes or Disconnect (Figure 5)

1. Bolts (145).
2. Oil pan (146).
3. Gaskets (142).
4. Front and rear oil pan seals (141 and 147).

OIL PUMP REMOVAL

鬣 Removes or Disconnect (Figure 5)

1. Bolt (164).
2. Front cover (157).
3. Gasket (166).
TIMING GEAR COVER REMOVAL

Remove or Disconnect (Figure 5)
1. Bolt (164).
2. Timing gear cover (157).
3. Gasket (166).

PISTON AND CONNECTING ROD REMOVAL

Remove or Disconnect (Figures 5, 16, and 17)

Tool Required:
J-5239 Connecting Rod Guide Set

1. Ridge (or deposits) at the top of the cylinder as follows:
 - Turn the crankshaft (154) until one piston (107) is at the bottom of its stroke. Place a soft cloth on top of the piston.

 - Using the manufacturer's directions, install a ridge reamer into the top of the cylinder (figure 16). Perform the cutting operation.
 - After the ridge and/or deposits are removed, remove the ridge reamer. Turn the crankshaft until the piston is at the top of its stroke. Remove the cloth and cuttings.
 - Repeat this procedure for each piston.

2. Connecting rod caps (110) as follows:
 - Make note of the arrangement of the connecting rod (108) markings, to insure that they will be returned to their proper position during assembly. Mark the connecting rods with a scratch awl if necessary.
 - Remove the nuts (111).
 - To avoid mismatching the connecting rods and connecting rod caps, remove only one connecting rod cap at a time. Place the piston (107) at the bottom of its stroke.
 - Remove the connecting rod cap.
 - Install J-5239 onto the studs (109) (figure 17).

 Use of the specified guide set will prevent the connecting rod from scratching the bore or crankshaft journal during the removal process. The tool will also prevent the rod bearing half from falling out of the connecting rod during removal.

3. Connecting rod (108) and piston (107) from the block (115).
 - Push on the guide rod (item A, figure 17) to push the piston and connecting rod out. Use the guide rod to prevent the connecting rod from scoring the cylinder bore.
 - Loosely assemble the connecting rod cap (110) onto the connecting rod.
 - Repeat this procedure on the remaining piston and connecting rod assemblies.

FLYWHEEL REMOVAL

The crankshaft can be removed from the block without removing the flywheel. If the flywheel is removed, the dowel holes must be reamed oversize and oversized dowel pins installed, as outlined later. If flywheel removal is necessary, proceed as follows:

Remove or Disconnect (Figures 5 and 18)

- Mark the crankshaft (154) and flywheel (118) so that the dowel holes can be aligned in their original positions at the assembly.
- Flywheel housing (119).
- Rear main bearing cap (137).
- Dowel pins (134).

- With the block (115) inverted, turn the crankshaft (154) so that a dowel pin is at the 12 o'clock position.
- Drive the dowel pin out, using a hammer and drift.
- Repeat the preceding steps to drive out the remaining dowel pins. The crankshaft must be turned each time so that the pin can be driven out without contacting the block.
4. Bolts (122).
5. Flywheel (118).

CRANKSHAFT REMOVAL

The main bearings and rear oil seal can be replaced without removing the crankshaft, as outlined later in this section.

Remove or Disconnect (Figures 5 and 19)
- Check the main bearing caps (152) for location markings. Mark the caps if necessary. The caps must be returned to their original locations during the engine assembly.
1. Bolts (138) and stud (139).
2. Main bearing caps (137 and 152).
3. Crankshaft (154). Lift the crankshaft straight up, taking care to avoid damage to the crankshaft journals and thrust flange surfaces.
4. Upper and lower seal halves (132 and 135). Pry the seal halves out with a screwdriver (figure 19).
5. Main bearing inserts (130, 133, 136, and 153). If the main bearing inserts are to be reused, mark them to insure they are installed in their original positions before removal.

CRANKSHAFT REAR OIL SEAL REMOVAL (WITHOUT REMOVING CRANKSHAFT)

Remove or Disconnect (Figures 5, 19, and 20)
1. Rear main bearing cap (137).
2. Lower seal half (135) (figure 19).
3. Upper seal half (132).
 - Tap on the upper seal half, using a small drift and hammer (figure 20).
 - Remove the upper seal half, using pliers (figure 20).

MAIN BEARING REMOVAL (WITHOUT REMOVING CRANKSHAFT)

Remove or Disconnect (Figures 5, 21, and 22)
Tool Required:
J-8080 Main Bearing Remover/Installer
- Check the main bearing caps (152) for location markings. Mark the caps if necessary. The caps must be returned to their original locations during assembly.
1. Main bearing caps (137 and 152).
2. Upper and lower seal halves (132 and 135), as previously described.
3. Upper rear main bearing insert (133).
• Use a small brass drift and hammer. Tap on the insert, on the side opposite the bearing tang, until the insert rotates out of position (figure 21).
• Use a pair of pliers with the jaws taped to prevent damage to the crankshaft. Clamp the insert to the crankshaft flange (figure 21). Rotate the crankshaft (154) to remove the bearing insert.

4. Upper main bearing inserts (130).
• Insert J-8080 into the crankshaft (154) oil hole (figure 22).
• Rotate the crankshaft to "turn" the bearing insert out of the block.

CAMSHAFT REMOVAL

++ Remove or Disconnect (Figures 5 and 23)

• Turn the camshaft (182) until the screws (93) are visible through the holes in the camshaft gear (94) (figure 23).
1. Screws (93).
2. Camshaft (182). Pull the camshaft out of the block. Support the camshaft carefully when removing to prevent damage to the camshaft bearings.
A solvent tank, large enough to hold the larger engine parts, will be needed along with various bristle brushes and a gasket scraper. A source of compressed air will be helpful in the cleaning operations.

Precision measuring tools will be required for the inspection procedure. These include: micrometers, cylinder bore gage, feeler gages, dial indicator set, etc. The inspection work, performed with the proper method and tools, is most important. The rebuilt engine cannot be expected to perform properly if parts worn beyond acceptable limits are reused.

BLOCK

- Clean (Figure 5)
 1. Block (115) in solvent.
 2. Block gasket surfaces.
 3. Cylinder bores.
 4. Oil galleries and passages.
 5. Scale deposits from the coolant passages.

- Inspect (Figure 5)
 1. All expansion plugs for looseness or leakage.
 2. Valve lifter bores for deep scratches and varnish deposits.
 3. Block (115) for cracks, especially in the following areas:
 - Cylinder walls.
 - Coolant jackets.
 - Main bearing webs.
 - Engine mount bosses.
 4. Main bearing bores and main bearing caps (137 and 152).
 - All main bearing bores should be round and uniform in ID at all bearing supports.

- The area where the main bearing inserts (130, 133, 136, and 153) contact the main bearing bore should be smooth.
- If a main bearing cap is damaged and requires replacement, replace it as outlined later in this section.

MAIN BEARING CAP REPLACEMENT

- Install or Connect (Figure 5)
 1. New main bearing cap (137 or 152). The arrow on the main bearing cap faces the front of the engine (opposite the flywheel).
 2. Bolts (138) and stud (139).

- Tighten
 - Bolts (138) and stud (139) to 90 Nm (65 ft. lbs.).

- Measure (Figure 25)
 - Main bearing vertical ID (inside diameter). Use an inside micrometer.
 - This dimension should be the same as the other main bearing bore vertical diameters.
 - If it is necessary to increase the vertical ID, use an equal thickness of special service bearing cap shims at each side of the cap to
Figure 24—Checking the Block Gasket Surface

provide the same dimension as at the other bores. This is necessary to assure the proper “crush” on bearing inserts when the engine is assembled.

CYLINDER BORES

- **Inspect**
 - Cylinder walls for scoring or other damage.

- **Measure**
 - Cylinder out of round and taper. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

CYLINDER BORE RECONDITIONING

Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

INTAKE AND EXHAUST MANIFOLDS

- **Disassemble (Figure 4)**
 1. Bolts (39) and washers (40).
 3. Intake manifold (31) and exhaust manifold (37).

- **Clean**
 - Old pieces of gasket from the gasket surfaces.

- **Inspect**
 - Manifolds for cracks, broken flanges, etc.
 - Gasket surfaces for heavy scratches.
 - Manifold heat control valve (if used). The heat control valve is in the exhaust manifold. The thermostatic spring and anti-rattle spring must be in place and in good condition. The shaft should turn freely when weight is moved and the spring should return the shaft to its original position.

- **Measure**
 - Manifold distortion. Lay a straight edge along the full length of the exhaust port faces and measure any gaps between the straight edge and the port faces. If at any point a gap of 0.80 mm (0.030-inch) or more exists, it is likely that the manifold has distorted to a point where it will not seal properly. If a good exhaust seal is to be expected, the exhaust manifold must be replaced.
Figure 26—Measuring Camshaft Journal Runout

Assemble (Figure 4)
1. Gasket (36) to the exhaust manifold (37).
2. Intake manifold (31) and exhaust manifold (37).
3. Nuts (32), bolts (39) and washers (40). Leave the fasteners hand-tight until the manifold to cylinder head bolts are torqued. Refer to "Intake and Exhaust Manifold Installation."

CAMSHAFT

Important
- Whenever the camshaft needs to be replaced, a new set of hydraulic lifters must also be installed.

Inspect (Figures 5, 26, 27, and 28)
- Camshaft (182) lobes and journals for scratches, pitting, scoring, and wear.
- Timing gear (94) for damaged or missing teeth.

Measure (Figures 26, 27, and 28)
Tool Required:
J-7872 Dial Indicator (or equivalent)

Figure 27—Checking the Camshaft Journals

Figure 28—Measuring Camshaft Thrust Plate Clearance (Camshaft End Play)

- Camshaft (182) runout (figure 26). Mount the camshaft between centers or in V-blocks. Using J-7872 (or equivalent), check the intermediate camshaft journals. If runout exceeds 0.020-inch, the camshaft is excessively bent and should be replaced, along with the camshaft bearings.
- Camshaft journal out of round. Use a micrometer (figure 27). The proper diameter is 1.8677-1.8697-inch.
- Thrust plate (94) to camshaft (182) clearance. This clearance governs camshaft end play. Use a feeler gage (figure 28). Proper clearance is 0.003-0.008-inch. Excessive clearance indicates that the thrust plate is worn and should be replaced, as outlined following:

CAMSHAFT GEAR AND THRUST PLATE REPLACEMENT

Disassemble (Figures 5 and 29)
1. Camshaft gear (94).
Figure 30—Installing the Camshaft Gear

• Place the camshaft (182) in a press. Support the camshaft gear. DO NOT support the thrust plate (95).

NOTICE: The thrust plate must be positioned so that the key (96) does not damage it during the removal operation.

• Press the camshaft out of the camshaft gear.

2. Thrust plate.
3. Spacer (97).

Assembly (Figures 5 and 30)

Tool Required:
J-22912-01 Support Plate (or equivalent)

• Support the camshaft (182) at the front journal with tool J-22912-01 (or equivalent) (figure 30). Mount the camshaft in a press as shown.

• Lubricate the thrust plate (95) with engine oil.
1. Key (96) (if removed).
2. Spacer (97). Make sure the chamfer in the spacer faces towards the journal radius.
3. Thrust plate.
4. Camshaft gear (94).

• MAKE SURE THAT THE TIMING MARK IS TO THE OUTSIDE.
• Press the camshaft gear onto the camshaft until it bottoms on the spacer (figure 30).
• Remove the camshaft from the press.

Measure (Figure 28)

• Camshaft to thrust plate clearance. Use a feeler gage (figure 28). The correct clearance is 0.003-0.008-inch.

CAMSHAFT BEARINGS

Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).
Clean
- All parts in clean solvent and blow dry with compressed air.

Inspect (Figure 32)
- Pump body (209) and cover (205) for cracks or other damage.
- Gears (207 and 208) for wear.
- Drive gear and shaft (208) for looseness in the pump body (209).
- Inside of the cover (205) for wear that would permit oil to leak past the ends of the gears.
- The pump gears, cover, and body are not serviced separately.
- Pressure relief valve (201) for fit. The regulator valve should slide freely in its bore without sticking or binding.

Assemble (Figures 32 and 33)
Tool Required:
J-21882 Pick-up Tube and Screen Installer
1. Pressure relief valve (201).
2. Spring (202).
3. Spring retaining pin (203).
4. Drive gear and shaft (208).
5. Idler gear (207) in the pump body (209) with the smooth side of the gear toward the pump cover opening. Index the marks made during disassembly.
7. Cover (205) and screws (204).

Tighten
- Screws (204) to 7.9 N·m (70 in. lbs.).
- Turn the drive shaft by hand to check for smooth operation.

NOTICE: Be careful not to twist, shear or collapse the pipe while installing.

8. Pick-up screen and pipe (140) (if removed) (figure 33).
- If the pick-up screen and pipe assembly was removed, it should be replaced with a new part. Loss of press fit condition could result in an air leak and loss of oil pressure.
- Mount the oil pump in a soft-jawed vise.
- Apply sealer to the end of the pipe.
- Tap the pick-up screen and pipe into place, using J-21882 and a hammer.
- The pump screen must be parallel with the bottom of the oil pan when installed.
VALVE TRAIN COMPONENTS

PUSHRODS, ROCKER ARMS, BALLS, AND NUTS

Clean
- Parts in solvent. Blow dry with compressed air. Make sure the oil passages in the pushrods are clear.

Inspect (Figure 4)
- Rocker arms (13) and balls (12) at their mating surfaces. These surfaces should be smooth and free from scoring or other damage.
- Rocker arm areas which contact the valve stems, and the sockets which contact the pushrods (20). These areas should be smooth and free of damage and wear.
- Nuts (11). The nuts are prevailing torque nuts. At least 6.2 N·m (55 in. lbs.) torque should be required to thread the nuts onto the rocker arm studs. If not, it is possible that the nut(s) could back off during engine operation, causing loss of lash and valve train noise.
- Pushrods for bending. Roll the pushrod on a flat surface to determine if it is bent. Replace if necessary.
- Ends of the pushrods for scoring or roughness.

HYDRAULIC LIFTERS
Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

CYLINDER HEAD

Disassemble (Figures 34, and 35)

Tool Required:
J-8062 Valve Spring Compressor
1. Valve keys (15).
 - Compress the valve springs (19), using J-8062 (figure 35).
 - Remove the valve keys.
 - Remove the tool.
2. Rotators (17), and shields (18).
3. Valve springs (20) and dampers (240).
4. O-ring seals (16) and seals (19).
CLEANING AND INSPECTION OF COMPONENTS

Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) and perform the following:

Clean
• Components as outlined.

Inspect
• Components as outlined.

Measure
• Valve stem clearance.
• Valve spring tension and free length.
Other information outlined includes:
• Valve and seat grinding.
• Valve guide reaming.

ROCKER ARM STUD REPLACEMENT

Tools Required:
J-5802-01 Stud Remover
J-5715 Reamer (0.003-inch oversize) or
J-6036 Reamer (0.013-inch oversize)
J-6880 Stud Installer

Rocker arm studs that have damaged threads or are loose in cylinder heads should be replaced. New studs are available in 0.003-inch and 0.013-inch oversize.

1. Place tool J-5802-01 over the stud to be removed. Install a nut and flat washer. Remove the stud by turning the nut (figure 36).
2. Ream the hole to the proper size for the replacement oversize stud. Use reamer J-5715 for 0.003-inch oversize studs; reamer J-6036 for 0.013-inch oversize stud (figure 37).
3. Coat lower end (press-fit area) of stud with hypoid axle lubricant. Drive the stud into place with a hammer and tool J-6880. Stud is installed to proper depth when the tool bottoms on the cylinder head (figure 38).

ASSEMBLY

Assemble (Figures 34, 35, and 39)

Tools Required:
J-8062 Valve Spring Compressor
J-23738-A Vacuum Pump

1. New seals (19) (intake valves only). Install the seals over the valve guides and seat them against the head.
2. Valves (42 and 43).
 • Lubricate the valve stems with engine oil.
Check each valve stem seal, using J-23738-A (figure 39). Place the adapter cup over the shield (18). Operate the vacuum pump. Observe the vacuum pump gage. No air should be able to leak past the seal. If the O-ring seal will not hold a vacuum, it may have been damaged or improperly installed.

Figure 39—Checking the Valve Seals

- Insert the valves into the proper ports.
3. Valve spring shims (if used).
4. Valve springs (20) with dampers (240).
5. Shields (18).
6. Rotators (17).
7. O-ring seals (16) and valve keys (15).
- Compress the valve spring, using J-8062 (figure 35). Compress the spring enough so the lower valve stem groove can be clearly seen.
- Push a new O-ring seal onto the valve stem. The seal is to be installed on the stem’s lower groove. Make sure the seal is flat and not twisted.
- Apply grease to the area of the upper valve stem groove. Assemble the two valve keys, using the grease to hold the keys in place. Make sure the keys seat properly in the groove.
- Release the compressor tool. Make sure the valve keys stay in place.
- Repeat the preceding steps on the remaining valves.

Figure 40—Scale for Checking Valve Spring Installed Height

Measure (Figures 34, 40, and 41)

- Valve spring installed height of each valve spring.
1. Use a narrow, thin scale. A cutaway scale (figure 40) may be helpful.
2. Measure from the valve shim or spring seat to the top of the shield (18) (figure 41).
3. If this measurement exceeds the figure given in “Specifications,” install valve spring seat shims of sufficient thickness (between the spring and cylinder head) to give the desired measurement. NEVER shim the spring so as to give an installed height under the specified figure.

THERMOSTAT AND HOUSING

The thermostat is located in a housing bolted to the front of the cylinder head (figure 4). Thermostats consist of a restriction valve controlled by a thermostatic element. The restriction valve cracks or just starts to open at a predetermined temperature and continues to open as the engine coolant temperature increases. To assure proper cooling and engine warm-up it is important that the correct thermostat be used. Refer to the proper Truck Service Manual for the correct thermostat application.
Disassemble (Figure 4)
1. Bolts (55).
2. Water outlet (54).
3. Thermostat (52).
4. Gasket (53).

Inspect (Figure 4)
- Water outlet (54) and housing (50) for cracks or damage.

Assemble (Figure 4)
1. Thermostat (52).
2. Gasket (53).
3. Water outlet (54).

Tighten
- Bolts (55) to 40 N·m (30 ft. lbs.).

TORSIONAL DAMPER

Inspect
- Torsional damper weight for looseness or signs of shifting on the hub. Replace as needed.
- Area of the torsional damper hub shaft which contacts the front crankshaft seal for roughness or nicks. Replace the damper if this condition exists.

CRANKSHAFT AND BEARINGS

CLEANING AND INSPECTION

Clean
- Crankshaft with solvent.
 - Do not scratch the bearing journals.
 - Blow all sludge from the oil passages with compressed air.
- Main bearing inserts. Wipe free of oil with a soft cloth.

Inspect
- Crankshaft for cracks. Use the magnaflux method, if available.
- Crankpins, main bearing journals and thrust surfaces for scoring, nicks, or damage caused by lack of lubrication.
- Main bearing inserts for scoring or other damage.
 In general, the lower inserts (except the #1 bearing) shows a greater wear and the most distress from fatigue. If, upon inspection, the lower insert is suitable for use, it can be assumed that the upper insert is also satisfactory. If the lower insert shows evidence of wear or damage, both upper and lower inserts must be replaced.
- Crankshaft gear for chipped or damaged teeth.

Measure (Figures 42 and 43)
- Main bearing and connecting rod journal diameters (figure 42). Compare with "Specifications." Grind or replace the crankshaft if necessary.

Figure 42—Measuring the Crankshaft Journals
- Main bearing and connecting rod journals for taper and out of round (figure 42). If the journals are tapered or out of round more than 0.001-inch, grind or replace the crankshaft.
- Crankshaft runout (figure 43).
 - Mount the crankshaft in V-blocks or between centers.
 - Use a dial indicator as shown.
 - If the main bearing journals are misaligned, the crankshaft is bent and must be replaced along with the main bearings.

CRANKSHAFT GRINDING
A "tuffriding" hardening process is applied to crankshaft journals used in engines covered by this manual. The crankshaft should not be reground unless it can be tuffrided after grinding.

Figure 43—Checking Crankshaft Runout
CRANKSHAFT BEARING AVAILABILITY
Main bearings are available in standard and 0.001, 0.002, 0.010, 0.020, and 0.030-inch undersizes. Connecting rod bearings are available in standard and 0.001, 0.002, 0.010, and 0.020-inch undersizes.

CRANKSHAFT GEAR REPLACEMENT

Disassemble (Figure 44)
Tool Required:
- J-24420-B Puller
- Crankshaft gear, using J-24420-B.

ASSEMBLY OF ENGINE

PRIOR TO ASSEMBLY
The importance of cleanliness during the assembly procedure cannot be overstressed. Dirt will cause premature wear of the rebuilt engine. Lubricate all moving parts lightly with engine oil or engine assembly lubricant (unless specified otherwise) during assembly. This will provide initial lubrication when the engine is started.

CRANKSHAFT REAR OIL SEAL INSTALLATION
An oil seal installation tool (figure 46) should be fabricated (if not provided in the seal kit) to prevent seal damage during installation. Extreme care should be

![Figure 44—Replacing the Crankshaft Gear](image)

![Figure 46—Oil Seal Installation Tool](image)
in the block. The installation tool must remain in position until the seal half is properly positioned with both ends flush with the block.

• Remove the tool, being careful not to withdraw the seal half.

2. Lower seal half (135).

• Coat the seal lips lightly with engine oil. Keep the oil off of the seal mating ends.

• Insert the seal half into the rear main bearing cap (135). Use the tool to protect the seal half from the sharp edge of the seal seat. Feed the seal half into the rear main bearing cap, using light finger pressure. Make sure the oil seal lip faces the front of the engine (figure 48).

3. Rear main bearing cap (135) as outlined later.

WITH CRANKSHAFT REMOVED

Install or Connect (Figures 5 and 48)

1. Upper seal half (132).

• Insert the seal half in the block (115), using the installation tool to protect the back sealing bead of the seal from the sharp corner of the block. Position the seal and the tip of the tool so that the seal contacts the tool. Make sure that the oil seal lip is positioned toward the front of the engine (figure 79).

• Feed the seal into position gradually, using the tool as a "shoe-horn" to protect the seal outer diameter from damage. The tool must remain in position until the seal is properly in position, with both ends flush with the block.

• Remove the tool, being careful not to withdraw the seal.

2. Lower seal half (135).

• Insert the seal half into the rear main bearing cap (135). Use the tool to protect the seal half from the sharp edge of the seal seat. Feed the seal half into the rear main bearing cap, using light finger pressure.

• Make sure the oil seal lip faces the front of the engine (figure 48).

• Coat the seal lips lightly with engine oil. Keep the oil off of the oil seal mating ends.

WITH CRANKSHAFT INSTALLED

Install or Connect (Figures 5, 47, and 48)

1. Upper seal half (132).

• Coat the seal lips lightly with engine oil. Keep the oil off of the seal mating ends.

• Position the tip of the tool between the crankshaft (154) and the seal seat in the block (115) (figure 47).

• Position the seal half between the crankshaft and tip of the tool. Make sure that the oil seal lip is positioned toward the front of the engine (figure 47).

• Roll the seal around the crankshaft using the tool as a "shoe-horn" to protect the seal bead from the sharp corner of the seal seat surface located in the channel on the outside diameter of the seal.
MAIN BEARING INSTALLATION (WITH CRANKSHAFT INSTALLED)

Refer to “Crankshaft and Main Bearing Installation,” later in this section for main bearing insert sizing information.

Install or Connect (Figures 5 and 21)

Tool Required:
J-8080 Main Bearing Remover/Installer

1. Upper rear main bearing insert (133).
 - Apply engine oil to an insert of the proper size.
 - Insert the plain end (without the bearing tang) of the insert between the crankshaft journal and the notched side of the block (115).
 - Use pliers with taped jaws to clamp the bearing to the crankshaft (154) as shown in figure 21. Rotate the crankshaft to “roll” the insert into the block. Then seat the insert using a small drift and hammer.

2. Lower rear main bearing insert (136).
 - Apply engine oil to an insert of the proper size.
 - Press the insert into the rear main bearing cap (137).

3. Upper main bearing inserts (130).
 - Insert J-8080 into a crankshaft main bearing oil hole.
 - Apply engine oil to inserts of the proper size.
 - Insert the plain end (without the bearing tang) of the insert between the crankshaft (154) and the notched side of the block (115).
 - Rotate the crankshaft (154) to “roll” the insert into the block.
 - Remove J-8080.

4. Lower main bearing inserts (153) to the main bearing caps (152).
 - Make sure the inserts are of the proper size.
 - Apply engine oil to the inserts.

5. Main bearing caps (137 and 152). Refer to “Crankshaft and Main Bearing Installation” later in this section.

Measure
- Main bearing clearance and crankshaft end play. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

CRANKSHAFT AND MAIN BEARING INSTALLATION

Main bearings are of the precision insert type and do not use shims for adjustment. If clearances are found to be excessive, a new bearing, plus both upper and lower inserts will be required. Service main bearings are available in standard size and 0.001-inch, 0.002-inch, 0.010-inch, 0.020-inch and 0.030-inch undersize.

Selective fitting of the main bearing inserts is necessary in production in order to obtain close tolerances. For this reason you may use one standard insert with one 0.001-inch undersize insert which will decrease the clearance 0.0005-inch from using two standard inserts.
Tighten

- All bolts (138 and 139) EXCEPT THE REAR MAIN BEARING CAP BOLTS to 90 N·m (65 ft. lbs.).

Measure (Figure 50)

- Crankshaft end play.
 1. Tap the end of the crankshaft (154) first rearward then forward with a lead hammer. This will line up the rear main bearing and crankshaft thrust surfaces.
 2. Tighten the rear main bearing cap bolts (138) to 90 N·m (65 ft. lbs.).
 3. With the crankshaft forced forward, measure at the front end of the rear main bearing with a feeler gage (figure 50). The proper clearance is 0.002-0.006-inch.

Inspect

- Crankshaft (154) for binding. Try turning the crankshaft to check for binding. If the crankshaft does not turn freely, loosen the bolts (138 and 139), one pair at a time, until the tight bearing is located. Burrs on the bearing cap, foreign matter between the insert and the block or the bearing cap, or a faulty insert could cause a lack of clearance at the bearing.

CAMSHAFT INSTALLATION

Install or Connect (Figures 5 and 51)

- Coat the camshaft lobes with Engine Oil Supplement (GM part number 1051396) or equivalent. Coat the bearing journals with engine oil.
 1. Camshaft (182) into the block (115). Take care not to damage the camshaft bearings (98 and 99).
 2. Screws (93).

Important

- Align the timing marks (figure 51).

Figure 50—Measuring Crankshaft End Play

![Figure 50](image)

TIMING GEAR COVER INSTALLATION

Install or Connect (Figures 5 and 52)

Tool Required:
- J-35468 Seal Installer and Centering Tool
- Apply engine oil to the lips of the seal (158).
 1. J-35468 to the seal (158). The tool is necessary to properly "center" the front seal on the crankshaft. If the seal is not centered, it may be damaged when the vibration damper is installed, or it may fail prematurely.
 2. Gasket (166) to the block (115).
 3. Timing gear cover (157), with the tool, to the block (115) (figure 52).
 4. Bolts (164).

Tighten

- Bolts (164) to 9.0 N·m (80 in. lbs.).

Figure 51—Timing Marks and Thrust Plate Screws

![Figure 51](image)

Figure 52—Front Cover Centering Tool

![Figure 52](image)
TORSIONAL DAMPER INSTALLATION

Install or Connect (Figures 5 and 53)

Tool Required:

J-23523-E Torsional Damper Remover/Installer

NOTICE: The inertia weight section of the torsional damper is assembled to the hub with a rubber type material. The correct installation procedures (with the proper tool) must be followed or movement of the inertia weight section of the hub will destroy the tuning of the damper.

1. Key (163).

2. Stud (item C, figure 53) to the crankshaft (154). Thread the stud fully into the tapped end of the crankshaft.

3. Torsional damper (162) over the end of the stud. Align the keyway in the vibration damper shaft with the crankshaft key.

4. Bearing, washer, and nut (figure 53).
 - Turn the nut to pull the vibration damper into place.
 - Remove the tool.

5. Bolt (160) and washer (161).

Tighten

- Bolt (160) to 80 N·m (60 ft. lbs.).

CONNECTING ROD INSTALLATION

Connecting rod bearings are of the precision insert type and do not use shims for adjustment. DO NOT FILE RODS OR ROD CAPS. If clearances are found to be excessive, a new bearing will be required. Service bearings are available in standard size and 0.001-inch and 0.002-inch undersize for use with new and used standard size crankshafts, and in 0.010-inch and 0.020-inch undersize for use with reconditioned crankshafts.

The simplest, most accurate way to measure connecting rod bearing clearance is with the use of gaging plastic. This wax-like material compresses evenly between the bearing and journal surfaces without damaging them.

Selective fitting of the bearing inserts is necessary to obtain close tolerances. For this reason you may use, for example, one standard insert with one 0.001-inch undersize insert, which will decrease the clearance 0.0005-inch from using two standard inserts.

Install or Connect (Figures 5 and 54 through 56)

Tools Required:

J-5329 Connecting Rod Guide Set
J-8037 Ring Compressor

- Make sure the cylinder walls are clean. Lubricate the cylinder wall lightly with engine oil.
- Make sure the piston is installed in the matching cylinder. Refer to "Piston and Connecting Rod Assemblies," previously in this section.

1. Connecting rod bearing inserts (112 and 113).
 - Be certain that the inserts are of the proper size.
 - Install the inserts in the connecting rod (108) and connecting rod cap (110).

2. Piston (107) and connecting rod (108) to the proper bore.
Figure 55—Installing the Piston

- With the connecting rod cap removed, install J-5329 onto the connecting rod studs (69).

- Locate the piston ring end gaps as shown in figure 87. Lubricate the piston and rings (101, 102, and 105) with engine oil.

- Locate the ring end gaps as shown in figure 54.

- Without disturbing the ring end gap location, install J-8037 over the piston (figure 55).

- The piston must be installed so that the piston crown depression's flat side faces to the engine's left side (figure 56).

- Place the piston in its matching bore. Using light blows with a hammer handle, tap the piston down into its bore (figure 55). At the same time, guide the connecting rod into piston on the crankpin, using the J-5329 Guide Tool. Hold the ring compressor against the block until all rings have entered the cylinder bore.

3. Connecting rod cap (110) with the lower connecting rod bearing insert.

Figure 56—Pistons Installed

Figure 57—Measuring Connecting Rod Side Clearance

1. Measure
- Connecting rod bearing clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A). Then apply engine oil to the connecting rod bearing.

2. Tighten
- Nuts (111) to 80 N·m (60 ft. lbs.).

3. Measure (Figure 57)
- Connecting rod side clearance. Use a feeler gage. The proper clearance is 0.006-0.017-inch.

OIL PUMP INSTALLATION

Install or Connect (Figure 5)

1. Oil pump (151).
2. Bolts (148) and nut (149).

Tighten
- Bolts (148) to 13.0 N·m (115 in. lbs.).
- Nut (149) to 34 N·m (26 ft. lbs.).

OIL Pan INSTALLATION

Install or Connect (Figure 5)

1. Rear oil pan seal (141).
2. Front oil pan seal (147).
3. Gaskets (142).
4. Oil pan (146).
5. Bolts (145).

Tighten
- 1/4-20 bolts to 9.0 N·m (80 in. lbs.).
- 5/16-18 bolts (except oil pan [146] to front cover [157] bolts) to 18.8 N·m (165 in. lbs.).
- Oil pan (146) to front cover (157) bolts to 5.1 N·m (45 in. lbs.).
CYLINDER HEAD INSTALLATION

- **Clean (Figures 4 and 5)**
 - Gasket surfaces on the block (115) and cylinder head (26).
 - Threads for cylinder head bolts in the block (115).

- **Install or Connect (Figures 4, 5 and 58)**
 1. Head gasket (33).
 - On engines using a STEEL gasket, coat both sides of a new gasket with a good sealer. Spread the sealer thin and even. One method of applying the sealer that will assure the proper coat is with the use of a paint roller. Too much sealer may hold the gasket away from the head or block.
 - Use no sealer on engines using a composition STEEL ASBESTOS gasket.
 - Place the gasket in position over the dowel pins with the bead up.
 2. Cylinder head (26). Carefully guide the cylinder head into place over the dowel pins and head gasket (33).
 3. Bolts (21) and stud (59).
 - Coat the threads of the cylinder head bolts and stud with sealing compound (Loctite #592 or equivalent).
 - Install finger tight.

- **Tighten**
 - Bolts (21) and stud (59) a little at a time, using the sequence shown in figure 58. The proper torques are as follows:
 - Left-hand front bolt 115 N·m (85 ft. lbs.).
 - All others: 130 N·m (95 ft. lbs.).

VALVE TRAIN COMPONENT INSTALLATION

- **Important**
 - Replace all hydraulic lifters if a new camshaft was installed.

- **Install or Connect (Figures 4 and 5)**
 1. Hydraulic lifters (100) into their mating bores in the block (115).
 2. Pushrods (20). Seat the pushrods into the socket in the lifters (100).
 3. Rocker arms (13).
 5. Nuts (11).

VALVE ADJUSTMENT

Adjust the valves when in contact with the cam base circle, as follows:

1. Turn the crankshaft until the timing mark on the vibration damper is lined up with the “0” mark on the timing marker (figure 59) and cam lobes #7 and #9 (counted from the front of the engine) are up.
2. Turn the adjusting nuts for rocker arm numbers 4, 6, 8, 10, 11, and 12 (counted from the front of the engine) until there is no free lash at the pushrod (figure 60). Then tighten the nut one full additional turn (to center the lifter plunger).
3. Crank the engine one full turn (360 degrees) until the damper timing mark and the “0” mark on the timing marker are again in alignment. Cam lobes #4 and #6 are now up.
4. Adjust rocker arm numbers 1, 2, 3, 5, 7, and 9 as outlined in step 2 above.
5. The following chart shows indicator readings with gears properly indexed for 4.8L engines and the indicator readings resulting from improperly indexed gears.

<table>
<thead>
<tr>
<th>Engine</th>
<th>Camshaft Part Number</th>
<th>Valve Lift</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8L</td>
<td>3848000</td>
<td>0.405"</td>
</tr>
<tr>
<td>Dial</td>
<td>Gears Properly Indexed</td>
<td>0.016" ± 0.004"</td>
</tr>
<tr>
<td>Indicator</td>
<td>One Tooth Advanced</td>
<td>0.0379"</td>
</tr>
<tr>
<td>Readings</td>
<td>One Tooth Retarded</td>
<td>0.0068"</td>
</tr>
</tbody>
</table>

ROCKER ARM COVER AND PUSHER COVER INSTALLATION

INSTALLATION

Install or Connect (Figures 4 and 5)
1. Gasket (8).
2. Rocker arm cover (7).
3. Bolts (3), clips (2) and reinforcements (4).

Tighten
- Bolts (3) to 4.3 N·m (38 in. lbs.).
5. Pushrod covers (179).

Tighten
- Bolts (178) to 9.0 N·m (80 in. lbs.).

WATER PUMP INSTALLATION

Install or Connect (Figure 5)
1. Gasket (169).
2. Water pump (171).

Tighten
- Bolts (170) to 20 N·m (15 ft. lbs.).

THERMOSTAT HOUSING INSTALLATION

Install or Connect (Figure 4)
1. Gasket (49).
2. Thermostat housing (50).
3. Bolts (51).

Tighten
- Bolts (51) to 38 N·m (28 ft. lbs.).
4. Hose (47).
INTAKE AND EXHAUST MANIFOLD INSTALLATION

Install or Connect (Figure 4)

- The manifold attaching bolt (39) and nuts (32) must be finger tight ONLY. Do not tighten the manifold attaching bolt and nuts until the manifold to head bolts and nuts (30 and 35) have been tightened.

1. Gasket (27).
2. Intake and exhaust manifold assembly.
3. Clamps (34), washers (29), bolts (35) and nuts (30).

Tighten

- Nuts (30) and bolts (35) to 52 N·m (38 ft. lbs.).
- Nuts (32) and bolts (39) to 60 N·m (44 ft. lbs.).

AIR MANIFOLD INSTALLATION

Install or Connect (Figures 7 and 8)

1. Air injection tubes (183).
2. Air manifold (182).

FLYWHEEL INSTALLATION

Clean (Figure 5)

- Mating surfaces of the flywheel (118) and crankshaft (154).

Install or Connect (Figures 5 and 18)

1. Flywheel (118) to the crankshaft (154). Align the marks made at disassembly. Make sure the dowel holes in the crankshaft and flywheel are aligned.
2. Bolts (122).

Tighten

- Bolts (122) to 150 N·m (110 ft. lbs.).
3. Dowel pins (134).

- The interference fit dowel pins must be replaced with an oversized dowel pin when installing the flywheel.
- Ream the dowel pin holes to the proper size (0.4510-0.4517-inch).
- Tap the dowel pins into place, flush with the flywheel retaining bolt surface.

ENGINE ACCESSORY INSTALLATION

Install the engine accessories (distributor, carburetor, oil filter, generator, etc.) as directed in the proper Truck Service Manual. Connect all vacuum hoses and electrical equipment the same way as removed.

ENGINE SET-UP AND TESTING

1. After overhaul, the engine should be tested before installing in the vehicle. If a suitable test stand is not available, the following procedure can be used after the engine is installed in the vehicle.
2. Fill the crankcase with the proper quantity and grade of oil. Refer to the proper Truck Service Manual or Owner's and Driver's Manual for this information. If a new camshaft or hydraulic lifters were installed, add Engine Oil Supplement (GM part no. 1051396 or equivalent) to the engine oil. Fill the cooling system with the proper coolant.
3. With the ignition “OFF,” or disconnected, crank the engine several times. Listen for any unusual noises or evidence that any parts are binding.
4. Start the engine and listen for unusual noises. Run the engine at about 1000 rpm until the engine is at operating temperature.
5. Listen for improperly adjusted valves or sticking lifters, and other unusual noises.
6. Check for oil and coolant leaks while the engine is running.
7. Using the proper Truck Service Manual or Emission Control Label for specifications, adjust the ignition timing, and idle rpm and mixture.
ENGINE SPECIFICATIONS

All Specifications are in INCHES unless otherwise noted.

GENERAL DATA:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>In Line</td>
</tr>
<tr>
<td>Displacement</td>
<td>4.8L (292 Cu. In.)</td>
</tr>
<tr>
<td>No. Of Cylinders</td>
<td>6</td>
</tr>
<tr>
<td>Bore</td>
<td>3.876</td>
</tr>
<tr>
<td>Stroke</td>
<td>4.12</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>8:0:1</td>
</tr>
<tr>
<td>Firing Order</td>
<td>1 - 5 - 3 - 6 - 2 - 4</td>
</tr>
<tr>
<td>Oil Pressure</td>
<td>16 psi @ 700 RPM; 30-45 psi @ 1500 RPM</td>
</tr>
</tbody>
</table>

CYLINDER BORE:

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Production</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8750-3.8780</td>
<td>0.0005 (Maximum)</td>
<td>0.002 (Maximum)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Taper</th>
<th>Production</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrust Side</td>
<td>0.0005 (Maximum)</td>
<td>0.002 (Maximum)</td>
</tr>
<tr>
<td>Relief Side</td>
<td>0.0005 (Maximum)</td>
<td>0.001 (Maximum)</td>
</tr>
</tbody>
</table>

PISTON:

<table>
<thead>
<tr>
<th>Clearance</th>
<th>Production</th>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0026-0.0036</td>
<td>0.0045 (Maximum)</td>
<td></td>
</tr>
</tbody>
</table>

PISTON RING:

<table>
<thead>
<tr>
<th>COMPRESSION</th>
<th>Groove Clearance</th>
<th>Production</th>
<th>Top</th>
<th>2nd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Service Limit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compression</td>
<td>Gap</td>
<td>Production</td>
<td>Top</td>
<td>2nd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Service Limit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil</td>
<td>Groove Clearance</td>
<td>Production</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Service Limit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PISTON PIN:</th>
<th>Diameter</th>
<th>Clearance</th>
<th>Production</th>
<th>In Piston</th>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.9270-0.09273</td>
<td>0.00015-0.00025</td>
<td>0.001 (Maximum)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0008-0.0016 Interference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B-07896
SPECIFICATIONS

ENGINE SPECIFICATIONS (CONT.)
All specifications are in INCHES unless otherwise noted.

<table>
<thead>
<tr>
<th>CRANKSHAFT:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Journal</td>
<td>Diameter</td>
<td>All 2.2979-2.2994</td>
</tr>
<tr>
<td>Taper</td>
<td>Production</td>
<td>0.0002 (Maximum)</td>
</tr>
<tr>
<td></td>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Out of Round</td>
<td>Production</td>
<td>0.0002 (Maximum)</td>
</tr>
<tr>
<td></td>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
</tr>
</tbody>
</table>
| **Main Bearing Clearance** | Production | #1-#6: 0.0010-0.0024
#7: 0.0016-0.0035 |
| | Service Limit | #1-#6: 0.0010-0.0025
#7: 0.0015-0.0035 |
| Crankshaft End Play | Diameter | 2.099-2.100 |
| Taper | Production | 0.0005 (Maximum) |
| | Service Limit | 0.001 (Maximum) |
| Out of Round | Production | 0.0005 (Maximum) |
| | Service Limit | 0.001 (Maximum) |
| **Rod Bearing Clearance** | Production | 0.0010-0.0026 |
| | Service Limit | 0.0030 (Maximum) |
| Rod Side Clearance | Diameter | 0.006-0.017 |

CAMSHAFT:

<table>
<thead>
<tr>
<th>Lobe</th>
<th>Intake</th>
<th>0.2315</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lift ± 0.002</td>
<td>Exhaust</td>
<td>0.2315</td>
</tr>
<tr>
<td>Journal Diameter</td>
<td>1.8677-1.8697</td>
<td></td>
</tr>
<tr>
<td>Camshaft Runout</td>
<td>0.020 (Maximum)</td>
<td></td>
</tr>
<tr>
<td>Camshaft End Play</td>
<td>0.003-0.008</td>
<td></td>
</tr>
</tbody>
</table>

VALVE SYSTEM:

<table>
<thead>
<tr>
<th>Lifter</th>
<th>Hydraulic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocker Arm Ratio</td>
<td>1.75:1</td>
</tr>
<tr>
<td>Valve Lash</td>
<td>Intake One Turn Down From Zero Lash</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
</tr>
<tr>
<td>Face Angle (Intake & Exhaust)</td>
<td>46°</td>
</tr>
<tr>
<td>Seat Angle (Intake & Exhaust)</td>
<td>46°</td>
</tr>
<tr>
<td>Seat Runout (Intake & Exhaust)</td>
<td>0.002 (Maximum)</td>
</tr>
<tr>
<td>Seat Width</td>
<td>Intake</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
</tr>
<tr>
<td>Stem Clearance</td>
<td>Production Intake</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
</tr>
<tr>
<td>Service Intake</td>
<td>High Limit Production + 0.001</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
</tr>
<tr>
<td>Free Length</td>
<td>2.08</td>
</tr>
<tr>
<td>Valve Spring (Outer)</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>Open</td>
</tr>
<tr>
<td>Installed Height</td>
<td>1 1/8"</td>
</tr>
<tr>
<td>Valve Spring Damper</td>
<td>Approx. # of Coils</td>
</tr>
</tbody>
</table>
SPECIFICATIONS (CONT.)

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
<th>In. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flywheel Bolts</td>
<td>150</td>
<td>110</td>
<td>—</td>
</tr>
<tr>
<td>Flywheel Housing Bolts</td>
<td>40</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Main Bearing Cap Bolts</td>
<td>90</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Camshaft Thrust Plate Screws</td>
<td>9.0</td>
<td>—</td>
<td>80</td>
</tr>
<tr>
<td>Front Cover Bolts</td>
<td>9.0</td>
<td>—</td>
<td>80</td>
</tr>
<tr>
<td>Torsional Damper Bolt</td>
<td>70</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>Connecting Rod Cap Nuts</td>
<td>60</td>
<td>44</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pump Bolts</td>
<td>13.0</td>
<td>—</td>
<td>115</td>
</tr>
<tr>
<td>Oil Pump Bracket Nut (to Main Bearing Cap Bolt)</td>
<td>34</td>
<td>25</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pump Cover Bolts</td>
<td>7.9</td>
<td>—</td>
<td>70</td>
</tr>
<tr>
<td>Oil Pan Bolts (to front cover)</td>
<td>5.1</td>
<td>—</td>
<td>45</td>
</tr>
<tr>
<td>(to block [1/4-20])</td>
<td>9.0</td>
<td>—</td>
<td>80</td>
</tr>
<tr>
<td>(to block [9/16-18])</td>
<td>18.6</td>
<td>—</td>
<td>165</td>
</tr>
<tr>
<td>Cylinder Head Bolts (left–front bolt)</td>
<td>115</td>
<td>85</td>
<td>—</td>
</tr>
<tr>
<td>(all others)</td>
<td>130</td>
<td>95</td>
<td>—</td>
</tr>
<tr>
<td>Rocker Arm Cover Bolts</td>
<td>4.3</td>
<td>—</td>
<td>38</td>
</tr>
<tr>
<td>Pushrod Cover Bolts</td>
<td>9.0</td>
<td>—</td>
<td>80</td>
</tr>
<tr>
<td>Water Pump Bolts</td>
<td>20</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>Thermostat Housing to Block Bolts</td>
<td>38</td>
<td>28</td>
<td>—</td>
</tr>
<tr>
<td>Water Outlet to Thermostat Housing Bolts</td>
<td>28</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Intake Manifold to Exhaust Manifold Bolts and Nuts</td>
<td>60</td>
<td>44</td>
<td>—</td>
</tr>
<tr>
<td>Manifold to Cylinder Head Bolts and Nuts</td>
<td>52</td>
<td>38</td>
<td>—</td>
</tr>
<tr>
<td>Spark Plug</td>
<td>20</td>
<td>15</td>
<td>—</td>
</tr>
</tbody>
</table>
SPECIAL TOOLS

<table>
<thead>
<tr>
<th>No.</th>
<th>Tool Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Torsional Damper Remover and Installer</td>
<td>J-23523-E</td>
</tr>
<tr>
<td>2.</td>
<td>Valve Spring Compressor</td>
<td>J-8062</td>
</tr>
<tr>
<td>3.</td>
<td>Support Plate</td>
<td>J-22912-01</td>
</tr>
<tr>
<td>4.</td>
<td>Crankshaft Seal Installer and Centering Tool</td>
<td>J-35468</td>
</tr>
<tr>
<td>5.</td>
<td>Main Bearing Replacer</td>
<td>J-8080</td>
</tr>
<tr>
<td>6.</td>
<td>Piston Ring Compressor</td>
<td>J-8037</td>
</tr>
<tr>
<td>7.</td>
<td>Guide Set</td>
<td>J-5239</td>
</tr>
<tr>
<td>8.</td>
<td>Hydraulic Lifter Remover (Slide Hammer Type)</td>
<td>J-23738-A</td>
</tr>
<tr>
<td>9.</td>
<td>Hydraulic Lifter Remover (Plier Type)</td>
<td>J-9290-01</td>
</tr>
<tr>
<td>10.</td>
<td>Reamer (0.003-inch oversize)</td>
<td>J-3049</td>
</tr>
<tr>
<td>11.</td>
<td>Reamer (0.013-inch oversize)</td>
<td>J-5802-01</td>
</tr>
<tr>
<td>12.</td>
<td>Stud Installer</td>
<td>J-5715</td>
</tr>
<tr>
<td>13.</td>
<td>Stud Remover</td>
<td>J-6036</td>
</tr>
<tr>
<td>14.</td>
<td>Reamer (0.003-inch oversize)</td>
<td>J-6880</td>
</tr>
<tr>
<td>15.</td>
<td>Crankshaft Gear Puller</td>
<td>J-24420-A</td>
</tr>
<tr>
<td>16.</td>
<td>Crankshaft Gear Installer</td>
<td>J-5590</td>
</tr>
<tr>
<td>17.</td>
<td>Dial Indicator Adapter</td>
<td>J-8520</td>
</tr>
<tr>
<td>18.</td>
<td>Oil Pump Suction Pipe Installer</td>
<td>J-21882</td>
</tr>
</tbody>
</table>

1. Torsional Damper Remover and Installer
2. Valve Spring Compressor
3. Support Plate
4. Crankshaft Seal Installer and Centering Tool
5. Main Bearing Replacer
6. Piston Ring Compressor
7. Guide Set
8. Vacuum Pump
9. Hydraulic Lifter Remover (Slide Hammer Type)
10. Hydraulic Lifter Remover (Plier Type)
11. Stud Remover
12. Reamer (0.003-inch oversize)
13. Reamer (0.013-inch oversize)
14. Stud Installer
15. Crankshaft Gear Puller
16. Crankshaft Gear Installer
17. Dial Indicator Adapter
18. Oil Pump Suction Pipe Installer

F-04493
SECTION 6A5

V8 ENGINE

5.0 LITER (305 Cu. In.)

5.7 LITER (350 Cu. In.)

7.4 LITER (454 Cu. In.)

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>6A5-2</td>
</tr>
<tr>
<td>Engine Identification</td>
<td>6A5-2</td>
</tr>
<tr>
<td>Disassembly</td>
<td>6A5-6</td>
</tr>
<tr>
<td>Accessory Removal</td>
<td>6A5-6</td>
</tr>
<tr>
<td>Cleaning</td>
<td>6A5-6</td>
</tr>
<tr>
<td>Tools and Shop Equipment</td>
<td>6A5-6</td>
</tr>
<tr>
<td>Draining the Engine</td>
<td>6A5-6</td>
</tr>
<tr>
<td>Exhaust Manifold Removal</td>
<td>6A5-6</td>
</tr>
<tr>
<td>Water Pump Removal</td>
<td>6A5-6</td>
</tr>
<tr>
<td>Intake Manifold Removal</td>
<td>6A5-6</td>
</tr>
<tr>
<td>Rocker Arm Cover Removal</td>
<td>6A5-7</td>
</tr>
<tr>
<td>Valve Train Component Removal</td>
<td>6A5-7</td>
</tr>
<tr>
<td>Cylinder Head Removal</td>
<td>6A5-8</td>
</tr>
<tr>
<td>Torsional Damper Removal</td>
<td>6A5-8</td>
</tr>
<tr>
<td>Oil Pan Removal</td>
<td>6A5-8</td>
</tr>
<tr>
<td>Oil Pump Removal</td>
<td>6A5-8</td>
</tr>
<tr>
<td>Front Cover Removal</td>
<td>6A5-8</td>
</tr>
<tr>
<td>Timing Chain and Camshaft Sprocket Removal</td>
<td>6A5-9</td>
</tr>
<tr>
<td>Camshaft Removal</td>
<td>6A5-9</td>
</tr>
<tr>
<td>Piston and Connecting Rod Removal</td>
<td>6A5-9</td>
</tr>
<tr>
<td>Flywheel Removal</td>
<td>6A5-13</td>
</tr>
<tr>
<td>Rear Crankshaft Oil Seal Retainer Removal (5.0 L and 5.7 L Engines)</td>
<td>6A5-13</td>
</tr>
<tr>
<td>Crankshaft Removal</td>
<td>6A5-13</td>
</tr>
<tr>
<td>Cleaning, Inspection, and Repair</td>
<td>6A5-14</td>
</tr>
<tr>
<td>Block</td>
<td>6A5-14</td>
</tr>
<tr>
<td>Piston and Connecting Rod Assemblies</td>
<td>6A5-15</td>
</tr>
<tr>
<td>Intake and Exhaust Manifold</td>
<td>6A5-16</td>
</tr>
<tr>
<td>Camshaft</td>
<td>6A5-16</td>
</tr>
<tr>
<td>Camshaft Bearings</td>
<td>6A5-17</td>
</tr>
<tr>
<td>Timing Chain and Sprockets</td>
<td>6A5-17</td>
</tr>
<tr>
<td>Front Cover</td>
<td>6A5-17</td>
</tr>
<tr>
<td>Water Pump</td>
<td>6A5-17</td>
</tr>
<tr>
<td>Oil Pan and Rocker Arm Covers</td>
<td>6A5-18</td>
</tr>
<tr>
<td>Oil Pump</td>
<td>6A5-19</td>
</tr>
<tr>
<td>Valve Train Components</td>
<td>6A5-19</td>
</tr>
<tr>
<td>Cylinder Head</td>
<td>6A5-20</td>
</tr>
<tr>
<td>Thermostat and Water Outlet</td>
<td>6A5-24</td>
</tr>
<tr>
<td>Torsional Damper</td>
<td>6A5-24</td>
</tr>
<tr>
<td>Crankshaft and Bearings</td>
<td>6A5-24</td>
</tr>
<tr>
<td>Oil Filter Bypass Valve</td>
<td>6A5-25</td>
</tr>
<tr>
<td>Rear Crankshaft Oil Seal Retainer Removal (5.0 L and 5.7 L Engines)</td>
<td>6A5-26</td>
</tr>
<tr>
<td>Assembly of Engine</td>
<td>6A5-26</td>
</tr>
<tr>
<td>Prior to Assembly</td>
<td>6A5-26</td>
</tr>
<tr>
<td>Rear Crankshaft Oil Seal Installation (7.4 L Engines)</td>
<td>6A5-26</td>
</tr>
<tr>
<td>Crankshaft and Main Bearing Installation</td>
<td>6A5-27</td>
</tr>
</tbody>
</table>
CONTENTS (CONT.)

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly of Engine (Cont.)</td>
<td></td>
</tr>
<tr>
<td>Rear Crankshaft Oil Seal and Retainer Installation (5.0 L and 5.7 L Engines)</td>
<td>.6A5-29</td>
</tr>
<tr>
<td>Camshaft, Timing Chain, and Sprocket Installation</td>
<td>.6A5-30</td>
</tr>
<tr>
<td>Front Cover Installation</td>
<td>.6A5-30</td>
</tr>
<tr>
<td>Torsional Damper Installation</td>
<td>.6A5-30</td>
</tr>
<tr>
<td>Piston and Connecting Rod Installation</td>
<td>.6A5-31</td>
</tr>
<tr>
<td>Oil Pump Installation</td>
<td>.6A5-32</td>
</tr>
<tr>
<td>Oil Pan Installation</td>
<td>.6A5-32</td>
</tr>
<tr>
<td>Cylinder Head Installation</td>
<td>.6A5-33</td>
</tr>
<tr>
<td>Valve Train Component Installation</td>
<td>.6A5-34</td>
</tr>
<tr>
<td>Valve Adjustment</td>
<td>.6A5-34</td>
</tr>
<tr>
<td>Intake Manifold Installation</td>
<td>.6A5-35</td>
</tr>
<tr>
<td>Rocker Arm Cover Installation</td>
<td>.6A5-36</td>
</tr>
<tr>
<td>Exhaust Manifold Installation</td>
<td>.6A5-36</td>
</tr>
<tr>
<td>Water Pump Installation</td>
<td>.6A5-37</td>
</tr>
<tr>
<td>Engine Accessory Installation</td>
<td>.6A5-37</td>
</tr>
<tr>
<td>Engine Set-Up and Testing</td>
<td>.6A5-37</td>
</tr>
<tr>
<td>Specifications</td>
<td>.6A5-41</td>
</tr>
<tr>
<td>Special Tools</td>
<td>.6A5-46</td>
</tr>
</tbody>
</table>

DESCRIPTION

GM V8 engines covered by this section are 90-degree V8 type, overhead valve, water cooled, with cast iron block and heads.

The camshaft is supported by five plain type bearings and is chain driven. Motion from the camshaft is transmitted to the valves by hydraulic lifters, pushrods, and ball-pivot type rocker arms. The valve guides are integral in the cylinder head.

The crankshaft is supported by five precision insert type bearings, with crankshaft thrust taken at the number five (rear) bearing.

The connecting rods are forged steel, with precision insert type crankpin bearings. The piston pins are a press fit in the connecting rods.

The pistons are cast aluminum alloy. The piston pins are a floating fit in the pistons.

The gear type oil pump is driven through an extension shaft from the distributor driveshaft which is gear driven from the camshaft. The oil is drawn from the engine oil pan through a pickup screen and tube. Pressurized oil is delivered through internal passages to the camshaft and crankshaft to lubricate the bearings. Lubrication diagrams are shown in figure 1, 2, and 3.

ENGINE IDENTIFICATION

Two basic types of engines, with three different displacements, are covered in this section.

The first type is the “small block” engine, which is available in 5.0 L (305 cu. in.) and 5.7 L (350 cu. in.) displacements.

The second type is the 7.4 L (454 cu. in.) engine, which is sometimes referred to as the “Mark IV” engine.

To determine the displacement of the engine, use the Vehicle Identification (VIN) of the vehicle the engine was removed from. Refer to “Specifications” at the end of this section. If the VIN is not available, the bore and stroke of the engine involved can be measured and compared against “Specifications” to determine the engine model.

Refer to General Information (Section 0A) in this manual for further information.
Figure 1—Lubrication Diagram (5.0L and 5.7L Engines)
Figure 2—Lubrication Diagram (5.0L and 5.7L Engines)
Cylinder walls are oiled by oil thrown off pressure fed connecting rod bearings.

Figure 3—Lubrication Diagram (7.4L Engines)
DISASSEMBLY

TOOLS AND SHOP EQUIPMENT

A clean, well lit work area should be available. Other necessary equipment includes: A suitable parts cleaning tank, compressed air supply, trays to keep parts and fasteners organized, and an adequate set of hand tools.

An approved engine repair stand will aid the work and help prevent personal injury or damage to engine components.

Special tools are illustrated throughout this section, and are listed at its end. These tools (or their equivalents) are specially designed to quickly and safely accomplish the operations for which they are intended. The use of these tools will also minimize possible damage to engine components.

Some precision measuring tools are required for inspection of certain critical components. Torque wrenches will be necessary for correct assembly of various parts.

ACCESSORY REMOVAL

This manual assumes that the engine accessories have been removed. These accessories may include one or more of the following:

- Hydraulic Pump
- AIR Pump
- Generator
- Air Conditioning
- Compressor
- Cooling Fan

DRAINING THE ENGINE

- Remove or Disconnect
 1. Oil pan drain plug. Allow the oil pan to drain.
 2. Oil filter.
 3. Block drain plugs. Allow the coolant to drain.

- Install or Connect
 1. Oil pan drain plug.
 2. Block drain plugs.

EXHAUST MANIFOLD REMOVAL

- Remove or Disconnect (Figures 4 and 5)
 1. Oil dipstick tube.
 2. Bolts and studs (4).
 3. Tab washers (3) and washers (2) (some 5.0 L and 5.7 L engines).
 4. Heat shields (6) (if used).
 5. Exhaust manifold (1). Take care not to damage the AIR injection tubes (if used).

WATER PUMP REMOVAL

- Remove or Disconnect (Figure 6)
 1. Bolts (12).
 2. Water pump (10).

INTAKE MANIFOLD REMOVAL

- Remove or Disconnect (Figures 7 and 8)
 1. Bolts (20).
 2. Intake manifold (21).
 3. Gaskets (22).
 4. Seals (23) (7.4 L engines).

CLEANING

Remove the engine accessories before cleaning, to provide better access to engine exterior surfaces. After removing the carburetor, distributor, fuel pump, etc., cover the openings with tape to prevent the entry of water, solvent, and dirt.

Methods used to clean the engine will depend on the aids which are available. Steam cleaning, pressure washing, or solvent cleaning are some acceptable methods. Allow the engine to dry before beginning the work.

It is important that the engine be as clean as possible to prevent dirt from entering critical areas during disassembly.

ACCESSORY REMOVAL

This manual assumes that the engine accessories have been removed. These accessories may include one or more of the following:

- Hydraulic Pump
- AIR Pump
- Generator
- Air Conditioning
- Compressor
- Cooling Fan

Diagrams of emission and vacuum hose routings, wiring harness routing, accessory drive belt layout, etc., should be made before removing accessories.

CLEANING

Remove the engine accessories before cleaning, to provide better access to engine exterior surfaces. After removing the carburetor, distributor, fuel pump, etc., cover the openings with tape to prevent the entry of water, solvent, and dirt.

Methods used to clean the engine will depend on the aids which are available. Steam cleaning, pressure washing, or solvent cleaning are some acceptable methods. Allow the engine to dry before beginning the work.

It is important that the engine be as clean as possible to prevent dirt from entering critical areas during disassembly.
ROCKER ARM COVER REMOVAL

Remove or Disconnect (Figure 9)
1. Nuts (30), clips (35), and reinforcements (31) or bolts (36) and washers (37).
2. Rocker arm covers (32). If the rocker arm cover adheres to the cylinder head, try to shear the gasket by bumping the end of the cover with a rubber mallet. If the cover will not come loose, carefully pry until loose. DO NOT DISTORT THE SEALING FLANGE.

VALVE TRAIN COMPONENT REMOVAL

Remove or Disconnect (Figures 10 through 13)

Tools Required:
J 3049 Valve Lifter Remover (Plier Type)

1. Nuts (40), balls (41), rocker arms (42) and pushrods (43).
 - Note that on 7.4 L engines, the exhaust valve pushrods are longer than the intake valve pushrods.
 - Every effort should be made to insure that these mating parts are installed in their original locations during assembly. A simple valve train component organizer rack can be made from a piece of wood, as shown in figure 11.
2. Hydraulic lifters (44).
 - Remove the lifters one at a time, using a magnet. Place the lifters in the organizer rack, or tag them in some way to insure that they can be returned to the valve lifter bore from which they were removed.
Some lifters may be stuck in their bores due to gum or varnish deposits. These lifters can be removed using either J 3049 (figure 12) or J 9290-01 (figure 13).

CYLINDER HEAD REMOVAL

Remove or Disconnect (Figure 10)
1. Bolts (45).
2. Cylinder heads (46). Use care when handling the cylinder heads, to prevent damage to rocker arm studs or gasket sealing surfaces.

TORSIONAL DAMPER REMOVAL

Remove or Disconnect (Figure 14)
1. Crankshaft pulley.
2. Torsional damper retaining bolt and washer.

OIL PAN REMOVAL

Remove or Disconnect (Figures 15 and 16)
1. Oil pan bolts, timing marker (if used), clips and reinforcements.
2. Oil pan.
3. Gasket or gaskets.
4. Front and rear oil pan seals (7.4 L engines).

OIL PUMP REMOVAL

Remove or Disconnect (Figure 15)
1. Bolt (72).
2. Oil pump, with drive shaft and connector.

FRONT COVER REMOVAL

Remove or Disconnect (Figure 17)
1. Bolts (93).
2. Timing tab (92) (7.4 L engines).
3. Front cover (91).
4. Gasket (90).
TIMING CHAIN AND CAMSHAFT SPROCKET REMOVAL

- Remove or Disconnect (Figure 18)
 - Timing chain free play. If the chain can be moved back and forth in excess of 16 mm (5/8-inch), make a note that the timing chain should be replaced during assembly.

- Remove or Disconnect (Figure 18)
 1. Bolts (100).
 2. Camshaft sprocket (101) and timing chain (102) together.

CAMSHAFT REMOVAL

- Remove or Disconnect (Figure 19)
 - Camshaft.
 - Install three 5/16-18 bolts 100–125 mm (4–5-inches) long into the camshaft tapped holes. Use these bolts to handle the camshaft.
 - Pull the camshaft from the block.
 - Use care to prevent damage to the camshaft and bearings.

PISTON AND CONNECTING ROD REMOVAL

- Remove or Disconnect (Figures 20 and 21)
 Tool Required:
 J 5239 Connecting Rod Guide Set
 1. Ridge (or deposits) at the top of the cylinder as follows:
Figure 10—Cylinder Head and Components (Typical)

- Turn the crankshaft until one piston is at the bottom of its stroke. Place a soft cloth on top of the piston.
- Using the manufacturer’s directions, install a ridge reamer into the top of the cylinder (figure 20). Perform the cutting operation.
- After the ridge and/or deposits are removed, remove the ridge reamer. Turn the crankshaft until the piston is at the top of its stroke. Remove the cloth and cuttings.
- Repeat this procedure for each piston.

Figure 11—Valve Train Component Organizer

A. 22 mm (7/8-inch)
B. 55 mm (2 1/4-inch)
C. 40 mm (1 1/2-inch)
D. 10 mm (3/8-inch) drill, 25 mm (1-inch) deep
E. 22 mm (7/8-inch) drill, 25 mm (1-inch) deep
F. Material: 50 mm x 200 mm (2 x 8-inch) lumber

Figure 12—Removing the Hydraulic Lifter
2. Connecting rod caps as follows:
 - Make note of the arrangement of the connecting rod markings, to insure that they will be returned to their proper position during assembly. Mark the connecting rods with a scratch awl if necessary.
 - Remove the connecting rod nuts.
 - To avoid mismatching the connecting rods and connecting rod cap, remove only one connecting rod cap at a time. Place the piston at the bottom of its stroke.
 - Remove the connecting rod cap.
 - Install J 5239 onto the studs. Use of the specified guide set will prevent the connecting rod from scratching the bore or crankshaft journal during the removal process. The tool will also prevent the rod bearing half from falling out of the connecting rod during removal.

3. Connecting rod and piston from the block.
 - Push on the guide rod (item A, figure 21) to push the piston and connecting rod out.
A. Apply RTV Sealer to Shaded Area
74. Gasket
75. Reinforcement
76. Rear Oil Pan Seal
77. Timing Marker (Some Engines)
78. Front Oil Pan Seal
79. Clip (Number and Location Varies)

Figure 16—Oil Pan (7.4L Engines)

B. 16 mm
(5/8-inch)
Maximum
100. Bolt
101. Camshaft Sprocket
102. Timing Chain

Figure 18—Timing Chain and Sprockets

- Use the guide rod to prevent the connecting rod from scoring the cylinder bore.

- Assemble the connecting rod cap onto the connecting rod. Do not tighten.

- Repeat this procedure on the remaining piston and connecting rod assemblies.

Figure 17—Front Cover

Figure 19—Removing the Camshaft
FLYWHEEL REMOVAL

Remove or Disconnect (Figure 22)
1. Bolts (111).
2. Flywheel (110).

REAR CRANKSHAFT OIL SEAL RETAINER REMOVAL
(5.0 L and 5.7 L ENGINES)

Remove or Disconnect (Figure 23)
1. Screws and nuts.
2. Seal retainer (121).
3. Gasket (120).

CRANKSHAFT REMOVAL

Remove or Disconnect (Figures 24 and 25)
- Check the main bearing caps for location markings. Mark the caps if necessary. The caps must be returned to their original locations during assembly.
1. Bolts (134).

A. Rear of Block
120. Gasket
121. Retainer
122. Screw
123. Nut
124. Stud

Figure 20—Removing the Cylinder Ridge

Figure 21—Removing the Piston and Connecting Rod

Figure 22—Flywheel (5.0L and 5.7L Shown)

Figure 23—Rear Crankshaft Oil Seal Retainer (5.0L and 5.7L Engines)
CLEANING, INSPECTION, AND REPAIR

A solvent tank, large enough to hold the larger engine parts, will be needed along with various bristle brushes and a gasket scraper. A source of compressed air will be helpful in the cleaning operations.

Precision measuring tools will be required for the inspection procedure. These include: micrometers, cylinder bore gage, feeler gages, dial indicator set, etc. The inspection work, performed with the proper method and tools, is most important. The rebuilt engine cannot be expected to perform properly if parts worn beyond acceptable limits are reused.

BLOCK

Clean
1. Block in solvent.
2. Block gasket surfaces.
3. Cylinder bores.
4. Oil galleries and passages.
5. Scale deposits from the coolant passages.

Inspect
1. All expansion plugs for poor fit or leakage.
2. Hydraulic lifter bores for deep scratches and varnish deposits.
3. Block for cracks.
Figure 26—Checking the Block Gasket Surface

- Cylinder walls.
- Coolant jackets.
- Main bearing webs.
- Engine mount bosses.

4. Main bearing bores and main bearing caps.
 - All main bearing bores should be round and uniform in ID at all bearing supports.
 - The area where the main bearing inserts contact the main bearing bore should be smooth.
 - If a main bearing cap is damaged and requires replacement, replace it as outlined later.

Measure (Figure 26)

- Head gasket surface distortion. Use a straight edge and feeler gage to check for flatness of the milled surface at the top of the cylinder block. The surface must be flat (within 0.10mm [0.004-inch]) to assure proper head gasket sealing.

MAIN BEARING CAP REPLACEMENT

Install or Connect

1. New main bearing cap. The arrow on the main bearing cap faces the front of the engine (opposite the flywheel).
2. Main bearing cap bolts.

Tighten

- Bolts to "Specifications."

Measure (Figure 27)

- Main bearing vertical ID (inside diameter). Use an inside micrometer.
- This dimension should be the same as the other main bearing bore vertical diameters.
- If it is necessary to increase the vertical ID, use an equal thickness of special service bearing cap shims at each side of the cap to provide the same dimension as at the other bores. This is necessary to assure the proper crush on the bearing inserts when the engine is assembled.

CYLINDER BORES

Inspect

- Cylinder bores for scoring and other damage.

Measure

- Cylinder out of round and taper. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

Cylinder Bore Reconditioning

- Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

PISTON AND CONNECTING ROD ASSEMBLIES

Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) and perform the following:

Disassemble

- Components as required.

Clean

- Components as outlined.

Inspect

- Components as outlined.

Measure

- Piston pin diameter and pin to piston clearance.
- Piston to bore clearance, and fit pistons as outlined.

Assemble

- Components as outlined.
Important

- Each connecting rod and bearing cap should be marked, beginning at the front of the engine. Cylinders 1, 3, 5 and 7 are the left bank and 2, 4, 6, and 8 are the right bank. The numbers on the connecting rod and bearing cap must be on the same side when installed in the cylinder bore. If a connecting rod is ever transposed from one block or cylinder to another, new connecting rod bearings should be fitted and the connecting rod should be numbered to correspond with the new cylinder number.

Measure

- Ring end gap and ring clearance.

Inspect

- Ring fit.

INTAKE AND EXHAUST MANIFOLD

Clean

- Old pieces of gasket from the gasket surfaces.
- Excessive carbon build-up in the exhaust passages of the intake manifold.
- Scale and deposits from the coolant passages of the intake manifold.
- EGR passage (if used) of excessive carbon deposits.

Inspect (Figure 28)

- Manifolds for cracks, broken flanges, and gasket surface damage.
- Alignment of exhaust manifold flanges. Use a straight edge and feeler gage (figure 28). If the flanges do not align, the manifold is warped and should be replaced.

CAMSHAFT

Important

- Whenever the camshaft needs to be replaced, a new set of valve lifters must also be installed.

Inspect

- Camshaft lobes and journals for scratches, pitting, scoring, and wear.

Measure (Figures 29 and 30)

Tool Required:

J 7872 Dial Indicator (or equivalent)

- Camshaft runout (figure 29). Mount the camshaft in V-blocks or between centers. Using J 7872, check the intermediate camshaft journal. If runout exceeds (0.0015-inch), the camshaft is excessively bent and should be replaced along with the camshaft bearings.

- Camshaft journal out-of-round. Use a micrometer (figure 30). If the journals are more than 0.001-inch out-of-round, replace the camshaft.
— Camshaft journal diameter. Use a micrometer (figure 30). The proper diameter is listed in "Specifications."

CAMSHAFT BEARINGS
Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) for replacement procedures.

TIMING CHAIN AND SPROCKETS

Inspect
— Sprockets for chipped teeth and wear.
— Timing chain for damage.
— It should be noted that excessively worn sprockets will rapidly wear a new chain. Likewise, an excessively worn chain will rapidly wear a new set of sprockets.

CRANKSHAFT SPROCKET REPLACEMENT

Disassemble (Figures 31 and 32)
Tools Required:
J 5825 Crankshaft Sprocket Puller
(5.0 L and 5.7 L engines)
J1619 Crankshaft Sprocket Puller
(7.4 L engines)
1. Crankshaft sprocket. On 5.0 L and 5.7 L engines, use J 5825 (figure 31). On 7.4 L engines, use J 1619 (figure 32).
2. Key, if necessary.

Assemble (Figures 31 and 32)
Tools Required:
J 5590 Crankshaft Sprocket Installer
(5.0 L and 5.7 L engines)
J 22102 Crankshaft Sprocket Installer
(7.4 L engines)
1. Key, if removed.
2. Crankshaft sprocket. Use J 5590 (5.0 L and 5.7 L engines) or J 22102 (7.4 L engines). Make sure the timing mark faces outside.

FRONT COVER

Clean
• Old gasket from the gasket surfaces.

Inspect
— Timing marker for damage.
— Front cover for damage, dents, or cracks.

Disassemble
• Front crankshaft seal. Pry the seal out with a screwdriver.

WATER PUMP

Clean
• Old gasket from the gasket surface.

Important
• Do not immerse the pump in solvent. The solvent may enter the pump's permanently lubricated bearings, dissolve the bearings' lubricant supply, and cause premature bearing failure.
Inspect
- Water pump shaft for roughness and end play. If the shaft does not turn smoothly, or if there is excessive end play, replace the water pump.
- Water pump body at the drain hole. If there is evidence of coolant leakage, the water pump shaft seal is leaking and the water pump should be replaced.

OIL PAN AND ROCKER ARM COVERS

Clean
- Parts in solvent. Remove all sludge and varnish.
- Old gaskets from the gasket surfaces.

Inspect
- Gasket flanges for bending or damage.
- Rubber grommets and parts on the rocker arm cover for deterioration.
- Oil pan for rock damage or cracks.
- Oil pan baffle for lack of fit.
- Drain plug threads for stripping.

OIL PUMP

Disassemble (Figures 34 and 35)
1. Oil pump driveshaft (178) and connector (179).
2. Cover screws (186).
3. Cover (182) and gasket (180) (7.4L engines).
- Mark the gear teeth so the pump gears can be installed with the same gear teeth indexed.
4. Drive gear and shaft (181).
5. Idler gear (181).
6. Spring retaining pin (185).
7. Washer (189) (7.4 L engines).
8. Spring (184).
9. Pressure relief valve (183).
Figure 35—Oil Pump Components (7.4L Engines)

- Do not remove the pickup screen and pipe unless replacement is required.
- The pickup pipe is a press fit in the pump body (182).
- Do not try to remove the screen from the pipe. The pickup screen and pipe is serviced as an assembly only.

Clean
- All parts in clean solvent and blow dry with compressed air.

Inspect
- Pump body (180) and cover (182) for cracks or other damage.
- Gears (181 and 188) for wear.
- Drive gear and shaft (181) for lack of fit in the pump body (180).

- Inside of the cover (182) for wear that would permit oil to leak past the ends of the gears. The pump gears, cover, and body are not serviced separately. If the parts are damaged or worn, replace the entire oil pump assembly.
- Pressure relief valve (183) for fit. The regulator valve should slide freely in its bore without sticking or binding.

Assemble (Figures 34, 35, and 36)

Tool Required:
- J 21882 Pickup Tube and Screen Installer (5.0 L and 5.7 L engines)
- J 22144 Pickup Tube and Screen Installer (7.4L engines)

1. Pressure relief valve (183).
2. Spring (184).
3. Washer (189) (7.4 L engines).
4. Spring retaining pin (185).
5. Drive gear and shaft (181).
6. Idler gear (188) in the pump body (180) with the smooth side of the gear toward the pump cover opening. Index the marks made during disassembly.
7. Cover (182), gasket (190) (7.4L engines) and screws (186).

Tighten
- Screws (186) to 9.0 N·m (80 in. lbs.).
- Turn the driveshaft by hand to check for smooth operation.

NOTICE: Be careful of twisting, shearing or collapsing the pipe while installing in the pump.

8. Pickup screen and pipe (187) (if removed) (figure 36).
- If the pickup screen and pipe assembly was removed, it should be replaced with a new part. Loss of press fit condition could result in an air leak and loss of oil pressure.
- Mount the oil pump in a soft jawed vise.
- Apply sealer to the end of the pipe.
- Tap the pickup screen and pipe into place, using J 21882 (5.0 L and 5.7 L engines) or J 22144 (7.4 L engines), and a hammer.
- The pump screen must be parallel with the bottom of the oil pan when installed.

9. Oil pump driveshaft (178) and connector (179).

VALVE TRAIN COMPONENTS

PUSHRODS, ROCKER ARMS, BALL, AND NUTS

Clean
- Parts in solvent. Blow dry with compressed air.
- Make sure the oil passages in the pushrods are clear.

Inspect
- Rocker arms and balls at their mating surfaces. These surfaces should be smooth and free from scoring or other damage.
— Rocker arm areas which contact the valve stems and the sockets which contact the pushrods. These areas should be smooth and free of damage and wear.

— Rocker arm nuts.
 • The nuts are prevailing torque nuts. At least 6.2 N·m (55 in. lbs.) torque should be required to thread the nuts onto the rocker arm studs. If not, it is possible that the nut(s) could back off during engine operation, causing loss of lash and valve train noise.

— Pushrods for bending. Roll the pushrod on a flat surface to determine if it is bent. Replace if necessary.

— Ends of the pushrods for scoring or roughness.

HYDRAULIC LIFTERS
Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

CYLINDER HEAD
Disassemble (Figures 37, 38 and 39)
Tool Required:
J 8062 Valve Spring Compressor
1. Valve keepers (251).
 • Compress the springs (256) with J 8062 (figure 39).
 • Remove the valve keepers.
 • Remove J 8062.
2. Caps (253), shields (255), springs with dampers (256) and rotators (254).
3. O-ring seals (252) (if used) and seals (257).
4. Valves (258 and 259). Place them in a rack so they can be returned to their original position at assembly.

CLEANING AND INSPECTION OF COMPONENTS
Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) and perform the following:

Clean
• Components as outlined.

Inspect
• Components as outlined.

Measure
• Valve stem clearance.
• Valve spring tension and free length.
Other information outlined includes:
• Valve and seat grinding.
• Valve guide reaming.

ROCKER ARM STUD REPLACEMENT
(5.0 L AND 5.7 L ENGINES)
Tools Required:
J 5802-01 Stud Remover
J 5715 Reamer (0.003-inch oversize) or
J 6036 Reamer (0.013-inch oversize)
J 6880 Stud Installer
Rocker arm studs that have damaged threads or are loose in cylinder heads should be replaced. New studs are available in 0.003-inch and 0.013-inch oversize.
1. Place J 5802-01 over the stud to be removed. Install a nut and flat washer. Remove the stud by turning the nut (figure 40).
2. Ream the hole to the proper size for the replacement oversize stud. Use J 5715 for 0.003-inch oversize studs; J 6036 for 0.013-inch oversize studs (figure 41).
3. Coat lower end (press-fit area) of stud with hypoid axle lubricant. Drive the stud into place with a hammer and J 6880. Stud is installed to proper depth when the tool bottoms on the cylinder head (figure 42).
ROCKER ARM STUD AND PUSHROD GUIDE REPLACEMENT (7.4 L ENGINES)

The rocker arm studs used in 7.4 L engines are threaded in place.

Disassemble (Figure 38)

1. Rocker arm studs (250). Use a deep socket.

Assemble (Figure 38)

1. Pushrod guide.
2. Rocker arm studs. Use a deep socket.

Tighten

- Rocker arm studs to 68 N·m (50 ft. lbs.).
2. Seals (257) (intake valve only). Install the seals over the valve stems and seat them against the head.
3. Springs with dampers (256).
5. Caps (253) (intake valves only).
6. Rotators (254) (exhaust valves only).
7. O-ring seals (252) and valve keepers (251).

Tools Required:
- J 8062 Valve Spring Compressor
- J 23738-A Valve Seal Leak Detector

1. Valves (258 and 259).
 - Lubricate the valve stems with engine oil.
 - Insert the valves into the proper ports.

Figure 39—Compressing the Valve Springs

ASSEMBLY (5.0 L AND 5.7 L ENGINES)

Assemble (Figures 37, 39, and 43)

Figure 41—Reaming the Rocker Arm Stud Bore (5.0L and 5.7L Engines)

Figure 42—Installing the Rocker Arm Stud (5.0L and 5.7L Engines)

Figure 40—Removing the Rocker Arm Stud (5.0L and 5.7L Engines)
Figure 43—Checking the Valve Seal
(5.0L and 5.7L Engines)

- Compress the valve spring, using J 8062 (figure 39). Compress the spring enough so the lower valve stem groove can be clearly seen.
- Push a new O-ring seal onto the valve stem. The seal is to be installed on the stem's lower groove. Make sure the seal is flat and not twisted.
- Apply a small amount of grease to the area of the upper valve stem groove. Assemble the two valve keepers using the grease to hold the keys in place. Make sure the keepers seat properly in the groove.
- Release the compressor tool. Make sure the valve keepers stay in place.
- Repeat the preceding steps on the remaining valves.
- Check each seal, using J 23738-A (figure 43). Place the adapter cup over the shield. Operate the vacuum pump. Observe the vacuum pump gage. No air should be able to leak past the seal. If the seal will not hold a vacuum, it may have been damaged or improperly installed.

Measure (Figures 44 and 45)
- Valve spring installed height of each valve spring as follows:
 1. Use a narrow, thin scale. A cutaway scale (figure 44) may be helpful.
 2. Measure from the valve shim or spring seat to the top of the shield (255) (figure 45).

ASSEMBLY (7.4 L ENGINES)

Assemble (Figures 38 and 39)

Tool Required:
J 8062 Valve Spring Compressor
1. Valves (258 and 259).
 - Lubricate the valve stems with engine oil.
 - Apply a small amount of grease to the area of the upper valve stem groove. Assemble the two valve keepers using the grease to hold the keys in place. Make sure the keepers seat properly in the groove.
 - Release the compressor tool. Make sure the valve keepers stay in place.
 - Repeat the preceding steps on the remaining valves.
 - Check each seal, using J 23738-A (figure 43). Place the adapter cup over the shield. Operate the vacuum pump. Observe the vacuum pump gage. No air should be able to leak past the seal. If the seal will not hold a vacuum, it may have been damaged or improperly installed.

Figure 44—Cutaway Scale

3. If this measurement exceeds the figure given in "Specifications," install valve spring seat shims of sufficient thickness (between the spring and cylinder head) to give the desired measurement. NEVER shim the spring so as to give an installed height under the specified figure.

Measure (Figures 44 and 45)
- Valve spring installed height of each valve spring as follows:
 1. Use a narrow, thin scale. A cutaway scale (figure 44) may be helpful.
 2. Measure from the valve shim or spring seat to the top of the shield (255) (figure 45).
- Insert the valve into the proper port.
2. Rotators (254).
3. Seals (257).
- Lubricate the seals with engine oil.
- Push the seals into place.
4. Valve springs with dampers (256).
5. Caps (253).
6. Valve keepers (251).
- Compress the valve spring using J 8062 (figure 39). Compress the spring until the valve stem groove can be seen.
- Apply a small amount of grease to the area of the valve stem groove.
- Assemble the valve keepers, using the grease to hold the keys in place. Make sure the keepers seat properly in the groove.
- Release the compressor tools. Make sure the valve keepers stay in place.
- Repeat this procedure on the remaining valves.

Measure (Figures 44 and 45)
- Valve spring installed height of each valve spring.
 1. Use a narrow, thin scale. A cutaway scale (figure 44) may be helpful.
 2. Measure from the spring seat to the top of the valve spring (figure 45).
 3. If this measurement exceeds the figure given in "Specifications," install valve spring seat shims of sufficient thickness (between the spring and cylinder head) to give the desired measurement. NEVER shim the spring so as to give an installed height under the specified figure.

THERMOSTAT AND WATER OUTLET

Disassemble (Figure 46)
1. Bolts or studs (300).
2. Water outlet (301).
4. Thermostat (303).

Inspect
- Water outlet for cracks.

Thermostat Check
1. Suspend the thermostat and a thermometer in water with the thermometer located close to the thermostat. The thermostat must be completely submerged and the water thoroughly agitated while heating. Apply heat to the water and record both the temperature at which the thermostat begins to open and the temperature at which the thermostat is fully open.
2. Compare the temperature readings taken in the test with those given in the proper Truck Service Manual.
3. Do not attempt to repair the thermostat. If the thermostat does not function properly, replace it with a new unit which has been checked as directed previously.

Install or Connect (Figure 46)
1. Thermostat (303).
2. Gasket (302).
3. Water outlet (301).
4. Bolts or studs (300).

Tighten
- Bolts or studs to specifications.
 - 5.0 L and 5.7 L engines: 28 N·m (21 ft. lbs.).
 - 7.4 L engines: 40 N·m (30 ft. lbs.).

TORSIONAL DAMPER

Inspect
- Torsional damper weight for lack of fit or signs of shifting on the hub. Replace as needed.
- Area of the torsional damper hub shaft which contacts the front crankshaft seal for roughness or nicks. Replace the damper if this condition exists.

CRANKSHAFT AND BEARINGS

Clean
- Crankshaft with solvent.
- Blow all sludge from the oil passages with compressed air.
- Main bearing inserts. Wipe free of oil with a soft cloth.
Seal running surfaces with a non-abrasive cleaner.

Inspect—

- Crankshaft for cracks. Use the magnaflux method, if available.
- Crankpins, main bearing journals and thrust surfaces for scoring, nicks, or damage caused by lack of lubrication.
- Main bearing inserts for scoring or other damage.

In general, the lower inserts (except the #1 bearing) show greater wear and the most distress from fatigue. If, upon inspection, the lower insert is suitable for use, it can be assumed that the upper insert is also satisfactory. If the lower insert shows evidence of wear or damage, both the upper and lower inserts must be replaced.

Measure (Figures 47 and 48)

- Main bearing and connecting rod journal diameters (figure 47). Compare with "Specifications." Grind or replace the crankshaft if necessary.
- Main bearing and connecting rod journals for taper and out-of-round (figure 47). If the journals are tapered or out-of-round more than 0.001-inch, grind or replace the crankshaft.
- Crankshaft run-out (figure 48).
 - Mount the crankshaft in V-blocks or between centers.
 - Use a dial indicator as shown.
 - If the main journals are misaligned, the crankshaft is bent and must be replaced, along with the main bearing.

Crankshaft Bearing Availability

Crankshaft main and connecting rod bearings are available in 0.001, 0.002, 0.010, and 0.020-inch undersizes.

OIL FILTER BYPASS VALVE

Disassemble (Figure 49)
1. Bolts (321).
2. Oil filter bypass valve (320).

Clean
- Oil filter bypass valve.
- Oil passages in the block.

Inspect (Figure 49)
- Valve disc (item A) and spring for damage or sticky operation. Replace the assembly if faulty.

Assemble (Figure 49)
1. Oil filter bypass valve (320).
2. Bolts (321).

Tighten
- Bolts (321) to 9.0 N·m (80 in. lbs.).
Rear Crankshaft Oil Seal Retainer (5.0 L and 5.7 L Engines)

Disassemble (Figure 50)
- Rear crankshaft oil seal. Insert a screwdriver into the notches provided in the seal retainer and pry the seal out (figure 50).

Clean
- All traces of old gasket from the retainer.

Inspect
- Retainer for cracks, porosity, and damage to the sealing surfaces.

Important
- Install the new rear crankshaft oil seal with the proper tool, after the retainer is assembled to the engine, as outlined later.

ASSEMBLY OF ENGINE

Prior to Assembly

The importance of cleanliness during the assembly procedure cannot be overstressed. Dirt will cause premature wear of the rebuilt engine.

Lubricate all moving parts lightly with engine oil or engine assembly lubricant (unless specified otherwise) during assembly. This will provide initial lubrication when the engine is started.

Rear Crankshaft Oil Seal Installation (7.4 L Engines)

An oil seal installation tool (figure 51) should be fabricated (if not provided in the seal kit) to prevent seal damage during installation. Extreme care should be exercised when installing this seal to protect the sealing bead located in the channel on the outside diameter of the seal.

Install or Connect (Figures 51, 52, and 53)
1. Lower seal (131) (figure 52).
Coat the seal lips lightly with engine oil. Keep the oil off the oil seal mating ends.

2. Upper seal half (130).

- Insert the seal half in the block using the installation tool to protect the back sealing bead of the seal from the sharp corner of the block. Position the seal and the tip of the tool so that the seal contacts the tool. Make sure that the oil seal lip is positioned toward the front of the engine.
- Feed the seal into position the same way as for the main bearing cap, gradually, using the tool as a "shoe-horn" to protect the seal outer diameter from damage. The tool must remain in position until the seal is properly in position, with both ends flush with the block.
- Remove the tool, being careful not to withdraw the seal.

CRANKSHAFT AND MAIN BEARING INSTALLATION

Main bearings are of the precision insert type and do not use shims for adjustment. If clearances are excessive, a new bearing plus both upper and lower inserts will be required. Service bearings are available in standard size and 0.001-inch, 0.002-inch, 0.010-inch, and 0.020-inch undersize. 0.009 inch is available for 5.0L and 5.7L engines only.

Selective fitting of both rod and main bearing inserts is necessary obtain close tolerances. For this reason you may use, for example, one half of a 0.001-inch undersize insert which will decrease the clearance 0.0005-inch from using a full standard bearing.

UNDERSIZE MAIN JOURNALS (5.0 L AND 5.7 L ENGINES)

- On 5.0 L and 5.7 L engines, when a production crankshaft cannot be precision fit by the method described previously, it is then ground 0.009-inch undersize ON ONLY THOSE MAIN JOURNALS THAT CANNOT BE PROPERLY FITTED. ALL JOURNALS WILL NOT BE NECESSARILY BE GROUND. A 0.009-inch undersize bearing or 0.010-inch undersize bearing will then be used for precision fitting in the same manner as previously described.

OVERSIZE REAR MAIN BEARING THRUST FACES (5.0 L AND 5.7 L ENGINES)

- Some 5.0 L and 5.7 L production engines may have rear main bearings that are 0.008-inch wider than standard across the thrust faces.
- The crankshaft on these engines can be identified by "008" stamped on the rear counterweight.
- If the rear main bearings are replaced, they must have the proper distance between thrust faces to obtain correct crankshaft end play.

1. Upper main bearing inserts to the block.
Important

- If any undersized bearings are used, make sure they are fitted to the proper journals.

2. Crankshaft.
3. Lower main bearing inserts to the main bearing caps.

Measure
- Main bearing clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).
- Apply engine oil to the main bearing inserts.

4. Main bearing caps (except rear cap) and bolts to the block.

Tighten
- Main bearing cap bolts to specifications.
 - 5.0 L and 5.7 L engines: 110 N·m (80 ft. lbs.).
 - 7.4 L engines 150 N·m (110 ft. lbs.).

5. Rear main bearing cap and bolts to the block.

- On 7.4 L engines, apply a brush-on type oil sealing compound to the mating surface of the block and cap (figure 54). Do not allow any sealant on either crankshaft or rear oil seal.

Tighten
- Rear main bearing cap bolts temporarily to 14 N·m (10 ft. lbs.).

Measure (Figure 55)
- Crankshaft end play, as follows:
 - Tap the end of the crankshaft first rearward then forward with a lead hammer. This will line up the rear main bearing and crankshaft thrust surfaces.

Tighten
- Rear main bearing cap bolts to specifications:
 - 5.0 L and 5.7 L engines: 110 N·m (80 ft. lbs.).
 - 7.4 L engines 135: N·m (100 ft. lbs.).

2. With the crankshaft forced forward, measure at the front end of the rear main bearing with a feeler gage (figure 55). The proper clearance is 0.002-0.006-inch (5.0L and 5.7L engines), 0.006-0.010-inch (7.4L engines).

3. On 5.0 L and 5.7 L engines, if correct end play cannot be obtained, be certain that the correct size rear main bearing has been installed. Production engines may have rear main bearings that are 0.008-inch wider across the thrust faces than standard, as explained previously.

Inspect
- Crankshaft for binding. Try turning the crankshaft to check for binding. If the crankshaft does not turn freely, loosen the main bearing cap bolts, on one cap at a time, until the tight bearing is located. Burrs on the bearing cap, foreign matter between the insert and the block or the bearing cap, or a faulty insert could cause a lack of clearance at the bearing.

REAR CRANKSHAFT OIL SEAL AND RETAINER INSTALLATION (5.0 L AND 5.7 L ENGINES)

Install or Connect (Figures 56 and 57)

Tool Required:
- J 35621 Seal Installer

- Whenever the seal retainer is removed, a new retainer gasket and rear crankshaft oil seal must be installed.

1. Gasket (120) to the block. It is not necessary to use sealant to hold the gasket in place.
2. Seal retainer (121).
3. Screws and nuts.
A. Rear of Block
120. Gasket
121. Retainer
122. Screw
123. Nut
124. Stud

Figure 56—Rear Crankshaft Oil Seal Retainer
(5.0L and 5.7L Engines)

Tighten

- Screws and nuts to 15.3 N·m (135 in. lbs).

4. Rear crankshaft oil seal (figure 57).
- Make sure the crankshaft rear chamfer is free of grit, loose rust, and burrs. Correct as needed.
- Lubricate the inner and outer diameter of the seal with engine oil.
- Install the seal on J 35621.
- Position J 35621 against the crankshaft. Thread the attaching screws into the tapped holes in the crankshaft.
- Tighten the screws securely with a screwdriver. This will ensure that the seal is installed squarely over the crankshaft.
- Turn the handle until it bottoms.
- Remove J 35621.

Figure 57—Installing the Rear Crankshaft Oil Seal
(5.0L and 5.7L Engines)

Figure 58—Installing the Camshaft

CAMSHAFT, TIMING CHAIN AND SPROCKET INSTALLATION

Install or Connect (Figures 58 and 59)

- Coat the camshaft lobes and journals with Engine Oil Supplement (GM part number 1051396) or equivalent.

1. Camshaft (figure 58).

Figure 59—Timing Marks

Figure 58—Installing the Camshaft

Figure 58—Installing the Camshaft

CAMSHAFT, TIMING CHAIN AND SPROCKET INSTALLATION

Install or Connect (Figures 58 and 59)

- Coat the camshaft lobes and journals with Engine Oil Supplement (GM part number 1051396) or equivalent.

1. Camshaft (figure 58).

Figure 58—Installing the Camshaft

CAMSHAFT, TIMING CHAIN AND SPROCKET INSTALLATION

Install or Connect (Figures 58 and 59)

- Coat the camshaft lobes and journals with Engine Oil Supplement (GM part number 1051396) or equivalent.

1. Camshaft (figure 58).
6A5-30 V8 ENGINE

90. Gasket
91. Front Cover
92. Timing Marker
93. Bolt

Figure 60—Front Cover

- Use three \(\frac{5}{16} \) - 18 bolts 100-125 mm (4-5-inches) long, threaded into the camshaft’s tapped holes, to handle the camshaft.
- Take care to avoid damaging the camshaft bearings.
- Remove the three bolts after installation.

2. Timing chain to the camshaft sprocket.

3. Camshaft sprocket and timing chain to the engine.

Important
- Align the timing marks on the camshaft sprocket and crankshaft sprocket (figure 59).

4. Camshaft sprocket bolts. Use the bolts to draw the camshaft sprocket onto the camshaft. DO NOT ATTEMPT TO HAMMER THE CAMSHAFT SPROCKET ONTO THE CAMSHAFT TO DO SO MAY DISLODGE THE REAR CAMSHAFT PLUG.

Tighten

- Camshaft sprocket bolts to specifications:
 - 5.0 L and 5.7 L engines: 28 N·m (21 ft. lbs.).
 - 7.4 L engines: 26 N·m (20 ft. lbs.).

FRONT COVER INSTALLATION

Install or Connect (Figure 60)

- Lubricate the lips of the front seal crankshaft oil with engine oil.

1. Gasket (90).
2. Front cover (91).
3. Timing tab (92) (7.4 L engines).
4. Bolts (93).

Measure

- Timing chain free play. The free play should not exceed 16 mm (\(\frac{5}{32} \)-inch).

Figure 61—Installing the Torsional Damper

Tighten

- Bolts (93) to specifications:
 - 5.0 L and 5.7 L engines: 10.8 N·m (96 in. lbs.).
 - 7.4 L engines: 11.3 N·m (100 in. lbs.).

TORSIONAL DAMPER INSTALLATION

Install or Connect (Figure 61)

Tools Required:

- J 23523-E Torsional Damper Puller and Installer

1. Crankshaft key.

NOTICE: The inertia weight section of the torsional damper is assembled to the hub with a rubber type material. The correct installation procedures (with the proper tool) must be followed or movement of the inertia weight section of the hub will destroy the tuning of the torsional damper.

2. Stud (item A, figure 61) to the crankshaft. Thread the stud fully into the tapped hole in the crankshaft.

3. Torsional damper over the end of the stud. Align the keyway in the torsional damper shaft with the crankshaft key.

4. Bearing, washer and nut (figure 61).
 - Turn the nut to pull the vibration damper into place.
 - Remove the tool.
 - Use a small amount of RTV sealant to seal the keyway to crankshaft joint.

5. Torsional damper bolt and washer.

Tighten

- Bolt to specifications:
 - 5.0 L and 5.7 L engines: 95 N·m (70 ft. lbs.).
 - 7.4 L engines: 115 N·m (85 ft. lbs.).
PISTON AND CONNECTING ROD INSTALLATION

CONNECTING ROD BEARING SELECTION

Connecting rod bearings are of the precision insert type and do not use shims for adjustment. DO NOT FILE RODS OR ROD CAPS. If clearances are excessive install a new bearing. Service bearings are available in standard size and 0.001-inch and 0.002-inch undersize for use with new and used standard size crankshafts, and in 0.010-inch and 0.020-inch undersize for use with reconditioned crankshafts.

On production 5.0 L and 5.7 L engines, it is possible to find an 0.010-inch undersize bearing. These are used in manufacturing for selective fitting.

Selective fitting of both rod and main bearing inserts is necessary to obtain close tolerances. For this reason you may use, for example, one half of a standard insert with one half of a 0.001-inch undersize insert which will decrease the clearance 0.0005-inch from using a full standard bearing.

INSTALLATION

Install or Connect (Figures 62 through 65)

Tools Required:
- J 5239 Connecting Rod Guide Set
- J 8037 Ring Compressor
- Lubricate the cylinder walls lightly with engine oil.
- Make sure the piston is installed in the matching cylinder.

1. Connecting rod bearing inserts.
 - Be certain that the inserts are of the proper size.
 - Install the inserts in the connecting rod and connecting rod cap.

2. Piston and connecting rod to the proper bore.
 - With the connecting rod cap removed, install J 5239 onto the connecting rod studs.

- Locate the piston ring end gaps as shown in figure 62 (5.0 L and 5.7 L engines) or figure 63 (7.4 L engines).
- Lubricate the piston and rings with engine oil.
- Without disturbing the ring end gap location, install J 8037 over the piston (figure 64).
- Use a hammer handle to tap the piston down into its matching bore.
On 5.0 L and 5.7 L engines, the notch in the piston crown (figure 62) must face the front of the engine.

On 7.4 L engines, the valve clearance notches must face the top of the block (figure 65).

• While tapping the piston into its bore, guide the connecting rod into position on the crankpin, using J 5239. Hold the ring compressor against the block until all rings have entered the cylinder bore.

Important
• Each connecting rod and bearing cap should be marked, beginning at the front of the engine. Cylinder 1, 3, 5 and 7 are the left bank and 2, 4, 6, and 8 are the right bank. The numbers on the connecting rod and bearing cap must be on the same side when installed in the cylinder bore. If a connecting rod is ever transposed from one block or cylinder to another, new connecting rod bearings should be fitted and the connecting rod should be numbered to correspond with the new cylinder number.

3. Connecting rod cap with bearing insert.

Measure
• Connecting rod bearing clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A). Then apply engine oil to the connecting rod bearing.

Tighten
• Connecting rod cap nuts to specifications.
 - 5.0 L and 5.7 L engines: 60 N·m (45 ft. lbs.).
 - 7.0 L engines: 66 N·m (48 ft. lbs.).

OIL PUMP INSTALLATION

Install or Connect
1. Oil pump with connector and oil pump driveshaft.
2. Oil pump to main bearing cap bolt.

Tighten
• Bolt to 90 N·m (65 ft. lbs.).

OIL PAN INSTALLATION

5.0 L AND 5.7 L ENGINES

Install or Connect (Figure 67)
1. Oil pan gasket to the oil pan.
2. Oil pan to the engine.
3. Oil pan bolts, nuts, and reinforcements.

Tighten
• Oil pan bolts to 11.3 N·m (100 in. lbs.).
• Oil pan nuts to 22.6 N·m (200 in. lbs.).

7.4 L ENGINES

Install or Connect (Figure 68)
1. Gaskets (74) to the block. Retain with gasket cement.
2. Rear oil pan seal (76) to the rear main bearing cap. The ends of the seal should mate against the gaskets (74).
3. Front oil pan seal (78) to the front cover. The ends of the seal should mate against the gaskets (74).
A. Apply RTV Sealer to Shaded Area
74. Gasket
75. Reinforcement
76. Rear Oil Pan Seal
77. Timing Marker (Some Engines)
78. Front Oil Pan Seal
79. Clip (Number and Location Varies)

Figure 68—Oil Pan (7.4L Engines)

4. Oil pan. Make sure the gasket and seals stay in place.
5. Clips (79), reinforcements (75) and bolts.

Tighten
- Bolts to specifications:
 - Oil pan to block bolts: 18.1 N·m (160 in. lbs.).
 - Oil pan to front cover bolts: 7.9 N·m (70 in. lbs.).

CYLINDER HEAD INSTALLATION

Clean
- Gasket surfaces on block and cylinder head.

Install or Connect (Figures 69, 70, and 71)
1. Head gasket.
 - On engines using a STEEL gasket, coat both sides of the new gasket with a good sealer. Spread the sealer thin and even. One method
40. Nut
41. Ball
42. Rocker Arm
43. Pushrod
44. Hydraulic Lifter
45. Bolt
46. Cylinder Head
47. Gasket

Figure 71—Cylinder Head Bolt Tightening Sequence
(7.4L Engines)

Tighten
- Bolts a little at a time using the sequence shown in figures 70 or 71 until the proper torque is reached:
 - 5.7 L engines: 90 N·m (65 ft. lbs.).
 - 7.4 L engines: 110 N·m (80 ft. lbs.).

VALVE TRAIN COMPONENT INSTALLATION

Important
- Replace all hydraulic lifters if a new camshaft was installed.

Install or Connect (Figure 69)
- Lubricate the hydraulic lifter bodies and feet with Engine Oil Supplement (GM part no. 1051396 or equivalent).
 1. Hydraulic lifters (44) to the block.
 2. Pushrods (43). Seat the pushrods into the socket in the hydraulic lifters.
 3. Cylinder head bolts. Coat the threads of the bolts with sealing compound (Loctite #592 or equivalent) and install finger tight.
 4. Rocker arms.
 5. Balls.

Figure 69—Cylinder Head and Components

of applying the sealer that will assure the proper coat is with the use of a paint roller. Too much sealer may hold the gasket away from the head or block.
- Use no sealer on engines using a composition STEEL ASBESTOS gasket.
- Place the gasket in position over the dowel pins with the bead up.

2. Cylinder head. Carefully guide the cylinder head into place over the dowel pins and head gaskets.

3. Cylinder head bolts. Coat the threads of the bolts with sealing compound (Loctite #592 or equivalent) and install finger tight.

Figure 70—Cylinder Head Bolt Tightening Sequence
(5.0L and 5.7L Engines)

Figure 72—Crankshaft Markings

VALVE ADJUSTMENT

1. Remove the rocker arm covers.
2. Crank the engine until the mark on the torsional damper lines up with the center or "0" mark on the timing tab (figure 72). The engine must be in the number one firing position. This may be determined by placing fingers on the number one cylinder's valves as the mark on the damper comes near the "0" mark on the crankcase front cover. If the valves are not moving, the engine is in the number one firing position. If the valves move as the mark comes up to the timing tab, the engine is in the number six firing position and should be turned over one more time to reach the number one position.
INTAKE MANIFOLD INSTALLATION

5.0 L AND 5.7 L ENGINES

Install or Connect (Figures 74 and 75)

1. Gaskets to the cylinder heads.
 - On TBI engines, make sure the tab and/or arrow faces the front of the engine. The side stamped “This Side Down” must face the cylinder head.

2. RTV sealant to the front and rear intake manifold sealing surfaces on the block as follows:
 - Refer to figure 74.

5.0 L AND 5.7 L ENGINES

Install or Connect (Figures 74 and 75)

1. Gaskets to the cylinder heads.

2. RTV sealant to the front and rear intake manifold sealing surfaces on the block as follows:
 - Refer to figure 74.

1. Gaskets (22) to the cylinder heads.

2. Seals (23) to the block.

3. Intake manifold (21).

Tighten

- Bolts to 48 N·m (35 ft. lbs.). Use the tightening sequence shown in figure 75.

7.4 L ENGINES

Install or Connect (Figures 76 and 77)

1. Gaskets to the cylinder heads.

2. RTV sealant to the front and rear intake manifold sealing surfaces on the block as follows:
 - Refer to figure 74.

3. Intake manifold to the engine.

4. Intake manifold bolts.

Tighten

- Bolts to 40 N·m (30 ft. lbs.). Use the tightening sequence shown in figure 77.
ROCKER ARM COVER INSTALLATION

5.0L AND 5.7L TBI ENGINES

安装或连接（图78）
1. 橡皮垫圈 (34)。
2. 摇臂盖 (32)。
3. 螺栓 (36) 和垫圈 (37)。

拧紧
- 螺栓至10.2 N·m（90 in. lbs.）

其他

安装或连接（图79）
1. 橡皮垫圈 (34)。
2. 摇臂盖 (32)。
3. 支撑 (31) 和夹子。
4. 螺母 (30)。

拧紧
- 螺母 (30) 按规范拧紧：
 - 5.0 L 和 5.7 L 引擎：7.3 N·m（65 in. lbs.）
 - 7.4 L 引擎：13.0 N·m（115 in. lbs.）

EXHAUST MANIFOLD INSTALLATION

安装或连接（图80和81）
1. 排气管 (1)。
2. 火花塞线支架（如果使用）。
3. 螺栓 (2)，连接垫圈 (3)（5.0 L 和 5.7 L 引擎）和螺栓或螺钉 (4)。

拧紧
- 螺栓或螺钉按规范拧紧：
 - 5.0 L 和 5.7 L 引擎带铸铁排气管：
 - 两个中心螺栓：36 N·m（26 ft. lbs.）。
 - 外部螺栓：28 N·m（20 ft. lbs.）。
 - 弯曲垫圈直至螺栓头。
 - 5.0 L 和 5.7 L 引擎带不锈钢排气管：36 N·m（26 ft. lbs.）。
 - 7.4 L 引擎：54 N·m（40 ft. lbs.）。
WATER PUMP INSTALLATION

Install or Connect (Figure 82)

1. Gaskets (11).
2. Water pump (10).

Tighten

- Bolts (12) to 40 N·m (30 ft. lbs.).

ENGINE ACCESSORY INSTALLATION

Install the engine accessories (distributor, carburetor, oil filter, generator, etc.) as directed in the proper Truck Service Manual. Connect all vacuum hoses and electrical equipment the same way as removed.

ENGINE SETUP AND TESTING

1. After overhaul, the engine should be tested before installation in the vehicle. If a suitable test stand is not available, the following procedure can be used after the engine is installed in the vehicle.
2. Fill the crankcase with the proper quantity and grade of oil.

Important

- If a new camshaft or hydraulic lifters were installed, add Engine Oil Supplement (GM part no. 1051396) or equivalent to the engine oil.
3. Fill the coolant system with the proper coolant.
4. With the ignition "OFF," or disconnected, crank the engine several times. Listen for any unusual noises or evidence that any parts are binding.
5. Start the engine and listen for unusual noises.
6. Run the engine at about 1000 until the engine is at operating temperature.
7. Listen for improperly adjusted valves or sticking lifters, and other unusual noises.
8. Check for oil and coolant leaks while the engine is running.
9. Using the proper Truck Service Manual or Emission Control Label for specifications, adjust the ignition timing, idle and mixture, and governor settings, if so equipped.

Figure 75—Intake Manifold Bolt Tightening Sequence (5.0L and 5.7L Engines)

Figure 76—Intake Manifold (7.4L Engines)
Figure 77—Intake Manifold Bolt Tightening Sequence (7.4L Engines)

30. Nut
31. Reinforcement
32. Rocker Arm Cover
33. Stud
34. Gasket
35. Clip
36. Bolt
37. Washer

Figure 78—Rocker Arm Cover Installation (5.0L and 5.7L Engines)
30. Nut
31. Reinforcement
32. Rocker Arm Cover
33. Stud
34. Gasket
35. Clip
(Number and Location Varies)

CAST IRON MANIFOLD (TYPICAL)

1. Exhaust Manifold
2. Washer
3. Tab Washer
4. Bolt/Stud

STAINLESS STEEL MANIFOLD

1. Exhaust Manifold
2. Washer
3. Tab Washer
4. Bolt/Stud

Figure 79—Rocker Arm Cover Installation (7.4L Engines)

Figure 80—Exhaust Manifold (5.0L and 5.7L Engines)
Figure 81—Exhaust Manifold (7.4L Engines)

CAST IRON MANIFOLD

1. Exhaust Manifold
4. Bolt/Stud
6. Spark Plug Wire Heat Shield

STAINLESS STEEL MANIFOLD

1. Exhaust Manifold
4. Bolt/Stud
6. Spark Plug Wire Heat Shield

5.0L AND 5.7L ENGINES

10. Water Pump
11. Gasket
12. Bolt

7.4L ENGINES

10. Water Pump
11. Gasket
12. Bolt

Figure 82—Water Pumps and Components
SPECIFICATIONS

ENGINE SPECIFICATIONS (5.0 L/5.7 L)

All Specifications are in INCHES unless otherwise noted.

GENERAL DATA:

<table>
<thead>
<tr>
<th>Type</th>
<th>V8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement</td>
<td>5.0L (305 Cu. In.)</td>
</tr>
<tr>
<td>RPO (VIN Code)</td>
<td>L03 (H)</td>
</tr>
<tr>
<td></td>
<td>LT9 (M)</td>
</tr>
<tr>
<td>Bore</td>
<td>3.736</td>
</tr>
<tr>
<td>Stroke</td>
<td>3.480</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>9.3:1</td>
</tr>
<tr>
<td>Firing Order</td>
<td>1-8-4-3-6-5-7-2</td>
</tr>
<tr>
<td>Oil Pressure (Minimum)</td>
<td>6 PSI @ 1000 RPM; 18 PSI min @ 2000 RPM; 24 PSI min. @ 4000 RPM</td>
</tr>
</tbody>
</table>

CYLINDER BORE:

<table>
<thead>
<tr>
<th>Diameter</th>
<th>3.7350-3.7385</th>
<th>3.9995-4.0025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out Of Round</td>
<td>Production</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td></td>
<td>Service</td>
<td>0.002 (Maximum)</td>
</tr>
<tr>
<td>Taper</td>
<td>Production</td>
<td>Thrust Side</td>
</tr>
<tr>
<td></td>
<td>Service</td>
<td>Relief Side</td>
</tr>
</tbody>
</table>

PISTON:

| Clearance | Production | 0.0007-0.0017 |
| | Service Limit | 0.0027 (Maximum) |

PISTON RING:

<table>
<thead>
<tr>
<th>Compression Groove Clearance</th>
<th>Production</th>
<th>Top 2nd</th>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.000012-0.00032</td>
<td></td>
<td>Hi Limit Production + 0.001</td>
</tr>
<tr>
<td></td>
<td>0.010-0.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.010-0.025</td>
<td></td>
<td>Hi Limit Production + 0.010</td>
</tr>
<tr>
<td></td>
<td>0.002-0.007</td>
<td></td>
<td>Hi Limit Production + 0.001</td>
</tr>
<tr>
<td></td>
<td>0.015-0.055</td>
<td></td>
<td>Hi Production + 0.010</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OIL Groove Clearance Gap</th>
<th>Production</th>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.00269-0.9271</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0002-0.0007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.001 (Maximum)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0008-0.0016 Interference</td>
<td></td>
</tr>
</tbody>
</table>

*8.6:1 (Over 8500-lb. GVW)
9.3:1 (Under 8500-lb. GVW)
SPECIFICATIONS

ENGINE SPECIFICATIONS (5.0 L/5.7 L) (Cont.)

All specifications are in INCHES unless otherwise noted.

<table>
<thead>
<tr>
<th>DISPLACEMENT</th>
<th>5.0L (305 Cu. In.)</th>
<th>5.7L (350 Cu. In.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRANKSHAFT:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main Journal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1</td>
<td>2.4484-2.4493</td>
<td></td>
</tr>
<tr>
<td>#2, #3, #4</td>
<td>2.4481-2.4490</td>
<td></td>
</tr>
<tr>
<td>#5</td>
<td>2.4479-2.4488</td>
<td></td>
</tr>
<tr>
<td>Taper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>0.0002 (Maximum)</td>
<td></td>
</tr>
<tr>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
<td></td>
</tr>
<tr>
<td>Out Of Round</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>0.0002 (Maximum)</td>
<td></td>
</tr>
<tr>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
<td></td>
</tr>
<tr>
<td>MAIN BEARING CLEARANCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1</td>
<td>0.0008-0.0020</td>
<td></td>
</tr>
<tr>
<td>#2, #3, #4</td>
<td>0.0011-0.0023</td>
<td></td>
</tr>
<tr>
<td>#5</td>
<td>0.0017-0.0032</td>
<td></td>
</tr>
<tr>
<td>Service Limit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1</td>
<td>0.0010-0.0015</td>
<td></td>
</tr>
<tr>
<td>#2, #3, #4</td>
<td>0.0010-0.0025</td>
<td></td>
</tr>
<tr>
<td>#5</td>
<td>0.0025-0.0035</td>
<td></td>
</tr>
<tr>
<td>CRANKSHAFT END PLAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td>2.0988-2.0998</td>
<td></td>
</tr>
<tr>
<td>Taper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>0.0005 (Maximum)</td>
<td></td>
</tr>
<tr>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
<td></td>
</tr>
<tr>
<td>Out Of Round</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>0.0005 (Maximum)</td>
<td></td>
</tr>
<tr>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
<td></td>
</tr>
<tr>
<td>ROD BEARING CLEARANCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>0.0013-0.0035</td>
<td></td>
</tr>
<tr>
<td>Service Limit</td>
<td>0.0013 (Maximum)</td>
<td></td>
</tr>
<tr>
<td>CAMSCHAFT:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lobe</td>
<td>Intake</td>
<td>0.2336</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td>0.2565</td>
</tr>
<tr>
<td>Journal Diameter</td>
<td>1.6682-1.8692</td>
<td></td>
</tr>
<tr>
<td>Camshaft End Play</td>
<td>0.004-0.012</td>
<td></td>
</tr>
<tr>
<td>VALVE SYSTEM:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifter</td>
<td>Hydraulic</td>
<td></td>
</tr>
<tr>
<td>Rocker Arm Ratio</td>
<td>1.50:1</td>
<td></td>
</tr>
<tr>
<td>Valve Lash</td>
<td>Intake</td>
<td>One Turn Down From Zero Lash</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td></td>
</tr>
<tr>
<td>Face Angle (Intake & Exhaust)</td>
<td>45°</td>
<td></td>
</tr>
<tr>
<td>Seat Angle (Intake & Exhaust)</td>
<td>46°</td>
<td></td>
</tr>
<tr>
<td>Seat Runout (Intake & Exhaust)</td>
<td>0.002 (Maximum)</td>
<td></td>
</tr>
<tr>
<td>Seat Width</td>
<td>Intake</td>
<td>(^{1/2}-^{3/16})</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td>(^{1/16}-^{1/32})</td>
</tr>
<tr>
<td>STEM CLEARANCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>Intake</td>
<td>0.0010-0.00275</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td>0.0010-0.0027</td>
</tr>
<tr>
<td>Service</td>
<td>Intake</td>
<td>High Limit Production + 0.001</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td>High Limit Production + 0.002</td>
</tr>
<tr>
<td>VALVE SPRING (Outer)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure</td>
<td>Closed</td>
<td>76-84 lbs. @ 1.70”</td>
</tr>
<tr>
<td></td>
<td>Open</td>
<td>194-296 lbs. @ 1.25”</td>
</tr>
<tr>
<td>Installed Height</td>
<td>(\geq \frac{1}{2})”</td>
<td></td>
</tr>
<tr>
<td>VALVE SPRING DAMPER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free Length</td>
<td>1.86</td>
<td></td>
</tr>
</tbody>
</table>
ENGINE SPECIFICATIONS (7.4 L)

All Specifications are in INCHES unless otherwise noted.

<table>
<thead>
<tr>
<th>GENERAL DATA:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>V8</td>
</tr>
<tr>
<td>Displacement</td>
<td>7.4L (454 Cu. In.)</td>
</tr>
<tr>
<td>RPO</td>
<td>L19, LE8</td>
</tr>
<tr>
<td>Bore</td>
<td>4.25</td>
</tr>
<tr>
<td>Stroke</td>
<td>4.00</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>7.9:1</td>
</tr>
<tr>
<td>Firing Order</td>
<td>1-8-4-3-6-5-7-2</td>
</tr>
<tr>
<td>Oil Pressure</td>
<td>10 psi @ 500 RPM Minimum; 40-60 psi @ 2000 RPM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CYLINDER BORE:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>4.2495-4.2525</td>
</tr>
<tr>
<td>Out Of Round</td>
<td>Production: 0.001 (Maximum)</td>
</tr>
<tr>
<td></td>
<td>Service: 0.002 (Maximum)</td>
</tr>
<tr>
<td>Taper</td>
<td>Production Thrust Side: 0.0005 (Maximum)</td>
</tr>
<tr>
<td></td>
<td>Service Relief Side: 0.001 (Maximum)</td>
</tr>
<tr>
<td></td>
<td>Service: 0.001 (Maximum)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PISTON:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearance</td>
<td>Production: 0.003-0.004</td>
</tr>
<tr>
<td></td>
<td>Service Limit: 0.005 (Maximum)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PISTON RING:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPRESSION</td>
<td>Groove Clearance</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Service Limit: Hi Limit Production + 0.001</td>
</tr>
<tr>
<td>OIL</td>
<td>Gap</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Service Limit: Hi Limit Production + 0.010</td>
</tr>
<tr>
<td></td>
<td>Groove Clearance</td>
</tr>
<tr>
<td></td>
<td>Service Limit: Hi Limit Production + 0.001</td>
</tr>
<tr>
<td></td>
<td>Gap</td>
</tr>
<tr>
<td></td>
<td>Service Limit: Hi Limit Production + 0.010</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PISTON PIN:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>0.9995-0.9998</td>
</tr>
<tr>
<td>Clearance In Piston</td>
<td>Production: 0.00025-0.00035</td>
</tr>
<tr>
<td></td>
<td>Service Limit: 0.001 (Maximum)</td>
</tr>
<tr>
<td>Fit In Rod</td>
<td>0.0013-0.0021 Interference</td>
</tr>
</tbody>
</table>
SPECIFICATIONS

ENGINE SPECIFICATIONS (7.4 L) (Cont.)

All specifications are in INCHES unless otherwise noted.

DISPLACEMENT

<table>
<thead>
<tr>
<th>CRANKSHAFT:</th>
<th>7.4L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td></td>
</tr>
<tr>
<td>#1, #2, #3, #4</td>
<td>2.7481-2.7490</td>
</tr>
<tr>
<td>#5</td>
<td>2.7476-2.7486</td>
</tr>
<tr>
<td>Taper</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>0.0002 (Maximum)</td>
</tr>
<tr>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Out Of Round</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>0.0002 (Maximum)</td>
</tr>
<tr>
<td>Service Limit</td>
<td>0.001 (Maximum)</td>
</tr>
<tr>
<td>Main Bearing Clearance Production</td>
<td></td>
</tr>
<tr>
<td>#1, #2, #3, #4</td>
<td>0.0013-0.0025</td>
</tr>
<tr>
<td>#5</td>
<td>0.0024-0.0040</td>
</tr>
<tr>
<td>Rod Bearing Clearance Service Limit</td>
<td></td>
</tr>
<tr>
<td>#1, #2, #3, #4</td>
<td>0.0010-0.0025</td>
</tr>
<tr>
<td>#5</td>
<td>0.0025-0.0035</td>
</tr>
<tr>
<td>Crankshaft End Play</td>
<td>0.006-0.010</td>
</tr>
</tbody>
</table>

Crankpin

Diameter	2.1990-2.200
Taper	
Production	0.0005
Service Limit	0.001
Out Of Round	
Production	0.0005
Service Limit	0.001
Rod Bearing Clearance Production	
	0.0009-0.0025
Rod Side Clearance Service Limit	0.003 (Maximum)
Rod Side Clearance	0.0013-0.0023

CAMSHAFT:

Lobe	Intake	0.2343
Lift ± 0.002	Exhaust	0.2530
Journal Diameter	1.9482-1.9492	

VALVE SYSTEM:

Lifter	Hydraulic
Rocker Arm Ratio	1.70:1
Valve Lash	
Intake	3/4 Turn Down From Zero Lash
Exhaust	
Face Angle (Intake & Exhaust)	45°
Seat Angle (Intake & Exhaust)	46°
Seat Runout (Intake & Exhaust)	0.002 (Maximum)
Seat Width	
Intake	1/32-1/16
Exhaust	1/16-3/32
Stem Clearance Production	
Intake	0.0010-0.0027
Exhaust	0.0012-0.0029
Service	
Intake	High Limit Production + 0.001
Exhaust	High Limit Production + 0.002
Free Length	2.12
Pressure Closed	74-86 lbs. @ 1.80 in.
lbs. @ in.	195-215 lbs. @ 1.40 in.
Installed Height	15 1/6
Valve Spring Fit In Damper	0.042-0.094 Interference
SPECIFICATIONS (CONT.)

TORQUE SPECIFICATIONS

(5.0 L AND 5.7 L ENGINES)

<table>
<thead>
<tr>
<th>Item</th>
<th>N-m</th>
<th>Ft. Lbs.</th>
<th>In. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocker Arm Cover Nuts (Carbureted Engines)</td>
<td>73</td>
<td>—</td>
<td>65</td>
</tr>
<tr>
<td>Rocker Arm Cover Bolt (TBI Engines)</td>
<td>10.2</td>
<td>—</td>
<td>90</td>
</tr>
<tr>
<td>Intake Manifold Bolts</td>
<td>48</td>
<td>35</td>
<td>—</td>
</tr>
<tr>
<td>Exhaust Manifold Bolts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cast Manifolds:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two Center Bolts</td>
<td>36</td>
<td>26</td>
<td>—</td>
</tr>
<tr>
<td>All Others</td>
<td>28</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Tubular (Stainless Steel) Manifolds (All Bolts)</td>
<td>36</td>
<td>26</td>
<td>—</td>
</tr>
<tr>
<td>Cylinder Head Bolts</td>
<td>90</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Torsional Damper Bolt</td>
<td>95</td>
<td>70</td>
<td>—</td>
</tr>
<tr>
<td>Front Cover Bolts</td>
<td>11.3</td>
<td>—</td>
<td>100</td>
</tr>
<tr>
<td>Oil Pan Nuts at Corners</td>
<td>22.6</td>
<td>—</td>
<td>200</td>
</tr>
<tr>
<td>Oil Pan Bolts</td>
<td>11.3</td>
<td>—</td>
<td>100</td>
</tr>
<tr>
<td>Oil Pump Bolt</td>
<td>90</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pan Baffle Nuts (Some 5.7 L Engines)</td>
<td>36</td>
<td>26</td>
<td>—</td>
</tr>
<tr>
<td>Rear Crankshaft Oil Seal Retainer Screws and Nuts</td>
<td>15.3</td>
<td>—</td>
<td>135</td>
</tr>
<tr>
<td>Camshaft Sprocket Bolts</td>
<td>28</td>
<td>21</td>
<td>—</td>
</tr>
<tr>
<td>Connecting Rod Cap Nuts</td>
<td>60</td>
<td>45</td>
<td>—</td>
</tr>
<tr>
<td>Oil Filter Bypass Valve Bolts</td>
<td>26</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Main Bearing Cap Bolts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outer Bolts on #2, #3, and #4 Caps</td>
<td>95</td>
<td>70</td>
<td>—</td>
</tr>
<tr>
<td>All Others</td>
<td>110</td>
<td>80</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pump Cover Bolts</td>
<td>9.0</td>
<td>—</td>
<td>80</td>
</tr>
<tr>
<td>Flywheel Bolts</td>
<td>100</td>
<td>75</td>
<td>—</td>
</tr>
<tr>
<td>Spark Plugs</td>
<td>30</td>
<td>22</td>
<td>—</td>
</tr>
<tr>
<td>Water Outlet Bolts</td>
<td>28</td>
<td>21</td>
<td>—</td>
</tr>
<tr>
<td>Water Pump Bolts</td>
<td>40</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Flywheel Housing Bolts</td>
<td>44</td>
<td>32</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pan Drain Plug</td>
<td>28</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Block Drain Plug</td>
<td>12.7</td>
<td>—</td>
<td>112</td>
</tr>
<tr>
<td>Rocker Arm Cover Studs to Head (Carbureted Engines)</td>
<td>1.7</td>
<td>—</td>
<td>15</td>
</tr>
</tbody>
</table>

(7.4 L ENGINES)

<table>
<thead>
<tr>
<th>Item</th>
<th>N-m</th>
<th>Ft. Lbs.</th>
<th>In. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocker Arm Cover Nuts</td>
<td>13.0</td>
<td>—</td>
<td>115</td>
</tr>
<tr>
<td>Intake Manifold Bolts</td>
<td>40</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Rocker Arm Studs</td>
<td>68</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>Exhaust Manifold Bolts</td>
<td>54</td>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>Cylinder Head Bolts</td>
<td>110</td>
<td>80</td>
<td>—</td>
</tr>
<tr>
<td>Torsional Damper Bolts</td>
<td>115</td>
<td>85</td>
<td>—</td>
</tr>
<tr>
<td>Front Cover to Block Bolts</td>
<td>10.8</td>
<td>—</td>
<td>96</td>
</tr>
<tr>
<td>Oil Pan to Front Cover Bolts</td>
<td>7.9</td>
<td>—</td>
<td>70</td>
</tr>
<tr>
<td>Oil Pan to Block Bolts</td>
<td>18.1</td>
<td>—</td>
<td>160</td>
</tr>
<tr>
<td>Oil Pump Bolt</td>
<td>90</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Main Bearing Caps</td>
<td>150</td>
<td>110</td>
<td>—</td>
</tr>
<tr>
<td>Camshaft Sprocket Bolts</td>
<td>26</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Connecting Rod Cap Nuts</td>
<td>66</td>
<td>48</td>
<td>—</td>
</tr>
<tr>
<td>Oil Filter Bypass Valve Bolts</td>
<td>26</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Flywheel Bolts</td>
<td>90</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pump Cover Bolts</td>
<td>9.0</td>
<td>—</td>
<td>80</td>
</tr>
<tr>
<td>Flywheel Housing Bolts</td>
<td>40</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Water Pump Bolts</td>
<td>40</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Water Outlet Bolts</td>
<td>40</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Spark Plugs</td>
<td>30</td>
<td>22</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pan Drain Plug</td>
<td>28</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Block Drain Plug</td>
<td>12.7</td>
<td>—</td>
<td>112</td>
</tr>
<tr>
<td>TBI Adapter to Intake Manifold Bolts</td>
<td>23</td>
<td>17</td>
<td>—</td>
</tr>
</tbody>
</table>
SPECIAL TOOLS

1. Torsional Damper Remover and Installer
2. Valve Spring Compressor
3. Oil Pump Pick-Up Tube Installer (Small Block Engines)
4. Oil Pump Pick-Up Tube Installer (Mark IV Engines)
5. Crankshaft Seal Installer
6. Piston Ring Compressor
7. Guide Set
8. Vacuum Pump
9. Hydraulic Lifter Remover (Slide Hammer Type)
10. Hydraulic Lifter Remover (Plier Type)
11. Stud Remover
12. Reamer (0.003-inch oversize)
13. Reamer (0.013-inch oversize)
14. Stud Installer
15. Crankshaft Sprocket Puller (Small Block Engines)
16. Crankshaft Sprocket Installer (Small Block Engines)
17. Rear Oil Seal Installer (Small Block Engines)
18. Crankshaft Sprocket Puller (Mark IV Engines)
SECTION 6A7

6.2 LITER DIESEL

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>6A7-2</td>
</tr>
<tr>
<td>Engine Lubrication</td>
<td>6A7-2</td>
</tr>
<tr>
<td>Disassembly</td>
<td>6A7-3</td>
</tr>
<tr>
<td>Tools and Shop Equipment</td>
<td>6A7-3</td>
</tr>
<tr>
<td>Accessory Removal</td>
<td>6A7-4</td>
</tr>
<tr>
<td>Cleaning</td>
<td>6A7-4</td>
</tr>
<tr>
<td>Draining the Engine</td>
<td>6A7-4</td>
</tr>
<tr>
<td>Vacuum Pump/Oil Pump Drive Removal</td>
<td>6A7-5</td>
</tr>
<tr>
<td>Intake Manifold Removal</td>
<td>6A7-5</td>
</tr>
<tr>
<td>Injection Line Removal</td>
<td>6A7-5</td>
</tr>
<tr>
<td>Injection Nozzle Removal</td>
<td>6A7-5</td>
</tr>
<tr>
<td>Glow Plug Removal</td>
<td>6A7-5</td>
</tr>
<tr>
<td>Exhaust Manifold Removal</td>
<td>6A7-5</td>
</tr>
<tr>
<td>Dipstick Tube Removal</td>
<td>6A7-6</td>
</tr>
<tr>
<td>Water Crossover Removal</td>
<td>6A7-6</td>
</tr>
<tr>
<td>Rocker Arm Cover Removal</td>
<td>6A7-6</td>
</tr>
<tr>
<td>Rocker Arm and Pushrod Removal</td>
<td>6A7-6</td>
</tr>
<tr>
<td>Cylinder Head Removal</td>
<td>6A7-7</td>
</tr>
<tr>
<td>Hydraulic Lifter Removal</td>
<td>6A7-7</td>
</tr>
<tr>
<td>Water Pump Removal</td>
<td>6A7-8</td>
</tr>
<tr>
<td>Torsional Damper Removal</td>
<td>6A7-8</td>
</tr>
<tr>
<td>Injection Pump Removal</td>
<td>6A7-8</td>
</tr>
<tr>
<td>Front Cover Removal</td>
<td>6A7-8</td>
</tr>
<tr>
<td>Timing Chain and Sprocket Removal</td>
<td>6A7-8</td>
</tr>
<tr>
<td>Camshaft Removal</td>
<td>6A7-9</td>
</tr>
<tr>
<td>Oil Pan Removal</td>
<td>6A7-9</td>
</tr>
<tr>
<td>Oil Pump Removal</td>
<td>6A7-9</td>
</tr>
<tr>
<td>Piston and Connecting Rod Removal</td>
<td>6A7-9</td>
</tr>
<tr>
<td>Flywheel Removal</td>
<td>6A7-9</td>
</tr>
<tr>
<td>Crankshaft Removal</td>
<td>6A7-9</td>
</tr>
<tr>
<td>Cleaning, Inspection, and Repair</td>
<td>6A7-11</td>
</tr>
<tr>
<td>Block</td>
<td>6A7-11</td>
</tr>
<tr>
<td>Cylinder Bores</td>
<td>6A7-12</td>
</tr>
<tr>
<td>Piston and Connecting Rod Assemblies</td>
<td>6A7-12</td>
</tr>
<tr>
<td>Intake and Exhaust Manifolds</td>
<td>6A7-12</td>
</tr>
<tr>
<td>Camshaft</td>
<td>6A7-12</td>
</tr>
<tr>
<td>Camshaft Bearings</td>
<td>6A7-12</td>
</tr>
<tr>
<td>Timing Chain, Sprockets, and Timing Gears</td>
<td>6A7-14</td>
</tr>
<tr>
<td>Front Cover</td>
<td>6A7-14</td>
</tr>
<tr>
<td>Water Pump</td>
<td>6A7-14</td>
</tr>
<tr>
<td>Oil Pan and Rocker Arm Covers</td>
<td>6A7-14</td>
</tr>
<tr>
<td>Oil Pump</td>
<td>6A7-14</td>
</tr>
<tr>
<td>Valve Train Components</td>
<td>6A7-15</td>
</tr>
<tr>
<td>Cylinder Head</td>
<td>6A7-15</td>
</tr>
<tr>
<td>Glow Plugs</td>
<td>6A7-17</td>
</tr>
<tr>
<td>Thermostat and Water Crossover</td>
<td>6A7-18</td>
</tr>
<tr>
<td>Injection Nozzles</td>
<td>6A7-18</td>
</tr>
<tr>
<td>Injection Lines</td>
<td>6A7-18</td>
</tr>
<tr>
<td>Injection Pump</td>
<td>6A7-18</td>
</tr>
<tr>
<td>Crankshaft and Bearings</td>
<td>6A7-18</td>
</tr>
<tr>
<td>Flywheel</td>
<td>6A7-19</td>
</tr>
<tr>
<td>Torsional Damper</td>
<td>6A7-20</td>
</tr>
<tr>
<td>Oil Filter Bypass Valve Replacement</td>
<td>6A7-20</td>
</tr>
</tbody>
</table>
CONTENTS (CONTINUED)

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly</td>
<td>6A7-20</td>
</tr>
<tr>
<td>Crankshaft Installation</td>
<td>6A7-20</td>
</tr>
<tr>
<td>Flywheel Installation</td>
<td>6A7-22</td>
</tr>
<tr>
<td>Connecting Rod and Piston Installation</td>
<td>6A7-22</td>
</tr>
<tr>
<td>Camshaft Installation</td>
<td>6A7-23</td>
</tr>
<tr>
<td>Timing Chain and Sprocket Installation</td>
<td>6A7-24</td>
</tr>
<tr>
<td>Front Cover Installation</td>
<td>6A7-24</td>
</tr>
<tr>
<td>Oil Pump Installation</td>
<td>6A7-25</td>
</tr>
<tr>
<td>Oil Pan Installation</td>
<td>6A7-26</td>
</tr>
<tr>
<td>Injection Pump Installation</td>
<td>6A7-26</td>
</tr>
<tr>
<td>Torsional Damper Installation</td>
<td>6A7-26</td>
</tr>
<tr>
<td>Water Pump Installation</td>
<td>6A7-27</td>
</tr>
<tr>
<td>Hydraulic Lifter Installation</td>
<td>6A7-27</td>
</tr>
<tr>
<td>Cylinder Head Installation</td>
<td>6A7-28</td>
</tr>
<tr>
<td>Pushrod and Rocker Arm Installation</td>
<td>6A7-29</td>
</tr>
<tr>
<td>Rocker Arm Cover Installation</td>
<td>6A7-29</td>
</tr>
<tr>
<td>Water Crossover Installation</td>
<td>6A7-30</td>
</tr>
<tr>
<td>Dipstick Tube Installation</td>
<td>6A7-30</td>
</tr>
<tr>
<td>Exhaust Manifold Installation</td>
<td>6A7-30</td>
</tr>
<tr>
<td>Glow Plug Installation</td>
<td>6A7-30</td>
</tr>
<tr>
<td>Injection Nozzle Installation</td>
<td>6A7-31</td>
</tr>
<tr>
<td>Injection Line Installation</td>
<td>6A7-31</td>
</tr>
<tr>
<td>Intake Manifold Installation</td>
<td>6A7-31</td>
</tr>
<tr>
<td>Oil Pump Drive or Vacuum Pump Installation</td>
<td>6A7-32</td>
</tr>
<tr>
<td>Engine Accessory Installation</td>
<td>6A7-32</td>
</tr>
<tr>
<td>Engine Set-Up and Testing</td>
<td>6A7-32</td>
</tr>
<tr>
<td>Specifications</td>
<td>6A7-36</td>
</tr>
<tr>
<td>Special Tools</td>
<td>6A7-39</td>
</tr>
</tbody>
</table>

GM 6.2L diesel engines are 90 degree V8 type, naturally aspirated, with indirect type combustion chambers.

The crankshaft is supported by five precision insert main bearings, with crankshaft thrust taken at the number three (center) main bearing.

The camshaft is supported by five plain type bearings and is chain driven. Motion from the camshaft is transmitted to the overhead valves by roller type hydraulic lifters, pushrods, and shaft mounted rocker arms. The valve guides are integral in the cylinder head.

The connecting rods are forged steel, with precision insert type crankpin bearings. The piston pins are retained by snap ring retainers.

For engine identification information, refer to GENERAL INFORMATION (SEC. 0A).

ENGINE LUBRICATION

Pressurized oil is routed to the oil cooler, located in the radiator. A bypass valve is provided should the oil cooler become restricted. Oil flows from the cooler to a full flow oil filter. An oil filter bypass valve is provided should the oil filter become restricted.

Oil flows from the oil filter to the oil galleries, providing pressurized lubrication to various components.

The hydraulic valve lifters receive oil from the oil galleries. Oil flows from the hydraulic lifters through hollow pushrods to the rocker arms. Oil from the overhead drains back to the crankcase through oil drain holes.

The pistons, rings, piston rings, cylinder walls, and connecting rod small end bearings are lubricated by oil splash.

A lubrication schematic is shown in figure 1.

The gear type oil pump is driven from either the vacuum pump shaft or from a drive gear, depending on engine application. The vacuum pump or drive gear is driven by the camshaft. Oil is drawn into the pump through a pickup screen and pipe.
A clean, well light work area should be available. Other necessary equipment includes: a suitable parts cleaning tank, compressed air supply, trays to keep parts and fasteners organized, and an adequate set of hand tools.

An approved engine repair stand will aid the work and help prevent personal injury or damage to engine components.

Special tools are illustrated throughout this section, and are listed at its end. These tools (or their equivalents) are specially designed to quickly and safely accomplish the operations for which they were intended. The use of these tools will also minimize possible damage to engine components.

Some precision measuring tools are required for inspection of certain components. Torque wrenches will be necessary for correct assembly of various parts.

This manual assumes that the engine accessories have been removed. These accessories may include one or more of the following:

- Hydraulic Pump
- Generator
- Air Conditioning Compressor
- Cooling Fan
- Fuel Pump
- CDR Valve, EGR Valve, and other emission equipment

It is beyond the scope of this section to detail the many different accessory installations. Refer to the proper Truck Service Manual for this information.

Diagrams of emission and vacuum hose routings, wiring harness routing, accessory drive belt layout, etc., should be made before removing accessories.
CLEANING

NOTICE: Clean the engine only when it is cold, never when it is warm or hot, and never when the engine is running. Spraying or pouring water or other fluids on your engine when it is warm or hot, or when it is running, can cause serious damage to the engine and its components.

Remove the engine accessories before cleaning to provide better access to engine exterior surfaces. Cover the openings with tape to prevent the entry of water, solvent, and dirt.

Methods used to clean the engine will depend on the aids which are available. Steam cleaning, pressure washing, or solvent cleaning are some acceptable methods. Allow the engine to dry before beginning the work.

It is important that the engine be as clean as possible to prevent dirt from entering critical areas during disassembly.

DRAINING THE ENGINE

Remove or Disconnect
1. Oil pan drain plug. Allow the oil pan to drain.
2. Oil filter.
3. Block drain plugs. Allow the coolant to drain.

Install or Connect
1. Oil pan drain plug.

Tighten
- Oil pan drain plug to 10.0 N·m (90 in. lbs.).
2. Block drain plugs.

Tighten
- Block drain plugs to 22 N·m (16 ft. lbs.).

VACUUM PUMP/OIL PUMP DRIVE REMOVAL

Remove or Disconnect (Figure 2)
1. Hold down clamp and bolt.
2. Speed sensor wire.
3. Vacuum pump or oil pump drive. Pull out to remove.
4. Gasket.
INTAKE MANIFOLD REMOVAL

Remove or Disconnect (Figure 3)
1. Intake manifold bolts and fuel line clips.
2. Intake manifold.

Install or Connect
Tool Required:
J 29664 Manifold Cover Set
• J 29664-1 to the intake ports.

INJECTION LINE REMOVAL

Clean
• All injection line fittings at the nozzles and injection pump.

Remove or Disconnect (Figure 4)
1. Injection line clips at the brackets.
2. Injection lines at the nozzles.
 • Cap the lines and nozzles immediately.
 • Do not bend injection lines.
3. Injection lines at the pump.
 • Cap the lines and pump fittings immediately.
 • Tag the lines for installation.
4. Injection line brackets.

INJECTION NOZZLE REMOVAL

Remove or Disconnect (Figure 5)
Tool Required:
J 29873, Nozzle Socket
1. Fuel line clip.
2. Fuel return hose.

NOTICE: When removing an injection nozzle, use J 29873. Remove the nozzle using the 30 mm hex portion. Failure to do so will result in damage to the injection nozzle.
3. Injection nozzle using J 29873. Store the nozzles in a clean place.

GLOW PLUG REMOVAL

Remove or Disconnect
• Glow plugs. Use a suitable socket.

EXHAUST MANIFOLD REMOVAL

Remove or Disconnect
1. Exhaust manifold bolts.
2. Exhaust manifolds.
DIPSTICK TUBE REMOVAL

Remove or Disconnect
1. Dipstick bracket bolt.
2. Dipstick tube. Pull out to remove.
3. O-ring from the dipstick tube.

WATER CROSSOVER REMOVAL

Remove or Disconnect (Figure 6)
1. Glow plug inhibit switch wire.
2. Clamps (47).
3. Bolts or studs (44).
4. Water crossover (45).
5. Gaskets (46).
6. Hose (48).

ROCKER ARM COVER REMOVAL

Remove or Disconnect (Figure 7)
1. Bolts (58).

NOTICE: Do not pry on the rocker arm cover. Damage to sealing surfaces may result.
2. Rocker arm covers (57).

ROCKER ARM AND PUSHROD REMOVAL

Remove or Disconnect (Figure 7)
1. Bolts (54).
2. Rocker arm assemblies (55). Mark the assemblies so they can be returned to the original location at assembly.
3. Pushrods (18).

Important
- The pushrods must be installed in the original direction at assembly. This is because the pushrods have a different degree of hardness at each end. A paint stripe identifies the upper end of the pushrod. If the paint stripe is not visible, mark the pushrods on the upper end as they are removed.
- Mark the pushrods so they can be installed in the same location at assembly.
CYLINDER HEAD REMOVAL

Remove or Disconnect (Figure 7)
1. Fuel return line bolts.
2. Bolts (56).
3. Cylinder heads (53).
4. Head gaskets (52).

HYDRAULIC LIFTER REMOVAL

Remove or Disconnect (Figure 7)
1. Clamps (51).
2. Guide plates (50).
3. Hydraulic lifters (17). Place the lifters in an organizer rack. The lifters must be installed in the same bore from which they were removed.
WATER PUMP REMOVAL

- Remove or Disconnect (Figure 8)
 1. Nuts (84).
 2. Oil filler neck (83).
 3. Bolts and studs (76).
 4. Water pump (82) with water pump plate (75).
 5. Bolts (88).
 6. Water pump from the water pump plate.
 7. Gasket (77).

TORSONAL DAMPER REMOVAL

- Remove or Disconnect (Figures 8 and 9)
 Tool Required:
 - J 23523-E Torsional Damper Puller
 1. Bolt (80) and washer (81).

INJECTION PUMP REMOVAL

- Remove or Disconnect (Figure 10)
 - Scribe a line across the injection pump flange and front cover.
 1. Wires and hoses at the injection pump.
 2. Bolts (105).
 3. Injection pump gear (106).
 4. Nuts (101), and throttle spring bracket (102).
 5. Injection pump (100).

FRONT COVER REMOVAL

- Remove or Disconnect (Figure 8)
 1. Oil pan to front cover bolts.
 2. Bolts (86), nut (87) and baffle (72) (G models).
 3. Bolts (70).
 4. Front cover (71).

TIMING CHAIN AND SPROCKET REMOVAL

- Measure
 - Timing chain free play as follows:
 1. Mount a dial indicator to the front of the block.
 2. Position the dial indicator so that the plunger contacts the timing chain between the two gears.
 3. Pull the chain outward (parallel to the front face of the block) the maximum amount with finger pressure on the inside of the chain.
 4. Set the dial indicator to zero.
 5. Move the chain inward (parallel to the front face of the block) the maximum amount with finger pressure on the outside of the chain.
 6. The total indicator travel can be noted. With used parts, the deflection must not exceed 20.3 mm (0.80 inch). If the deflection exceeds this limit, the sprockets and timing chain must be inspected for wear and replaced as necessary.

- Remove or Disconnect (Figure 11)
 1. Bolt (119) and washer (118).
 2. Camshaft gear (104).
 3. Camshaft sprocket (115) with timing chain (116).
CAMSHAFT REMOVAL

Remove or Disconnect (Figure 11)
1. Bolts (114) and thrust plate (113).
2. Camshaft (110).
 - The fuel pump (lift pump) and pushrod must be removed to remove the camshaft.
 - Pull the camshaft from the block carefully to avoid damage to the camshaft bearings.

OIL PAN REMOVAL

Remove or Disconnect (Figure 12)
1. Bolts (133).
2. Oil Pan (134).
3. Oil pan rear seal (132).

OIL PUMP REMOVAL

Remove or Disconnect (Figure 12)
1. Bolt (131).
2. Oil pump (130).

PISTON AND CONNECTING ROD REMOVAL

Remove or Disconnect (Figures 13 and 14)
1. Ridge or deposits from the upper end of the cylinder bores.
 - Turn the crankshaft until the piston is at BDC.
 - Place a cloth on top of the piston.
 - Perform the cutting operation with a ridge reamer (figure 13).
 - Turn the crankshaft until the piston is at TDC.
 - Remove the cloth and cuttings.
2. Connecting rod cap. Check the connecting rod and cap for identification marks. Mark the parts if required. The connecting rod and cap must be kept together as mating parts.
3. Connecting rod and piston.
 - Attach two short pieces of 10 mm (⅜-inch) hose to the connecting rod bolts (figure 14). This will protect the crankshaft journal during removal.
 - Push the connecting rod and piston out of the bore.
 - After removal, assemble the connecting rod and cap.

FLYWHEEL REMOVAL

Remove or Disconnect (Figure 15)
1. Bolts (141).
2. Flywheel (140).

CRANKSHAFT REMOVAL

Remove or Disconnect (Figure 15)
1. Check the main bearing caps for location markings. Mark the caps if necessary. The caps must be returned to their original locations during the engine assembly.
2. Bolts (146).
3. Main bearing caps (147).
4. Crankshaft (148). Lift the crankshaft straight up, taking care to avoid damage to the crankshaft journals and thrust flange surfaces.
5. Rear crankshaft seal halves (142 and 145).
6. Main bearing inserts (143 and 144).
A. Use short pieces of 10 mm (3/8-inch) hose to protect the crankshaft journal.

Figure 12—Oil Pan and Oil Pump

Figure 13—Removing the Cylinder Ridge

Figure 14—Removing the Piston and Connecting Rod
CLEANING, INSPECTION, AND REPAIR

A solvent tank, large enough to hold the larger engine parts, will be needed along with various bristle brushes and a gasket scraper. A source of compressed air will be helpful in the cleaning operations.

Precision measuring tools will be required for the inspection procedure. These include: micrometers, cylinder bore gage, feeler gages, dial indicator set, etc. The inspection work, performed with the proper method and tools, is most important. The rebuilt engine cannot be expected to perform properly if parts worn beyond acceptable limits are reused.

BLOCK

![Crankshaft and Components](image)

Clean
1. Block in solvent.
2. Block gasket surfaces.
3. Cylinder bores.
4. Oil galleries and passages.
5. Scale deposits from the coolant passages.

Inspect
1. All expansion plugs for poor fit or leakage.
2. Hydraulic lifter bores for deep scratches and varnish deposits.
3. Block for cracks.
4. Main bearing bores and main bearing caps.
 - All main bearing bores should be round and uniform in ID at all bearing supports.
 - The area where the main bearing inserts contact the main bearing bore must be free of burrs and scratches.

Measure
- Fire deck warpage. Use a straightedge and feeler gage. If the block is warped more than 0.15 mm (0.006-inch) longitudinally or 0.08 mm (0.003-inch) transversely, it should be replaced. Do not attempt to resurface the fire deck or cylinder head.
CYLINDER BORES

- Inspect
 - Cylinder bores for scoring and other damage.

- Measure
 - Cylinder out of round and taper. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

Cylinder Bore Reconditioning
- Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

PISTON AND CONNECTING ROD ASSEMBLIES

Refer to GENERAL ENGINE MECHANICAL (SEC. 6A) and perform the following:

- Disassemble
 - Components as required.

- Clean
 - Components as outlined.

- Inspect
 - Components as outlined.

- Measure
 - Piston pin diameter and pin to connecting rod bushing.
 - Piston to bore clearance, and fit pistons as outlined.

- Assemble
 - Components as outlined.

Important
- Each connecting rod and bearing cap should be marked, beginning at the front of the engine. Cylinders 1, 3, 5 and 7 are the left bank and, 2, 4, 6, and 8 are the right bank. The numbers on the connecting rod and bearing cap must be on the same side when installed in the cylinder bore. If a connecting rod is ever transposed from one block or cylinder to another, new connecting rod bearings should be fitted and the connecting rod should be numbered to correspond with the new cylinder number.

INTAKE AND EXHAUST MANIFOLDS

- Clean
 - Old pieces of gasket from the gasket surfaces.
 - Soot deposits from the intake manifold.

- Inspect
 - Manifolds for cracks, broken flanges, and gasket surface damage.

CAMSHAFT

Important
- Whenever the camshaft needs to be replaced, a new set of hydraulic lifters must also be installed.

- Inspect (Figure 11)
 - Camshaft lobes and journals for scratches, pitting, scoring, and wear.
 - Thrust plate (113) for wear and scoring.

- Measure (Figure 16)
 - Camshaft journals. Use a micrometer (figure 16). The proper journal dimensions are as follows:
 - #5 (rear) journal: 50.975-51.025 mm.
 - All others: 54.975-55.025 mm.

CAMSHAFT BEARINGS

- Inspect
 - Camshaft bearings for scratches, pits, or loose fit in their bores. Replace the camshaft bearings if necessary.

- Disassemble (Figures 17 and 18)
 Tools Required:
 J 6098-01 Camshaft Bearing Remover and Installer
Assemble the bearing tool (J 6098-11) and driver handle.

Drive the outer camshaft bearings out of the block.

4. Rear camshaft bearing, as described in step 3. Use the driver handle and bearing tool J 6098-12 (figure 18).

Clean

- Camshaft bearing bores in the block.

Assemble (Figures 17 and 18)

Tool Required:
- J 6098-01 Camshaft Bearing Remover and Installer
- J 6098-10 Adapter Set

- The outer camshaft bearings must be installed first. These bearings serve as guides for the pilot, and help center the inner bearings during the installation process.
- Be sure to fit the correct cam bearing into the bore. The cam bearing bores vary in size.

1. Rear camshaft bearing. Drive the bearing into place using the driver handle and J 6098-12 (figure 18).

Important

- The bearing oil hole MUST align with the oil hole in the block. This hole is located at about the 4 o’clock position from the block upright (viewed from the front of the block).
- The seam in the bearing must be in the upper half of the block face.

2. Front camshaft bearing. Drive the bearing into place with the driver handle and J 6098-11 (figure 18).

Important

- The notch in the bearing must face the front of the block.
- There are two oil holes in the bearing. One hole is located at about the 4 o’clock position; the other is located between the 12 o’clock and 1 o’clock position (block upright). The bearing oil holes MUST align with the holes in the block.
- The seam in the bearing must be in the upper half of the block face.

3. Inner camshaft bearings. Use J 6098-01 and J 6098-10 (figure 17).

- Assemble the tool with the pilot engaged in the front bearing and the pilot flange against the front face of the block.
- Slide the puller screw, with nut and washer, through the pilot.
- Place the new bearing on the bearing tool (J 6098-011). Hold the bearing tool and bearing against the bearing bore. Align the bearing oil hole with the oil hole in the block.
- Thread the puller screw into the bearing tool enough to hold the tool and bearing in place.
- Holding the puller screw with a wrench, turn the nut with a second wrench to pull the camshaft bearing into place.
• Remove the puller screw, pilot, and bearing tool.

Important
• The bearing oil hole MUST align with the oil hole in the block. This hole is located at about the 4 o'clock position with the block upright (viewed from the front of the block).
• The seam in the bearing must be in the upper half of the block face.

4. New rear camshaft plug.
• Coat the camshaft plug with sealer (Loctite #592 or equivalent).
• Install the plug flush to 0.80 mm (1/32-inch) deep.

TIMING CHAIN, SPROCKETS AND TIMING GEARS

Inspect
— Sprockets for chipped teeth and wear.
— Timing chain for damage.
 • It should be noted that excessively worn sprockets will rapidly wear a new chain. Likewise, an excessively worn chain will rapidly wear a new set of sprockets.
— Timing gears on the injection pump and camshaft for wear and broken teeth.

Important
• If the timing chain, sprockets, or gears are replaced, it will be necessary to re-time the engine, as outlined later.

FRONT COVER

Clean
• Old sealer from the sealing surfaces.

Inspect
— Baffle for damage.
— Front cover for cracks and damage to the sealing surfaces.

Disassemble
• Front crankshaft seal. Pry the seal out with a large screwdriver.

Assemble
Tool Required: J 22102 Seal Installer
• Front crankshaft seal. Use J 22102. The open end of the seal must face inside the cover.
• Coat the seal lips with grease.

Important
• If a new front cover is installed, the engine must be re-timed, as outlined later.

WATER PUMP

Clean
• Old gasket from the gasket surfaces on the water pump and water pump plate.

Important
• Do not immerse the pump in solvent. The solvent may enter the pump's permanently lubricated bearings, dissolve the bearings' lubricant supply, and cause premature bearing failure.

Inspect
• Water pump shaft for roughness and end play. If the shaft does not turn smoothly, or if there is excessive end play, replace the water pump.
• Water pump body at the drain hole. If there is evidence of coolant leakage, the water pump shaft seal is leaking and the water pump should be replaced.
• Water pump plate for damage.

OIL PAN AND ROCKER ARM COVERS

Clean
— Parts in solvent. Remove all sludge and varnish.
— Old sealer from the sealing surfaces.

Inspect
— Sealing flanges for bending or damage.
— Rubber grommets and parts on the rocker arm cover for deterioration.
— Oil pan for rock damage or cracks.
— Oil pan baffle for loose fit.
— Drain plug threads for stripping.

OIL PUMP

Disassemble
1. Oil pump cover screws.
2. Oil pump cover.
 • Mark the gear teeth so the pump gears can be installed with the same gear teeth indexed.
3. Drive gear and shaft.
4. Idler gear.
5. Pressure regulator valve retaining pin, valve, spring, and related parts. Note the order of assembly.

Clean
• All parts in clean solvent and blow dry with compressed air.

Inspect
— Pump body and cover for cracks or other damage.
— Gears for wear.
— Drive gear and shaft for improper fit in the pump body.
Inside of the cover for wear that would permit oil to leak past the ends of the gears. The pump gears, cover, and body are not serviced separately. If the parts are damaged or worn, replace the entire oil pump assembly.

- Pickup screen and pipe for damage to the screen, pipe or relief grommet.

Assemble
1. Pressure regulator valve and related parts.
2. Idler gear and drive gear with shaft. Align the marks made during disassembly.
3. Oil pump cover.
4. Oil pump cover screws.

Inspect
- Oil pump operation. Turn the drive shaft by hand and check for smooth rotation.

VALVE TRAIN COMPONENTS

Clean
- Parts in solvent. Blow dry with compressed air.
- Make sure the oil passages in the pushrods are clear.

Disassemble (Figure 19)
1. Rocker arm retainers (160).
 - Insert a screwdriver into the rocker arm shaft bore and break off the end of the retainers.
 - Pull the rocker arm retainers out with pliers (figure 19).
2. Rocker arms from the rocker arm shaft. Mark the rocker arms so they can be returned to their original locations at assembly.

Inspect
- Rocker arms and shafts at their mating surfaces. These surfaces should be smooth and free from scoring or other damage.
- Rocker arm areas which contact the valve stems and the sockets which contact the pushrods. These areas should be smooth and free of damage and wear.

HYDRAULIC LIFTERS
Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).

Important
- Some engines will have both standard 0.010-inch oversize hydraulic lifters. The oversize lifter will have a “10” etched on the side. The block will be stamped “O.S.” on the cast pad adjacent to the lifter bore and on the top rail of the cylinder case above the lifter bore.

CYLINDER HEAD

Disassemble (Figures 20, 21, and 22)
Tool Required:
- J 8062 Valve Spring Compressor
- Valve keepers (170).
- Compress the valve springs with J 8062 (figure 21).
- Remove the valve keepers.
- Remove J 8062.
2. Caps (178), rotators (171), shields (172), valve springs with dampers (175) and shims (176).
3. Valve seals (174) and O-ring seals (173).
4. Valves (177 and 179). Place them in a rack so they can be returned to their original position at assembly.
5. Pre-chambers (180) (if required) (figure 22). Drive out with a small nylon drift inserted through the injection nozzle hole.

Cleaning and Inspection of Components

Clean
- Components as outlined in GENERAL ENGINE MECHANICAL (SEC. 6A).

Inspect (Figure 23)
1. Components outlined in GENERAL ENGINE MECHANICAL (SEC. 6A). Replace all valve springs at overhaul.

Figure 21—Compressing the Valve Springs

Figure 22—Prechamber

Figure 23—Prechamber Inspection

2. Pre-chambers for cracks. Replace any pre-chambers with facial cracks longer than 5 mm (3/16-inch) (figure 23). Service pre-chambers are available in standard and 0.254 mm oversize.

Measure (Figure 24)
1. Valve stem clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).
2. Cylinder head warpage. Use a straightedge and a feeler gage (figure 24). If the head is warped more than 0.15 mm (0.006-inch) longitudinally or 0.08 mm (0.003-inch) transversely, replace the cylinder head. Resurfacing is not recommended.
3. Cylinder head thickness (rocker arm cover gasket rail to head gasket surface) must be at least 97.87 mm (3.853-inch).
Valve Guides and Valve Seats
Refer to GENERAL ENGINE MECHANICAL (SEC 6A).

NOTICE: Valve seats on 6.2L engines are induction hardened. Excessive removal of stock may result in damage to the valve seats.

Assemble (Figures 20, 21 and 22)

Tool Required:
J 8062 Valve Spring Compressor

1. Pre-chambers (180) (if removed) (figure 22).
 - Align the locating notches. The pre-chamber will fit correctly in only one position.
 - Tap into place. Use a 32 mm (1 1/4-inch) socket.

Measure
- Pre-chamber installed depth. The pre-chamber should be flush to a maximum of 0.05 mm (0.002-inch) protrusion.
 - Make the measurement at two or more points on the pre-chamber where the prechamber seats on the head gasket shield and sealing ring.
 - Measure the difference between the flat of the pre-chamber and the flat surface of the cylinder head.
 - The pre-chamber must not protrude out of the cylinder head more than 0.05 mm (0.002-inch).
 - The pre-chamber must not be recessed into the cylinder head.

2. Valves (177 and 179).
 - Lubricate the valve stems with engine oil.
 - Insert the valves into the proper ports.

4. Valve seals (174) (exhaust valves only). Install the valve seals over the valve stems and seat them against the heads.

5. New valve springs with dampers (175).

7. Caps (178) (intake valves only).

8. Rotators (171) (exhaust valves only).

9. O-ring seals (173) and valve keepers (170).
 - Compress the valve spring, using J 8062 (figure 21). Compress the spring enough so the lower valve stem groove can be clearly seen.
 - Push a new seal onto the valve stem. The seal is to be installed on the stem's lower groove. Make sure the seal is flat and not twisted.
 - Apply a small amount of grease to the area of the upper valve stem groove. Assemble the two valve keepers using the grease to hold the keepers in place. Make sure the keepers seat properly in the groove.
 - Release the compressor tool. Make sure the valve keepers stay in place.
 - Repeat the preceding steps on the remaining valves.

Measure (Figures 25 and 26)
- Valve spring installed height of each valve spring, as follows:

GLOW PLUGS

Inspect
- Glow plugs for stripped threads and damage. Replace the glow plugs if the tips are cracked, bulged, or broken.

Measure
- Glow plug resistance. Connect an ohmmeter between the electrical connector blade and the glow plug body. Replace any glow plug with a resistance greater than 2 ohms.
THERMOSTAT AND WATER CROSSOVER

Disassemble (Figure 6)
1. Bolts or studs (40).
2. Water outlet (41).
3. Thermostat (42).
4. Gasket (43).

Inspect
- Water outlet and water crossover for cracks.

Thermostat Check
1. Suspend the thermostat and a thermometer in water with the thermometer located close to the thermostat. The thermostat must be completely submerged and the water thoroughly agitated while heating. Apply heat to the water and record both the temperature at which the thermostat begins to open and the temperature at which the thermostat is fully open.
2. Compare the temperature readings taken in the test with those given in the proper Truck Service Manual.
3. Do not attempt to repair the thermostat. If the thermostat does not function properly, replace it with a new unit which has been checked as directed previously.

Install or Connect (Figure 6)
1. Gasket (43).
2. Thermostat (42).
3. Water outlet (41).
4. Bolts or studs (40).

Tighten
- Bolts or studs to 47 N·m (35 ft. lbs.).

INJECTION NOZZLES

Perform the following tests on the injection nozzles as outlined in the proper truck service manual:
- Nozzle opening pressure.
- Leakage test.
- Chatter test.
- Spray pattern test.

Replace any faulty nozzles. Do not attempt repairs.

NOTICE: On LH6 (light duty emissions) engines, the nozzles used in G models are shorter than nozzles used on C-K-R-V-P models. They must not be interchanged. Attempts to use the incorrect nozzle will damage the nozzle and/or cylinder head.

INJECTION LINES

Inspect
- Injection lines for kinks and damaged fittings. Replace any damaged lines.

INJECTION PUMP

Inspect
- Injection pump body and mounting flange for damage.
- Injection pump for evidence of fuel leakage.
- Injection line fittings for stripping.

Injection Pump Repair
Refer to the proper truck service manual for allowable repairs. If necessary, have the pump repaired by an authorized repair station.

CRANKSHAFT AND BEARINGS

CLEANING AND INSPECTION

Clean
- Crankshaft with solvent.
 - Do not scratch the bearing journals
 - Blow all sludge from the oil passages with compressed air
- Main bearing inserts. Wipe free of oil with a soft cloth.

Inspect
- Crankshaft for cracks. Use the magnafux method, if available.
- Crankpins, main bearing journals and thrust surfaces for scoring, nicks, or damage caused by lack of lubrication.
- Main bearing inserts for scoring or other damage. In general, the lower inserts (except the #1 bearing) show greater wear and the most distress from fatigue. If, upon inspection, the lower insert is suitable for use, it can be assumed that the upper insert is also satisfactory. If the lower insert shows evidence of wear or damage, both the upper and lower inserts must be replaced.

Measure (Figures 27 and 28)
- Main bearing and connecting rod journal diameters
6.2 LITER DIESEL 6A7-19

Figure 26—Checking Crankshaft Run-Out

(Figure 27). Compare with "Specifications." Grind or replace the crankshaft if necessary.

- Main bearing and connecting rod journals for taper and out-of-round (Figure 27). If the journals are tapered or out-of-round more than 0.001-inch, replace the crankshaft.
- Crankshaft run-out (Figure 28).
 - Mount the crankshaft in V-blocks or between centers.
 - Use a dial indicator as shown.
 - If the main journals are misaligned, the crankshaft is bent and must be replaced, along with the main bearings.

AVAILABLE BEARING SIZES
- Main bearings are available in 0.013 mm (0.0005-inch) and 0.026 mm (0.001-inch) undersizes for select fitting to attain proper main bearing clearance.
- Connecting rod bearings are available in 0.026 mm (0.001-inch) undersizes for select fitting.
- Some VIN Code C (RPO LH6) (light duty emissions) engines may have both standard and 0.08 mm (0.003-inch) OVERSIZE connecting rod bearings. The oversize connecting rods are stamped "O.S." on the cap's lower end.

FLYWHEEL

Clean
- Mating surfaces of crankshaft and flywheel. Remove any burrs.

Inspect
- Flywheel for burning, scoring, warping, and wear. Replace the flywheel if necessary. Do not machine the flywheel.
- Flywheel ring gear for worn or broken teeth.
Flywheel Ring Gear Replacement
1. Use a torch to heat the gear around the entire circumference, then drive the gear off the flywheel, using care not to damage the flywheel.

NOTICE: Never heat starter gear to red heat as this will change metal structure.

2. Uniformly heat the flywheel gear to temperature which will expand the gear to permit installation. Temperature must not exceed 200°C (400°F).
3. As soon as the gear has been heated, install on the flywheel.

TORSIONAL DAMPER

- **Inspect**
 - Oil seal contact area on the torsional damper shaft for grooving and roughness. Replace if necessary.

ASSEMBLY

CRANKSHAFT INSTALLATION

MAIN BEARING SELECTION

Main bearings are of the precision insert type and do not use shims for adjustment. If clearances are excessive, a new bearing, both upper and lower inserts, will be required. Service bearings are available in standard size and 0.013 mm (0.0005-inch) and 0.026 mm (0.001-inch) undersizes.

Selective fitting of both rod and main bearings inserts is necessary to obtain close tolerances. For this reason you may use, for example, one half of a standard insert with one half of a 0.026 mm (0.001-inch) undersize insert which will decrease the clearance 0.013 mm (0.0005-inch) from using a full standard bearing.

REAR CRANKSHAFT OIL SEAL

The production rear crankshaft oil seal is a “rope” type seal. The rope seal is replaced with a two piece type seal for service.

INSTALLATION

- **Clean**
 - Main bearing cap and block mating surfaces with carburetor cleaner or equivalent.
 - Seal grooves in the block and main bearing cap with carburetor cleaner of equivalent.

- **Install or Connect (Figures 30 through 33)**
 1. Upper main bearing inserts to the block.
 2. Crankshaft.
 3. Lower main bearing inserts to the main bearing caps.

OIL FILTER BYPASS VALVE REPLACEMENT

- **Remove or Disconnect (Figure 29)**
 1. Oil filter.
 2. Oil filter bypass valve. Pry out with a screwdriver.

- **Clean**
 - Recess in the block.

- **Install or Connect (Figure 29)**
 1. Oil filter bypass valve. Tap into place, using a 16 mm socket.
 2. Oil filter.
6.2 LITER DIESEL 6A7-21

INSTALLING THE UPPER SEAL HALF

INSTALLING THE LOWER SEAL HALF

Figure 31—Installing the Two-Piece Rear Oil Seal

installed, check for fraying that may prevent the bearing cap from seating.

- Apply engine oil to the main bearings.

4. Rear crankshaft oil seal halves to the block.

- Apply a light coat of engine oil to the seal lips where they contact the crankshaft.

Figure 33—Measuring Crankshaft End Play

- "Roll" one seal half into the block seal groove until 13 mm (1/2-inch) of the seal's one end is extending out of the block (figure 31).

- Insert the other seal half into the opposite side of the seal groove in the block (figure 31).

Important

- The contact ends of the seal halves should now be at the four and ten o'clock positions, or at the eight and two o'clock positions. This is necessary to align the rear main bearing cap and seal lips.

NOTICE: The main bearing caps are to be tapped into place with a brass or leather mallet before the attaching bolts are installed. Do not use the attaching bolts to pull the main bearing caps into their seats, as this may damage the bearing cap and/or block.

5. Number 5 (rear) main bearing cap.

- If a two piece type seal is to be installed, lightly coat the seal groove in the cap with adhesive (GM part number 1052621 [Loctite 414] or equivalent).

- Apply a thin film of anaerobic sealant (GM part number 1052756 or equivalent) to the bearing cap as shown in figure 32. Keep the sealant off the seal and bearing. Do not put sealant in the bearing cap oil relief slot.

- Apply engine oil to the main bearing cap bolt threads.

Figure 32—Applying Sealant to the Main Bearing Cap
Tap the main bearing cap into place with a brass or leather mallet. Then install the bolts.

Tighten
- Bolts to specifications, in the following sequence:
 - Inner bolts: 150 N·m (110 ft. lbs.).
 - Outer bolts: 135 N·m (100 ft. lbs.).
 - Re-tighten all bolts in the same sequence.

6. Numbers 1, 2, and 4 main bearing caps and bolts.

Tighten
- Bolts to specifications. Refer to step 5.
7. Number 3 (center) main bearing cap and bolts.

Tighten the bolts temporarily to 14 N·m (10 ft. lbs.).

Measure (Figure 33)
- Crankshaft end play, as follows:
 - Tap the end of the crankshaft first rearward then forward with a lead hammer. This will line up the main bearing and crankshaft thrust surfaces.
 - Tighten the main bearing cap bolts to specifications. Refer to step 5.
 - With the crankshaft forced forward, measure at the front end of the number 3 main bearing with a feeler gage (figure 33). The proper clearance is 0.10-0.25 mm.

Inspect
- Crankshaft for binding. Try turning the crankshaft to check for binding. If the crankshaft does not turn freely, loosen the main bearing cap bolts, one pair at a time, until the tight bearing is located. Burrs on the bearing cap, foreign matter between the insert and the block or the bearing cap, or a faulty insert could cause a lack of clearance at the bearing.

FLYWHEEL INSTALLATION

Install or Connect (Figure 30)
1. Flywheel (140).
2. Bolts (141).

Tighten
- Bolts (141) to 90 N·m (65 ft. lbs.).

CONNECTING ROD AND PISTON INSTALLATION

CONNECTING ROD BEARING SELECTION
Connecting rod bearings are of the precision insert type and do not use shims for adjustment. DO NOT FILE RODS OR ROD CAPS. If clearances are excessive install a new bearing. Service bearings are available in standard size and 0.026 mm (0.001-inch) undersizes.

Selective fitting of both rod and main bearing inserts is necessary to obtain close tolerances. For this reason you may use, for example, one half of a standard insert with one half of a 0.026 mm (0.001-inch) undersize insert which will decrease the clearance 0.013 mm (0.0005-inch) from using a full standard bearing.

Some VIN Code C (RPO LH6) (light duty emissions) engines may have both standard and 0.08 mm (0.003-inch) oversize connecting rod bearings. The oversize connecting rods are stamped “O.S.” on the cap's lower end.

INSTALLATION

Install or Connect (Figures 34, 35, and 36)

Tool Required:
J 8037 Ring Compressor
- Make sure the cylinder walls are clean. Lubricate the cylinder wall lightly with engine oil.
- Make sure the piston is installed in the matching cylinder. Install new pistons in the cylinders for which they were fitted. Install used pistons in the cylinder from which they were removed.
1. Connecting rod bearings.
 - Be certain that the bearings are the proper size.
 - Install the bearings in the connecting rod and connecting rod cap.
2. Piston and connecting rod to the proper bore.
 - With the connecting rod cap removed, install two short pieces of 10 mm (¾-inch) hose onto the connecting rod studs.
 - Locate the piston ring end gaps as shown in figure 34. Lubricate the piston and rings with engine oil.
Without disturbing the ring end gap location, install J 8037 over the piston (figure 35). The piston must be installed so that the depression in the piston crown is towards the outside of the engine. The connecting rod bearing tang slots must be opposite the camshaft. Place the piston in its matching bore. Using light blows with a hammer handle, tap the piston down into its bore (figure 35). At the same time, from beneath the engine guide the connecting rod to the journal with the pieces of hose (figure 36). Hold the ring compressor against the block until all rings have entered the cylinder bore.

Remove the hoses from the connecting rod bolts.

Important
- Each connecting rod and bearing cap should be marked, beginning at the front of the engine. Cylinders 1, 3, 5 and 7 are the left bank and, 2, 4, 6 and 8 are the right bank. The numbers on the connecting rod and bearing cap must be on the same side when installed in the cylinder bore. If a connecting rod is ever transposed from one block or cylinder to another, new connecting rod bearings should be fitted and the connecting rod should be numbered to correspond with the new cylinder number.

Measure
- Connecting rod bearing clearance. Refer to GENERAL ENGINE MECHANICAL (SEC. 6A).
- Apply engine oil to the connecting rod bearings.
- Connecting rod cap with bearing.
- Connecting rod cap nuts.

Tighten
- Connecting rod cap nuts to 65 N·m (48 ft. lbs.).

Measure (Figure 37)
- Connecting rod side clearance. Use a feeler gage between the connecting rod and crankshaft (figure 37). The correct clearance is 0.17-0.63 mm.

CAMSHAFT INSTALLATION

Install or Connect (Figure 38)
- When a new camshaft is installed, replacement of all hydraulic lifters, engine oil, and oil filter is recommended.
 1. Key (112).
 2. Spacer (111), with the ID chamfer towards the camshaft (110).
3. Camshaft.
 • Coat the camshaft lobes with "Molykote" or equivalent.
 • Lubricate the camshaft bearing journals with engine oil.
 • Insert the camshaft carefully into the block to avoid damage to the camshaft bearings.

4. Thrust plate (113) and bolts (114).
 Tighten
 • Bolts (114) to 23 N·m (17 ft. lbs.).

TIMING CHAIN AND SPROCKET INSTALLATION

Install or Connect (Figure 38)

1. Crankshaft sprocket (117).
2. Camshaft sprocket (115) with timing chain (116).
 Important
 • Align the timing marks (figure 38).
3. Camshaft gear (104), washer (118) and bolts (119).
 Tighten
 • Bolt (119) to 100 N·m (75 ft. lbs.).

Measure

- Timing chain free play as follows:
 1. Mount a dial indicator to the front of the block.
 2. Position the dial indicator so that the plunger contacts the timing chain between the two sprockets.
 3. Pull the chain outward (parallel to the front face of the block) the maximum amount with finger pressure on the inside of the chain.
 4. Set the dial indicator to zero.
 5. Move the chain inward (parallel to the front face of the block) the maximum amount with finger pressure on the outside of the chain.

6. The total indicator travel can be noted. With used parts, the deflection must not exceed 20.3 mm (0.80-inch). If the deflection exceeds this limit, the sprockets and timing chain must be inspected for wear and replaced as necessary. With new parts, the deflection must not exceed 12.7 mm (0.50-inch).

FRONT COVER INSTALLATION

Clean

- Sealing surfaces on the block and front cover with carburetor cleaner or equivalent.

Install or Connect (Figures 39 and 40)

- Apply a 2 mm (3/32-inch) bead of anaerobic sealant (GM part number 1052357 or equivalent) to the front cover sealing area shown in figure 40.

1. Front cover to the engine. Install the bolts (70).
 Tighten
 • Bolts (70) to 45 N·m (33 ft. lbs.).
2. Baffle (72) bolts (86) and nut (87) (G models).
 Tighten
 • Bolts (86) and nut (87) to 45 N·m (33 ft. lbs.).

Measure

- Clearance between injection pump gear and baffle (figure 40). It is necessary to maintain a minimum of 1.0 mm (0.040-inch) between the gear and baffle, or noise may result.

Important

- If a new front cover was installed, mark TDC on the cover as outlined following. This is necessary to provide a reference mark for timing the injection pump.
MARKING TDC ON THE FRONT COVER

Tool Required:
- J 33042, Timing Fixture

1. Set the engine so that number 1 cylinder is at TDC (firing).
2. Install J 33042 in the injection pump location.
 - Do not use the gasket.
3. Set the injection pump gear (106) (figure 44) in place, aligning the timing marks on the injection pump and camshaft gears, as shown. The slot in the injection pump gear should be in the vertical 6 o'clock position (figure 41). If not, remove J 333042 and rotate the engine crankshaft 360 degrees.
4. Fasten J 33042 to the injection pump gear and tighten (figure 42).
5. Install one 10 mm nut to the upper housing stud to hold the tool flange.
 - The nut should be finger tight.
6. Tighten the large bolt (18 mm head) clockwise (looking at the front of the engine) to 48 N·m (35 ft. lbs.).
7. Tighten the 10 mm nut.
8. Check that the crankshaft has not rotated and that the tools did not bind.
9. Strike the scriber with a mallet to mark TDC on the front cover.
10. Remove J 33042.

OIL PUMP INSTALLATION

Install or Connect (Figure 43)
1. Oil pump with extension.
2. Bolt (131).

Figure 39—Front Cover and Components

Figure 40—Front Cover Installation
INJECTION PUMP INSTALLATION

Install or Connect (Figure 44)

1. Gasket (103) to the front cover.
2. Injection pump (100).
3. Throttle spring bracket (102).
4. Nuts (101). Leave finger tight until the injection pump timing is adjusted.
5. Injection pump gear (106). Align the slot in the injection pump with the locating pin on the injection pump hub (107).

Important

- Align the timing marks (figure 44).

Tighten

- Bolts (105) to 25 N·m (20 ft. lbs.).

Adjust (Figure 45)

- Injection pump timing. For the engine to be properly timed, the marks on the top of the engine front cover must be aligned with the marks on the injection pump flange (figure 45). The engine must be off when the timing is reset.

Tighten (Figure 44)

- Nuts (101) to 40 N·m (30 ft. lbs.).

TORSIONAL DAMPER INSTALLATION

Install or Connect (Figure 39)

1. Torsional damper (79). Tap into place with a mallet. Make sure the key is in place. Make sure the damper is all the way on the crankshaft.
2. Bolt (80) and washer (81).
WATER PUMP INSTALLATION

Clean
- Sealing surfaces on the water pump plate and block. Use carburetor cleaner or equivalent.

Install or Connect (Figures 39 and 46)
1. Water pump (82) and gasket (77) to the water pump plate (75).
2. Bolts (88).

Tighten
- Bolts (88) to 22 N·m (16 ft. lbs.).
- Apply a bead of anaerobic sealer (GM part no. 1052357 or equivalent) to the water pump plate as shown in figure 46.
3. Water pump plate to the engine. The sealer must be wet to the touch when installing the plate.
- Apply sealant (GM Part no. 1052080 or equivalent) to the threads of bolts and studs (76).
4. Bolts and studs (76).

HYDRAULIC LIFTER INSTALLATION

Important
- Some engines will have both standard and 0.010-inch oversize hydraulic lifters. The oversize lifter will have a "10" etched on the side. The block will be stamped "O.S." on the cast pad adjacent to the lifter bore and on the top rail of the cylinder case above the lifter bore.

Install or Connect (Figure 47)

NOTICE: New hydraulic lifters must be primed before installation. Damage to the lifters may result if dry when the engine is started.

1. Hydraulic lifters to the engine.
 - Prime new hydraulic lifters before installation by working the lifter plunger while submerged in clean kerosene or diesel fuel.
 - Coat the lifter roller and bearings with lubricant (GM part number 1052365 or equivalent).
 - Lifters MUST be installed in their original locations.
2. Guide plates (50).
3. Clamps (51).
A. Timing Marks
100. Injection Pump
101. Nut
102. Throttle Spring Bracket
103. Gasket
104. Camshaft Gear
105. Bolt
106. Injection Pump Gear
107. Injection Pump Hub

Figure 44—Injection Pump

A. Timing Marks
100. Injection Pump
101. Nut
102. Throttle Spring Bracket
103. Gasket
104. Camshaft Gear
105. Bolt
106. Injection Pump Gear
107. Injection Pump Hub

Figure 45—Injection Pump Timing Marks

A. Timing Marks
100. Injection Pump
101. Nut
102. Throttle Spring Bracket
103. Gasket
104. Camshaft Gear
105. Bolt
106. Injection Pump Gear
107. Injection Pump Hub

Figure 46—Applying Sealer to the Water Pump Plate

A. Apply anerobic sealer.
75. Water Pump Plate

A. Alignment Marks

Figure 43—Inlet and Outlet Manifold

Figure 44—Injection Pump

Tighten
- Clamp bolts to 26 N·m (18 ft. lbs.).

Important
- After all clamps are installed, turn the crankshaft by hand 720 degrees (two full turns), to insure free movement of the lifters in the guide plates. If the engine will not turn over by hand, one or more of the lifters may be binding in the guide plate.

CYLINDER HEAD INSTALLATION

Install or Connect (Figures 47 and 48)

Tool Required:
J 29664 Manifold Cover Set

1. Head gasket to the block, over the dowel pins.
 ! Important
 - The block gasket surfaces must be clean.
 - DO NOT use a sealer on the head gasket. The head gasket is manufactured with the proper amount of sealant "printed" on its surface. Additional sealer may cause leakage or malfunction. In addition, some sealers may attack the sealant already on the head gasket.

 2. Cylinder head. Make sure the gasket surfaces are clean. Guide the head carefully into place over the dowel pins.

 ! Important
 - Make sure the bolt threads are clean.
 - Apply sealant (GM part number 1052080 or equivalent) to the bolt threads and under the bolt heads.

 Tighten
 - Bolts (56).
 - Using the sequence shown in figure 48, tighten all bolts to 25 N·m (20 ft. lbs.).
17. Hydraulic Lifter
18. Pushrod
50. Guide Plate
51. Clamp
52. Head Gasket
53. Cylinder Head
54. Bolt
55. Rocker Arm Assembly
56. Bolt
57. Rocker Arm Cover
58. Bolt

Figure 47—Cylinder Head and Components

- In sequence, tighten all bolts to 65 N·m (50 ft. lbs.).
- In sequence, tighten all bolts an additional 90 degrees (1/4 turn).

4. J 29664-1 to the intake ports.

PUSHROD AND ROCKER ARM INSTALLATION

Install or Connect (Figures 47 and 49)

NOTICE: The pushrods must be installed with the marked or painted end up. Failure to do so may result in damage or premature wear.

1. Pushrods, with the painted or marked end up.
2. Rocker arm shaft assembly. Make sure the ball ends of the pushrods seat in the rocker arms.

NOTICE: Improper installation of the rocker arm shaft bolts may cause rocker arm shaft breakage and/or piston to valve contact.

3. Bolts (54).

Figure 48—Head Bolt Tightening Sequence

- In sequence, tighten all bolts to 22 N·m (16 ft. lbs.).

ROCKER ARM COVER INSTALLATION

Install or Connect (Figure 50)

NOTICE: Do not allow RTV sealant into the rocker arm cover bolt holes. This may cause a "hydraulic lock" condition when the bolts are tightened, damaging the cylinder head casting.

- Apply a 5 mm (3/32-inch) bead of RTV sealant (GM part number 1052915 or equivalent) to the rocker arm covers, inboard of the bolt holes. Refer to figure 50. The sealer must be wet to the touch when the bolts are torqued.

1. Rocker arm covers.
2. Bolts (58).

Tighten

- Bolts (58) alternately to 55 N·m (40 ft. lbs.).
WATER CROSSOVER INSTALLATION

Install or Connect (Figure 51)
1. Gaskets (46).
2. Water crossover.
3. Bolts and studs (44).

Tighten
- Bolts and studs (44) to 42 N·m (31 ft. lbs.).
4. Hose (48) and clamps (47).
5. Glow plug inhibit switch wire.

DIPSTICK TUBE INSTALLATION

Install or Connect
1. New O-ring to the dipstick.
2. Dipstick to the engine.
3. Dipstick bracket bolt.

EXHAUST MANIFOLD INSTALLATION

Install or Connect
- Exhaust manifolds and bolts.

Tighten
- Bolts to 35 N·m (26 ft. lbs.).

GLOW PLUG INSTALLATION

Install or Connect
- Glow plugs.

Tighten
- Glow plugs to 14 N·m (10 ft. lbs.).
40. Studs
41. Water Outlet
42. Thermostat
43. Gasket
44. Bolt/Stud
45. Water Crossover
46. Gasket
47. Clamp
48. Hose

Figure 51—Thermostat and Water Crossover

INJECTION NOZZLE INSTALLATION

* Install or Connect (Figure 52)

 Tool Required:

 J 29873, Nozzle Socket

 NOTICE: Nozzles used in LH6 (light duty emissions) engines used in G models are shorter than nozzles used in other models. Attempts to install an incorrect nozzle will damage the cylinder heads.

 NOTICE: When installing an injection nozzle, use J 29873. Install the nozzle using the 30 mm hex portion. Failure to do so will result in damage to the injection nozzle.

 1. Injection nozzle with gasket using J 29873.

Figure 52—Injection Nozzles

Tighten

- Nozzle to 70 N·m (50 ft. lbs.).
- Fuel return hose.
- Fuel line clip.

INJECTION LINE INSTALLATION

* Install or Connect (Figures 53 and 54)

 1. Injection line brackets.
 2. Injection lines to the pump. Uncap the lines before assembly. Do not bend the injection lines.
 3. Injection lines to the nozzles. Uncap the lines before assembly. Do not bend the injection lines.

Tighten

- Injection line fittings at both ends of the lines to 25 N·m (19 ft. lbs.).
- Injection line clips to the brackets.

INTAKE MANIFOLD INSTALLATION

* Remove or Disconnect

 - J 29664-1 from the intake ports.

* Install or Connect (Figure 55)

 Tool Required:

 J 29664 Manifold Cover Set
6A7-32 6.2 LITER DIESEL

Figure 53—Injection Lines

1. New gaskets. Be sure to use the correct gasket. The gaskets for light duty emissions models have openings for the EGR, the gaskets for heavy duty emissions models do not.
2. Intake manifold.
3. Intake manifold bolts and fuel line clips.

Tighten
- Intake manifold bolts to 42 N·m (31 ft. lbs.).
- Use the tightening sequence shown in figure 55.
4. J 29664-2 to the mouth of the intake manifold.

OIL PUMP DRIVE OR VACUUM PUMP INSTALLATION

NOTICE: Do not run the engine without the gear driven vacuum pump or oil pump drive in place. This will cause extensive engine damage.

Install or Connect (Figures 56, 57, and 58)

1. New gasket to the oil pump drive or vacuum pump.
2. Oil pump drive or vacuum pump to the engine. Index the drive or pump with the camshaft gear and oil pump drive shaft. Make sure the drive or pump seats fully.
- Rotate the vacuum pump (if used) to its correct position (figure 58).
3. Clamp and bolt.

ENGINE ACCESSORY INSTALLATION

Install the engine accessories as directed in the proper Truck Service Manual. Connect all vacuum hoses and electrical equipment the same way as removed.

ENGINE SET-UP AND TESTING

1. After overhaul, the engine should be tested before installation in the vehicle. If a suitable test stand is not available, the following procedure can be used after the engine is installed in the vehicle.
2. Fill the crankcase with the proper quantity and grade of oil and install a new oil filter. Refer to the proper Truck Service Manual or Owner’s and Driver’s Manual for this information. Replacement of the engine oil and filter is recommended, especially if a new camshaft was installed.
3. Fill the cooling system with the proper coolant.
4. With the shutdown solenoid disconnected, crank the engine several times. Listen for any unusual noises or evidence that any parts are binding.
5. Start the engine and listen for unusual noises. Run the engine at about 1000 rpm until the engine is at operating temperature.
Listen for sticking lifters, and other unusual noises. Check for oil and coolant leaks while the engine is running.

Using the proper Truck Service Manual or Emission Control Label for specifications, adjust idle speed, fast idle speed, etc. as required.

Figure 54—Injection Line Routing
Figure 55—Intake Manifold Installation

Figure 56—Oil Pump Drive Installed

Figure 57—Vacuum Pump
Figure 58—Vacuum Pump Installed
GENERAL DATA:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>90-degree V8 Diesel</td>
</tr>
<tr>
<td>Displacement</td>
<td>6.2L</td>
</tr>
<tr>
<td>RPO</td>
<td>LH6 LL4</td>
</tr>
<tr>
<td>Bore</td>
<td>101</td>
</tr>
<tr>
<td>Stroke</td>
<td>97</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>21.3:1</td>
</tr>
<tr>
<td>Firing Order</td>
<td>1-8-7-2-6-5-4-3</td>
</tr>
<tr>
<td>Oil Pressure</td>
<td>10 psi at idle (hot); 40–45 psi at 2000 RPM</td>
</tr>
</tbody>
</table>

CYLINDER BORE:

<table>
<thead>
<tr>
<th>Diameter</th>
<th>100.987–101.065</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>0.02 (Maximum)</td>
</tr>
<tr>
<td>Taper (Thrust Side)</td>
<td>0.02 (Maximum)</td>
</tr>
</tbody>
</table>

PISTON:

<table>
<thead>
<tr>
<th>Cylinder</th>
<th>Clearances</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bohn Pistons</td>
<td>Bores 1 through 6</td>
<td>0.089–0.115</td>
</tr>
<tr>
<td></td>
<td>Bores 7 and 8</td>
<td>0.102–0.128</td>
</tr>
<tr>
<td>Zollner Pistons</td>
<td>Bores 1 through 6</td>
<td>0.112–0.138</td>
</tr>
<tr>
<td></td>
<td>Bores 7 and 8</td>
<td>0.125–0.151</td>
</tr>
</tbody>
</table>

PISTON RING:

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Clearances</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bohn Pistons</td>
<td>Compression Groove</td>
<td>Top 0.076–0.178</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>Top 0.039–0.080</td>
</tr>
<tr>
<td></td>
<td>Compression Gap</td>
<td>Top 0.30–0.55</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>0.75–1.00</td>
</tr>
<tr>
<td>Zollner Pistons</td>
<td>Oil Groove Clearance</td>
<td>0.040–0.096</td>
</tr>
<tr>
<td></td>
<td>Gap</td>
<td>0.25–0.51</td>
</tr>
</tbody>
</table>

PISTON PIN:

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Clearances</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clearance</td>
<td>30.9961–31.0039</td>
</tr>
<tr>
<td></td>
<td>Fit in Rod</td>
<td>0.0101–0.0153</td>
</tr>
<tr>
<td></td>
<td>0.0081–0.0309</td>
<td></td>
</tr>
</tbody>
</table>

CRANKSHAFT:

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Clearances</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Journal</td>
<td>#1, 2, 3, 4</td>
<td>74.917–74.941</td>
</tr>
<tr>
<td></td>
<td>#5</td>
<td>74.912–74.936</td>
</tr>
<tr>
<td>Taper</td>
<td>0.005 (Maximum)</td>
<td></td>
</tr>
<tr>
<td>Out of Round</td>
<td>0.005 (Maximum)</td>
<td></td>
</tr>
<tr>
<td>Main Bearing</td>
<td>#1, 2, 3, 4</td>
<td>0.045–0.083</td>
</tr>
<tr>
<td></td>
<td>#5</td>
<td>0.055–0.093</td>
</tr>
<tr>
<td>Crankshaft End Play</td>
<td>0.10–0.25</td>
<td></td>
</tr>
<tr>
<td>Crankpin</td>
<td>Diameter</td>
<td>60.913–60.939</td>
</tr>
<tr>
<td></td>
<td>Taper</td>
<td>0.005 (Maximum)</td>
</tr>
<tr>
<td></td>
<td>Out-of-Round</td>
<td>0.005 (Maximum)</td>
</tr>
<tr>
<td>Rod Bearing Clearance</td>
<td>0.045–0.100</td>
<td></td>
</tr>
<tr>
<td>Rod Side Clearance</td>
<td>0.17–0.63</td>
<td></td>
</tr>
</tbody>
</table>
ENGINE SPECIFICATIONS (CONT.)

All Specifications are in millimeters (mm) unless otherwise noted.

<table>
<thead>
<tr>
<th>DISPLACEMENT</th>
<th>6.2 L</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAMSHAFT:</td>
<td></td>
</tr>
<tr>
<td>Lobe Lift ± 0.05</td>
<td>Intake</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
</tr>
<tr>
<td>Journal Diameter #1, 2, 3, 4</td>
<td>54.970-55.025</td>
</tr>
<tr>
<td></td>
<td>#5</td>
</tr>
<tr>
<td>Journal Clearance #1, 2, 3, 4</td>
<td>0.025-0.118</td>
</tr>
<tr>
<td></td>
<td>#5</td>
</tr>
<tr>
<td>Camshaft End Play</td>
<td></td>
</tr>
</tbody>
</table>

VALVE SYSTEM:

<table>
<thead>
<tr>
<th>Lifter</th>
<th>Hydraulic Roller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocker Arm Ratio</td>
<td>1.5 : 1</td>
</tr>
<tr>
<td>Valve Lash</td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>Not Adjustable</td>
</tr>
<tr>
<td>Exhaust</td>
<td></td>
</tr>
<tr>
<td>Face Angle (Intake & Exhaust)</td>
<td>45°</td>
</tr>
<tr>
<td>Seat Angle (Intake & Exhaust)</td>
<td>46°</td>
</tr>
<tr>
<td>Seat Runout (Intake & Exhaust)</td>
<td>0.05</td>
</tr>
<tr>
<td>Seat Width</td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>0.89-1.53</td>
</tr>
<tr>
<td>Exhaust</td>
<td>1.57-2.36</td>
</tr>
<tr>
<td>Stem Clearance</td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>0.026-0.069</td>
</tr>
<tr>
<td>Exhaust</td>
<td>0.026-0.069</td>
</tr>
<tr>
<td>Valve Spring</td>
<td></td>
</tr>
<tr>
<td>Pressure</td>
<td>Closed</td>
</tr>
<tr>
<td>Newtons @ mm</td>
<td>Open</td>
</tr>
<tr>
<td>Installed Height</td>
<td>46</td>
</tr>
<tr>
<td>Timing Chain Free Play</td>
<td></td>
</tr>
<tr>
<td>New Chain</td>
<td>12.7 mm (0.500-inch)</td>
</tr>
<tr>
<td>Used Chain</td>
<td>20.3 mm (0.800-inch)</td>
</tr>
<tr>
<td>Hydraulic Lifter Diameter</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>23.39-23.41</td>
</tr>
<tr>
<td>0.010-inch Oversize</td>
<td>23.64-23.66</td>
</tr>
<tr>
<td>Lifter Bore Diameter</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>23.45-23.47</td>
</tr>
<tr>
<td>0.010-inch Oversize</td>
<td>23.70-23.72</td>
</tr>
<tr>
<td>Lifter to Bore Clearance</td>
<td>0.040-0.080*</td>
</tr>
</tbody>
</table>

An oversize lifter can be used to replace a standard lifter, if resulting clearance is as specified.
SPECIFICATIONS (CONT.)

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
<th>In. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Outlet Bolts/Studs</td>
<td>47</td>
<td>35</td>
<td>—</td>
</tr>
<tr>
<td>Water Crossover to Cylinder Head Bolts/Studs</td>
<td>42</td>
<td>31</td>
<td>—</td>
</tr>
<tr>
<td>Main Bearing Cap Bolts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Inner)</td>
<td>150</td>
<td>110</td>
<td>—</td>
</tr>
<tr>
<td>(Outer)</td>
<td>135</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>Flywheel Bolts</td>
<td>90</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Connecting Rod Cap Nuts</td>
<td>65</td>
<td>48</td>
<td>—</td>
</tr>
<tr>
<td>Camshaft Thrust Plate Bolts</td>
<td>23</td>
<td>17</td>
<td>—</td>
</tr>
<tr>
<td>Camshaft Gear Bolt</td>
<td>100</td>
<td>75</td>
<td>—</td>
</tr>
<tr>
<td>Front Cover to Block Bolts</td>
<td>45</td>
<td>33</td>
<td>—</td>
</tr>
<tr>
<td>Injection Pump Gear Baffle Bolts and Nut</td>
<td>45</td>
<td>33</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pump to Bearing Cap Bolt</td>
<td>90</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pan Bolts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All except Rear Two Bolts</td>
<td>10.0</td>
<td>—</td>
<td>84</td>
</tr>
<tr>
<td>Rear Two Bolts</td>
<td>23</td>
<td>17</td>
<td>—</td>
</tr>
<tr>
<td>Injection Pump Gear Bolts</td>
<td>25</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Injection Pump Flange Nuts</td>
<td>40</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Oil Pan Drain Plug</td>
<td>10.0</td>
<td>—</td>
<td>90</td>
</tr>
<tr>
<td>Block Drain Plug</td>
<td>22</td>
<td>16</td>
<td>—</td>
</tr>
<tr>
<td>Torsional Damper Bolt</td>
<td>270</td>
<td>200</td>
<td>—</td>
</tr>
<tr>
<td>Water Pump Plate to Water Pump Bolts</td>
<td>22</td>
<td>16</td>
<td>—</td>
</tr>
<tr>
<td>Water Pump to Front Cover Bolts</td>
<td>42</td>
<td>32</td>
<td>—</td>
</tr>
<tr>
<td>Water Pump Plate to Front Cover Bolts</td>
<td>22</td>
<td>16</td>
<td>—</td>
</tr>
<tr>
<td>Hydraulic Lifter Guide Plate Clamp Bolts</td>
<td>26</td>
<td>18</td>
<td>—</td>
</tr>
<tr>
<td>Cylinder Head Bolts — See Text.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rocker Arm Assembly Bolts</td>
<td>55</td>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>Rocker Arm Cover Bolts</td>
<td>22</td>
<td>16</td>
<td>—</td>
</tr>
<tr>
<td>Exhaust Manifold Bolts</td>
<td>35</td>
<td>26</td>
<td>—</td>
</tr>
<tr>
<td>Glow Plugs</td>
<td>14</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>Injection Nozzles</td>
<td>70</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>Injection Line Fittings</td>
<td>25</td>
<td>19</td>
<td>—</td>
</tr>
<tr>
<td>Intake Manifold Bolts</td>
<td>42</td>
<td>31</td>
<td>—</td>
</tr>
<tr>
<td>Vacuum Pump/Oil Pump Drive Clamp Bolt</td>
<td>42</td>
<td>31</td>
<td>—</td>
</tr>
</tbody>
</table>
1. Ring Compressor
2. Timing Fixture
3. Nozzle Socket
4. Seal Installer
5. Torsional Damper Remover
6. Manifold Cover Set
SECTION 6C
CARBURETORS

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1MEF Carburetor</td>
<td>6C1-1</td>
</tr>
<tr>
<td>Model M4MEF Carburetor</td>
<td>6C2-1</td>
</tr>
</tbody>
</table>

SECTION 6C1
MODEL 1MEF CARBURETOR

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carburetor Identification</td>
<td>6C1- 2</td>
</tr>
<tr>
<td>General Description</td>
<td>6C1- 2</td>
</tr>
<tr>
<td>Carburetor Disassembly</td>
<td>6C1- 7</td>
</tr>
<tr>
<td>Cleaning, Inspection and Repair</td>
<td>6C1-13</td>
</tr>
<tr>
<td>Pump System Check</td>
<td>6C1-14</td>
</tr>
<tr>
<td>Vacuum Break Checking Procedure</td>
<td>6C1-14</td>
</tr>
<tr>
<td>Idle Stop Solenoid Checking Procedure</td>
<td>6C1-15</td>
</tr>
<tr>
<td>Carburetor Reassembly</td>
<td>6C1-16</td>
</tr>
<tr>
<td>Metering Rod Adjustment</td>
<td>6C1-18</td>
</tr>
<tr>
<td>Float Adjustment</td>
<td>6C1-18</td>
</tr>
<tr>
<td>Choke Stat Lever Adjustment</td>
<td>6C1-20</td>
</tr>
<tr>
<td>Choke Link (Fast Idle Cam) Adjustment</td>
<td>6C1-20</td>
</tr>
<tr>
<td>Vacuum Break Adjustment</td>
<td>6C1-21</td>
</tr>
<tr>
<td>Choke Unloader Adjustment</td>
<td>6C1-21</td>
</tr>
<tr>
<td>Specifications</td>
<td>6C1-22</td>
</tr>
<tr>
<td>Special Tools</td>
<td>6C1-22</td>
</tr>
</tbody>
</table>
CARBURETOR IDENTIFICATION

Model Number: 17086101
Applications: Federal (Non-California), and Canada
4.8 Liter L6 engine

The carburetor identification number is stamped vertically on the float bowl, next to the fuel inlet nut (Figure 1). Refer to this number when servicing the carburetor.

Carburetor parts are shown in the disassembled view (Figure 9), and are identified by name on the facing page (Figure 10).

NOTICE: The factory-set metering rod adjusting screw, located in the air horn (Figure 6), controls the position of the enrichment portion of the metering rod in the jet. Any attempt to readjust this screw could result in engine damage or excessive emissions.

Figure 1 – Carburetor Identification

GENERAL DESCRIPTION

Model 1MEF is a single stage, single barrel carburetor of the “1M” family (Figure 2). Letters following the “1M” designate these features:
E: It has an integral Electric choke.
F: It has adjustable wide open throttle mixture control.

Model 1MEF has three major assemblies: an air horn, a float bowl and a throttle body. It has the six operating systems shown in Figures 3 through 8:

Figure 3 Float Figure 6 Power
Figure 4 Idle Figure 7 Pump
Figure 5 Main Metering Figure 8 Choke

IDLE STOP SOLENOID (ISS)

The electric idle stop solenoid (ISS) is used to provide the desired engine idle speed, and to prevent “dieseling” when the ignition is switched off.

UNIT REPAIR

The information that follows applies to a complete overhaul, after the carburetor has been removed from the engine, and includes disassembly, thorough cleaning, inspection and replacement of all gaskets, seals, worn or damaged parts, and adjustment of individual systems.

Refer to the disassembled view (Figure 9), and parts list (Figure 10), for parts identification.
215. Fuel Inlet Filter
218. Fuel Filter Spring
226. Float
228. Float Hinge Pin
231. Float Needle
234. Float Needle Seat

A. Internal Vent
B. Vent Tube to Canister
C. Check Valve Seat
D. Fuel In
E. Check Valve
F. Valve Closing Spring

Figure 3 – Float System

282. Jet-Main Metering
286. Idle Tube Assembly
326. Needle-Idle Mixture
333. Plug-Idle Mixture Needle

A. Throttle Valve
B. Idle Channel Restriction
C. Top Idle Air Bleed
D. Lower Idle Air Bleed
E. Off-Idle Port
F. Idle Discharge Orifice
G. Timed Vacuum Port

Figure 4 – Idle System
266. Rod - Power Piston
274. Power Valve Piston Assembly
276. Spring - Power Piston
279. Metering Rod and Spring Assembly
282. Jet - Main Metering
 A. Throttle Valve
 B. Vacuum Channel
 C. Main Venturi
 D. Boost Venturi
 E. Main Discharge Nozzle
 F. Lower Idle Air Bleed
 G. Main Well
 H. Fuel Feed Orifice
 I. Part Throttle Adjusting Screw
 J. Top Main Well Air Bleed
 K. Main Well to Aspirator Bleed

Figure 5 - Main Metering System

266. Rod - Power Piston
274. Power Valve Piston Assembly
276. Spring - Power Piston
279. Metering Rod and Spring Assembly
282. Jet - Main Metering
310. Lever - Pump and Power Rod
314. Link - Power Rod
 A. Throttle Valve
 B. Vacuum Channel
 C. Main Discharge Nozzle
 D. Lower Idle Air Bleed
 E. Main Well
 F. Metering Rod Adjusting Screw
 G. Setscrew
 H. Metering Rod Adjusting Screw Plug
 I. Top Main Well Air Bleed
 J. Main Well to Aspirator Bleed

Figure 6 - Power System
240. Rod - Pump
247. Cup - Pump Plunger
248. Spring - Pump Plunger
252. Spring - Pump Return
256. Guide - Pump Discharge Spring
258. Spring - Pump Discharge Ball
260. Ball - Pump Discharge
310. Lever - Pump and Power Rod
317. Link - Pump
 A. Pump Plunger Head
 B. Pump Duration Spring
 C. Pump Discharge Channel
 D. Pump Jet

Figure 7 - Pump System

10. Fast Idle Cam
15. Fast Idle Cam Link
20. Choke Shaft, Lever and Link Assembly
40. Choke Shaft and Lever Assembly
43. Choke Stat Lever

65. Bowl Side Vacuum Break Assembly
69. Vacuum Break Lever and Link Assembly
 A. Choke Valve
 B. Thermostatic Coil
 C. Plunger Bucking Spring
 (not used on all models)
CARBURETOR DISASSEMBLY

IDLE MIXTURE NEEDLE PLUG

1. Remove or Disconnect (Figure 11)

2. Make two parallel hacksaw cuts (C) in the throttle body, one on each side of the locator point (B) above idle mixture needle plug (333).
 - Cut down to the plug, but not more than 1/8" beyond the locator point.

3. Place a flat punch (D) at a point near the ends of the saw marks. Hold the punch at a 45° angle, and drive it into the throttle body to break casting away, to expose the plug.
4. Use center punch (E) to break plug apart, to uncover idle mixture needle.

5. Remove all loose pieces of plug.

FUEL INLET NUT AND FILTER
- Support carburetor to avoid damaging external components.

Remove or Disconnect (Figure 12)
1. Fuel inlet nut (210).
2. Fuel inlet filter (215), inlet nut gasket (212), and filter spring (218).
 - Discard gasket.
 - Inspect
 - Cut filter open. If clogged, check tank(s) and fuel lines for source of material.

THROTTLE RETURN SPRING BRACKET

Remove or Disconnect (Figures 9, 10)
1. Loosen bracket attaching screw (421)(bottom).
2. Remove bracket attaching screws (420) and throttle return spring anchor bracket (415).

CHOKE COMPONENTS

Vacuum Break Assembly

Remove or Disconnect (Figure 13)
1. Vacuum break hose (67).
2. Air horn to float bowl (vacuum break attaching) screws (111) and bowl side vacuum break assembly (65).
 - Disconnect vacuum break from vacuum break link (69A).
 - Allow choke wire connector bracket assembly (47A) to hang freely.

Choke Housing

Remove or Disconnect (Figure 14)
- Choke housing attaching screws (36, 37), and choke housing and bearing assembly (35).
- Disconnect choke housing from choke link (20A).

Fast Idle Cam and Link

Remove or Disconnect (Figure 15)
- Fast idle cam attaching screw (12), cam (10) and cam link (15).
- Disconnect fast idle cam link from choke shaft lever (20).
AIR HORN COMPONENTS

Remove or Disconnect (Figure 16)

1. Air horn to float bowl screw assemblies (105, 108).
2. Air horn assembly (100).
3. Air horn to float bowl gasket (101).
 ○ Discard gasket.
Further disassembly of the air horn is not required. Do not remove the staked choke valve screws, or the vacuum break lever attaching screw, which is installed with thread locking compound.

NOTICE: Do not turn or remove the metering rod adjusting screw (Figure 6). Any attempt to readjust this screw could result in engine damage or increased exhaust emissions.

FLOAT BOWL COMPONENTS

Float and Float Needle

- **Remove or Disconnect** (Figure 17)
 1. Float (226) and hinge pin (228).
 - Pull up on hinge pin.
 2. Float needle (231) from needle seat (234).

Pump and Power Piston

- **Remove or Disconnect** (Figures 18 - 22)
 1. Pump lever attaching screw (311).
 2. Pump and power rod lever (310), power rod link (314), and pump link (317) as follows:
 - **A. Close throttle.**

Figure 17 – Float and Float Needle

- 231. Float Needle
- 228. Hinge Pin
- 226. Float

Figure 18 – Pump and Power Rod Lever

1. Remove pump and power rod lever (310) from end of throttle shaft.
2. Press down on power valve piston assembly (274), and disconnect power rod link (314) from power piston rod (266).
3. Press down on pump rod (240), and disconnect pump link (317) from slot in rod.
4. Pump rod (240) and pump assembly (246).

Disassemble (Figure 21)

- Pump plunger spring (248) and cup (247) from pump assembly (246).

5. Pump return spring (252) from pump well.
6. Power valve piston assembly (274), metering rod and spring assembly (279), and power piston rod (266).

Disassemble (Figure 22)

- Metering rod and spring assembly (279) from metering rod hanger.
7. Power piston spring (276) from float bowl.
240. Pump Rod
266. Power Piston Rod
310. Pump and Power Rod Lever
311. Pump Lever Attaching Screw
314. Power Rod Link
317. Pump Link

Figure 19 – Pump and Power Piston Linkage

246. Pump Assembly
247. Pump Plunger Cup
248. Pump Plunger Spring

Figure 21 – Pump Plunger Cup and Spring

240. Pump Rod
242. Pump Rod Seal

Figure 20 – Pump Rod Seal

279. Metering Rod and Spring Assembly
282. Main Metering Jet
276. Power Piston Spring
274. Power Valve Piston Assembly

Figure 22 – Power Piston, Metering Rod and Jet
Float Needle Seat and Main Metering Jet

- Remove or Disconnect (Figures 23, 22)
 1. Float needle seat (234) and seat gasket (235).
 2. Main metering jet (282).

Idle Tube Assembly

- Remove or Disconnect (Figure 24)
 - Idle tube assembly (286).
 - Invert carburetor, and catch idle tube.

Pump Discharge Ball and Spring

- Remove or Disconnect (Figure 24)
 1. Pump discharge spring guide (256).
 - Use needle nose pliers.
 2. Pump discharge ball spring (258), and ball (260).
 - Invert carburetor, and catch spring and ball.

Idle Mixture Needle

- Remove or Disconnect (Figure 25)
 Tool required:
 J 29030-B or BT-7610B, Idle Mixture Socket (Adjusting Tool).
 - Idle mixture needle (326) and spring (327).
 - Count, and make a record of, number of turns needed to lightly bottom needle, for use in reassembly.
Inspect (Figure 25)

- Idle mixture needle for damaged tip or threads.
 - If damaged, replacement is required.

Throttle Body

- Invert carburetor.

- Remove or Disconnect (Figure 26)
 1. Float bowl to throttle body screw assemblies (305).
 2. Throttle body assembly (300), and float bowl to throttle body gasket (301).

 - Do not disassemble throttle body further. The throttle body is serviced as a complete assembly.

POWER PISTON SEAL

- Invert float bowl.

- Remove or Disconnect (Figure 27)
 1. Power piston rod seal retainer (270).
 - Use small screwdriver or awl.
 2. Power piston rod seal (268).

CLEANING, INSPECTION AND REPAIR

Inspect

- If an excessive amount of foreign material is found in the float bowl, check tank(s) and fuel lines for the source.

Clean (Figure 28)

1. Power piston bore of float bowl.
 - Use 0.375 inch soft wire brush. Turn clockwise through full length of the power piston bore. Turn brush several more turns, to remove dirt and varnish.

2. Metal carburetor parts in cold immersion type cleaner, Carbon X (X-55) or equivalent.

NOTICE: Do not immerse idle stop solenoid, electric choke cover and stat assembly, vacuum break, float, pump plunger, and seals in cleaner, as they may become non-functional, swell, harden or distort.

3. Blow out all passages in the castings with compressed air.
 - Do Not pass drill bits or wire through main metering jet or other passages.

Inspect

- Check the following items, and if the condition listed is noted, clean, repair or replace the components.
 - Air and fuel passages, and metering parts, for dirt or burrs.
 - Mating surfaces of castings, for nicks or damage that would prevent sealing air or fuel.
 - Power valve piston assembly for sticking in bore.
1. Fill empty float chamber and pump well with a clean solvent, such as mineral spirits.

2. Seal the pump discharge passage on top of the pump discharge spring guide with a finger. Use other hand to push pump assembly slowly downward in pump well.
 - Pump assembly should not travel to bottom of well. Only movement should be compressing of the duration spring.
 - If pump assembly moves down in well, this may indicate that the pump cup is not sealing properly or that the pump well is worn or scored.

3. With clean solvent in float chamber and pump well, slowly move pump assembly down in pump well until solvent is visible at top of the pump discharge spring guide.

4. Remove pump assembly, continue to observe solvent level at the spring guide. Solvent level should not lower.
 - If level lowers, the discharge ball may not be seating correctly because of foreign material, damage to the ball, or because the seat for the ball needs restaking.

5. Satisfactory pump system operation requires that these checks be successful. After cleaning or parts replacement, repeat procedure.

VACUUM BREAK CHECKING PROCEDURE

Inspect (Figures 29, 30)

Tool required:
- J 23738-A or BT-7517 - Hand Operated Vacuum Pump.

PUMP SYSTEM CHECK

Inspect (Figures 21, 24, 7)

- Perform this check with a new pump cup installed on the pump plunger, and with the pump discharge ball, ball spring and spring guide installed.
ELECTRIC CHOKE COVER AND STAT ASSEMBLY REPLACEMENT

The electric choke cover and stat assembly may be removed for replacement or to access the choke shaft and lever assembly as follows:

Electric Choke Cover and Stat

- Remove or Disconnect (Figure 31)
 1. Heads of choke cover attaching rivets (52).
 - Use 4 mm (5/32") drill bit.
 2. Choke cover retainers (50).
 3. Electric choke cover and stat assembly (47).
 4. Remaining pieces of rivets in housing.
 - Use punch to drive out.

IDLE STOP SOLENOID CHECKING PROCEDURE

Check the idle stop solenoid (400) electrically, using a 12 volt automotive battery.

1. Hold the solenoid plunger in (against the internal stop), using finger pressure.
2. Apply +12 volts to the terminal and -12 volts to the solenoid body.
3. If the solenoid plunger does not extend when the voltage is applied, replace the solenoid.

ELECTRIC CHOKE COVER AND STAT ASSEMBLY REPLACEMENT

The electric choke cover and stat assembly may be removed for replacement or to access the choke shaft and lever assembly as follows:

Electric Choke Cover and Stat

- Remove or Disconnect (Figure 31)
 1. Heads of choke cover attaching rivets (52).
 - Use 4 mm (5/32") drill bit.
 2. Choke cover retainers (50).
 3. Electric choke cover and stat assembly (47).
 4. Remaining pieces of rivets in housing.
 - Use punch to drive out.
Choke Housing

Assemble (Figure 32)

1. Choke shaft and lever assembly (40) in choke housing (35).

2. Choke stat lever (43) on flats of choke shaft assembly (40).
 - Line up gaging hole in choke shaft lever with hole in housing, install stat lever on shaft in the four o'clock position.

3. Stat lever attaching screw (44).

Electric Choke Cover and Stat

Install or Connect (Figures 32, 33)

1. Electric choke cover and stat assembly (47) in choke housing (35) as follows:
 - A. Line up gaging hole in choke shaft lever (40) with hole in housing, install choke cover with stat tang under stat lever.
 - B. Rotate choke cover to line-up notch in the cover with the projection on the housing.

2. Choke cover retainers (50) and attaching rivets (52).
 - Use blind rivet tool to install rivets.

CARBURETOR REASSEMBLY

POWER PISTON ROD SEAL (In Float Bowl)

Install or Connect (Figure 27)

1. New power piston rod seal (268) in float bowl.

2. New power piston rod seal retainer (270).
 - Install flush with casting surface.

THROTTLE BODY COMPONENTS

Throttle Body

- Invert float bowl (200).

Install or Connect (Figure 26)

1. New float bowl to throttle body gasket (301).
 - Install over locator bosses on float bowl.
2. Throttle body assembly (300).

3. Float bowl to throttle body screw assemblies (305).

Tighten
- Screw assemblies to 20N·m (15 lb.ft.).

Idle Mixture Needle
- Support carburetor.

Install or Connect (Figure 25)

Tool required:
- J 29030-B or BT-7610B, Idle Mixture Socket (Adjusting Tool).
- Idle mixture needle (326) and spring (327).
- Turn needle in to lightly bottom, then back out number of turns counted during disassembly.
- Final idle mixture adjustment is made on the vehicle. For information on this adjustment procedure, refer to Carburetors (SEC. 6C1) in the 1989 Light Duty Truck Service Manual.

FLOAT BOWL COMPONENTS

If replacing the float bowl assembly, transfer the identification number to the new float bowl at location shown, (Figure 1). Follow the instructions on the envelope included in the service package.

Pump Discharge Ball and Spring

Install or Connect (Figure 24)
1. Pump discharge ball (260).
2. Pump discharge ball spring (258).
3. Pump discharge spring guide (256).
- Install flush with casting surface.

Idle Tube Assembly

Install or Connect (Figure 24)
- Idle tube assembly (286).
- Should be flush with casting surface.

Main Metering Jet and Float Needle Seat

Install or Connect (Figures 34, 23)
1. Main metering jet (282).
2. Float needle seat (234) with new gasket (235).

POWER PISTON AND PUMP

Install or Connect (Figures 34, 20, 35)
1. Power piston spring (276) in float bowl.
2. Power piston rod (266) with piston drive end facing away from piston cavity.
3. Power valve piston assembly (274), **without** the metering rod spring assembly (279).
 - Press down on piston and rotate piston rod to engage slot in piston.

Assemble (Figure 21)
- Pump assembly (246), with new pump plunger cup (247), and spring (248), (if not installed for pump system check).
4. Pump return spring (252) in pump well.
5. New pump rod seal (242) over boss on float bowl.
6. Pump assembly (246) and pump rod (240).

Assemble (Figure 35)
- Pump link (317) and power rod link (314) to pump and power rod lever (310) as shown in Figure 35.
7. Pump and power rod lever and links to carburetor as follows:
 A. Press down on pump rod (240) and connect pump link (317) to pump rod.
 B. Press down on power valve piston assembly (274) and connect power rod link (314) to power piston rod (266).
 C. Close throttle and install pump and power rod lever (310) on flats of throttle shaft.

8. Pump lever attaching screw (311).

METERING ROD ADJUSTMENT

Adjust (Figures 36, 44)

Tool Required:
J 9789-D or BT-3005A, Universal Carburetor Gage Set

- Metering Rod
 - Specification is in Figure 44.
 - Close the throttle valve completely, and press the power valve piston down against its stop.
 - Swing the metering rod hanger over the flat bowl surface next to the carburetor bore.
 - Gage between the end of the metering rod hanger and the top of the casting.

9. Install metering rod and spring assembly (279) as follows:
 A. Hold throttle wide open.
 B. Position metering rod in main metering jet, then connect to power piston metering rod hanger, with metering rod spring on top of hanger.

FLOAT AND FLOAT NEEDLE

Install or Connect (Figure 17)

1. Float needle (231) in seat (234).
2. Float hinge pin (228) through float lever.
3. Float (226) and hinge pin.

FLOAT ADJUSTMENT

Adjust (Figures 37, 44)

Tool Required:
J 34817-A or BT-8426, Float Positioning Tool Kit

- Float Level.
 - Specification is in Figure 44.

AIR HORN COMPONENTS

Install or Connect (Figure 38)

1. Air horn to float bowl gasket (101).
 - Slit portion over metering rod hanger.
2. Air horn assembly (100).
A. Remove air horn and gasket.
B. Attach J-34817-2 or BT-8227A-2 to float bowl using an air horn attaching screw.
C. Place J-34817-3 or BT-8227A in base with contact pin resting on outer edge of float lever.
D. Measure distance from top of casting to top of Index at toe of float. Use J-9789-90 or BT-8037.
E. If more than ±2/32" from specification, use J-34817-30 or BT-8424 to bend lever up or down. Remove bending tool and measure, repeating until within specification.

F. Check float alignment.
G. Reassemble carburetor.

Figure 37 – Float Adjustment

3. Long air horn to float bowl screw assemblies (105) at locations #1, 3 and 4, short screw assembly (108) at location #6.
 • Finger tighten only.

CHOOSE COMPONENTS

Fast Idle Cam and Link

Install or Connect (Figure 15)

1. Fast idle cam link (15) through slot in choke shaft lever (20).
2. Attach fast idle cam (10) to cam link (15).
 • Unloader tang on cam should face outward.
3. Fast idle cam attaching screw (12).

Figure 38 – Air Horn Screw Location and Tightening Sequence

Choke Housing

Install or Connect (Figure 14)

1. Connect choke link (20A) to choke shaft and lever assembly (40), then position choke housing and bearing assembly (35) on float bowl.
 • Choke shaft lever should be facing upward.
2. Install choke housing attaching screws as follows:
 A. Start countersunk attaching screw (37). It is slightly longer than throttle return spring anchor bracket attaching screws (420).
 B. Start attaching screw assemblies (36).
 C. Tighten countersunk screw (37), then tighten screw assemblies (36).

Vacuum Break

Install or Connect (Figures 13, 38)

1. Connect bowl side vacuum break assembly (65) to vacuum break link (69A).
2. Position choke wire connector and bracket assembly (47A) under vacuum break bracket.
3. Install air horn to float bowl (vacuum break attaching) screws (111).
 • Tighten all air horn to float bowl screws (in sequence shown in Figure 38.)

THROTTLE RETURN SPRING BRACKET

Install or Connect (Figures 9, 10)

• Throttle return spring anchor bracket (415) with bracket attaching screws (420, 421).
IDLE STOP SOLENOID

Install or Connect (Figures 9, 10)

- Idle stop solenoid (400) and spring (401).
 - Use 9/16" socket or hex wrench on end of solenoid body. Turn solenoid body in, until plunger just contacts throttle lever. Final adjustment is made on the vehicle.

FUEL INLET NUT AND FILTER

Install or Connect (Figure 12)

1. Fuel filter spring (218), in float bowl.
2. New gasket (212), on fuel inlet nut (210).
3. Inlet nut with new filter (215).

Tighten

- Fuel inlet nut to 45 N \cdot m (33 lb.ft.).

CHOKE ADJUSTMENTS

- Tools required:
 - J 9879-D or BT-3005A, Universal Carburetor Gage Set
 - J 23738-A or BT-7517, Hand Operated Vacuum Pump
- Specifications are in Figure 44.

CHOKE STAT LEVER ADJUSTMENT

Adjust (Figure 39)

- Place the fast idle cam follower on the highest step of the fast idle cam.
- Hold the choke valve completely closed.
- Insert a 3 mm (0.120 inch) plug gage through the hole in the lever, into hole in the choke housing.
- If gage does not pass freely through both holes, bend choke link at point shown in Figure 39 to align the holes.

CHOKE LINK (FAST IDLE CAM) ADJUSTMENT

Adjust (Figures 40, 44)

- Position the fast idle cam follower on the second step of the fast idle cam against the rise of the high step.
- Hold down on the choke valve with the fast idle cam link in the end of the choke lever slot.
- Check the gap between the lower edge of the choke valve and the air horn wall.
- If an adjustment is needed, bend the fast idle cam link at the point shown in Figure 40.
VACUUM BREAK ADJUSTMENT

Adjust (Figures 41, 42, 44)

- Place the fast idle cam follower on the highest step of the cam.
- If vacuum break has a bleed orifice (hole), plug it as shown, during the adjustment.
- Apply 51kPa (15" Hg) vacuum to the vacuum break. Push down on the choke valve. (Compress the plunger bucking spring and seat the plunger stem.)
- Check the gap between the lower edge of the choke valve and the air horn wall.
- If adjustment is needed, bend the vacuum break link at the point shown in inset, Figure 42.
- Release the vacuum source and apply it again.
- Check the gap once more, and adjust as needed.

CHOKE UNLOADER ADJUSTMENT

Adjust (Figures 43, 44)

- Hold the throttle lever in the wide open throttle position.
- Hold down on the choke valve with the fast idle cam link in the end of the choke lever slot.
- Check the gap between the lower edge of the choke valve and the air horn wall.
- If adjustment is needed, bend the unloader tang on throttle lever as shown in inset of Figure 43.

CARBURETOR INSTALLATION AND ON-VEHICLE ADJUSTMENTS

Refer to Carburetors (SEC. 6C1) in the 1989 Light Duty Truck Service Manual for the remaining procedures:

- Carburetor Installation
- Idle Mixture Adjustment
- Idle Speed and Fast Idle Adjustment
SPECIFICATIONS

1MEF CARBURETOR
(Model Number 17086101)

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Float Level</td>
<td>11/32 inch</td>
</tr>
<tr>
<td>Metering Rod</td>
<td>0.090 inch</td>
</tr>
<tr>
<td>Choke Stat Lever</td>
<td>0.120 inch</td>
</tr>
<tr>
<td>Choke Link - Fast Idle Cam</td>
<td>0.275 inch</td>
</tr>
<tr>
<td>Vacuum Break</td>
<td>0.200 inch</td>
</tr>
<tr>
<td>Unloader</td>
<td>0.520 inch</td>
</tr>
</tbody>
</table>

Figure 44 – Specifications

SPECIAL TOOLS

1. J-29030-B or BT-7610B
2. J-23738-A or BT-7517
3. J-9789-D or BT-3005A
4. J-34817-A or BT-8426

1. Idle Mixture Socket (Adjusting Tool)
2. Hand Operated Vacuum Pump
3. Universal Carburetor Gauged Set
4. Float Positioning Tool Set
SECTION 6C2
MODEL M4MEF
CARBURETOR

CONTENTS

SUBJECT	PAGE
Carburetor Identification | 6C2-1
General Description | 6C2-2
Carburetor Disassembly | 6C2-5
Cleaning And Inspection | 6C2-13
Pump System Checking Procedure | 6C2-14
Vacuum Break Checking Procedure | 6C2-14
Idle Stop Solenoid Checking Procedure | 6C2-15
Carburetor Reassembly | 6C2-15
Adjustment Procedures | 6C2-19
Specifications | 6C2-25
Special Tools | 6C2-26

CARBURETOR IDENTIFICATION

The Model M4MEF carburetor is used on the 7.4L V8 engine for vehicles with a Gross Vehicle Weight (GVW) above 10,000 pounds. Listed below are the model identification numbers and additional application information. "Federal" indicates usage in all states except California.

<table>
<thead>
<tr>
<th>MODEL</th>
<th>MODEL NUMBER</th>
<th>APPLICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>M4MEF</td>
<td>17085004</td>
<td>Federal & Canada, with Manual Transmission</td>
</tr>
<tr>
<td>M4MEF</td>
<td>17085212</td>
<td>Federal & Canada, with Automatic Transmission</td>
</tr>
</tbody>
</table>

The carburetor model identification number is stamped vertically on the float bowl, near the secondary throttle lever, as shown, (Figure 1). Refer to this part number when servicing the carburetor. If replacing the float bowl assembly, transfer the identification number to the new float bowl. Follow instructions on the envelope included in the service package.

Carburetor parts are shown in the disassembled view (Figure 9) and are identified by name on the facing page (Figure 10).
GENERAL DESCRIPTION

The letters and number in the model name M4MEF describe specific features of the carburetor:

M: It has a Modified open-loop primary metering system.
4M: A member of the Quadrajet (four barrel, two stage) carburetor family.
E: It has an integral Electric choke.
F: It has adjustable wide open throttle mixture control.

Model M4MEF is a four barrel, two stage carburetor, with three major sub-assemblies: the air horn, float bowl and throttle body. Each has six basic operating systems, shown in Figures 2 through 7:

- FLOAT
- IDLE
- MAIN METERING
- POWER
- PUMP
- CHOKE

Important

The part throttle adjusting screw was set at the factory and then plugged. Any attempt to readjust this screw could result in increased exhaust emissions.

NOTICE: The rich stop adjusting bushing and the secondary well bleed adjusting screw (Figure 5) are also factory set. Any attempt to readjust them could result in engine damage or increased exhaust emissions.

IDLE STOP SOLENOID (ISS)

Engines With Manual Transmission.

The electric Idle Stop Solenoid (ISS) found on these applications is used to provide the desired engine idle speed, and to prevent “dieseling” when the ignition is switched off.

UNIT REPAIR

The information that follows applies to a complete overhaul, after the carburetor has been removed from the engine, and includes: disassembly, thorough cleaning, inspection and replacement of all gaskets, seals, worn or damaged parts, and adjustment of individual systems.

Refer to Figures 9 and 10 for parts identification.

A. Internal Bowl Vents
B. Float Chamber
C. Inlet Check Valve
D. Vent Tube to Canister
236. Float Hinge Pin
237. Float
238. Float Needle Pull Clip
239. Float Needle
240. Float Needle Seat
375. Fuel Inlet Filter
377. Fuel Filter Spring

Figure 2 – Float System
CARBURETOR DISASSEMBLY

IDLE MIXTURE NEEDLE PLUGS

1. Invert and support carburetor to avoid damaging external components.

2. Make two parallel hacksaw cuts in the throttle body, between the locator points near one idle mixture needle plug (422). The distance between the cuts depends on the size of the punch to be used.
 - Cut down to the plug, but not more than 1/8" beyond the locator points.

3. Place a flat punch at a point near the ends of the saw marks. Hold the punch at a 45° angle, and drive it into the throttle body to break casting away and expose the plug.

4. Use center punch to break plug apart and uncover idle mixture needle.
 - Remove all loose pieces of plug.

5. Repeat steps 2 through 4 for other needle plug.

CARBURETOR HOLDING STAND (Figure 11)

Tool Required:
J 9789-118 or BT-3553 - Carburetor Holding Stand.

- Place carburetor on holding stand.

NOTICE: Failure to place carburetor on holding stand could cause damage to throttle valves.
Figure 9 - Model M4MEF
CARBURETOR MODEL M4MEF

Parts Identification

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gasket - Air Cleaner</td>
</tr>
<tr>
<td>5</td>
<td>Gasket - Flange</td>
</tr>
<tr>
<td>10</td>
<td>Air Horn Assembly</td>
</tr>
<tr>
<td>30</td>
<td>Screw - Secondary Metering Rod Holder Attaching</td>
</tr>
<tr>
<td>31</td>
<td>Holder - Secondary Metering Rod</td>
</tr>
<tr>
<td>32</td>
<td>Rod - Secondary Metering</td>
</tr>
<tr>
<td>35</td>
<td>Lever - Choke</td>
</tr>
<tr>
<td>36</td>
<td>Screw - Choke Lever Attaching</td>
</tr>
<tr>
<td>41</td>
<td>Lever - Pump</td>
</tr>
<tr>
<td>42</td>
<td>Pin - Pump Lever Hinge</td>
</tr>
<tr>
<td>45</td>
<td>Screw Assembly - Air Horn to Throttle Body</td>
</tr>
<tr>
<td>46</td>
<td>Screw Assembly - Air Horn to Float Bowl</td>
</tr>
<tr>
<td>47</td>
<td>Screw - Air Horn to Float Bowl (Countersunk)</td>
</tr>
<tr>
<td>50</td>
<td>Baffle - Air Horn</td>
</tr>
<tr>
<td>55</td>
<td>Vacuum Break Assembly - Primary Side (Front)</td>
</tr>
<tr>
<td>56</td>
<td>Screw - Primary Side (Front) Vacuum Break Assembly Attaching</td>
</tr>
<tr>
<td>57</td>
<td>Hose - Primary Side (Front) Vacuum Break</td>
</tr>
<tr>
<td>58</td>
<td>Link - Primary Side Vacuum Break - Air Valve Lever</td>
</tr>
<tr>
<td>67</td>
<td>Retainer - Pump Stem Seal</td>
</tr>
<tr>
<td>68</td>
<td>Seal - Pump Stem</td>
</tr>
<tr>
<td>200</td>
<td>Float Bowl Assembly</td>
</tr>
<tr>
<td>201</td>
<td>Gasket - Air Horn to Float Bowl</td>
</tr>
<tr>
<td>203</td>
<td>Spring - Pump Plunger</td>
</tr>
<tr>
<td>204</td>
<td>Cup - Pump Plunger</td>
</tr>
<tr>
<td>205</td>
<td>Pump Assembly</td>
</tr>
<tr>
<td>206</td>
<td>Spring - Pump Return</td>
</tr>
<tr>
<td>212</td>
<td>Power Valve Piston Assembly</td>
</tr>
<tr>
<td>213</td>
<td>Rod - Primary Metering</td>
</tr>
<tr>
<td>214</td>
<td>Spring - Primary Metering Rod</td>
</tr>
<tr>
<td>218</td>
<td>Spring - Power Piston</td>
</tr>
<tr>
<td>235</td>
<td>Insert - Float Bowl</td>
</tr>
<tr>
<td>236</td>
<td>Hinge Pin - Float</td>
</tr>
<tr>
<td>237</td>
<td>Float</td>
</tr>
<tr>
<td>238</td>
<td>Pull Clip - Float Needle</td>
</tr>
<tr>
<td>239</td>
<td>Needle - Float</td>
</tr>
<tr>
<td>240</td>
<td>Seat - Float Needle</td>
</tr>
<tr>
<td>241</td>
<td>Gasket - Float Needle Seat</td>
</tr>
<tr>
<td>248</td>
<td>Jet - Primary Metering</td>
</tr>
<tr>
<td>250</td>
<td>Plug - Pump Discharge (Retainer)</td>
</tr>
<tr>
<td>251</td>
<td>Ball - Pump Discharge</td>
</tr>
<tr>
<td>252</td>
<td>Baffle - Pump Well</td>
</tr>
<tr>
<td>330</td>
<td>Rivet - Choke Cover Attaching</td>
</tr>
<tr>
<td>331</td>
<td>Retainer - Choke Cover</td>
</tr>
<tr>
<td>335</td>
<td>Electric Choke Cover and Stat Assembly</td>
</tr>
<tr>
<td>340</td>
<td>Choke Housing Assembly</td>
</tr>
<tr>
<td>341</td>
<td>Screw and Washer Assembly - Choke Housing to Float Bowl</td>
</tr>
<tr>
<td>345</td>
<td>Screw - Choke Stat Lever Attaching</td>
</tr>
<tr>
<td>348</td>
<td>Lever - Choke Stat</td>
</tr>
<tr>
<td>350</td>
<td>Intermediate Choke Shaft, Lever and Link Assembly</td>
</tr>
<tr>
<td>352</td>
<td>Fast Idle Cam Assembly</td>
</tr>
<tr>
<td>354</td>
<td>Lever - Intermediate Choke</td>
</tr>
<tr>
<td>356</td>
<td>Link - Choke</td>
</tr>
<tr>
<td>360</td>
<td>Lever - Secondary Throttle Lockout</td>
</tr>
<tr>
<td>364</td>
<td>Seal - Intermediate Throttle Lockout</td>
</tr>
<tr>
<td>370</td>
<td>Nut - Fuel Inlet</td>
</tr>
<tr>
<td>372</td>
<td>Gasket - Fuel Inlet Nut</td>
</tr>
<tr>
<td>375</td>
<td>Filter - Fuel Inlet</td>
</tr>
<tr>
<td>377</td>
<td>Spring - Fuel Filter</td>
</tr>
<tr>
<td>380</td>
<td>Screw - Throttle Stop</td>
</tr>
<tr>
<td>381</td>
<td>Spring - Throttle Stop Screw</td>
</tr>
<tr>
<td>400</td>
<td>Throttle Body Assembly</td>
</tr>
<tr>
<td>401</td>
<td>Gasket - Float Bowl to Throttle Body</td>
</tr>
<tr>
<td>405</td>
<td>Screw Assembly - Float Bowl to Throttle Body</td>
</tr>
<tr>
<td>410</td>
<td>Link - Pump</td>
</tr>
<tr>
<td>420</td>
<td>Needle - Idle Mixture</td>
</tr>
<tr>
<td>421</td>
<td>Spring - Idle Mixture Needle</td>
</tr>
<tr>
<td>422</td>
<td>Plug - Idle Mixture Needle</td>
</tr>
<tr>
<td>425</td>
<td>Screw - Fast Idle Adjusting</td>
</tr>
<tr>
<td>426</td>
<td>Spring - Fast Idle Adjusting Screw</td>
</tr>
<tr>
<td>500</td>
<td>Solenoid and Bracket Assembly</td>
</tr>
<tr>
<td>501</td>
<td>Screw - Bracket Attaching</td>
</tr>
</tbody>
</table>

FUEL INLET NUT AND FILTER

- **Remove or Disconnect** (Figure 12)
 1. Fuel inlet nut (370).
 2. Fuel inlet filter (375), inlet nut gasket (372), and filter spring (377).
 - Discard gasket.

SOLENOID AND BRACKET ASSEMBLY

- **Remove or Disconnect** (Figures 9, 10)
- Bracket attaching screws (501), and solenoid and bracket assembly (500).

Figure 10 - Model M4MEF
VACUUM BREAK ASSEMBLY

Remove or Disconnect (Figures 9, 10)
1. Primary side vacuum break hose (57).
2. Primary side vacuum break attaching screws (56).
3. Primary side vacuum break assembly (55) and primary side vacuum break-air valve lever link (58).

AIR HORN COMPONENTS

Secondary Metering Rods

Remove or Disconnect (Figure 13)
1. Secondary metering rod holder attaching screw (30).

Choke Lever and Link

Remove or Disconnect (Figure 14)
1. Choke lever attaching screw (36).
2. Choke lever (35).
3. Choke link (356).
 - Pull up on link, hold intermediate choke lever (354) outward with screwdriver. Twist link from lever.

Pump Lever and Link

Remove or Disconnect (Figure 15)

Tool Required:
J 25322 or BT-7523 - Pump Lever Pin Punch.

1. Pump lever (41).
 - Use tool J 25322 or BT-7523, or small punch, to drive pump lever hinge pin (42) inward, to release pump lever.

2. Pump link (410), from throttle lever.

Air Horn

Remove or Disconnect (Figure 16)

1. Air horn screws:
 - Air horn to throttle body screw assemblies (45).
 - Air horn to float bowl screw assemblies (46).
 - Air horn baffle (50), if used.
 - Air horn to float bowl (countersunk) screws (47).

2. Air horn assembly (10).
 - Lift straight up.
 - Leave air horn gasket (201) on float bowl.

NOTICE: Use care when removing air horn, to prevent damaging tubes pressed into the air horn casting. (DO NOT remove tubes).

Pump Stem Seal

- Invert air horn assembly.

Remove or Disconnect (Figure 17)

- Pump stem seal (68).
 - Use small screwdriver to remove the seal retainer (67).
 - Use suitable tool to remove old staking.

- Do not disassemble air horn further.
 - If it is necessary to replace the air valve return spring or secondary cam; a repair kit, with instructions, is available.

NOTICE: Do not turn nor remove the rich stop adjusting bushing (Figure 5). Any attempt to readjust this bushing could result in engine damage or increased exhaust emissions.
FLOAT BOWL COMPONENTS

Pump

- Remove or Disconnect (Figure 18)
 1. Air horn to float bowl gasket (201).
 - Discard.
 2. Pump assembly (205).
 - Disassemble (Figure 18)
 - Pump plunger spring (203), and cup (204).
 3. Pump return spring (206) from pump well.

Power Valve Piston and Metering Rods

- Remove or Disconnect (Figures 19 - 20)
 1. Power valve piston assembly (212) and primary metering rods (213).
 - Press down on piston stem and release it, causing the power piston to snap up against retainer. Repeat until free.
 2. Remove power piston spring (218) from float bowl.

NOTICE: Do not use pliers on metering rod holder to remove power valve piston, as the holder could come loose from piston.

- Important (Figure 21)
 Do not remove nor adjust the factory set part throttle adjusting (APT) screw, which could result in increased exhaust emissions.
 - If required, a replacement float bowl contains a preset APT adjusting screw.

- Disassemble (Figure 20)
 1. Primary metering rods (213) and metering rod spring (214), from power valve piston assembly (212).
 2. Note the position of the metering rod spring for reassembly.
 2. Remove power piston spring (218) from float bowl.
POWER PISTON ASSEMBLY

APT METERING ROD SCREW (DO NOT TURN)

Figure 21 – APT Metering Rod Screw

F-01906

RIVETS AND CHOKE COVER RETAINERS

Figure 23 – Removing Choke Cover Rivets

F-01912

Float, Needle and Seat

Remove or Disconnect (Figure 22)

Tool Required:
J 22769 or BT-3006M - Needle Seat Tool.
1. Float bowl insert (235).
2. Float (237), hinge pin (236), float needle (239) and pull clip (238).
 • Pull up on float hinge pin (236).
3. Float needle seat (240), and gasket (241).

Primary Metering Jets

Remove or Disconnect (Figure 20)

• Primary metering jets (248) from float bowl.

NOTICE: Do not remove secondary metering discs. They are pressed into place, and if damaged, entire bowl replacement is required.

Pump Discharge Ball and Pump Well Baffle

Remove or Disconnect (Figure 18)

1. Pump discharge plug (retainer) (250).
2. Pump discharge ball (251).
 • Invert bowl and catch ball.
3. Pump well baffle (252).

CHOKE COMPONENTS

The tamper resistant choke cover discourages unnecessary readjustment of the choke cover and stat assembly. However, for overhaul, it is necessary to remove this assembly.

Electric Choke Cover and Stat

Remove or Disconnect (Figure 23)

1. Heads of choke cover attaching rivets (330).
 • Use a 4 mm (5/32") drill bit.
2. Choke cover retainers (331).
3. Electric choke cover and stat assembly (335).
4. Remaining pieces of rivets in housing.
 • Use punch to drive out.

Choke Housing

Remove or Disconnect (Figure 24)

1. Choke housing to float bowl screw and washer assembly (341).
2. Choke housing assembly (340).
 • Secondary throttle lockout lever (360).
6C2-12 MODEL M4MEF CARBURETOR

340 Choke Housing Assembly
341 Screw and Washer Assembly - Choke Housing to Float Bowl
354 Lever - Intermediate Choke
360 Lever - Secondary Throttle Lockout (4 Barrel Only)
362 Seal - Choke Housing to Float Bowl
364 Seal - Intermediate Choke Shaft (Sealing Lip Faces Outward)
*362 Seal - Choke Housing to Float Bowl
*364 Seal - Intermediate Choke Shaft (Sealing Lip Faces Inward)
*Hot Air Choke Models Only

Figure 24 - Removing Choke Housing Assembly

340 Choke Housing Assembly
345 Screw - Choke Stat Lever Attaching
348 Lever - Choke Stat
350 Intermediate Choke Shaft, Lever and Link Assembly
352 Fast Idle Cam Assembly
*364 Seal - Intermediate Choke Shaft (Sealing Lip Faces Inward)

*HOT AIR CHOKE MODELS ONLY

Figure 25 - Choke Housing Assembly

F-06384

Figure 26 - Idle Mixture Needle and Spring

- Intermediate choke lever (354).
- Invert bowl.
- Intermediate choke shaft seal (364), from float bowl.
- Do not remove bushing from float bowl.

Disassemble (Figure 25)
1. Remove choke stat lever attaching screw (345).
2. Choke stat lever (348).
3. Intermediate choke shaft, lever and link assembly (350).

THROTTLE BODY COMPONENTS

Idle Mixture Needles

Remove or Disconnect (Figure 26)

Tool Required:
J 29030-B or BT-7610B, Idle Mixture Socket (Adjusting Tool).

- Idle mixture needles (420), and springs (421).
- Count, and make a record of, number of turns needed to lightly bottom needles, for use in reassembly.

Inspect (Figure 26)
- Needles for damaged tip or threads.
- If damaged, replacement is required.

Throttle Body
- Invert carburetor.
Remove or Disconnect (Figure 27)

1. Float bowl to throttle body screw assemblies (405).

2. Throttle body assembly (400), and float bowl to throttle body gasket (401).
 - Discard gasket.

- Do not disassemble throttle body further. The throttle body is serviced as a complete assembly.

CLEANING AND INSPECTION

If an excessive amount of foreign material is found in float bowl, check tank(s) and fuel lines for the source.

Clean (Figure 28)

1. Power piston bore of float bowl
 - Use 0.375 inch soft wire brush. Turn clockwise through full length of the power piston bore. Turn brush several more turns, to remove dirt and varnish.

2. Metal parts in cold immersion cleaner, X-55 or equivalent.

 NOTICE: Do not immerse ISS, vacuum break, electric choke cover and stat assembly, float and float bowl insert, pump plunger, seals, etc., in cleaner as they may become non-functional, swell, harden, or distort.

- The plastic cam on the air valve shaft will withstand normal cleaning.

3. Rinse thoroughly after soaking.

4. Blow dry with compressed air.
 - Do Not pass drill bits or wire through jets or other passages.

Inspect

Check the following items and if the condition listed is noted: clean, repair or replace components.

- Air and fuel passages, and metering parts, for dirt or burrs.
- Mating surfaces of castings for nicks or damage that would prevent sealing air or fuel.

IMPORTANT (Figure 29)

If replacing float bowl, look for letters "MW", which indicate Machined pump Well, and determine the type of pump that can be used. If present, a new bowl must also have the letters.
6C2-14 MODEL M4MEF CARBURETOR

- Power valve piston assembly for free movement in the bore.
- Power piston spring for being stretched or distorted.
- Choke valve and secondary air valves for freedom of movement.
- Throttle shafts for freedom of movement. If cleaning does not correct condition, replace throttle body assembly.
- Throttle valves for nicks or damage. If noted, replace throttle body assembly.
- Idle mixture needles for grooves, ridges or bends.
- Levers for looseness on shafts, or wear in holes. If throttle lever is loose, replace throttle body assembly.
- Links for wear or rubbing against other components.
 - Correct cause, and replace if necessary.
- Float, float lever and hinge pin for distortion, binds and burrs.
 - The float for being loaded.
 - Check weight of float in comparison with a new float, and replace if heavier.
- Plastic parts for cracks, damage, etc.

PUMP SYSTEM CHECKING PROCEDURE

Inspect (Figures 18, 6)

- Perform this check with a new pump cup installed on the pump plunger, and with the pump discharge ball, plug (retainer), and pump well baffle installed.

1. Fill empty float chamber and pump well with a clean solvent, such as mineral spirits.

2. Seal the two pump discharge passages on top surface of float bowl with two fingers. Use other hand to push pump assembly down slowly in pump well.
 - Pump assembly should not travel to bottom of well. Only movement should be compressing of the duration spring.
 - If pump assembly moves down in well, this may indicate that: the pump cup is not sealing properly, the pump well is worn or scored, or the pump discharge plug is leaking (as indicated by bubbles around plug).

3. With clean solvent in float chamber and pump well, slowly move pump assembly down in pump well until solvent is visible at top of pump discharge passages.

4. Remove pump assembly. Continue to watch solvent in passages. The level should not lower.
 - If level begins to drop, the discharge check ball may be: missing, not seating correctly because of foreign material, damaged, or, the seat for the ball may need restaking.

5. Satisfactory pump system operation requires all above checks be successful. After cleaning or parts replacement, repeat procedure.

VACUUM BREAK CHECKING PROCEDURE

Inspect (Figures 30, 31)

Tool required:
 J 23738-A or BT-7517 - Hand Operated Vacuum Pump.

1. If the vacuum break has an air bleed hole, plug it as shown, during this checking procedure.

2. Apply 15" Hg (51kPa) vacuum to the vacuum break.
 - Apply finger pressure to the plunger to see if it has moved through full travel. If not, replace the vacuum break.
 - Observe vacuum gage. Vacuum should hold for at least twenty seconds. If not, replace the vacuum break.

3. Replace vacuum break hoses that are cracked, cut or hardened.
IDLE STOP SOLENOID
CHECKING PROCEDURE

Inspect
Check the idle stop solenoid (500) electrically, using a 12 volt automotive battery:
1. Retract solenoid plunger, using finger pressure.
2. Apply +12 volts to the terminal and -12 volts to the solenoid body.
3. If the solenoid plunger does not extend when the voltage is applied, replace the solenoid with a new one.

CARBURETOR REASSEMBLY

THROTTLE BODY COMPONENTS
Throttle Body

Install or Connect (Figure 27)
1. New float bowl to throttle body gasket (401).
 • Install over locator pins on float bowl.
2. Throttle body assembly (400).
3. Float bowl to throttle body screw assemblies (405).

Idle Mixture Needles

Install or Connect (Figures 11, 26)
Tools Required:
 J 9789-118 or BT-3553 - Carburetor Holding Stand.
 J 29030-B or BT-7610B - Idle Mixture Socket (Adjusting tool).
1. Place carburetor on J 9789-118 or BT-3553.
2. Idle mixture needles (420), and springs (421).
 • Use J 29030-B or BT-7610B to lightly seat each needle, then back out the number of turns counted during disassembly.
 • Final idle mixture adjustment is made on the vehicle. For information on this adjustment procedure, refer to Carburetors (SEC. 6C1) in the 1989 Light Duty Truck Service Manual.

CHOKE COMPONENTS

Choke Housing

Assemble (Figure 32)
1. Fast idle cam assembly (352) to choke housing (340), with cam bushing facing away from housing.

Figure 32 - Choke Housing Assembly

340 Choke Housing Assembly
345 Screw - Choke Stat Lever Attaching
348 Lever - Choke Stat
350 Intermediate Choke Shaft, Lever and Link Assembly
352 Fast Idle Cam Assembly
*364 Seal - Intermediate Choke Shaft (Sealing Lip Faces Inward)

*HOT AIR CHOKE MODELS ONLY
6C2-16 MODEL M4MEF CARBURETOR

- Position tail of cam (weighted end) in line with housing attaching screw hole.

2. Intermediate choke shaft assembly (350) into the choke housing, so the vacuum break lever will surround the tail of the fast idle cam.

3. Choke stat lever (348) on flats of intermediate choke shaft, with stat lever tang lined up with vacuum break lever of intermediate choke shaft.

4. Install choke stat lever attaching screw (345).

Install or Connect (Figures 24, 33)

- New intermediate choke shaft seal (364) in float bowl.
 - Sealing lip faces outward.

2. Secondary throttle lockout lever (360).

3. Choke housing assembly (340) as follows:
 - Position intermediate choke lever (354) in bowl cavity, using J 23417 or BT-6911.
 - Guide intermediate choke shaft through slot in intermediate choke lever.
 - Choke housing to float bowl screw and washer assembly (341).

Inspect
- Linkage for freedom of movement.

Important
Electric choke cover and stat assembly (335) should be installed after making choke stat lever adjustment.

FLOAT BOWL COMPONENTS

If replacing the float bowl assembly, transfer the identification number on the new float bowl at location shown, (Figure 1). Follow the instructions on the envelope included in the service package.

Pump Discharge Ball and Pump Well Baffle

Install or Connect (Figure 18)

1. Pump well baffle (252).
 - Slot toward bottom.

2. Pump discharge ball (251).

3. Pump discharge plug (retainer) (250).

Primary Metering Jets

Install or Connect (Figure 34)

- Primary metering jets (248) in float bowl.
Float, Needle and Seat

Install or Connect (Figures 22, 35)

Tool Required:
J 22769 or BT-3006M - Needle Seat Tool

1. Float needle seat (240) with new gasket (241).

Assemble (Figures 22, 35)

A. Float needle pull clip (238) to float needle (239).
B. Float needle onto float lever as shown in Figure 35.
C. Hinge pin (236) through float lever.
 - Open end faces pump well.

2. Install float, needle, and hinge pin.

Adjust (Figures 40, 51)

Tools Required:
J 9789-90 or BT-8037 - Float Level T-Scale.
J 34817-A or BT-8426 - Float Positioning Tool Kit.
- Float Level.
- Specification is in Figure 51.

3. Install float bowl insert (235).

Power Valve Piston and Metering Rods

Assemble (Figure 34)

- Primary metering rods (213), and metering rod spring (214), to power valve piston assembly (212).

Install or Connect (Figure 34)

1. Power piston spring (218).

2. Install power valve piston assembly and primary metering rods, as follows:
 A. Align pin on piston with slot in bore, and primary metering rods in jets.
 B. Press plastic retainer flush with top of float bowl.
 - If necessary, use a small punch and hammer.

Pump

Assemble (Figure 18)

- Pump assembly (205) with new pump plunger cup (204), and spring (203).

Install or Connect (Figure 18)

1. Pump return spring (206).
2. Pump assembly (205).
3. New air horn to float bowl gasket (201).

AIR HORN COMPONENTS

Pump Stem Seal

Install or Connect (Figure 17)

1. New pump stem seal (68) in air horn.
 - Sealing lip faces outward.
2. New seal retainer (67).
 - Lightly stake retainer in three different places than original stakings.

Lubricating Air Valve Spring Pin

Install or Connect (Figure 36)

- Apply lithium grease to the air valve shaft pin where it contacts the air valve return spring.

![Figure 35 - Float Needle Pull Clip Location](image-url)
Air Horn

-too Install or Connect (Figure 37)

1. Air horn assembly (10).
 - Hold air horn gasket (201) down at pump location, guide pump stem through air horn.
 - Be sure that tubes are positioned properly through the holes in the air horn gasket.

2. Air horn screws, in sequence shown:
 - Two countersunk screws (47) (locations #1 & 2), located next to the venturi area.
 - Air horn to float bowl screw assemblies (46).
 - Air horn baffle (50), if used, under screw assemblies in locations #3 and 4.
 - Air horn to throttle body screw assemblies (45).

Pump Lever and Link

-too Install or Connect (Figures 38, 51)

Tool Required:
J 25322 or BT-7523 - Pump Lever Pin Punch

1. Pump link (410), in throttle lever.
 - End of link with squirt (bump) faces outward in the lever.

2. Pump lever (41).
 A. Pump link in specified hole.
 - Specification is in figure 51.
 B. Use J 25322 or BT-7523, or small punch, to align hole in lever with hole in air horn casting.
 C. Use screwdriver to push pump lever hinge pin (42) in until flush with casting boss.

Choke Lever and Link

-too Install or Connect (Figure 14)

1. Choke link (356) into intermediate choke lever (354).
 - Hold fast idle cam (352) down to rotate lever up for easier installation.

2. Choke lever (35).
 - Connect lever to choke link, and install on end of choke shaft.

3. Choke lever attaching screw (36).

Secondary Metering Rods

-too Install or Connect (Figure 13)

1. Secondary metering rods (32), and holder (31).
 - Ends of rods face each other.

2. Holder attaching screw (30).
 - Work air valves up and down several times, to be sure they move freely both ways.

VACUUM BREAK ASSEMBLY

-too Install or Connect (Figures 9, 10)

1. Primary side vacuum break - air valve lever link (58) to air valve lever.

2. Primary side vacuum break assembly (55).
 - Connect plunger to air valve lever link.

3. Vacuum break attaching screws (56).
4. Primary side vacuum break hose (57).

SOLENOID AND BRACKET ASSEMBLY

Install or Connect (Figures 9, 10)

- Solenoid and bracket assembly (500) with bracket attaching screws (501).
- Adjust solenoid after reinstalling carburetor on engine.

FUEL INLET NUT AND FILTER

Install or Connect (Figure 12)

1. Fuel filter spring (377), in float bowl.
2. New gasket (372), on inlet nut (370).
3. Inlet nut with new filter (375).

Tighten

- Nut to 62 N \cdot m (46 lb.ft.).

ADJUSTMENT PROCEDURES

If you are following the unit repair procedures, proceed with adjustments in Figures 40 - 51.

Adjust (Figures 40 through 51)

Tools Required:
- J 9789-D or BT-3005A, Universal Carburetor Gage Set.
- J 9789-90 or BT-8037, Float Level T-Scale.
- J 9789-111 or BT-3006M, Linkage Bending Tool.
- J 26701-A or BT-7704, Choke Valve Angle Gage.
- J 23738-A or BT-7517, Hand Operated Vacuum Pump.
- Float, Figure 40.
- Pump, Figure 41.
- Air Valve Return Spring, Figure 42.
- Choke Stat Lever, Figure 43.
- Choke Valve Angle Gage, Figure 44.
- Choke Link - Fast Idle Cam, Figure 45.
- Vacuum Break Information, Figure 46.
- Primary Side Vacuum Break, Figure 47.
- Air Valve Link, Figure 48.
- Unloader, Figure 49.
- Secondary Throttle Lockout, Figure 50.
- Specifications are in Figure 51.

ELECTRIC CHOKE COVER AND STAT

Install or Connect (Figure 43, 39)

1. Place fast idle cam (352) on high step, against cam follower lever.
2. Electric choke cover and stat assembly (335) in the choke housing (340).
 - Be sure coil tang engages the choke stat lever, and notch in cover lines up with projection on housing.

Important

Ground contact for the electric choke is provided by the metal plate on the back side of the choke cover assembly. Do Not install a stat cover gasket.

3. Choke cover retainers (331) and attaching rivets (330).
 - Use blind rivet tool to install rivets.
 - It may be necessary to use an adapter (tube) if the tool interferes with the electrical connector on the electric choke cover and stat (335).
 - Instructions are included in choke cover retainer kit.

CARBURETOR INSTALLATION AND ON-VEHICLE ADJUSTMENTS

Refer to Carburetors (SEC. 6C1) in the 1989 Light Duty Truck Service Manual for the remaining procedures:
- Carburetor Installation
- Idle Mixture Adjustment
- Idle Speed Adjustments
1. REMOVE AIR HORN, GASKET, POWER PISTON AND METERING ROD ASSEMBLY, AND FLOAT BOWL INSERT.

2. ATTACH J-34817-1 OR BT-8227A-1 TO FLOAT BOWL.

3. PLACE J-34817-3 OR BT-8227A IN BASE WITH CONTACT PIN RESTING ON OUTER EDGE OF FLOAT LEVER.

4. MEASURE DISTANCE FROM TOP OF CASTING TO TOP OF FLOAT, AT POINT 3/16" FROM LARGE END OF FLOAT. USE J-9789-90 OR BT-8037.

5. IF MORE THAN 3/32" FROM SPECIFICATION, USE J-34817-25 OR BT-8427 TO BEND LEVER UP OR DOWN. REMOVE BENDING TOOL AND MEASURE, REPEATING UNTIL WITHIN SPECIFICATION.

6. CHECK FLOAT ALIGNMENT.

7. REASSEMBLE CARBURETOR.

Figure 40 - Float Adjustment

1. Make sure the pump link is in the specified hole.
2. With the fast idle cam off the cam follower lever, turn the throttle stop screw out so it does not touch the throttle lever.
3. Measure the distance from the top of the choke valve wall to the top of the pump stem.
4. Adjust, if necessary, by supporting the pump lever at S and bending at the notch.

Figure 41 - Pump Adjustment
1. Loosen set screw.

2a. Turn Spring Fulcrum Pin until Air Valves open.

2b. Turn pin until Air Valves close, then additional turns specified.

3. Tighten set screw.

4. Apply Lithium grease to spring contact area.

1. If riveted, drill out and remove rivets. Remove Choke Cover and Stat Assembly.

2. Place Fast Idle Cam on high step against Cam Follower Lever.

3. Push up on Choke Stat Lever to close Choke Valve.

4. Check Stat Lever for correct orientation by inserting .120" plug gage in hole.
 Gage should fit in hole and touch edge of lever.

5. Adjust, if necessary, by bending Choke Link.

Figure 42 - Air Valve Return Spring Adjustment

Figure 43 - Choke Stat Lever Adjustment
1. Attach Angle Gage Magnet to closed Choke Valve.
2. Rotate degree scale until zero is opposite pointer.
3. Center the leveling bubble.
4. Rotate scale to specified angle.
5. Open Choke Valve as described.
6. Adjust linkage if bubble is not recentered.

Figure 44 - Choke Valve Angle Gage

1. Attach rubber band to Vacuum Break Lever of Intermediate Choke Shaft.
2. Open Throttle to allow Choke Valve to close.
3. Set up Angle Gage and set to specification.
4. Place Fast Idle Cam \(A \) on second step against Cam Follower Lever \(B \), with Lever contacting rise of High Step. If Lever does not contact Cam, turn Fast Idle Adjusting Screw \(C \) in additional turn(s).
5. Adjust, if bubble is not recentered, by bending Fast Idle Cam Kick Lever with pliers.

Figure 45 - Choke Link - Fast Idle Cam Adjustment
(1) Attach rubber band to Vacuum Break Lever of Intermediate Choke Shaft.
(2) Open Throttle to allow Choke Valve to close.
(3) Set up Angle Gage and set to specification.
(4) Plug Vacuum Break Bleed Holes, if applicable.
 Apply 15" Hg (51 k Pa) vacuum to seat Vacuum Break Plunger.
 Seat Bucking Spring A, if applicable.
 On Quadrajets, if necessary:
 • Bend Air Valve Link B to permit full plunger travel.
 • Reapply vacuum.
(5) Adjust, if bubble is not recentered, by turning screw.
1. Plug Vacuum Break bleed holes, if applicable. Air Valves \(A \) closed. Apply 15" Hg (51 k Pa) vacuum to seat Vacuum Break Plunger.

2. Gage the clearance between Air Valve Link and end of slot in lever.

3. Adjust, if necessary, by bending link.

Figure 48 - Air Valve Link Adjustment

1. Attach rubber band to Vacuum Break Lever of Intermediate Choke Shaft.

2. Open Throttle to allow Choke Valve to close.

3. Set up Angle Gage and set to specification.

4. On Quadrajet, hold Secondary Throttle Lockout Lever \(A \) away from pin \(B \).

5. Hold Throttle Lever in wide open position.

6. Adjust, if bubble is not recentered, by bending Fast Idle Lever.

Figure 49 - Unloader Adjustment
1. Place Fast Idle Cam \(A \) on high step against Cam Follower Lever.
2. Hold Throttle Lever closed.
3. Gage the clearance between Lockout Lever and pin. It must be \(0.015'' \pm 0.005'' \).
4. Adjust, if necessary, by bending pin.
5. Push down on tail of Fast Idle Cam \(A \) to move Lockout Lever away from pin.
6. Rotate Throttle Lever to bring Lockout Pin to position of minimum clearance with Lockout Lever.
7. Gage the clearance between Lockout Lever and pin. Minimum must be \(0.015'' \).
8. Adjust, if necessary, by filing end of pin.

Figure 50 - Secondary Throttle Lockout Adjustment

<table>
<thead>
<tr>
<th>CARBURETOR NUMBER</th>
<th>FLOAT SETTING (\pm 2/32'')</th>
<th>PUMP SETTING</th>
<th>AIR VALVE SPRING TURNS</th>
<th>CHOKE STAT LEVER</th>
<th>CHOKE LINK CAM (\pm 2.5^\circ)</th>
<th>VACUUM BREAK FRONT (\pm 2.5^\circ)</th>
<th>AIR VALVE LINK</th>
<th>UN-LOADER (\pm 4^\circ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17085004</td>
<td>13/32''</td>
<td>Inner 9/32''</td>
<td>7/8</td>
<td>0.120'' G</td>
<td>46°</td>
<td>23°</td>
<td>0.025''</td>
<td>35°</td>
</tr>
<tr>
<td>17085212</td>
<td>13/32''</td>
<td>Inner 9/32''</td>
<td>7/8</td>
<td>0.120'' G</td>
<td>46°</td>
<td>23°</td>
<td>0.025''</td>
<td>35°</td>
</tr>
</tbody>
</table>

Notes: 1. Secondary Lockout 0.015 inches 2. G = Gage Dimension

Figure 51 - Specifications
1. Universal Carburetor Gage Set
2. Carburetor Holding Stand
3. Pump Lever Pin Punch (Not Shown)
4. Needle Seat Tool
5. Idle Mixture Socket (Adjusting Tool)
6. Hand Operated Vacuum Pump
7. Choke Lever Installer
8. Float Level T-Scale
9. Float Positioning Tool Set
10. Choke Valve Angle Gage
11. Linkage Bending Tool
IDENTIFICATION

The throttle body identification number is stamped vertically on the throttle body next to the vacuum ports (figure 1). Refer to this number when servicing the throttle body. If replacing the throttle body, transfer the identification number to the new throttle body if not there.

Throttle body parts are shown in the disassembled view (figure 2).

Listed below are model identification numbers for Model 220 TBI Units.

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Application</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17087087</td>
<td>S Truck w/2.8L</td>
<td>17087162 C/K Truck w/4.3L</td>
</tr>
<tr>
<td>17087088</td>
<td>T Truck w/2.8L</td>
<td>17089027 G, M Van w/4.3L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17089018 S/T Truck w/4.3L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17087019 C/K Truck w/5.0L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17087004 G Van w/5.0L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17087101 All w/5.7L (below 8600 GVW)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17087005 G Van w/5.7L (8600-10,000 GVW)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17089045 All w/5.7L and A.T. (8600-14,000 GVW)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17089046 All w/5.7L and M.T. (8600-14,000 GVW)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17087021 All w/7.4L and A.T.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17087257 All w/7.4L and M.T.</td>
</tr>
</tbody>
</table>
DESCRIPTION

The fuel control system has an electric fuel pump, located in the fuel tank with the gage sending unit, which pumps fuel to the TBI through the fuel supply line, then through and in-line fuel filter. The pump is designed to provide pressurized fuel at about 125 kPa (18 psi). On vehicles with two fuel tanks, there is an electric fuel pump and gage sending unit in each fuel tank.

A pressure regulator in the TBI keeps fuel available to the injectors at a constant pressure between 62 and 90Kpa (9 and 13 psi). Fuel in excess of injector needs is returned to the fuel tank by a separate line.

The ECM controls the injectors that are located in the fuel meter body assembly of the TBI. The injectors deliver fuel in one of several modes.

In order to properly control the fuel supply, the fuel pump is operated by the ECM through the fuel pump relay and oil pressure switch.

MODEL 220 TBI UNIT

Model 220, used on V6 and V8 engines consists of three major casting assemblies:

- Fuel meter cover with:
 - Pressure regulator
- Fuel meter body with:
 - Fuel injectors
- Throttle body with:
 - Idle air control (IAC) valve
 - Throttle position sensor (TPS)

THROTTLE BODY DISASSEMBLY

IDLE AIR CONTROL (IAC) VALVE

NOTICE: The IAC valve is an electrical component and must not be soaked in any liquid cleaner or solvent. Otherwise damage could result.

Important

All IAC valves on TBI Model 220 units (except those on the 7.4L engine) are thread-mounted and have a dual taper, 10mm diameter, pintle. On the 7.4L engine, the IAC valve is flange-mounted and has a 12mm diameter, dual taper pintle. Any replacement of an IAC valve must have the correct part number, with the appropriate pintle taper and diameter for proper seating of the valve in the throttle body.

Remove or Disconnect (Figures 3 and 4)

1. IAC valve.
 - On thread mounted units, use a 32mm (1 1/4") wrench (figure 3).
 - On flange-mounted units, remove screw assemblies (figure 4).
2. IAC valve gasket or O-ring and discard.

THROTTLE POSITION SENSOR (TPS)

NOTICE: The TPS is an electrical component and must not be soaked in any liquid cleaner or solvent, as damage may result.

Important (Figure 5)

On 2.8L (V-6) engines, the TPS is adjustable, and is supplied with attaching screw retainers. On all other engines, it is non-adjustable, without retainers. In addition, on 2.8L (V-6) and 7.4 (V8) engines, the TPS has a horizontal electrical connector; whereas, on all other engines, the connector is a vertical one. Since these TPS configurations can be mounted interchangeably, be sure to order the correct one for your engine with the identical part number if being replaced.

Remove or Disconnect

1. Two TPS attaching screw assemblies and retainers, (if applicable).
2. TPS from throttle body assembly.
Model 220 TBI

1. Screw Assembly - Fuel Meter Cover Attaching - Long
2. Screw Assembly - Fuel Meter Cover Attaching - Short
3. Fuel Meter Cover Assembly
4. Gasket - Fuel Meter Cover
5. Gasket - Fuel Meter Outlet
6. Seal - Pressure Regulator
7. Pressure Regulator
8. Injector - Fuel
9. Filter - Fuel Injector - Lower
10. O-Ring - Fuel Injector - Lower
11. O-Ring - Fuel Injector - Upper
12. Washer - Fuel Injector
13. Screw Assembly - Fuel Meter Body - Throttle Body Attaching
14. Fuel Meter Body Assembly
15. Gasket - Throttle Body to Fuel Meter Body
16. Gasket - Air Cleaner
17. O-Ring - Fuel Return Line
18. Nut - Fuel Outlet
19. O-Ring - Fuel Inlet Line
20. Nut - Fuel Inlet
21. Gasket - Fuel Outlet Nut
22. Gasket - Fuel Inlet Nut
23. Screw Assembly - TPS Attaching
24. Retainer - TPS Attaching Screw
25. Sensor - Throttle Position (TPS)
26. Plug - Idle Stop Screw
27. Screw Assembly - Idle Stop
28. Spring - Idle Stop Screw
29. Throttle Body Assembly
30. Gasket - Flange
31. Valve Assembly - Idle Air Control (IAC)
32. Gasket - Idle Air Control Valve Assembly
33. O-Ring - IACV
34. Screw Assembly - IACV Attaching

Figure 2—Model 220 TBI Parts Identification
FUEL METER COVER

The fuel meter cover assembly contains the fuel pressure regulator assembly. The regulator has been adjusted at the factory and should only be serviced as a complete preset assembly.

CAUTION: DO NOT remove the four screws securing the pressure regulator to the fuel meter cover. The fuel pressure regulator includes a large spring under heavy compression which, if accidentally released, could cause personal injury. Disassembly might also result in a fuel leak between the diaphragm and the regulator container.

++ Remove or Disconnect (Figure 6)
1. Long and short fuel meter cover screw assemblies.
2. Fuel meter cover assembly.

NOTICE: DO NOT immerse the fuel meter cover (with pressure regulator) in cleaner, as damage to the regulator diaphragm and gasket could occur.

FUEL INJECTORS

Each fuel injector (refer to figure 7) is serviced as a complete assembly only.

NOTICE: Use care in removing the fuel injectors to prevent damage to the electrical connector terminals, the injector filter, and the fuel nozzle. The fuel injector is serviced as a complete assembly only. Also, since the injectors are electrical components, they should not be immersed in any type of liquid solvent or cleaner as damage may occur.

Remove or Disconnect (Figures 7 and 8)

- With fuel meter cover gasket in place to prevent damage to casting, use a screwdriver and fulcrum to carefully lift out each injector (Figure 8).
 1. Lower (small) O-rings from nozzle of injectors and discard.
 2. Fuel meter cover gasket and discard.
 3. Upper (large) O-rings and steel backup washers from top of fuel injector cavity and discard.

Inspect

- Fuel injector filter for evidence of dirt and contamination. If present, check for presence of dirt in fuel lines and fuel tank.

FUEL METER BODY

Remove or Disconnect (Figure 9)

1. Fuel inlet and outlet nuts and gaskets from the fuel meter body assembly. Discard gaskets.

Important

- Note locations of nuts, for proper reassembly later. Inlet nut has a larger passage than outlet nut.
- Fuel meter body to throttle body attaching screw assemblies.
- Fuel meter body assembly from throttle body assembly.
- Throttle body to fuel meter body gasket and discard.

Inspect

- For dirt, foreign material and casting warpage.

CLEANING

1. Metal throttle body parts in cold immersion type cleaner, Carbon X(X-55) or equivalent.

NOTICE: Do not immerse IAC valve, Throttle Position Sensor, Fuel Meter Cover Assembly, or Fuel Injector Assemblies in cleaner as they may become non-functional.

2. Blow out all passages in the castings with compressed air.
 - Do not pass drill bits or wire through passages.
THROTTLE BODY REASSEMBLY

FUEL METER BODY

Install or Connect (Figure 9)
1. New throttle body to fuel meter body gasket. Match cut-out portions in gasket with openings in throttle body.
2. Fuel meter body assembly on throttle body assembly.
3. Fuel meter body-to-throttle body attaching screw assemblies, precoated with appropriate locking compound.

Tighten
- Screw assemblies to 4.0 N-m (30.0 lb. in.).
4. Fuel inlet and outlet nuts with new gaskets to fuel meter body assembly.

Install or Connect (Figure 10)
- Lubricate new lower (small) O-rings with automatic transmission fluid and push on nozzle end of injector until it presses against injector fuel filter.
1. Steel injector backup washer in counterbore of fuel meter body.
- Lubricate new upper (large) O-ring with automatic transmission fluid and install directly over the backup washer. Be sure O-ring is seated properly and is flush with top of fuel meter body surface.

NOTICE: Backup washers and O-rings must be installed before injectors, or improper seating of large O-ring could cause fuel to leak.

2. Injector, aligning raised lug on each injector base with notch in fuel meter body cavity. Push down on injector until it is fully seated in fuel meter body (figure 10). (Electrical terminals of injector should be parallel with throttle shaft).

FUEL METER COVER

Install or Connect (Figure 6)
1. New pressure regulator seal, fuel meter outlet passage gasket, and cover gasket.
2. Fuel meter cover assembly.
3. Attaching screw assemblies, precoated with appropriate locking compound to threads. (Short screws are next to injectors.)

Tighten
- Screw assemblies to 3.0 N·m (28.0 lb. in.).

THROTTLE POSITION SENSOR

Install or Connect
1. TPS on throttle body assembly, while lining up TPS lever with TPS drive lever on throttle body.
2. Two TPS attaching screw assemblies.

Tighten
- Screw assemblies to 2.0 N·m (18.0 lb. in.).
3. Electrical connector.

IDLE AIR CONTROL VALVE

NOTICE: Since the IAC valve was removed during service, it's operation should be tested electrically with the IAC/ISC Motor Tester (J-37027 or BT-8256K). However, if the valve pintle is extended electrically, it must also be retracted electrically. Before installing a IAC valve, measure the distance between the tip of the valve pintle and the mounting surface. If the dimension is greater than 28mm (1.10 inches), it must be reduced to prevent damage to the valve. This may be done electrically using an IAC/ISC motor tester (J-37027 or BT-8256K) or manually by exerting firm pressure, as shown in figure 11 or 12, with a slight side-to-side movement on valve pintle to retract it.

Important
No physical adjustment of the IAC valve assembly is required after installation. The IAC valve pintle is reset by turning the ignition "ON" for ten seconds and then "OFF". The ECM then resets the pintle to the correct position. Proper idle regulation should result.

Install or Connect (Figures 3 and 4)
1. IAC valve into throttle body as follows:
 - Thread-mounted valve — install with new gasket.
 - Flange-mounted valve — install with new lubricated O-ring, using attaching screw assemblies.

Tighten
- Thread-mounted IAC valve assembly to 18.0 N·m (13.0 lb. ft.) with 32mm (1½") wrench.
- Flange-mounted attaching screw assemblies to 3.2 N·m (28.0 lbs. in.)
SPECIFICATIONS

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>FASTENER</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
<th>In. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Meter Body to Throttle Body Screw</td>
<td>4.0</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>Fuel Inlet Nut to Fuel Meter Body</td>
<td>40.0</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Fuel Outlet Nut to Fuel Meter Body</td>
<td>29.0</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Fuel Meter Cover to Fuel Meter Body Screws</td>
<td>3.0</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>TPS to Throttle Body Screw</td>
<td>2.0</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Thread-Mounted IAC to Throttle Body</td>
<td>18.0</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Flange-Mounted IAC to Throttle Body Screw</td>
<td>3.2</td>
<td></td>
<td>28</td>
</tr>
</tbody>
</table>
IDENTIFICATION

The throttle body identification number is stamped on the fuel meter assembly below the fuel pressure regulator (figure 1). Refer to this number when servicing the throttle body.

If replacing the throttle body or fuel meter assembly, transfer the identification number to the new throttle body or fuel meter cover if not there.

Throttle body parts are shown in disassembled view (figure 2).

Listed below are model identification numbers for Model 700 TBI Units.

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>17087282</td>
<td>S/T w/2.5L</td>
</tr>
<tr>
<td>17087283</td>
<td>M w/2.5L</td>
</tr>
</tbody>
</table>

![Figure 1—TBI Identification](image-url)
Figure 2—Model 700 TBI Parts Identification
DESCRIPTION

The fuel control system has an electric fuel pump, located in the fuel tank on the gage sending unit, which pumps fuel to the TBI through the fuel supply line, then through an in-line fuel filter. The pump is designed to provide pressurized fuel at about 125 kPa (18 psi).

A pressure regulator in the TBI keeps fuel available to the injectors at a constant pressure between 62 and 90 kpa (9 and 13 psi). Fuel in excess of injector needs is returned to the fuel tank by a separate line.

The ECM controls the injectors that are located in the fuel meter body assembly of the TBI. The injectors deliver fuel in one of several modes.

THROTTLE BODY DISASSEMBLY

FUEL INJECTOR ASSEMBLY

The fuel injector (refer to Figure 3) is serviced only as a complete assembly.

NOTICE: Use care in removing injector, to prevent damage to the electrical connector on top of the injector, and nozzle. Also, because the fuel injector is an electrical component, it should not be immersed in any type of liquid solvent or cleaner, as damage may occur.

Remove or Disconnect (Figures 3 through 5)

1. Electrical connector to fuel injector.
2. Injector retainer screw and retainer.
 - Using a fulcrum, place a screwdriver blade under ridge opposite connector end and carefully pry injector out (refer to figure 4).
3. Upper and lower O-rings from injector and in fuel injector cavity and discard.

Inspect

- Fuel injector filter for evidence of dirt and contamination. If present, check for presence of dirt in fuel lines and fuel tank.

Important

Be sure to replace the injector with an identical part. Injectors from other models can fit in the Model 700 TBI, but are calibrated for different flow rates. (Refer to figure 5 for part number location.)

PRESSURE REGULATOR ASSEMBLY

NOTICE: To prevent leaks, the pressure regulator diaphragm assembly must be replaced whenever the cover is removed.

MODEL 700 TBI UNIT

Model 700, used on the L4 engine, is made up of two major casting assemblies:

- Fuel meter assembly with:
 - Pressure regulator
 - Fuel injector
- Throttle body with:
 - Idle air control (IAC)
 - Throttle position sensor (TPS)
6C4-4 MODEL 700 THROTTLE BODY

1. Fuel Meter Body
2. Fuel Injector
 A. Screwdriver
 B. Fulcrum

Figure 4—Removing TBI 700 Fuel Injector

1. Fuel Injector (Top View)
 A. Part Number
 B. Build Date Code
 C. Month
 D. Day
 E. Year
 1-9 (Jan.-Sept.)
 O, N, D (Oct., Nov., Dec.)

Figure 5—Fuel Injector Part Number Location

1. Pressure Regulator Cover
2. Screw Assembly
3. Spring-Seat
4. Pressure Regulator Diaphragm Assembly
5. Fuel Meter Assembly
6. Fuel Meter Body to Throttle Body Gasket and Discard

Fuel Meter Assembly

- Pressure regulator seat in fuel meter body cavity for pitting, nicks, or irregularities. (Use magnifying glass if necessary.) If any of above is present, the whole fuel body casting must be replaced.

Throttle Position Sensor

1. Screw assemblies.

Notice: The throttle position sensor is an electrical component, and should not be immersed in any type of liquid solvent or cleaner, as damage may result.

Figure 6—TBI 700 Pressure Regulator

1. Pressure Regulator Cover
2. Screw Assembly
3. Spring-Seat
4. Spring
5. Diaphragm
6. Fuel Meter Assembly
IDLE AIR CONTROL (IAC) VALVE

NOTICE: The IAC valve is an electrical component and must not be soaked in any liquid cleaner or solvent. Otherwise damage could result.

Important

On TBI Model 700, the IAC valve is flange-mounted, with dual taper, 10mm diameter pintle. If replacement is necessary, only an IAC valve identified with the correct part number (having the appropriate pintle shape and diameter) should be used.

Remove or Disconnect (Figure 9)

1. Screw assemblies and IAC valve.
2. IAC valve o-ring and discard.

TUBE MODULE ASSEMBLY

Remove or Disconnect (Figure 10)

1. Tube module assembly attaching screws.
2. Tube module assembly.
3. Tube module assembly gasket and discard.

CLEANING

Clean

- Metal throttle body parts in cold immersion type cleaner, Carbon X (X-55) or equivalent.

NOTICE: Do not immerse IAC Valve, Throttle Position Sensor, Fuel Injector or Pressure Regulator in cleaner as they may become non-functional.

- Old gasket material from surface of throttle body assembly to insure proper seal of new gaskets.
- IAC valve seating surfaces on throttle body to assure proper seal of new O-ring and contact of IAC valve flange.
- Blow out all passages in the castings with compressed air. Do not pass drill bits or wire through passages.
THROTTLE BODY REASSEMBLY

TUBE MODULE ASSEMBLY

Install or Connect (Figure 10)

1. New tube module assembly gasket.
2. Tube module assembly.
3. Tube module assembly attaching screws.

Tighten

- Screw assemblies to 3.0 N·m (28.0 lb. in.).

IDLE AIR CONTROL (IAC) VALVE

NOTICE: Before installing an IAC valve, measure the distance between the tip of the valve pintle and the mounting surface. If the dimension is greater than 28mm (1.10 inches) it must be reduced to prevent damage to the valve. This may be done electrically using an IAC/ISC Motor Tester (J-37027 or BT-8256K) or manually by exerting firm pressure as shown in Figure 11, with a slight side-to-side movement on the valve pintle to retract it.

Important

No physical adjustment of the IAC valve assembly is required after installation. The IAC valve pintle is reset by the ECM. When the vehicle is operated at normal engine temperature at approximately 30 mph (48 km/hr.), the ECM causes the valve pintle to seat in the throttle body. The ECM then has a reset procedure to set the correct pintle position. Proper idle regulation should result.

Install or Connect (Figure 9)

1. Lubricate new O-ring with transmission fluid and install on IAC valve.

2. IAC valve to throttle body.

NOTICE: New IAC valves that have been preset at the factory should be installed in the throttle body in an “as is” condition, without any adjustment.

3. IAC valve attaching screw assemblies that have been coated with appropriate thread locking compound.

Tighten

- Screw assemblies to 3.2 N·m (28.0 lb. in.).

THROTTLE POSITION SENSOR

Install or Connect (Figure 8)

1. With throttle valve in normally closed position, install TPS on throttle shaft and rotate counterclockwise to align mounting holes.
2. Attaching screw and washer assemblies.

Tighten

- Screw assemblies to 2.0 N·m (18.0 lb. in.).

FUEL METER ASSEMBLY

Install or Connect (Figure 7)

1. New fuel meter body to throttle body gasket. Match cut-out portions of gasket with openings in throttle body assembly.
2. Fuel meter assembly.
3. Two fuel meter body attaching screw and washer assemblies that have been coated with appropriate locking compound.

PRESSURE REGULATOR ASSEMBLY

Install or Connect (Figure 6)

1. New pressure regulator diaphragm assembly, making sure it is seated in groove in fuel meter body.
2. Regulator spring seat and spring into cover assembly.
3. Cover assembly over diaphragm, while aligning mounting holes.

NOTICE: Use care while installing the pressure regulator to prevent misalignment of diaphragm and possible leaks.

4. Four screw assemblies that have been coated with appropriate thread locking compound, while maintaining pressure on regulator spring.

Tighten

- Attaching screws to 6.0 N-m (53 lb. in.).

FUEL INJECTOR ASSEMBLY

Install or Connect (Figure 3)

- Lubricate new upper and lower O-rings with automatic transmission fluid and place them on injector. (Make sure upper O-ring is in groove and lower one is flush up against filter.)
1. Injector assembly, pushing it straight into fuel injector cavity.

Important

Be sure the electrical connector end on the injector is facing in the general direction of the cut-out in the fuel meter body for the wire grommet.

2. Injector retainer, using appropriate thread locking compound on retainer attaching screw.

Tighten

- Injector retainer attaching screw to 3.0 N-m (27.0 lb. in.).

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>FASTENER</th>
<th>N-m</th>
<th>Lb. In.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube Module to Throttle Body Screw</td>
<td>3.0</td>
<td>28.0</td>
</tr>
<tr>
<td>IAC Valve to Throttle Body Screw</td>
<td>3.0</td>
<td>28.0</td>
</tr>
<tr>
<td>TPS to Throttle Body Screw</td>
<td>2.0</td>
<td>18.0</td>
</tr>
<tr>
<td>Fuel Meter Body to Throttle Body Screw</td>
<td>6.0</td>
<td>53.0</td>
</tr>
<tr>
<td>Pressure Regulator Cover to Fuel Meter Body Screw</td>
<td>2.5</td>
<td>22.0</td>
</tr>
<tr>
<td>Injector Retainer to Fuel Meter Body Screw</td>
<td>3.0</td>
<td>28.0</td>
</tr>
</tbody>
</table>
SECTION 6D
ENGINE ELECTRICAL

CONTENTS

SUBJECT	PAGE
SI Series Generators | .6D1-1
CS-144 Generator | .6D2-1
SD (MT) Starting Motors | .6D3-1
PG-200 (PMGR) Starting Motor | .6D4-1
Distributors | .6D5-1

SECTION 6D1
SI SERIES GENERATORS

CONTENTS

SUBJECT	PAGE
Delco-Remy 12-S1 100 and 17-S1 100 Generators | .6D1-1
Description | .6D1-1
Generator Output Test | .6D1-3
Disassembly | .6D1-3
Inspection and Repair | .6D1-7
Electrical Tests | .6D1-7
Assembly | .6D1-9
Specifications | .6D1-11

DELCO-REMY 12-SI 100 AND 17-SI 100 GENERATORS

DESCRIPTION

The generators shown in figures 1 and 2 feature a solid state regulator mounted inside the slip ring end frame. The SI-series indicates "Systems Integral" (generator with built-in regulator). All regulator components are enclosed in a solid mold. This unit, along with the brush holder assembly, is attached to the slip ring end frame. The regulator voltage setting is not adjustable.

The generator rotor bearings contain enough grease to eliminate periodic lubrication. Two brushes carry current through two slip rings to the field coil.

The stator windings are assembled on the inside of a laminated core that forms part of the generator frame. A rectifier bridge connected to the stator windings contains six diodes, and electrically changes the stator AC voltages to a DC voltage which appears at the generator output "BAT" terminal. Generator field current is supplied through a diode trio connected to the stator windings. A capacitor, or condenser, mounted to the end frame protects the rectifier bridge and diode trio from high voltages, and suppresses radio noise.

The generator part number is the seven-digit number stamped on the drive end frame above the build date (figure 1).
OPERATING PRINCIPLES (Figure 3)

The battery is directly connected to the No. 2 terminal on the generator. This supplies voltage through resistor R5 to the base-emitter of transistor TR3. Transistor TR3 turns on which then turns on transistor TR1 which allows field current to flow through to ground. Also, resistors R2 and R3 are connected to the battery through terminal No. 2, but the discharge current of the battery is very low because of the resistance values of R2, R3, R5, TR1 and TR3.

At this point, transistors TR3 and TR1 are turned on, but no current is flowing through them. Now the engine control switch is closed, allowing current to flow from the battery through the indicator lamp to the No. 1 terminal on the generator. From No.1 terminal, the current goes through resistor R1, transistors TR3 and TR1 to ground, turning on the indicator lamp. Resistor R6 carries some of the indicator lamp current.

When the generator is spinning, AC voltages are generated in the "Y" stator windings (delta windings on the 17-SI). The AC is converted to DC current in the diode trio, and is then fed through to the field to transistor TR1 and to ground. At the same time, the DC voltage from the diode trio causes the indicator lamp current to stop, making the indicator lamp go out.

Now the AC voltages are converted to DC in the rectifier bridge. This DC voltage is then fed through the "BAT" terminal to the battery, thus keeping the battery charged and supplying electricity to the vehicle electrical loads.
As the generator speed and voltage increase, the voltage between R2 and R3 increases to the point where the zener diode D1 conducts. This turns on transistor TR2 which causes TR3 and TR1 to turn off. With TR1 off, the field current and system voltage decrease. D2 stops conducting when the voltage drops to a certain level, causing TR3 and TR1 to turn back on. This cycle repeats many times per second to limit the generator voltage to a preset value.

Capacitor C1 smooths out the voltage across R3. Resistor R4 prevents excessive current through TR1 at high temperatures. Diode D2 prevents induced high voltages in the field windings when TR1 turns off. Resistor R2 is a thermometer which causes the regulated voltage to vary with temperature, thus providing the optimum voltage for charging the battery.

Some installations do not use an indicator lamp. Instead a resistor or resistance wire is used in its place. The charge rate is then indicated by a voltmeter.

If an open should occur in the No. 2 terminal circuit, TR3 and TR1 will turn off, field current will stop and the indicator lamp current will flow through R6 to ground, causing the indicator lamp to come on. Also, an open in the field circuit will cause the indicator lamp to turn on because indicator lamp current will flow through R6 to ground.

If an open should occur in the No. 1 terminal circuit, the indicator lamp will stay off, and the generator will not generate current.

GENERATOR OUTPUT TEST

To check the generator in a test stand, proceed as follows:

1. Make the connections as shown in figure 4, except leave the carbon pile disconnected.
 - The ground polarity of the battery and the generator must be the same.
 - Use a fully charged battery, and a 10 ohm resistor rated at six watts or more between the generator No. 1 terminal and the battery.
2. Slowly increase the generator speed and observe the voltage.
3. If the voltage is uncontrolled with speed and increases above 15.5 volts on a 12-volt system, replace the regulator and check the field winding.
4. If the voltage is below 15.5 volts on a 12-volt system, connect the carbon pile as shown.
5. Operate the generator at moderate speed as required and adjust the carbon pile as required to obtain maximum current output.
6. If the output is within 10 amperes of the rated output as stamped on the generator frame, the generator is good.
7. If the output is not within 10 amperes of the rated output, keep the battery loaded with the carbon pile, and ground the generator field (figure 5).
 - The field ground tab is within 25 mm (1-inch) of the casting surface. DO NOT force the screwdriver deeper into the end frame.
8. Operate the generator at a moderate speed and adjust the carbon pile as required to obtain maximum output.
9. If the output is within 10 amperes of the rated output, replace the regulator and check the field winding.
10. If the output is not within 10 amperes of the rated output, check the field winding, diode trio, rectifier bridge, and stator as described later under "Inspection and Repair" and "Electrical Tests."

DISASSEMBLY

SLIP RING END FRAME

- Hold the generator in a vise, clamping the mount flange lengthwise.
- Make a scribe mark to help locate the frame end parts in the same position during assembly.
1. Four through bolts (27).
2. Slip ring housing (40) and stator (41).
3. Stator lead nuts.
4. Stator from the end frame.
5. Insulated screws (30) and ground screw (29) from the brush holder (13).
6. Wire resistor (14).
1. "BAT" Terminal
2. No. 1 Terminal
3. No. 2 Terminal
4. Field Ground Hole

Figure 5—Field Ground Tab

7. Diode trio (15).
8. Brush holder (13).
10. Capacitor lead bolt.
11. Capacitor strap bolt.

17-SI Series (Figures 7 and 9)
16. Two ground screws from the rectifier bridge (17).
17. "BAT" terminal stud nut (20) from the rectifier bridge.
18. Rectifier bridge, "BAT" terminal (1), and insulator (36) from the end frame.

Both Models
 - Support the bearing housing from the inside.
 - Press out the bearing, using a tube slightly smaller than the bearing shell.
 - Press out the bearing from the outside toward the inside.

DRIVE END FRAME

Disassemble (Figures 9 and 10)
- Place the rotor, but not the rotor shaft, in a vise and tighten only enough to permit removal of the pulley nut.
1. "BAT" Terminal
13. Brush Holder
14. Resistor
15. Diode Trio
16. Regulator
17. Rectifier Bridge
18. Capacitor
19. Nut
20. "BAT" Terminal Nut
22. Pulley Nut
23. Washer
24. Bolt
29. Grounded Screw
30. Insulated Screw
31. Rear Bearing
32. Front Bearing
34. Front Collar
35. Rear Collar
36. Insulator
37. Retainer
38. Brushes
39. Drive End Frame
40. Slip Ring End Frame
41. Stator
42. Rotor
43. Pulley
44. Fan

Figure 8 - 12-SI Series 100 Components
1. "BAT" Terminal
13. Brush Holder
14. Resistor
15. Diode Trio
16. Regulator
17. Rectifier Bridge
18. Capacitor
20. "BAT" Terminal Nut
21. Rectifier Bridge Terminal Nut
22. Pulley Nut
23. Wave Washer
24. Bolt
25. Short Bolt
26. Long Bolt
27. Through Bolt
28. Rectifier Bridge Retainer Bolt
29. Grounded Screw
30. Insulated Screw
31. Rear Bearing
32. Front Bearing
33. Slip Ring
34. Front Collar
35. Rear Collar
36. Insulator
37. Retainer
38. Brushes
39. Drive End Frame
40. Slip Ring End Frame
41. Stator
42. Rotor
43. Pulley
44. Fan

Figure 9—17-SI Series 100 Components
NOTICE: The rotor may be distorted if the vise is overtightened.

1. Pulley nut (22).
 - Insert a hex head wrench in the end of the rotor shaft to counteract the force of rotation when removing the pulley nut.
2. Washer (23).
3. Pulley (43).
4. Fan (44).
5. Front collar (34).
6. Rotor (42).
7. Rear collar (35).
 - Support the bearing housing when pressing out the bearing.

INSPECTION AND REPAIR

Clean
- All metal parts except the voltage regulator, rectifier bridge, stator, rotor and bearing assemblies in a suitable solvent.
 - Wipe or blow the parts dry.

Inspect
1. Brush holder for damage.

Clean
- Brush holder. Make sure the brush pockets are clean.
- Brushes with a soft dry cloth.

2. Insulating sleeves on the insulated screws for splits or wear.
3. Brushes for wear. If the brushes are worn to one half or less of their original length, replace them.
4. Brush leads for broken wires, corrosion or chafing.
5. Slip ring end bearing for grease. If the grease supply is used up, replace the bearing. DO NOT relubricate the bearing.
6. Slip ring end of the rotor shaft for overheating or scoring. If the signs of overheating or scoring are present, replace the bearing and rotor.
7. Drive end bearing for roughness, looseness, and seal condition. If the condition of the bearing is doubtful, replace it.
8. Windings for burned insulation. Replace the rotor or stator if either looks burned.
 - Burned insulation appears as a very dark or blackened wiring. A strong acrid odor will be apparent.
9. Terminal connectors for corrosion or breaks.
10. Windings on the stator for chipped insulation. If the chipped area is small and the rest of the stator is OK, repair the stator with insulating varnish.
11. Slip rings for scoring, wear or pitting.
 - If the rings are dirty, clean with a 400 grain, or finer, polishing cloth.
 - Spin the rotor and hold the polishing cloth against the slip rings until they are clean.
 - If scored, worn, or pitted, true the rings in a lathe to 0.05 mm (0.002-inch).

ELECTRICAL TESTS

Except as stated, make the following tests with an ohmmeter on the low range scale.

ROTOR FIELD WINDING CHECKS (Figure 10)
The rotor may be checked electrically with a 110-volt test lamp or an ohmmeter.

Open Winding
To check for opens, connect the test lamp or ohmmeter to each slip ring. If the lamp fails to light, or if the ohmmeter reading is high (infinite), the winding is open.

Ground Winding
Connect a test lamp or ohmmeter from one slip ring to the shaft. If the lamp lights, or if the reading is low, the rotor winding is grounded.

Short Circuit or Resistance Check
The winding is checked for short-circuits or excessive resistance by connecting a battery and ammeter in series with the edge of the two slip rings. Note the ammeter reading and refer to "Specifications" at the end of this section.

An ammeter reading above the specified value indicates shorted windings; a reading below the specified value indicates excessive resistance. An alternate method is to check the resistance of the field by connecting an ohmmeter to the two slip rings. If the resistance reading is above the specified value the winding has excessive resistance. Note the reading and refer to "Specifications" at the end of this section.
6D1-8 SI SERIES GENERATORS

A. Single Connector
B. Three Connectors
45. Ohmmeter

Figure 11 — Diode Trio Check

Remember that the winding resistance and ammeter readings will vary slightly with winding temperature changes. If the rotor is all right, but the generator fails to supply rated output, the problem is in the diode trio, rectifier bridge, stator or regulator.

If the rotor is bad, replace it.

DIODE TRIO CHECK (Figure 11)

Connect an ohmmeter having a 1.5-volt cell, and using the lowest range scale, to the single connector and to one of the three connectors (Figure 11). Observe the reading. Then reverse the ohmmeter leads to the same two connectors. If both readings are the same, replace the diode trio. A good diode trio will give one high and one low reading. Repeat this same test between the single connector and each of the other two connectors. Also, connect the ohmmeter to each pair of the three connectors (not illustrated). If any reading is zero, replace the diode trio.

RECTIFIER BRIDGE CHECK (Figure 12)

To check the rectifier bridge, connect the ohmmeter to the grounded heat sink and one of the three flat metal connectors or threaded studs, depending on the type of regulator. Refer to figure 12.

Observe the ohmmeter reading and reverse the lead connectors to the ground heat sink and the same flat metal connector or stud. If both readings are the same, replace the rectifier bridge. A good rectifier bridge will give one high and one low reading. Repeat this same test between the grounded heat sink and the other two terminals or connectors, and between the insulated heat sink and each of three terminals or connectors. This makes a total of six checks, with two readings taken for each check.

The ohmmeter check of the rectifier bridge, and of the diode trio as previously covered, is a valid and accurate check. Do not replace either unit unless at least one pair of readings is the same.

STATOR CHECKS (Figure 13)

The stator windings may be checked with a 110-volt test lamp or ohmmeter. If the meter reading is low when connected from any stator lead to the frame, the windings are grounded. If the lamp fails to light, or if the meter reading is high when successively connected between each pair of stator leads, the windings are open.

Delta windings on the 17-SI Series cannot be checked for opens. Check the windings for ground only.

A short circuit in the delta stator windings is difficult to locate without laboratory test equipment due to the low resistance of the windings. However, if all other electrical checks are normal and the generator fails to supply rated output, shorted stator windings or an open delta winding is indicated. Also a shorted stator can cause the indicator lamp to be on with the engine at low speed. Check the regulator before replacing the stator.

TESTING THE VOLTAGE REGULATOR (Figure 14)

1. Connect the voltmeter and the fast charger to the 12-volt battery.
2. Connect the regulator and the test lamp as shown. Observe battery polarity.
3. Test lamp should be on.
4. Turn on the fast charger and slowly increase the charge rate. Observe the voltmeter. The lamp should go out at the voltage regulator setting. The voltage regulator setting should be a minimum of 13.5 volts and a maximum of 16.0 volts.

The test lamp is connected into the circuit, exactly as the rotor is when the regulator is inside the generator. The regulator shuts off the current to the test lamp when the regulator setting is reached. This voltage will vary with temperature differences.

ASSEMBLY

SLIP RING END FRAME

- **Install or Connect (Figures 8, 9 and 15)**
 - If the old bearing is dry, do not lubricate or reinstall it. Replace the bearing.
 1. Bearing (31).
 - Support the inside of the frame.

- Place a flat plate over the bearing and press in from the outside to the inside of the end frame housing.
- Press the bearing flush with the outside of the end frame (figure 15).

2. Rectifier bridge (17) (figures 7 and 8).
3. Ground screw(s) (29) in the rectifier bridge.
4. "BAT" terminal (1) and insulator (36).
5. "BAT" terminal nut (20).
6. Capacitor (18) in the end frame.
 • Retain with a screw.
7. Capacitor lead to the rectifier bridge (17) with a screw.
8. Regulator (16).
9. Brushes (38) in the brush holder (13).
 • Retract the brushes in the holder.
 • Retain the retracted brushes with a toothpick (figure 16).
 • Be sure that the toothpick extends through the end frame when the brush holder is in place in the end frame. After the rotor and drive end frame are installed, the toothpick will be pulled out, allowing the brushes to contact the slip rings.
10. Brush holder with retracted brushes.
11. Diode trio (15).
12. Resistor (14).
13. Retaining screws.
 — Insulated screws are located at the brush clip and the diode trio connecting strap.
 — Grounded screw is located on the resistor mount.
14. Stator (41) to the end frame, aligning the three stator leads to the three rectifier bridge terminals.
15. Three terminal nuts. Tighten the nuts securely.

DRIVE END FRAME

Assemble (Figures 8 and 9)

1. Bearing (32).
 • Support the end frame.
 • Position the bearing with the sealed end toward the outside of the generator.
 • Press the bearing into the bore using a metal tube against the bearing outer race.
 • Fill the cavity between the retainer plate and the bearing with specified lubricant. Refer to "Lubrication" later in this section.
 • If the bearing is sealed on both sides, do not add lubricant.
2. Bearing retainer (37).
3. Three attaching bolts (24).
4. Rear collar (35) in the bearing retainer, if previously removed.

5. Rotor (42) through the rear collar and the bearing in the drive end frame.
6. Front collar (34).
7. Fan (44).
8. Pulley (43).
9. Wave washer (23).
 • Clamp the rotor in a vise only tight enough to torque the nut.

Tighten

• Pulley nut to 68 N-m (50 ft. lbs.).

MAIN ASSEMBLY

Install or Connect

1. Drive end frame (39) and rotor assembly to the slip ring end.
2. Four through bolts (27). Tighten securely.
 • Remove the brush retainer (toothpick) from the end frame.
 • Test the generator output.
SPECIFICATIONS

GENERATOR SPECIFICATIONS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Series (Type 100)</th>
<th>Rotation Viewing Dr. End</th>
<th>Field-Omhs 27°C (80°F)</th>
<th>Field Current @ 12 Volts 27°C (80°F)</th>
<th>Cold Output AMPS</th>
<th>Cold Output RPM</th>
<th>Hot Output AMPS</th>
<th>Hot Output RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100207</td>
<td>12 SI</td>
<td>CW</td>
<td>2.4-2.7</td>
<td>4.5-5.0</td>
<td>23</td>
<td>1600</td>
<td>70</td>
<td>6500</td>
</tr>
<tr>
<td>1101215</td>
<td>17 SI</td>
<td>CW</td>
<td>1.7-2.1</td>
<td>5.7-7.1</td>
<td>50</td>
<td>1600</td>
<td>120</td>
<td>6500</td>
</tr>
<tr>
<td>1101240</td>
<td>12 SI</td>
<td>CW</td>
<td>2.4-2.8</td>
<td>4.2-5.0</td>
<td>30</td>
<td>1600</td>
<td>94</td>
<td>6500</td>
</tr>
<tr>
<td>1101243</td>
<td>12 SI</td>
<td>CW</td>
<td>2.4-2.8</td>
<td>4.2-5.0</td>
<td>23</td>
<td>1600</td>
<td>66</td>
<td>6500</td>
</tr>
<tr>
<td>1101244</td>
<td>12 SI</td>
<td>CW</td>
<td>2.4-2.8</td>
<td>4.0-5.0</td>
<td>23</td>
<td>1600</td>
<td>66</td>
<td>6500</td>
</tr>
<tr>
<td>1101245</td>
<td>12 SI</td>
<td>CW</td>
<td>2.4-2.8</td>
<td>4.2-5.0</td>
<td>30</td>
<td>1600</td>
<td>94</td>
<td>6500</td>
</tr>
<tr>
<td>1105628</td>
<td>12 SI</td>
<td>CW</td>
<td>2.4-2.7</td>
<td>4.5-5.0</td>
<td>30</td>
<td>1600</td>
<td>81</td>
<td>6500</td>
</tr>
<tr>
<td>1105632</td>
<td>12 SI</td>
<td>CW</td>
<td>2.4-2.7</td>
<td>4.5-5.0</td>
<td>23</td>
<td>1600</td>
<td>70</td>
<td>6500</td>
</tr>
</tbody>
</table>

LUBRICATION

For generator bearing lubrication, use only Delco-Remy Lubricant No. 1948791 or equivalent. This lubricant is a premium type lithium soap-mineral oil grease made especially for ball and roller bearings.

F-06366
SECTION 6D2

CS-144 GENERATOR

DESCRIPTION

The generator with integral regulator shown in figure 1 features a high ampere output per pound of weight. It does not use a diode trio. The delta stator, rectifier bridge, and rotor with slip rings and brushes are electrically similar to other generators. The CS stands for Charging System, and 144 indicates the outside diameter of the stator laminations in millimeters. The bearings are sealed with lifetime lubrication in both end frames. No periodic maintenance is required.

OPERATING PRINCIPLES

The regulator voltage setting varies with temperature and limits system voltage by controlling rotor field current. It switches rotor field current on or off at a fixed frequency of about 400 cycles per second. By varying the on-off time, correct average field current for proper system voltage control is obtained. At high speeds, the on-time may be 10 percent and the off-time 90 percent. At low speeds, with high electrical loads, on-off time may be 90 percent and 10 percent respectively.

A basic wiring circuit for the “PLIS” regulator is shown in figure 2. The “P” terminal is connected to the stator. The “S” terminal may be connected externally to a voltage, such as battery voltage, to sense the voltage to be controlled.

Both the “L” and “I” terminals serve to turn on the regulator and allow field current to flow when the switch is closed. The “I” terminal may be connected either directly to the switch, or through a resistor. The “I” circuit may be used with or without the “L” circuit; that is, with or without anything connected to the “L” circuit.

GENERATOR OUTPUT TEST

1. Put the generator in a test stand and make connections as shown in figure 3, except leave the carbon pile disconnected. The ground polarity of the generator and battery must be the same. The battery must be fully charged. Use a 30 to 500 ohm resistor between the battery and the “L” terminal.
2. Slowly increase the generator speed and observe the voltage.
3. If the voltage is uncontrolled and increases above 16 volts, the rotor field is shorted or grounded or the regulator is bad, or both. A shorted or grounded rotor field coil can cause problems in the regulator.

4. If the voltage is below 16 volts, increase speed and adjust the carbon pile to obtain maximum amperage output. Maintain voltage above 13 volts.

5. If the output is within 15 amperes of the rated output, the generator is good.

6. If the output is not within 15 amperes of the rated output, repair the generator.

DISASSEMBLY

DRIVE END FRAME

Remove or Disconnect (Figures 4, 5 and 6)

Tool Required:
J 28509-A Bearing Remover

- Hold the generator in a vise, clamping the mount flange lengthwise.
- Scribe a mark to help locate the frame end parts in the same position during assembly.

1. Four through bolts (28).
2. Rotor and the drive end frame from the slip ring end frame.
- Place the rotor in a vise and tighten only enough to permit removal of the pulley nut.

NOTICE: The rotor may be distorted *if the vise is overtightened.*

SLIP RING END FRAME

Remove or Disconnect (Figures 7 and 8)

Tool Required:
J 28509-A Bearing Remover

1. Three stator lead nuts.
2. Stator (220).
3. One screw (30) from the brush holder and two insulated screws (35) from the regulator connector.
4. Brush holder (131), regulator (226) and connector (92) from the end frame (figure 7).
5. BAT terminal nut (1) from the insulated heat sink.
6. Two screws and washers (30) from the grounded heat sink.
7. Capacitor (228) and rectifier bridge (227) from the frame (figure 8).
8. "BAT" terminal from the outside of the frame.
Figure 4—CS-144 Components

1. Nut 107. Drive End Bearing 221. Rotor
30. Screw 128. Retainer 228. Capacitor
35. Insulated Screw 216. Drive End Frame 230. Fan
76. "BAT" Terminal 217. Slip Ring End Frame 305. Spring
92. Regulator Connector 220. Stator 306. Fan Collar
106. Slip Ring End Bearing

Figure 5—Drive End Frame Components

1. Nut 216. Drive End Frame
14. Washer 221. Rotor
107. Drive End Bearing 229. Pulley
116. Inside Collar 230. Fan
117. Outside Collar 306. Fan Collar
128. Retainer
INSPECTION AND REPAIR

Clean
- All metal parts except the voltage regulator, rectifier bridge, stator, rotor and bearing assemblies in a suitable solvent.
 - Wipe or blow the parts dry.

Inspect
1. Brush holder for damage.

Clean
- Brush holder. Make sure the brush pockets are clean.
- Brushes with a soft dry cloth.

2. Brushes for wear. If the brushes are worn to one half or less of their original length, replace the brush holder assembly. Use a retainer pin to hold the brushes in the holders.

3. Brush springs for broken wire or corrosion.

4. Slip ring end of the rotor shaft for overheating or scoring. If signs of overheating or scoring are present, replace the rotor. The slip ring end bearing must be replaced any time the two halves of the generator are separated.

5. Drive end bearing for roughness, looseness, or wear. If the condition of the bearing is doubtful, replace it.

6. Windings for burned insulation. Replace the rotor or stator if either looks burned.
Burned insulation appears as very dark or blackened wiring. A strong acid odor will be apparent.

7. Terminal connectors for corrosion or breaks.
8. Windings on the stator for chipped insulation. If the chipped area is small and the rest of the stator is OK, repair the stator with insulating varnish.
9. Slip rings for scoring, wear or pitting.
 • If the rings are dirty, clean with a 400 grain, or finer, polishing cloth.
 • Spin the rotor and hold the polishing cloth against the slip rings until they are clean.
 • If scored, worn, or pitted, true the rings in a lathe to 0.05 mm (0.002 inch).
 • Finish with 400 grain or finer polishing cloth. Blow away all dust.
10. Rotor and stator windings electrically as described later under “Electrical Tests”.
11. If the regulator, brush assembly or connector needs replacing, it will have to be unsoldered from the other two components. Use as little heat as possible to protect the regulator (figure 9).

12. Generator housing for cracks, warping, or other damage.
13. If the rotor fails any of the above checks, replace it.

ELECTRICAL TESTS

Except as stated, make the following tests with an ohmmeter on the low range scale.

ROTOR FIELD WINDING CHECKS (Figure 10)

The rotor may be checked electrically with a 110-volt test lamp or an ohmmeter.

Open Winding
To check for opens, connect the test lamp or ohmmeter to each slip ring. If the lamp fails to light, or if the ohmmeter reading is high (infinite), the winding is open.

Grounded Winding
Connect a test lamp or ohmmeter from one slip ring to the shaft. If the lamp lights, or if the reading is low, the rotor winding is grounded.

Short Circuit or Resistance Check
The winding is checked for short circuits or excessive resistance by connecting a battery and ammeter in series with the edge of the two slip rings. Note the ammeter reading and refer to “Specifications” later in this section.

An ammeter reading above the specified value indicates shorted windings. An alternate method is to check the resistance of the field by connecting an ohmmeter to the two slip rings. If the resistance reading is above the specified value the winding has excessive resistance; if below the specified value the winding is shorted. The specified resistance value can be determined by dividing the voltage by the current.

Remember that the winding resistance and ammeter readings will vary slightly with winding temperature changes. If the rotor is not defective, but the generator fails to supply rated output, the problem is in the rectifier bridge, stator or regulator.

If the rotor fails any of the above checks, replace it.

STATOR CHECKS (Figure 11)

The stator may be checked with a 110-volt test lamp or ohmmeter. If the ohmmeter reads low or if the lamp lights when connected from any stator lead to bare metal on the stator frame, the stator is grounded.
An ohmmeter can not be used to test the delta stator for shorts or opens. Noticeable discoloration at any place on the assembly usually indicates a problem in the stator windings.

RECTIFIER BRIDGE CHECK (Figure 12)

To check the rectifier bridge, connect the ohmmeter to the grounded heat sink and one of the three terminals, pressing down firmly on the flat metal clip. Observe the ohmmeter reading and reverse the lead connectors to the grounded heat sink and the same metal clip. If both readings are the same, replace the rectifier bridge. A good rectifier bridge will give one high and one low reading. Repeat this same test between the grounded heat sink and the other two terminals, and between the insulated heat sink and each of the three terminals. This makes a total of six checks, with two readings taken for each check.

Some digital ohmmeters cannot be used to check diodes in the rectifier bridge. Consult ohmmeter manufacturers to determine ohmmeter capabilities.

REGULATOR

The regulator cannot be checked with an ohmmeter. Use only an approved tester to test regulators of this type.

ASSEMBLY

BRUSH HOLDER REPLACEMENT

Important

A design change in the brush holder and slip ring end frame prevents early design brush holders from being installed in later design S.R.E. frames unless the brush holder assembly is modified (figure 13).

Remove or Disconnect

1. Two locators from the brush holder with needle nose pliers or side cutters.
 • File the jagged edges down to the level of the surrounding material keeping loose particles away from the brush slots.
 • Blow away any dust.

SLIP RING END FRAME

Install or Connect (Figures 4, 7, 8, 9 and 14)

1. “BAT” terminal (76) into the end frame.
2. Rectifier bridge (227).
3. Capacitor.
• Make sure the side with the insulator material is placed against the end frame (ground).
4. Two screws and washers through the grounded heat sink.
5. "BAT" terminal nut (1) with the flat side down to the insulated heat sink (figure 8).
• If the brush holder, regulator, or connector has been replaced, connect it by crimping the connector(s) to the other component(s). Then solder the connection using as little heat as possible to avoid heat damage to the regulator (figure 9).
6. Brush holder (131), regulator (226) and connector assembly into the end frame (figure 7).
• The metal side of the capacitor strap should rest against the regulator connection.
7. One screw into the brush holder.
• If a brush holder with locator bosses is being replaced with a holder without locators, be sure to align the brush holder assembly and hold it with your fingers while tightening the brush holder attaching screw.
8. Two insulated screws through the regulator connector.
9. Brushes (130) into the brush holder (131).
• Retract the brushes in the holder.
• Retain the retracted brushes with a toothpick or retaining pin.
• Be sure that the pin or toothpick extends through the end frame when the brush holder is in place. After the rotor and drive end frame are installed, the pin or toothpick will be pulled out, allowing the brushes to contact the slip rings.
10. Stator (220) into the end frame, aligning the three stator leads to the three rectifier bridge terminals (figure 14).
11. Three terminal nuts. Tighten the nuts securely.

DRIVE END FRAME

Install or Connect (Figures 4 and 15)
1. Drive end bearing (107) into the frame.

Figure 13—Stator in the Slip Ring End Frame

Figure 14—Installing the Slip Ring End Bearing

• Press against the outer race to press the bearing into place.
2. Retainer (128) with three screws.
3. Slip ring end bearing (106) onto the rotor (figure 15).
• Press against the inner race until the stop is reached.
• This bearing must be replaced any time the two halves of the generator are separated.
4. Rotor shaft through the inside collar (116) and through the end frame (216).
5. Outside collar (117), fan (230) and fan collar (306) onto the shaft (figure 5).
6. Pulley (229), washer (14) and pulley nut (1) onto the shaft.

 Tighten Nut to 100 N-m (75 ft. lbs.).

MAIN ASSEMBLY

Assemble
1. Drive end frame (216) and rotor assembly to the slip ring end frame, lining up the marks.
 • Carefully guide the slip ring end bearing into the slip ring end frame.
 • Be sure the tolerance rings on the S.R.E. bearing outer race are not damaged.
2. Four through bolts (28). Tighten securely.
 • Remove the brush retainer from the end frame.
 • Test the generator output.
SPECIFICATIONS

GENERATOR SPECIFICATIONS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Series</th>
<th>Rotation Viewing Dr. End</th>
<th>Field Ohms 27°C, 80°F</th>
<th>Field Current @ 14 Volts (27°C, 80°F) AMPS</th>
<th>Cold Output AMPS@ 6500 RPM</th>
<th>AMPS</th>
<th>RPM</th>
<th>Hot Output AMPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1101263</td>
<td>CS-144</td>
<td>CW</td>
<td>1.7-2.1</td>
<td>5.7-7.1</td>
<td>50</td>
<td>120</td>
<td>6500</td>
<td>120</td>
</tr>
</tbody>
</table>

FASTENERS

Pulley Nut .. 80 N.m 60 Ft. Lbs

LUBRICATION

For generator bearing lubrication, use only Delco-Remy Lubricant No. 1948791 or equivalent. This lubricant is a premium type lithium soap-mineral oil grease made especially for ball and roller bearings.

F-06374

SPECIAL TOOLS

1. Bearing Remover

F-07092
DELCOR-REMY 5 AND 10 SD (MT) STARTING MOTORS

DESCRIPTION

The overrunning-clutch type starting motors covered in this section are the enclosed shift lever type (figures 1 and 2).

The starting motor has the drive end housing extended to enclose the shift lever and solenoid plunger. The solenoid flange is mounted on the drive end housing with sealing compound between the flange and the field frame.

The starter motor bearings are lubricated during motor assembly and do not require service except during motor repair.

The part number can be found either stamped on the outside of the frame or on an identification label attached to the frame.

DIAGNOSIS OF THE STARTING MOTOR

STARTING MOTOR TESTS

Before disassembling the starting motor for repair, the following tests should be made.

NOTICE: Never operate the starting motor more than 30 seconds at a time without pausing to allow it to cool for at least two minutes. Overheating, caused by too much cranking, will damage the starting motor.

1. Pinion for freedom of operation by turning it on the spline shaft.
2. Armature for freedom of rotation by prying the pinion with a screwdriver.
 - Tight bearings, a bent armature shaft, or a loose pole shoe screw will cause the armature to not turn freely.
 - If the armature does not turn freely, the motor should be disassembled.
 - If the armature does rotate freely, the motor should be given a no-load test before disassembly.

NO LOAD TEST (Figure 3)
Connect a voltmeter from the motor terminal to the motor frame and an rpm indicator to measure armature speed. Connect the motor and an ammeter in series with a fully charged battery of the specified voltage, and a switch in the open position switch terminal. Close the switch and compare the rpm, current, and voltage readings with the specifications at the end of this section. It is not necessary to obtain the exact voltage specified as a good reading can be made by understanding that if the voltage is slightly higher the rpm will be slightly higher, with the current remaining basically unchanged. However, if the exact voltage is desired, a carbon pile connected across the battery can be used to reduce the voltage to the specified value. Compare the test results as follows:
1. Rated current draw and no-load speed indicates normal condition of the starting motor.
2. Low free speed and high current draw indicates:
 a. Too much friction. Tight, dirty, or worm bear-
ings, bent armature shaft or loose pole shoes allowing the armature to drag.
b. Shorted armature. This can be further checked on a growler after disassembly.
c. Grounded armature or fields. Check further after disassembly.

3. Failure to operate with high current draw indicates:
a. A direct ground in the terminal or fields.
b. Seized bearings. This should have been noted by turning the armature by hand.

4. Failure to operate with no current draw indicates:
a. Open field circuit. This can be checked after disassembly by inspecting internal connections and tracing the circuit with a test lamp.
b. Open armature coils. Inspect the commutator for badly burned bars after disassembly.
c. Broken brush springs, worn brushes. High insulation between the commutator bars or other causes which would prevent good contact between the brushes and commutator.

5. Low no-load speed and low current draw indicates a higher internal resistance due to poor connections, defective leads, dirty commutator and causes listed under step 4.

6. High free speed and high current draw indicates shorted fields. If shorted fields are suspected, replace the field coil assembly and check for improved performance.

DISASSEMBLY

If the motor does not perform to specifications, it may need to be disassembled for further testing of the components. Normally the starting motor should be disassembled only so far as is necessary to make repair or replacement of parts. As a precaution, it is suggested that safety glasses be worn when disassembling or assembling the starting motor.

FIELD FRAME

- Clean the outside of the starter housing, removing grease, oil, mud, etc.
- Make scribe marks to show the relationship of the nose housing, lever housing, field frame, and end frame to aid in assembly.

1. Field coil strap (51) from the solenoid motor terminal (figure 6).
2. Through bolts (35).
3. End frame (41).
4. Washer (34) from the commutator end of the armature shaft (SD-300).
5. Field frame (41) from the drive housing (31) and the armature assembly (9).
6. Armature from the drive housing by tilting the armature to disengage the shift lever fingers (1) from the drive collar (32) (figure 7).

Figure 4—SD-200 (5MT) Components

- Shift Lever
- Plunger
- Solenoid
- Spring
- Armature Assembly
- Grommet
- Housing
- Drive
- Brush
- Washer
- Bolt
- Screw
- Ring
- Holder
- Collar
- Pin
- Frame
- Brushes and Holders
- Shaft
1. Drive assembly (32) from the armature shaft (9) as follows:
 - Remove the pinion stop washer (34) or thrust collar (39) from the armature shaft.
 - Drive the stop collar (39) away from the pinion stop retainer ring (37) by sliding a metal cylinder onto the armature shaft and with a hammer, striking the metal cylinder against the stop collar (figures 8 and 9).
 - Remove the pinion stop retainer ring from the groove in the armature shaft. If the retainer ring is distorted during removal, it must be replaced.
 - Slide the drive assembly and the stop collar off the armature shaft.
2. Bolts (35) attaching the solenoid (3) to the drive housing.
3. Bolt and nut (44) and washer on the SD-300 or the retainer ring (37) and shaft (43) on the SD-200 attaching the shift lever to the drive housing.
4. Shift lever (1) and the attached solenoid plunger (2) from the drive housing.
5. Roll pin (40) in order to separate the shift lever from the solenoid plunger (2).

BRUSHES

Disassemble

SD-200 (Figure 10)
1. Brush holders (38) from the brush supports (62).
2. Screws from the brush holders.
3. Brushes (33) from the holders.

SD-300 (Figure 11)
1. Brush holder pivot pins (63).
2. Brush springs (64).
3. Brushes (33) from the brush holders.
SOLENOID
First perform the electrical tests on the solenoid described under "Inspection and Repair" later in this section. Then disassemble the solenoid to inspect the contact disc and terminals.

Remove or Disconnect (Figure 12)
1. Nuts from the "S" terminal (23) and the motor terminal (24).
2. Screws attaching the end cover (67).
3. End cover from the solenoid body.

Inspect
1. Contact disc for wear.
 • Replace if worn.

INSPECTION AND REPAIR

Clean
• All parts, except the drive, with mineral spirits. Do not clean the parts in a degreasing tank or with grease dissolving solvents.
 — Dry by wiping with a clean cloth.

Inspect
1. Armature bearing fit in the end frame, lever housing, and nose housing. On models with bushings, check them. If the bushings are worn, replace them. Also replace the oil wicks when a bushing is replaced.
 • Lubricate the oil wicks and bushings before assembling the starter motor.
2. End frame bushing for damage or wear. Replace if damaged or worn.
3. Armature shaft for runout or scoring. Replace the armature assembly if the condition of the armature shaft is doubtful.
4. Commutator for run out.
 - Do not turn the commutator.
 - Do not undercut the insulation.
 - Clean the commutator with No. 240 grit emery cloth. If the commutator cannot be cleaned, replace the armature.

5. Armature for short circuits (figure 13).
 - Rotate the armature in a growler with a steel strip, such as a hacksaw blade, held on the armature parallel to the shaft. The steel strip will vibrate on the area of the short circuit.
 - Shorts between the commutator bars are sometimes produced by brush dust or copper dust.

6. Armature for opens.
 - Look for loose connections where the conductors join the commutator bars. Poor connections cause arcing and burning of the commutator. If the bars are not badly burned, the leads can be resoldered.

7. Armature for grounds by using a test lamp (figure 14).
 - If the test lamp lights when one test prod is placed on the commutator and the other test prod is placed on the armature core or shaft, the armature is grounded.

8. Motor housing and solenoid housing for oil and water.
 - If oil or water is present, this indicates broken O-rings, leaking gaskets, or oil seal wear. Replace all seals and gaskets as required.

9. Brushes for wear. If the brushes are worn to half the size of a new brush, replace the brushes.
10. Brush holders for dirt or damage.
 • Make sure that the brushes are not binding in the holders.

11. Brush springs for distortion or discoloring. If the springs are weak, bent, or discolored, replace them.

12. Field coils.
 • Look for burned or damaged insulation, damaged connections or loose poles. Replace the field coils if their condition is doubtful.

13. Field coils for grounds.
 • Disconnect the field coil ground connections.
 • Connect a test lamp between the field frame and the field connector.
 — If the test lamp lights, the field coils are grounded and must be repaired or replaced.

14. Field coils for opens.
 • Connect a test lamp across the ends of the coils.
 — If the test lamp does not light, the field coils are open.

15. Field coils for shorts.
 • Shorts are indicated by poor motor performance after everything else has been checked out. On the SD-200 starter motor, the coils cannot be replaced separately because of the integral frame construction. The frame and field assembly must be replaced. To replace the field coils on the SD-300, a pole shoe spreader and pole shoe screwdriver should be used. Care should be exercised in replacing the field coils to prevent grounding or shorting them as they are tightened into place. Where the pole shoe has a long lip on the side, it should be assembled in the direction of armature rotation.

16. Drive assembly (clutch) by turning the drive pinion in the cranking direction.
6D3–8 SD (MT) STARTING MOTORS

- If the drive pinion turns roughly or slips in the cranking direction, replace the complete over-running clutch assembly.

17. Solenoid for grounds.
- Connect a 100 volt test lamp between the solenoid case and each terminal, one terminal at a time.
 - If the test lamp lights, the terminal is grounded. If the solenoid is grounded, replace the solenoid.

- With all the leads disconnected from the solenoid, make the test connections as shown in figure 15.

NOTICE: To prevent overheating the pull-in winding, do not leave the winding energized more than 15 seconds. The current draw will decrease as the winding temperature increases.

- Turn the switch on and adjust the carbon pile to lower the battery voltage to the value shown in “Specifications” at the end of this section.
- Note the ampere reading; a high reading indicates a shorted or grounded winding, and a low reading indicates excessive resistance.
 - The windings resistance can be read directly using a digital ohmmeter that can measure tenths of an ohm.
 - The coil resistance can be determined by dividing the voltage by the current (amperes) values listed in “Specifications” at the end of this section.

ASSEMBLY

SOLENOID

Assemble (Figure 12)

1. New solenoid disc assembly if needed.
2. End cover to the solenoid body.
3. Screws attaching the end cover.
4. Nuts from the "S" terminal and the motor terminal.

BRUSHES

Assemble

SD-200 (Figure 10)

1. Brushes (33) into the holders (38).
2. Screws into the brush holders.
3. Brush holders into the brush supports (62).

SD-300 (Figure 11)

1. Brushes (33) into the brush holders.
2. Brush springs (64).
3. Brush holder pivot pins (63).

LEVER HOUSING AND FIELD FRAME (Figures 4 and 5)

Assemble

1. Solenoid plunger (2) to the shift lever (1) with the roll pin (40).
2. Lever assembly in the drive housing (31) with bolt (35), washer (34), and nut (44) on the SD-300 or with the shaft (43) and snap ring on the SD-200.
 • Make sure the shift lever pivots freely.

![Image](F-04223)

Figure 16—Forcing the Retainer Ring on the Shaft

![Image](F-04224)

Figure 17—Forcing the Collar over the Retainer Ring

PINION CLEARANCE CHECK

The pinion clearance cannot be adjusted but should be checked after reassembly of the motor. Improper clearance is an indication of worn parts.

1. Lubricate the drive end, commutator, bushings or bearings and armature shaft with Delco-Remy Lubricant No. 1960954 or equivalent.
2. On starters with bronze bearings and oil wicks, soak the wicks and bearing surfaces with non-detergent SAE #20 oil. Do not drill, ream or machine sintered bronze bearings in any way. Oil from the wick will bleed through the highly porous bearing to lubricate the shaft.
3. Lubricate the shaft underneath the overrunning clutch assembly with a silicone grease, such as General Electric CG321, or Dow Dorning 33 medium, or equivalent. The overrunning clutch does not require lubrication.
4. Drive assembly (32) on the armature shaft.
 • Slide the drive assembly on the shaft with the pinion gear toward the shaft end.
5. Stop collar (39) on the shaft with the cupped end away from the pinion gear.
6. Retainer ring (37) on the shaft (figure 16).
 • Place the ring on the end of the shaft.
 • With a wood block on the top of the ring, force the ring onto the shaft with a light hammer blow.
 • Slide the ring down and into the shaft groove. Do not distort the retainer ring when installing it.
7. Stop collar with the retainer ring (figure 17).
 • Place a suitable washer over the retainer ring end and squeeze the collar and washer together.
 • Remove the washer.
8. Thrust collar (39) or pinion stop washer (34) with the flat side away from the pinion.
 • Apply sealing compound to the solenoid flange, just under the solenoid.
 • Spread the brush assemblies using a tool socket slightly larger in diameter than the commutator.
 • Slide the field frame over the armature. The brush retaining tool socket will slide out as the field frame bottoms.
 • Install the washer, end frame and the two through bolts.
9. Brake washer (34) on the commutator end of the armature shaft (SD-300).
10. Solenoid (3) and the solenoid return spring (5) with the drive end housing (31).
11. Solenoid retaining screws.
12. Drive assembly collar to the shift lever fingers.
13. Armature shaft into the drive end bearing.
14. Field frame to the drive end assembly.
15. Field coil strap to the solenoid motor terminal.

The check pinion clearance, perform the following steps (figures 18 and 19).

1. Disconnect the motor field connector from the solenoid motor terminal and **insulate it carefully**.
2. Connect a battery of the same voltage as the solenoid from the solenoid switch terminal to the solenoid frame.
3. Momentarily flash a jumper lead from the solenoid motor terminal to the solenoid frame. This will shift the pinion into cranking position and it will remain so until the battery is disconnected.

4. Push the pinion back toward the commutator end to eliminate slack movement.

5. Measure the distance between pinion and pinion stop.
 - Clearance should be 0.25 mm to 4.06 mm (0.010 inch to 0.160 inch).
SPECIFICATIONS

STARTER

No Load Test @ 10 Volts

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Series</th>
<th>AMPS</th>
<th>RPM</th>
<th>Solenoid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>Maximum</td>
<td>Minimum</td>
</tr>
<tr>
<td>1998440</td>
<td>SD-300</td>
<td>70</td>
<td>110</td>
<td>6500</td>
</tr>
<tr>
<td>1998559</td>
<td>SD-300</td>
<td>60</td>
<td>90</td>
<td>6500</td>
</tr>
<tr>
<td>1998583</td>
<td>SD-300</td>
<td>70</td>
<td>110</td>
<td>6500</td>
</tr>
<tr>
<td>1998584</td>
<td>SD-300</td>
<td>70</td>
<td>110</td>
<td>6500</td>
</tr>
<tr>
<td>1998588</td>
<td>SD-300</td>
<td>70</td>
<td>110</td>
<td>6500</td>
</tr>
<tr>
<td>1998589</td>
<td>SD-300</td>
<td>70</td>
<td>110</td>
<td>6500</td>
</tr>
<tr>
<td>10455016</td>
<td>SD-200</td>
<td>50</td>
<td>75</td>
<td>6500</td>
</tr>
<tr>
<td>10455017</td>
<td>SD-200</td>
<td>50</td>
<td>75</td>
<td>6000</td>
</tr>
<tr>
<td>10455018</td>
<td>SD-200</td>
<td>50</td>
<td>75</td>
<td>6500</td>
</tr>
</tbody>
</table>

SOLENOID SWITCHES

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Volts</th>
<th>Pull-In Winding</th>
<th>Hold-In Winding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Amps</td>
<td>Volts</td>
</tr>
<tr>
<td>1114489</td>
<td>12</td>
<td>11-18</td>
<td>5</td>
</tr>
<tr>
<td>1114520</td>
<td>12</td>
<td>23-30</td>
<td>5</td>
</tr>
<tr>
<td>1114530</td>
<td>12</td>
<td>23-30</td>
<td>5</td>
</tr>
<tr>
<td>1114563</td>
<td>12</td>
<td>26-30</td>
<td>5</td>
</tr>
</tbody>
</table>

LUBRICATION

Use Delco-Remy Gear and Shift Lubricant No. 1960954 or equivalent.
DELCO-REMY PG-200 (PMGR) STARTING MOTOR

DESCRIPTION

The PG-200 (PMGR) starting motor features small permanent magnets mounted inside the field frame (figure 1). These magnets take the place of current-carrying field coils mounted on iron pole pieces.

The use of MAGNEQUENCH® permanent magnets permits the design of a gear reduction motor that is about half as large and half the weight of a field coil motor having the same cranking performance. Internal gear reduction through planetary gears results in armature speeds in the 7000 rpm range. This higher armature speed may result in a noticeable difference in sound during cranking. The armature and drive shaft are mounted on roller or ball bearings in place of bushings.

Electrically the motor consists of the brush assembly and the armature. The solenoid contains pull-in and hold-in windings, and the motor external wiring is the same as field-coil motors. No periodic lubrication is required except during motor repair.

The part number and the date code are stamped on the outside of the end plate. The date code shows the year, month and day of month of production.

DIAGNOSIS OF THE STARTING MOTOR

STARTING MOTOR TESTS
Before disassembling the starting motor for repair, the following tests should be made.

NOTICE: Never operate the starting motor more than 30 seconds at a time without pausing to allow it to cool for at least two minutes. Overheating, caused by too much cranking, will damage the starting motor.

1. Inspect
 a. Pinion for freedom of operation by turning it on the screw shaft.
 b. Armature for freedom of rotation by prying the pinion with a screwdriver.
 - Tight bearings or a bent armature shaft will cause the armature to not turn freely.
 - If the armature does not turn freely, the motor should be disassembled.
 - If the armature does not rotate freely, the motor should be given a no-load test before disassembly.

NO LOAD TEST (Figure 2)
Connect a voltmeter from the motor terminal to the motor frame and an rpm indicator to measure drive speed. Connect the motor and an ammeter in series with a fully charged battery of the specified voltage, and a switch in the open position switch terminal. Close the switch and compare the rpm, current, and voltage readings with the specifications at the end of this section. It is not necessary to obtain the exact voltage specified as a good reading can be made by understanding that if the voltage is slightly higher the rpm will be slightly higher, with the current remaining basically unchanged. However, if the exact voltage is
Figure 1—PG-200 (PMGR) Starting Motor

Figure 2—No Load Test Hookup

desired, a carbon pile connected across the battery can be used to reduce the voltage to the specified value. Compare the test results as follows:

1. Rated current draw and no-load speed indicates normal condition of the starting motor.
2. Low free speed and high current draw indicates:
 a. Too much friction. Tight, dirty, or worn bearings or bent armature shaft allowing the armature to drag.
 b. Shorted armature. This can be further checked on a growler after disassembly.
 c. Grounded armature or fields. Check further after disassembly.
3. Failure to operate with high current draw indicates:
 a. A direct ground in the terminal or brush assembly.
 b. Seized bearings. This should have been noted by turning the armature by hand.
4. Failure to operate with no current draw indicates:
 a. Open brush leads.
 b. Open armature coils. Inspect the commutator for badly burned bars after disassembly.
 c. Broken brush springs, worn brushes, high insulation between the commutator bars. Look for these or other causes which would prevent good contact between the brushes and commutator.
5. Low no-load speed and low current draw indicates a high internal resistance due to poor connections, worn leads, dirty commutator and causes listed under step 4.

DISASSEMBLY

If the motor does not perform to specifications, it may need to be disassembled for further testing of the components. Normally the starting motor should be disassembled only so far as is necessary to make repair or replacement of parts. As a precaution, it is suggested that safety glasses be worn when disassembling or assembling the starting motor.

Remove or Disconnect (Figures 3 through 6)

Tool Required:
J 28509-A Bearing Puller
Clean the outside of the starter housing, removing grease, oil, mud, etc.

- Make scribe marks to show the relationship of the lever housing, field frame, and end plate to aid in assembly.

1. Nut (44) and lead at solenoid terminal.
2. Through bolts (35).
3. Two screws and end plate (75).

CAUTION: The magnets in the frame have a strong attraction to metal parts. Do not put your fingers between the armature and frame when removing or installing the armature assembly or injury could result.

4. Field frame with armature and shield (77) from the drive end.
5. Armature (9) from the field frame (41).
6. Commutator end bearing (78) from the armature shaft with J 28509-A or equivalent.
 - Lift the brushes so each spring rests against the brush to prevent brush damage during brush assembly removal (figure 4).
7. Brush assembly from the commutator.
8. Gear and drive from the drive housing assembly (82).
 - Use a screwdriver to pry the shift lever off the drive pins.
9. Thrust collar (81) from the drive shaft.
 - Slide a deep socket over the shaft and tap the socket to drive the stop collar (39) off the pinion stop ring (37) (figure 5).
10. Stop collar and stop ring.
11. Drive and gear from the shaft.
12. Bearing (83) from the drive housing assembly (figure 6).
 - The assembly, including the solenoid, plunger, return spring, shift lever, and drive housing, cannot be disassembled.
INSPECTION AND REPAIR

Clean
- All parts with a soft dry cloth. Do not use grease dissolving solvents on the field frame, armature, bearings or drive assembly.

Inspect
1. Brushes and brush holders. Make sure they are clean and the brushes are not worn. Check by hand that the brush springs are giving firm contact between the brushes and commutator. If the springs are discolored or distorted, or the brushes worn, replace the brush assembly.
2. Armature. If the commutator is rough or worn, turn it down only enough to clean the surface. Do not undercut it.
3. Armature for short circuits (figure 7).
 - Rotate the armature in a growler with a steel strip, such as a hacksaw blade, held on the armature parallel to the shaft. The steel strip will vibrate on the area of the short circuit.
 - Shorts between the commutator bars are sometimes produced by brush dust or copper dust.
 - Look for loose connections where the conductors join the commutator bars. Poor connections cause arcing and burning of the commutator. If the bars are black or discolored where the windings are connected to the bars, replace the armature.
5. Armature for grounds by using a test lamp (figure 8).
 - If the test lamp lights when one test prod is placed on the commutator and the other test prod is placed on the armature core or shaft, the armature is grounded.
6. Shaft, bearings, pinion and gears for wear and discoloration. Replace as necessary.
7. Solenoid hold-in winding.
 - With all the leaks disconnected from the solenoid, make the test connections as shown in figure 9.

Figure 5—Driving the Stop Collar off the Pinion Stop Ring

Figure 6—Drive End Bearing

Figure 7—Testing the Armature for Short Circuits
• Turn the switch on and adjust the carbon pile to lower the battery voltage to the value shown in “Specifications” at the end of this section.
• Note the ampere reading; a high reading indicates a shorted or grounded winding, and a low reading indicates excessive resistance.

• With all the leads disconnected from the solenoid, make the test connections as shown in figure 10.

NOTICE: To prevent overheating the pull-in winding, do not leave the winding energized more than 15 seconds. The current draw will decrease as the winding temperature increases.

• Turn the switch on and adjust the carbon pile to lower the battery voltage to the value shown in “Specifications” at the end of this section.
• Note the ampere reading; a high reading indicates a shorted or grounded winding, and a low reading indicates excessive resistance.

ASSEMBLY

++ Install or Connect (Figures 3, 4, 11 through 15)

1. Lift the brushes up in the holders with the springs resting against the sides of the brushes.
2. Brush assembly onto the commutator.
3. Commutator end bearing inner race onto the shaft by pressing until the inner race contacts the stop shoulder.
 - The bearing is sealed and does not need lubrication.
4. Lift the springs and allow the brushes to drop onto the commutator.

Figure 9—Hold-In Winding Test Connections

Figure 8—Testing the Armature for Grounds

Figure 10—Pull-In Winding Test Connections
3. Gear bearing into the gear by pressing until it is 0.28 to 0.38 mm (0.011 to 0.014 inch) below the casting surface (figure 11).
 - Lubricate the bearing with lubricant PN 10497186 or equivalent if needed. This grease maintains lubricating qualities even at temperature extremes.

4. Drive end bearing into the drive housing assembly (figure 12).
 - Press the bearing until it is 0.25 to 0.45 mm (0.009 to 0.010 inches) below the casting face.
 - Add lubricant PN 10497186 or equivalent to the bearing.

5. Lubricant PN 10497186 or equivalent to the inner gear teeth, planetary gears, armature shaft gear teeth, and the shaft assembly bearing (figure 13).

6. Inner gear and drive over the shaft.

7. Stop collar (39) onto the shaft.

8. Stop ring (37) on the shaft (figure 14).
 - Place the ring on the end of the shaft.
 - With a wood block on the top of the ring, force the ring onto the shaft with a light hammer blow.
 - Slide the ring down and into the shaft groove. Do not distort the retainer ring when installing it.

9. Thrust collar (81) onto the shaft.
 - Use pliers to squeeze the collars over the stop ring (figure 15).

10. Drive and shaft assembly into the drive housing assembly.
• With a screwdriver, guide the shift lever over the shift collar pins on the drive assembly.
11. Shield (77) to the drive housing assembly.

CAUTION: The magnets in the frame have a strong attraction to metal parts. Do not put your fingers between the armature and frame when removing or installing the armature assembly or injury could result.

12. Armature assembly (9) into the frame.
13. Frame to the drive housing assembly.
14. End plate (75) to the brush assembly with two screws.
15. Two bolts (35) to the starter assembly.
16. Nut (44) and lead to the solenoid terminal.

PINION CLEARANCE CHECK

The pinion clearance cannot be adjusted but should be checked after reassembly of the motor. Improper clearance is an indication of worn parts.
To check pinion clearance, perform the following steps (figures 16 and 17).
1. Disconnect the motor lead connector from the solenoid motor terminal.
2. Connect a 12-volt battery from the solenoid switch terminal to the drive housing.
3. Momentarily flash a jumper lead from the solenoid motor terminal to the drive housing. This will shift the pinion into cranking position and it will remain so until the battery is disconnected.
4. Push the pinion back toward the commutator end to eliminate slack movement.
5. Measure the distance between pinion and pinion stop.
 • Clearance should be 0.25 mm to 3.56 mm (0.010 to 0.160 inch).
6. The clearance is not adjustable. If it is not within limits, check for improper assembly.
SPECIFICATIONS

STARTER SPECIFICATIONS

No Load Test @ 10 Volts

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Series</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>9000735</td>
<td>PG-200 (PMGR)</td>
<td>50</td>
<td>90</td>
<td>2300*</td>
<td>26600*</td>
</tr>
</tbody>
</table>

*Drive Speed

SOLENOID SWITCHES

<table>
<thead>
<tr>
<th>Switch</th>
<th>Pull-In Winding</th>
<th>Hold-In Winding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part No.</td>
<td>Volts</td>
<td>Amps</td>
</tr>
<tr>
<td>PG-200 Solenoid</td>
<td>12</td>
<td>31-36</td>
</tr>
</tbody>
</table>

1. Bearing Puller

F-06387
DELCO-REMY DISTRIBUTORS

DESCRIPTION

This distributor is a magnetic pulse triggered, transistor controlled, inductive discharge distributor (figures 1 through 4). The magnetic pickup assembly located inside the distributor contains a permanent magnet, a pole piece with internal teeth, and a pickup coil. When the teeth of the timer core rotating inside the pole piece line up with the teeth of the pole piece, an induced voltage in the pickup coil signals the electronic module to trigger the coil primary circuit. The primary current decreases and a high voltage of up to 35,000 volts is induced in the ignition coil secondary winding which is directed through the rotor and secondary leads to fire the spark plugs. The capacitor in the distributor is for radio noise suppression.

The magnetic pickup assembly is mounted over the main bearing on the distributor housing. The electronic module within the distributor automatically controls the dwell period.

A distributor with an integral coil is used on engines without TBI (Throttle Body Injection). A distributor with a separate coil is used on engines with TBI, and the ignition system is then controlled by the computer. This EST (Electronic Spark Timing) system may include ESC (Electronic Spark Control). Refer to ENGINE ELECTRICAL (SEC. 6D) in the applicable truck service manual for a description of these systems.

On a distributor with an integral coil, the part number (seven digits) is stamped on the distributor housing (figure 1). On a distributor with a separate coil, it is located on a label on the distributor cap (figure 2).
IGNITION COIL
The coil is built like a transformer with the winding surrounded by a laminated iron frame. It generates a high secondary voltage (up to 35,000 volts) when the primary circuit is broken. It may be contained in the cap or mounted separately and connected to the distributor by a high tension wire.

ELECTRONIC MODULE
The electronic module is a solid state unit containing many complete circuits. The circuits control spark triggering, switching, current limiting, dwell control and distributor pickup. The dwell angle is controlled by the module and is varied in direction relation to engine speed.
With an EST system, the computer sends signals to the module to control dwell and spark timing. The module may have from four to eight terminals, depending on the ignition system.

POLE PIECE AND COIL ASSEMBLY (Figure 5)
The pole piece and plate assembly (often referred to as the pickup coil assembly) consists of the following: A stationary pole piece with internal teeth and a pickup coil and magnet which are located between the pole piece and a bottom plate.

CENTRIFUGAL AND VACUUM ADVANCE (Figures 5 and 6)
Distributors without EST systems have centrifugal advance weights and springs. Some also have vacuum advance units.
Centrifugal advance is achieved through the rotation of the timer core in relation to the distributor shaft. Vacuum advance is achieved by attaching the pickup coil and pole piece to the vacuum advance unit actuating arm.
On distributors without the vacuum unit, a plastic retainer is installed to hold the pickup coil assembly stationary. Only centrifugal advance is used on these models.

HALL EFFECT SWITCH
This switch, used on some distributors in the EST system, signals the computer which cylinder will fire next.

DISASSEMBLY OF DISTRIBUTORS WITH INTEGRAL COILS

Remove or Disconnect (Figure 7)
Cap
1. Wiring harness connector from the ignition coil terminal connector (figure 1).
• Unlatch the four spring latches holding the cap to the housing.

2. Cap and coil.
 • Inspect and check the coil. Refer to "Inspection and Electrical Tests" later in this section.

Coil
3. Cover attaching bolts (32) and the cover (19) from the cap.
4. Four attaching bolts from the coil (21).
5. Coil wires from the connector housing with needle nose pliers (figure 8).
6. Coil and wiring from the cap.
7. Arc seal (22) and the ground wire (20) from the cap (23).
 • Refer to "Inspection and Electrical Tests" later in this section.

Shaft Assembly
8. Two bolts (32) holding the rotor (10) to the shaft (26).
10. Two bolts holding the Hall Effect switch to the housing (if equipped).
11. Hall Effect switch (35) if equipped (figure 9).
 • Refer to "Inspection and Electrical Tests" later in this section.
12. Roll pin (27) from the shaft (26) (figure 10).
 • Mark the shaft and driven gear so they can be aligned for assembly.
 • Drive out the roll pin with a small punch.
14. Driven gear (29), shim washer (31) and thrust washer on distributor for an 8-cylinder engine.
15. Timer core shaft (26) from the housing (30).
 • Distributors for non-EST ignition systems have centrifugal advance weights and springs. These are part of the shaft assembly and are not serviceable.

Module Components
16. Four-wire connector from the pickup coil connector on distributors with ESC (figure 11).
17. Pickup coil connector from the module (figure 12).
 • Check the vacuum advance unit (if equipped) and the pickup coil. Refer to "Inspection and Electrical Tests" later in this section.
18. Screw holding the capacitor to the housing.
19. Capacitor (36), wiring harness connector (40) and module (14) from the housing (figure 13).
20. Connector from the module.
 • Check the module. Refer to "Inspection and Electrical Tests" later in this section.

Pickup Coil Assembly (Figure 14)
22. Thin washer (31) from the housing.
23. Pickup coil assembly (11).
 • Do not disassemble. The coil is serviced only as an assembly.
24. Vacuum unit (2) (if equipped) or plastic retainer and two bolts.

INSPECTION AND ELECTRICAL TESTS

Inspect
1. Cap for cracks or holes. Replace the cap if it is damaged at all.
2. Metal terminals in the cap for corrosion. Scrape them clean with a knife or replace the cap.
3. Seal and the button in the cap (figure 15). Replace the button if the end that contacts the distributor rotor is pitted or burned.
2. Vacuum Unit
11. Pickup Coil Assembly (Pole Piece and Plate)
30. Housing
31. Washer

Figure 12—Removing the Pickup Coil Connector

Figure 14—Pickup Coil Removed

Figure 13—Removing the Module

14. Module
36. Capacitor
40. Wiring Harness Connector

Figure 15—Cap and Seal

41. Contact Button and Spring
42. Ignition Coil Seal
4. Rotor for wear or burning at the outer terminal. The presence of carbon on the terminal indicates rotor wear and the need for replacement. Do not try to scrape carbon deposits from the outer terminal since this would shorten the terminal and might alter ignition timing.

5. Advance assembly components (springs and weights) for corrosion or dirt.

![Image](image1)

Clean
- The advance components and rotor shaft in a solvent.
- The advance components and shaft can only be replaced as an assembly.

6. Distributor shaft for shaft-to-bushing looseness. Insert the shaft in the housing. If the shaft wobbles in the bushings, replace the housing and/or shaft. The bushings are not serviceable.

7. Housing for cracks or damage.

![Image](image2)

Measure
Tool Required:
J 24642-F Module Tester

1. Vacuum level of the vacuum advance unit with a vacuum source (figure 16). Compare to "Specifications" at the end of this section. The unit must function with no leak-down; that is, it must hold a vacuum until the vacuum source is released.

2. Voltage of the Hall Effect switch (if equipped).
 - Connect a 12 volt battery and voltmeter as shown in figure 17.
 - With a knife blade inserted and held against the magnet the voltmeter should read within 0.5 volts of the battery voltage. If not, replace the switch.
 - Remove the knife blade. The voltmeter should read less than 0.5 volts. If not, replace the switch.

3. Resistance of the pickup coil with an ohmmeter.
 - Connect an ohmmeter as shown in figure 18, step 1. If the ohmmeter reads less than 500...
ohms or more than 1500 ohms while flexing the leads, replace the pickup coil.
- If the coil does not have an open, check for ground as shown in step 2. The reading should be infinite.

4. Resistance of the ignition coil with an ohmmeter.
- Connect the ohmmeter as shown in figure 19, step 1. The reading should be zero or nearly zero. If not, replace the coil.
- Connect the ohmmeter as shown in steps 2 and 3. Use the high scale. Replace the coil only if both readings are infinite.

5. Electrical performance of the module. The module can only be checked with an approved module tester, such as J 24642-F or equivalent. Follow the directions exactly that come with the tester.

ASSEMBLY OF DISTRIBUTORS WITH INTEGRAL COILS

Install or Connect (Figure 7)

Cap
1. Spring, button (41) and seal (42) into the cap (figure 15).
2. Coil (21) and wiring into the cap (figure 8).
3. Four bolts holding the coil to the cap.
4. Cover (19) to the cap (23) with two bolts.

<table>
<thead>
<tr>
<th>46. Ohmmeter</th>
<th>47. Rotor Tip</th>
<th>48. Timing Mark</th>
</tr>
</thead>
</table>

Figure 19—Checking the Ignition Coil

Figure 20—Timing Mark and Rotor Alignment
Install or Connect
- Pickup coil connector to the module.
- ESC connector (if equipped) to the pickup coil connector.
- Wiring harness and capacitor to the other end of the module.

11. Module, wiring harness, and capacitor to the housing with three bolts.
12. Shaft assembly into the housing.
 - Rotate the shaft to check for even clearance all around between the pickup coil assembly and the teeth on the distributor shaft assembly. If interference exists, loosen the three bolts on the pickup coil assembly and move the pole piece (teeth) to provide an even clearance and tighten the three bolts.
13. Hall Effect switch (if equipped) to the housing with two bolts.
14. Rotor to the shaft assembly with two screws.

Distributors for 6 Cylinder Engines
15. Driven gear (29) onto the shaft.

Distributors for 8 Cylinder Engines
16. Seal (22), thrust washer, washer (31), and driven gear (29) onto the shaft.

All Distributors
- Align the timing mark (48) on the driven gear with the rotor tip (47) (figure 20).
17. Roll pin into the driven gear (figure 21).
18. Distributor cap (23) onto the housing (30) with the tab on the rim of the cap in the notch of the housing.
19. Four spring clips on the cap onto the rim of the housing.
20. Wiring harness connector to the terminal on the side of the distributor cap (figure 22).

DISASSEMBLY OF DISTRIBUTORS WITH SEPARATE COILS

DISTRIBUTORS WITH SEALED MODULE CONNECTORS (Figure 3)

Remove or Disconnect (Figure 23 and 24)
1. Screws and washers holding the cap to the housing.
2. Cap (23) from the housing.
 - Place marks on the rotor and the shaft assembly to help line up the rotor during assembly.
3. Rotor (10) from the shaft by lifting or prying straight up.
4. Roll pin (27) from the shaft (26).
 - Mark the shaft and driven gear for reassembly.
 - Drive out the roll pin with a small punch (figure 25).
5. Driven gear (29), washer or spring, and spring retainer (52) or tang washer (33).
6. Shaft (26) with the pole piece and plate from the housing (30).
7. Retainer (49) from the housing (30) by prying it with a screwdriver.
8. Shield (50).
9. Pickup coil connector from the module (14).
 - Lift the locking tab with a screwdriver.
11. Two screws holding the module to the housing.
12. Module (14).

Disassembly of Distributors with Separate Coils

DISTRIBUTORS WITH SEALED MODULE CONNECTORS (Figure 3)

Remove or Disconnect (Figure 23 and 24)
1. Screws and washers holding the cap to the housing.
2. Cap (23) from the housing.
 - Place marks on the rotor and the shaft assembly to help line up the rotor during assembly.
3. Rotor (10) from the shaft by lifting or prying straight up.
4. Roll pin (27) from the shaft (26).
 - Mark the shaft and driven gear for reassembly.
 - Drive out the roll pin with a small punch (figure 25).
5. Driven gear (29), washer or spring, and spring retainer (52) or tang washer (33).
6. Shaft (26) with the pole piece and plate from the housing (30).
7. Retainer (49) from the housing (30) by prying it with a screwdriver.
8. Shield (50).
9. Pickup coil connector from the module (14).
 - Lift the locking tab with a screwdriver.
11. Two screws holding the module to the housing.
12. Module (14).

Figure 21—Installing the Roll Pin

Figure 22—Wiring Harness Connector
10. Rotor
11. Pickup Coil
14. Module
23. Cap
25. Screw
26. Shaft Assembly
27. Pin
29. Gear
30. Housing
49. Retainer
50. Shield
51. Spring
52. Spring Retainer

Figure 23—Distributor Components (Separate Coil and Sealed Connector)

10. Rotor
11. Pickup Coil
14. Module
23. Cap
25. Screw
26. Shaft Assembly
27. Pin
29. Gear
30. Housing
31. Washer
33. Tang Washer
49. Retainer
50. Shield

Figure 24—Distributor Components (Separate Coil and Sealed Connector) for an 8-Cylinder Engine

DISTRIBUTORS WITHOUT SEALED MODULE CONNECTORS

- Remove or Disconnect (Figure 26)
 1. Cap.
 - Unlatch the spring latches holding the cap to the housing.
 - Place a mark on the rotor and on the shaft assembly to help line up the rotor during reassembly.
 2. Rotor (10).
 3. Two bolts holding the Hall Effect switch (if equipped) to the housing.
 - Lift away the locking tab of the connector to the switch.
 4. Hall Effect switch (35) by lifting straight up.
 5. Roll pin (26) from the shaft (27).
 6. Driven gear (29), washer (31), spring (51), retainer (52), and tang washer (33).
 7. Shaft (27) from the housing (30).
 - Pry straight up.
 8. Thin "C" retaining washer (53) from inside the pickup coil assembly.
 9. Pickup coil connector from the module (14).
 10. Pickup coil assembly (11) from the housing.
 11. Wiring harness connectors from the module.
 12. Two screws holding the module to the housing.
 14. Bolt holding the wiring harness to the housing.
 15. Wiring harness.
INSTRUCTION AND ELECTRICAL TESTS

Inspect

1. Cap for cracks or tiny holes. Replace the cap if it is damaged at all.
2. Metal terminals in the cap for corrosion. Scrape them clean with a knife or replace the cap.
3. Rotor for wear or burning at the outer terminal. The presence of carbon on the terminal indicates rotor wear and the need for replacement.
4. Shaft for shaft-to-bushing looseness. Insert the shaft in the housing. If the shaft wobbles, replace the housing and/or shaft.
5. Housing for cracks or damage.

Measure

Tools Required:
J 24642-F Module Tester

1. Voltage of the Hall Effect switch (if equipped).
 - Connect a 12 volt battery and voltmeter as shown in figure 17.
 - With a knife blade inserted and held against the magnet, the voltmeter should read within 0.5 volts of the battery voltage. If not, replace the switch.
 - Remove the knife blade. The voltmeter should read less than 0.5 volts. If not, replace the switch.
2. Resistance of the pickup coil with an ohmmeter.
 - Connect an ohmmeter to either pickup coil lead and the housing as shown in figure 27, step 1. The reading should be infinite. If not, replace the coil.
 - Connect an ohmmeter to both pickup coil leads as shown in figure 27, step 2. Flex the leads by hand at the coil and the connector to locate any intermittent opens. The ohmmeter should read a constant unchanging value in the 500 to 1500 ohm range. If not, replace the coil.
3. Electrical performance of the module. The module can only be checked with an approved module tester, such as J 24642 or equivalent. Follow the directions exactly that come with the tester.

DISTRIBUTORS WITH SEPARATE COILS

DISTRIBUTORS WITH SEALED MODULE CONNECTORS (Figure 3)

Install or Connect (Figure 23 and 24)

- Lubricate
 - Bottom of the module and the module rest pad in the housing with silicone grease or an equivalent heat transfer substance.

NOTICE: Be sure to thoroughly coat the bottom of the module. Failure to do so could result in heat damage to the module.

DISTRIBUTORS WITHOUT SEALED CONNECTOR (Figure 26)

Install or Connect

- Lubricate
 - Bottom of the module and the module rest pad in the housing with silicone grease or an equivalent heat transfer substance.

NOTICE: Be sure to thoroughly coat the bottom of the module. Failure to do so could result in heat damage to the module.
1. Module (14) to the housing (30) with two screws.
2. Wiring harness into the housing.
3. Two harness mounting tabs to the housing with one bolt.
4. Two wiring connectors to the module.
 - Be sure the locking tabs are in place.
5. Pickup coil (11) to the housing.
 - Fit the tab on the bottom of the coil into the anchor hole in the housing.
6. Pickup coil wiring connector to the module.
7. Thin "C" washer into the coil.
8. Shaft (26) into the housing.
9. Tan washer (33), spring retainer (52), spring (51), and driven gear (29) onto the shaft.
 - Align the marks on the driven gear, housing, and shaft assembly.
10. Roll pin into the driven gear.

- After assembly, turn the shaft by hand to check tooth clearance between the shaft and pickup coil assembly. If the clearance needs adjustment, loosen and retighten the three pickup coil bolts.
11. Wiring connector to the Hall Effect switch (if equipped).
12. Hall Effect switch to the housing with two bolts.
 - The teeth on the shaft should rotate between the back plate and the magnet of the switch without touching.
13. Rotor (10) onto the shaft.
 - Fit the tab in the rotor into the slot on the shaft.
14. Cap (23) onto the housing.
 - Fit the tab inside the rim of the cap into the slot on the rim of the housing.
15. Spring clips on the cap onto the rim of the housing.
Figure 27—Testing the Pickup Coil

Figure 28—Testing the Ignition Coil

A. Scrape clean metal ground.
SPECIFICATIONS

DISTRIBUTOR

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Start Distributor RPM</th>
<th>Degree</th>
<th>Intermediate Distributor RPM</th>
<th>Degree</th>
<th>Maximum Distributor RPM</th>
<th>Degree</th>
<th>Vacuum Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1103717</td>
<td>650</td>
<td>0-3</td>
<td>1200</td>
<td>6-6</td>
<td>2050</td>
<td>11-3</td>
<td>1973682</td>
</tr>
<tr>
<td>1103719</td>
<td>700</td>
<td>0-2</td>
<td>1000</td>
<td>2-5</td>
<td>3000</td>
<td>4-8</td>
<td>1973682</td>
</tr>
</tbody>
</table>

VACUUM ADVANCE

<table>
<thead>
<tr>
<th>Vacuum Model</th>
<th>Start Inches Hg.</th>
<th>-kPa</th>
<th>Maximum Inches Hg.</th>
<th>-kPa</th>
<th>(Deg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973682</td>
<td>7-9</td>
<td>24-32</td>
<td>13-14</td>
<td>42-46</td>
<td>5</td>
</tr>
</tbody>
</table>

F-06396
SECTION 7

TRANSMISSION

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>700-R4 Automatic Transmission</td>
<td>7A1-1</td>
</tr>
<tr>
<td>400/475 Automatic Transmission</td>
<td>7A2-1</td>
</tr>
<tr>
<td>180C Automatic Transmission</td>
<td>7A3-1</td>
</tr>
<tr>
<td>HM-290 Manual Transmission</td>
<td>7B1-1</td>
</tr>
<tr>
<td>HM-117 Manual Transmission</td>
<td>7B2-1</td>
</tr>
<tr>
<td>New Process Manual Transmission</td>
<td>7B3-1</td>
</tr>
<tr>
<td>Borg Warner Manual Transmission</td>
<td>7B4-1</td>
</tr>
<tr>
<td>New Process 205 Transfer Case</td>
<td>7D1-1</td>
</tr>
<tr>
<td>New Process 241 Transfer Case</td>
<td>7D2-1</td>
</tr>
<tr>
<td>New Process 231 Transfer Case</td>
<td>7D3-1</td>
</tr>
<tr>
<td>Borg Warner 1370 Transfer Case</td>
<td>7D4-1</td>
</tr>
</tbody>
</table>
700-R4 Automatic Transmission

Contents

Transmission Disassembly

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Service Information</td>
<td>7A1-4</td>
</tr>
<tr>
<td>Disassembly</td>
<td>7A1-4</td>
</tr>
<tr>
<td>2-4 Servo Assembly</td>
<td>7A1-4</td>
</tr>
<tr>
<td>Governor And Extension</td>
<td>7A1-4</td>
</tr>
<tr>
<td>Valve Body And Wiring Harness</td>
<td>7A1-5</td>
</tr>
<tr>
<td>Transmission End Play Check</td>
<td>7A1-6</td>
</tr>
<tr>
<td>Oil Pump Assembly</td>
<td>7A1-7</td>
</tr>
<tr>
<td>2-4 Band, Reverse Input Clutch, Input And Input Gear Set</td>
<td>7A1-8</td>
</tr>
<tr>
<td>Reaction Gear Set</td>
<td>7A1-10</td>
</tr>
<tr>
<td>Lo And Reverse Clutch Parts</td>
<td>7A1-10</td>
</tr>
</tbody>
</table>

Component Repair And Transmission Assembly

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner Manual Linkage</td>
<td>7A1-10</td>
</tr>
<tr>
<td>Manual Shaft Seal Replacement</td>
<td>7A1-10</td>
</tr>
<tr>
<td>Case</td>
<td>7A1-13</td>
</tr>
<tr>
<td>Third Accumulator Retainer And Check Ball Assembly</td>
<td>7A1-15</td>
</tr>
<tr>
<td>Case Assembly</td>
<td>7A1-18</td>
</tr>
<tr>
<td>Lo And Reverse Clutch Assembly</td>
<td>7A1-18</td>
</tr>
<tr>
<td>Parking Pawl</td>
<td>7A1-18</td>
</tr>
<tr>
<td>Reaction Internal Gear And Carrier Assembly</td>
<td>7A1-18</td>
</tr>
<tr>
<td>Reaction Internal Gear And Support</td>
<td>7A1-19</td>
</tr>
<tr>
<td>Lo And Reverse Clutch Spacer Plate Selection</td>
<td>7A1-19</td>
</tr>
<tr>
<td>Lo And Reverse Support Assembly</td>
<td>7A1-20</td>
</tr>
<tr>
<td>Reaction Sun Gear And Shell</td>
<td>7A1-22</td>
</tr>
<tr>
<td>Input Internal Gear And Output Shaft</td>
<td>7A1-23</td>
</tr>
<tr>
<td>Internal Transmission Speed Sensor Rotor</td>
<td>7A1-24</td>
</tr>
<tr>
<td>Input Carrier And Sun Gear</td>
<td>7A1-24</td>
</tr>
<tr>
<td>Input Clutch Assembly</td>
<td>7A1-25</td>
</tr>
</tbody>
</table>

Check Valve Retainer and Ball Assembly Replacement Procedures 7A1-26
Forward Clutch Sprag Assembly 7A1-31
Forward Clutch Piston Travel Check 7A1-31
*3-4 Clutch Assembly 7A1-33
*3-4 Clutch Piston Travel Check 7A1-34
Clutch Air Check 7A1-34
Reverse Input Clutch Assembly 7A1-35
Reverse Input Clutch Backing Plate Selection 7A1-36
Reverse Input And Input Clutches 7A1-37
2-4 Band Assembly 7A1-38
Oil Pump Assembly 7A1-38
Pump Body 7A1-39
Oil Pump Cover 7A1-40
Oil Pump Cover And Body 7A1-42
Transmission End Play Check 7A1-44
Valve Body And Associated Parts 7A1-45
Control Valve Assembly 7A1-46
Auxiliary Accumulator Valve Body Assembly 7A1-47
2-4 Servo Assembly 7A1-48
Governor Assembly 7A1-50
Mechanical Speedometer 7A1-54
Torque Converter Assembly 7A1-54

Seals And Bearing Locations

<table>
<thead>
<tr>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque Specifications And Bushing Locations</td>
<td>7A1-59</td>
</tr>
<tr>
<td>Bushing Replacement Procedure</td>
<td>7A1-60</td>
</tr>
<tr>
<td>Governor Bore Repair Procedure</td>
<td>7A1-63</td>
</tr>
<tr>
<td>Special Tools</td>
<td>7A1-64</td>
</tr>
</tbody>
</table>

*Designates significant product changes since the publication of the 1988 Service Manual.
<table>
<thead>
<tr>
<th>ILL. NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CONVERTER ASSEMBLY</td>
</tr>
<tr>
<td>2</td>
<td>SEAL ASSEMBLY, OIL</td>
</tr>
<tr>
<td>3</td>
<td>BUSHING, OIL PUMP BODY</td>
</tr>
<tr>
<td>4</td>
<td>BUSHING, STATOR SHAFT (FRONT)</td>
</tr>
<tr>
<td>5</td>
<td>BOLT, PUMP TO CASE</td>
</tr>
<tr>
<td>6</td>
<td>O-RING, PUMP TO CASE BOLT</td>
</tr>
<tr>
<td>7</td>
<td>PUMP ASSEMBLY, OIL</td>
</tr>
<tr>
<td>8</td>
<td>SEAL, OIL (PUMP TO CASE)</td>
</tr>
<tr>
<td>9</td>
<td>GASKET, PUMP COVER TO CASE</td>
</tr>
<tr>
<td>10</td>
<td>CASE, TRANSMISSION</td>
</tr>
<tr>
<td>11</td>
<td>VENT ASSEMBLY, TRANSMISSION</td>
</tr>
<tr>
<td>12</td>
<td>CONNECTOR, OIL COOLER PIPE</td>
</tr>
<tr>
<td>13</td>
<td>RING, SERVO COVER RETAINING</td>
</tr>
<tr>
<td>14</td>
<td>SEAL, "O" RING (2-4 SERVO COVER)</td>
</tr>
<tr>
<td>15</td>
<td>COVER, 2-4 SERVO</td>
</tr>
<tr>
<td>16</td>
<td>PISTON, 4TH APPLY</td>
</tr>
<tr>
<td>17</td>
<td>RING, OIL SEAL (4TH APPLY PISTON) (OUTER)</td>
</tr>
<tr>
<td>18</td>
<td>RING, RETAINER (APPLY PIN)</td>
</tr>
<tr>
<td>19</td>
<td>WASHER, SERVO APPLY PIN</td>
</tr>
<tr>
<td>20</td>
<td>SPRING, SERVO APPLY PIN</td>
</tr>
<tr>
<td>21</td>
<td>SEAL, "O" RING</td>
</tr>
<tr>
<td>22</td>
<td>HOUSING, SERVO PISTON (INNER)</td>
</tr>
<tr>
<td>23</td>
<td>RING, OIL SEAL (2ND APPLY PISTON) (INNER)</td>
</tr>
<tr>
<td>24</td>
<td>RING, OIL SEAL (2ND APPLY PISTON) (OUTER)</td>
</tr>
<tr>
<td>25</td>
<td>PISTON, 2ND APPLY</td>
</tr>
<tr>
<td>26</td>
<td>SPRING, SERVO CUSHION</td>
</tr>
<tr>
<td>27</td>
<td>RETAINER, SERVO CUSHION SPRING</td>
</tr>
<tr>
<td>28</td>
<td>RING, RETAINER (2ND APPLY PISTON)</td>
</tr>
<tr>
<td>29</td>
<td>PIN, 2ND APPLY PISTON</td>
</tr>
<tr>
<td>30</td>
<td>SPRING, SERVO RETURN</td>
</tr>
<tr>
<td>31</td>
<td>PLUG, PRESSURE</td>
</tr>
<tr>
<td>32</td>
<td>CONNECTOR, ELECTRICAL</td>
</tr>
<tr>
<td>33</td>
<td>SEAL, "O" RING (ELECTRICAL CONNECTION)</td>
</tr>
<tr>
<td>35</td>
<td>SEAL, CASE EXTENSION TO CASE</td>
</tr>
<tr>
<td>36</td>
<td>EXTENSION, CASE</td>
</tr>
<tr>
<td>37</td>
<td>BOLT, CASE EXTENSION TO CASE</td>
</tr>
<tr>
<td>38</td>
<td>BUSHING, CASE EXTENSION</td>
</tr>
<tr>
<td>39</td>
<td>SEAL ASSEMBLY, CASE EXTENSION OIL</td>
</tr>
<tr>
<td>40</td>
<td>RETAINER, SPEEDO DRIVEN GEAR FITTING</td>
</tr>
<tr>
<td>41</td>
<td>BOLT & WASHER ASSEMBLY</td>
</tr>
<tr>
<td>42</td>
<td>SEAL, "O" RING (SPEEDO FITTING TO CASE EXTENSION)</td>
</tr>
<tr>
<td>43</td>
<td>FITTING ASSEMBLY, SPEEDO DRIVEN GEAR</td>
</tr>
<tr>
<td>44</td>
<td>GEAR, SPEEDO DRIVEN</td>
</tr>
<tr>
<td>45</td>
<td>GOVERNOR ASSEMBLY</td>
</tr>
<tr>
<td>46</td>
<td>COVER, GOVERNOR</td>
</tr>
<tr>
<td>47</td>
<td>SCREEN, TRANSMISSION OIL PRESSURE (CONVERTER & GOVERNOR)</td>
</tr>
<tr>
<td>48</td>
<td>PIN, BAND ANCHOR</td>
</tr>
<tr>
<td>49</td>
<td>SEAL, "O" RING (SOLENOID)</td>
</tr>
<tr>
<td>50</td>
<td>SOLENOID ASSEMBLY</td>
</tr>
<tr>
<td>51</td>
<td>BOLT, HEX WASHER HEAD (SOLENOID)</td>
</tr>
<tr>
<td>52</td>
<td>PISTON, 3-4 ACCUMULATOR</td>
</tr>
<tr>
<td>53</td>
<td>RING, OIL SEAL (3-4 ACCUMULATOR PISTON)</td>
</tr>
<tr>
<td>54</td>
<td>SPRING, 3-4 ACCUMULATOR</td>
</tr>
<tr>
<td>55</td>
<td>BALL, .25 DIAMETER</td>
</tr>
<tr>
<td>56</td>
<td>PLATE, VALVE BODY SPACER</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ILL. NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>SPRING, 1-2 ACCUMULATOR</td>
</tr>
<tr>
<td>60</td>
<td>RING, OIL SEAL (1-2 ACCUMULATOR PISTON)</td>
</tr>
<tr>
<td>61</td>
<td>PISTON, 1-2 ACCUMULATOR</td>
</tr>
<tr>
<td>62</td>
<td>COVER & PIN ASSEMBLY, 1-2 ACCUM.</td>
</tr>
<tr>
<td>63</td>
<td>BOLT, ACCUMULATOR COVER</td>
</tr>
<tr>
<td>64</td>
<td>LINK, THROTTLE LEVER TO CABLE</td>
</tr>
<tr>
<td>65</td>
<td>LEVER & BRACKET ASSEMBLY, THROTTLE</td>
</tr>
<tr>
<td>66</td>
<td>CLIP, ELECTRICAL WIRE</td>
</tr>
<tr>
<td>67</td>
<td>VALVE ASSEMBLY, CONTROL BODY</td>
</tr>
<tr>
<td>69</td>
<td>BOLT, VALVE BODY</td>
</tr>
<tr>
<td>70</td>
<td>SEAL, FILTER</td>
</tr>
<tr>
<td>71</td>
<td>FILTER ASSEMBLY, TRANSMISSION OIL</td>
</tr>
<tr>
<td>72</td>
<td>GASKET, TRANSMISSION OIL PAN</td>
</tr>
<tr>
<td>73</td>
<td>PAN, TRANSMISSION OIL</td>
</tr>
<tr>
<td>74</td>
<td>SCREW, SPEC. HEX WASHER HEAD (PAN)</td>
</tr>
<tr>
<td>75</td>
<td>BOLT, MANUAL DETENT SPRING</td>
</tr>
<tr>
<td>76</td>
<td>BUSHING, CASE</td>
</tr>
<tr>
<td>77</td>
<td>PIN, ACCUMULATOR PISTON</td>
</tr>
<tr>
<td>80</td>
<td>RETAINER & BALL ASSEMBLY, 3RD ACCUMULATOR</td>
</tr>
<tr>
<td>81</td>
<td>PLUG, TRANSMISSION CASE (ACCUMULATOR BLEED)</td>
</tr>
<tr>
<td>82</td>
<td>PIN, GOVERNOR GEAR RETAINER</td>
</tr>
<tr>
<td>83</td>
<td>GEAR, GOVERNOR DRIVEN</td>
</tr>
<tr>
<td>84</td>
<td>PIN, GOVERNOR WEIGHT</td>
</tr>
<tr>
<td>85</td>
<td>CAP, GOVERNOR THRUST</td>
</tr>
<tr>
<td>86</td>
<td>PLUG, CASE SERVO</td>
</tr>
<tr>
<td>88</td>
<td>GASKET, SPACER PLATE TO CASE</td>
</tr>
<tr>
<td>89</td>
<td>GASKET, SPACER PLATE TO VALVE BODY</td>
</tr>
<tr>
<td>90</td>
<td>BUSHING, SERVO SHAFT (REAR)</td>
</tr>
<tr>
<td>91</td>
<td>BALL, CARBON STEEL (T.V. EXHAUST)</td>
</tr>
<tr>
<td>92</td>
<td>CONDUIT, SOLENOID WIRE</td>
</tr>
<tr>
<td>93</td>
<td>MAGNET, CHIP COLLECTOR</td>
</tr>
<tr>
<td>94</td>
<td>RETAINER, FRONT HELIX SEAL</td>
</tr>
<tr>
<td>96</td>
<td>TUBE, AUXILIARY ACCUMULATOR VALVE</td>
</tr>
<tr>
<td>97</td>
<td>CLAMP, TUBE</td>
</tr>
<tr>
<td>98</td>
<td>NUT, FLANGED HEX</td>
</tr>
<tr>
<td>99</td>
<td>SPEED SENSOR, INTERNAL TRANSMISSION</td>
</tr>
<tr>
<td>100</td>
<td>BOLT, SPEEDO SENSOR RETAINING</td>
</tr>
<tr>
<td>106</td>
<td>RETAINER & BALL ASM. (DOUBLE ORIFICE)</td>
</tr>
<tr>
<td>358</td>
<td>PLUG, CUP (ORIFICE)</td>
</tr>
<tr>
<td>372</td>
<td>SWITCH, TEMPERATURE (SOME MODELS)</td>
</tr>
<tr>
<td>374</td>
<td>BOLT, SPECIAL HEX HEAD (M6 X 1 X 16)</td>
</tr>
<tr>
<td>375</td>
<td>BOLT, HEX HEAD (M6 X 1 X 35)</td>
</tr>
<tr>
<td>376</td>
<td>BOLT, HEX HEAD (M6 X 1 X 45)</td>
</tr>
<tr>
<td>377</td>
<td>AUXILIARY ACCUMULATOR VALVE</td>
</tr>
<tr>
<td>709</td>
<td>BODY ASSEMBLY</td>
</tr>
</tbody>
</table>

Figure 2
TRANSMISSION DISASSEMBLY

General Service Information

- Teflon Oil Seal Rings
 If any seal rings are damaged, cut, or do not rotate freely in their groove be certain to check the ring groove for debris, burrs, or damage.

- Thrust Washer Surfaces
 The thrust washer and thrust bearing surfaces may appear to be polished. This is a normal condition and should not be considered damage.

Clean

- Thoroughly clean the exterior of the transmission.

Remove or Disconnect

- Torque Converter (1)

Tools Required:

1. J-8763-02 onto the transmission case.
2. Holding fixture into the base.

Remove or Disconnect

- Drain the transmission fluid.

2-4 Servo Assembly

Tools Required:

1. J-29714 Servo Cover Compressor
2. Servo cover retaining ring (13)
3. Servo cover and “O” ring seal (14 and 15)
4. 2-4 servo assembly (16-31)

Servo Pin Length

As a diagnostic aid, the servo pin length should now be checked. If the pin length is too short or too long be certain to inspect the 2-4 band and reverse input drum for damage or wear when disassembled.

Governor and Extension

Tools Required:

1. Governor cover (46)
2. Governor assembly (45)
3. Bolt and washer assembly (41) and retainer (40)
4. Speedometer driven gear assembly (43), speedo driven gear (44) and o-ring seal (42)

Internal Transmission Speed Sensor (I.T.S.S.)
3. Speed sensor retaining bolt (100)
4. Speed Sensor assembly (99) and o-ring seal (42)
5. Case extension bolts (37) and case extension (36)
6. Extension seal ring (35)
7. Output shaft sleeve (690) and output shaft o-ring seal (691)
 - Not all models use an output shaft sleeve and seal

Remove or Disconnect (Figures 9)

Models with Mechanical Speedometer
1. Speedometer drive gear (689) and clip (688)
 - push tab of retaining clip and tap speedometer gear off the output shaft.
 - use care not to damage the speedo gear

Valve Body and Wiring Harness

Remove or Disconnect (Figures 10, 11)
1. Screws (74), oil pan (73), and gasket (72).
2. Oil filter (71) and filter seal (70).
 - Filter seal may be stuck in the pump
3. Outside electrical connector (33) and o-ring seal (34).
4. Electrical connections from switches.
 - refer to wiring diagrams in the Diagnosis Section for specific model applications
5. Solenoid bolts (51) and solenoid assembly (50) with o-ring seal (49) and wiring harness.
6. Accumulator cover bolts (63) and 1-2 accumulator cover and pin assembly (62).
7. 1-2 accumulator piston (61) and seal (60).
8. Spring (59).

Remove or Disconnect (Figures 12, 13, 14 and 15)
1. Bolt (75) and manual detent spring assembly (709).
2. Electrical wire clips (66).
3. Auxiliary tube clamps (97) and auxiliary accumulator valve tube (96).
4. Wiring harness retaining washer (A).
5. Bolts (69) and T.V. lever and bracket assembly (65)
6. T.V. link (64)

Remove or Disconnect (Figures 12, 14, 15 and 16)
1. Remaining valve body bolts (69)
2. Manual valve link (705)
3. Control valve assembly (67)
4. Bolts (374-375), auxiliary valve body (377), and check ball (55B)
5. Spacer plate (56) and spacer plate gaskets (88 and 89)
6. Check balls (55A, 55C and 91) spring (54), piston (52), seal (53) and pin
 - Three checkballs are located under the valve body, one in the auxiliary valve body and four are located in the case. The large copper flash colored ball is #10 check ball (91)
Transmission End Play Check

As a diagnostic aid, transmission end play should be checked prior to removing the internal parts. If the end play is not within specifications, you should watch for possible worn or misassembled parts during disassembly.

Tighten (Figures 18 and 19)

TOOLS REQUIRED:
- J-24773-A Oil Pump Remover
- J-25022-A End Play Adaptor (245 mm)
- J-34725 End Play Adaptor (298 mm)
- J-25025-7A Post
- Dial Indicator

1. Remove an oil pump bolt (5) and install a 278 mm (11 in.) bolt and locknut or J-25025-7A.
2. Install J-25022-A or J-34725 as shown.
3. Install J-24773-A as shown.
4. Install dial indicator.
 - set to zero
 - pull up on J-24773-A
 - end play should be 0.13/0.92 mm (.005/.036 in.).

Oil Pump Assembly

Remove or Disconnect (Figures 22 and 23)

TOOLS REQUIRED:
J-24773-A Oil Pump Remover
1. "O" ring seal (618)
2. All oil pump bolts (5) and o-rings (6)
3. Oil pump assembly (7) with J-24773-A
4. Oil pump to case seal (8) and gasket (9)
5. Reverse input clutch to oil pump thrust washer (601)
2-4 Band Reverse Input Clutch, Input Clutch and Input Gear Set (Figures 22, 23 and 24)

1. Reverse input clutch (605) and input clutch (62) together
 - (grasp the turbine shaft and lift)
2. Band assembly pin (48)
3. The 2-4 band assembly (602)
4. Input sun gear (658)

Install or Connect (Figure 25)

TOOLS REQUIRED:
- J-29837 Output Shaft Support Fixture
- J-29837 as shown

Important
- Output shaft (687) may fall free when input carrier retaining ring (661) is removed if J-29837 is not used.

Remove or Disconnect (Figures 20, 21 and 24)

TOOLS REQUIRED:
<table>
<thead>
<tr>
<th>ILL. NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WASHER, WIRE RETAINING</td>
</tr>
<tr>
<td>33</td>
<td>CONNECTOR, ELECTRICAL</td>
</tr>
<tr>
<td>96</td>
<td>TUBE, AUXILIARY ACCUMULATOR VALVE</td>
</tr>
<tr>
<td>97</td>
<td>CLAMP, AUXILIARY TUBE</td>
</tr>
<tr>
<td>374</td>
<td>BOLT, SPECIAL HEX HEAD (M6 X 1 X 16)</td>
</tr>
<tr>
<td>375</td>
<td>BOLT, HEX HEAD (M6 X 1 X 35)</td>
</tr>
<tr>
<td>376</td>
<td>BOLT, HEX HEAD (M6 X 1 X 45)</td>
</tr>
<tr>
<td>377</td>
<td>AUXILIARY ACCUM. VALVE BODY ASM.</td>
</tr>
<tr>
<td>710</td>
<td>BRACKET, PARKING LOCK</td>
</tr>
<tr>
<td>715</td>
<td>BOLT, PARKING LOCK BRACKET</td>
</tr>
</tbody>
</table>

Figure 15 Removing Auxiliary Valve Body Assembly

<table>
<thead>
<tr>
<th>ILL. NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>47A</td>
<td>GOVERNOR FILTER LOCATION</td>
</tr>
<tr>
<td>47B</td>
<td>CONVERTER CLUTCH FILTER LOCATION</td>
</tr>
<tr>
<td>55A</td>
<td>#2 CHECKBALL (3RD CLUTCH ACCUM.)</td>
</tr>
<tr>
<td>55B</td>
<td>#12 CHECKBALL (FORWARD CLUTCH)</td>
</tr>
<tr>
<td>55C</td>
<td>#6 CHECKBALL (DRIVE 3)</td>
</tr>
<tr>
<td>55D</td>
<td>#10 CHECKBALL (T.V. EXHAUST)</td>
</tr>
<tr>
<td>359</td>
<td>CUP PLUG — ORIFICE</td>
</tr>
</tbody>
</table>

Figure 17 Case Checkballs and Filters

<table>
<thead>
<tr>
<th>ILL. NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>55A</td>
<td>#2 CHECKBALL (3RD CLUTCH ACCUM.)</td>
</tr>
<tr>
<td>55B</td>
<td>#12 CHECKBALL (FORWARD CLUTCH)</td>
</tr>
<tr>
<td>55C</td>
<td>#6 CHECKBALL (DRIVE 3)</td>
</tr>
<tr>
<td>91</td>
<td>#10 CHECKBALL (T.V. EXHAUST)</td>
</tr>
<tr>
<td>359</td>
<td>CUP PLUG — ORIFICE</td>
</tr>
</tbody>
</table>

Figure 16 Valve Body Checkballs

<table>
<thead>
<tr>
<th>ILL. NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>298mm TURBINE SHAFT</td>
</tr>
<tr>
<td>B</td>
<td>245mm TURBINE SHAFT</td>
</tr>
</tbody>
</table>

Figure 18 End Play Tool
J-34627 Snap Ring Pliers

1. Input carrier to output shaft retaining ring (661) with J-34627. Do not overexpand the ring.
2. Input carrier assembly (662)
3. J-29837 and output shaft (687)

Important
- The manufacturer assembles the output shaft and reaction internal gear with adhesive for ease of assembly. If these parts have not become separated during use, the output shaft will come out later along with the reaction internal gear.
4. Thrust bearing assembly (663)

Reaction Gear Set

Remove or Disconnect (Figures 20, 21, 26)

1. Input internal gear (664) and reaction carrier (666)
2. Reaction sun shell (670) and thrust washer (669)
3. Reaction sun shell to inner race thrust washer (674)
4. Lo and reverse support to case retainer ring (676)
5. Lo and reverse clutch support retainer spring (680)
6. Reaction sun gear (673)
7. Lo and reverse inner race (675), roller assembly (678), support assembly (679), and reaction carrier assembly (681)
8. Lo and reverse clutch plates (682)
9. Reaction internal gear (684) and thrust bearing assembly (683)
10. Reaction gear support to case bearing (692)

Lo and Reverse Clutch Parts

Remove or Disconnect (Figures 26, 27 and 28)

TOOLS REQUIRED:
- J-34627 Snap Ring Remover/Installer
- J-23327 Clutch Spring Compressor
1. Bolts (715) and parking lock bracket (710)

Important
- Due to interference, the parking pawl may have to be removed before removing or installing the low and reverse piston.
2. Parking pawl shaft plug (713) with a #4 screw extractor
3. Parking pawl pivot shaft (712) with a magnet
4. Parking pawl (711) and return spring (714)
5. Install tool J-23327.
6. Lo and reverse clutch retainer ring (693) with J-34627
7. Lo and reverse clutch spring assembly (694)
8. Lo and reverse clutch piston (695)

by application of air pressure in the case apply passage

COMPONENT REPAIR AND TRANSMISSION REASSEMBLY

Inner Manual Linkage

Remove or Disconnect (Figure 28)

1. Inside manual shaft nut (702)
2. Manual shaft (707) and manual shaft retainer (706)
3. Parking lock actuator assembly (701) and inside detent lever (703)

Manual Shaft Seal Replacement

Remove or Disconnect (Figure 29)

- Manual shaft seal (708)
 - pry out with a screwdriver

Install or Connect

- Tap a new seal in place
 - use a 14 mm socket

Inspect (Figures 28 and 29)

- Actuator rod (701) for damage
- Inside detent lever (703) for damage or cracks
- Manual shaft (707) for damage or burrs
- Manual detent spring assembly (709) for roller freeness or damage

Install or Connect (Figure 28)

- Parking lock actuator (701) onto inside detent lever (703)
- Manual shaft (707) into case (10) and inside detent lever (703)
- Inside manual shaft nut (702) onto manual shaft (707)
 - torque to 31 N·m (23 lbs.-ft.)
- Manual shaft retainer (706) onto manual shaft (707)
Figure 20 Transmission Internal Parts
<table>
<thead>
<tr>
<th>ILL. NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>SPRING ASM., 3-4 CLUTCH BOOST (5)</td>
</tr>
<tr>
<td>601</td>
<td>WASHER, THRUST (PUMP TO DRUM)</td>
</tr>
<tr>
<td>602</td>
<td>BAND ASSEMBLY, 2-4</td>
</tr>
<tr>
<td>603</td>
<td>BUSHING, REVERSE INPUT CL. (FRONT)</td>
</tr>
<tr>
<td>605</td>
<td>HOUSING & DRUM ASSEMBLY, REVERSE</td>
</tr>
<tr>
<td>606</td>
<td>INPUT CLUTCH</td>
</tr>
<tr>
<td>607</td>
<td>PISTON ASM., REVERSE INPUT CLUTCH</td>
</tr>
<tr>
<td>608</td>
<td>SEALS, REVERSE INPUT CLUTCH (INNER & OUTER)</td>
</tr>
<tr>
<td>609</td>
<td>SPRING ASM., REVERSE INPUT CLUTCH</td>
</tr>
<tr>
<td>610</td>
<td>RING, REVERSE INPUT CLUTCH SPRING RETAINER</td>
</tr>
<tr>
<td>611</td>
<td>PLATE, REVERSE INPUT CLUTCH</td>
</tr>
<tr>
<td>612</td>
<td>PLATE ASM., REVERSE INPUT CLUTCH</td>
</tr>
<tr>
<td>613</td>
<td>PLATE, REVERSE INPUT CLUTCH BACKING</td>
</tr>
<tr>
<td>614</td>
<td>RING, REVERSE INPUT CL. RETAINING</td>
</tr>
<tr>
<td>615</td>
<td>BEARING ASSEMBLY, STATOR SHAFT/SELECTIVE WASHER</td>
</tr>
<tr>
<td>616</td>
<td>WASHER, THRUST (SELECTIVE)</td>
</tr>
<tr>
<td>617</td>
<td>RETAINER & BALL ASM., CHECK VALVE</td>
</tr>
<tr>
<td>618</td>
<td>SEAL, "O" RING (TURBINE SHAFT/SELECTIVE WASHER)</td>
</tr>
<tr>
<td>619</td>
<td>RING, OIL SEAL (SOLID)</td>
</tr>
<tr>
<td>620</td>
<td>RETAINER & CHECK BALL ASSEMBLY</td>
</tr>
<tr>
<td>621</td>
<td>HOUSING & SHAFT ASSEMBLY, INPUT</td>
</tr>
<tr>
<td>622</td>
<td>SEAL, "O" RING INPUT TO FORWARD HSG.</td>
</tr>
<tr>
<td>623</td>
<td>PISTON, 3RD & 4TH CLUTCH</td>
</tr>
<tr>
<td>624</td>
<td>SEAL, 3RD & 4TH CL. (INNER & OUTER)</td>
</tr>
<tr>
<td>625</td>
<td>RING, 3RD & 4TH CLUTCH APPLY</td>
</tr>
<tr>
<td>626</td>
<td>SPRING ASSEMBLY, 3RD & 4TH CLUTCH</td>
</tr>
<tr>
<td>627</td>
<td>RETAINER & BALL ASSEMBLY, FORWARD CLUTCH HOUSING</td>
</tr>
<tr>
<td>628</td>
<td>HOUSING, FORWARD CLUTCH</td>
</tr>
<tr>
<td>629</td>
<td>SEAL, FORWARD CLUTCH (INNER & OUTER)</td>
</tr>
<tr>
<td>630</td>
<td>PISTON, FORWARD CLUTCH</td>
</tr>
<tr>
<td>631</td>
<td>SEAL, OVERRUN CLUTCH (INNER & OUTER)</td>
</tr>
<tr>
<td>632</td>
<td>PISTON, OVERRUN CLUTCH</td>
</tr>
<tr>
<td>633</td>
<td>BALL, OVERRUN CLUTCH</td>
</tr>
<tr>
<td>634</td>
<td>SPRING ASSEMBLY, OVERRUN CLUTCH</td>
</tr>
<tr>
<td>635</td>
<td>SNAP RING, OVERRUN CLUTCH SPRING RETAINER</td>
</tr>
<tr>
<td>636</td>
<td>SEAL, INPUT HOUSING TO OUTPUT SHAFT</td>
</tr>
<tr>
<td>637</td>
<td>BEARING ASSEMBLY, INPUT SUN GEAR</td>
</tr>
<tr>
<td>638</td>
<td>SNAP RING, OVERRUN CL. HUB RETAINING</td>
</tr>
<tr>
<td>639</td>
<td>HUB, OVERRUN CLUTCH</td>
</tr>
<tr>
<td>641</td>
<td>RETAINER & RACE ASSEMBLY, SPRAG</td>
</tr>
<tr>
<td>642</td>
<td>FORWARD SPRAG ASSEMBLY</td>
</tr>
<tr>
<td>643</td>
<td>RETAINER RINGS, SPRAG ASSEMBLY</td>
</tr>
<tr>
<td>644</td>
<td>RACE, FORWARD CLUTCH (OUTER)</td>
</tr>
<tr>
<td>645</td>
<td>PLATE ASSEMBLY, OVERRUN CLUTCH</td>
</tr>
<tr>
<td>646</td>
<td>PLATE, FORWARD CLUTCH APPL Y</td>
</tr>
<tr>
<td>648</td>
<td>PLATE, FORWARD CLUTCH (WAVED)</td>
</tr>
<tr>
<td>649</td>
<td>PLATE ASSEMBLY, FORWARD CLUTCH</td>
</tr>
<tr>
<td>650</td>
<td>PLATE, FORWARD CLUTCH BACKING (SEL.)</td>
</tr>
<tr>
<td>651</td>
<td>RING, FORWARD CLUTCH BACKING PLATE RETAINER</td>
</tr>
<tr>
<td>652</td>
<td>PLATE, 3RD & 4TH CLUTCH RING RETAINER</td>
</tr>
<tr>
<td>653</td>
<td>PLATE, 3RD & 4TH CLUTCH APPL Y (STEPED)</td>
</tr>
<tr>
<td>654</td>
<td>PLATE ASSEMBLY, 3RD & 4TH CLUTCH</td>
</tr>
<tr>
<td>655</td>
<td>PLATE, 3RD & 4TH CLUTCH BACKING (SEL.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ILL. NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>656</td>
<td>RING, 3RD & 4TH CLUTCH BACKING PLATE RETAINER</td>
</tr>
<tr>
<td>657</td>
<td>BUSHING, INPUT SUN GEAR (FRONT)</td>
</tr>
<tr>
<td>658</td>
<td>GEAR, INPUT SUN</td>
</tr>
<tr>
<td>659</td>
<td>BUSHING, INPUT SUN GEAR (REAR)</td>
</tr>
<tr>
<td>661</td>
<td>RET., OUTPUT SHAFT TO INPUT CARRIER</td>
</tr>
<tr>
<td>662</td>
<td>CARRIER ASSEMBLY, INPUT (COMPLETE)</td>
</tr>
<tr>
<td>663</td>
<td>BEARING ASSEMBLY, THRUST INPUT CARRIER TO REACTION SHAFT</td>
</tr>
<tr>
<td>664</td>
<td>GEAR, INPUT INTERNAL</td>
</tr>
<tr>
<td>665</td>
<td>BUSHING, REACTION CARRIER SHAFT (FRONT)</td>
</tr>
<tr>
<td>666</td>
<td>SHAFT, REACTION CARRIER</td>
</tr>
<tr>
<td>668</td>
<td>RING, REACTION SHAFT/INTERNAL GEAR RETAINER</td>
</tr>
<tr>
<td>669</td>
<td>WASHER, THRUST (REACTION SHAFT/ SHELL)</td>
</tr>
<tr>
<td>670</td>
<td>SHELL, REACTION SUN</td>
</tr>
<tr>
<td>671</td>
<td>RING, REACTION SUN GEAR RETAINER</td>
</tr>
<tr>
<td>672</td>
<td>BUSHING, REACTION SUN</td>
</tr>
<tr>
<td>673</td>
<td>GEAR, REACTION SUN</td>
</tr>
<tr>
<td>674</td>
<td>WASHER, THRUST (RACE/REACTION SHELL)</td>
</tr>
<tr>
<td>675</td>
<td>RACE, LO & REVERSE ROLLER CLUTCH</td>
</tr>
<tr>
<td>676</td>
<td>RING, LO & REVERSE SUPPORT TO CASE RETAINER</td>
</tr>
<tr>
<td>677</td>
<td>RING, LO & REVERSE RETAINER (ROLLER ASSEMBLY/CAM)</td>
</tr>
<tr>
<td>678</td>
<td>CLUTCH ASSEMBLY, LO & REVERSE ROLLER</td>
</tr>
<tr>
<td>679</td>
<td>SUPPORT ASM., LO & REVERSE CLUTCH</td>
</tr>
<tr>
<td>680</td>
<td>SPRING, TRANSMISSION (LO & REVERSE CLUTCH SUPPORT RETAINER)</td>
</tr>
<tr>
<td>681</td>
<td>CARRIER ASSEMBLY, REACTION</td>
</tr>
<tr>
<td>682</td>
<td>PLATE ASSEMBLY, LO & REVERSE CLUTCH</td>
</tr>
<tr>
<td>682A</td>
<td>PLATE, LO & REVERSE CLUTCH (WAVED)</td>
</tr>
<tr>
<td>682B</td>
<td>PLATE, Spacer LO & REV. CL. (SELECTIVE)</td>
</tr>
<tr>
<td>683</td>
<td>BEARING ASSEMBLY, THRUST (REACTION CARRIER/SUPPORT)</td>
</tr>
<tr>
<td>684</td>
<td>GEAR, INTERNAL REACTION</td>
</tr>
<tr>
<td>685</td>
<td>SUPPORT, INTERNAL REACTION GEAR</td>
</tr>
<tr>
<td>686</td>
<td>RING, REACTION GEAR/SUPPORT RETAINER</td>
</tr>
<tr>
<td>687</td>
<td>SHAFT, OUTPUT</td>
</tr>
<tr>
<td>688</td>
<td>CLIP, SPEEDO DRIVE GEAR</td>
</tr>
<tr>
<td>689</td>
<td>GEAR, SPEEDO DRIVE</td>
</tr>
<tr>
<td>690</td>
<td>SLEEVE, OUTPUT SHAFT</td>
</tr>
<tr>
<td>691</td>
<td>SEAL, OUTPUT SHAFT</td>
</tr>
<tr>
<td>692</td>
<td>BRG., REACTION GEAR SUPPORT TO CASE</td>
</tr>
<tr>
<td>693</td>
<td>RING, LO & REVERSE CLUTCH RETAINER</td>
</tr>
<tr>
<td>694</td>
<td>SPRING ASSEMBLY, LO & REVERSE CLUTCH</td>
</tr>
<tr>
<td>695</td>
<td>PISTON, LO & REVERSE CLUTCH</td>
</tr>
<tr>
<td>696</td>
<td>SEAL, TRANSMISSION (LO & REVERSE CLUTCH – OUTER, CENTER, INNER)</td>
</tr>
<tr>
<td>697</td>
<td>DEFLECTOR, OIL (HIGH OUTPUT MODELS ONLY)</td>
</tr>
<tr>
<td>698</td>
<td>PLUG, ORIFICED CUP</td>
</tr>
<tr>
<td>699</td>
<td>ROTOR, INTERNAL TRANSMISSION SPEED SENSOR</td>
</tr>
</tbody>
</table>
THE SOLENOID ASM. AND OIL FILTER MUST BE REMOVED BEFORE OIL PUMP REMOVAL

Figure 22 Oil Pump Removal

Case

Inspect (Figures 30, 31 and 32)

- Case (10) exterior for cracks or porosity
- Case to valve body face for damage, interconnected oil passages and flatness
 - the face flatness can be checked by inspecting the spacer plate to case gasket for proper land impressions.
- Vent assembly (11) for damage
- Air check all oil passages.
 - see diagnosis section for oil passage identification.
- 2-4 servo bore for
 - damage, porosity, or burrs
 - any sharp edges (i.e., oil passages, slots for retaining ring removal - remove if found)
- Orifice cup plug (86) in servo bore for debris or damage
- Third accumulator bore for
 - porosity, damage, or burrs
 - pin damage (77)
 - orifice cup plug (81) damaged or plugged
- Speedometer bore
 - damaged
 - sharp edges
 - porosity
- All bolt holes for thread damage
 - Heli-coil to repair
- Cooler connectors (12) for
 - damage
 - proper torque 38 N·m (28 lbs.-ft.)
- Case interior for
 - damaged ring grooves or casting flash
 - clutch plate lugs worn or damaged
 - bushing (76) scored, worn, or damaged (see Bushing Replacement)
 - governor support pin installation depth. (Incorrect installation depth will cause governor driven gear damage and shift problems.)
Third Accumulator Retainer and Ball Assembly (80) (Figure 33)

Inspect
- Ball
 - missing
 - sticking or leaking
- Retainer
 - missing
 - loose
 - not seated correctly
 - feed slots restricted

Retainer and Ball Assembly Leak Check Procedure

Important (Figure 33)
1. Install the servo assembly (16-31) into the servo bore.
2. Install the servo cover (15) and retainer (13).
3. Pour a suitable solvent into the accumulator bore.
4. Watch for leakage inside the case.
5. If leakage is observed, replace the third accumulator retainer and ball assembly.

Replacement Procedure - Third Accumulator Retainer and Ball Assembly

Remove or Disconnect (Figure 33 and 34)

TOOLS REQUIRED:
- 6.3 mm (#4) Screw Extractor
- Third accumulator retainer and ball assembly (80)
 - use 6.3 mm (#4) screw extractor

Install or Connect (Figure 33 and 34)

TOOLS REQUIRED:
Figure 29 Manual Shaft Seal

10 CASE, TRANSMISSION
707 SHAFT, MANUAL
708 SEAL, MANUAL SHAFT

Figure 30 Servo Bore

A CASE SERVO BORE
B SERVO EXHAUST HOLE
C 2ND & 4TH BAND APPLY PASSAGE
D 3RD ACCUMULATOR PRESSURE TAP PASSAGE
80 RETAINER & BALL ASSEMBLY, 3RD ACCUM.
86 PLUG, CASE SERVO

Figure 31 Third Accumulator Bore

A 3-4 ACCUMULATOR BORE
81 PLUG, TRANSMISSION CASE ACCUM. BLEED

Figure 32 Governor Pin Location

A GOV. COVER FACE SURFACE
B DOWEL

Figure 33 Leak Check - 3rd Accumulator

A 3RD ACCUMULATOR BORE
C CASE INTERIOR
D 2-4 SERVO BORE
80 RETAINER & BALL ASSEMBLY, 3RD ACCUMULATOR

Figure 34 Third Accumulator Retainer and Ball Asm. - Installation

9.5 mm (3/8 in.) Diameter Metal Rod
- A new third accumulator retainer and ball assembly

 oil feed slots in the retainer must line up with oil passage in the servo bore. To be certain of correct installation depth, scribe a mark at 42.0 mm (1.653 in.) on the 9.5 mm (3/8") diameter metal rod. Use it to seat the third accumulator and ball assembly as shown. When the scribed line is flush with the case face, installation depth is correct.
Case Assembly

Clean
- Thoroughly with solvent
- Air dry
 - do not wipe with cloth.

Lo and Reverse Clutch Assembly

Inspect (Figure 35)
- Lo and reverse piston (695) for
 - porosity or damage
 - ring groove damage
- Piston seals (696) for nicks or cuts
- Spring assembly (694) for damage
- Retainer ring (693) overstressed

Install or Connect (Figure 35)

TOOLS REQUIRED:
- J-34627 Snap Ring Remover/Installer
- J-23327 Clutch Spring Compressor
1. Piston seals (696) onto the piston (695)
 - lubricate with transmission fluid
2. Piston (695) into the case
 - index the piston with the notch in the bottom of the case.
3. Spring assembly (694) onto the piston
 - flat side of the retainer upward
4. J-23327 over the spring assembly
 - compress the spring assembly past the ring groove in the case hub.
5. Retainer ring (693) into the case hub ring groove with J-34627.

Parking Pawl

Inspect (Figure 36)
- Parking pawl (711) for cracks, burrs, or damage
- Parking pawl return spring (714) for distortion or damage
- Parking pawl pivot shaft (712) for damage and freeness of fit with the parking pawl

Install or Connect (Figure 36)
1. Parking pawl (711) and parking pawl return spring (714) into the case
2. Parking pawl pivot shaft (712) into the parking pawl (711) and the case
 - CHECK FOR PROPER OPERATION
3. Retaining plug (713) into the case
 - coat the plug with Loctite® sealant or equivalent and install it with a hammer and punch.

Reaction Internal Gear and Carrier Assembly

Inspect (Figures 37, 38, 39)
- Reaction internal gear (683) and support (684) for
 - proper assembly
 - stripped splines
- cracks
- teeth or lug damage
 - Thrust bearing assemblies (683 and 692) for damage
 - Lo and reverse clutch plates (682)
 - Composition for wear, heat damage, or delamination
 - Steel for heat damage or surface finish damage
 - Reaction carrier assembly (681) for
 - Pinion gear damage
 - Excessive pinion washer wear (end play .20-.61 mm/.008-.024 in.)
 - Proper pinion staking
 - Keystoned pinion gears (pinions must turn free)
 - Damaged or worn thrust bearing

To check the captive thrust bearing in the carrier for wear, place a bushing or an output shaft sleeve on the bearing race (do not contact the pinion gears) and turn it with the palm of your hand. Any imperfections will be felt through the bushing.

Reaction Internal Gear and Support

Install or Connect (Figures 40)

1. Reaction gear support to case bearing (692) onto the case hub as shown
 - Outside bearing race goes toward case hub.
 - Retain with petrolatum.
2. Reaction internal gear and support (684 and 685) onto the bearing as shown.
3. Reaction carrier to support thrust bearing assembly (683) onto the support (685)
 - Outer bearing race goes toward the support.
4. Reaction carrier (681) onto the thrust bearing.

Lo and Reverse Clutch Spacer Plate Selection

Measure (Figure 41 and 42)

TOOLS REQUIRED

- Scale and straight edge

1. To measure for proper selective spacer plate, stack the lo and reverse assembly on a flat surface in the following order:
 - 1 waved plate (682B)
 - 5 composition and 4 steal plates (682), starting with one composition plate and alternating with steal.
 - Lo and Reverse Clutch Support (679)
2. Apply an evenly distributed load to the top of the Lo and Reverse Support Assembly (679). Light pressure (approximately 22 N or 5 lbs.) on the Lo and Reverse Support Assembly (679) will provide the correct dimension for measurement.

CAUTION: EXCESSIVE PRESSURE WILL START TO FLATTEN THE WAVE PLATE RESULTING IN AN INACCURATE MEASUREMENT

3. Measure the height of the clutch pack from the work surface to the top of the Lo and Reverse Clutch Support (Dimension D).
4. Use dimension D to select the proper thickness of the selective spacer plate for assembly.
5. Install the proper selective spacer plate between the wave plate and the first composition clutch plate with the identification side up.
ILL. NO.
DESCRIPTION

10 CASE, TRANSMISSION
681 CARRIER ASSEMBLY, REACTION
682 PLATE ASSEMBLY, LO & REVERSE CLUTCH
682A PLATE, LO & REVERSE CLUTCH (WADED)
682B PLATE, LO & REVERSE CL. (SELECTIVE)
683 BEARING ASSEMBLY, THRUST (REACTION CARRIER/SUPPORT)
684 GEAR, INTERNAL REACTION
685 SUPPORT, INTERNAL REACTION GEAR
692 BRG., REACTION GEAR SUPPORT TO CASE
697 DEFLECTOR, OIL (HIGH OUTPUT MODELS ONLY)

6. The overall height for dimension D with the selective spacer plate included should be 30.515 mm - 31.401 mm (1.20" - 1.24)

Install or Connect (Figures 41, 42, 43 and 44)

1. Waved plate (682A)
2. Correct selective spacer plate (682B), from selection procedure.
3. Lo and reverse clutch plates (682) into case lugs
 - start with a composition plate and alternate with steel.
 - index with the splines of the reaction carrier and the case as shown.

Lo and Reverse Support Assembly

Remove or Disconnect (Figure 45)

1. Inner race (675) from the support assembly
2. One retainer ring (677)
3. Roller clutch assembly (678)
Figure 41 Measuring For Spacer Plate Selection

![Diagram of spacer plates and dimensions]

ILL. NO.

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>LO & REVERSE CLUTCH SPACER PLATE SELECTION CHART</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPPORT ASSEMBLY, LO & REVERSE CLUTCH</td>
<td>679</td>
</tr>
<tr>
<td>PLATE ASSEMBLY, LO & REVERSE CLUTCH</td>
<td>682</td>
</tr>
<tr>
<td>SPACER PLATE, LO & REVERSE CL. (SELECTIVE)</td>
<td>682(A)</td>
</tr>
<tr>
<td>WAVE PLATE, LO & REVERSE CLUTCH</td>
<td>682(B)</td>
</tr>
</tbody>
</table>

Figure 42 Lo and Reverse Spacer Plate Selection Chart

<table>
<thead>
<tr>
<th>FROM</th>
<th>TO</th>
<th>IDENTIFICATION</th>
<th>PLATE THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.559mm (1.164")</td>
<td>28.844mm (1.136")</td>
<td>NONE</td>
<td>1.671mm (.066")</td>
</tr>
<tr>
<td>28.844mm (1.136")</td>
<td>28.129mm (1.107")</td>
<td>4</td>
<td>2.386mm (.094")</td>
</tr>
<tr>
<td>28.129mm (1.107")</td>
<td>27.414mm (1.079")</td>
<td>5</td>
<td>3.101mm (.122")</td>
</tr>
</tbody>
</table>

Inspect (Figure 45)

- Inner race (675) for damage and surface finish
- Roller clutch assembly (678) for
 - damaged rollers
 - broken springs
- Cam and support assembly for
 - loose cam
 - surface finish
 - cracks or damaged lugs.

Install or Connect (Figure 45 and 46)

1. Roller clutch assembly (678) into the cam and support assembly (679)
2. Support and roller assembly into the case with the hub down
3. Inner race (675) into the roller assembly
4. Turn inner race (675) while inserting
 - push down for full engagement.
 - bottom tangs will be flush with carrier hub when properly installed.
7A1-22 700-R4 AUTOMATIC TRANSMISSION

<table>
<thead>
<tr>
<th>LO & REVERSE CLUTCH</th>
<th>QTY</th>
<th>THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLATE-WAVED</td>
<td>1</td>
<td>2.43mm (.096")</td>
</tr>
<tr>
<td>PLATE-SELECTIVE</td>
<td>1</td>
<td>SEE FIG. 42</td>
</tr>
<tr>
<td>PLATE-COMP. FACED</td>
<td>5</td>
<td>2.25mm (.088")</td>
</tr>
<tr>
<td>PLATE-FLAT STEEL</td>
<td>4</td>
<td>1.77mm (.069")</td>
</tr>
</tbody>
</table>

Figure 43 Lo and Reverse Clutch Plate Chart

- check for proper operation by rotating the inner race as shown in Figure 45.

5. Support retainer spring (680) into the case
- insert between the case lug and the one open notch in the support.

Reaction Sun Gear and Shell

Inspect (Figure 48)
- Reaction Sun Gear (673) for
 - nicked, scored, or worn bushing. (See Bushing Replacement).
 - damaged spline or teeth
 - loose or weak retaining ring (do not remove this ring, except to replace it.)
- Reaction sun shell (670) for
 - stripped or worn splines
 - broken hub
 - bent tangs
- Lo and reverse inner race to reaction sun gear shell thrust washer (674) for wear or damage
- Reaction shaft to reaction sun gear shell thrust washer (669) for wear or damage (bronze thrust washer).

Figure 45 Lo and Reverse Clutch Support Assembly

Install or Connect (Figure 48 and 49)
1. Reaction sun gear retainer ring (671) onto the reaction sun gear, if previously removed.
2. Reaction sun gear (673) into the reaction carrier
 - index the teeth with the pinion gears.
3. Thrust washer (674) onto the lo and reverse support inner race.
4. Reaction gear shell (670) onto the reaction sun gear
5. (Bronze) thrust washer (669) onto the reaction sun shell
 - index tangs into the shell.

4. Reaction gear shell (670) onto the reaction sun gear
5. (Bronze) thrust washer (669) onto the reaction sun shell
 - index tangs into the shell.

Input Internal Gear and Output Shaft

- **Remove or Disconnect** (Figure 50)
 1. Retainer ring (668) from input internal gear (664)
 2. Reaction carrier shaft (666) from the input internal gear

- **Inspect** (Figures 49, 50, and 52)
 - Reaction Carrier Shaft (666) for
 - scored, damaged, or worn bushings (see Bushing Replacement)
 - cracked shaft
 - damaged spline or gear teeth
 - under cut around the shaft from interference with the sun gear
Input internal gear (664) for cracks or damaged spline or gear teeth.

Input carrier to reaction shaft thrust bearing (663) for wear or damage.

Output shaft (687) plugged or restricted lube passages, damaged splines or ring groove, damaged governor drive gear teeth, burrs or damage to the front of the shaft at seal area. (Polish with crocus cloth if necessary), burrs or damage to bearing journals, damaged teeth on speed sensor rotor.

Internal Transmission Speed Sensor Rotor

Remove only if damaged rotor cannot be reused.

Tools required:
- J-21427-01 speedometer gear puller adapter
- J-8433 speedometer gear puller
- J-36352 rotor installer & "C" washer
- Mechanical press

1. Install J-21427 with J-8433 and remove rotor.
2. Place new rotor over output shaft.
3. Place J-36352-4 in groove on output shaft.
 - Do not reuse rotor.
4. Place J-36352-6 on shaft and press to make contact with J-36352-4.

Install or Connect (Figures 50 and 52)

1. Reaction shaft (666) into the input internal gear (664).
2. Retainer ring (668) into the input internal gear.
3. Input internal gear and shaft assembly into the sun gear shell.
 - Index the shaft spline into the reaction carrier.
4. Thrust Bearing (663) onto the reaction carrier shaft.
 - Outer race goes toward the reaction carrier shaft.
5. Output shaft (687) into the transmission:
 - Index the splines with the mating parts.

Input Carrier and Sun Gear

Inspect (Figure 53)

- Input carrier assembly (662) for pinion gear damage, excessive pinion washer wear (end play .20-.61 mm/.008-.024 in.), proper pin stake, keystoned pinion gears (pinion gears must rotate freely), damaged or worn thrust bearing.

To check the captive thrust bearing in the carrier for wear, place a bushing or an output shaft sleeve on the bearing race (do not contact the pinion gears) and turn it with the palm of your hand. Any imperfections will be felt through the bushing.
- Input sun gear (658) for
 - bushing damage or wear (see Bushing Replacement Procedure).
 - cracks
 - damaged spline or gear teeth

Install or Connect (Figure 54)

TOOLS REQUIRED:
- J-34627 Snap Ring Pliers

1. Input carrier assembly (662) onto the output shaft
2. Retainer ring (661) into the output shaft ring groove
 - Do not reuse the old retainer ring if it has been overexpanded.
 - Use care not to overexpand the ring during installation.
4. Input sun gear (658) into the input carrier
 - index the sun gear teeth into the pinion gear teeth.

Input Clutch Assembly

Remove or Disconnect (Figure 55)
- Reverse input clutch assembly (605) from the input clutch assembly (621)
- Oil pump to selective washer thrust bearing (615)
- Selective washer (616)
Disassemble (Figures 57 and 58)

TOOLS REQUIRED:
- J-23456 Clutch Spring Compressor Press
- J-23327-1 Clutch Spring Compressor
- J-25018-A Clutch Spring Compressor Adaptor

1. Place the input clutch assembly (621) on the bench with the turbine shaft through the bench hole.
2. The 3-4 clutch plate retainer ring (656) and the backing plate (655)
3. The 3-4 clutch plates (654)
4. Five 3-4 clutch boost spring assemblies (600)
5. The 3-4 clutch apply plate (653)
6. The 3-4 clutch ring retainer plate (652)
7. Forward clutch backing plate retainer ring (651) and backing plate (650)
8. Forward clutch sprag assembly (638 - 644)

Disassemble
1. Install J-23456 and J-23327-1 with J-25018-A Compress overrun clutch spring assembly (634).
2. Overrun clutch retainer ring (635).
3. Overrun clutch spring assembly (634).
4. Overrun clutch piston (632) - inner and outer lip seals (631)
5. Forward clutch piston assembly (630) - inner and outer lip seals (629)
6. Forward clutch housing (628)
7. The 3-4 clutch spring assembly (626)
8. The 3-4 clutch apply ring (625) and piston (623) - inner and outer lip seals (624) from piston
9. Forward clutch to input housing “O” ring seal (622)
10. Four turbine shaft oil seal rings (619)

Inspect (Figure 60 and 61)
1. Input housing for porosity or damage
2. Input housing and shaft assembly (621)
 - all splines for wear or damage
 - air check feed passages.
 - three turbine shaft sealing balls
 - the balls must not be loose or leaking.
 - the open hole is the lube oil passage which feeds the output shaft.
 - Presence of orificed cup plug (698)
 - Cracks at lube holes.
 - Four turbine shaft oil seal ring grooves for damage or burrs
 - seals must fit freely into the ring grooves.
 - Check valve retainer and ball assembly (617) for damage
 - the ball must move freely in the retainer.
 - the retainer must be tight in the turbine shaft.

Check Valve Retainer and Ball Assembly - Replacement Procedures

REMOVE

1. Input sun gear bearing assembly (637)

INSTALLATION

Figure 56 Retainer and Check Ball Removal/Installation

Disassemble
1. Input sun gear bearing assembly (637)

Remove or Disconnect (Figure 59)

TOOLS REQUIRED:
- 6.3 mm (#4) Screw extractor
1. Straighten the tangs of the retainer and remove the ball.
2. Check valve retainer - use 6.3 (#4) Screw Extractor

Install or Connect (Figure 59)

TOOLS REQUIRED:
700-R4 AUTOMATIC TRANSMISSION 7A1-27

Figure 57 Input Clutch Assembly
9.5 mm (3/8") diameter metal rod
- New check valve retainer and ball assembly (617)
 - use the 9.5 mm (3/8") metal rod.
 - seat the retainer 3.0 mm (1/8 in.) below top surface of the turbine shaft.
 - be certain the ball is loose.

Inspect (Figure 60 and 61)
- Turbine shaft “O” ring seal (618) for nicks, cuts, or damage
- Input housing check valve ball (620).
 - the ball must move freely.
 - leak check the ball with solvent.

Important (Figure 60)
- If the 3-4 clutch plates are burned or worn and a cause is not found during diagnosis or disassembly, replacement of the retainer and check ball assembly may be required.

Remove or Disconnect (Figure 56)

TOOLS REQUIRED:
6.35 mm (1/4") diameter rod or drift hammer

Install or Connect (Figures 56 and 60)
1. Using same tools, tap in retainer and ball assembly until shoulder is seated in housing.

Assemble (Figure 62)
1. Position the input housing and shaft assembly on the bench with the turbine shaft through a bench hole.
2. Inner and outer 3-4 clutch lip seals (624) on the 3-4 clutch piston
 - seal lips must face away from the piston hub.
 - lubricate the seals with transmission fluid.
3. The 3-4 clutch piston (623) into the input housing as shown
 - use care not to damage the seals.

Inspect (Figures 57, 63, 65)
- Forward clutch housing (628) for
 - proper check ball operation
 - damage or distortion
 - burrs in seal areas
 - cracks
- Forward clutch piston (630) and overrun clutch piston (632) for
 - porosity or damage
 - ring groove damage
 - apply leg damage

- Overrun spring assembly (634) for damage or distortion
- Input housing to output shaft lip seal (636) for damage or wear

Assemble (Figures 63 and 64)

TOOLS REQUIRED:
- J-23456 Clutch Spring Compressor Press
- J-23327-1 Clutch Spring Compressor
- J-25018-A Clutch Spring Compressor Adaptor
- J-29882 Overrun Clutch Inner Seal Protector
- J-29883 Forward Clutch Inner Seal Protector

1. Forward clutch housing to input clutch housing “O” ring seal (622) as shown
 - lubricate with transmission fluid.
2. Inner and outer seals (629) on forward clutch piston
 - seal lips must face away from the piston tangs as shown.
 - lubricate with transmission fluid.
3. Forward clutch piston (630) into the forward clutch housing
 - use care not to damage the outer lip seal.
4. The 3-4 clutch spring assembly (626) onto the 3-4 clutch apply ring
5. Forward clutch assembly onto the 3-4 clutch spring assembly
 - the forward clutch piston apply legs must be indexed with the 3-4 clutch apply ring legs.
6. J-29883 on the input housing as shown
7. Apply ring and forward clutch assembly into the input housing as shown
 - hold the assembly by the apply ring legs during installation.
 - do not let the forward clutch piston separate from the housing.
 - firmly seat the assembly.
8. J-29882 on the input housing as shown
9. Overrun clutch piston (632)
 - hub facing upward as shown.
 - if all parts are properly seated to this point, the overrun piston hub will be approximately 4.7 mm (3/16 in.) below the snap ring groove in the input housing hub.

Inspect (Figures 65, 66)
- Overrun clutch plates (645)
7A1-30 700-R4 AUTOMATIC TRANSMISSION

621 HOUSING & SHAFT ASSEMBLY, INPUT
622 SEAL, O-RING (INPUT/FWD. HSG.)
623 PISTON, 3RD & 4TH CLUTCH
625 RING, 3RD & 4TH CLUTCH APPLY
626 SPRING ASSEMBLY, 3RD & 4TH CLUTCH
628 HOUSING, FORWARD CLUTCH
629 SEALS, FWD. CLUTCH (INNER & OUTER)
630 PISTON, FORWARD CLUTCH

Figure 63 Forward Clutch and 3-4 Apply Ring - Installed

621 HOUSING & SHAFT ASSEMBLY, INPUT
636 SEAL, INPUT HOUSING TO OUTPUT SHAFT
637 BEARING ASSEMBLY, INPUT SUN GEAR
687 SHAFT, OUTPUT

Figure 66 Input Hsg. to Output Shaft Lip Seal

- Composition plates for damaged tangs, delamination, or excessive wear
- Steel plates for damaged tangs, wear, or heat damage
- Input sun gear bearing assembly (637) for wear, flatness or damage

Assemble (Figures 67 and 68)

1. Overrun clutch plates (645) into the input housing.
 - Overrun clutch plates are the smallest of the three sets of plates in the input housing.
 - Index the plates as shown starting with a steel plate and alternate with composition.
2. Thrust bearing assembly (637) onto the input clutch hub
the inside race must face the input housing hub.
retained with petroleum.

3. Align the tangs on the two composition overrun clutch plates.

Forward Clutch Sprag Assembly

Disassemble (Figure 69)
1. Forward sprag outer race (644)
2. Overrun clutch hub retaining snap ring (638) and clutch hub (639)
3. Forward clutch retainer and race assembly (641)

Inspect
- Forward clutch sprag assembly (642) for
 - wear or damage
 - weak or broken springs
 - damaged or missing retainer caps (brass)
- Overrun clutch hub (639) for
 - spline damage
 - plugged lubrication holes
 - damaged tangs
 - cracks
- Forward clutch retainer and race assembly (641) for
 - spline damage
 - ring groove damage
 - surface finish damage
 - loose retainer

Assemble (Figures 70, 71, 72)
1. Forward clutch sprag assembly (642) into the outer race
 - to correctly install, the notches in the sprag cage must face upward as shown.
2. One sprag retainer ring (643) onto the race and retainer assembly
7A1-32 700-R4 AUTOMATIC TRANSMISSION

- the flange on the retainer ring must face away from the retainer.

3. Race and retainer assembly into the sprag assembly
 - to assemble, hold the outer race in your left hand with your fingers supporting the sprag at the recessed side of the outer race.
 - insert the race and retainer assembly by pushing in and turning to the left.

4. The remaining retainer ring onto the sprag assembly.

5. Overrun clutch hub (639)

6. Overrun clutch hub retaining snap ring (638) into the snap ring groove of the race and retainer assembly

7. Test the assembly for proper operation as shown (Figure 72).
 - If the assembly operates backwards, you have installed the sprag backwards. Reassemble correctly.

Assemble

- Forward clutch sprag assembly into the input clutch housing
 - index the overrun clutch hub into the overrun clutch plates.

Inspect (Figure 73 and 74)

- Forward (649) and 3-4 clutch plates (654)
 - Composition plates for damaged tangs, delamination, or wear
 - Steel plates for damaged tangs, wear, or heat damage
- Forward (650) and 3-4 clutch backing plates (655) for
 - flatness
 - surface finish damage
 - burrs or nicks
- Forward clutch apply plate (646) and spacer plate (647) for
 - flatness
 - surface finish damage
 - burrs or nicks
- The 3-4 clutch apply plate (653) for
 - flatness
 - surface finish damage
- The 3-4 clutch ring retainer plate (652) for
 - bent tangs
 - flatness

Assemble (Figures 73, 74, 75 and 76)

1. Forward clutch apply plate (646) into the input clutch housing
 - index as shown.
2. Waved steel forward clutch plate (648) into the input clutch housing
 - index as shown.
3. The remaining forward clutch plates (649) into the input clutch housing
 - start with a steel plate and alternate with composition
4. Forward clutch selective backing plate (650)
5. Forward clutch retaining ring (651)

Forward Clutch Piston Travel Check

Measure (Figure 76)

1. With the Overrun Clutch and Forward Clutch fully assembled in the Input Housing, check the end clearance between the backing plate (650) and the retaining ring (651) with two feeler gages.
2. Proper Forward Clutch Backing Plate Travel should be .75-1.60 mm (.030"-.063").
3. Select the proper backing plate from the chart to obtain the correct clearance.

Assemble (Figure 77 and 81)

1. The 3-4 ring retainer plate (652) - index each leg into the apply ring legs.
2. The 3-4 clutch apply plate (653)
3. The 3-4 clutch plates (654) - start with steel and alternate with composition as shown in (Figure 81) - first steel plate has the same spline configuration as apply plate
4. The 3-4 boost springs (600)
5. The 3-4 clutch backing plate (655) and retainer ring (656) - chamfered side up.

Figure 73 Forward and 3-4 Clutch Plates - Installed

Figure 74 Input Housing with Forward and 3-4 Clutch Plates

ILL. NO. DESCRIPTION

<table>
<thead>
<tr>
<th>NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>SPRING ASSEMBLY, 3-4 CLUTCH BOOST (5)</td>
</tr>
<tr>
<td>621</td>
<td>HOUSING & SHAFT ASSEMBLY, INPUT</td>
</tr>
<tr>
<td>646</td>
<td>PLATE, FORWARD CLUTCH APPLY</td>
</tr>
<tr>
<td>648</td>
<td>PLATE, FORWARD CLUTCH (WAVED)</td>
</tr>
<tr>
<td>649</td>
<td>PLATE ASSEMBLY, FORWARD CLUTCH</td>
</tr>
<tr>
<td>650</td>
<td>PLATE, FORWARD CLUTCH BACKING (SELECTIVE)</td>
</tr>
<tr>
<td>651</td>
<td>RING, FORWARD CLUTCH BACKING PLATE RETAINER</td>
</tr>
<tr>
<td>652</td>
<td>PLATE, 3RD & 4TH CLUTCH RING RETAINER</td>
</tr>
<tr>
<td>653</td>
<td>PLATE, 3RD & 4TH CLUTCH APPLY (STEPPED)</td>
</tr>
<tr>
<td>654</td>
<td>PLATE ASSEMBLY, 3RD & 4TH CLUTCH</td>
</tr>
<tr>
<td>655</td>
<td>PLATE, 3RD & 4TH CLUTCH BACKING (SELECTIVE)</td>
</tr>
<tr>
<td>656</td>
<td>RING, 3RD & 4TH CLUTCH BACKING PLATE RETAINER</td>
</tr>
</tbody>
</table>
FORWARD CLUTCH INFORMATION CHART

<table>
<thead>
<tr>
<th>PLATE TYPE</th>
<th>THICKNESS</th>
<th>QUANTITY REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPLY PLATE</td>
<td>6.44mm (2.51")</td>
<td>1</td>
</tr>
<tr>
<td>WAVED STEEL CLUTCH PLATE</td>
<td>2.03mm (.079")</td>
<td>1</td>
</tr>
<tr>
<td>FLAT STEEL CLUTCH PLATE</td>
<td>2.29mm (.090")</td>
<td>5</td>
</tr>
<tr>
<td>COMPOSITION FACED CLUTCH PLATE</td>
<td>1.78mm (.070")</td>
<td>5</td>
</tr>
<tr>
<td>BACKING PLATE</td>
<td>SELECTIVE</td>
<td>1</td>
</tr>
</tbody>
</table>

FORWARD CLUTCH BACKING PLATE SELECTION

ALL MODELS

BACKING PLATE TRAVEL = .75mm -.80mm (.030" - .063")

<table>
<thead>
<tr>
<th>PLATE THICKNESS</th>
<th>IDENTIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.92mm - 7.07mm</td>
<td>.272" - .278"</td>
</tr>
<tr>
<td>6.33mm - 6.48mm</td>
<td>.249" - .255"</td>
</tr>
<tr>
<td>5.74mm - 5.89mm</td>
<td>.225" - .232"</td>
</tr>
<tr>
<td>5.15mm - 5.30mm</td>
<td>.203" - .208"</td>
</tr>
<tr>
<td>4.56mm - 4.71mm</td>
<td>.180" - .185"</td>
</tr>
</tbody>
</table>

3-4 CLUTCH INFORMATION CHART

<table>
<thead>
<tr>
<th>PLATE TYPE</th>
<th>THICKNESS</th>
<th>QUANTITY REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEPPED APPLY PLATE</td>
<td>3.30mm (.130")</td>
<td>1</td>
</tr>
<tr>
<td>FLAT STEEL CLUTCH PLATES</td>
<td>1.97mm (.077")</td>
<td>1</td>
</tr>
<tr>
<td>FLAT STEEL CLUTCH PLATE</td>
<td>1.78mm (.070")</td>
<td>6</td>
</tr>
<tr>
<td>COMPOSITION FACED CLUTCH PLATES</td>
<td>2.03mm (.079")</td>
<td>5</td>
</tr>
<tr>
<td>BACKING PLATE</td>
<td>SELECTIVE</td>
<td>1</td>
</tr>
</tbody>
</table>

* A-MODELS MCM, MTM, PRM, YXM
* B-MODELS ALL OTHERS

†SAME SPLINE CONFIGURATION AS APPLY PLATE

3-4 Clutch Piston Travel Check

Measure (Figure 78)

- Check the end clearance between the backing plate (655) and the first composition plate with a feeler gage.
- Select the proper backing plate from the chart to obtain the correct clearance for model you are working on.

Clutch Air Check

(Figure 79)

Air check the 3-4, forward, and overrun clutches by applying air pressure at the feed holes in the turbine shaft. (When the overrun clutch is checked, the air will blow by the forward clutch piston lip seals and exit out the forward clutch feed hole in the turbine shaft.)

Assemble (Figure 80)

TOOLS REQUIRED:

- J-36418-1 seal installer
- J-36418-2A seal sizer

1. Install four turbine shaft oil seal rings (619) using J-36418-1
 - Adjust screw to obtain proper height
2. Use J-36418-2A to size the seals after installation
3-4 Backing Plate Selection

<table>
<thead>
<tr>
<th>MODEL</th>
<th>BACKING PLATE TRAVEL</th>
<th>I.D.</th>
<th>DIM.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCM, MTM, PRM, YXM</td>
<td>2.42mm - 1.61mm</td>
<td>5</td>
<td>8.58mm - 6.38mm</td>
</tr>
<tr>
<td></td>
<td>(0.095" - 0.63")</td>
<td></td>
<td>(0.359" - 0.251")</td>
</tr>
<tr>
<td></td>
<td>5.75mm - 5.55mm</td>
<td>6</td>
<td>4.92mm - 4.72mm</td>
</tr>
<tr>
<td></td>
<td>(0.226" - 0.218")</td>
<td></td>
<td>(1.94" - 1.86")</td>
</tr>
<tr>
<td>ALL OTHERS</td>
<td>2.40mm - 1.52mm</td>
<td>7</td>
<td>4.09mm - 3.89mm</td>
</tr>
<tr>
<td></td>
<td>(0.094" - 0.060")</td>
<td></td>
<td>(1.181" - 1.053")</td>
</tr>
</tbody>
</table>

- Use Backing Plate Which Gives Correct Travel
- **DIM.**
- **I.D.**

Reverse Input Clutch Assembly

Disassemble (Figure 82 and 83)

TOOLS REQUIRED:
- J-23327-1 Clutch Spring Compressor
- J-25018-A Clutch Spring Compressor Adaptor
- Retaining ring (614) from reverse input housing
- Backing plate (613)
- Clutch plates (612) and belleville steel plate (611)
- Install J-23327-1 and J-25018-A.
- Compress the spring assembly.
- Spring assembly retainer ring (610) and spring assembly (609)
- Reverse input clutch piston (607)
 - inner and outer lip seals (608) from piston

Inspect (Figures 82 and 84)
- Backing plate (613) for
 - damage
 - distortion or flatness

- **J 36418-1**
- **J 36418-2A**

Figure 78 Backing Plate Selection Chart

Figure 79 Turbine Shaft Fluid Passages

Figure 80 Turbine Shaft Oil Seal Rings
- surface on the hub and outer housing
- leak at the weld

Assemble (Figures 82, 83, 85, 86 and 87)

TOOLS REQUIRED:
- J-23327-1 Clutch Spring Compressor
- J-25018-A Clutch Spring Compressor Adaptor

1. Inner and outer seals (608) on the piston
 - lips must face away from the hub as shown.
 - lubricate with transmission fluid.

2. Piston (607) into the housing and drum assembly
 - use an 8 mm feeler gage to position the lip seals.
 - use care not to damage the seals.

3. Spring assembly (609)
 - large opening in the assembly goes towards the piston.

4. Install J-23327-1 and J-25018-A.
 - compress the spring assembly
 - install the retainer ring (610).

5. Belleville steel clutch plate (611)
6. Clutch plates (612). (4 steel and 4 composition plates required)
 - start with a steel and alternate with composition

7. Backing plate (613)
 - chamfered side up

8. Retaining ring (614)

Measure (Figure 85, 86 and 87)

1. With the Reverse Input Clutch fully assembled, apply an evenly distributed load to the Clutch Pack in the direction shown in Figure 1. Medium pressure (approximately 89 N or 20 lbs.) on the Backing Plate applied by hand on five evenly distributed points will obtain the Backing Plate Travel for measurement.

CAUTION: (Excessive pressure will distort the Belleville plate resulting in an inaccurate measurement.)
2. Using a Feeler Gage, measure between the Snap Ring and the Backing Plate. Backing Plate Travel should be 1.02mm - 1.94mm (.040" - .076").
3. Select the proper Backing Plate to obtain the specified travel.

Reverse Input and Input Clutches

Assemble (Figures 89 and 90)
1. Selective thrust washer (616) onto the input housing
2. Bearing assembly (615)
 - inside (black race) goes toward the oil pump.
3. Reverse input clutch assembly (605) onto the input clutch assembly
 - index the reverse input clutch plates with the input clutch hub.
 - make certain all clutches are fully engaged.

Assemble (Figure 91)
- Reverse input and input clutch assembly into the transmission case
 - index the 3-4 clutch plates with the input internal gear.
CHECK FOR (.040" - .075") BACKING PLATE TRAVEL.

Figure 85 Reverse Input Backing Plate Selection

REVERSE INPUT CLUTCH BACKING PLATE SELECTION

<table>
<thead>
<tr>
<th>PLATE THICKNESS</th>
<th>IDENTIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.60mm - 7.45mm</td>
<td>5</td>
</tr>
<tr>
<td>(.299" - .293")</td>
<td></td>
</tr>
<tr>
<td>6.94mm - 6.79mm</td>
<td>6</td>
</tr>
<tr>
<td>(.273" - .267")</td>
<td></td>
</tr>
<tr>
<td>6.28mm - 6.13mm</td>
<td>7</td>
</tr>
<tr>
<td>(.247" - .241")</td>
<td></td>
</tr>
<tr>
<td>5.62mm - 5.47mm</td>
<td>8</td>
</tr>
<tr>
<td>(.221" - .215")</td>
<td></td>
</tr>
</tbody>
</table>

Figure 86 Reverse Input Clutch Plate Chart

- make sure all clutch plates are fully engaged.
- when properly assembled, the reverse input clutch housing will be located just below the case oil pump face.

2-4 Band Assembly

- **Inspect**
 - 2-4 band assembly (602) for damage or wear
- **Assemble (Figure 91, 92)**
 1. The 2-4 band assembly (602) into the case
 - index the band anchor pin end with the case pin hole.
 2. Band anchor pin (48) into the case

Oil Pump Assembly

- **Remove or Disconnect (Figure 95)**
 1. Thrust washer (601)
 2. Pump cover to case gasket (9)
 3. Pump to case oil seal (8)
 4. Pump cover bolts (236)
 5. Pump cover (217) from pump body (203)
Pump Body

Disassemble (Figure 95)

1. Pump slide spring (209)
 - compress with needle nose pliers.
 - pull straight out.

CAUTION: Spring is under very high pressure. Place covering over spring to prevent possible injury.

2. From the pump pocket
 - Pump guide rings (212)
3. Retainer (94), oil seal assembly (2) - pry out with a screwdriver.

Oil Pump Cover

Disassemble (Figure 95)
1. Converter clutch apply valve train
 - compress converter clutch apply valve spring (228) with a screwdriver.
 - remove retaining ring (225).
 - slowly release the spring tension.
 - stop valve (226), converter clutch apply valve (227), and two converter clutch valve springs.
2. Pressure relief ball (231)
 - ball is under strong spring pressure.
 - cover the ball with a cloth when removed.
3. Pressure regulator assembly (218-224).
 - follow the same procedure used to remove the converter clutch valve.

Inspect (Figure 95)
- Pressure regulator valve assembly (218-224) and converter clutch apply valve assembly (225-229) for
 - chips, burrs, distortion, plugged oil passage, and free movement in bore
 - remove burrs with lapping compound
- Pressure relief assembly (230-232) for damage or distortion
- Pump cover (217) and pump body (203) for
 - worn or damaged bushings (see Bushing Replacement Procedure)
 - foreign material or debris
 - porosity
 - scored or irregular mating faces

Measure (Figure 94)

TOOL REQUIRED:
One inch Micrometer
- Oil pump rotor (214) thickness
- Oil pump slide (206) thickness

Important
Measurement of rotor/slide must be made on undamaged surfaces. Select similar size replacements. Lightly hone both sides of replacement rotor or slide to remove any nicks or burrs.
<table>
<thead>
<tr>
<th>ILL. NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>002</td>
<td>SEAL ASSEMBLY, OIL</td>
</tr>
<tr>
<td>003</td>
<td>BUSHING, PUMP BODY</td>
</tr>
<tr>
<td>094</td>
<td>RETAINER, FRONT HELIX SEAL</td>
</tr>
<tr>
<td>096</td>
<td>TUBE, AUXILIARY ACCUMULATOR VALVE</td>
</tr>
<tr>
<td>203</td>
<td>BODY, PUMP</td>
</tr>
<tr>
<td>204</td>
<td>RING, OIL SEAL (SLIDE TO WEAR PLATE)</td>
</tr>
<tr>
<td>205</td>
<td>SEAL, ’O’ RING (SLIDE SEAL BACK-UP)</td>
</tr>
<tr>
<td>206</td>
<td>SLIDE, PUMP</td>
</tr>
<tr>
<td>207</td>
<td>SPRING, PIVOT PIN</td>
</tr>
<tr>
<td>208</td>
<td>PIN, PIVOT SLIDE</td>
</tr>
<tr>
<td>209</td>
<td>SPRING, PUMP SLIDE (OUTER)</td>
</tr>
<tr>
<td>210</td>
<td>SUPPORT, PUMP SLIDE SEAL</td>
</tr>
<tr>
<td>211</td>
<td>SEAL, PUMP SLIDE</td>
</tr>
<tr>
<td>212</td>
<td>RING, PUMP VANE</td>
</tr>
<tr>
<td>213</td>
<td>GUIDE, ROTOR</td>
</tr>
<tr>
<td>214</td>
<td>ROTOR, OIL PUMP</td>
</tr>
<tr>
<td>215</td>
<td>VANE, PUMP</td>
</tr>
<tr>
<td>216</td>
<td>SHAFT, STATOR</td>
</tr>
<tr>
<td>217</td>
<td>COVER, PUMP</td>
</tr>
<tr>
<td>218</td>
<td>VALVE, PRESSURE REGULATOR</td>
</tr>
<tr>
<td>219</td>
<td>SPRING, PRESSURE REGULATOR VALVE</td>
</tr>
<tr>
<td>220</td>
<td>VALVE, REVERSE BOOST</td>
</tr>
<tr>
<td>221</td>
<td>SLEEVE, REVERSE BOOST VALVE</td>
</tr>
<tr>
<td>222</td>
<td>VALVE, T.V. BOOST</td>
</tr>
<tr>
<td>223</td>
<td>BUSHING, T.V. BOOST</td>
</tr>
<tr>
<td>224</td>
<td>RING, OIL PUMP REVERSE BOOST VALVE RETAINING</td>
</tr>
<tr>
<td>225</td>
<td>RING, OIL PUMP CONVERTER CLUTCH VALVE RETAINING</td>
</tr>
<tr>
<td>226</td>
<td>VALVE, STOP</td>
</tr>
<tr>
<td>227</td>
<td>VALVE, CONVERTER CLUTCH</td>
</tr>
<tr>
<td>228</td>
<td>SPRING, CONVERTER CLUTCH VALVE (OUTER)</td>
</tr>
<tr>
<td>229</td>
<td>SPRING, CONVERTER CLUTCH VALVE (INNER)</td>
</tr>
<tr>
<td>230</td>
<td>RIVET, PRESSURE RELIEF BOLT</td>
</tr>
<tr>
<td>231</td>
<td>BALL, PRESSURE RELIEF</td>
</tr>
<tr>
<td>232</td>
<td>SPRING, PRESSURE RELIEF</td>
</tr>
<tr>
<td>233</td>
<td>RING, OIL SEAL (STATOR SHAFT)</td>
</tr>
<tr>
<td>234</td>
<td>SEAL, OIL PUMP COVER SCREEN</td>
</tr>
<tr>
<td>235</td>
<td>SCREEN, OIL PUMP COVER</td>
</tr>
<tr>
<td>236</td>
<td>BOLT, M8 x 1.25 x 40 (COVER TO BODY)</td>
</tr>
<tr>
<td>237</td>
<td>PLUG, OIL PUMP AIR BLEED</td>
</tr>
<tr>
<td>238</td>
<td>PLUG, OIL PUMP COVER</td>
</tr>
<tr>
<td>239</td>
<td>PLUG, OIL PUMP COOLER FEED</td>
</tr>
<tr>
<td>240</td>
<td>PLUG, OIL PUMP CONVERTER CLUTCH SIGNAL</td>
</tr>
<tr>
<td>242</td>
<td>SCREW, STATOR SHAFT (M6 x 1 x 16.0)</td>
</tr>
<tr>
<td>243</td>
<td>SPRING, PUMP SLIDE (INNER)</td>
</tr>
<tr>
<td>244</td>
<td>RETAINER & BALL ASSEMBLY, (REVERSE CLUTCH)</td>
</tr>
<tr>
<td>245</td>
<td>RETAINER & BALL ASSEMBLY, (OVERRUN CLUTCH)</td>
</tr>
</tbody>
</table>
Pump Body

Assemble (Figures 95, 96 and 97)

TOOL REQUIRED:
- J-25016 Seal Installer

1. “O” ring seal (205) and oil seal ring (204) into the groove on the back side of the slide
 - retain with petrolatum.
2. Pivot pin spring (207) and pivot pin (208) into the pump body
3. Slide (206)
 - index the notch in the slide with the pivot pin.
 - the oil seal ring must face downward into the pump pocket.
4. Slide seal (211) and support (210)
5. Vane guide ring (212)
6. Rotor guide (213) onto the rotor
 - retain with petrolatum.
7. Rotor (214)
 - with guide toward the pump pocket.
8. Vanes (215)
9. Vane guide ring (212)
10. Pump slide spring (209)
11. Oil seal assembly (2), retainer (94).
 - use J-25016

Oil Pump Cover

Assemble (Figures 95 and 98)

1. Pressure relief ball (231), spring (232) and rivet (230)
2. Inner (229) and outer (228) converter clutch valve springs into the converter clutch valve bore
3. Converter clutch valve (227)
4. Stop valve (226)
5. Retaining ring (225)
6. Pressure regulator valve (218) into the pressure regulator bore
7. Pressure regulator valve spring (219)
8. T.V. boost valve (222) into the T.V. bushing
 - long land of the valve into the large hole of the bushing.
 - retain with petrolatum.
9. Reverse boost valve (220) into the reverse boost valve sleeve
 - small end of the valve first.
 - retain with petrolatum.
10. Reverse boost valve sleeve (221) into the pressure regulator bore
11. T.V. boost valve sleeve (223) into the pressure regulator bore
12. Retainer ring (224)

Oil Pump Cover and Body

Assemble (Figures 95, 99, 100 and 101)

TOOLS REQUIRED:
- J-21368 Oil Pump Body and Cover Alignment Band

1. Oil pump cover (217) onto oil pump body
 - stator shaft through a bench hole.
2. Pump cover bolts (236)
 - leave finger tight.
3. Align pump cover and pump body with J-21368.
 - place a screwdriver through a bolt hole and into a hole in the bench.
4. Torque attaching bolts to 22 N\textperiodcentered m (18 lbs.-ft.)
5. Pump to case gasket (9) onto case
 - retain with petrolatum.
6. Oil seal rings (233), if removed previously, onto the pump cover hub
 - retain with petrolatum.
7. Pump to case oil seal (8)
8. Thrust washer (601)

Tools Required:
- J-25025-1 Alignment Pins
- Oil pump assembly into the case
 - align all holes properly.
- Bolts and o-rings (5 and 6)
 - torque to 22 N·m (18 lbs.-ft.)

Important
- Rotate the transmission to a horizontal position. If the transmission is assembled
properly the turbine shaft should turn by hand. If not identify and correct the misassembly now.

Transmission End Play Check

Measure (Figures 103, 104, 105, 106)

TOOLS REQUIRED:
- J-24773-A End Play Checking Fixture
- J-25022 End Play Checking Fixture Adaptor (245 mm)
- J-34725 End Play Checking Fixture Adaptor (298 mm)
- 278 mm (11 in.) Bolt and Nut or J-25025-7A Post
- Dial Indicator

1. Remove an oil pump to case bolt and install a 278 mm (11 in.) bolt and lock nut or J-25025-7A.
2. Install J-25022-A or J-34725 as shown.
3. Install J-24773-A as shown.
4. Install a dial indicator. - set to zero.
5. Pull up on J-24773-A.
 - End play should be 0.13 - 0.92 mm (.005 - .036 in.).

The selective washer which controls end play is located between the input housing and the thrust bearing on the oil pump hub. If more or less end play is required, select the proper washer from the chart and install. If dial indicator shows no end play, the selective washer and thrust bearing have been misassembled.

Assemble (Figure 107)

1. “O” ring seal (618) into the groove in the end of the turbine shaft.

Important (Figure 108)

- There should be clearance between the reverse input clutch and the reaction sun gear shell. This clearance can be observed at the point shown in Figure 108. **Do not** try to shim the internal parts because of this clearance.

Inspect (Figure 110, 111 and 112)

- The 1-2 accumulator cover and pin assembly (62) for
 - porosity or damage
 - scored piston wall
 - plugged oil passage
- 1-2 accumulator piston (61) and the 3-4 accumulator piston (52) for
 - porosity
 - ring groove damage
 - pin hole damage
TRANSMISSION END PLAY
WASHER SELECTION CHART

<table>
<thead>
<tr>
<th>WASHER THICKNESS</th>
<th>I.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.87 - 1.97 mm</td>
<td>(.074" - .078")</td>
</tr>
<tr>
<td>2.04 - 2.14 mm</td>
<td>(.080" - .084")</td>
</tr>
<tr>
<td>2.21 - 2.31 mm</td>
<td>(.087" - .091")</td>
</tr>
<tr>
<td>2.38 - 2.48 mm</td>
<td>(.094" - .098")</td>
</tr>
<tr>
<td>2.55 - 2.65 mm</td>
<td>(.100" - .104")</td>
</tr>
<tr>
<td>2.72 - 2.82 mm</td>
<td>(.107" - .111")</td>
</tr>
<tr>
<td>2.89 - 2.99 mm</td>
<td>(.113" - .118")</td>
</tr>
<tr>
<td>3.06 - 3.16 mm</td>
<td>(.120" - .124")</td>
</tr>
</tbody>
</table>

Figure 105 End Play Chart

CORRECTLY INSTALLED

1. 1-2 accumulator spring (59) and 3-4 accumulator spring (54) for distortion or damage
2. Spacer plate (56) and gaskets (88 and 89) for damage
3. Checkballs (55) for damage
4. T.V. Link (64) for damage
5. Manual detent spring (709) for damage
6. Oil filter (71) for
 - cut or damaged filter seal (70)
 - cracks in the neck or body
 - casting flash in the neck
7. Solenoid assembly (50) for
 - damage
 - cut or pinched wires
 - damaged connectors
 - cut or damaged “O” ring (49)

Figure 106 Selective Washer and Thrust Bearing Properly Installed

Figure 107 Turbine Shaft “O” Ring Seal

Valve Body and Associated Parts

Install or Connect (Figure 113 and 114)
1. The 3-4 accumulator pin (77) into the case
2. The 3-4 accumulator piston seal (53) onto the 3-4 accumulator piston
3. The 3-4 accumulator piston (52) onto the pin
 - the end with three legs must face the valve body.
4. The 3-4 accumulator piston spring (54)

Install or Connect (Figures 112)
TOOLS REQUIRED:
J-25025-5 Guide Pins
1. Governor and converter clutch oil screens (47)
2. Four checkballs (55) into the case as shown
 - retain with petrolatum.
3. J-25025-5 into the case
4. Spacer plate to case gasket (88)
 - gasket identified by a “C”
5. Spacer plate (56)
6. Valve body to spacer plate gasket (89)
 - gasket identified by a "V"

Control Valve Assembly

Clean
- Control valve assembly (67) thoroughly in clean solvent-move the valves with a pick or small screwdriver to dislodge any dirt or debris that may have accumulated
- Air Dry

Disassemble (Figures 113 & 114)
- Control Valve Assembly
 - Position as shown on a clean surface
 - Remove valve trains beginning with the upper left hand corner. **NOTE**: Some valves are under pressure - cover the bores while removing the roll pins
 - Remove blind hole roll pins with a modified drill bit
 - Valves, springs and bushings must be laid out on a clean surface in the exact sequence they are removed
 - Remove pressure switches

Clean
- All valves, springs, bushings and control valve body in clean solvent
- Dry using compressed air

Inspect
- All Valves and Bushings For:
 - Porosity
 - Scoring
 - Nicks
 - Scratches
- Springs for Damaged or Distorted Coils
- Valve Body Casting For:
- Porosity
- Cracks
- Interconnected Oil Passages
- Damaged Machined Surfaces

Assemble (Figures 113, 114)
- Control valve assembly (67) exactly as shown. Notice the position of the valve lands and bushing passages.

Install or Connect (Figures 115, 117)
1. Three checkballs (55A), (55C) and (91) into the valve body assembly. Checkball (91) is the larger copper colored ball shown as #10 on Figure 115. - retain with petrolatum.
2. Valve body assembly (67) - connect the manual valve link (705) to the inside detent lever (703).

Auxiliary Accumulator Valve Body Assembly

Clean (Figure 116)
- Auxiliary valve assembly (377) thoroughly in clean solvent
 - move the valves with a pick or small screwdriver to dislodge any dirt or debris that may have accumulated
- Air dry

Disassemble (Figure 116)
1. (3) Bolts (373)
 - Cover (371) is under spring pressure
2. Cover (371) and accumulator piston spring (370)
3. Piston (367)
4. Piston oil seal ring (53)

Disassemble (Figure 116)
- Position the auxiliary accumulator valve body on a clean surface. Remove valve trains beginning with the lower left hand corner. NOTE: valves are under pressure-cover bores while removing the roll pin.
- Valves and springs must be laid out on a clean surface in the exact sequence as they are removed.

Clean
- All valves and springs in clean solvent
- Air dry

Inspect
- Piston (367) for:
 - cracks
 - porosity
 - damage
- Valves for:
 - scoring
 - nicks
 - scratches
- Springs for damaged or distorted coils
- Auxiliary valve body (377) for:
 - porosity
 - damaged machined surfaces
- Orifice cup plug (359) - remove only if damaged

Remove or Disconnect
Tools Required
- #3 Screw Extractor
- Orifice cup plug (359). Use modified #3 screw extractor.

Install or Connect
Tools Required
- 9.5 mm (3/8") Rod
- Orifice cup plug (359). Use 9.5 mm (3/8") rod.
 - seat flush

Assemble (Figure 116)
- Auxiliary accumulator valve train exactly as shown. Notice the valve lands.

Assemble (Figure 116)
1. Piston oil seal ring (369) onto piston (367)
 - lubricate with petrolatum
2. Piston (367)
3. Accumulator spring (370)
4. Cover (371) and (3) bolts (373)

Install or Connect (Figures 116, 119 and 120)
1. Check ball (55B) into auxiliary accumulator valve body (377) as shown in Figure 115.
 - do not block orifice cup plug
 - retain with petrolatum
2. Auxiliary valve body (377)
3. Bolts (374) and (375) finger tight
4. Auxiliary accumulator valve tube (96)
5. Bolt (376) with tube clamp (97)
 - torque bolts to 11 N·m (8 lbs.-ft.)

Inspect (Figure 109)
- The throttle lever and bracket assembly (65) for sticking, binding or damage
- Make sure it operates freely without restrictions
- Replace if necessary

Install or Connect (Figures 118, 119 and 120)
1. T.V. link (64) onto the T.V. lever and bracket as shown
2. T.V. lever and bracket assembly (65) onto the valve body as shown
 - attach with two valve body to case bolts (69).
3. Wire harness clips (66), manual spring assembly (68), wire retaining washer, and all remaining valve body to case bolts (69)
 - Torque to 11.0 N·m (8 lbs.-ft.)
4. "O" ring seal (34) onto the electrical connector (33)
Install or Connect (Figure 118, and 119)

1. Parking bracket (710)
 - torque to 22 N·m (18 lbs.-ft.)
2. The 1-2 accumulator piston seal (60) onto the 1-2 accumulator piston (61)
3. The 1-2 accumulator piston (61) into the 1-2 accumulator cover and pin assembly (62)
 - the three legs on the piston must face up toward the case when installed.
4. The 1-2 accumulator spring (59) onto the piston
5. The 1-2 accumulator cover and pin assembly (62) onto the case
 - torque to 11 N·m (8 lbs.-ft.)

Install or Connect (Figure 121)

1. Filter seal (70) onto the oil filter
 - lubricate with transmission fluid.
2. Oil filter (71)
3. Oil pan gasket (72)
4. Chip magnet (93) into oil pan (73)
5. Oil pan (73) and bolts (74)
 - torque to 16 N·m (12 lbs.-ft.)

2-4 Servo Assembly

Measure (Figure 122)

TOOLS REQUIRED:
- J-33037 Band Apply Pin Tool
1. Install J-33037 as shown with apply pin (29).
2. Install Servo Cover Retaining Ring (13) to secure tool.
3. Apply 11.0 N·m (100 lbs.-in.) torque.
4. If white line “A” appears in the gage slot “B”, pin length is correct.
5. Use pin selection chart to determine the correct pin length if new pin is needed.

Inspect

- Pistons for
 - porosity or damage
 - ring groove damage
- Cover (15) for porosity or damage
- Seals for
 - nicks or cuts
 - freeness in the seal groove
- Springs for distortion
- Pin for wear or burrs

Important

Check servo bore in the case for any wear which may cut the servo seals.

Measure (Figure 123)

TOOLS REQUIRED:
- Vernier Calipers
- Scale
1. Measure Piston (25) Dimension *A
2. Measure housing (22) Dimension **B
3. Check Model Application

Assemble (Figures 124, 125, 126 and 127)

TOOLS REQUIRED:
- J-22269-01
- J-29714
1. Cushion spring (26) into the 2nd apply piston (25)
2. Cushion spring retainer (27) on the cushion spring
3. Install J-22269-01.
 - compress the retainer past the snap ring groove in the 2nd apply piston.
 - install the retainer ring (28).
Figure 114 Control Valve Assembly-Legend

Figure 115 Valve Body Checkball Locations

4. The 2nd apply piston (25) onto the apply pin (29) - retainer goes toward the shoulder of the pin.
5. Servo apply pin spring (20) on the pin
6. Servo apply pin washer (19) and retaining clip (18)
7. Inner (23) and outer (24) seals on the 2nd apply piston - retain with petrolatum.
8. "O" ring seal (21) on servo piston housing
9. Servo piston inner housing (22) on the 2nd apply piston
10. Seal ring (17) onto the 4th apply piston
11. The 4th apply piston (16) onto the apply pin
12. Return spring (31) on the pin
13. Servo piston assembly into the servo bore
14. "O" ring seal (14) on the servo cover - lubricate the seal with transmission fluid.
15. Servo cover (15) into the servo bore
 - compress the servo cover.
 - install the retainer ring (13)

Governor Assembly

- Inspect (Figure 128)
 - Valve for free operation
 - Weights for free operation
 - Springs - missing or distorted
 - Sleeve for nicks, burrs, scored or galled
 - Driven gear for damage
Disassemble

DO NOT DISASSEMBLE EXCEPT, FOR CLEANING OR PART REPLACEMENT.

1. Cut off one end of each governor weight pin.
2. Pins (84)
3. Weights
4. Valve
5. Driven gear (83)
 - Drive out the retainer pin (82) with a small punch.

Clean

- Wash all parts in solvent.
- Air dry and blow out passages.

Assemble

1. Install a new governor driven gear.
A WASHER WIRE RETAINER
50 SOLENOID ASSEMBLY
51 BOLT, HEX WASHER HEAD (SOLENOID)
63 BOLT, ACCUMULATOR COVER
66 CLIP, ELECTRICAL WIRE
69 BOLT, VALVE BODY
75 BOLT, MANUAL DETENT SPRING
92 CONDUIT, SOLENOID WIRE
97 CLAMP, AUXILIARY TUBE
374 BOLT, SPEC. HEX WASHER HEAD
(M6 X 1 X 16)
375 BOLT, HEX HEAD (M6 X 1 X 35)
376 BOLT, HEX HEAD (M6 X 1 X 45)

PIN IS PRESET AT FACTORY AND MUST NOT BE READJUSTED

2.4 SERVO PIN SELECTION

<table>
<thead>
<tr>
<th>PIN LENGTH</th>
<th>PIN I.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>INCH</td>
</tr>
<tr>
<td>66.37-66.67</td>
<td>2.61-2.62</td>
</tr>
<tr>
<td>67.74-68.04</td>
<td>2.67-2.68</td>
</tr>
<tr>
<td>69.11-69.41</td>
<td>2.72-2.73</td>
</tr>
</tbody>
</table>
2ND APPLY PISTON & HOUSING APPLICATION

<table>
<thead>
<tr>
<th>MODEL</th>
<th>PISTON DIMENSION</th>
<th>HOUSING DIMENSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>YDM</td>
<td>44.64 mm (1.78")</td>
<td>45.54 mm (1.79")</td>
</tr>
<tr>
<td>FKM, FXM, MFM, MPM, MWM, MZM, PAM, PBM, PCM, TTM, TUM, TXM, YMM, YUM, YZM</td>
<td>57.85 mm (2.28")</td>
<td>58.74 mm (2.31")</td>
</tr>
<tr>
<td>FMM, HBM, HDM, MAM, MCM, MDM, MFM, MKM, MLM, MRM, MTM, MXM, PRM, THM, TJM, TKM, TLM, YNM, YPM, YTM, YXM</td>
<td>63.10 mm (2.48")</td>
<td>64.00 mm (2.52")</td>
</tr>
</tbody>
</table>

22 HOUSING, SERVO PISTON (INNER)
25 PISTON, 2ND APPLY

Measurements
- support the governor or plates through the exhaust slots.
- press gear (83) into the sleeve until seated.
- drill a new retaining pin hole in the sleeve ninety degrees from the existing hole. Use a 3.1 mm (1/8 in.) drill.
- Install retainer pin (82) and stake.

2. Valve into the sleeve
3. Weights, springs, and thrust cap onto the governor assembly
4. Retaining pins (84) into the thrust cap (85) and governor assembly
5. Stake the retaining pins (84).
6. Check for free operation of the valve and weights.

Install or Connect (Figures 128, 129)
1. Governor assembly (45) into the governor bore
2. Governor Cover (46)
- apply sealant, such as loctite cup plug sealant #11 or equivalent to cover flange before installation.

ILL. NO.	DESCRIPTION
13 | RING, SERVO COVER RETAINING
14 | SEAL, "O" RING (2-4 SERVO COVER)
15 | COVER, 2-4 SERVO
16 | PISTON, 4TH APPLY
17 | RING, OIL SEAL (4TH APPLY PISTON) (OUTER)
18 | RING, RETAINER (APPLY PIN)
19 | WASHER, SERVO APPLY PIN
20 | SPRING, SERVO APPLY PIN
21 | SEAL, "O" RING
22 | HOUSING, SERVO PISTON (INNER)
23 | RING, OIL SEAL (2ND APPLY PISTON) (INNER)
24 | RING, OIL SEAL (2ND APPLY PISTON) (OUTER)
25 | PISTON, 2ND APPLY
26 | SPRING, SERVO CUSHION
27 | RETAINER, SERVO CUSHION SPRING
28 | RING, RETAINER (2ND APPLY PISTON)
29 | PIN, 2ND APPLY PISTON
31 | SPRING, SERVO RETURN

Figure 123 2nd Apply Piston and Housing Measurement

Figure 124 2-4 Servo Assembly
Install or Connect (Figures 130 thru 135)

MECHANICAL SPEEDOMETER

TOOLS REQUIRED:
- J-23103 or J-25016 Seal Installer
- J-21426 Seal Installer

1. Speedometer drive gear (689) and clip (688)
 - if the output shaft has two speedometer locating holes, use the hole nearest the yoke spline for Corvette vehicles only.
2. “O” ring seal (691) on the output shaft sleeve
3. Output shaft sleeve (690) on the output shaft
 - use J-25016 or J-23103.
 - do not push the sleeve past the machined surface on the output shaft.
4. Seal ring (35) on the case extension
5. Case extension (36) and bolts (37) or, stud (100) and nut (98)
 - position extension so the speedometer bore is on the governor side of the case.
 - torque to 35 N·m (26 lbs.-ft.)
6. Remove case extension oil seal (39)
 - pry out with a screwdriver
 - install new seal with J-21426
7. Speedometer driven gear (44) and assembly (43) or speed sensor (99)
8. Retainer (40) bolt and washer (41)
9. Outside electrical connector, manual lever and nut

Torque Converter Assembly

Inspect

The torque converter assembly (1) must be replaced for any of the following conditions:
- Evidence of damage to the pump assembly
- Metal particles are found after flushing the cooler and cooler pipes
- External leaks in hub weld area
- Converter pilot is broken, damaged or poor fit into crankshaft
- Converter hub is scored or damaged
- Internal damage to stator
- Contamination from engine coolant
- Excess end play

ILL. NO.

<table>
<thead>
<tr>
<th>NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CASE SERVO BORE</td>
</tr>
<tr>
<td>13</td>
<td>RING, SERVO COVER RETAINING</td>
</tr>
<tr>
<td>14</td>
<td>SEAL, “O” RING (2-4 SERVO COVER)</td>
</tr>
<tr>
<td>15</td>
<td>COVER, 2-4 SERVO</td>
</tr>
<tr>
<td>16</td>
<td>PISTON, 4TH APPLY</td>
</tr>
<tr>
<td>17</td>
<td>RING, OIL SEAL (4TH APPLY PISTON) (OUTER)</td>
</tr>
<tr>
<td>18-30</td>
<td>2ND APPLY PISTON ASSEMBLY</td>
</tr>
<tr>
<td>21</td>
<td>SEAL, “O” RING</td>
</tr>
<tr>
<td>24</td>
<td>RING, OIL SEAL (2ND APPLY PISTON) (OUTER)</td>
</tr>
<tr>
<td>31</td>
<td>SPRING, SERVO RETURN</td>
</tr>
</tbody>
</table>

Figure 126 2-4 Servo Bore
A APPLY SEALANT ON THIS FLANGE BEFORE INSTALLATION

10 CASE, TRANSMISSION
45 GOVERNOR ASSEMBLY
46 COVER, GOVERNOR

The Torque Converter Should Not Be Replaced

If:
- The fluid has an odor, discolored or no evidence of metal or clutch plate material
 - Drain out as much fluid as possible
 - Replace the oil filter and pan gasket
 - Fill to proper level (Refer to Section 7A)
- The converter bolt hole threads are damaged
 - Correct with thread insert (Refer to Section 6A)

Flushing the torque converter is not recommended.

Install or Connect
1. Torque converter (1)
2. J-21366 converter holding strap
3. Remove transmission from holding fixture
Figure 131 Speedometer Gear

Figure 132 Speedometer Gear - Installation

Figure 133 Output Shaft Sleeve and Seal

Figure 134 Output Shaft Sleeve - Installation

Figure 135 Case Extension and Seal
ILL. NO. DESCRIPTION
10 CASE, TRANSMISSION
35 SEAL, CASE EXTENSION TO CASE
36 EXTENSION, CASE
37 BOLT, CASE EXTENSION TO CASE
39 SEAL ASSEMBLY, CASE EXTENSION OIL
40 RETAINER, SPEEDO DRIVEN GEAR FITTING
41 BOLT & WASHER ASSEMBLY
42 SEAL, "O" RING (SPEEDO FITTING TO CASE EXTENSION)
43 FITTING ASSEMBLY, SPEEDO DRIVEN GEAR
44 GEAR, SPEEDO DRIVEN
45 GOVERNOR ASSEMBLY
46 COVER, GOVERNOR
99 SPEED SENSOR, INTERNAL TRANSMISSION
100 BOLT, SPEEDO SENSOR RETAINING
687 SHAFT, OUTPUT
688 CLIP, SPEEDO DRIVE GEAR
689 GEAR, SPEEDO DRIVE
690 SLEEVE, OUTPUT SHAFT NOT USED ON
691 SEAL, OUTPUT SHAFT ALL MODELS

Figure 136 Case Extension and Associated Parts

Figure 137 Case Extension Oil Seal Assembly

Figure 138 Checking Torque Converter End Play
ILL. NO. DESCRIPTION
601 WASHER, THRUST (PUMP TO DRUM)
608 SEALS, REVERSE INPUT CLUTCH (INNER & OUTER)
615 BEARING ASSEMBLY, STATOR SHAFT/SELECTIVE WASHER
616 WASHER, THRUST (SELECTIVE)
622 SEAL, "O" RING INPUT TO FORWARD HSG.
624 SEAL, 3RD & 4TH CL. (INNER & OUTER)
629 SEAL, FORWARD CLUTCH (INNER & OUTER)
631 SEAL, OVERRUN CLUTCH (INNER & OUTER)
637 BEARING ASSEMBLY, INPUT SUN GEAR

ILL. NO. DESCRIPTION
663 BEARING ASSEMBLY, THRUST (INPUT CARRIER TO REACTION SHAFT)
669 WASHER, THRUST (REACTION SHAFT/ SHELL)
674 WASHER, THRUST (RACE/REACTION SHELL)
683 BEARING ASSEMBLY, THRUST (REACTION CARRIER/SUPPORT)
692 BRG., REACTION GEAR SUPPORT TO CASE
696 SEAL, TRANSMISSION (LO & REVERSE CLUTCH – OUTER, CENTER, INNER)

Figure 139 Seals and Bearing Locations
<table>
<thead>
<tr>
<th>ILL. NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>BUSHING, OIL PUMP BODY</td>
</tr>
<tr>
<td>4</td>
<td>BUSHING, STATOR SHAFT (REAR)</td>
</tr>
<tr>
<td>38</td>
<td>BUSHING, CASE EXTENSION</td>
</tr>
<tr>
<td>76</td>
<td>BUSHING, CASE</td>
</tr>
<tr>
<td>90</td>
<td>BUSHING, STATOR SHAFT (FRONT)</td>
</tr>
<tr>
<td>603</td>
<td>BUSHING, REVERSE INPUT CLUTCH (FRONT)</td>
</tr>
<tr>
<td>606</td>
<td>BUSHING, REVERSE INPUT CLUTCH (REAR)</td>
</tr>
<tr>
<td>657</td>
<td>BUSHING, INPUT SUN GEAR (FRONT)</td>
</tr>
<tr>
<td>659</td>
<td>BUSHING, INPUT SUN GEAR (REAR)</td>
</tr>
<tr>
<td>665</td>
<td>BUSHING, REACTION SHAFT (FRONT)</td>
</tr>
<tr>
<td>667</td>
<td>BUSHING, REACTION SHAFT (REAR)</td>
</tr>
<tr>
<td>672</td>
<td>BUSHING, REACTION SUN GEAR</td>
</tr>
</tbody>
</table>

TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>QTY.</th>
<th>SIZE</th>
<th>TORQUE</th>
<th>LOCATION</th>
<th>QTY.</th>
<th>SIZE</th>
<th>TORQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCUMULATOR COVER TO CASE</td>
<td>2</td>
<td>M6 1.0 x 35.0</td>
<td>11 N-m (8 LB.-FT.)</td>
<td>PARK BRAKE BRACKET TO CASE</td>
<td>2</td>
<td>M8 1.25 x 20.0</td>
<td>22 N-m (18 LB.-FT.)</td>
</tr>
<tr>
<td>ACCUMULATOR COVER TO CASE</td>
<td>1</td>
<td>M6 1.0 x 65.0</td>
<td>11 N-m (8 LB.-FT.)</td>
<td>PUMP COVER TO BODY</td>
<td>5</td>
<td>M8 1.25 x 40.0</td>
<td>22 N-m (18 LB.-FT.)</td>
</tr>
<tr>
<td>DETENT SPRING TO VALVE BODY</td>
<td>1</td>
<td>M8 1.75 x 20.0</td>
<td>22 N-m (18 LB.-FT.)</td>
<td>PUMP ASSY. TO CASE</td>
<td>7</td>
<td>M8 1.25 x 60.0</td>
<td>22 N-m (18 LB.-FT.)</td>
</tr>
<tr>
<td>VALVE BODY TO CASE</td>
<td>15</td>
<td>M6 1.0 x 50.0</td>
<td>11 N-m (8 LB.-FT.)</td>
<td>CASE EXTENSION TO CASE</td>
<td>4</td>
<td>M10 1.50 x 30.0</td>
<td>34 N-m (26 LB.-FT.)</td>
</tr>
<tr>
<td>OIL PASSAGE COVER TO CASE</td>
<td>3</td>
<td>M6 1.0 x 16.0</td>
<td>11 N-m (8 LB.-FT.)</td>
<td>MANUAL SHAFT TO INSIDE DET. LEVER</td>
<td>1</td>
<td>M10 1.50 NUT</td>
<td>31 N-m (23 LB.-FT.)</td>
</tr>
<tr>
<td>SOLENOID ASSY. TO PUMP</td>
<td>2</td>
<td>M6 1.0 x 12.0</td>
<td>11 N-m (8 LB.-FT.)</td>
<td>PRESSURE PLUGS</td>
<td>1-4</td>
<td>¼ - 27</td>
<td>11 N-m (8 LB.-FT.)</td>
</tr>
<tr>
<td>TRANSMISSION OIL PAN TO CASE</td>
<td>16</td>
<td>M8 1.25 x 19.3</td>
<td>11 N-m (8 LB.-FT.)</td>
<td>PRESSURE PLUGS</td>
<td>3</td>
<td>¼ - 18</td>
<td>24 N-m (18 LB.-FT.)</td>
</tr>
<tr>
<td>PRESSURE SWITCHES</td>
<td>1-3</td>
<td>¼ - 27</td>
<td>11 N-m (8 LB.-FT.)</td>
<td>CONNECTOR COOLER PIPE</td>
<td>2</td>
<td>¼ - 18</td>
<td>38 N-m (28 LB.-FT.)</td>
</tr>
<tr>
<td>AUXILIARY VALVE BODY TO CASE</td>
<td>1</td>
<td>M6 1.0 x 18</td>
<td>11 N-m (8 LB.-FT.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUXILIARY VALVE BODY TO CASE</td>
<td>1</td>
<td>M6 1.0 x 35</td>
<td>11 N-m (8 LB.-FT.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUXILIARY VALVE BODY TO CASE</td>
<td>1</td>
<td>M6 1.0 x 45</td>
<td>11 N-m (8 LB.-FT.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 140 Torque Specifications and Bushing Locations
BUSHING REPLACEMENT PROCEDURE

PROTECT PARTS WITH WOOD BLOCKS OR CLOTH AS NECESSARY

<table>
<thead>
<tr>
<th>REMOVE AS SHOWN</th>
<th>INSTALL AS SHOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **4** BUSHING, STATOR SHAFT - FRONT
- **90** BUSHING, STATOR SHAFT - REAR
- **217** COVER, PUMP

- **J-7004-1**
- **J-21465-15**
- **J-25019-14**

- **J-8092**
- **J-21465-2**
- **J-25019-6**

- **3** BUSHING, OIL PUMP BODY
- **203** BODY, PUMP

- **J-8092**
- **J-25019-4**
- **J-34196-12**

- **J-8092**
- **J-25019-9**
- **J-34196-3**

- **603** BUSHING, REVERSE INPUT CLUTCH - FRONT
- **605** HOUSING & DRUM ASSEMBLY, REVERSE INPUT CLUTCH
- **606** BUSHING, REVERSE INPUT CLUTCH - REAR

Figure 141 Bushing Replacement Procedure
BUSHING REPLACEMENT PROCEDURE

PROTECT PARTS WITH WOOD BLOCKS OR CLOTH AS NECESSARY

<table>
<thead>
<tr>
<th>REMOVE AS SHOWN</th>
<th>INSTALL AS SHOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>657 BUSHING, INPUT SUN GEAR — FRONT</td>
<td>657 BUSHING, INPUT SUN GEAR — FRONT</td>
</tr>
<tr>
<td>658 GEAR, INPUT SUN</td>
<td>658 GEAR, INPUT SUN</td>
</tr>
<tr>
<td>659 BUSHING, INPUT SUN GEAR — REAR</td>
<td>659 BUSHING, INPUT SUN GEAR — REAR</td>
</tr>
</tbody>
</table>

![Image of bushing replacement procedure](image)

665 BUSHING, REACTION CARRIER SHAFT — FRONT

666 SHAFT, REACTION CARRIER

667 BUSHING, REACTION CARRIER SHAFT — REAR

665 BUSHING, REACTION CARRIER SHAFT — FRONT

666 SHAFT, REACTION CARRIER

667 BUSHING, REACTION CARRIER SHAFT — REAR

672 BUSHING, REACTION SUN

673 GEAR, REACTION SUN

672 BUSHING, REACTION SUN

673 GEAR, REACTION SUN

Figure 142 Bushing Replacement Procedure
BUSHING REPLACEMENT PROCEDURE
PROTECT PARTS WITH WOOD BLOCKS OR CLOTH AS NECESSARY

<table>
<thead>
<tr>
<th>REMOVE AS SHOWN</th>
<th>INSTALL AS SHOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>J-8092</td>
<td>J-8092</td>
</tr>
<tr>
<td>J-23062-14</td>
<td>J-34196-4</td>
</tr>
<tr>
<td>36 EXTENSION, CASE</td>
<td>38 BUSHING, CASE EXTENSION</td>
</tr>
<tr>
<td>38 BUSHING, CASE EXTENSION</td>
<td>38 BUSHING, CASE EXTENSION</td>
</tr>
<tr>
<td>J-34196-10</td>
<td>J-34196-6</td>
</tr>
<tr>
<td>10 CASE, TRANSMISSION</td>
<td>10 CASE, TRANSMISSION</td>
</tr>
<tr>
<td>76 BUSHING, CASE</td>
<td>76 BUSHING, CASE</td>
</tr>
</tbody>
</table>

Figure 143 Bushing Replacement Procedure
GOVERNOR BORE REPAIR PROCEDURE
FOLLOW STEPS 1-6 TO REPAIR THE GOVERNOR BORE

STEP 1 Install holding fixture J-8763 and mount in vise.

STEP 2 Remove (file) any excess material from the governor face.

STEP 3 Install J-22976-3 and J-22976-1. Torque bolts to 13 N-m (10 ft-lbs.). Make sure J-22976-3 rotates freely and then remove it.

STEP 4 Ream the governor bore as follows:
• Oil J-22976-9, J-22976-1 and the governor bore with transmission fluid.
• After each ten revolutions, remove the reamer and dip in transmission fluid to clean.
• After the reamer reaches the end of the bore and bottoms on the governor support pin, rotate the reamer ten additional revolutions.
• Remove the reamer. Be certain to rotate during removal to prevent scoring the bore.
• Remove the tools and thoroughly clean the case.

STEP 5 Align the slots in the bushing with the slots in the governor bore.

STEP 6 Install the bushing until the slots in the bushing align with the feed holes in the governor bore.

Figure 144 Governor Bore Repair Procedure
<table>
<thead>
<tr>
<th>Universal Remover</th>
<th>Dial Indicator Set</th>
<th>Rear Seal Installer</th>
</tr>
</thead>
<tbody>
<tr>
<td>J 7004-1</td>
<td>E</td>
<td>J 21426</td>
</tr>
<tr>
<td>Holding Fixture & Base</td>
<td>E</td>
<td>J 21368</td>
</tr>
<tr>
<td>Oil Pump Body & Cover Alignment Band</td>
<td>E</td>
<td>J 23456</td>
</tr>
<tr>
<td>Pump Oil Seal Installer</td>
<td>E</td>
<td>J 21426</td>
</tr>
<tr>
<td>Piston Compressor</td>
<td>Bushing Remover</td>
<td>End Play Checking Fixture</td>
</tr>
<tr>
<td>J 25018-A</td>
<td>J 22269-01</td>
<td>J 21426</td>
</tr>
<tr>
<td>J 25016</td>
<td>J 23062-14</td>
<td>J 23062-14</td>
</tr>
<tr>
<td>J 23327</td>
<td>J 25019-12</td>
<td>J 25019-16</td>
</tr>
<tr>
<td>J 25018-A</td>
<td>J 24773-12</td>
<td>J 25019-14</td>
</tr>
<tr>
<td>J 24773-12</td>
<td>J 25019-12</td>
<td>J 25019-14</td>
</tr>
<tr>
<td>J 29369-1</td>
<td>J 29369-2</td>
<td>J 29882</td>
</tr>
<tr>
<td>J 29837</td>
<td>J 36352</td>
<td>J 35944</td>
</tr>
<tr>
<td>J 33037</td>
<td>J 5590</td>
<td>J 34196</td>
</tr>
<tr>
<td>J 25025-B</td>
<td>J 8092</td>
<td>J 8092</td>
</tr>
</tbody>
</table>

E – Essential Tool A – Available Tool

Figure 145 Special Tools
TRANSMISSION DISASSEMBLY

<table>
<thead>
<tr>
<th>Component</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmisson Assembly</td>
<td>7A2-1</td>
</tr>
<tr>
<td>GENERAL SERVICE INFORMATION</td>
<td></td>
</tr>
<tr>
<td>DISASSEMBLY</td>
<td></td>
</tr>
<tr>
<td>Vacuum Modulator Assembly</td>
<td>7A2-3</td>
</tr>
<tr>
<td>Pan & Filter Assembly</td>
<td>7A2-4</td>
</tr>
<tr>
<td>Control Valve Assembly</td>
<td>7A2-4</td>
</tr>
<tr>
<td>Solenoid Assembly</td>
<td>7A2-4</td>
</tr>
<tr>
<td>Front and Rear Servo Assemblies</td>
<td>7A2-4</td>
</tr>
<tr>
<td>Band Apply Pin Check</td>
<td>7A2-4</td>
</tr>
<tr>
<td>Governor Assembly</td>
<td>7A2-5</td>
</tr>
<tr>
<td>Front End Play Check</td>
<td>7A2-5</td>
</tr>
<tr>
<td>Case Extension Assembly</td>
<td>7A2-6</td>
</tr>
<tr>
<td>Rear Unit End Play Check</td>
<td>7A2-6</td>
</tr>
<tr>
<td>Oil Pump Assembly</td>
<td>7A2-7</td>
</tr>
<tr>
<td>Parking Lock Pawl and Actuator Assembly</td>
<td>7A2-7</td>
</tr>
<tr>
<td>Forward Clutch Assembly</td>
<td>7A2-8</td>
</tr>
<tr>
<td>Direct Clutch Assembly</td>
<td>7A2-8</td>
</tr>
<tr>
<td>Intermediate Clutch Assembly</td>
<td>7A2-8</td>
</tr>
<tr>
<td>Center Support and Gear Unit Assembly</td>
<td>7A2-10</td>
</tr>
<tr>
<td>Transmission Case</td>
<td>7A2-11</td>
</tr>
</tbody>
</table>

| COMPONENT REPAIR AND TRANSMISSION ASSEMBLY | 7A2-15 |

<table>
<thead>
<tr>
<th>Component</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Park Lock Pawl and Actuator Assembly</td>
<td>7A2-15</td>
</tr>
<tr>
<td>Rear Band and Selective Thrust Washers</td>
<td>7A2-16</td>
</tr>
<tr>
<td>Gear Unit and Output Carrier Assemblies</td>
<td>7A2-16</td>
</tr>
<tr>
<td>Speedometer Drive Gear</td>
<td></td>
</tr>
</tbody>
</table>

TRANSMISSION DISASSEMBLY

GENERAL SERVICE INFORMATION

- **Teflon Oil Seal Rings:** During disassembly, check seals for damage and make sure that they rotate freely in their grooves. Inspect the grooves for dirt, burrs or other damage.
- **Thrust washers and surfaces:** These washers and the surfaces they engage may appear polished. This is a normal condition and does not indicate damage.
- **Thoroughly clean the exterior of the transmission.**
- **As the unit is disassembled clean the assemblies or components so that proper inspection can be made.**

Install or Connect (Figure 3)

- **Tools Required:**
 - J 3289-20 Base
 - J 8763-02 Holding Fixture

1. J 8763-02 onto transmission case.

Important

Do not overtighten the tool as case damage may result.

2. Transmission and holding fixture into J 3289-20.

3. Fixture pin.

4. Drain transmission fluid.
Figure 1 - Case and External Parts
DISASSEMBLY

Vacuum Modulator Assembly

Remove or Disconnect (Figure 4)

Tool Required:
- Magnet to capture modulator valve

1. Bolt (11) and retainer (12).
2. Vacuum modulator assembly (13), and o-ring seal (14)
 - o-ring seal may be stuck in case
3. Modulator valve (15) with magnet.

Pan & Filter Assembly

Remove or Disconnect (Figure 5)

1. Rotate transmission upside down and lock in place with base pin.
2. Screw & conical washer assembly (37)
3. Pan (38), gasket (39) and magnet (40).
Control Valve Assembly

Remove or Disconnect (Figure 6)

1. Bolts (47), manual detent spring and roller (48).
2. Bolts (51)
3. Governor oil pipes (50) up from case and rotate them away from their holes.
4. Governor oil screen (52) from the inboard hole.
5. Control valve assembly (49).

Solenoid Assembly

Remove or Disconnect (Figure 6)

Tool Required:

- Magnet to capture check balls

1. Wire connecting solenoid (54) to exterior electrical connector.
2. Screws (53) and solenoid (54).
 - Be careful not to press against solenoid cover.
3. Valve body to spacer plate gasket (56), spacer plate (57) and spacer plate to case gasket (58).
4. Six check balls (59) with magnet

Band Apply Pin Check

Measure (Figures 9, 10 and 11)

Tools Required:

- J 21370-10 Gage Pin
- J 21370-6 Selector Gage

1. Place J 21370-10 in the servo pin bore.
2. Position J 21370-6 over the bore with the hex nut facing the parking pawl linkage.
3. Fasten with two 5/16-18 X 1" screws and torque to 18 lbs./ft. (24 N·m)
4. Make sure J 21370-10 moves freely in the tool and pin bore.
5. To determine correct pin length apply 25 lbs./ft. torque to the nut on the gage.
6. For pin selection, see Figure 11.

Governor Assembly

Remove or Disconnect (Figure 12)

1. Bolts (19), cover (20) and gasket (21)
2. Governor assembly (22)

Internal Transmission Speed Sensor (I.T.S.S.) Models

3. Retaining bolt (83)
4. Speed sensor (81) with o-ring (82)

Front End Play Check

1. Remove oil pump bolt (4) and washer (5) at the 10-o’clock position as shown and install J 6125.
2. Attach J 8001.
3. Eliminate slack by pressing turbine shaft to the rear and output shaft (691) forward.
4. Index J 8001 against the end of turbine shaft and set dial to "0".
5. Pull out on the turbine shaft and note the measurement on J 8001. End play should be between .003" and .024" (.076-.610 mm)
6. Select correct washer from chart.
7. Remove tools.

Important

During reassembly Front End Play Check must be repeated to verify accuracy of selective thrust washer (207) Figure 19.
7A2-6 400/475 AUTOMATIC TRANSMISSION

65 BOLT, HEX HD 5/16-18 X 62 (SERVO COVER TO CASE)
66 COVER, REAR SERVO
67 GASKET, REAR SERVO COVER
68 RING, RETAINING (SERVO PISTON)
69 PISTON, ACCUMULATOR (REAR SERVO)
70 SEAL, REVERSE SERVO PISTON
71 RING, OIL SEAL (ACCUMULATOR PISTON - OUTER)
72 PISTON, ACCUMULATOR
73 RING, OIL SEAL (ACCUMULATOR PISTON - INNER)
74 WASHER, SERVO ASSEMBLY
75 SPRING, REAR SERVO
76 RETAINER, REAR SERVO SPRING
77 PIN, REAR BAND APPLY
78 SPRING, REAR ACCUMULATOR

Figure 8 - Rear Servo Assembly

Figure 9 - Installing Servo Pin Gage

Figure 10 - Gage Pin

Case Extension Assembly

Remove or Disconnect (Figure 15)
1. Bolts (23) and/or nuts (24) extension (27).
2. Rear seal (26), bearings (28), spacer (29), snap ring (31), seal (32) and bushings (30 and 33).

Rear Unit End Play Check

Measure (Figures 16 and 17)
Tools Required:
J 21797 Bolt
J 8001 Dial Indicator
1. Attach J 21797 to one of the bolt holes at the end of the transmission case (10).
2. Mount J 8001 on the bolt and index it to the end of the output shaft (691).
 - set the indicator to "0".
3. Move the output shaft in and out noting the amount of end play.
 - correct end play is between .007" and .019" (.178 - .483 mm)
Important
During reassembly, Rear End Play Check must be repeated to verify accuracy of selective thrust washer (696) Figure 27.

Oil Pump Assembly

- Remove or Disconnect (Figures 18 and 19)
 Tool Required:
 J 24773-1 Oil Pump Remover
 1. Bolts (4) and washers (5).
 2. Oil pump assembly (6).
 3. Pump seal (7) and gasket (8).

Parking Lock Pawl and Actuator Assembly

- Remove or Disconnect (Figure 20 and 21)
 1. Nut (703) and pin (704).
 2. Detent lever (707) and actuator (708).
 3. Bolts (701) and parking pawl bracket (702).

Forward Clutch Assembly

- Remove or Disconnect (Figure 22)
 - Forward clutch assembly (602-618).
 - Grasp turbine shaft and lift.
Intermediate Clutch Assembly

- **Remove or Disconnect (Figure 24)**
 1. Snap ring (640).
 2. Intermediate clutch backing plate (641).
 3. Clutch plates (642 and 643).
 4. Waved plate (644) when part of assembly.

- **Direct Clutch Assembly**
 - **Remove or Disconnect (Figures 23)**
 1. Direct clutch assembly (619 - 638)
 2. Front band (639)
400/475 AUTOMATIC TRANSMISSION 7A2-9

Figure 19 - Pump Assembly and Selective Thrust Washer

4 BOLT, HEX HD 5/16-18 X 1.406 (PUMP TO CASE)
5 WASHER, PUMP TO CASE BOLTS
6 PUMP ASSEMBLY
7 SEAL, RING (PUMP TO CASE)
8 GASKET, PUMP COVER TO CASE
207 WASHER, THRUST (SELECTIVE)

Figure 20 - Park Lock Pawl and Actuator Assembly

701 BOLT, HEX HD 5/16-18 X .62
702 BRACKET, PARKING LOCK
703 NUT, HEX 3/8-24
704 PIN, INSIDE DETENT LEVER
705 SHAFT, MANUAL
706 SEAL ASSEMBLY, MANUAL SHAFT
707 LEVER, INSIDE DETENT
708 ACTUATOR ASSEMBLY, PARKING LOCK
709 PLUG, PARKING PAWL SHAFT
710 SPRING, PARKING PAWL RETURN
711 RETAINER, PARKING PAWL SHAFT
712 SHAFT, PARKING PAWL LOCK
713 PAWL, PARKING LOCK

Figure 21 - Removing Parking Lock and Actuator Assembly

ILL. NO. DESCRIPTION
703 NUT, HEX 3/8 24
704 PIN, INSIDE DETENT LEVER
705 SHAFT, MANUAL
706 SEAL ASSEMBLY, MANUAL SHAFT
707 LEVER, INSIDE DETENT
708 ACTUATOR ASSEMBLY, PARKING LOCK
709 PLUG, PARKING PAWL SHAFT
710 SPRING, PARKING PAWL RETURN
711 RETAINER, PARKING PAWL SHAFT
712 SHAFT, PARKING PAWL LOCK
713 PAWL, PARKING LOCK
Center Support and Gear Unit Assembly

Remove or Disconnect (Figures 25, 26, 27 and 29)

Tool Required:

J 6116 Gear Unit Holding Fixture
J 21795 Main Shaft Tool.

1. Center support bolt (79)
2. Snap ring (645)
3. Center support assembly (646-654) and Gear Unit Assembly (656-697) using Tool J-21795
4. Snap ring (657) optional. NOTE: Location of thin snap ring (657)
 - place in J 6116 fixture
5. Rear band (672), thrust washer (695), selective thrust washer (696).

NOTICE: Thrust washer (695) may be attached to output shaft (691)
Transmission Case

Inspect (Figure 28)

- Case (10) for cracks, porosity and connected passages. Scored bushing (33).
- Case extension (27) for cracks, porosity, scored bushing (30).
- All threaded holes for damage.
 - Heli-coil to repair.
- Air check all oil passages
 - see Diagnosis Section for oil passage identification.
- Front and rear servo bores for damage, porosity, or burrs.
- Cooler connectors (16) for
 - damage
 - proper torque 26-30 lbs. ft. (35-41 N·m)
- Intermediate clutch plate lugs for damage or hardening (brinelling).
- Snap ring grooves for damage.
- Governor and modulator bores for scoring or damage.

Figure 26 - Removing Center Support and Gear Unit Assembly

Figure 27 - Removing Rear Band and Selective Thrust Washer
<table>
<thead>
<tr>
<th>ILL. NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>CASE, TRANSMISSION</td>
</tr>
<tr>
<td>16</td>
<td>CONNECTOR, COOLER FITTING</td>
</tr>
<tr>
<td>17</td>
<td>SCREW, NAMEPLATE</td>
</tr>
<tr>
<td>18</td>
<td>NAMEPLATE</td>
</tr>
<tr>
<td>23</td>
<td>BOLT, HEX HD 3/8-16 X 1 (CASE EXTENSION TO CASE)</td>
</tr>
<tr>
<td>26</td>
<td>SEAL, CASE EXTENSION</td>
</tr>
<tr>
<td>27</td>
<td>CASE EXTENSION ASSEMBLY</td>
</tr>
<tr>
<td>28</td>
<td>BEARING ASSEMBLY</td>
</tr>
<tr>
<td>29</td>
<td>SPACER, BEARING</td>
</tr>
<tr>
<td>30</td>
<td>BUSHING, CASE EXTENSION</td>
</tr>
<tr>
<td>31</td>
<td>RING, INTERNAL SNAP</td>
</tr>
<tr>
<td>32</td>
<td>SEAL, CASE EXTENSION TO CASE</td>
</tr>
<tr>
<td>33</td>
<td>BUSHING</td>
</tr>
<tr>
<td>34</td>
<td>GASKET, CASE TO EXTENSION</td>
</tr>
</tbody>
</table>

Figure 28 - Transmission Case And Extension Assembly
Figure 29 - Internal Parts

400/475 AUTOMATIC TRANSMISSION 7A2-13
TRANSMISSION ASSEMBLY

Park Lock Pawl and Actuator Assembly

Inspect
- Parking pawl (713) for cracks burrs, damage
- Parking pawl shaft (712) for damage and freeness of fit
- Parking pawl return spring (710) for distortion or damage
- Detent lever (707) and actuator (708) for:
 - Damage or cracks
- Manual shaft for damage

Install or Connect (Figures 31 and 32)
1. Parking pawl (713).
2. Pawl shaft (712).
3. Plug (709).
4. Retainer (711).
5. Pawl return spring (710).
6. Detent lever (707) to actuator (708).
7. Actuator (708) under parking pawl (713).
8. Manual shaft (705) and seal (706).
11. Parking lock bracket (702) with bolts (701).
Rear Band and Selective Thrust Washer

- Inspect (Figure 33)
 - Rear band (672) and thrust washer (696) for:
 - wear or damage

- Install or Connect (Figure 33)
 1. Selective thrust washer (696) from Rear End Play Check.
 2. Rear band (672).

![Figure 33 - Installing Rear Band and Selective Thrust Washer](image)

Gear Unit and Output Carrier Assemblies

- Disassemble (Figure 29 and 34)
 1. Center support (654).
 2. Sun gear shaft (664).
 3. Reaction carrier assembly (666).
 4. Thrust bearing (661) and races (660 and 662).
 5. Sun gear (665), thrust washer (674) and front internal gear ring (673).
 6. Snap ring (694), output shaft (691) and o-ring (697).
 7. Thrust bearing (687) and races (686 and 688).
 8. Rear internal gear (685) and main shaft (681).
 9. Snap ring (689) from main shaft (681).
 10. Main shaft (681).
 11. Thrust bearing (683) and races (682 and 684).

- Inspect (Figures 34 and 35)
 - Output shaft (691) for:
 - damaged splines
 - worn or damaged governor drive gear teeth
 - Output shaft bushing (690) for:
 - wear, scoring or galling
 - See Bushing Replacement Procedure
 - Speedometer drive gear (693) for:
 - wear or cracks
 - Main shaft (681) for:
 - scored, damaged or worn bushings (see Bushing Replacement Procedure)
 - cracks
 - damaged splines
 - Rear internal gear (685) for:
 - stripped splines
 - damaged teeth
 - cracks
 - Output carrier assembly (675) for:
 - damaged lugs
 - pinion gear damage
 - excess pinion washer wear (end play should be .009"-.024"/.228-.610 mm)
 - Front internal gear ring (673) for:
 - damage
 - cracks

SPEEDOMETER DRIVE GEAR/SPEED SENSOR ROTOR REPLACEMENT (FIGURE 36)

Tools Required:
- J 21427-01 Speedometer Gear Puller Adapter
- J 8433 Speedometer Gear Puller
- J 5590 Speedometer Gear Installer
- J 36352-3 Rotor Installer/Mechanical Press
- J 36352-5 Rotor Installer/Mechanical Press

Do not remove rotor (698) unless damaged.
After removal a new rotor must be installed to insure press fit to output shaft.

1. Install J 21427-01 and J 8433 puller.
2. Depress clip (692) and remove gear (693) or rotor (698).
3. Install rotor (698) using J 36352-3 or J 36352-5.
 Install speedometer drive gear (693) and clip (692) using J 5590.

Pinion Gear Replacement Procedure - Output Carrier Assembly

- Remove or Disconnect (Figures 37 and 38)
 1. Stake marks from pinion pins (680) with 1/2" drill.

- Important
 Do not allow drill to remove stock from carrier. Excessive removal of material will weaken carrier.

2. Pinion pins (680) from carrier (675).
3. Pinion gears (679) thrust washers (676, 677) and roller needle bearings (678).

- Inspect (Figures 38 and 39)
 - Pinion pocket thrust faces for burrs.
 - Output carrier (675) for:
 - cracks, damage or wear

- Assemble (Figures 38 and 39)
 1. Needle bearings (678) in pinion gears (679).
- Steel washers are next to pinion gears

3. Pinion gear assemblies into carriers (675).
4. Pinion pins (680).
 - Headed end of pins must be flush with carrier face.
5. Stake pins at three points with blunt chisel.
 - Pins must not extend beyond carrier surface

Gear Unit Assembly

Assemble (Figure 34, 40 and 45)

1. Main shaft (681) into rear internal gear (685).
2. Snap ring (689) onto main shaft (681).
3. Inner race (686), lip up, thrust bearing (687) and outer race (688), lip down, onto rear internal gear hub (685), retain with petrolatum.
4. Outer race (684), lip up, thrust bearing (683) and inner race (682), lip down.
5. Thrust washer (674) onto output carrier assembly (675) with tabs in pockets. Retain with petrolatum.
6. Main shaft (681) and rear internal gear (685) assembly into output carrier assembly (675).
7. Thrust washer (695) onto output shaft (691).
8. Output shaft (691) into output carrier assembly (675).
9. Snap ring (694) in groove of output carrier assembly (675).
10. O-ring seal (697).
11. Front internal gear ring (673) onto carrier assembly (675).

675 CARRIER ASSEMBLY, OUTPUT
676 WASHER, PINION THRUST (BRONZE)
677 WASHER, PINION THRUST (STEEL)
678 ROLLER, NEEDLE BEARING (OUTPUT CARRIER)
679 PINION, PLANET (OUTPUT CARRIER)
680 PIN, PLANET PINION (OUTPUT CARRIER)

Figure 38 - Output Carrier Assembly

Reaction Carrier Assembly

Inspect (Figure 34, 43 and 45)

- Reaction carrier assembly (666) for:
 - pinion gear damage
 - excess pinion washer wear (end play should be .009"-.024"/.228-.610 mm)
 - cracks or damage to band apply surface
- Roller clutch assembly (658) for damage to:
 - rollers
 - springs
 - cage
- Sun gear (665) and sun gear shaft (664) for:
 - nicked, scored or worn bushings (663) (see Bushing Replacement Procedure)
 - damaged splines or teeth
 - cracks
Pinion Gear Replacement Procedure - Reaction Carrier Assembly

Remove or Disconnect (Figures 42, 43 and 44)

1. Stake marks from pinion pins (671) with 1/2" drill

- **Important**

DO NOT ALLOW DRILL TO REMOVE STOCK FROM CARRIER. EXCESSIVE REMOVAL OF MATERIAL WILL WEAKEN CARRIER.

2. Pinion pins (671) from carrier (666)
3. Pinion gears (669), thrust washers (667, 670) and roller needle bearings (668)

Inspect

- Pinion pocket thrust surfaces for burrs.
- Reaction carrier (666) for:
 - cracks, damage or wear

Assemble

1. Needle bearings (668) in pinion gears (669)
2. Bronze washers (670) and steel washers (667) as shown
3. Pinion gear assemblies into carrier (666)
4. Pinion pins (671) - headed end of pins must be flush with carrier face
5. Stake pins at three points with blunt chisel

Assemble (Figure 45)

1. Reaction carrier (666) into output carrier (675) - lubricate pinion gears (669) with transmission fluid.
2. Sun gear (665) (chamfered inside diameter first) into reaction carrier assembly (666).
3. Sun gear shaft (664), long splined end first.
4. Smaller I.D. race (662) on sun gear shaft (664) with lip up.
5. Thrust bearing (661), and race (660), lip up.

Intermediate Clutch Piston

Remove or Disconnect (Figure 46)

1. Oil rings (653) from center support (654).
2. Press in on spring retainer (647) and remove snap ring (646).
3. Retainer (647) and three clutch release springs (648).
4. Spring guide (649) and clutch piston (650).
5. Inner seal (651) and outer seal (652) from clutch piston (650).

Important

Do not remove three screws holding roller clutch race to center support (654).
Sealing surfaces and seal grooves for scratches or other damage.
Springs (648) for collapsed coils or distortion.
Constant bleed orifice is open approximately .020" (.51 mm).
Clean all components

Assemble (Figure 48 and 49)

Tool Required:
J 21363 Intermediate Clutch Inner Seal Protector
1. Lubricate new inner and outer clutch piston seals (651 and 652) and grooves with transmission fluid.
2. Seals (651 and 652) on piston (650) with lips facing away from spring guide (649).
3. Clutch piston (650) on center support (654) with J 21363.
4. Spring guide (649) and clutch release springs (648).
5. Spring retainer (647) and snap ring (646).
6. Oil seal rings (653) on center support hub (654).

Inspect (Figure 49)
- Air check operation of intermediate clutch piston as shown.

Low Roller Clutch Assembly

Install or Connect (Figures 50 and 51)
1. Thrust washer (656) in recess of center support (654).
2. Spacer (659) and roller assembly (658) into reaction carrier (666).
3. Center support (654) into reaction carrier (666).

Important
To verify correct assembly, hold reaction carrier (666) stationary. Center support (654) should turn counter clockwise only.

Direct Clutch and Intermediate Roller Assembly

Disassemble (Figures 52 and 53)
Tools Required:
J 4670 Spring Compressor
J 21664 Adapter
Mechanical Press
1. Snap ring (638) and clutch retainer (637).
2. Race (636) and roller assembly (634) (or sprag assembly 635).
3. Snap ring (619).
4. Direct clutch backing plate (620) and clutch plates (621 and 622).
5. Wave plate (623), if used, and dish plate (624) if used.
6. Snap ring (625) with J4670 and J21664.
7. Retainer (626) and clutch release springs (627).
8. Piston (629).
9. Inner seal (630) and outer seal (631) from piston (629).
10. Center piston seal (632) from housing (633).

Inspect (Figure 52)
- Roller assembly (634) for damaged rollers, cage or distorted springs or sprag assembly (635).
- Clutch housing (633) for cracks, wear and proper opening of oil passages.
- Clutch plates (621 and 622) for:
 - wear
 - burned
 - flaking

Figure 52 - Disassembly of Direct Clutch Housing
- Backing plate (620) and piston (629) for damage or cracks.
- Clutch springs (627) for collapsed coils or distortion.
 - replace if necessary
- Housing (633) for correct operation of check ball.

Assemble (Figure 53 and 58)
1. Lubricate inner (630) and outer (631) clutch piston seals and grooves with transmission fluid.
2. Inner seal (630) and outer seal (631) with lips facing away from spring pockets.
3. Center seal (632).

Direct Clutch Piston
Install or Connect (Figure 54 and 55)

Tools Required:
- J21362 Seal Protector
- J21409 Piston Installer
- J21664 Adapter

1. J21362 on housing (633) hub.
2. Piston (629) inside J21409.
3. J21409 and piston into housing (333).
4. Clutch release springs (627) in pockets.
5. Spring retainer (626) with J21664.
Direct Clutch Assembly

Install or Connect (Figures 56, 57 and 58)

1. Piston (629)
2. Waved clutch plate (623) or dished clutch plate (624) into direct clutch housing (633).
3. Clutch plates (621 and 622).
 - alternate steel and composition plates as shown in chart
4. Direct clutch backing plate (620) and snap ring (619).
5. Roller assembly (634) or sprag assembly (635).
6. Intermediate clutch race (636) with clockwise motion. When properly installed it should not rotate counter-clockwise.
7. Intermediate clutch retainer (637) and snap ring (638).

Inspect (Figure 59)

1. Place direct clutch assembly on center support (654) for air check operation.
2. Air applied to reverse passage will escape from direct passage. This condition is normal. Apply air to direct passage to actuate piston and move clutch plates.

Center Support and Gear Unit Assembly

Install or Connect (Figure 60)

Tools Required:
- J 21795-1 Gear Assembly Remover and Installer Adapter
- J 23093 Center Support Locating Tool

1. Snap ring (657), if removed.
2. J 21795-1 to main shaft (681).
3. With transmission in a vertical position, align bolt hole in center support (654) with hole in case (10) and carefully lower into case.
4. Case to center support bolt (79), finger tight.
5. Snap ring (645).
6. Locate J 23093 into the center support (654) direct clutch passage through case (10). Apply pressure on J 23093, in direction of arrow (Figure 60), seating the center support splines against the case splines.
7. Torque bolt (79) to 20-25 lbs. ft. (27-34 N·m)

Intermediate Clutch Assembly

Inspect (Figure 61)

- Clutch plates (642) for:
 - wear, pitting, flaking or cracks in lining
- Clutch plates (643) for:
 - discoloration, scoring or cracks
- Backing plate (641) for burrs and dirt.

Direct Clutch Assembly and Front Band

Install or Connect (Figure 63)

1. Front band (639).
2. Direct clutch assembly (633) onto the intermediate clutch.

Forward Clutch Assembly

Disassemble (Figure 64 and 65)

Tools Required:
- J 4670-01 Spring Compressor
- J 21364 Adapter
- J 6116-01 Holding Fixture
- J 21664 Adapter

1. Snap ring (619) and direct clutch driving hub (618) from forward clutch housing (602).

1989 THM 400 CLUTCH PLATE APPLICATION CHART DIRECT CLUTCH

<table>
<thead>
<tr>
<th>MODELS</th>
<th>NO. OF FLAT STEEL PLATES</th>
<th>NO. OF WAVED STEEL PLATES</th>
<th>NO. OF DISCHED PLATES</th>
<th>NO. OF COMPOSITION PLATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>THICKNESS</td>
<td>2.32 MM (.0915")</td>
<td>1.97 MM (.0775")</td>
<td>1.54 MM (.0605")</td>
<td>1.37 MM (.054")</td>
</tr>
<tr>
<td>FAA, FRA, FXA, FVA, LXA, TAA, TBA, TCA, TDA, TFA, TKA, TLA, TMA, TNA, TPA, TSA</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>FBA, FKA, FSA, HAA, HRA, MAA</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>FQA, LLA, RKA, RMA</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RDA, RLA</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>ALL OTHER</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 56 - Direct Clutch Plate Chart
Figure 58 - Direct and Intermediate Roller Clutch Assembly

2. Forward clutch hub (616).
3. Thrust washers (615 and 617).

Figure 59 - Air Check Direct Clutch

5. Waved clutch plate (611) or dished plate (612).
6. Snap ring (609) and release spring retainer (608) with J 4670-01 and J 21364.
7. Piston release springs (607), piston (606).
Important
Unless forward clutch housing (602) and turbine shaft (601) are damaged, disassembly is not necessary.

Turbine Shaft Removal
1. Place housing (602) in mechanical press with turbine shaft (601) down.
2. Remove turbine shaft (601) by placing 3/8" drive extension on end of shaft and pressing out.

Forward Clutch Assembly

Inspect (Figure 65)
- Clutch plates (613 and 614) for:
 - burning, scoring, flaking, pitting or wear.
- Release springs (607) for collapsed coils or distortion.

<table>
<thead>
<tr>
<th>MODELS</th>
<th>NO. OF FLAT STEEL PLATES</th>
<th>NO. OF WAVED STEEL PLATES</th>
<th>NO. OF COMPOSITION PLATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>THICKNESS</td>
<td>2.51 MM (.099")</td>
<td>1.74 MM (.0685")</td>
<td></td>
</tr>
<tr>
<td>FBA, FGA, FKA, FSA, HAA, HRA, MAA, ZDA, ZWA</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ALL OTHERS</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Figure 62 - Intermediate Clutch Plate Chart
- Clutch hubs (616 and 618) for spline wear, open lubrication holes and damaged thrust faces.
- Piston (606) for cracks.
- Forward clutch housing (602) for wear, scoring, cracks and open oil passages.
- Free operation of check ball.
- Turbine shaft (601) for spline damage, open oil passages, cracks or distortion.

Install or Connect

1. Forward clutch housing (602) in press facing up.
2. Turbine shaft (601) in clutch housing (602) approximately 1/8".
3. Continue installing in small steps, checking frequently to make sure connection is straight.

Assemble (Figure 64, 65 and 66)

Tools Required:
- J 21409 Seal Protector
- J 21362 Piston Installer
1. Lubricate new inner seal (605) and outer seal (604) with transmission fluid. Lubricate seal grooves with petrolatum.
2. Seals (604) and (605) on piston (606) with lips facing away from spring pockets.
3. Lubricate center piston seal (603) and groove.
4. Center piston seal (603) onto clutch housing (602) with lip facing up.
5. J 21409 over clutch hub.
6. Piston (606) inside J 21362 and insert assembly into housing (602) rotating slightly clockwise until seated.

Assemble (Figures 65, 67 and 68)

Tool Required:
- J 21664 Spring Compressor
1. Clutch release springs (607) in piston (606).
2. Retainer (608) on springs (607) with J 21664.
7A2-28 400/475 AUTOMATIC TRANSMISSION

- Install forward clutch assembly (602-618) with turbine shaft (601) into transmission.

Oil Pump Assembly

Disassemble (Figure 71)

NOTICE: Regulator spring (214) is tightly compressed. Use care when removing bushing (212).

1. Retaining ring (211).
2. Pressure regulator and boost valve assemblies (212-217).
3. Bolts (203, 204 and 205).

Important

Before removing gears (209) and (210) from pump body, mark gear faces to ensure reassembly to same position.

4. Pump drive gear (209) and driven gear (210).
5. Straight pin (219) and valve bore plug (218).
6. Oil seal rings (208) and thrust washer (207).

Pump Body

Inspect (Figure 71)

- Gear pockets, crescent, pump body face, and bushing for:
 - scoring
 - nicks
 - wear

- Oil passages for:
 - foreign material or debris
 - porosity
 - scored or irregular mating surfaces
 - cross channel leaks

- Pump body bolt threads for damage.
- Oil seal (2), bushing (3) for wear or damage.

Gear Clearance

Measure (Figure 72)

1. Install pump gears (209 and 210) in body (201) as marked.
2. Measure clearance between gears and body.
 - \(0.0008" - 0.0035" (0.02 \text{ mm} - 0.09 \text{ mm})\) maximum clearance
3. Pump body with straight edge to assure it is flat.

Pump Cover

Inspect (Figure 71)

- Pump gear face for:
 - wear
 - scoring
- Stripped or damaged stator shaft splines
- Bushings (220) and (206) for:
1989 THM 400 CLUTCH PLATE APPLICATION CHART
FORWARD CLUTCH

<table>
<thead>
<tr>
<th>MODELS</th>
<th>NO. OF FLAT STEEL PLATES</th>
<th>NO. OF WAVED STEEL PLATES</th>
<th>NO. OF DISHED PLATES</th>
<th>NO. OF COMPOSITION PLATES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>THICKNESS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.32 MM (.0915")</td>
<td>1.97 MM (.0775")</td>
<td>1.54 MM (.0605")</td>
<td>1.37 MM (.054")</td>
</tr>
<tr>
<td>FBA, FKA, FSA, HAA, HRA, MAA</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>FAA, FQA, FRA, FVA, LLA, LXA, TAA, TBA, TCA, TDA, TFA, TKA, TLA, TMA, TNA, TPA, TSA</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>ALL OTHER MODELS</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 68 - Forward Clutch Plate Chart

Oil Pump Assembly

Assemble (Figures 71 and 73)

1. Drive gear (209) and driven gear (210) with alignment marks in correct position.
 - lugs on drive gear should be flush with pump body (201).
 - lubricate drive gear (209) and driven gear (210) with automatic transmission fluid.
2. Pressure regulator valve (217) into bore.
3. Pressure regulator spring spacer(s) (216), if used.
4. Spring retainer washer (215) and spring (214) in pressure regulator bore.
5. Regulator boost valve (213) into boost valve bushing (212), stem out against spring (214).
6. Snap ring (211).
7. Bore plug (218) and valve straight pin (219).
8. Cover (202) on body (201).
9. Bolts (203, 204 and 205).
 - do not fully torque

Assemble (Figures 71, 74 and 76)

Tools Required:
- J 21368 Alignment Band
- J 21359 Oil Seal Installer
1. J 21368 on pump assembly.
 - torque bolts 18 lbs. ft. (24 N·m)
2. New square cut o-ring (7) and oil seal (2)
 - use J 21359
3. Correct thrust washer (207) as determined by Front End Play Check during disassembly.
4. Two oil seals (208).
Install or Connect (Figure 75)

1. Gasket (8) on transmission case (10).
2. Oil pump assembly (6) in transmission case (10).
3. Bolts (4) except bolt in 10 o'clock position.
 - torque to 15-20 lbs. ft. (20-27 N·m)

Important
If turbine shaft cannot be rotated as pump assembly is being pulled into place, the forward and/or direct clutch housings have not been installed properly to index with all the clutch plates. This condition must be corrected before pump assembly is fully installed.

Rear Unit End Play Check

Measure (Figures 77 and 78)

Tools Required:
J 21797 Bolt

Front Unit End Play Check

J 8001 Dial Indicator

1. Install J 8001 on the bolt and index it to the end of the output shaft (691).
 - set indicator to “0”
2. Move output shaft (691) in and out.
 - proper end play is .007”-.019” (.178 mm-.483 mm)
3. Remove tools and correct if necessary.

Measure (Figures 79 and 80)

Tools Required:
J 6125 Slide Hammer Bolt
J 8001 Dial Indicator

1. Install J 8001
2. Eliminate slack by pressing turbine shaft (601) to the rear and output shaft (691) forward.
3. Index J 8001 against end of turbine shaft.
 - set dial to “0”
4. Pull out turbine shaft.
Figure 72 - Pump Body Face to Gear Face Clearance

<table>
<thead>
<tr>
<th>ILL. NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>.02mm - .09mm (.0008 - .0035 in.)</td>
</tr>
<tr>
<td>201</td>
<td>BODY ASSEMBLY, PUMP</td>
</tr>
<tr>
<td>209</td>
<td>GEAR, PUMP DRIVE</td>
</tr>
<tr>
<td>210</td>
<td>GEAR, PUMP DRIVEN</td>
</tr>
</tbody>
</table>

Figure 73 - Pump Cover Attaching Screws

<table>
<thead>
<tr>
<th>ILL. NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>PUMP ASSEMBLY</td>
</tr>
<tr>
<td>203</td>
<td>BOLT, 5/16-18 X 1.00 (COVER TO BODY)</td>
</tr>
<tr>
<td>204</td>
<td>BOLT, 5/16-18 X 1.50 (COVER TO BODY)</td>
</tr>
<tr>
<td>205</td>
<td>BOLT, 5/16-18 X 1.75 (COVER TO BODY)</td>
</tr>
</tbody>
</table>

Figure 74 - Assembling Pump Body and Pump Cover

<table>
<thead>
<tr>
<th>ILL. NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>BOLT, HEX HD 5/16-18 X 1.406 (PUMP TO CASE)</td>
</tr>
<tr>
<td>5</td>
<td>WASHER, PUMP TO CASE BOLTS</td>
</tr>
<tr>
<td>6</td>
<td>PUMP ASSEMBLY</td>
</tr>
<tr>
<td>7</td>
<td>SEAL, RING (PUMP TO CASE)</td>
</tr>
<tr>
<td>8</td>
<td>GASKET, PUMP COVER TO CASE</td>
</tr>
<tr>
<td>207</td>
<td>WASHER, THRUST (SELECTIVE)</td>
</tr>
</tbody>
</table>

Figure 75 - Gasket and Oil Pump Assembly

- proper end play is .003"-.024" (.076 mm-.610 mm)

5. Remove tools and correct end play if necessary.

Governor Assembly

Important

Governor assembly is calibrated and is serviced as an assembly. However, driven gear (409) may be serviced separately and unit may be disassembled for cleaning.
7A2-32 400/475 AUTOMATIC TRANSMISSION

Disassemble (Figure 81)

1. Governor pins (406).
 - use diagonal cutting pliers
2. Thrust cap (401), weights (404 and 405) and springs (403).
3. Governor valve (402) from sleeve (407).
4. Clean all parts in solvent and air dry.

Inspect
- Sleeve (407) for nicks, burrs or galling and free operation in case bore.
- Valve (402) for damage and free operation in bore of sleeve (407).
- Driven gear (409) for damage.
- Springs (403) for distortion or damage.

Measure (Figure 82)
- Valve opening at entry with weights
 - minimum clearance is .020" (.51 mm).
- Valve opening at exhaust with weights inward.
 - minimum clearance is .020" (.51 mm).

Driven Gear Replacement

Disassemble (Figure 81)

1. Driven gear retaining pin (408).
 - use small punch or 1/8" (.125") diameter rod
2. Driven gear (409) from sleeve and carrier assembly (407) with long punch and mechanical press.

Clean
- Chips or residue from sleeve and carrier assembly (407).

Assemble (Figures 83 and 84)
Important

Support governor with plates set into exhaust slots of sleeve.

1. Governor driven gear (409) in sleeve and carrier assembly (407).
2. Drill new 1/8" (.125") hole in sleeve and carrier assembly (407) and governor driven gear (409), 90 degrees from original hole.
3. Pin (408) in new 1/8" hole.
5. Weights (404 and 405), springs (403) and thrust cap (401) on sleeve (407).

Inspect

- Weight assemblies (404 and 405) for free movement on pins.
- Valve (402) for free movement in sleeve bore.

Internal Transmission Speed Sensor (I.T.S.S.) models.

Inspect

- Sensor (81) for porosity, cracks or damage
Install or Connect (Figure 85)

1. Governor (22) into case (10).
2. Governor cover (20) and gasket (21) with bolts (19).
3. Lubricate speed sensor bore in case with petroleum jelly.
4. Speed sensor (81) with new o-ring (82) into case.

NOTICE: Properly align the speed sensor before installing into the case to prevent damage to the rotor or sensor.

5. Retain sensor with bolt (83).

Band Apply Pin Check

Measure (Figures 86, 87 and 88)

Tools Required:

- J 21370-10 Gage Pin
- J 21370-6 Selector Gage

1. Place J 21370-10 in the servo pin bore.
2. Position J 21370-6 over the bore with the hex nut facing the parking pawl linkage.
3. Fasten with two 5/16-18 x 1" screws and torque to 18 lbs./ft. (24 N·m).
4. Make sure J 21370-10 moves freely in the tool and pin bore.
5. To determine correct pin length, apply 25 lbs./ft. Torque to the nut on the gage.
6. For pin selection, see Figure 88.

Rear Servo Accumulator

Inspect (Figure 89)

- Remove retaining ring (68) from rear band apply pin (77) and inspect

Assemble (Figure 89)

1. Rear accumulator spring (78).
2. Rear servo spring retainer (76), rear servo spring (75) and servo washer (74) on rear band apply pin (77).
3. Inner (73) and outer (71) accumulator piston oil seals on accumulator piston (72). Place on rear band apply pin assembly.
4. Rear servo piston seal (70) on rear servo piston (69) and press onto rear band apply pin (77).
5. Retaining ring (68).

Install or Connect (Figure 89)
1. Assembly in bore.
2. Cover (66), gasket (67) and bolts (65).

Front Servo Assembly

Inspect (Figure 90)
- Servo piston (60) for:
 - porosity or damage
 - ring groove damage
- Piston pin (62) for wear
- Spring (64) for distortion
- Servo bore for wear or scoring

Install or Connect (Figures 90, 91 and 92)
1. Front servo piston spring (64) and retainer (63).
2. Washer (61), piston pin (62) and piston (60).
 - make certain tapered end contacts band
3. Front servo assembly into case.
4. Six check balls (59) in case.
5. Spacer plate to case gasket (58).
6. Valve body spacer plate (57).
7. Valve body to spacer plate gasket (56).
8. Solenoid assembly (54) with screw (53)
 - finger tight
9. Wire connector to case connector
Figure 93 - Control Valve Assembly
Control Valve Assembly

Disassemble (Figures 93, 94 and 95)

1. Install J 21885 on front accumulator piston.
2. Retainer (302) and front accumulator piston (303).
3. Accumulator spring (305).
4. Accumulator piston seal (304).
5. Remove J 21885.

Clean
- Control valve assembly (49) thoroughly in clean solvent-move the the valves with a pick or small screwdriver to dislodge any dirt or debris that may have accumulated
- Air Dry

Inspect
- All Valves and Bushings For:
 - Porosity
 - Scoring
 - Nicks
 - Scratches
- Springs for Damaged or Distorted Coils
- Valve Body Casting For:
 - Porosity
 - Cracks
 - Interconnected oil passages
 - Damaged machined surfaces

Control Valve Assembly Legend

<table>
<thead>
<tr>
<th>ILL. NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>301</td>
<td>BODY, CONTROL VALVE</td>
</tr>
<tr>
<td>302</td>
<td>RING, RETAINER (ACCUMULATOR PISTON)</td>
</tr>
<tr>
<td>303</td>
<td>PISTON, FRONT ACCUMULATOR</td>
</tr>
<tr>
<td>304</td>
<td>RING, OIL SEAL (ACCUMULATOR PISTON)</td>
</tr>
<tr>
<td>305</td>
<td>SPRING, FRONT ACCUMULATOR PISTON</td>
</tr>
<tr>
<td>306</td>
<td>SWITCH, PRESSURE (RCA, RRA, RTA, RVA MODELS)</td>
</tr>
<tr>
<td>307</td>
<td>WIRE, LEAD (RCA, RRA, RTA, RVA MODELS)</td>
</tr>
<tr>
<td>308</td>
<td>PIN, GROOVED</td>
</tr>
<tr>
<td>309</td>
<td>PLUG, VALVE BORE (.56 O.D.)</td>
</tr>
<tr>
<td>310</td>
<td>VALVE, 1-2 ACCUMULATOR</td>
</tr>
<tr>
<td>311</td>
<td>SPRING, 1-2 ACCUMULATOR VALVE PRIMARY</td>
</tr>
<tr>
<td>312</td>
<td>SPRING, 1-2 ACCUMULATOR VALVE SECONDARY</td>
</tr>
<tr>
<td>313</td>
<td>PIN, COILED SPRING</td>
</tr>
<tr>
<td>314</td>
<td>PLUG, VALVE BORE (.50)</td>
</tr>
<tr>
<td>315</td>
<td>VALVE, DETENT</td>
</tr>
<tr>
<td>316</td>
<td>VALVE, DETENT REGULATOR VALVE</td>
</tr>
<tr>
<td>317</td>
<td>PIN, DETENT REGULATOR VALVE</td>
</tr>
<tr>
<td>318</td>
<td>SPRING, DETENT REGULATOR VALVE</td>
</tr>
<tr>
<td>319</td>
<td>VALVE, MANUAL</td>
</tr>
<tr>
<td>320</td>
<td>BUSHING, 1-2 MODULATOR VALVE</td>
</tr>
<tr>
<td>321</td>
<td>VALVE, 1-2 REGULATOR</td>
</tr>
<tr>
<td>322</td>
<td>SPRING, 1-2 REGULATOR VALVE</td>
</tr>
<tr>
<td>323</td>
<td>VALVE, 1-2 DETENT</td>
</tr>
<tr>
<td>324</td>
<td>VALVE, 2-3</td>
</tr>
<tr>
<td>325</td>
<td>SPRING, 1-2 MODULATOR VALVE</td>
</tr>
<tr>
<td>326</td>
<td>VALVE, 1-2 MODULATOR</td>
</tr>
<tr>
<td>327</td>
<td>PIN, STRAIGHT</td>
</tr>
<tr>
<td>328</td>
<td>BUSHING, 2-3 MODULATOR VALVE</td>
</tr>
<tr>
<td>329</td>
<td>SPRING, 2-3 VALVE (OUTER)</td>
</tr>
<tr>
<td>330</td>
<td>VALVE, 2-3 MODULATOR</td>
</tr>
<tr>
<td>331</td>
<td>SPRING, 2-3 VALVE (INNER)</td>
</tr>
<tr>
<td>332</td>
<td>VALVE, 2-3</td>
</tr>
<tr>
<td>333</td>
<td>PIN, STRAIGHT</td>
</tr>
<tr>
<td>334</td>
<td>PLUG, VALVE BORE (.437)</td>
</tr>
<tr>
<td>335</td>
<td>SPRING, 3-2 VALVE</td>
</tr>
<tr>
<td>336</td>
<td>PIN, 3-2 VALVE</td>
</tr>
<tr>
<td>337</td>
<td>VALVE, 3-2</td>
</tr>
</tbody>
</table>

Figure 95 - Removing Front Accumulator Piston

- Remove valve 'trains beginning with the upper left hand corner. **NOTE:** Some valves are under pressure - cover the bores while removing the roll pins
- Remove blind hole roll pins with a modified drill bit
- Valves, springs and bushings must be laid out on a clean surface in the exact sequence they are removed
- Remove pressure switches

Figure 94 - Control Valve Assembly Legend
Assemble (Figures 93 and 94)
- Control valve assembly components exactly as shown. Notice the position of the valve lands and bushing passages.

Installing Control Valve Assembly
Assemble (Figures 95, 96 and 97)
Tool Required:
 J 21885 Piston Installer
1. Front accumulator piston spring (305).
2. Front accumulator piston (303) and retainer ring (302) with J 21885.
3. Governor screen (52), pointed end up.
4. Governor oil pipes (50).
5. Control valve assembly (49).
6. Bolts (47), (51) and (53).
7. Detent spring and roller assembly (48) and bolt (47).

Pan and Filter Assembly
Install or Connect (Figure 98)
1. Intake pipe (45), o-ring (46) and filter (42).
2. Spacer (43) and bolt (41).
3. Gasket (39) to pan (38) and magnet (40).
4. Pan (38) with screw and conical washer assembly (37).
 - torque to 6-10 lbs. ft. (8-14 N·m)

Case Extension Assembly
Inspect (Figure 99)
- for wear or damage
 - bearings (28)
 - spacer (29)
 - bushings (30) and (33)
(See Bushing Replacement)
Install or Connect (Figure 28)
Tool Required:
 J 214426 Rear seal installer
1. New rear seal (26) with J 214426.
2. Extension to case seal (32).
3. Gasket (34) to extension (27).
4. Extension (27) to case (10) with bolts (23).

Vacuum Modulator Assembly
Inspect (Figures 100 and 101)
Tool Required:
 J 24466 Modulator Checking Tool
1. Modulator (13) with J 24466 and a known good modulator
 - place gage between modulators and apply pressure to both
 - if the indicator line moves out of view replace the modulator
2. Modulator valve (15) for nicks or damage

3. Modulator valve bore in the case for burrs, porosity or scoring

Install or Connect (Figure 101)

1. Modulator valve (15) into case.
 - small end first
2. New o-ring seal (14) into case.
3. Modulator assembly (13) into case.
4. Retainer (12) and bolt (11).
 - torque to 15-20 lbs. ft. (10-27 N·m).

TORQUE CONVERTER ASSEMBLY

Inspect

The torque converter assembly (1) must be replaced for any of the following conditions:

- Evidence of damage to the pump assembly
- Metal particles are found after flushing the cooler and cooler lines
- External leaks in hub weld area
- Excess end play

[![Measure (Figure 102)](image)

Tool Required:
- J 35138 Torque Converter End Play Checking Tool
- Install J 35138 and measure end play
 - .000" - .024" (.00 mm - .61 mm)

- Converter pilot is broken, damaged or poor fit into crankshaft
- Converter hub is scored or damaged
- Internal failure to stator
- Contamination from engine coolant

If:
- The fluid has an odor, discolored or no evidence of metal or clutch plate material
 - Drain out as much fluid as possible
 - Replace the oil filter and pan gasket
 - Fill to proper level (Refer to Section 7A)
- The converter bolt hole threads are damaged
 - Correct with thread insert (Refer to Section 6A)

Flushing the torque converter is not recommended.

[Install or Connect](image)

Tool Required:
- J 21366 Converter Holding Strap
- Torque converter (1) with J 21366
 - Engage turbine shaft, stator shaft and lugs on oil pump driven gear. Three clicks will be felt as each engages slots in converter.
3 BUSHING, PUMP BODY
30 BUSHING, CASE EXTENSION
33 BUSHING
206 BUSHING, STATOR SHAFT (REAR)
220 BUSHING, STATOR SHAFT (FRONT)
655 BUSHING
663 BUSHING, STATOR SHAFT (MAIN SHAFT)
690 BUSHING, OUTPUT SHAFT

Figure 103 - Bushing Locations
<table>
<thead>
<tr>
<th>REMOVE AS SHOWN</th>
<th>INSTALL AS SHOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td> J-2619</td>
<td> J-8092</td>
</tr>
<tr>
<td> J-2619-4</td>
<td> J-21465-3</td>
</tr>
<tr>
<td> J-21465-15</td>
<td> 206 BUSHING, STATOR SHAFT</td>
</tr>
<tr>
<td>220</td>
<td> 202 COVER ASSEMBLY, PUMP</td>
</tr>
<tr>
<td>206</td>
<td> 206 BUSHING, PUMP COVER (REAR)</td>
</tr>
<tr>
<td>220</td>
<td> 202 BUSHING, PUMP COVER (REAR)</td>
</tr>
<tr>
<td>202</td>
<td> 202 BUSHING, PUMP COVER (REAR)</td>
</tr>
<tr>
<td>201</td>
<td> 201 BODY ASSEMBLY, PUMP</td>
</tr>
<tr>
<td>3 BUSHING, PUMP BODY</td>
<td> 3 BUSHING, PUMP BODY</td>
</tr>
<tr>
<td>201</td>
<td> 201 BODY ASSEMBLY, PUMP</td>
</tr>
<tr>
<td>663</td>
<td> 663 BUSHING, STATOR SHAFT (MAINSHAFT)</td>
</tr>
<tr>
<td>664</td>
<td> 663 BUSHING, STATOR SHAFT (MAINSHAFT)</td>
</tr>
<tr>
<td>663</td>
<td> 663 BUSHING, STATOR SHAFT (MAINSHAFT)</td>
</tr>
<tr>
<td>664</td>
<td> 664 SHAFT, SUN GEAR</td>
</tr>
<tr>
<td>664</td>
<td> 664 SHAFT, SUN GEAR</td>
</tr>
</tbody>
</table>

Figure 104 - Bushing Replacement Procedure
BUSHING REPLACEMENT PROCEDURE
PROTECT PARTS WITH WOOD BLOCKS
OR CLOTH AS NECESSARY

<table>
<thead>
<tr>
<th>REMOVE AS SHOWN</th>
<th>INSTALL AS SHOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>J-8092</td>
<td>J-8092</td>
</tr>
<tr>
<td>J-21465-6</td>
<td>J-21465-6</td>
</tr>
<tr>
<td>654</td>
<td>654</td>
</tr>
<tr>
<td>655</td>
<td>655</td>
</tr>
<tr>
<td>654 SUPPORT, CENTER</td>
<td>654 SUPPORT, CENTER</td>
</tr>
<tr>
<td>655 BUSHING</td>
<td>655 BUSHING</td>
</tr>
</tbody>
</table>

J-2619	J-2619
J-21465-16	J-21465-16
690	690
691	691
690 BUSHING, OUTPUT SHAFT	690 BUSHING, OUTPUT SHAFT
691 SHAFT, OUTPUT	691 SHAFT, OUTPUT

J-21465-8	J-21465-8
J-21465-9	J-21465-9
J-21465-13	J-21465-13
J-8092	J-8092
10 CASE, TRANSMISSION	10 CASE, TRANSMISSION
33 BUSHING	33 BUSHING

Figure 105 - Bushing Replacement Procedure
BUSHING REPLACEMENT PROCEDURE
PROTECT PARTS WITH WOOD BLOCKS
OR CLOTH AS NECESSARY

<table>
<thead>
<tr>
<th>REMOVE AS SHOWN</th>
<th>INSTALL AS SHOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Diagram showing bushing removal and installation]</td>
<td>![Diagram showing bushing removal and installation]</td>
</tr>
</tbody>
</table>

27 CASE EXTENSION ASSEMBLY
30 BUSHING, CASE EXTENSION

Figure 106 - Bushing Replacement Procedure
<table>
<thead>
<tr>
<th>FASTENER APPLICATION</th>
<th>ASSEMBLY TORQUE</th>
<th>RECHECK TORQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N·m</td>
<td>LB.-FT.</td>
</tr>
<tr>
<td>FILTER TO VALVE BODY SCREW</td>
<td>8·14</td>
<td>6·10</td>
</tr>
<tr>
<td>SOLENOID TO CASE SCREW</td>
<td>5·14</td>
<td>4·10</td>
</tr>
<tr>
<td>CONTROL VALVE ASSEMBLY TO CASE SCREW</td>
<td>8·14</td>
<td>6·10</td>
</tr>
<tr>
<td>LINE PRESSURE PLUG</td>
<td>7·14</td>
<td>5·10</td>
</tr>
<tr>
<td>FLYWHEEL HOUSING COVER TO TRANSMISSION SCREW</td>
<td>5·8</td>
<td>4·6</td>
</tr>
<tr>
<td>PUMP BODY TO COVER SCREW</td>
<td>20·27</td>
<td>15·20</td>
</tr>
<tr>
<td>PUMP ASSEMBLY TO CASE SCREW</td>
<td>20·27</td>
<td>15·20</td>
</tr>
<tr>
<td>REAR SERVO COVER TO CASE SCREW</td>
<td>20·27</td>
<td>15·20</td>
</tr>
<tr>
<td>GOVERNOR COVER TO CASE</td>
<td>11·16</td>
<td>8·12</td>
</tr>
<tr>
<td>PARKING PAWL BRACKET TO CASE SCREW</td>
<td>20·27</td>
<td>15·20</td>
</tr>
<tr>
<td>VACUUM MODULATOR RETAINER TO CASE SCREW</td>
<td>20·27</td>
<td>15·20</td>
</tr>
<tr>
<td>SPEEDOMETER DRIVEN GEAR RETAINER TO CASE SCREW</td>
<td>5·8</td>
<td>4·6</td>
</tr>
<tr>
<td>OIL PAN TO CASE SCREW</td>
<td>8·14</td>
<td>6·10</td>
</tr>
<tr>
<td>EXTENSION HOUSING TO CASE SCREW</td>
<td>27·34</td>
<td>20·25</td>
</tr>
<tr>
<td>MANUAL SHAFT TO DETENT LEVER NUT</td>
<td>20·27</td>
<td>15·20</td>
</tr>
<tr>
<td>MANUAL YOKE TO MANUAL SHAFT NUT</td>
<td>18·24</td>
<td>13·18</td>
</tr>
<tr>
<td>CASE TO CENTER SUPPORT SCREW</td>
<td>27·34</td>
<td>20·25</td>
</tr>
<tr>
<td>FLYWHEEL TO CONVERTER SCREW</td>
<td>41·47</td>
<td>30·35</td>
</tr>
<tr>
<td>TRANSMISSION CASE TO ENGINE SCREW</td>
<td>41·47</td>
<td>30·35</td>
</tr>
<tr>
<td>OIL COOLER PIPE CONNECTOR NUT AT CASE & RADIATOR</td>
<td>35·41</td>
<td>26·30</td>
</tr>
<tr>
<td>COOLER PIPE CONNECTOR AT CASE</td>
<td>35·41</td>
<td>26·30</td>
</tr>
<tr>
<td>ENGINE REAR MOUNT TO TRANSMISSION BOLT</td>
<td>41·47</td>
<td>30·35</td>
</tr>
<tr>
<td>ENGINE REAR SUPPORT BRACKET TO FRAME NUT</td>
<td>41·47</td>
<td>30·35</td>
</tr>
<tr>
<td>SWITCH ASSEMBLY</td>
<td>3·5</td>
<td>2·3·5</td>
</tr>
</tbody>
</table>

Figure 107 - Torque Specifications
<table>
<thead>
<tr>
<th>Tool Name</th>
<th>J No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slide Hammer (5/8" x 18 with 1/2" x 13 Adapter)</td>
<td>J 2619-01</td>
<td>Forward and Direct Clutch Inner Seal Protector</td>
</tr>
<tr>
<td>Clutch Spring Compressor (Use with J 6129 & J 21664)</td>
<td>J 6129</td>
<td>J 21362</td>
</tr>
<tr>
<td>Gear Unit Holding Tool (Use with J 6125-A)</td>
<td>J 21796-02</td>
<td></td>
</tr>
<tr>
<td>Clutch Unit Holding Fixture</td>
<td>J 6116-01</td>
<td>J 21364-A</td>
</tr>
<tr>
<td>5/16-18 Thread with 3/8-16 Adapter (Set of 2)</td>
<td>J 6125-8</td>
<td>J 21368</td>
</tr>
<tr>
<td>Dial Indicator Set</td>
<td>J 8001</td>
<td>J 21370-10</td>
</tr>
<tr>
<td>Driver Handle (3/4"-10 Thread)</td>
<td>J 8092</td>
<td>J 21370-6</td>
</tr>
<tr>
<td>Speedo Gear Remover (Use with J 21427-01)</td>
<td>J 8433</td>
<td>J 21409</td>
</tr>
<tr>
<td>Transmission Holding Fixture (Use with J 3289-2D)</td>
<td>J 8763-02</td>
<td>J 21426</td>
</tr>
<tr>
<td>Extension Housing Oil Seal Installer</td>
<td>J 21359</td>
<td>J 21427-01</td>
</tr>
<tr>
<td>Pump Oil Seal Installer</td>
<td>J 21359</td>
<td>J 21427-01</td>
</tr>
</tbody>
</table>

Figure 108 - Special Tools
SECTION 7A3

180C AUTOMATIC TRANSMISSION

CONTENTS

GENERAL INFORMATION
UNIT REPAIR
EXTERNAL PARTS ... 7A3- 1
Servo Piston Removal ... 7A3- 1
Selector Lever and Electrical
Connector Removal ... 7A3- 2
Modulator and Detent Valve
Assemblies ... 7A3- 3
Extension Housing, Speedometer Driven
Gear and Governor Assembly ... 7A3- 3
INTERNAL PARTS ... 7A3- 3
COMPONENT REPAIR AND
TRANSMISSION ASSEMBLY ... 7A3- 6
Case .. 7A3- 6
Case Interior ... 7A3- 6
Selector Lever and Shaft .. 7A3- 6
Planetary Carrier ... 7A3- 6
Third Clutch Assembly .. 7A3- 7
Sprag Unit ... 7A3- 9
Reverse Clutch Parts .. 7A3-12
Determining Selective Washer Thickness ... 7A3-12
Converter Housing, Oil Pump and
Reverse Clutch .. 7A3-13
Governor Hub ... 7A3-15
Governor Body and Speedometer
Drive Gear .. 7A3-15
Extension Housing and Speedometer
Drive Gear .. 7A3-17
Detent Valve and Modulator .. 7A3-18
Servo Piston ... 7A3-18
Control Valve Assembly .. 7A3-19
External Parts ... 7A3-22

TRANSMISSION DISASSEMBLY

GENERAL SERVICE INFORMATION
- Oil Seal Rings
 If any seal rings are damaged, cut, or do not rotate freely in their grooves, be certain to check the ring groove for debris, burrs, or damage.
- Thrust washer surfaces
 The thrust washers and bearing surfaces may appear to be polished. This is a normal condition and should not be considered damage.
- Snap rings
 Do not over expand snap rings when removing or installing.

EXTERNAL PARTS

Clean
- Thoroughly clean the exterior of the transmission.

Remove or Disconnect
- Torque converter

Install or Connect
Tools Required
 J-3289-20 Base
 J-8763-01 Holding Fixture
2. Holding fixture into the base.

Remove or Disconnect
 Drain the transmission fluid through the rear extension.

Remove or Disconnect (Figure 1)
1. Bolts, oil pan and gasket.
2. Bolts, oil strainer and gasket.
4. Electrical connections at the governor pressure switch.
5. Solenoid from transfer plate reinforcement.
6. Solenoid from the solenoid pipes.
7. Solenoid pipes from the valve body and the case.

Remove or Disconnect (Figure 2)
1. Governor pressure switch using a 1-1/16 oil pressure switch socket.
2. Bolts, transfer plate reinforcement.
3. Bolts, servo cover, and gasket.
5. Check balls.

Servo Piston Removal

Remove or Disconnect (Figures 3 and 4)
Tools Required
 J-23075 Servo/3rd Clutch Piston Spring Compressor
1. Install J-23075 with tool offset to the rear case.
2. Compress servo piston.
1. Oil Pan Gasket
2. Oil Pan
3. Valve Body and Transfer Plate
4. Strainer
5. Manual Detent Spring
6. Manual Valve & Link
7. Holding Fixture
8. Servo Cover
9. Modulator
10. Governor Pressure Switch
11. Solenoid Valve
12. Transfer Plate Reinforcement

5. Remove J-23075, servo piston, return spring, and the servo apply rod.

FIGURE 3 Compressing the Servo Piston

1. Servo Piston-to-Case Snap Ring
2. Offset of tool to rear of case

FIGURE 4 Check Balls and Servo Piston

Selector Lever and Electrical Connector Removal

- Remove or Disconnect (Figures 5 and 6)
 1. Inner selector hex nut.
 2. Inside range selector.
 3. Range selector shaft spring pin, using diagonal pliers. Insert a wire in the center of the spring pin to prevent it from collapsing during removal.

NOTICE: Inspect the range shaft for burrs before removing shaft to prevent damage to the case.

4. Range selector shaft.
5. Selector shaft seal, if necessary.
6. Electrical connector and "O" ring if necessary.

FIGURE 2 Hookup of Solenoid Pipes and Electrical Wires

1. Solenoid-to-Governor Pressure Switch Wire
2. Solenoid-to-Electrical Connector Wiring Harness
3. Solenoid-to-Valve Body Pipe
4. Solenoid-to-Oil Pump Pipe

FIGURE 1 Exploded View - External Parts

4. Slowly release servo piston.
Modulator and Detent Valve Assemblies

Remove or Disconnect (Figures 7 and 8)

Tool Required
J-23100 Vacuum Modulator Wrench

NOTICE: Use of another tool to remove the vacuum modulator may result in internal damage to the modulator.

1. Vacuum modulator, "O" ring, and modulator plunger.
2. Modulator valve and sleeve.
3. Detent valve retaining pin using diagonal pliers. Insert a wire in the center of the spring pin to prevent it from collapsing during removal.
4. Detent sleeve, valve, and spring.
5. "O" ring.

Extension Housing, Speedometer, Driven Gear and Governor Assembly

Remove or Disconnect (Figures 9, 10 and 11)

Tools Required
J-7004 Slide Hammer
J-23129 Converter Housing Seal Remover
1. Bolt and speedometer guide bracket.
2. Speedometer driven gear assembly and seal ring.
3. Extension housing seal using J-23129 and J-7004 if necessary.

INTERNAL PARTS

Remove or Disconnect (Figures 12, 13 and 14)

Tools Required
J-7004 Slide Hammer
J-23129 Converter Housing Seal Remover
1. Converter housing oil seal using J-7004 and J-23129, if necessary.
2. Seven outer bolts.
3. Loosen five inner bolts.
4. "O" ring from input shaft.
 CAUTION: If the "O" ring is not removed, the second speed clutch and the third speed clutch will come out with the converter housing. The "O" ring may shear while the parts are being held, allowing the second and the third speed clutches to fall, causing personal injury.
5. Converter housing with the oil pump and reverse clutch assembly.

Remove or Disconnect (Figure 15)

1. Second and third clutch assemblies.
2. Separate the second clutch and the third clutch assemblies.

NOTICE: If the reverse clutch plates are not being replaced, they must be installed in their original position.

3. Reverse clutch plates and aluminum pressure plate.
4. Inside selector lever and parking lock actuator rod.
5. Bearing assembly and thrust washer.
6. Planetary carrier assembly, bearing assembly and thrust washer.

Remove or Disconnect

1. Reaction sun gear and drum.
2. Bearing assembly and thrust washer.
3. Low band.
4. Case vent, if necessary. If case vent is removed install a new vent.
1. Cut-away view converter housing
2. Input shaft "O" ring seal
3. Inner circle of bolts are oil pump attaching bolts (5)
4. Outer circle of bolts are converter housing attaching bolts (7)

Figure 13 Converter Housing Attaching Bolts and "O" Ring Seal

Inspect
- Low band for
 - cracks
 - flaking
 - heat damage
- Reaction sun gear and drum for
 - chipped teeth
 - worn bushing
 - scored drum

Figure 14 Removing Converter Housing

1. CONVERTER HOUSING
2. OIL PUMP
3. REVERSE CLUTCH PISTON

Figure 15 Internal Parts

1. REV. CL. WAVED PLATE
2. REVERSE CLUTCH PLATE
3. REV. CL. COMPOSITION PLATE
4. PRESSURE PLATE
5. 2ND CLUTCH ASM.
6. 3RD CLUTCH ASM.
7. BEARING ASSEMBLY
8. THRUST WASHER
9. PLANETARY CARRIER ASM.
10. THRUST WASHER
11. BEARING ASSEMBLY
12. SUN GEAR DRUM
13. LOW BAND
14. BEARING ASSEMBLY
15. THRUST WASHER
Component Repair and Transmission Assembly

NOTICE: When assembling the transmission, do not use any “O” rings, gaskets, or oil seals that have been removed.

Case

Inspect

- Case exterior for cracks or porosity
- Case to valve body face for damage
- Interconnected oil passages for damage
- Servo bore for
 - sharp edges
 - porosity
- All bolt holes for thread damage
 - Heli-coil to repair
- Cooler connections for
 - proper torque 38 N·m (28 lbs.-ft)

Case Interior

Inspect

- Ring grooves for damage
- Clutch plate lugs for wear or damage
- Band retaining pins for good retention
- Detent bore for scoring or scratches
- Modulator bore for scoring or scratches

Selector Lever and Shaft

Install or Connect (Figures 16, 17 and 18)

1. Selector seal, if necessary.
2. Selector shaft.
 - identification groove must be on the outside.
3. Spring pin. Check the selector lever shaft for free movement.
4. Inside selector lever and parking pawl actuator assembly.
5. Inside selector lever.
6. Electrical connector with a new “O” ring if necessary.

Install or Connect (Figure 15)

1. Thrust washer and bearing.
 - The case bushing acts as a guide for the thrust washer and the bearing.
2. Band
3. Reaction sun gear and drum assembly.
4. Bearing and thrust washer.
 - Use petrolatum to hold the bearing and thrust bearing in place.

Planetary Carrier

Inspect (Figure 19)

- Planetary carrier and output shaft for:
 - damage
 - distortion
- Planetary pinions for:
 - damage
 - chipped teeth
Measure

- Pinion clearance at points A and B with a feeler gage. Clearance should be .127-.889 mm (.005-.035”).

Install or Connect (Figure 20)

1. Mount the third clutch assembly in a soft jaw vise as shown.
2. Position the five pins of J-28456 in the elongated slot. DO NOT PUT A PIN INTO A SLOT IF THE INTERIOR SNAP RING IS NOT VISIBLE.
4. Pull on the input sun gear until the internal snap ring clears the ring groove.
5. Remove J-28456/J-29351.
7. Thrust washer and bearing.

Install or Connect (Figure 20) Cont’d

- Use petrolatum to hold the thrust washer and bearing in place.

Third Clutch Assembly

Disassemble (Figures 21 and 22)

Tools Required

- Soft jawed vise
- Small punch
- Third clutch assembly

Notice: If the third clutch plates are not being replaced, they must be installed in their original position.
Disassemble (Figures 23 and 24)

Tools Required
- J-23075 Servo/Third Clutch Piston Spring Compressor
1. Position third clutch and input shaft assembly in a press with the input shaft facing down.
4. Release the clutch piston.
 DO NOT LET THE SPRING SEAT CATCH IN THE RING GROOVE.
5. Spring seat and return springs.
6. Clutch piston.

Inspect (Figure 26)
- Third clutch piston check ball
 - Shake the piston and listen for check ball movement.
 - Replace the piston if check ball is missing or falls out.
- Clutch piston lip seal for nicks, cuts, or damage.
- Input shaft lip seal for nicks, cuts, or damage.

Inspect (Figure 26)
- Clutch plates
 - Composite plates for damaged tangs, delamination or excessive wear.
 - Steel plates for damaged lugs, or heat damage.
- Third clutch drum for damage or worn clutch splines.
- Thrust washer and bearing for damage.

Assemble (Figures 26 and 27)

Tools Required
- J-23084 Third Clutch Seal Protector
1. Input shaft lip seal. Lip seal must point toward the input shaft. Lubricate the lip seal with transmission fluid.
1. THIRD CLUTCH HOUSING
2. THIRD CLUTCH PISTON LIP SEALS
3. THIRD CLUTCH PISTON
4. RETURN SPRINGS
5. SPRING SEAT
6. RETAINING CLIP
7. THIRD CLUTCH HUB
8. STEEL CLUTCH PLATES
9. COMPOSITION CLUTCH PLATES
10. CONICAL STEEL PLATE (CUSHION SPRING)
11. INPUT SUN GEAR BEARING & THRUST WASHER

Sprag Unit

Disassemble (Figure 29)
1. Sprag assembly from the third speed clutch sun gear.
2. Sprag cage and retaining washers from the outer sprag race.

Inspect (Figures 29 and 30)
- Sun gear for nicked or chipped teeth.
- Sun gear sprag surface for pitting or damage.
- Outer sprag race for pitting or heat damage.
- Retaining ring damage.

3. Align the internal clutch tangs.
4. Thrust washer and the bearing.
 Use petroleum to hold the thrust washer and the bearing in place.

Assemble (Figure 28)
1. Third clutch plates into the clutch hub.
 - start with a steel clutch plate and alternate with a composition plate.
2. Conical steel plate.
 - bevel faces down
Assemble

1. Retaining rings and sprag cage onto the sun gear. Flared shoulder of the sprag cage faces the sun gear.

Important

This procedure must be followed exactly to be sure that the sprag assembly is installed properly.

2. Outer sprag race over the sprag cage.
 - Hold the sun gear with your left hand. The sprag and retainer assembly should hold firmly when turned in a clockwise direction with your right hand.
 - The sprag race and retainer assembly should rotate freely when turned in a counterclockwise direction with your right hand.

Assemble (Figures 28 and 31)

Tools Required

J-29351 Third Clutch Ring Compressor (Late 1979 to current)
J-28456

1. J-29351/J-28456 on the sprag race to compress the retaining ring.
2. Sprag assembly into the clutch drum.
4. Seat the retaining ring in the ring groove.

Second Clutch

Disassemble (Figure 32)

1. Retaining ring from the second clutch drum.
2. Ring gear, retaining ring, and spacer.

NOTICE: If the second speed clutch plates are not being replaced, they must be installed in their original position.

Disassemble (Figures 32, 33 and 34)

Tools Required

J-23327 Clutch Spring Compressor
J-29838 Clutch Spring Compressor Adapter

1. Install J-23327 and J-29838.
2. Compress the piston return springs.
3. Retaining snap ring.
5. Spring seal and return springs.
6. Clutch piston.
7. Piston lip seal and the clutch drum lip seal if nicked, cut or damaged.

Inspect

- Second speed clutch piston
 - Shake the piston and listen for check ball movement. Movement indicates proper check ball operation. Replace the piston if check ball is missing or falls out.
- Second speed clutch plates
 - composition clutch plates for damaged tangs or delamination
 - steel clutch plates for damaged tangs, wear, or heat damage
- Clutch hub
 - bushing for scoring or damage
 - clutch splines for wear or damage
 - thrust washer for wear or damage

Assemble

Tools Required

J-23327 Clutch Spring Compressor
J-29838 Clutch Spring Compressor Adapter
J-23080 Second Speed Piston Seal Installer

1. Clutch drum lip seal with the lip facing down, if necessary. Lubricate the lip seal with transmission fluid.
1. RETAINING RING
2. RING GEAR
3. SPACER
4. STEEL CLUTCH PLATES
5. WAVED PLATE (CUSHION)
6. COMPOSITION PLATES
7. THRUST WASHER
8. RETAINING RING
9. PISTON RETURN SPRINGS (22)
10. SECOND CLUTCH
11. PISTON SEALS
12. SECOND CLUTCH HOUSING

Figure 32 Second Clutch

Figure 33 Removing Snap Ring From Second Clutch Piston

1. SOCKETS (3)

Figure 34 Second Clutch Piston Lip Seals

2. Outer piston lip seal with the lip facing down, if necessary. Lubricate the lip seal with transmission fluid.
3. Second clutch piston into the clutch drum. Lubricate the lip seals with liberal amounts of transmission fluid. Use J-23080 to protect the outer piston lip seal.
4. Remove J-23080.

Assemble (Figure 33)

Tools Required
- J-23327 Clutch Spring Compressor
- J-29838 Clutch Ring Compressor Adapter
- J-23080 Second Speed Piston Seal Installer

1. Piston return springs and spring seat on the second clutch piston.
2. Use J-23327 and J-29838 to compress the second clutch piston return springs. **DO NOT LET SPRING SEAT CATCH IN RING GROOVE.**
3. Snap ring.
4. Remove J-23327 and J-29838.
5. Thrust washer. Seat the tang in the slot on the second clutch hub. Use petrolatum to hold the thrust washer in position.
6. Clutch plates into the second clutch drum in the following order:
 - Waved plate
 - Steel plate
 - Composition plate
 - Steel plate
7. Align the internal splines of the clutch plates.

Assemble (Figure 32)
1. Ring gear spacer.
 - Wavy end toward the clutch plates.
2. Spacer retaining ring.
3. Ring gear.
 - Grooved edge facing up.
4. Ring gear retaining ring.

Assemble (Figure 36)
1. Third clutch and input shaft assembly into the second clutch drum.
2. Second and third clutch assembly.

Reverse Clutch Parts

Assemble (Figure 37)
1. Aluminum pressure plate with the flat side up. LUGS ON PRESSURE PLATE MUST ENGAGE NARROW NOTCH IN THE CASE.
2. Reverse clutch plates.
 - Start with a steel plate and alternate with a composition plate.

Determining Selective Washer Thickness

Measure (Figures 38 and 39)
Tools Required
J-23085 Selective Washer Gaging Tool
1. Install J-23085 on the case flange and against the input shaft.
2. Position the inner shaft of J-23085 against the thrust surface of the second speed clutch hub.
 Select the thickest washer available without exceeding measurement "A".
3. Five oil pump to converter bolts.
4. Separate the oil pump from the converter housing.
5. Oil pump wear plate.
6. Oil pump gears.

Converter Housing, Oil Pump and Reverse Clutch

Remove or Disconnect (Figures 40 and 41)

1. Oil pump to case gasket.
2. Oil pump outer square cut gasket.

Disassemble (Figures 40 and 42)

Tools Required
J-23327 Clutch Spring Compressor
1. Install J-23327.
2. Compress the reverse clutch return springs.
3. Retaining ring.
4. Release the reverse clutch return springs.
DO NOT LET SPRING SEAT CATCH IN RING GROOVE.
5. Remove J-23327, spring seat, and return springs.

When measured gap (A) is:

<table>
<thead>
<tr>
<th>INCHES</th>
<th>mm</th>
<th>USE WASHER PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>.069 - .074</td>
<td>1.78 - 1.88</td>
<td>5258202</td>
</tr>
<tr>
<td>.075 - .079</td>
<td>1.93 - 2.03</td>
<td>5258203</td>
</tr>
<tr>
<td>.080 - .084</td>
<td>2.06 - 2.16</td>
<td>5258204</td>
</tr>
<tr>
<td>.085 - .089</td>
<td>2.18 - 2.29</td>
<td>5258205</td>
</tr>
<tr>
<td>.090 - .094</td>
<td>2.31 - 2.41</td>
<td>5258206</td>
</tr>
<tr>
<td>.095 - .100</td>
<td>2.46 - 2.57</td>
<td>5258207</td>
</tr>
</tbody>
</table>

Following the procedure should result in final end-play from 0.36 mm to 0.79 mm (.014 in. to .031 in.)
6. Reverse clutch piston. Apply compressed air to the "apply" oil passage.
7. Inner and outer piston oil seals if necessary.

Disassemble (Figure 43)

Do not remove the converter clutch control valve, pressure regulator valve, or the reverse boost valve, unless determined by oil pressure checks to be malfunctioning.

CAUTION: Valves are under spring pressure, use caution when disassembling.

1. Retaining pin from the converter clutch control port.
2. Oil pump boost valve sleeve, boost valve, spring, spring seats, and valve.
3. Screen, retainer, valve and spring.
4. Oil pump seal rings.

Inspect (Figures 43 and 44)

- Reverse boost valve, pressure regulator valve, and the converter clutch control valve for:
 - nicks
 - scoring
 - damage
- Oil pump seal rings for:
 - side wear
 - damage

Clean

- Thoroughly clean the pressure regulator valve, reverse boost valve, and the converter clutch control valve.
- Soak valves in transmission fluid.

Assemble

1. Spring, valve, retainer and screen.
2. Plug, valve, spring seats, spring, oil pump boost valve, sleeve, and retaining ring.
3. (2) Piston oil seals.

Assemble (Figures 45 and 46)

Tools Required

- J-23327 Clutch Spring Compressor
1. Inner and outer piston oil seals.
2. Reverse clutch piston onto the rear face of the oil pump.
3. Clutch return springs.
4. Spring seat and snap ring.
5. Install J-23327.
6. Compress clutch piston return springs.

Disassemble (Figure 43)

Do not remove the converter clutch control valve, pressure regulator valve, or the reverse boost valve, unless determined by oil pressure checks to be malfunctioning.

Inspect (Figures 43 and 44)

- Reverse boost valve, pressure regulator valve, and the converter clutch control valve for:
 - nicks
 - scoring
 - damage
- Oil pump seal rings for:
 - side wear
 - damage

Clean

- Thoroughly clean the pressure regulator valve, reverse boost valve, and the converter clutch control valve.
- Soak valves in transmission fluid.

Assemble

1. Spring, valve, retainer and screen.
2. Plug, valve, spring seats, spring, oil pump boost valve, sleeve, and retaining ring.
3. (2) Piston oil seals.

1. RETAINING PIN
2. CONVERTER CLUTCH CONTROL VALVE PLUG
3. SPRING
4. CONVERTER CLUTCH CONTROL VALVE
5. OIL PUMP
6. OIL PUMP SEAL RING (2 REQUIRED)
7. PRESSURE REGULATOR VALVE
8. SPRING SEATS
9. SPRING
10. REV. BOOST VALVE
11. REV. BOOST VALVE SLEEVE
12. RETAINING PIN

Figure 43 Exploded View - Valves in Oil Pump

1. REVERSE CLUTCH PISTON
2. REVERSE CLUTCH PISTON INNER SEAL
3. REVERSE CLUTCH PISTON OUTTER SEAL

Figure 44 Reverse Clutch Piston

Governor Hub

Inspect (Figures 52 and 53)
- Seal rings for nicks, burrs, or damage.
- Governor hub oil screen.
- Governor hub splines for;
 - cracks
 - chipped teeth

Assemble
1. Oil screen flush with the governor hub.

2. Seal rings if necessary.
3. Governor hub.
4. Snap ring.

Governor Body and Speedometer Drive Gear

Disassemble
1. Secondary valve spring retainer.
Inspect
- Primary and secondary valves for:
 - nicks
 - burrs
- Oil passages and valve bores for:
 - nicks
 - burrs
 - varnish

Inspect (Figure 54)
1. Primary valve, small end first.

2. Secondary valve, small end first.
4. Governor body, gasket, bolts.

Tighten
- Torque bolts to 8 N·m (6 lbs.-ft.).
 - Valve should move freely.

Assemble
- Speedometer drive gear and retaining clip.
Extension Housing and Speedometer Drive Gear

Inspect (Figure 55)
- Extension housing for cracks or porosity.
- Parking pawl and spring.

Assemble (Figures 56 and 57)
Tools Required
- J-21426 Extension Housing Seal Installer

1. Extension housing seal, use J-21426.
2. Gasket.
3. Align the parking pawl actuator rod into the extension housing.
4. Extension housing bolts.

Tighten
- Extension housing bolts to 31 N·m (32 lbs.-ft.).
Detent Valve and Modulator

Inspect (Figures 58 and 59)
- Detent valve sleeve for nicks, scratches, or scoring.
- Detent valve for nicks, or scoring.
- Modulator plunger for nicks, scratches, or scoring.
- Modulator valve sleeve for nickes, scratches, or scoring.
- Modulator valve for nicks, scratches, or scoring.

Assemble

Tools Required
- J-23100 Modulator Wrench

1. Spring seats, spring, detent valve, SLOTS FACE OIL PAN. Detent valve sleeve, oil seal, and retaining pin.
 - Lubricate with transmission fluid.
2. Modulator valve sleeve, small end first.
 - TAB MUST ENGAGE SLOT IN MODULATOR BORE.
3. Modulator valve and plunger.
4. "O" ring onto the modulator assembly.

NOTICE: Use of another tool to install the vacuum modulator may result in internal damage to the modulator.

5. Modulator assembly.

Tighten
- Torque modulator to 52 N·m (38 lbs.-ft.)

Servo Piston

Disassemble (Figure 60)
1. Servo piston and apply rod.
2. Locknut.
4. Compress the cushion spring.
5. Retaining clip.
6. Release the cushion spring.
7. Sleeve, spring seat, cushion spring and adjusting bolt.

Inspect
- Servo piston ring for:
 - nicks, burrs, or side damage
- Piston sleeve for nicks, or burrs
- Apply rod for nicks, burrs, or scoring

Assemble
1. Spring seat and cushion spring onto the sleeve.
2. Insert the sleeve into the piston.
3. Position the piston and sleeve in a press.
4. Compress the cushion spring.
5. Retaining clip.
6. Release the cushion spring.

Assemble
1. Adjusting bolt into the sleeve.
2. Lock nut. Do not tighten.
3. Piston ring, if necessary.

1. Servo apply rod, return spring, and piston.
2. Install J-23075 with tool offset toward the rear of the case.
3. Compress the servo piston return spring using J-23075. Tap servo piston with a rubber mallet while compressing the return spring to seat the piston ring.
4. Retaining ring.
5. Remove J-23075.

Adjust
1. Torque adjusting bolt to 4.5 N·m (40 lbs.-in.).
2. Back off the adjusting screw exactly 5 turns.
3. Tighten lock nut securely.

Control Valve Assembly
Disassemble (Figure 64)
2. Bolts, transfer plate and gaskets.
Disassemble
- Position the control valve as shown on a clean surface.
- Remove the valve trains beginning with the upper left hand corner.
- Some of the valves are under pressure--cover the bores while removing the retaining pins.
- Remove blind hole roll pins with a modified drill bit.
- Valves, springs, and sleeves must be laid out on a clean surface in the exact sequence they are removed.

Clean
- All valves, springs, sleeves and control valve body.
- Dry using compressed air.

Inspect
- All valves and sleeves for:
 - porosity
 - scoring
 - nicks
 - scratches
- Springs for damaged or distorted coils
- Valve body casting for:
 - porosity
 - cracks
 - interconnected oil passages
 - damaged machined surfaces.

Assemble
- Control valve assembly exactly as shown.
- Notice the position of the valve lands and sleeves position.
1. RETAINING CLIP
2. OIL RING
3. 1-2 ACCUMULATOR PISTON
4. 1-2 ACCUMULATOR SPRING
5. RETAINING PIN
6. 1-2 ACCUMULATOR VALVE PLUG
7. 1-2 ACCUMULATOR VALVE
8. 1-2 ACCUMULATOR VALVE SPRING
9/16" x 1-1/16"
9. HIGH SPEED DOWNSHIFT TIMING VALVE SPRING 7/16" x 1-5/16"
10. HIGH SPEED DOWNSHIFT TIMING VALVE SPRING 3/4" x 2-7/16"
11. TIMING AND CONTROL VALVE PLUG
12. LOW SPEED DOWNSHIFT TIMING VALVE SPRING 7/16" x 1-3/8"
13. LOW SPEED DOWNSHIFT TIMING VALVE SPRING 7/16" x 1-5/16"
14. MANUAL LOW CONTROL VALVE SPRING 7/16" x 1-5/16"
15. MANUAL LOW CONTROL VALVE
16. REVERSE CONTROL VALVE
17. 1-2 SHIFT VALVE
18. 1-2 SHIFT CONTROL VALVE SPRING 3/4" x 2-7/16"
19. 1-2 SHIFT CONTROL VALVE
20. 1-2 SHIFT CONTROL VALVE SPRING 11/16" x 1-3/4"
21. 1-2 SHIFT CONTROL VALVE SLEEVE
22. 2-3 SHIFT VALVE
23. 2-3 SHIFT CONTROL VALVE SPRING SEAT
24. 2-3 SHIFT CONTROL VALVE SPRING 11/16" x 1-3/4"
25. 2-3 SHIFT CONTROL VALVE
26. 2-3 SHIFT CONTROL VALVE SLEEVE
27. 3-2 CONTROL VALVE
28. 3-2 CONTROL VALVE SPRING 7/16" x 1-3/4"
29. 3-2 CONTROL VALVE PLUG
30. DETENT PRESSURE REGULATOR VALVE
31. DETENT PRESSURE REGULATOR VALVE SPRING 1/2" x 1-5/8"
32. MANUAL VALVE
33. MANUAL LINK

Figure 65 Typical Valve Body
Assemble (Figures 64)

1. Gasket, transfer plate, and bolts.
 - Torque to 9.5 N·m (7 lbs.-ft.)

Assemble

1. Check balls.
2. Gasket
3. Control valve. Position manual valve link as shown.
4. Bolts
 - Torque to 19 N·m (14 lbs-ft.).

External Parts

Install or Connect (Figure 68)

1. Bolts and selector lever roller and spring.
 - Torque to 13 N·m (9 lbs.-ft.).
2. Bolts, reinforcement plate, and ground wire.
 - Torque to 19 N·m (14 lbs-ft.).
3. Governor pressure switch.
 - Torque to 10 N·m (7 lbs-ft.).
4. Solenoid tubing, solenoid and bolts.
 - Torque to 19 N·m (14 lbs-ft.).
 - Make sure tubing does not interfere with manual valve operation.
5. Electrical connections.

Install or Connect (Figures 69 and 70)

1. Servo cover, gasket and bolts
 - Torque to 24.4 N·m (18 lbs-ft.).
2. Oil strainer, gasket, and bolts.
 - Torque to 18.9 N·m (14 lbs-ft.).
3. Oil pan, gasket, and bolts.
 - torque to 11 N·m (8 lbs.-ft.).
4. Torque converter.
TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>N·m</th>
<th>LB.FT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>OIL PAN-TO-CASE</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>MODULATOR ASSEMBLY</td>
<td>52</td>
<td>33</td>
</tr>
<tr>
<td>EXTENSION HOUSING-TO-CASE</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>OIL PRESSURE CHECK PLUG</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>CONVERTER HOUSING-TO-CYLINDER BLOCK</td>
<td>34</td>
<td>25</td>
</tr>
<tr>
<td>TRANSMISSION SUPPORT-TO-EXTENSION</td>
<td>44</td>
<td>33</td>
</tr>
<tr>
<td>SHIFT LEVER-TO-SELECTOR LEVER SHAFT</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>DETENT CABLE, RETAINER-TO-CASE</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>OIL COOLER FITTINGS-TO-CASE</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>OIL COOLER FITTINGS-TO-RADIATOR</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>OIL COOLER HOSE CLAMPS-TO-COOLER LINES</td>
<td>1</td>
<td>.7</td>
</tr>
<tr>
<td>SHIFTER ASS'Y-TO-CONSOLE</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>NEUTRAL SAFETY SWITCH-TO-BRACKET</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>LOWER COVER-TO-CONVERTER HOUSING</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>FLEXPLATE-TO-CONVERTER</td>
<td>48</td>
<td>35</td>
</tr>
<tr>
<td>TRANSFER PLATE-TO-VALVE BODY</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>REINFORCEMENT PLATE-TO-CASE</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>VALVE BODY-TO-CASE</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>SERVO COVER-TO-CASE</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>CONVERTER HOUSING-TO-OIL PUMP</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>CONVERTER HOUSING-TO-CASE</td>
<td>33</td>
<td>25</td>
</tr>
<tr>
<td>SELECTOR LEVER LOCKNUT</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>GOVERNOR BODY-TO-GOVERNOR HUB</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>SERVO ADJUSTING BOLT LOCKNUT</td>
<td>18</td>
<td>14</td>
</tr>
<tr>
<td>GOVERNOR PRESSURE SWITCH</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>SOLENOID</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>OIL STRAINER</td>
<td>18.9</td>
<td>14</td>
</tr>
</tbody>
</table>

Figure 71 Torque Specifications
1. SELECTIVE THRUST WASHER (OIL PUMP HUB-TO-2ND CLUTCH)
2. BRONZE THRUST WASHER (2ND CLUTCH-TO-3RD CLUTCH)
3. STEEL THRUST WASHER (2ND CLUTCH-TO-3RD CLUTCH)
4. THRUST WASHER (INPUT SHAFT-TO-INPUT SUN GEAR)
5. TORRINGTON BEARING (INPUT SHAFT-TO-INPUT SUN GEAR)
 NO'S. 4 & 5 MAY BE STAKED TOGETHER
6. TORRINGTON BEARING (SUN GEAR-TO-OUTPUT SHAFT)
7. THRUST WASHER
8. THRUST WASHER (OUTPUT SHAFT-TO-REACTION SUN GEAR)
9. TORRINGTON BEARING
10. TORRINGTON BEARING (REACTION SUN GEAR-TO-CASE)
11. THRUST WASHER
12. OIL PUMP HUB BUSHING (FRONT)
13. CONVERTER HOUSING BUSHING
14. OIL PUMP BODY BUSHING (REAR)
15. SECOND CLUTCH HUB BUSHING
16. REACTION SUN GEAR DRUM BUSHING
17. REACTION SUN GEAR DRUM BUSHING SLEEVE
18. CASE BUSHING
19. EXTENSION BUSHING

Figure 72 Washer and Bushing Location

Figure 73 Removing or Installing Converter Housing Bushing

Figure 74 Removing Oil Pump Bushing – Front
A. SCRIBE MARK
B. HOLES TO LINE UP WITH SCRIBE MARK

Figure 75 Installing Oil Pump Bushing – Front

Figure 76 Removing Oil Pump Bushing – Rear (Inner Tool Threads Into Bushing)

Figure 77 Installing Oil Pump Bushing – Rear (Inner)

Figure 78 Removing or Installing Second Clutch Bushing (Bearing Must Be Driven In Until Tool Bottoms On Bench)

Figure 79 Removing Reaction Sun Gear Drum Bushing
<table>
<thead>
<tr>
<th>Tool Code</th>
<th>Description</th>
<th>Tool Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J-8763-01</td>
<td>TRANSMISSION HOLDING FIXTURE</td>
<td>J-23327</td>
<td>CLUTCH PISTON COMPRESSOR</td>
</tr>
<tr>
<td>J-21369</td>
<td>CONVERTER LEAK TEST FIXTURE</td>
<td>J-23130-7</td>
<td>REACTION SUN GEAR DRUM BUSHING SLEEVE INSTALLER</td>
</tr>
<tr>
<td>J-8400-1</td>
<td>CAPE CHISEL</td>
<td>J-23075</td>
<td>SERVO/3RD CLUTCH PISTON SPRING COMPRESSOR</td>
</tr>
<tr>
<td>J-3289-20</td>
<td>HOLDING FIXTURE BASE</td>
<td>J-23130-5</td>
<td>OIL PUMP BUSHING REMOVER (3/4 - 14 NPT)</td>
</tr>
<tr>
<td>J-23130-3</td>
<td>REAR CASE BUSHING REMOVER/INSTALLER</td>
<td>J-23085</td>
<td>OIL PUMP TO-2ND CLUTCH DRUM GAGING TOOL</td>
</tr>
<tr>
<td>J-8092</td>
<td>DRIVER HANDLE</td>
<td>J-23082 01</td>
<td>CONVERTER-TO-OIL PUMP ALIGNMENT TOOL</td>
</tr>
<tr>
<td>J-21359</td>
<td>CONVERTER HOUSING OIL SEAL INSTALLER</td>
<td>J-23100</td>
<td>VACUUM MODULATOR WRENCH</td>
</tr>
<tr>
<td>J-21426</td>
<td>EXTENSION HOUSING OIL SEAL INSTALLER</td>
<td>J-28456-1</td>
<td>SPRAG RETAINER RING REMOVER</td>
</tr>
<tr>
<td>J-23129</td>
<td>CONVERTER HOUSING SEAL REMOVER</td>
<td>J-25019-2</td>
<td>OIL PUMP BUSHING INSTALLER (FRONT)</td>
</tr>
<tr>
<td>J-23129</td>
<td></td>
<td>J-29369-1</td>
<td>BUSHING REMOVER</td>
</tr>
<tr>
<td>J-8763-01</td>
<td>TRANSMISSION HOLDING FIXTURE</td>
<td>J-21465-17</td>
<td>CONVERTER HOUSING BUSHING REMOVER/INSTALLER</td>
</tr>
<tr>
<td>J-21369</td>
<td>CONVERTER LEAK TEST FIXTURE</td>
<td>J-23080-A</td>
<td>2ND CLUTCH PISTON SEAL INSTALLER</td>
</tr>
<tr>
<td>J-8400-1</td>
<td>CAPE CHISEL</td>
<td>J-23130-2</td>
<td>REACTION SUN GEAR DRUM BUSHING INSTALLER</td>
</tr>
<tr>
<td>J-3289-20</td>
<td>HOLDING FIXTURE BASE</td>
<td>J-23082 01</td>
<td>CONVERTER-TO-OIL PUMP ALIGNMENT TOOL</td>
</tr>
<tr>
<td>J-23130-3</td>
<td>REAR CASE BUSHING REMOVER/INSTALLER</td>
<td>J-23085</td>
<td>OIL PUMP TO-2ND CLUTCH DRUM GAGING TOOL</td>
</tr>
<tr>
<td>J-8092</td>
<td>DRIVER HANDLE</td>
<td>J-23082 01</td>
<td>CONVERTER-TO-OIL PUMP ALIGNMENT TOOL</td>
</tr>
<tr>
<td>J-21359</td>
<td>CONVERTER HOUSING OIL SEAL INSTALLER</td>
<td>J-23100</td>
<td>VACUUM MODULATOR WRENCH</td>
</tr>
<tr>
<td>J-21426</td>
<td>EXTENSION HOUSING OIL SEAL INSTALLER</td>
<td>J-28456-1</td>
<td>SPRAG RETAINER RING REMOVER</td>
</tr>
<tr>
<td>J-23129</td>
<td>CONVERTER HOUSING SEAL REMOVER</td>
<td>J-25019-2</td>
<td>OIL PUMP BUSHING INSTALLER (FRONT)</td>
</tr>
</tbody>
</table>

Figure 85 Transmission – Special Tools
MANUAL TRANSMISSION

SECTION 7B

MANUAL TRANSMISSION

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HM-290 Manual Transmission</td>
<td>7B1-1</td>
</tr>
<tr>
<td>HM-117 Manual Transmission</td>
<td>7B2-1</td>
</tr>
<tr>
<td>New Process Transmission</td>
<td>7B3-1</td>
</tr>
<tr>
<td>Borg-Warner Transmission</td>
<td>7B4-1</td>
</tr>
</tbody>
</table>
DISASSEMBLY OF THE HM-290 TRANSMISSION

Remove or Disconnect (Figures 1 and 2).

GENERAL SERVICE INFORMATION

- Lubricant

The lubricant may appear to be very dark in color, almost black. This is a normal condition. The silicon imbedded into the shift forks to reduce wear is reacting with the lubricant.

Clean

Thoroughly clean the exterior of the transmission.
<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SHAFT, INPUT</td>
</tr>
<tr>
<td>2</td>
<td>RING, SYNCHRONIZER</td>
</tr>
<tr>
<td>3</td>
<td>BEARING, PILOT</td>
</tr>
<tr>
<td>4</td>
<td>SHAFT ASSEMBLY, MAIN (2WD)</td>
</tr>
<tr>
<td>5</td>
<td>SHAFT ASSEMBLY, MAIN (4WD)</td>
</tr>
<tr>
<td>6</td>
<td>RING, SNAP (SELECTIVE)</td>
</tr>
<tr>
<td>7</td>
<td>SYNCHRONIZER ASSEMBLY, 3-4</td>
</tr>
<tr>
<td>8</td>
<td>SLEEVE, SYNCHRONIZER</td>
</tr>
<tr>
<td>9</td>
<td>BALL, SYNCHRONIZER DETENT</td>
</tr>
<tr>
<td>10</td>
<td>SPRING, SYNCHRONIZER DETENT</td>
</tr>
<tr>
<td>11</td>
<td>KEY, SYNCHRONIZER</td>
</tr>
<tr>
<td>12</td>
<td>HUB, 3-4 SYNCHRONIZER</td>
</tr>
<tr>
<td>13</td>
<td>GEAR ASSEMBLY, 3RD SPEED</td>
</tr>
<tr>
<td>14</td>
<td>BEARING ASSEMBLY, 3RD SPEED GEAR NEEDLE</td>
</tr>
<tr>
<td>15</td>
<td>RING, SNAP (SELECTIVE)</td>
</tr>
<tr>
<td>16</td>
<td>RACE, 2ND SPEED GEAR NEEDLE BEARING (INNER)</td>
</tr>
<tr>
<td>17</td>
<td>BEARING ASSEMBLY, SPEED GEAR NEEDLE</td>
</tr>
<tr>
<td>18</td>
<td>GEAR ASSEMBLY, 2ND SPEED</td>
</tr>
<tr>
<td>19</td>
<td>SYNCHRONIZER ASSEMBLY, 1-2</td>
</tr>
<tr>
<td>20</td>
<td>SLEEVE, 1-2 SYNCHRONIZER</td>
</tr>
<tr>
<td>21</td>
<td>HUB, 1-2 SYNCHRONIZER</td>
</tr>
<tr>
<td>22</td>
<td>GEAR, 1ST SPEED</td>
</tr>
<tr>
<td>23</td>
<td>SHAFT, OUTPUT (2WD)</td>
</tr>
<tr>
<td>24</td>
<td>SHAFT, OUTPUT (4WD)</td>
</tr>
<tr>
<td>25</td>
<td>GEAR ASSEMBLY, REVERSE SPEED</td>
</tr>
<tr>
<td>26</td>
<td>SYNCHRONIZER ASSEMBLY, 5TH-REVERSE</td>
</tr>
<tr>
<td>27</td>
<td>RING, SPIRAL LOCK</td>
</tr>
<tr>
<td>28</td>
<td>HUB, 5TH-REVERSE SYNCHRONIZER</td>
</tr>
<tr>
<td>29</td>
<td>RING, SNAP (SELECTIVE)</td>
</tr>
<tr>
<td>30</td>
<td>BEARING ASSEMBLY, 5TH SPEED GEAR NEEDLE</td>
</tr>
<tr>
<td>31</td>
<td>GEAR ASSEMBLY, 5TH SPEED</td>
</tr>
<tr>
<td>32</td>
<td>BEARING ASSEMBLY, OUTPUT SHAFT</td>
</tr>
<tr>
<td>33</td>
<td>RACE, ROLLER BEARING</td>
</tr>
<tr>
<td>34</td>
<td>BEARING, ROLLER</td>
</tr>
<tr>
<td>35</td>
<td>RACE, BALL BEARING (INNER)</td>
</tr>
<tr>
<td>36</td>
<td>RACE, BEARING ASSEMBLY (OUTER)</td>
</tr>
<tr>
<td>37</td>
<td>RACE, BALL BEARING (OUTER)</td>
</tr>
<tr>
<td>38</td>
<td>RING, THREADED THRUST (OUTER)</td>
</tr>
<tr>
<td>39</td>
<td>BALL, 4mm</td>
</tr>
<tr>
<td>40</td>
<td>RING, THREADED THRUST (INNER)</td>
</tr>
<tr>
<td>41</td>
<td>PIN SPRIL ROLL</td>
</tr>
<tr>
<td>42</td>
<td>RING, SNAP</td>
</tr>
<tr>
<td>43</td>
<td>WASHER, SPEEDO GEAR THRUST (2WD)</td>
</tr>
<tr>
<td>44</td>
<td>ROTOR, SPEED SENSOR</td>
</tr>
<tr>
<td>45</td>
<td>IDLER ASSEMBLY, REVERSE</td>
</tr>
<tr>
<td>46</td>
<td>RING, SNAP</td>
</tr>
<tr>
<td>47</td>
<td>WASHER, THRUST</td>
</tr>
<tr>
<td>48</td>
<td>GEAR, REVERSE</td>
</tr>
<tr>
<td>49</td>
<td>BEARING ASSEMBLY, NEEDLE</td>
</tr>
<tr>
<td>50</td>
<td>SHAFT, REVERSE IDLER</td>
</tr>
<tr>
<td>51</td>
<td>O-RING</td>
</tr>
<tr>
<td>52</td>
<td>COUNTERSHAFT ASSEMBLY</td>
</tr>
<tr>
<td>53</td>
<td>SUPPORT, IDLER SHAFT</td>
</tr>
<tr>
<td>54</td>
<td>BOLT, HEX HEAD (M8 X 50) (2WD)</td>
</tr>
<tr>
<td>55</td>
<td>BOLT, HEX HEAD (M8 X 60) (2WD)</td>
</tr>
<tr>
<td>56</td>
<td>BOLT, HEX HEAD (M8 X 25) (4WD)</td>
</tr>
<tr>
<td>57</td>
<td>SUPPORT, IDLER SHAFT</td>
</tr>
<tr>
<td>58</td>
<td>BOLT, HEX HEAD (M8 X 50)</td>
</tr>
<tr>
<td>59</td>
<td>BOLT, HEX HEAD (M8 X 50)</td>
</tr>
</tbody>
</table>

Figure 1 Legend
<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Rail Assembly, 1st & 2nd Shift</td>
</tr>
<tr>
<td>101</td>
<td>Rail, 1st & 2nd Shift</td>
</tr>
<tr>
<td>102</td>
<td>Pin, Roll</td>
</tr>
<tr>
<td>103</td>
<td>Yoke, 1st & 2nd Shift</td>
</tr>
<tr>
<td>104</td>
<td>Pin, Roll</td>
</tr>
<tr>
<td>105</td>
<td>Fork, 1st & 2nd Shift</td>
</tr>
<tr>
<td>106</td>
<td>Rail Assembly, 3rd & 4th Shift</td>
</tr>
<tr>
<td>107</td>
<td>Pin, Roll (3rd & 4th Fork)</td>
</tr>
<tr>
<td>108</td>
<td>Fork, 3rd & 4th Shift</td>
</tr>
<tr>
<td>109</td>
<td>Rail, 3rd & 4th</td>
</tr>
<tr>
<td>110</td>
<td>Pin, 3rd & 4th Shift Interlock</td>
</tr>
<tr>
<td>111</td>
<td>Rail Assembly, 5th & Reverse Shift</td>
</tr>
<tr>
<td>112</td>
<td>Rail, 5th & Reverse</td>
</tr>
<tr>
<td>113</td>
<td>Pin, Roll</td>
</tr>
<tr>
<td>114</td>
<td>Fork, 5th & Reverse Shift</td>
</tr>
<tr>
<td>115</td>
<td>Shaft Assembly, Shift</td>
</tr>
<tr>
<td>117</td>
<td>Shaft, Shift</td>
</tr>
<tr>
<td>118</td>
<td>Roller, Shift Shaft</td>
</tr>
<tr>
<td>119</td>
<td>Pin, Roller</td>
</tr>
<tr>
<td>120</td>
<td>Pin, Roll (6 x 28mm)</td>
</tr>
<tr>
<td>121</td>
<td>Finger</td>
</tr>
<tr>
<td>122</td>
<td>Pin, Roll</td>
</tr>
<tr>
<td>123</td>
<td>Socket Assembly, Shift Shaft</td>
</tr>
<tr>
<td>130</td>
<td>Boot</td>
</tr>
<tr>
<td>132</td>
<td>Seal, Shift Lever Housing</td>
</tr>
<tr>
<td>134</td>
<td>Nut, Hex Jam</td>
</tr>
<tr>
<td>136</td>
<td>Housing Assembly, Shift Lever</td>
</tr>
<tr>
<td>200</td>
<td>Housing, Front</td>
</tr>
<tr>
<td>204</td>
<td>Bolt, Hex Head (M6 x 16mm)</td>
</tr>
<tr>
<td>206</td>
<td>Retainer Assembly, Input Shaft Bearing</td>
</tr>
<tr>
<td>208</td>
<td>Washer, Input Bearing Retainer</td>
</tr>
<tr>
<td>209</td>
<td>Seal, Input Shaft Bearing Retainer Oil</td>
</tr>
<tr>
<td>210</td>
<td>Ring, Snap (Selective)</td>
</tr>
<tr>
<td>211</td>
<td>Spacer, Input Shaft</td>
</tr>
<tr>
<td>212</td>
<td>Shim, (Selective)</td>
</tr>
<tr>
<td>213</td>
<td>Ring, Input Shaft Bearing Assembly Snap</td>
</tr>
<tr>
<td>214</td>
<td>Bearing Assembly, Input Shaft</td>
</tr>
<tr>
<td>215</td>
<td>Race, Ball Bearing (Outer)</td>
</tr>
<tr>
<td>216</td>
<td>Race, Bearing Assembly (Outer)</td>
</tr>
<tr>
<td>217</td>
<td>Race, Ball Bearing (Inner)</td>
</tr>
<tr>
<td>218</td>
<td>Bearing, Roller</td>
</tr>
<tr>
<td>219</td>
<td>Pivot Assembly, Clutch Fork</td>
</tr>
<tr>
<td>220</td>
<td>Fitting, Lube</td>
</tr>
<tr>
<td>221</td>
<td>Plug, Shift Shaft/Rails</td>
</tr>
<tr>
<td>222</td>
<td>Plug, Oil Fill</td>
</tr>
<tr>
<td>223</td>
<td>Breather Assembly</td>
</tr>
<tr>
<td>224</td>
<td>Adapter, Breather Hose</td>
</tr>
<tr>
<td>225</td>
<td>Plug, Oil Drain</td>
</tr>
<tr>
<td>226</td>
<td>Bolt, Hex Head (M10 x 25.4mm)</td>
</tr>
<tr>
<td>227</td>
<td>Nut, Lock</td>
</tr>
<tr>
<td>228</td>
<td>Bearing, Shift Rail Front Housing</td>
</tr>
<tr>
<td>229</td>
<td>Lever Assembly, Shift Shaft (230 & 231)</td>
</tr>
<tr>
<td>230</td>
<td>Lever, Shift Shaft</td>
</tr>
<tr>
<td>231</td>
<td>Pin, Shift Shaft Lever</td>
</tr>
<tr>
<td>232</td>
<td>Roller, C/OVR Detent</td>
</tr>
<tr>
<td>233</td>
<td>Sleeve, Bias Spring</td>
</tr>
<tr>
<td>234</td>
<td>Spring, Bias Load Torsional</td>
</tr>
<tr>
<td>235</td>
<td>Seat, Bias Spring & Sleeve</td>
</tr>
<tr>
<td>236</td>
<td>Bolt, Hex Head (M6 x 16mm)</td>
</tr>
<tr>
<td>237</td>
<td>Support, 5th & Reverse Detent Cam</td>
</tr>
<tr>
<td>238</td>
<td>Cam, 5th & Reverse Detent</td>
</tr>
<tr>
<td>240</td>
<td>Sleeve, Detent Cam X (6 X 28mm)</td>
</tr>
<tr>
<td>241</td>
<td>Washer, Retaining</td>
</tr>
<tr>
<td>242</td>
<td>Bushing, Detent Plunger</td>
</tr>
<tr>
<td>243</td>
<td>Plunger, Shift Shaft Detent</td>
</tr>
<tr>
<td>244</td>
<td>Spring, Shift Shaft Detent Plunger</td>
</tr>
<tr>
<td>245</td>
<td>Plug</td>
</tr>
<tr>
<td>246</td>
<td>Bushing, 5 & Reverse Detent Plunger</td>
</tr>
<tr>
<td>247</td>
<td>Plunger Assembly, 5th & Reverse Detent</td>
</tr>
<tr>
<td>248</td>
<td>Spring, 5th & Reverse Detent</td>
</tr>
<tr>
<td>249</td>
<td>Plug, Hex Head</td>
</tr>
<tr>
<td>250</td>
<td>Plug, Countershaft Bearing</td>
</tr>
<tr>
<td>251</td>
<td>Ring, Snap</td>
</tr>
<tr>
<td>252</td>
<td>Shim(s)</td>
</tr>
<tr>
<td>300</td>
<td>Housing, Rear (2WD)</td>
</tr>
<tr>
<td>301</td>
<td>Housing, Rear (4WD)</td>
</tr>
<tr>
<td>307</td>
<td>Tube Assembly, Oil Delivery</td>
</tr>
<tr>
<td>308</td>
<td>Bearing, Rear Housing Shift Rail</td>
</tr>
<tr>
<td>309</td>
<td>Bearing, Rear Housing Shift Shaft</td>
</tr>
<tr>
<td>313</td>
<td>Switch Assembly, Back-Up Lamp</td>
</tr>
<tr>
<td>314</td>
<td>Sensor Assembly, Electronic Speed</td>
</tr>
<tr>
<td>315</td>
<td>O-Ring</td>
</tr>
<tr>
<td>316</td>
<td>Sensor, Electronic Speed</td>
</tr>
<tr>
<td>317</td>
<td>Bolt, Hex Head (M6 x 16)</td>
</tr>
<tr>
<td>318</td>
<td>Bearing, Rear Extension (2WD)</td>
</tr>
<tr>
<td>319</td>
<td>Seal, Slip Yoke Oil (2WD)</td>
</tr>
<tr>
<td>320</td>
<td>Seal, Output Shaft Oil (4WD)</td>
</tr>
<tr>
<td>321</td>
<td>Pin, Dowel</td>
</tr>
<tr>
<td>322</td>
<td>Plug Assembly, Clutch Shaft</td>
</tr>
<tr>
<td>323</td>
<td>Ball, Detent/Interlock</td>
</tr>
<tr>
<td>324</td>
<td>Spring, Detent</td>
</tr>
<tr>
<td>325</td>
<td>Cover, Detent Spring</td>
</tr>
<tr>
<td>326</td>
<td>Plug</td>
</tr>
</tbody>
</table>

Figure 2 Legend
Tools Required:
- J 3289-20 Base Holding Fixture
- J 8763-02 Holding Fixture C-Clamp
- J 8763-21 Balance Bracket for C-Clamp
- J 36824 Transmission Adapters
- J 36509 Detent Spring Plug Remover
- J 23907 Slide Hammer
- J 36825 4WD Output Shaft Oil Seal Remover (4WD models only)
- J 36515 Assembly Pallet
- J 36515-12 Countershaft Adapter for 1988 and 1989 1/2 models

1. Idler shaft support bolt (311) and bottom two bolts (312) (Figure 3).

- J 8763-21 onto J 8763-02 (Figure 4)

2. Backup lamp switch assembly (313) (Figure 5).

- J 36824 onto the transmission case.
- J 8763-02 onto J 36824.

3. Bolt (317) and electronic speed sensor assembly (314).
 - 2WD models only.

4. Detent plug (245) using J 36509 and J 23907, Spring (244) and plunger (243).

5. Two bolts (236), detent spring cover (325), springs (324), and balls (323) (Figure 6).
 - It may be necessary to remove sealant from inside of holes to remove the balls (323).

6. Output shaft oil seal (320) using J 36825 and J 23907 (Figure 7).
 - 4WD models only
 - Screw J 36825 into one of the three perforated holes in the seal.
 - Position vertical.

7. Six bolts (204) and input shaft bearing retainer assembly (205) (Figure 8).
1. Tap on clutch release bearing pilot with a rubber hammer.
2. Save the input bearing retainer washer (208).
3. Snap ring (selective) (210), input shaft spacer (211), ball bearing inner race (215) and shim (212).
4. Position horizontally.
5. Front housing to rear housing bolts (312) (Figure 9)
6. Drive dowels (321) into front housing.
7. Front Housing (200).

8. Countershaft bearing (203).
9. Ball bearing inner race (217) and roller bearing (218).
 - Degreasing with a liquid cleaner will make it easier to remove.
 - Grab on OD edge (non-machined surface) of the inner race (217) and remove with large pliers.

 Important
 Do not damage bearing cage while removing ball bearing inner race.

10. Idler shaft support (310).
 - snap out
11. Four rollers (118) (Figure 10).
 - Roll Pin
 - Pull shift shaft forward.
 - Cock to detent cover side.

12. Roll Pin (120)

 Important
 Support the shift shaft end while driving out finger roll pin.
 - Slide the shaft (116) all the way back and cocked over to the detent spring cover side.

13. Shift shaft socket assembly roll pin (122) (Figure 11).
 - Pin will fall into the case.
NOTICE: Excessive force will "peen" the shift shaft and damage the rear housing shift shaft bearing (309) causing increased shift effort.

18. Shift Shaft (116), shift shaft socket assembly (123) and finger (121).
19. 3rd and 4th shift fork roll pin (107) (Figure 12).
 - With a large pair of diagonal cutters - pry out.

⚠️ Important

If roll pin (107) breaks off, put the transmission in 3rd gear and cut off remainder of roll pin then drive through, cocking roll pin so it clears the 3rd speed gear.

20. Plug (326).
 - By hitting on one side - cocking it.
21. 3rd and 4th rail (109) (Figure 13).
 • Make sure the 1-2 and 5-reverse rails are in neutral or the interlock system will not allow the 3-4 rail to move.
 • Drive through the plug hole (326) enough to expose the roll pin hole (107) then insert a 3/8 punch or equivalent through the roll pin hole (107) and pull (while twisting) out the shift rail.

22. Two interlock balls (323).
 • Install J 36515 with J 36515-12 (Figure 14).
 • Remove J 8763-02 and J 36824.

23. Bolts (304) and (305).
24. 2WD rear housing assembly (300).
 • Tap upwards on the housing with a rubber hammer (alternately on each side).
25. 2WD output shaft bearing retainer (302).
27. Bearing (203).
 • Slide the snap ring (43) and washer (44) away from the rotor to make clearance for J 21427-01 (Figure 16).
28. Speed sensor rotor (45) using J 21427-01 and J 8105
 • DO NOT REUSE ROTOR AFTER REMOVAL.
29. Washer (44) and snap ring (43).
30. Spiral roll Pin (42) using J 36516 (Figure 18).
 - Lock up the transmission in 2nd and 4th gear by sliding the 1st-2nd rail assembly (100) and the 3rd-4th shift fork (108) downward towards J 36515 (Figure 17).
 - Move the black depth locating tang for the spiral roll pin remover/installer out of the way, then drive down.
 - Put the black depth locating tang back in place with the rod going through it.
 - Turn J 36516 counter clockwise till it stops.

31. Snap ring (43).

32. Threaded thrust ring (inner) (41), ball (40) and threaded thrust ring (outer) (39).
 - Hold the countershaft against the mainshaft on 2WD models.
 - Turn J 36516 clockwise till both threaded thrust rings (39) and (41) are completely apart.

33. 4WD Rear Housing Assembly (301) and bearing (203) (Figure 19).
 - Tap upwards on the housing with a rubber hammer (alternately on each side).
 - Save the ball bearing outer race (38) that will be left in the rear housing.

34. Reverse idler gear assembly (46) and countershaft (53) (Figure 20).

35. 1-2 shift rail assembly (100), 5-Reverse shift rail assembly (111), 2 and 3-4 shift fork (108).
 - By Snapping them off

36. Mainshaft assembly (4) or (5).
HM-290 MANUAL TRANSMISSION 7B1-11

Figure 17 Locking Up Transmission

Important

Leave the synchronizer ring (2) on the 3-4 synchronizer assembly (7) to prevent the synchronizer detent balls (9) from popping out.

36. Input shaft gear (1) and pilot bearing (3).

DISASSEMBLY AND ASSEMBLY OF MAINSHAFT 2WD AND 4WD

NOTICE: Optional method in Figure 21 can be used if the service press bed is not wide enough for the 1st speed to pass through. This method can be used to totally disassemble the main shaft, if necessary.

Tools Required:

- Hydraulic Press
- J 36513 Gear and Bearing Separator Plate

1. Snap ring (selective) (6) (Figure 21).
2. 3-4 synchronizer assembly (7), synchronizer rings (2) and third speed gear (13) using J 36513 and hydraulic press.
 - Scribe on hub and sleeve so the parts can be installed in the same position.
 - Leave the synchronizer rings (2) to prevent the synchronizer detent balls (9) from popping out.
3. Third gear bearing (14).
4. Snap ring (selective) (15) (Figure 22).
5. Second speed gear assembly (18) and second speed gear bearing race (16) using J 36513 and hydraulic press.
6. Speed gear bearing assembly (17).
 - Leave the synchronizer ring (2) on the 1-2 synchronizer assembly (19) to prevent the synchronizer detent balls (9) from popping out.
7. First speed gear (22) and 1-2 synchronizer assembly (19) using J 36513 and hydraulic press.
 - Scribe on hub and sleeve so the parts can be installed in the same position.
 - Leave the synchronizer rings (2) on the 1-2 synchronizer assembly (19) to prevent the synchronizer detent balls (9) from popping out.
8. Speed gear bearing assembly (17).
9. Inner ball bearing race (36), roller bearing (35), roller bearing race (34) and fifth speed gear (31) using J 36513 and hydraulic press (Figure 24).
10. Fifth speed gear bearing (30).
11. Snap ring (selective) (29) (Figure 25).
12. Reverse speed gear assembly (25) and 5th-reverse synchronizer assembly (26) using J 36513 and hydraulic press.
 - Scribe on hub and sleeve so the parts can be installed in the same position.
 - Leave the synchronizer ring (2) on the 5th-reverse synchronizer assembly (26) to prevent the synchronizer detent balls (9) from popping out.
13. Speed gear bearing assembly (17).
14. Place 1-2, 3-4, and 5th speed synchronizers in separate shop towels, wrap assemblies and press against inner hub.

Important

- DO NOT MIX PARTS

Clean

- All parts in a suitable solvent and air dry.

Important

- Do not spin dry the ball bearings.
Figure 18 Removing Threaded Thrust Rings

39 RING, THREADED THRUST (OUTER)
40 BALL, 4mm
41 RING, THREADED THRUST (INNER)
42 PIN SPRIL ROLL
43 RING, SNAP
Figure 19 Removing 4WD Rear Housing

38 RACE, BALL BEARING (OUTER)
46 IDLER ASSEMBLY, REVERSE
53 COUNTERSHAFT ASSEMBLY, (MG5)
100 RAIL ASSEMBLY, 1ST & 2ND SHIFT
111 RAIL ASSEMBLY, 5TH & REVERSE SHIFT
203 BEARING, COUNTERSHAFT
301 HOUSING, REAR (4WD)

Figure 20 Removing Gears and Shift Rails

1 SHAFT, INPUT
2 RING, SYNCHRONIZER
3 BEARING, PILOT
4 SHAFT ASSEMBLY, MAIN (2WD)
5 SHAFT ASSEMBLY, MAIN (4WD)
37 RACE, BEARING ASSEMBLY (OUTER)
38 RACE, BALL BEARING (OUTER)
46 IDLER ASSEMBLY, REVERSE
53 COUNTERSHAFT ASSEMBLY,
100 RAIL ASSEMBLY, 1ST & 2ND SHIFT
108 FORK, 3RD & 4TH SHIFT
111 RAIL ASSEMBLY, 5TH & REVERSE SHIFT
203 BEARING, COUNTERSHAFT
2 RING, SYNCHRONIZER
17 BEARING ASSEMBLY, SPEED GEAR NEEDLE
19 SYNCHRONIZER ASSEMBLY, 1-2
22 GEAR, 1ST SPEED
23 SHAFT, OUTPUT (2WD)
24 SHAFT, OUTPUT (4WD)

Figure 23 Removing 1st Gear Components

23 SHAFT, OUTPUT (2WD)
24 SHAFT, OUTPUT (4WD)
30 BEARING ASSEMBLY, 5TH SPEED GEAR NEEDLE (MG5)
31 GEAR ASSEMBLY, 5TH SPEED (MG5)
34 RACE, ROLLER BEARING
35 BEARING, ROLLER
36 RACE, BALL BEARING (INNER)

Figure 24 Removing 5th Gear Components
Figure 25 Removing Reverse Gear Components
Inspect (Figure 26 and 27)

1. Gears for cracks, hicks/nicks, chipped gear teeth or high spots (a small shiny spot on the gear teeth mating surface) that could cause gear noise.
2. Related surfaces on the gears like thrust faces and bearing surface diameters.
3. Synchronizer sleeves for a sliding fit on the synchronizer hubs and for the hubs to have a force fit on the mainshaft splines. Replace the hub(s) if they do not require a force fit on the mainshaft.
4. Synchronizer springs and keys for damage.
5. Synchronizer rings for excess wear.
6. Synchronizer clutching teeth for wear, scuffed, nicked, burred or broken teeth.
7. Speed gear clutching cones for synchronizer ring metal transfer.
8. All gear teeth for excess wear.
 • The black phosphate coating will develop wear patterns, this is a normal condition.
10. Lubricate all bearings and check for rough rotation.
 • If scuffed, nicked, burred, scoring, or synchronizer ring metal transfer conditions cannot be removed with a soft stone or crocus cloth, replace the component and inspect mating parts.
 • Lubricate all components as assembly progresses. Use lubricant 5W-30 GM P/N 1052931 or equivalent.
Figure 27 Main Shaft Components
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SHAFT, INPUT</td>
</tr>
<tr>
<td>2</td>
<td>RING, SYNCHRONIZER</td>
</tr>
<tr>
<td>3</td>
<td>BEARING, PILOT</td>
</tr>
<tr>
<td>4</td>
<td>RING, SNAP (SELECTIVE)</td>
</tr>
<tr>
<td>5</td>
<td>SYNCHRONIZER ASSEMBLY, 3-4</td>
</tr>
<tr>
<td>6</td>
<td>SLEEVE, SYNCHRONIZER</td>
</tr>
<tr>
<td>7</td>
<td>BALL, SYNCHRONIZER DETENT</td>
</tr>
<tr>
<td>8</td>
<td>SPRING, SYNCHRONIZER DETENT</td>
</tr>
<tr>
<td>9</td>
<td>KEY, SYNCHRONIZER</td>
</tr>
<tr>
<td>10</td>
<td>HUB, 3-4 SYNCHRONIZER</td>
</tr>
<tr>
<td>11</td>
<td>GEAR ASSEMBLY, 3RD SPEED</td>
</tr>
<tr>
<td>12</td>
<td>BEARING ASSEMBLY, 3RD SPEED GEAR NEEDLE</td>
</tr>
<tr>
<td>13</td>
<td>RING, SNAP (SELECTIVE)</td>
</tr>
<tr>
<td>14</td>
<td>RACE, 2ND SPEED GEAR NEEDLE BEARING (INNER)</td>
</tr>
<tr>
<td>15</td>
<td>BEARING ASSEMBLY, SPEED GEAR NEEDLE</td>
</tr>
<tr>
<td>16</td>
<td>GEAR ASSEMBLY, 2ND SPEED</td>
</tr>
<tr>
<td>17</td>
<td>SYNCHRONIZER ASSEMBLY, 1-2</td>
</tr>
<tr>
<td>18</td>
<td>SLEEVE, 1-2 SYNCHRONIZER</td>
</tr>
<tr>
<td>19</td>
<td>HUB, 1-2 SYNCHRONIZER</td>
</tr>
<tr>
<td>20</td>
<td>GEAR, 1ST SPEED</td>
</tr>
<tr>
<td>21</td>
<td>SHAFT, OUTPUT (2WD)</td>
</tr>
<tr>
<td>22</td>
<td>SHAFT, OUTPUT (4WD)</td>
</tr>
<tr>
<td>23</td>
<td>GEAR ASSEMBLY, REVERSE SPEED</td>
</tr>
<tr>
<td>24</td>
<td>SYNCHRONIZER ASSEMBLY, 5TH-REVERSE</td>
</tr>
<tr>
<td>25</td>
<td>RING, SPIRAL LOCK</td>
</tr>
<tr>
<td>26</td>
<td>HUB, 5TH-REVERSE SYNCHRONIZER</td>
</tr>
<tr>
<td>27</td>
<td>RING, SNAP (SELECTIVE)</td>
</tr>
<tr>
<td>28</td>
<td>BEARING ASSEMBLY, 5TH SPEED GEAR NEEDLE</td>
</tr>
<tr>
<td>29</td>
<td>GEAR ASSEMBLY, 5TH SPEED</td>
</tr>
<tr>
<td>30</td>
<td>BEARING ASSEMBLY, OUTPUT SHAFT</td>
</tr>
<tr>
<td>31</td>
<td>RACE, ROLLER BEARING</td>
</tr>
<tr>
<td>32</td>
<td>BEARING, ROLLER</td>
</tr>
<tr>
<td>33</td>
<td>RACE, BALL BEARING (INNER)</td>
</tr>
<tr>
<td>34</td>
<td>RACE, BEARING ASSEMBLY (OUTER)</td>
</tr>
<tr>
<td>35</td>
<td>RACE, BALL BEARING (OUTER)</td>
</tr>
<tr>
<td>36</td>
<td>RING, THREADED THRUST (OUTER)</td>
</tr>
<tr>
<td>37</td>
<td>BALL, 4mm</td>
</tr>
<tr>
<td>38</td>
<td>RING, THREADED THRUST (INNER)</td>
</tr>
<tr>
<td>39</td>
<td>PIN SPRIL ROLL</td>
</tr>
<tr>
<td>40</td>
<td>RING, SNAP</td>
</tr>
<tr>
<td>41</td>
<td>WASHER, SPEEDO GEAR THRUST (2WD)</td>
</tr>
<tr>
<td>42</td>
<td>ROTOR, SPEED SENSOR</td>
</tr>
</tbody>
</table>

Figure 27 Legend
Assemble

Important

The following components will require heating prior to installation during assembly procedures.

- 7-10 minutes, 120° C (250° F)
 - race (34) and (36)
 - 2WD speed sensor rotor (45)

- 20 minutes MINIMUM, 120° C (250° F)
 - 2nd speed gear race (16)

Tools Required:
- Hydraulic Press
- J 36183 Press Tube
- J 36184 Adapter, Press Tube Reducer
- J 36513 Gear and Bearing Separator Plate
- J 22912-01 Small Gear Puller
- J 6133-01 Speedo Gear and Bearing Installer

1. Synchronizer assembly procedure (7), (19) and (26), (Figure 28).
2. Bearing assembly (17), reverse speed gear (25) (Figure 29).

Important

- When pressing the 5th-reverse synchronizer assembly (26):
 - Manually align and engage splines.
 - Press until seated.
 - Be sure all shavings are removed.

3. 5th-Reverse synchronizer assembly (26) with synchronizer ring (2) using J 36183, J 36184, J36513 and hydraulic press.
 - Check scribe marks for correct positions.
 - With spiral lock ring (27) towards reverse speed gear (25).

4. NEW selective snap ring (29).
 - Install the thickest snap ring that will fit in the groove.

5. Bearing assembly (30) and 5th speed gear (31) (Figure 30).

Important

- When pressing the bearing races onto the main shaft (23) or (24):
 - Press until there is no clearance between roller bearing race and stop on main shaft.

 - Shoulder down towards reverse gear.

7. Roller bearing (35), ball bearing (inner) race (36) HEATED using J 6133-01, J 36513 and hydraulic press.
 - Apply grease to roller bearing.
 - SMALLER DIAMETER OF BEARING CAGE UP.
 - Shoulder of ball bearing (inner) race down towards reverse gear.

SYNCHRONIZER ASSEMBLY PROCEDURES

Install

 - Check scribe marks for correct positions.
 - Remove spiral lock ring (27) for easier assembly (5th-Reverse only).

2. Spring (10) into key (11):
 - Assemble into the hub.

3. Position assembly as in View A.

4. Balls (9):
 - Push the ball into the sleeve using a screwdriver.
 - Push the sleeve (8) (20) down just enough to retain the ball (9).
 - Slide the sleeve up just enough to install each of the two remaining balls (one at a time).

5. Synchronizer rings (2):
 - Make sure synchronizer ring tangs line up with the keys.

6. Center the hub, keys and balls by pushing on the synchronizer rings, View B. Balls will “click” into position.
 - Install spiral lock ring (27) (5th-Reverse only).

Figure 28 Synchronizer Assembly Procedure
<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DIM. A mm (IN.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23049724</td>
<td>2.20 (.087)</td>
</tr>
<tr>
<td>23049725</td>
<td>2.15 (.085)</td>
</tr>
<tr>
<td>23049726</td>
<td>2.10 (.083)</td>
</tr>
<tr>
<td>23049727</td>
<td>2.05 (.081)</td>
</tr>
<tr>
<td>23049728</td>
<td>2.00 (.079)</td>
</tr>
</tbody>
</table>

2 RING, SYNCHRONIZER
17 BEARING ASSEMBLY, SPEED GEAR NEEDLE
23 SHAFT, OUTPUT (2WD)
24 SHAFT, OUTPUT (4WD)
25 GEAR ASSEMBLY, REVERSE SPEED
26 SYNCHRONIZER ASSEMBLY, 5TH-REVERSE
29 RING, SNAP (SELECTIVE)

Figure 29 Reverse Gear Components Installed

23 SHAFT, OUTPUT (2WD)
24 SHAFT, OUTPUT (4WD)
30 BEARING ASSEMBLY, 5TH SPEED GEAR NEEDLE (MG5)
31 GEAR ASSEMBLY, 5TH SPEED (MG5)
34 RACE, ROLLER BEARING
35 BEARING, ROLLER
36 RACE, BALL BEARING (INNER)

Figure 30 Bearing Races and 5th Gear Installed
8. Bearing assembly (17) and 1st speed gear (22) (Figure 31).

Important
- When pressing the 1st-2nd synchronizer assembly (19):
 - Manually align and engage splines.
 - Start press operation, STOP before tangs engage.
 - Lift and rotate gear (22), to engage synchronizer ring (2).
 - Continue to press until seated.
 - Be sure all shavings are removed.

9. 1-2 synchronizer assembly (19) with both synchronizer rings (2) using J 36183, J 36184, J 22912-01 and hydraulic press.
 - Check scribe marks for correct positions.

Important
- The groove on the outside of the sleeve MUST GO TOWARDS THE 2ND SPEED GEAR to prevent gear clash during 1st and 2nd gear shifts (the teeth on the sleeve have different angles).

10. Bearing assembly (17) and 2nd speed gear (18) (Figure 32).
 - Make sure bearing cage is together.

11. 2nd gear race (16) HEATED using J 36183, J 36184, J 22912-01 and hydraulic press.

12. NEW selective snap ring (15)
 - Install the thickest snap ring that will fit in the groove.

13. Bearing assembly (14) and 3rd speed gear (13) (Figure 33).

Important
- When pressing the 3rd-4th synchronizer assembly (7):
 - Manually align and engage splines.
 - Start press operation, STOP before tangs engage.
 - Lift and rotate gear (13), to engage synchronizer ring (2).
 - Continue to press until seated.
 - Be sure all shavings are removed.

14. 3-4 synchronizer assembly (7) with both synchronizer rings (2) using J 36183, J 36184, J 22912-01 and hydraulic press.
 - Check scribe marks for correct positions.

15. NEW selective snap ring (6)
 - Install the thickest snap ring that will fit in the groove.

COUNTERSHAFT INSPECTION

Clean
- All parts in a suitable solvent and air dry.
Part No. DIM. A (mm) (IN.)

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DIM. A (mm) (IN.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23049718</td>
<td>2.30 (.091)</td>
</tr>
<tr>
<td>23049719</td>
<td>2.25 (.089)</td>
</tr>
<tr>
<td>23049720</td>
<td>2.20 (.087)</td>
</tr>
<tr>
<td>23049721</td>
<td>2.15 (.085)</td>
</tr>
<tr>
<td>23049722</td>
<td>2.10 (.083)</td>
</tr>
<tr>
<td>23049723</td>
<td>2.05 (.081)</td>
</tr>
<tr>
<td>23049790</td>
<td>2.00 (.079)</td>
</tr>
<tr>
<td>23049986</td>
<td>2.00 (.079)</td>
</tr>
<tr>
<td>23049987</td>
<td>1.95 (.077)</td>
</tr>
<tr>
<td>23049988</td>
<td>1.90 (.075)</td>
</tr>
<tr>
<td>23049989</td>
<td>1.85 (.073)</td>
</tr>
<tr>
<td>23049990</td>
<td>1.80 (.071)</td>
</tr>
</tbody>
</table>

1. Ring, Snap (Selective)
2. Ring, Synchronizer
3. Ring, Snap (Selective)
4. Synchronizer Assembly, 3-4
5. Gear Assembly, 3rd Speed
6. Bearing Assembly, 3rd Speed Gear Needle
7. Shaft, Output (2WD)
8. Shaft, Output (4WD)

Figure 32 2nd Gear and Components Installed

Figure 33 3rd Gear and Components Installed
Inspect (Figure 34)
1. Shaft (53), for cracks, replace if these conditions exist.
2. Gear teeth (53) for scuffed, nicked, burred, broken teeth or high spots (a small shiny spot on the gear teeth mating surface) that could cause gear noise.
3. Bearings (203) for roughness of rotation, burred or pitted condition, replace if these conditions exist (Figure 1).
4. Bearing races (202) for scoring, wear or overheating (Figure 1).

Important
- If scuffed, nicked, burred or scoring conditions cannot be removed with a soft stone or crocus cloth, replace the component.
- Fifth gear CANNOT be pressed off the countershaft assembly (53), replace as an assembly only.

Disassemble (Figure 35)
1. Snap ring (47).
2. Thrust washer (48).
3. Ball (40).
4. Reverse gear (49).
5. Bearing assemblies (50) (THREE).
6. O-ring (52).

Clean
- All parts in a suitable solvent and air dry.

Inspect
1. Gear teeth (49), for scuffed, nicked, burred, broken teeth or high spots (a small shiny spot on the gear teeth mating surface) that could cause gear noise.
2. Bearing assemblies (50) for roughness of rotation, burred or pitted condition and gage damage, replace if these conditions exist.
3. Shaft (51), for scoring, wear or overheating.

Important
- If scuffed, nicked, burred or scoring conditions cannot be removed with a soft stone or crocus cloth, replace the component.

Assemble (Figure 43)
- Lubricate all components as assembly progresses. Use lubricant 5W-30 GM P/N 1052931 or equivalent.
1. Three bearing assemblies (50).
2. Reverse gear (49).
 - Extended part of the hub faces thrust washer.
3. Thrust washer (48) and ball (4mm) (40).
 - Retain ball with petroleum jelly.
4. NEW snap ring (47)
5. NEW o-ring (52).

Disassembly and Assembly of Front Housing Assembly

Disassemble (Figure 36)
Tools Required:
J6125-1B Slide Hammer
200 HOUSING, FRONT
202 RACE, COUNTERSHAFT BEARING
204 BOLT, HEX HEAD (M6 X 25mm)
213 RING, INPUT SHAFT BEARING ASSEMBLY SNAP
216 RACE, BEARING ASSEMBLY (OUTER)
219 PIVOT ASSEMBLY, CLUTCH FORK
220 FITTING, LUBE
221 PLUG, SHIFT SHAFT/RAILS
222 PLUG, OIL FILL
223 BREATHER ASSEMBLY
224 ADAPTER, BREATHER HOSE
225 PLUG, OIL DRAIN
226 BOLT, HEX HEAD (M10 X 25.4mm)
227 NUT, LOCK
228 BEARING, SHIFT RAIL FRONT HOUSING
229 LEVER ASSEMBLY, SHIFT SHAFT (230 & 231)
230 LEVER, SHIFT SHAFT
231 PIN, SHIFT SHAFT LEVER
232 ROLLER, C/OVR DETENT
233 SLEEVE, BIAS SPRING
234 SPRING, BIAS LOAD TORSIONAL
235 SEAT, BIAS SPRING & SLEEVE
236 BOLT, HEX HEAD (M6 X 16mm)
237 SUPPORT, 5TH & REVERSE DETENT CAM
238 CAM, 5TH & REVERSE DETENT
240 SLEEVE, DETENT CAM PIVOT
241 WASHER, RETAINING
242 BUSHING, DETENT PLUNGER
243 BUSHING, 5 & REVERSE DETENT PLUNGER
247 PLUNGER ASSEMBLY, 5TH & REVERSE DETENT
248 SPRING, 5TH & REVERSE DETENT
249 PLUG, HEX HEAD
250 PLUG, COUNTERSHAFT BEARING
251 RING, SNAP
252 SHIMS

Figure 36 Front Housing Components
Remove or Disconnect

1. Ball bearing outer race (216), using brass drift.
2. Three shift rail front housing bearings (228), using J 36800 and J 23907 (Figure 37).

3. Clutch fork pivot assembly (219), using J 36510 and J 6125-1B (Figure 38).
 - Put an additional nut (with threads of 3/8-16 in.) into J 36510 and thread J 6125-1B into nut.
 - Tighten both nuts.
 - Slide hammer out pivot.
4. Shift shaft/rails plugs (221)
 - Use a punch to drive the plugs out.
5. Countershaft bearing plug (250) (Figure 39).
 - Remove staking.
 - Drill hole through plug (250) with 5/16" drill bit.
 - Tap using 3/8-16 tap.
 - Screw slide hammer J 6125-1B into the plug.
 - Remove the plug.

6. Snap ring (251), shim(s) (252) and countershaft bearing race (202) using J 36799 and J 8092.

Important

If countershaft bearing race (202) is removed refer to COUNTERSHAFT ENDPLAY ADJUSTMENT.

Measure (Figure 40)

The countershaft bearing race bore in two places diagonally, 4mm (0.157 inch) in from the inside of the transmission housing. Replace the housing if the bore is not within 51.946 to 51.965mm (2.045 to 2.046 inch).
7. Hex head plug (249), 5th-reverse detent spring (248), 5th-reverse detent plunger assembly (247) (Figure 41).

Assembly

8. Bolt (204), washer (241), 5th-reverse cam (239) and bushing (240) (Figure 42).

- Release tension of bias spring (234) from the end of the shift shaft lever pin (231) using a screwdriver.

CAUTION: Spring is under high tension

9. Bolt (236), bias spring and sleeve seat (235), bias load torsional spring (234), bias spring sleeve (233), shift shaft lever assembly (229) and detent roller (232) (Figure 43).

10. Bolt (236), detent cam support (237).

11. Two 5th-reverse detent bushings (246), using J 36506 (Figure 44).

- Drive J 36506 till BOTH bushings are removed.

12. Two detent plunger bushings (242), using J 36507 (Figure 45).

- Remove ONE bushing at a time

- **DO NOT REMOVE** metal tube from case.

14. Oil fill plug (222) and oil drain plug (225), using J 36511 (Figure 46).

15. Gasket material from the case using liquid gasket remover.

Inspect
Clean

- All parts in a suitable solvent and air dry.

1. Bearing race bore, for wear, scratches or grooves; if countershaft bearing race is worn or damaged the rear housing MUST be replaced.

2. Bushings, for scores, burrs, roundness or evidence or overheating;

3. Case, for cracks, threaded opening for damaged threads, mounting faces for nicks, burrs, or scratches; if case is cracked, it must be replaced.

4. Machined mating surfaces for flatness, check with a straight edge.

Important

- If scratches, grooves or scoring cannot be removed with a soft stone or crocus cloth, replace the component.

- Clean-up damaged threads with correct size tap.

Important

The following component will require cooling prior to installation during assembly procedures.
Tools Required:
- J 36190 Drive handle
- J 36507 Detent Bushing Remover and Installer Plug Remover
- J 36510 Clutch Pivot Remover/Installer
- J 36800 Shift Rail Bushing Remover
- J 36506 Reverse Detent Bushing Remover and Installer
- J 36511 Oil Fill Plug Hex Bit (17mm)
- J 36799 Countershaft Bearing Race Shimming Tool

1. Ball bearing outer race (216), using brass drift.
 - Put a shop towel over the bearing during installation.
2. Three shift rail front housing bearings (228), using J 36798-1 and J 36190 (Figure 47).
 - Install flush and stake using J 36798-2, J 36798-1 and J 36190.
 - DO NOT STAKE the tabs on the bushings.
3. Clutch fork pivot assembly (219), using J 36510 and J 36190 (Figure 48).
 - Grease after installation through lube fitting (220).
4. Two detent plunger bushings (242), using J 36507 (Figure 49).
 - Install one at a time.
 - Install the first bushing till the second scribe mark on the tool lines up with the housing.
 - Install the second bushing till the first scribe mark on the tool lines up with the housing.
5. Countershaft bearing race (202) using J 36799 and J 8092 (Figure 50).

Important

If any of the parts listed below are replaced the COUNTERSHAFT ENDPLAY SHIMMING PROCEDURE must be performed:
- Countershaft bearing race.
- Countershaft bearings
- Countershaft
- Front or rear housing
Countershaft bearing plug MUST be cooled at 0°C (32°F) for a MINIMUM of 20 minutes before installation.

6. NEW Countershaft bearing plug (250) using J 36799 and J 8092.
 - Apply gasket maker GM P/N 1052943 or equivalent to the outside edge of the plug.
 - Stake in three places evenly apart.

7. Two 5th-reverse detent bushings (246), using J 36506 (Figure 51).
 - Install one at a time.
 - Install the first bushing till the second scribe mark on the tool lines up with the housing.
 - Install the second bushing till the first scribe mark on the tool lines up with the housing.

8. Detent cam support (237) and bolt (236) (Figure 52).

9. Tighten
 - Bolt (236) to 8.5 N·m (7 Lb. Ft.).

10. 5th-reverse cam (239), bushing (240), washer (241) and bolt (204).

11. Tighten
 - Bolt (204) to 8.5 N·m (7 Lb. Ft.).

12. Detent roller (232) on shift shaft lever assembly (229) and install into housing (Figure 53).

13. Bias spring sleeve (233), bias load torsional spring (234), bias spring and sleeve seat (235) and bolt (236).

14. Tighten
 - Bolt (236) to 8.5 N·m (7 Lb. Ft.).

15. Bias load torsional spring (235) end back onto the shift shaft lever pin (231).

16. 5th-reverse plunger assembly (247), 5th-reverse detent spring (248), hex head plug (249) (Figure 54).
 - Make sure slot in plunger is lined up with reverse cam.
 - Apply pipe sealant with Teflon™ GM P/N 1052080 or equivalent to the threads.

17. Tighten
 - Hex head plug (249) to 60 N·m (46 Lb. Ft.).

NOTICE: Take great care not to strip the bore threads while installing hex head plug.

15. Oil fill plug (222) and oil drain plug (225), using J 36511 torque drain plug to 60 N·m (46 Lb. Ft.) (Figure 55).
 - Apply pipe sealant with Teflon™ GM P/N 1052080 or equivalent to the threads.

16. Shift shaft/rails plugs (221)
 - Apply gasket maker GM P/N 1052943 to the edge of the plugs.
 - Install flush
DISASSEMBLY AND ASSEMBLY OF REAR HOUSING ASSEMBLY

Disassemble (Figure 56)

Tools Required:
- J 36800 Shift Rail Bushing Remover
- J 23907 Slide Hammer with pilot bearing puller
- J 26941 2WD Output Shaft Oil Seal Remover (2WD models only)
- J 36032 Bushing/Bearing Remover

Remove or Disconnect

1. Rear housing shift rail bearings (308) (three), using J 36800 and J 23907 (Figure 57).
 - Screw J 36800 into the bearing, then slide hammer out.
2. Rear housing shift shaft bearing (309), using J 23907 with pilot bearing puller or J 36032 (Figure 58).
 - Position puller legs behind bearing lip.
 - Tighten.
 - Slide hammer out.
 - If the bearing lip breaks off, position puller legs behind the inside (outer end) bearing lip and repeat procedure.
3. Three bolts (306), output shaft bearing retainer (303) (4WD), bearing assembly (outer) race (37), using brass drift then remove shim (212).
3. Case, for cracks, threaded opening for damaged threads, mounting faces for nicks, burrs, or scratches; if case is cracked, it must be replaced.

4. Machined mating surfaces for flatness, check with a straight edge.

Important

- If scratches, grooves or scoring cannot be removed with a soft stone or crocus cloth, replace the component.
- Clean-up damaged threads with correct size tap.

Assemble

Tools Required:
- J 36190 Drive Handle
- J 36503 Extension Housing Seal Installer (2WD models only)
- J 36798-1 Shift Rail Bushing Installing Tool
- J 36798-2 Shift Rail Bushing Staking Tool

1. Rear housing shift rail bearings (308) (three), using J 36190 and J 36798-1 (Figure 60).
 - Stake with J 36798-2, J 36798-1 and J 36190.

2. Rear housing shift shaft bearing (309), using J 36506 and J 36190 (Figure 61).
 - Install bearing into bore so that the writing on bearing lip faces down.
 - Install flush.

3. Shim (212), bearing assembly (outer) race (37), using brass drift.
 - 4WD models only
 - Output shaft bearing retainer (303).
 - Bolts (Three) (306) apply threadlocker GM P/N 12345382 or equivalent to the threads.

Tighten

- Bolts (306) to 22 N·m (17 Lb. Ft.).
Important

The OUTPUT BEARING SELECTIVE SHIM PROCEDURE MUST be performed before installing a new bearing assembly.

4. Two dowel pins (321).
 - Drive till flush.

5. Slip yoke oil seal (319), using J 36503 (Figure 62).
 - 2WD models only.
 - Fill between the seal lips with chassis grease

6. Plug (322).
 - Apply gasket maker GM P/N 1052943 or equivalent around the edge of the plug.

SHIFT SHAFT/RAIL AND FORK ASSEMBLIES INSPECTION

Inspect (Figure 63)

Clean
 - All parts in a suitable solvent and air dry.
The parts that compose the 1-2 (100), 5th-reverse (111) shift rail and fork assemblies are serviceable as an assembly only.

1. Shafts (101, 109, 112 and 117) for wear or scoring.
2. Forks (105, 108 and 114) for wear, scoring or distortion. The edges will turn black in color, this is a normal condition.
3. Levers (103 and 121) for wear or distortion.
4. Pins (119 and 110) for wear or distortion.
5. Shift shaft socket assembly (123) components for wear or distortion.

Important

- Wear, scoring or distortion requires replacement of assembly and close inspection of mating parts.

SHIFT LEVER HOUSING ASSEMBLY INSPECTION

Clean

- The gasket material from the machined mating surface with liquid gasket remover.

Inspect (Figure 64)

- The parts that compose the shift lever housing assembly (136) are serviceable as an assembly only. Replace the assembly for any shift lever rattle/buzz.

1. Boot (130) for cracks, tears or distortion. Replace the boot if any of these conditions exist.
2. Machined mating surface for flatness, check with a straight edge.
INPUT SHAFT BEARING RETAINER ASSEMBLY

Seal Replacement

Remove or Disconnect (Figure 65)

Tools Required:
- J 29369-2 Input Shaft Bearing Retainer Oil Seal Remover
- J 23907 Slide Hammer
- J 25070 Heat Gun

1. Rubber seal lip with pliers
 - Exposing the metal lip.
 - Save the input bearing retainer washer (208).
 - Install J 29369-2 below metal lip of seal.
 - Expand to finger tight.
 - Turn five additional turns.
 - Install J 23907 into J 29369-2.

2. Input shaft bearing retainer oil seal (209).
 - Heat oil seal with J 25070 for a minimum of three minutes.
 - Hold clutch release bearing pilot with heat resisting glove or equivalent, then slide hammer out seal.

3. Gasket material from the retainer (205) using liquid gasket remover.

Inspect

1. Clutch release bearing pilot (206) for scoring, wear or cracks, especially at the flange.

Install or Connect (Figure 66)

Tools Required:
- J 36504 Input Shaft Bearing Oil Seal Installer

1. NEW oil seal (209), using J 36504.
 - Fill between the seal lips with chassis grease.

COUNTERSHAFT ENDPALY ADJUSTMENT

Important

- This procedure must be performed when any of the following components are replaced:
 - Countershaft bearings (203) and/or front housing countershaft bearing race (202).
 - Front housing (200), rear housing (300) (2WD) or (301) (4WD).
 - Gear rattle noise complaint (not clutch disc related).

Remove or Disconnect (Figure 67)

Important

The following component will require cooling prior to installation during assembly procedures.
- 20 minutes MINIMUM, 0° C (32° F).
 - Countershaft bearing plug (250).
Tools Required:
- J 36799 Countershaft Bearing Race Shimming Tool
- J 8092 Universal Drive Handle
- J 8001 Dial Indicator Set
- J 25025-A Dial Indicator Stand and Guide Pin Set

1. Bearing race (216) using brass drift.
2. Countershaft bearing plug (250). Refer to page 26, step number 5 for the removal procedure.
3. Snap Ring (251) and shim(s) (252).
4. Oil fill plug (222).

Inspect
1. Bearing (203) and countershaft (53).

Important
- SMALLER DIAMETER OF BEARING CAGE INTO BEARING RACE (202).
- Install bearings (203) in bearing races (202) prior to assembly.
- Retain with petroleum jelly.
2. Bolts (312).
 - Use only 4 or 5 (evenly spaced).

Tighten
- Bolts (312) to 35 N·m (27 Lb. Ft.).
3. J 8001 and J 25025-A to front housing in one of the input shaft bearing retainer bolt holes.

Measure
- Use a long screwdriver to pry the countershaft upward, noting the dial indicator travel. Use the fill plug hole to reach the third gear part of the countershaft for prying.

Important
- Measure off gear tooth.
- Make sure that J 8001 stays on gear tooth while measuring endplay.
- Allow the countershaft to lower to its original position, noting the dial indicator travel. Total travel should be 0.13 - 0.23mm (0.005 - 0.009 inches).
4. Move bearing race (202) with J 8092 and J 36799 to achieve specified endplay.
5. Select shim(s) (252) to retain specified endplay.
 - Using least number of shims.

Install or Connect
6. Selected shim(s) (252).
7. Snap ring (251).
8. Seat countershaft bearing race (202) using J 8092 and J 36799.
9. Repeat MEASURE procedure.
 - To make sure endplay is still correct after step 8.
10. NEW countershaft bearing plug (250). Refer to page 30, step number 6 for the installation procedure.

Remove or Disconnect
11. Front housing (200) and rear housing (300) (2WD) or (301) (4WD).
12. Countershaft (53) and bearings (203).

Install or Connect
13. Fill plug (222) and drain plug (225).
 - Apply pipe sealant with Teflon™ GM P/N 1052080 or equivalent to the threads.
 - Do not tighten fill plug.
 - Cover with shop towel before installing
TO DECREASE END PLAY

J 8092
J 36799

OIL PLUG FILL HOLE

TO INCREASE END PLAY

J 8092
J 36799

NOTE: OUTER BEARING ASSEMBLY RACE (216) REMOVED

MOVE BEARING RACE TO ACHIEVE 0.13-0.23 mm (0.005-0.009 in.) END PLAY

ILL. NO. PART NO. mm (IN.)
23049624 2.20 (0.087)
23049625 2.30 (0.091)
23049626 2.40 (0.094)
23049627 2.50 (0.098)
23049628 2.60 (0.102)
23049629 2.70 (0.106)
23049630 0.40 (0.016)
23049631 0.50 (0.020)

53 COUNTERSHAFT ASSEMBLY
200 HOUSING, FRONT
202 RACE, COUNTERSHAFT BEARING
251 RING, SNAP
252 SHIMS

Figure 67 Countershaft Endplay Adjustment
INPUT SHAFT BEARING RETAINER SELECTIVE SHIM PROCEDURE

Measure (Figure 68)

Tools Required:
- Dial Depth Gage or Equivalent

- The distance between the sealing flange of the retainer and the flanged part of the release guide. Record this measurement.
- The height of the input bearing outer race from the sealing surface of the front housing. Record this measurement.
- Subtract the bearing race height from the retainer depth and select a shim the same (or next smaller) size as the difference in measurements.

CALCULATION:

\[
A \text{ (HOUSING DEPTH)} - B \text{ (BEARING WIDTH)} = C \text{ (SHIM SPACE)}
\]

<table>
<thead>
<tr>
<th>ILL. NO.</th>
<th>PART NO.</th>
<th>DIM. C (mm[in.])</th>
</tr>
</thead>
<tbody>
<tr>
<td>212</td>
<td>23049825</td>
<td>0.30 (0.012)</td>
</tr>
<tr>
<td>212</td>
<td>23049826</td>
<td>0.40 (0.016)</td>
</tr>
<tr>
<td>212</td>
<td>23049827</td>
<td>0.50 (0.020)</td>
</tr>
</tbody>
</table>

Figure 68 Input Shaft Bearing Retainer Selective Shim Procedure
OUTPUT SHAFT BEARING SELECTIVE SHIM PROCEDURE

Measure (Figure 69)

Tools Required:

Dial Depth Gage or Equivalent

- The distance between the bearing retainer surface and the bottom of the bearing bore in the rear housing. Record this measurement.
- The width of the main shaft rear bearing. Record this measurement.
- Subtract the bearing width from the housing bore depth. Select a shim which is the same (or next smaller) size as the difference in measurements.

![Diagram of measurement setup]

CALCULATION:

\[A \text{ (HOUSING DEPTH)} - B \text{ (BEARING WIDTH)} = C \text{ (SHIM SPACE)} \]

<table>
<thead>
<tr>
<th>ILL. NO.</th>
<th>PART NO.</th>
<th>DIM. C (mm/IN.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>212</td>
<td>23049825</td>
<td>0.30 (0.012)</td>
</tr>
<tr>
<td></td>
<td>23049826</td>
<td>0.40 (0.016)</td>
</tr>
<tr>
<td></td>
<td>23049827</td>
<td>0.50 (0.020)</td>
</tr>
</tbody>
</table>

Figure 69 Output Shaft Bearing Selective Shim Procedure
TRANSMISSION ASSEMBLY

Assemble (Figure 70, 71 and 72)

Tools Required:
- J 25070 Heat Gun (2WD Models only)
- J 36515-10 Retainer Alignment Cables (2WD models only)
- J 36502 4WD Oil Seal Installer
- J 36502-2A 4WD Seal Protector
- J 36515 Assembly Pallet
- J 36515-12 Countershaft Adapter for 1988 and 1989 1/2 Models
- J 36516 Output Shaft Spanner Nut Wrench
- J 3289-20 Base Holding Fixture
- J 8763-02 Holding Fixture C-Clamp
- J 8763-21 Balance Bracket for C-Clamp
- J 6133-01 Speedometer Rotor and Bearing Race Installer (2WD Models only)
- J 36824 Transmission Adapter

Important

The following component will require heating prior to installation during assembly procedures.
- 7-10 minutes, 120° C (250° F).
 - 2WD speed sensor rotor (45)
 - 2WD rear housing output shaft bearing assembly (33) bore

1. Pilot bearing (3) into input shaft (1).
 - SMALLER DIAMETER OF BEARING CAGE TOWARD INPUT SHAFT.
 - Retain with petroleum jelly.
2. Input shaft (1), pilot bearing (3), synchronizer ring (2) and mainshaft assembly (4) (2WD) or (5) (4WD) into J 36515.
3. J 36515-12 onto countershaft (53).
 - Install the assembly onto J 36515.
4. Reverse idler assembly (46) and NEW o-ring (52).
5. Bearing assembly (outer) race (37) and ball bearing (outer) race (38).
 - 2WD models only.
6. Install on main shaft assembly (4) or (5)
 - 3-4 shift fork (108).
 - TAPER ON FORK TOWARDS 3RD GEAR
 - 1-2 shift rail assembly (100).
 - Reverse shift rail assembly (111).
 - Lock up transmission by sliding the 3-4 shift fork (108) and 1-2 shift rail assembly downward towards J 36515 (Figure 73).

Important

Steps 7 through 18 are for 2WD models only. The 4WD section starts at step 19 (steps 24 through 47 are for both 2WD and 4WD models).

7. Ball (4mm) (40) (Figure 74).
 - Retain in output shaft with petroleum jelly.
8. Threaded thrust (inner) ring (41) and threaded thrust (outer) ring (39).

- **MAKE SURE THE OLD SPIRAL ROLL PIN (42) IS REMOVED FROM THREADED THRUST RING (OUTER) (39)**

Important

- Screw the rings together completely, then back the rings off till BOTH ID SLOTS FOR THE BALL (40) LINE UP.
- Slide the assembled rings over the ball that is retained on the output shaft.

- Slide up the rod on J 36516, turn the black depth locating tang over, slide the rod through (so the roll pin will be installed to the correct depth).
- **MAKE CLEARANCE FOR THE SNAP RING BY FIRST** screwing the rings together completely by turning J 36516 counterclockwise.
- **New** snap ring (43) (2.00mm thickness).
- Turning J 36516 clockwise, torque to 15 N·m (12 Lb. Ft.) then ADVANCE to the next spiral roll pin notch.
- Hold the countershaft against the mainshaft while setting torque on 2WD models.
- **New** spiral roll pin (42).
- Install roll pin in the bottom of J 36516, retain with petroleum jelly.
- Put J 36516 on with the roll pin hole and roll pin lined up.
- Drive roll pin into thrust ring (outer).
- Remove tool.
Figure 73 Locking Up Transmission

100 RAIL ASSEMBLY, 1ST & 2ND SHIFT
108 FORK, 3RD & 4TH SHIFT
NOTE: 1. D. SLOTS LINED UP

39 RING, THREADED THRUST (OUTER)
40 BALL, 4mm
41 RING, THREADED THRUST (INNER)
42 PIN SPRIL ROLL
43 RING, SNAP

Figure 74 Threaded Thrust Rings Assemble
12. Snap-ring (43) and speedo gear thrust (2WD) washer (44) (Figure 75).

13. 2WD Speed sensor rotor (45) HEATED.
 - If necessary seat with J 6133-01.
14. 2WD Shim (212) onto output shaft bearing assembly (33).
 - Retain with petroleum jelly.

Important (Figure 76)

The 2WD rear housing output shaft bearing assembly bore MUST be heated for three to five minutes with J 25070 before assembly.

15. 2WD J 36515-10 through bolt (304) and (305) holes in the rear housing (Figure 77).
 - Screw into the output shaft bearing retainer (302).
 - Notch in retainer towards oil delivery tube assembly (307).

16. 2WD Bearing (203).
 - Install in bearing race (202) of the housing.
 - SMALLER DIAMETER OF BEARING CAGE INTO BEARING RACE.
 - Retain with petroleum jelly.

Important

- PRESS EACH ROLLER TOWARDS THE RACE TO SECURE THEM FOR EASIER ASSEMBLY.

17. 2WD Rear housing assembly (300).

18. 2WD Bolts (304) and (305) (Figure 78).
 - Apply pipe sealant with Teflon™ GM P/N 1052080 or equivalent to the bolt holes of the rear housing.
 - Apply threadlocker GM P/N 12345382 to bolt threads.
 - Remove J 36515-10.
 - Tighten
 - Bolts (304) and (305) to 22 N·m (17 Lb. Ft.).

19. 4WD bearing (203) (Figure 79).
 - Install in bearing race (202) of the housing.
 - SMALLER DIAMETER OF BEARING CAGE INTO BEARING RACE.
 - Retain with petroleum jelly.
 - Press Each roller towards the race to secure them for easier assembly.

20. 4WD rear housing assembly (301).
 - Make sure the reverse idler shaft is lined up with the hole in the case.
 - Rotate back and forth while pulling down.
Important

Bring housing straight down. If resistance is felt at about 7mm (1/4 in.) then the rollers (35) or (203) are cocked. Repeat above procedures to install. DO NOT FORCE HOUSING DOWN.

21. 4WD ball bearing (outer) race (38).
22. 4WD threaded thrust rings (39) and (41). Refer to page 42, steps 7 through 11 for assembly procedures.
 - Install seal protector J 36502-2A onto output shaft.
23. 4WD output shaft oil seal (320) using J 36502 (Figure 80).
 - Fill between the seal lips with chassis grease.
 - Remove seal protector J 36502-2A.

Install or Connect (Figure 81)

- Lay the unit down on the workbench and remove J 36515.
24. Idler shaft support (310), bolt (311).
 - Line up the bolt threads in the idler shaft support with bolt hole.
 - Apply pipe sealant with Teflon(TM) GM P/N 1052080 or equivalent to the bolt hole.
 - Apply threadlocker GM P/N 12345382 or equivalent to the bolt threads.
 - Hold reverse idler shaft against idler support while torquing.

Tighten

- Bolt (311) to 22 N·m (17 Lb. Ft.).
- J 8763 21 on J 8763-02.
25. J 36824 onto the transmission case.
 - J 8763-02 onto J 36824.
26. Two interlock balls (323) (Figure 82).
All forks MUST be in neutral position.
- Coat balls with petroleum jelly.
- Using a magnetic screwdriver or equivalent, insert one interlock ball (one at a time) through the plug hole (326).
- With a small blade screwdriver, push one ball to the 1-2 shift rail side and the other to the 3-4 shift rail side.

27. 3-4 shift rail (109), with interlock pin (110).
- Retain pin with petroleum jelly.
- Detent slots in 3-4 shift rail UP.
- Install through 3-4 shift fork and into the rear housing shift rail bearing.

Important
The 1-2 AND 5th-REVERSE SHIFT RAILS MUST BOTH BE IN THE
NEUTRAL POSITION or the interlock system will not allow the 3-4 rail to engage.

28. Roll pin (107) (36mm) (Figure 83).
 • Install to a depth where a MAXIMUM of 5mm (3/16 in.) of the roll pin is left remaining from the top of the fork.

 NOTICE: IF THE ROLL PIN IS NOT AT PROPER DEPTH IT MAY RUB ON FRONT HOUSING AND CAUSE 3RD OR 4TH GEAR HOP-OUT.
 • Test interlock system to make sure interlock balls are in place by trying to move two shift rails. If two rails can be moved (selecting two gears at once). Repeat steps 20 through 22.

29. NEW plug (326).
 • Apply gasket maker GM P/N 1052943 or equivalent to the edge of the plug.
 • Install flush.

30. Shift shaft (116), finger (121) and shift shaft socket assembly (123) (Figure 85).
 • Detent slots towards idler support side of transmission.
 • Finger extension must be on the underside of the 5-reverse shift rail.

 Important
 Use a new shift shaft socket assembly (123) or stake the socket as shown in Figure 84. This will prevent the roll pin (122) from walking down and rubbing on the reverse speed gear (25) causing a noise in 2nd, 4th and reverse (or any combination of the three gears). DO NOT REUSE A STAKED SOCKET.

31. Roll pin (120) (28mm) and roll pin (122) (33mm).
32. Three detent balls (323) and three springs (324) (Figure 86).
33. Detent spring cover (325) and two bolts (236).

34. Four rollers (118) (Figure 87).
 • Retain with petroleum jelly.

35. Countershaft bearing (203) (Figure 88).
 • Install in bearing race (202) of the front housing.

 Important
 • SMALLER DIAMETER OF BEARING CAGE INTO BEARING RACE.
 • Retain with petroleum jelly and press on each roller towards the outside of the bearing race to lock it in place.
117 SHAFT, SHIFT
120 PIN, ROLL (6 x 28mm)
121 FINGER
122 PIN, ROLL
123 SOCKET ASSEMBLY, SHIFT SHAFT

Figure 85 Shift Shaft Install

117 SHAFT, SHIFT
118 ROLLER, SHIFT SHAFT

Figure 87 Rollers Install

- Apply petroleum jelly to bearing race on input shaft.

36. Roller bearing (218) and ball bearing (outer) race (217).

Important
- INSTALL SMALLER DIAMETER OF BEARING CAGE FACING input gear splines THEN PRESS ON EACH ROLLER TO LOCK IT TO THE BEARING RACE.
- Apply gasket maker GM P/N 1052943 or equivalent to the inside of the bolt hole pattern of the rear housing.

37. Front housing (200).

Important
- Bring housing straight down. If resistance is felt at about 7mm (1/4 in.) then the roller(s) (218) or (203) are cocked, repeat steps 29, 30 and 31. DO NOT FORCE DOWN THE HOUSING.

38. Two dowels (321).

39. Bolts (312).
- Do not tighten.
- Tip vertically.

40. Ball bearing (outer) race (215), input shaft spacer (211) and NEW selective snap ring (210) (Figure 89).
- Install the thickest snap ring into the groove that will fit.
- It may be necessary to pull out on the input shaft to install the selective snap ring.

- Apply gasket maker GM P/N 1052943 or equivalent to the inside of the bolt hole pattern.
Important

DO NOT APPLY too much gasket maker around the oil drain back hole. This could clog the hole causing a low fluid flow through the bearing resulting in premature bearing failure.

41. Shim (212) into input shaft bearing retainer assembly (205).
 - Make sure input bearing retainer washer (208) is in place.
 - Retain with petroleum jelly.

42. Input shaft bearing retainer assembly (205) and six bolts (204).
 - Make sure oil drain back hole is lined up with the hole in the housing.

Tighten

- Bolts (204) to 8.5 N·m (7 Lb. Ft.)
43. Shift shaft detent plunger (243), shift shaft detent spring (244) and plug (245) using brass drift (Figure 90).
 - Apply pipe sealant with Teflon™ GM P/N 1052080 or equivalent to the plug.

44. NEW o-ring (315) onto electronic speedo sensor assembly (316).
 - 2WD models only.
 - Coat the o-ring with a thin film of transmission fluid.

45. Electronic speed sensor assembly (316) and bolt (317).
 - 2WD models only.

46. Backup lamp switch assembly (313).
 - Apply pipe sealant with Teflon™ GM P/N 1052080 or equivalent to the threads.

47. Bolts (312) (Figure 91).
 - Bolts (312) to 35 N·m (27 Lb. Ft.).
SPECIFICATIONS

FASTENER TORQUE

<table>
<thead>
<tr>
<th>ILLUSTRATION NUMBERS</th>
<th>N·m - Lbs. Ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>39 & 41 Ring, Threaded Thrust Assembly</td>
<td>15 - 12</td>
</tr>
<tr>
<td>204 Retainer Assembly, Input Bearing</td>
<td>8.5 - 7</td>
</tr>
<tr>
<td>222 Plug, Oil Fill</td>
<td>60 - 46</td>
</tr>
<tr>
<td>225 Plug, Oil Drain</td>
<td>60 - 46</td>
</tr>
<tr>
<td>226 5th & Reverse Rail Deflection Bolt</td>
<td>35 - 27</td>
</tr>
<tr>
<td>236 Seat, Bias Spring and Sleeve Bolt</td>
<td>8.5 - 7</td>
</tr>
<tr>
<td>249 Spring, 5th & Reverse Detent Hex Head Plug</td>
<td>60 - 46</td>
</tr>
<tr>
<td>304-306 Retainer, Output Shaft Bearing Bolts</td>
<td>22 - 17</td>
</tr>
<tr>
<td>311 Support, Idler Shaft Bolt</td>
<td>22 - 17</td>
</tr>
<tr>
<td>312 Housing Front/Rear</td>
<td>35 - 27</td>
</tr>
<tr>
<td>317 Sensor, Electronic Speed Bolt</td>
<td>9 - 7</td>
</tr>
<tr>
<td>204 Housing Assembly, Shift Lever</td>
<td>8.5 - 7</td>
</tr>
</tbody>
</table>

LUBRICATION

Capacity .. 1.98L 2.08 qts.

Type Recommended:

Manual Transmission Fluid 5W-30 .. GM P/N 1052931
<table>
<thead>
<tr>
<th>Holding Fixture</th>
<th>Speedometer Gear Puller Adapter</th>
<th>Input Shaft Remover/Installer Press Tube with Cap</th>
</tr>
</thead>
<tbody>
<tr>
<td>J 3292-20, J 8763-02, J 8763-21</td>
<td>J 21427-01</td>
<td>J 36183</td>
</tr>
<tr>
<td>Slide Hammer With Adapter</td>
<td>Separator Plate or Equivalent</td>
<td>Adapter Press Tube Reducer</td>
</tr>
<tr>
<td>J 6125-18</td>
<td>J 22912-01</td>
<td>J 36184</td>
</tr>
<tr>
<td>Bearing Race Installer</td>
<td>Slide Hammer With Pilot Bearing Puller</td>
<td>Universal Driver Handle</td>
</tr>
<tr>
<td>J 6133-01</td>
<td>J 23907</td>
<td>J 36190</td>
</tr>
<tr>
<td>Dial Indicator Set</td>
<td>Dial Indicator Stand and Guide Pin Set</td>
<td>4WD Output Shaft Oil Seal Installer and Seal Protector</td>
</tr>
<tr>
<td>J 8001</td>
<td>J 25025-8</td>
<td>J 36502-2A</td>
</tr>
<tr>
<td>Universal Driver Handle</td>
<td>Heat Gun or Equivalent</td>
<td>2WD Output Shaft Oil Seal Installer</td>
</tr>
<tr>
<td>J 8092</td>
<td>J 25070</td>
<td>J 36503</td>
</tr>
<tr>
<td>Gear Puller or Equivalent</td>
<td>2WD Output Shaft Oil Seal Remover</td>
<td>Input Shaft Bearing Retainer Oil Seal Installer</td>
</tr>
<tr>
<td>J 8105</td>
<td>J 26941</td>
<td>J 36504</td>
</tr>
<tr>
<td>Speedometer Gear Puller</td>
<td>Input Shaft Bearing Retainer Oil Seal Remover</td>
<td>5th and Reverse Detent Bushing Remover/Installer</td>
</tr>
<tr>
<td>J 8433</td>
<td>J 29369-2</td>
<td>J 36506</td>
</tr>
<tr>
<td>Shift Shaft Detent Bushing Remover/Installer</td>
<td>Output Shaft Spanner Nut Wrench</td>
<td>Depth Gauge</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J 36507</td>
<td>J 36516</td>
<td></td>
</tr>
<tr>
<td>Shift Shaft Detent Plug Remover</td>
<td>Shift Rail Bushing Installing and Stecking Tool</td>
<td>Tap 3/8-16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J 36509</td>
<td>J 36798</td>
<td></td>
</tr>
<tr>
<td>Clutch Fork Pivot Remover/Installer</td>
<td>Countershaft Bearing Cup Shimming Tool</td>
<td>Drill 5/16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J 36510</td>
<td>J 36799</td>
<td></td>
</tr>
<tr>
<td>Oil Fill/Drain Plug Hex Bit (17 mm)</td>
<td>Shift Rail Bushing Remover</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J 36511</td>
<td>J 36800</td>
<td></td>
</tr>
<tr>
<td>Gear and Bearing Separator Plate</td>
<td>Transmission Holding Adapters</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J 36513</td>
<td>J 36824</td>
<td></td>
</tr>
<tr>
<td>Assembly Pallet With Counter Shaft Adapter for 1988 and 1989½ Models</td>
<td>4WD Output Shaft Oil Seal Remover</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J 36515, J 36515-12</td>
<td>J 36825</td>
<td></td>
</tr>
<tr>
<td>2WD Output Shaft Bearing Retainer Alignment Cables</td>
<td>Oven</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J 36515-10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 93 Special Tools
Disassembly of the HM-117 Transmission 7B2-1
Disassembly and Assembly of
Sub-Assembly ... 7B2-6
Main Drive Gear 7B2-6
Mainshaft .. 7B2-6
Countergear ... 7B2-10
Rear Bearing Retainer 7B2-12
Main Drive Gear Bearing Retainer 7B2-13
Shift Cover
R/V/P ... 7B2-13
C/K ... 7B2-14
Transmission Assembly (Installation of
Sub-Assemblies) .. 7B2-17
Specifications ... 7B2-19
Fastener Torque 7B2-19
Lubrication ... 7B2-19
Special Tools ... 7B2-19

DISASSEMBLY OF THE HM-117 TRANSMISSION

Remove or Disconnect (Figures 1 and 2)
Tools Required:
\[\text{J 28509-A Countergear Front Bearing Remover}\]
\[\text{J 8433 Bearing Puller}\]
\[\text{J 22832-01 Countergear and Mainshaft Rear Bearing Remover}\]
\[\text{J 35907 Mainshaft Lock Nut Wrench (4WD models only)}\]

1. Shifter housing.
 - Remove shift housing bolts.
 - Move the reverse shift fork to partially engage the reverse idler gear.
 - Lift off the housing.
2. Flange nut (221).
 - Lock up transmission in two gears before removing nut.
3. Brake drum and the flange, or the yoke (220).
4. Parking brake assembly.
 - Mainshaft lock nut (256) and the washer using J 35907 (4WD models only).
5. Rear bearing retainer (223) and the gasket.
 - J 22832-01 must be seated in the groove completely.
7. Front bearing retainer (202) and the gasket.
8. Cover (238) and the gasket.
10. Snap rings (225 and 226).
11. Bearing (228), using J 22832-01 and J 8433, (figure 4).
 - 1st speed thrust washer.
12. Main drive gear (201).
 - Remove the bearing to case (large) snap ring.
 - Rotate the gear so the cutout portion is down to clear the countershaft, (figure 5).
 - Pull the drive gear from the case.
13. 4th speed blocker ring (204).
15. Bearing (224), using J 22832-01 and J 8433, (figure 6).
 - 1st speed thrust washer.
16. Mainshaft (250) from the case.
17. Countershaft (227) from the case.
18. Idler gear (230) and the shaft.
 - Drive the shaft from the case.
Figure 1A—R/V/P Four Speed Transmission
Figure 1B—C/K Four Speed Transmission
Figure 2—Transmission Components
Figure 3—Removing the Countergear Front Bearing

Figure 4—Removing the Countergear Rear Bearing

Figure 5—Main Drive Gear Cutout
Disassemble (Figure 7)

Tools Required:
- J 358-1 Bearing Remover Holder
- J 22872 Drive Gear Bearing Remover

1. Pilot bearings (239).
 - Do not remove the snap ring from the bore.
2. Bearing retainer (276).
4. Bearing (278), using J 358-1 and J 22872, (figures 8 and 9)
5. Slinger (240).

Clean
- All parts in a suitable solvent.

Inspect
1. Parts for damage and wear.
2. Oil the bearings and check for roughness.

Assemble (Figures 7 and 10)

Tools Required:
- J 358-1 Bearing Remover Holder
- J 22872 Drive Gear Bearing Remover

1. New slinger (240).
 - The concave side goes toward the gear.

Important
- Do not damage or bend the slinger when installing the bearing.
205. 3rd and 4th Synchronizer
207. 3rd Speed Blocker Ring
208. 3rd Speed Gear
209. 2nd Speed Gear
210. 1st and 2nd Synchronizer Hub
211. Reverse Driven Gear
216. 1st Speed Gear
217. Thrust Washer
242. 3rd Speed Gear Bushing
243. Thrust Washer
244. 2nd Speed Gear Bushing
245. 1st Speed Gear Bushing
280. Snap Ring
282. 2nd Speed Blocker Ring
283. Shaft
284. Spring Pin
285. Synchronizer Spring
286. Synchronizer Key

Figure 11 —Mainshaft Components

2. Bearing (277), using J 358-1 and J 22872, (figures 8 and 9).
 - The bearing snap ring groove goes away from the gear.
3. New bearing to shaft (small) snap ring (241).
4. New bearing to case (large) snap ring (203).
5. Pilot bearings (239).
 - Use chassis grease to hold the bearings in place.

MAINSHAFT

Disassemble (Figure 11)
1. Thrust washer and the 1st speed gear (216).
2. Reverse driven gear (211).
3. 3-4 synchronizer snap ring (280).
 - Do not let the synchronizer come apart.
4. 3-4 synchronizer, the 3rd speed gear (208), the 2nd speed gear (209), the bushing, and the thrust washer (243).
 - Support the second speed gear and press the mainshaft out, (figure 12).

-important
- Do not let the mainshaft fall to the floor.
5. 2nd speed blocker ring (282).
6. 1st speed gear bushing and the 1-2 synchronizer hub (210).

Figure 12 —Removing the Mainshaft from the 2nd and 3rd Speed Gears
Support the hub on J 8176 and press the mainshaft out, (figure 13).

Important

- Do not let the mainshaft fall to the floor.
- Use a cold chisel to split the bushing if it is worn or damaged.

Important

- Do not scratch or gouge the mainshaft.
- Place the keys in the hub.
- Engage the springs in different slots in either side of the hub so they support all the keys.
- Slide the sleeve onto the hub aligning the marks made during disassembly.

Clean

- All parts in a suitable solvent and air dry.
- Do not spin dry the bearings.

Inspect

1. Gears for cracks, chipped gear teeth, and other damage that could cause gear noise.
2. Thrust washers and bushings for damage and wear.
3. Related surfaces on the gears like thrust faces and bearing surface diameters.
4. The reverse sliding gear for a sliding fit on the synchronizer hub without excess radial or circular play. If the sliding gear is not free on the hub, inspect it for burrs on the ends of the internal splines. Remove any burrs by honing as required.
5. Synchronizer sleeves for a sliding fit on the synchronizer hubs and for the hubs a snug fit on the mainshaft splines.
6. Synchronizer springs and keys for looseness and damage.
7. Brass synchronizer rings for excess wear and damage.
8. All gear teeth for excess wear.
10. Lubricate all roller bearings with light engine oil and check for rough rotation.

Assemble (Figure 11)

Tools Required:
- J 22873 Mainshaft Bushing Installer
- J 22875 3rd Gear Assembly Tool

NOTICE: The mainshaft 1st, 2nd and 3rd speed gear bushings are sintered iron. The bushings MUST BE PRESSED ON SEPARATELY (NOT WITH THE HUBS) OR THE BUSHINGS WILL BE SMASHED CAUSING A PREMATURE FAILURE (OR LOCK UP) BECAUSE OF NO ENDPLAY FOR THE SPEED GEARS.

1. 3-4 synchronizer (205), (figure 15).
 - Mark the hub and sleeve alignment for reassembly.
 - Mark the hub and sleeve alignment for reassembly.
 - Push the hub out of the sleeve while holding the springs and keys to avoid loosing them.

2. 2nd speed bushing, using J 22873, (figure 16).
3. 1-2 synchronizer hub (210), (figure 17).
 - A minimum press of 681 kg (1500 lbs.) is required to move the hub.
 - The annulus must be to the rear of the shaft.
5. 1st speed bushing (245), using J 22873, (figure 18).
6. 2nd speed blocker ring, the 2nd speed gear (209) and the 3rd speed thrust washer (243) (figure 19).
 - The tab on the thrust washer must be in the slot in the mainshaft.
7. 3rd speed bushing (242) using J 22875 (figure 19).
8. 3rd speed gear (208) and the blocker ring (figure 20).
9. 3-4 synchronizer (205) using J 22873 (figure 20).
 • A minimum press of 681 kg (1500 lbs.) is required to move the hub.
 • The stepped side of the sleeve goes to the front of the mainshaft.
10. New snap ring, (figure 21).
11. Reverse gear (211).
 • The shift fork groove goes to the rear of the mainshaft.
12. 1st speed gear (216).

COUNTERGEAR

Disassemble (Figure 22)

Tools Required:
- J 22832-01 Countergear and Mainshaft Rear Bearing Remover
1. Snap ring and the thrust washer (235).
2. Driven gear (234).
 • Install J 22832-01 with the open side to the spacer (figure 23).
 • Support the gear and press the countergear through (figure 24).

Important
- Do not let the countergear fall to the floor.
4. 3rd speed gear (290).
Clean
- Countergear and the gears in suitable solvent and air dry.

Inspect
- Countergear and the gears for nicks, burrs, and broken teeth.
- The splined area on the countergear for chips and wear.

Assemble (Figure 22)

Tools Required:
• J 22873 Main shaft Bushing Installer
• J 22830-A Snap Ring Installer

A minimum press of 681 kg (1500 lbs.) is required to move each gear. If less pressure is required, replace the gear(s) or the shaft, or both.

1. 3rd speed gear (290) (figure 25).
 - The gear is marked “FRONT” in the web area, as shown in figure 22.
2. Spacer (233).
3. Driven gear (234), using J 22873 (figure 26).
4. Thrust washer (235).
5. New snap ring (236), using J 22830-A and J 22873 (figure 27).

Important
- Do not bend or damage the thrust washer.
- The snap ring should be tight in the groove with no side play.
REAR BEARING RETAINER

SEAL REPLACEMENT

 expands Remove or Disconnect (Figure 2)

1. Seal (222).
 - Pry the seal out with a small pry bar.
2. Gasket material from the retainer (223) using a scraper.
 - Inspect the retainer for damage.

 expands Install or Connect (Figure 2)

Tools Required:
- J 22834 Extension Housing Seal Installer

1. Locking compound on the outside of a new seal (222).
 - Use J 22834-1 if a parking brake is used.
 - Fill between the seal lips with chassis grease.

MAIN DRIVE GEAR BEARING RETAINER

SEAL REPLACEMENT

 expands Remove or Disconnect (Figure 2)

1. Seal (266).
 - Pry the seal out with a small pry bar.
2. Gasket material from the retainer (202) using a scraper.
R/V/P SHIFT COVER

Disassemble (Figure 30A)
1. Three plugs (297).
 • Use a punch to drive the plugs out.

Important
• The reverse shift fork retaining pin cannot be removed until the other shift forks have been removed.
• Note the positions of the shift forks and the rods before removing them.
2. Fork retaining pins (303), (figure 31).
 • Shift rods must be in neutral position before any one rod can be removed.
 • Do not lose the detent balls and springs and the interlock balls and pin when removing the rods.
4. Interlock balls (306) and the pin (304).
5. Detent balls (213) and the springs (212).
6. Retainer (302) from the plunger (299).
7. Plunger (299) and spring (300) from the reverse shift fork (301).

Clean (Figure 30A)
• All parts in solvent and air dry.

Inspect (Figure 30A)
1. Shift fork
 • For damage or bends.
 • For worn finger pads.
2. Shift rods

Inspect
1. Retainer nose for scoring, wear, or cracks, especially at the flange.
2. Snap ring groove for damage caused by drive gear bearing movement.
3. Retainer for wear and damage.

Install or Connect (Figure 2)
Tool Required:
- J 22833 Front Housing Drive Gear Seal Installer
- Seal (266), using J 22833. The lip of the seal goes toward the installing tool, (figure 29).

206. 3rd and 4th Shift Fork
212. Detent Spring
213. Detent Ball
214. Reverse Shift Rod
215. 1st and 2nd Shift Fork
268. Shift Cover
295. Spring Pin
296. Vent
297. Plug
298. Dowel Pin
299. Reverse Shift Fork Plunger
300. Spring
301. Reverse Shift Fork Retainer
302. Retainer
303. Retaining Pin
304. Interlock Pin
305. 3rd and 4th Shift Rod
306. Interlock Ball
307. 1st and 2nd Shift Rod

Figure 30A—R/V/P Shift Cover and Components
7B2-14 HM-117 TRANSMISSION

For damage and bends.
For worn or damaged detents and detent balls.
For broken detent springs.

3. Shift control cover
For cracks and warping.
For smooth shift rod fit.

Assemble (Figure 30A)
1. Plunger (299), spring (300) and the retainer (302) to the reverse shift fork (301), (figure 32).

Important
• The shift rods must be installed in the proper positions, (figure 33A).

2. Shift rods (307, 305 and 214).
• Place the detent springs (212) and the balls (213) in the holes in the cover, (figure 34A).
• Start the shift rods into the cover by depressing the spring loaded detent ball and pushing the rod over the ball.

Important
• Shift forks must be installed in the following order: Reverse, 3rd-4th, and 1st-2nd.

3. Hold the reverse shift fork (301) in position and push the rod through the fork and into the front support bore. Install a new retaining pin through the fork and rod.
4. Position the 3rd-4th shift fork (206) and push the rod through the yoke but not into the front support bore.
5. Place two interlock balls (306) in the cross-bore of the front support between the reverse and the 3rd-4th shift rods (figure 34A). Then install the interlock pin (304) in the 3rd-4th shift rod hole.
6. Push the 3rd-4th shift rod (206) into the front support bore and install a new retainer pin through the fork and rod.
7. Position the reverse and 3rd-4th shift rods in neutral position. Then place two interlock balls (306) in the cross-bore between the 1st-2nd and 3rd-4th shift rods, (figure 34B).
8. Position the 1st-2nd shift fork (215) and push the rod through the fork and into the front support bore. DO NOT force the rod into the front to see that the reverse and 3rd-4th shift rods are in neutral.
9. Install a new retainer pin through the shift fork and rod. Move the rod to neutral position.
10. Apply gasket maker GM P/N 1052942 or equivalent to the edges of three new expansion plugs (297) and install them in the housing openings. Position each plug with the convex side out and drive a flat faced 13 mm (1/2-inch) dowel pin against it to seat the plug.

C/K SHIFT COVER

Disassembly (Figure 30B)
1. Three plugs (297).
• Pull back on shift rod then put a long thin punch through the oil passage hole that is at the back support bore (under shift tower) and drive the plug out. Return the rod to neutral position and repeat procedure for the other two rods.

Important
• The reverse shift fork retaining pin cannot be removed until the other shift forks have been removed.
• Note the positions of the shift forks, 3rd-4th stop and gate, and the rods before removing them.
2. Fork retaining pins (303), (figure 31).
• Shift rods must be in neutral position before any one rod can be removed.
• Do not lose the detent pins, springs interlock shuttles and the interlock pin when removing the rods.
4. Interlock shuttles (306) and the pin (304).
5. Detent pins (213) and the springs (212) and (308).
6. Retainer (302) from the plunger (299).
7. Plunger (299) and spring (300) from the reverse shift fork (301).
Clean (Figure 30B)
- All parts in solvent and air dry.

Inspect (Figure 30B)
- All parts in solvent and air dry.

1. Shift fork
 - For damage or bends.
 - For worn finger pads.
2. Shift rods
 - For damage and bends.
 - For worn or damaged detents and detent pins.
 - For broken detent springs.
3. Shift control cover
 - For cracks and warping.
 - For smooth shift rod fit.
4. 3rd-4th stop
 - For cracks and damage.

Assemble (Figure 30B)
1. Plunger (299), spring (300) and the retainer (302) to the reverse shift fork (301), (figure 32).

Important
- The shift rods must be installed in the proper positions, (figure 33B).

2. Shift rods (307, 305 and 214).
 - Position each rod part way into the cover with the detent grooves down.
 - Place the detent springs (212) and (308) and the pins (213) in the holes in the cover with the rounded part of the pins up, (figure 34B).

Important
- The 3rd-4th detent spring (308) is weaker than the 1st-2nd and reverse detent springs. The 3rd-4th spring is painted green and the two coils on the ends of the spring are coiled tight so there is no gap as compared to the other two detent springs (212).

3. Hold the reverse shift fork (301) in position and push down on the detent pin while pushing the rod through the fork and into the front support bore. Install a new retaining pin through the fork and rod.
4. Position the 3rd-4th shift fork (206) in the middle part of the cover and partially push the rod through the back support bore. Slide the 3rd-4th shift gate (310) and then the 3rd-4th stop (309) onto the rod and push the rod through the yoke but not into the front support bore.
5. Place an interlock shuttle (306) in the cross-bore of the front support between the reverse and 3rd-4th shift rods, (figure 34B). Then install the interlock pin (304) in the 3rd-4th shift rod hole, retain with petroleum jelly.
6. Push down on the detent pin while pushing the 3rd-4th shift rod (206) into the front support bore and install a new retainer pin through the fork and rod.
7. Position the reverse and 3rd-4th shift rods in neutral position. Then place an interlock shuttle (306) in the cross-bore between the 1st-2nd and 3rd-4th shift rods, (figure 34B).
8. Position the 1st-2nd shift fork (215) and push down on the detent pin while pushing the rod through the fork and into the front support bore. DO NOT force the rod into the front support bore. Check to make sure that the reverse and 3rd-4th shift rods are in neutral or the shift interlock system will not allow the rod to engage.
9. Install a new retainer pin through the shift fork and rod. Move the rod to neutral position.
10. Apply gasket maker GM P/N 1052942 or equivalent to the edges of three new expansion plugs (297) and install them in the housing openings. Position each plug with the convex side out and drive a flat faced 13mm (1/2") dowel pin against it to seat the plug.

Figure 30B—C/K Shift Cover and Components
Figure 33A—R/V/P Shift Rod and Fork Positions

Figure 33B—C/K Shift Rod and Fork Positions
TRANSMISSION ASSEMBLY
(INSTALLATION OF SUB-ASSEMBLIES)

Before assembling the transmission, check the reverse idler gear bushing for wear. Clearance between the bushing and shaft at both ends should be no more than 0.10 mm (0.004-inch). If it is more, install a new gear and bushing assembly, and/or a new shaft as required.

Use new seals, gaskets and pipe sealant with Teflon® GM P/N 1052080 or equivalent on all bolt threads when assembling the transmission. Tighten all bolts to specified torque.

Lubricate all assemblies as they are installed in the transmission case using transmission fluid.

Install or Connect (Figure 2)

Tools Required:
- J 22874, Mainshaft and Countergear Bearing Installer
- J 35907 Mainshaft Lock Nut Wrench (4WD models only)

1. Countergear (227) into the case.

- Do not install the bearings.

2. Reverse idler gear (230) and the shaft.
 - The gear teeth go forward.
 - The slot in the shaft faces down.
 - Drive the shaft flush with the case.

3. Mainshaft (250) into the case.
 - The rear of the mainshaft must be through the rear bearing hole.
 - Place J 22874-5 into the front bearing hole, engaged with the mainshaft, (figure 35).

Important
- Be sure the 1st speed gear thrust washer is in place.

4. Mainshaft rear bearing (224).
 - Install a new snap ring (218) onto the bearing.
 - Drive the bearing until the snap ring is flush with the case using J 22874-1 (figure 35).
7B2–18 HM-117 TRANSMISSION

5. 4th speed blocker ring (204).
 - Be sure the cut outs align with the synchronizer keys.

![Figure 35—Installing the Mainshaft Rear Bearing](image1)

- Remove J 22874-5.

6. Main drive gear (201).
 - The drive gear cutout goes down (figure 5).
 - Tap on the outer bearing race to install the assembly.

7. Bearing retainer (202) and a new gasket.

8. Countergear rear bearing (228).
 - Support the front of the countergear using J-22874-10, (figure 36).
 - New snap ring (225) onto the bearing.
 - Drive the bearing onto the countershaft until the snap ring is flush with the case, using J-22874-1, (figure 37).

 - Remove J 22874-10.

10. Countergear front bearing (237).
 - Tap the bearing into place.

11. Cover (238) and a new gasket.

13. Rear bearing retainer (223) and a new gasket.

 - 4WD models only.
 - Back plate.
 - New mainshaft lock nut (256) and a new spring washer using J 35907.

15. Brake drum and the flange or yoke (220).
 - Lubricate the flange sealing surface with transmission oil.

16. Flange nut (221).

17. Shift cover (268) and a new gasket.
 - Move the transmission gears and shift rods to the neutral position.
 - Partially engage the reverse idler gear with the countergear and move the reverse shift fork an equal distance in the shift cover.
 - Position the cover over the transmission case (not cocked or tilted) and lower the cover with the reverse shift fork entering the case first. As the cover is near its resting point on the case, observe that the 1-2 and 3-4 shift forks engage with the synchronizer collars.
 - Repeat above procedures if needed to install.

18. Shift cover screws (267).
 - Speedometer driven gear, switches and any external components that were removed.

![Figure 36—Tool J-22874-10 Installed](image2)

![Figure 37—Installing the Countergear Rear Bearing](image3)
SPECIFICATIONS

FASTENER TORQUE

<table>
<thead>
<tr>
<th>Component</th>
<th>N·m</th>
<th>Lbs. Ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rear Bearing Retainer Screws</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Bottom</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Plug, Drain and Fill</td>
<td>23</td>
<td>17</td>
</tr>
<tr>
<td>Drive Gear Bearing Retainer Screws</td>
<td>32</td>
<td>25</td>
</tr>
<tr>
<td>Shift Lever to Shift Shaft Nut</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Cover Screws</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Parking Brake Plate Screws</td>
<td>41</td>
<td>30</td>
</tr>
<tr>
<td>Mainshaft Lock Nut (K model only)</td>
<td>135</td>
<td>100</td>
</tr>
<tr>
<td>Universal Joint Flange Nut</td>
<td>135</td>
<td>100</td>
</tr>
<tr>
<td>Power Take Off Cover Bolts</td>
<td>23</td>
<td>17</td>
</tr>
<tr>
<td>Countergear Front Cover Screws</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Parking Brake Flange Plate Bolts</td>
<td>41</td>
<td>30</td>
</tr>
</tbody>
</table>

LUBRICATION

<table>
<thead>
<tr>
<th>Type</th>
<th>Capacity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td></td>
<td>4.0L</td>
</tr>
<tr>
<td>Type Recommended</td>
<td></td>
<td>SAE 80W or SAE 80W90</td>
</tr>
</tbody>
</table>

SPECIAL TOOLS

1. J 22873 Main Shaft Bushing Installer
2. J 22875 3rd Gear Assembly Tool
3. J 22834 Extension Housing Seal Installer
4. J 22833 Front Housing Drive Gear Seal Installer
5. J 22874 Main Shaft And Countergear Bearing Installer
6. J 35907 Main Shaft Lock Nut Tool
7. J 8433 Bearing Puller
8. J 22832-01 Countergear And Mainshaft Rear Bearing Remover
9. J 8176 Bearing Separator
10. J 22872 Drive Gear Bearing Remover
11. J 28509-A Countergear Front Bearing Remover
12. J 22830-A Snap Ring Installer
13. J 358-1 Bearing Remover Holder
DESCRIPTION

The New Process 89 mm 4 speed transmission (RPO MY6) is an overdrive transmission and is fully synchronized in all speeds except reverse (figure 1).

The main components are:

1. Main drive gear.
 - An integral shaft is splined to engage with the clutch driven plate.
 - The gear drives the countergear.
 - A ball bearing supports the shaft in the case.

2. Countershaft.
 - The countergear is keyed to the countershaft for constant rotation with the main drive gear.
 - Roller bearings align the countergear on the shaft.
 - Thrust washers and a spacer limit the countershaft end play.
 - The countershaft is not a press fit, and a plug seals the case bore.

 - The drive gears rotate freely on the mainshaft and are in constant mesh with the countergear.
 - Key type synchronizers are splined to the mainshaft and engage with the drive gears to turn the mainshaft.
 - A ball bearing supports the mainshaft in the extension housing.

4. Reverse idler shaft.
 - An idler gear drives the mainshaft in reverse.
 - A bushing supports the gear on the shaft.

5. Side cover.
 - Shift forks mounted in the cover move the synchronizers to engage the gears.
 - The reverse shift lever and a detent ball and spring are mounted in the case.

Certain precautions should be followed when repairing the transmission. Unless proper care is taken, the components of the transmission may be damaged.

- Repair of the transmission should be done in a clean work area. The outside of the case should be clean to keep dirt out of the transmission. On transmissions with a standard gearshift lever, install the lever before cleaning the outside of the transmission.
- During the transmission repair, all the parts should be cleaned in cleaning solvent and then air dried. Wiping cloths or rags should not be used to dry the parts as lint may get on the parts and cause trouble later. All the parts, except those being worked on, should be kept covered with clean paper.
DISASSEMBLY OF THE TRANSMISSION

Remove or Disconnect (Figure 2)

Tool Required:
- J 29793 Countershaft Alignment Tool
- Speedometer driven gear, switches and any external components.
- Shift the transmission into neutral.

1. Reverse shift lever (445).
2. Side cover (450) and the gasket.
 - Detent ball and the spring.
 - Shift forks (452 and 453). Note the positions they were removed from.
3. Extension housing screws (439), (figure 3).
 - Turn the housing upside down on the mainshaft.
 - Install one screw to hold the housing, as shown.

Important
- Do not damage the countershaft or bearings when removing the plug and the countershaft.
 - Punch or drill a hole in the center of the plug.
 - Reaching through the hole, drive the countershaft to the rear until the woodruff key can be removed.

- Drive the countershaft to the front until it pushes the plug out of the case.
5. Countershaft (429), using J 29793.
 - Drive the countershaft out the rear of the case.
 - Turn the housing to the normal position.
7. Bearing retainer (401) and the gasket.
8. Main drive gear (405).
 - Drive the gear out the front of the case.
9. Extension housing (416) and the mainshaft.
 - Slide the 3rd and overdrive synchronizer sleeve (407) to the front (figure 1).
 - Slide the reverse idler gear (422) to the center of the idler shaft.
 - Drive the housing to the rear.
10. Snap ring (454) and the mainshaft (418) from the extension housing (figure 4).
11. Countergear (430) and the thrust washers.
12. Reverse idler shaft (424).
 - Place a 3/8-inch x 3 1/2-in screw and nut into a 3/8-inch drive, deep 7/16-inch socket.
 - Place the screw head against the case and the socket against the shaft.
 - Turn the nut against the socket, driving the shaft out of the bore (figure 5).
 - Remove the shaft, the gear and the key.
13. Reverse shift shaft (443) and the seal.
Figure 2—89 mm Transmission Components

401. Drive Gear Bearing Retainer
405. Main Drive Gear
406. Overdrive Blocker Ring
415. Main Shaft Rear Bearing
416. Extension Housing
417. Vent Plug
418. Mainshaft
422. Reverse Idler Gear
423. Reverse Idler Gear Bushing
424. Reverse Idler Shaft
426. Woodruff Key
427. Thrust Washer
429. Countershaft
430. Countergear
431. Countershaft Spacer
432. Expansion Plug
435. Screw
436. Bearing Retainer Gasket
437. Transmission Case
438. Spring Washer
439. Screw
440. Extension Housing Gasket
441. Detent Ball
442. Detent Spring
443. Reverse Shift Shaft
444. Seal
445. Reverse Shift Lever
446. Washer
447. Nut
448. Spring Washer
449. Screw
450. Side Cover
451. Side Cover Gasket
452. 3rd and Overdrive Shift Fork
453. 1st and 2nd Shift Fork
454. Snap Ring, Bearing to Extension
Figure 3—Turning the Extension Housing

Figure 4—Removing the Mainshaft

Figure 5—Removing the Reverse Idler Shaft
DISASSEMBLY AND ASSEMBLY OF SUB-ASSEMBLIES

Figures 6—Main Drive Gear Components

MAIN DRIVE GEAR

Disassemble (Figure 6)
1. Pilot bearings (434) and the snap ring.
2. Bearing to case snap ring (460).
3. Bearing to shaft snap ring (403).
4. Bearing (404).

Clean (Figure 6)
- All parts in a suitable solvent.
 (Do not spin the bearings dry).

Inspect (Figure 6)
1. Parts for damage and wear.
2. Oil the bearings and check for roughness.

Assemble (Figure 6)
1. Bearing (404).
 - Press the bearing against the shoulder on the shaft.
2. New bearing to shaft snap ring (403).
3. New bearing to case snap ring (460).
4. Pilot bearings (434).
 - Use chassis grease to hold the bearings in place.

MAINSHAFT

Disassemble (Figure 7)
1. Slide the 3rd speed blocker ring (406) off.
2. Remove the snap ring and slide the 3rd and overdrive synchronizer (407) off.
 - Do not let the synchronizer come apart.
3. Remove the overdrive blocker ring and the overdrive gear (409).
4. Speedometer drive gear (420).
 - Press the retaining clip down.

Assemble (Figures 7 and 10)
- Coat all parts with transmission oil before installing them onto the shaft.
1. Synchronizers (407 and 412) (figure 9).
 - Place the keys into the hub.
- Engage the springs in different slots in either side of the hub, so they support all the keys.
- Slide the sleeve onto the hub, aligning the marks made during disassembly.

Important
- The long side of the hub center (A) must be to the front.

2. 2nd speed gear (410) and the blocker ring.
 - Slide the gear on, with the cone to the rear.
 - Slide the blocker ring onto the gear cone with the clutching teeth to the front.

3. Install the 1st and 2nd synchronizer (412) and a new snap ring.
 - The hub slots must be engaged with the blocker ring.

4. 1st speed gear (414) and the blocker ring.
 - Slide the blocker ring on with the clutching teeth to the rear, engaged in the synchronizer hub slots.
407. 3rd and Overdrive Synchronizer
409. Overdrive Gear
410. 2nd Speed Gear
412. 1st and 2nd Synchronizer (Reverse Gear)
414. 1st Speed Gear
416. Extension Housing
418. Main Shaft

Figure 10—Mainshaft Assembled

- Install the gear with the cone into the blocker ring.

5. Press the rear bearing (415) on and install a new snap ring.

Important

- Use the correct snap ring, it is a select fit to limit the mainshaft end play.

6. Install the speedometer drive gear (420) and the retaining clip.

7. Overdrive gear (409) and the blocker ring.
 - Slide the gear on with the cone to the front.
 - Slide the blocker ring onto the gear cone with the clutching teeth to the rear.

8. Install the 3rd and overdrive synchronizer (407) and a new snap ring.
 - The shift fork slot must be to the rear.
 - The hub slots must be engaged with the blocker ring.

9. Install the 3rd speed blocker ring with the clutching teeth to the front.
 - The ring must be engaged with the synchronizer hub slots.
 - Hold the ring in place with grease.

Figure 11—Countygear and Components

COUNTERGEAR

Disassemble (Figure 11)

Tool Required:
- J 29793 Countershaft Alignment Tool
1. Remove tool J 29793.
2. Remove the bearings (428) and the spacers.
3. Remove the countershaft spacer (431).

Clean

- All parts in suitable solvent and air dry.

Inspect

- Countergear for nicks, burrs, and broken teeth.
- Bearings for wear and rough surfaces.
- Spacers for wear and grooves.
- Countershaft for wear, nicks and burrs.

Measure

- Countershaft to case bore clearance. Clearance must be no more than 0.127 mm (0.005-in.).

Assemble (Figure 11)

Tool Required:
- J 29793 Countershaft Alignment Tool
1. Coat the inside of the countergear with grease.
2. Install the countershaft spacer (431) using J 29793.
3. Install the bearings (428) and the spacers.
 - Be sure the bearings and the spacers are centered.
4. Install a thrust washer (427) to the front of the countergear with the tab inside the countergear.

EXTENSION HOUSING

Remove or Disconnect (Figure 12)

Tools Required:
- J 23062-14 Extension Housing Bushing Remover
- J 8092 Driver Handle
1. Seal (421).
2. Gasket material from flange of the extension (416).
3. Bushing (478) if it is worn or damaged, using J 23062-14.
416. Extension Housing
421. Extension Housing Seal
478. Extension Housing Bushing

Figure 12—Extension Housing and Components

Inspect
1. Extension for scoring, wear or cracks, especially at the flange.
2. Snap ring groove for wear and damage.

Install or Connect (Figure 12)
Tool Required:
J 21426 Rear Extension Seal Installer

1. New bushing (478) if needed, using a suitable tool.
 • Coat the bushing with transmission oil.
 • Drive the bushing into the extension.
2. Locking compound on the outside of a new seal (421).
3. New seal (421) using J 21426 (figure 13).
 • Fill between the seal lips with chassis grease.

Figure 13—Installing the Rear Extension Bushing and Seal

401. Drive Gear Bearing Retainer
402. Seal

Figure 14—Bearing Retainer and the Seal

MAIN DRIVE GEAR BEARING RETAINER

Remove or Disconnect (Figure 14)
1. Seal (402).
2. Gasket material from flange of retainer (401).

Inspect
1. Retainer nose for scoring, wear or cracks, especially at the flange.
2. Snap ring groove for damage caused by drive gear bearing movement.
3. Replace the retainer if it is worn or damaged.

Install or Connect (Figure 14)
Tool Required:
J 23096 Drive Gear Seal Installer
• New seal (402), using J 23096. Coat the inside of the seal with transmission oil.

SIDE COVER

Disassemble (Figure 15)
1. Remove the shift levers (484 and 487).
2. Shift shafts (480 and 481).
 • Remove any burrs from the shafts to avoid scoring the cover bores.
 • Pull the shafts out of the cover.
 • Tag the shafts so they can be installed in the positions they were removed from.
3. Remove the retaining clip, the detent cams (488) and the spring.
4. Pry the seals (482) and the retainers (483) from the cover.

Clean (Figure 15)
• All parts using cleaning solvent. Air dry.

Inspect (Figure 15)
• All parts for wear and damage.
• Gasket surface for nicks and scratches.
• Shift shafts and the forks for burrs and wear.
• Seal bores for cracks and damage.
Assemble (Figure 15)

1. Install the detent cams (488), a new retainer clip and the spring.
2. Shift shafts (480 and 481).
 • Coat the cover bores with grease.
 • Install the shafts in the positions they were removed from.
3. Install new seals and the retainers (483).
4. Install the shift levers (484 and 487).
 • The 3rd and overdrive lever must point down.

TRANSMISSION ASSEMBLY
(INSTALLATION OF SUB-ASSEMBLIES)

Use new seals, gaskets and thread sealer on all bolt threads when assembling the transmission. Tighten all bolts to specified torque.

Lubricate all assemblies as they are installed in the transmission case using transmission oil.

Install or Connect (Figure 2)

Tool Required:
J 29793 Countershaft Alignment Tool
1. Countergear (430) and the thrust washers.
 • Lower the countergear into place with the front thrust washer tabs in the case slots.
 • Align the rear thrust washer tabs with the case slots and slide it in.
2. Mainshaft (418) and a new snap ring (454) into the extension housing (416).
3. Extension housing (416) and a new gasket onto the case.
 • Turn the extension housing upside down and install one screw to hold it in place (Figure 3).
4. Main drive gear (405).
 • Tap the gear in until the bearing snap ring bottoms against the case.
5. Countershaft (429) and the woodruff key.
 • Lift the countergear into mesh with the mainshaft. Be sure the thrust washers are in place.
 • Push the countershaft halfway into the countergear and install the woodruff key.
 • Push the countershaft into place and remove J 29793.
6. Reverse shift shaft (443) and a new seal.
7. Reverse idler shaft (424) and the reverse gear.
 • Push the shaft in part way.
 • Put the gear onto the shaft with the fork slot to the rear and engage the slot with the reverse shift shaft fork (Figure 16).
 • Install the woodruff key and drive the shaft flush with the case.
8. Extension housing screws.
 • Do not damage the gasket when turning the housing into place.
9. Bearing retainer (401) and a new gasket.
10. Coat the outside of the plug with sealing compound.

11. 1st and 2nd shift fork (453) into the synchronizer slot.

12. 3rd and overdrive shift fork (452) into the side cover.

13. New side cover gasket (451) and the detent ball and spring.

14. Side cover (450).
 - Move the synchronizer sleeves and the reverse idler gear to the neutral positions.
 - Move the shift levers to neutral (straight up).
 - Hold the detent cam against the 1st and 2nd shift lever, then lift the cam over the fork to install the cover.

Important
 - Be sure the detent ball and the spring are in position.

15. Side cover screws (449) and new spring washers.
 - Install the locating (long shoulder) screw finger tight in the locating hole (A), (figure 16).
 - Install the remaining screws finger tight.
 - Tighten the screws evenly.

 - Shift the transmission through all gears to check the operation.
 - Speedometer driven gear, switches and any external components that were removed.

SPECIFICATIONS

FASTENER TORQUE

<table>
<thead>
<tr>
<th>Part</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift Lever Nut</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>Extension Housing Screw</td>
<td>68</td>
<td>50</td>
</tr>
<tr>
<td>Drive Gear Bearing Retainer</td>
<td>41</td>
<td>30</td>
</tr>
<tr>
<td>Side Cover Screw</td>
<td>20</td>
<td>15</td>
</tr>
</tbody>
</table>

LUBRICATION

| Capacity | 4.0 L | 4.2 qts. |
| Type Recommended | | Dexron II Automatic Transmission Fluid |
1. J 21426 Rear Extension Seal Installer
2. J 12096 Drive Gear Retainer Installer
3. J 8092 Driver Handle
4. J 29793 Countershaft Alignment Tool
5. J 23062-14 Extension Housing Bushing Remover
DESCRIPTION

The 77 mm 5 speed is a constant mesh transmission, synchronized in all speeds except reverse. The main components are:

1. Main drive gear.
 - An integral shaft is splined to engage with the clutch driven plate.
 - The gear drives the countergear.
 - A tapered bearing supports the shaft in the case.

2. Countergear.
 - The countergear is one unit for constant rotation with the main drive gear.
 - Bearings support the countergear in the case.
 - Thrust washers limit the play of the countergear.
 - An extra gear is mounted to the countergear for 5th speed.

 - The drive gears rotate freely on the mainshaft and are in constant mesh with the countergear.
 - Key type synchronizers engage the gears.
 - The 1st and 2nd synchronizer hub is machined in place.
 - A tapered bearing supports the mainshaft in the rear of the case.
 - Roller bearings support the mainshaft independently in the main drive gear.

4. Reverse idler gear.
 - The idler gear drives the mainshaft in reverse.
 - The idler gear is supported on its own shaft.

5. Shift lever.
 - The shift lever is mounted on the extension housing and holds the shift lever.
 - The shift lever moves the shafts which are mounted in the transmission top cover.
 - Shift forks mounted on shafts move the synchronizers to engage the gears.
 - A pin-type interlock blocks the other shafts when one is moved.

Certain precautions should be followed when repairing the transmission. Unless proper care is taken, the components may be damaged.

- Repair of a transmission should be done in a clean work area. The outside of the case should be clean to keep dirt out of the transmission. On transmissions with a standard gearshift lever, install the lever before cleaning the outside of the transmission.
- During transmission repair, all the parts should be cleaned in cleaning solvent and then air dried. Wiping cloths or rags should not be used to dry the parts as lint may get on the parts and cause trouble later. All the parts, except those being worked on, should be kept covered with clean paper.
DISASSEMBLY OF THE 77 mm TRANSMISSION

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>600. Screw</td>
<td>626. Pin Roller</td>
</tr>
<tr>
<td>601. Shift Cover</td>
<td>627. Lock Spring</td>
</tr>
<tr>
<td>602. Seal</td>
<td>628. Reverse Shift Fork</td>
</tr>
<tr>
<td>603. Transmission Case</td>
<td>629. 5th Speed and Reverse Shift Shaft</td>
</tr>
<tr>
<td>604. Mainshaft</td>
<td>630. 5th Speed Synchronizer</td>
</tr>
<tr>
<td>605. Bearing Race</td>
<td>631. 5th Speed Blocker Ring</td>
</tr>
<tr>
<td>606. 5th Speed Gear Snap Ring</td>
<td>632. 5th Speed Drive Gear</td>
</tr>
<tr>
<td>607. Retaining Clip</td>
<td>633. Snap Ring</td>
</tr>
<tr>
<td>608. Ball</td>
<td>634. Countergear Spacer, Rear</td>
</tr>
<tr>
<td>609. Speedometer Drive Gear</td>
<td>635. Countergear Ring Bearing</td>
</tr>
<tr>
<td>610. Snap Ring</td>
<td>636. Countergear Spacer, Front</td>
</tr>
<tr>
<td>611. Front Thrust Race</td>
<td>637. Reverse Idler Shaft</td>
</tr>
<tr>
<td>612. Countergear Thrust Bearing</td>
<td>638. Reverse Idler Gear</td>
</tr>
<tr>
<td>613. Extension Housing</td>
<td>639. Pin</td>
</tr>
<tr>
<td>614. Screw</td>
<td>640. Countergear</td>
</tr>
<tr>
<td>615. Funnel</td>
<td>641. Countergear Thrust Washer</td>
</tr>
<tr>
<td>616. Snap Ring</td>
<td>642. Countergear Front Bearing</td>
</tr>
<tr>
<td>618. 5th Speed Shift Fork</td>
<td>643. Main Drive Gear</td>
</tr>
<tr>
<td>619. Pin</td>
<td>644. Main Drive Gear Bearing Race</td>
</tr>
<tr>
<td>620. Pin Roller</td>
<td>645. Bearing Shim Pack</td>
</tr>
<tr>
<td>621. Shaft Pin</td>
<td>646. Main Drive Gear Bearing Retainer</td>
</tr>
<tr>
<td>622. Fork Pin</td>
<td>647. Screw</td>
</tr>
<tr>
<td>623. 5th Speed and Reverse Shift Lever</td>
<td>648. Magnet</td>
</tr>
<tr>
<td>624. Pivot Bolt</td>
<td>649. Nut</td>
</tr>
<tr>
<td>625. Retaining Ring</td>
<td></td>
</tr>
</tbody>
</table>

Remove or Disconnect (Figures 1, 2 and 3)

1. Control lever (653).
 - Boot and the dust cover.
2. Pin (659) from the offset lever (655), (figure 4).
3. Extension housing (613) and the offset lever.

Important

- The offset lever is engaged into the extension housing and cannot be removed when the extension housing is mounted to the transmission.

4. Detent ball and the spring from the offset lever, (figure 5).
5. Countergear rear thrust bearing (612).
 - Plastic funnel (figure 6).
 - Front thrust race.

Important

- Two of the cover mounting screws are alignment screws. Note the positions they were removed from for installation.

7. 5th speed drive gear (632).
 - Support the 5th speed shift fork (618) and drive the pin out, (figure 7).

Figure 1—77 mm Transmission and Components

- Snap ring and the 5th gear synchronizer (630) and shift fork together (figure 8).
- 5th speed blocker ring (631) and the 5th speed gear (632).
8. Speedometer drive gear (609) and the clip.
9. 5th speed driven gear snap ring (606).
10. Main drive gear bearing retainer (646).
 - Mark the retainer and the case for alignment (figure 9).
11. Bearing race (644) and the shim pack (figure 10).
12. Main drive gear (643).
 - Turn the gear so the cut-out is toward the countergear (figure 11).
13. Retaining ring and the reverse shift shaft lever pivot bolt (624) (figure 12).
14. Mainshaft rear bearing race (605).
15. Mainshaft (604).
16. 5th speed and reverse shift shaft (629) (figure 13).
17. 5th speed and reverse shift lever (623).
18. Reverse idler gear (638).
 - Drive the pin through the front of the idler shaft (637) (figure 14).
 - Idler shaft and the seal.
613. Extension Housing
650. Retainer
651. Boot
652. Retainer
653. Control Lever
654. Damper Sleeve
655. Offset Lever
656. Detent Plate
657. Detent Ball
658. Detent Spring
659. Pin

Figure 3—Shift Lever Components

Figure 5—Detent Ball and the Spring
655. Offset Lever
656. Detent (Neutral Guide) Plate
657. Detent Ball
658. Detent Spring

Figure 6—Plastic Funnel
615. Funnel
618. 5th Speed Shift Fork
630. 5th Speed Synchronizer

Figure 4—Removing the Offset Lever Pin

Figure 7—Removing the 5th Speed Shift Fork Pin
618. 5th Speed Shift Fork
619. Pin
Figure 8—Removing the 5th Speed Shift Fork and the Synchronizer

Figure 9—Bearing Cap Alignment Marks

Figure 10—Main Drive Gear Shim Pack

Figure 11—Main Drive Gear Cut Out

- Idler gear.

19. Snap ring and the countergear rear bearing spacer (634).

20. Countergear rear bearing (635).
- Drive the countergear (640) to the rear to remove the bearing (figure 15).

Important
- Note the direction the bearing faces.

21. Countergear (640) and the rear bearing spacer (636).

22. Countergear thrust washer (641).

23. Countergear front bearing (642).
- Press the bearing from the case.

Figure 12—5th Speed and Reverse Shift Lever

623. 5th Speed and Reverse Shift Lever
624. Pivot Bolt
625. Retaining Ring

Figure 12—5th Speed and Reverse Shift Lever Retaining Ring
Figure 13—5th Speed and Reverse Shift Shaft

Figure 14—Removing the Reverse Idler Shaft Pin

Figure 15—Removing the Countergear Rear Bearing
DISASSEMBLY AND ASSEMBLY OF SUB-ASSEMBLIES

MAIN DRIVE GEAR

Disassemble (Figure 16)
Tool Required:
J 22912-01 Bearing and Gear Puller
1. Thrust bearing and the race (682).
2. Pilot bearings (681).

Clean (Figure 16)
- All parts in a suitable solvent.
 (Do not spin the bearings dry.)

Inspect (Figure 16)
1. Parts for damage and wear.
2. Oil the bearings and check for roughness.

Assemble (Figure 16)
Tool Required:
J 22912-01 Bearing and Gear Puller
1. Bearing (680), using J 22912-01 (figure 17).
2. Pilot bearings.

MAINSHAFT

Disassemble (Figure 18)
Tool Required:
J 22912-01 Bearing and Gear Puller
1. 4th speed blocker ring (661).
2. 3rd and 4th synchronizer and the 3rd speed gear (664).
 - Press the mainshaft through the synchronizer, the blocker ring and the gear using J 22912-01 (figure 19).
 - Do not let the synchronizer come apart.

Important
- Do not let the mainshaft fall to the floor.

3. Remove the snap ring and the 2nd speed gear thrust washer (666).
4. Remove the 2nd speed gear (667) and blocker ring.
5. Press the mainshaft through the 5th speed driven gear (679) using J 22912-01 (figure 20).

Important
- Do not let the mainshaft fall to the floor.
- It may be necessary to press the mainshaft through the bearing using J 22912-01 (figure 20).

Important
- Do not let the mainshaft fall to the floor.

6. Mainshaft rear bearing (678).

7. Remove the 1st speed gear thrust washer (677).
8. Pull the retaining pin out and remove the 1st speed gear (676) (figure 21).
9. 1st and 2nd speed synchronizer sleeve (674) (figure 22).
 - Mark the hub and sleeve alignment for reassembly.
 - Push the hub out of the sleeve while holding the springs and keys to avoid losing them.
 - Do not lose the antirattle ball and spring (669) (5 speed only).

Important
- Do not remove the hub. The hub and the mainshaft are machined together as a set.

10. Synchronizers (630 and 662) (figure 22).
 - The synchronizer hub and sleeve are a select fit, do not mix the parts of the two synchronizers.
 - Mark the hub and sleeve alignment for reassembly.
 - Push the hub out of the sleeve while holding the springs and keys to avoid losing them.
Clean (Figure 18)
- All parts in a suitable solvent and air dry.

Important
- Do not spin dry bearings.

Inspect (Figure 18)
1. Gears for cracks, chipped gear teeth, and other damage that could cause gear noise.
2. Thrust washers and bushings for damage and wear.
3. Related surfaces on the gears like thrust faces and bearing surface diameters.
4. The reverse sliding gear for a sliding fit on the synchronizer hub without excess radial, or circular play. If the sliding gear is not free on the hub, inspect it for burrs on the ends of the internal splines. Remove any burrs by honing as required.
5. Synchronizer sleeves for a sliding fit on the synchronizer hubs, also, the hubs have to be a snug fit on the mainshaft splines.
Assemble (Figure 18)

Tools Required:
J 22912-01 Bearing and Gear Puller
J 25234 Countergear Rear Bearing Installer
- Coat all parts with transmission oil before installing them.

1. Synchronizers (630 and 662) (figure 22).
 - Place the keys into the hub.
 - Engage the springs in the same key with the open ends away from each other (figure 23).
 - Slide the sleeve onto the hub, aligning the marks made during disassembly.

2. 1st and 2nd speed synchronizer sleeve (674) (figure 22).
 - Hold the antirattle ball and spring (669) in the hub.
 - Place the keys into the hub.
 - Engage the springs in the same key with the open ends away from each other.
 - Slide the sleeve onto the hub, aligning the marks made during disassembly.

3. Slide the 2nd speed blocker ring (668) onto the mainshaft.
 - The clutching teeth must be to the front.

4. Slide the 2nd speed gear (667) on with the cone into the blocker ring.

5. 2nd speed gear thrust washer (666) and a new snap ring.
 - Be sure the thrust washer tab is seated in the mainshaft groove.

6. Slide the 1st speed blocker ring (675) onto the mainshaft.
 - The clutching teeth must be to the rear.

7. Install the 1st speed gear (676) and a new retaining pin (figure 21).

8. Slide the 1st speed gear thrust washer (677) against the gear.

9. Install the mainshaft rear bearing (678).
 - The bearing may have to be pressed on using J 25234 (figure 24).

10. Install the 5th speed driven gear (679) using J 22912-01.

11. Slide the 3rd speed gear (664) on with the cone to the front.

12. Slide the 3rd speed blocker ring (663) onto the 3rd speed gear.
 - The clutching teeth must be against the gear.

13. Install the 3rd and 4th synchronizer (662) with the hub offset to the front.

14. Slide the 4th speed blocker ring (661) into the 3rd and 4th synchronizer.
 - The clutching teeth must be to the front.
Figure 24—Installing the Mainshaft Rear Bearing

EXTENSION HOUSING

- Remove or Disconnect (Figure 25)
 Tools Required:
 J 8092 Driver Handle
 J 23062-14 Extension Housing Bushing Remover and Installer
 1. Seal (681).
 2. Sealing compound from the flange of the extension.
 3. Bushing (680) if it is worn or damaged, using J 8092 and J 23062-14.

- Inspect (Figure 25)
 1. Extension for scoring, wear or cracks, especially at the flange.
 2. Snap ring groove for wear and damage.

- Install or Connect (Figure 25)
 Tools Required:
 J 8092 Driver Handle

Figure 25—Extension Housing and Components

J 23062-14 Extension Housing Bushing Remover and Installer
J 21426 Extension Housing Oil Seal Installer
1. New bushing (680) if needed, using J 8092 and J 23062-14 (Figure 26).
 • Coat the bushing with transmission oil.
 • Drive the bushing into the extension.
2. Locking compound on the outside of a new seal (681).
3. New seal (681) using J 21426 (Figure 27).
 • Fill between the seal lips with chassis grease.

MAIN DRIVE GEAR BEARING RETAINER

- Remove or Disconnect (Figure 28)
 1. Seal (683).
 2. Sealing compound from flange of retainer (646).

- Inspect (Figure 28)
 1. Retainer nose for scoring, wear or cracks, especially at the flange.
 2. Snap ring groove for damage caused by drive gear bearing movement.

Figure 26—Installing the Extension Housing Bushing

Figure 27—Installing the Seal

Figure 28—Removing the Extension Housing and Components
3. Replace the retainer if it is worn or damaged.

Install or Connect (Figure 28)

<table>
<thead>
<tr>
<th>Tool Required:</th>
</tr>
</thead>
<tbody>
<tr>
<td>J 23096 Front Housing Drive Gear Seal Installer</td>
</tr>
</tbody>
</table>

- New seal (683) using J 23096. Coat the inside of the seal with transmission oil (figure 29).

SHIFT COVER

Disassemble (Figure 30)

- The shift shaft and shift fork plates must be in the neutral position (centered).
 1. Turn the shift shaft (685) until the selector arm (689) is disengaged from the fork plates (688).
 2. Drive the retaining pin out of the selector arm (689) (figure 31).
 3. Remove the shift shaft (685).
 - Shift forks and the plates.
 - Selector arm.
 - Interlock plate.
 4. Pry the oil seal (602) out.

5. Remove the inserts (686) from the forks.

Clean (Figure 30)

- All metal parts in solvent and air dry.

Inspect (Figure 30)

1. Shift forks.
 - For damage or bends.
 - For worn inserts.
2. Shift shaft.
Assemble (Figure 30)

- Coat the shift shaft and the cover bores lightly with grease.
- 1. Install a new shift shaft plug (673), if needed.
 - Coat the outside of the plug with sealing compound.
- 2. Fit the inserts (686) and the fork plates (688) into the shift forks (figure 31).
- 3. 1st and 2nd (largest) shift fork (672).
 - Fit the shift shaft into the cover rear bore.
 - Hold the shift fork in the cover with the fork offset to the rear (figure 32).
 - Push the shift shaft through the fork.
- 4. Selector arm (689) and the interlock plate (671).

Figure 31—Shift Forks and Selector Plates

- For damage and bends.
- For cracks and warping.
- For smooth shift shaft fit.
- For smooth fit in the cover.
- Shaft plug for damage or leaks.

5. 3rd and 4th shift fork (687).
- Hold the selector arm and the interlock plate in the cover with the widest part of the plate away from the cover.
- The shift arm retaining pin hole must be away from the cover and to the rear (figure 32).
- Push the shift shaft through the arm.

6. Turn the shift shaft until the front fork plate is away from the cover and parallel to it.

7. Drive a new retaining pin (670) into the selector arm and the shift shaft.
- Be sure the arm and shaft pin holes are aligned.
- The retaining pin must be flush with the selector arm.

8. Install a new oil seal (602).
- Coat the seal with transmission oil.

TRANSMISSION ASSEMBLY (INSTALLATION OF SUB-ASSEMBLIES)

Use new seals, gaskets, and thread sealer on all bolt threads when assembling the transmission. Tighten all bolts to specified torque.

Lubricate all assemblies as they are installed in the transmission using transmission oil.

Install or Connect (Figures 1, 2 and 3)

Tools Required:
- J 29895 Countershaft Rear Bearing Installer
- J 33032 Rear Cluster Bearing Assembly Tool

1. Countergear front bearing (642) (figure 33).
 - Coat the bearing bore with Loctite #601 or equivalent.

2. Countergear thrust washer (641).
 - Coat the thrust washer with grease.

3. Countergear (604) and the rear bearing spacer (636).
 - Tip the transmission case up.
 - Fit the countergear into the front bearing.
 - Install the rear bearing spacer.

4. Countergear rear bearing (635) (figures 34 and 35).
 - Coat the bearing with grease.
 - Install the bearing using J 33032 and J 29895.
Figure 33—Installing the Countergear Front Bearing

Important
- Be sure the bearing is installed in the direction it was removed from.

Measure
- Countergear rear bearing. It must extend 3 mm (0.125-inch) past the transmission case.

5. Reverse idler gear (638) and the shaft.
 - Hold the gear in the case with the shift lever groove to the rear.
 - Install the reverse idler shaft from the rear.
 - Install a new retaining pin (figure 14).

6. Fit the mainshaft (604) into place.
7. Mainshaft rear bearing race (605).
8. Main drive gear (643).
 - Turn the gear so the cut-out is toward the countergear (figure 11).
 - Be sure the 4th speed blocker ring is engaged in the synchronizer properly.
9. Main drive gear bearing race (644).

Figure 34—Installing Tool J 33032

Figure 35—Installing the Countergear Ring Bearing

10. Main drive gear bearing retainer (646) and the screws.
 - Be sure to align the marks (figure 9).

11. 5th speed and reverse shift lever (623), and the pivot bolt.
 - Coat the pivot bolt threads with a non-hardening sealer.
 - Be sure the reverse lever fork is engaged in the idler gear slot.

12. New reverse shift lever retaining ring (625).
13. Countergear rear bearing spacer (625) and a new snap ring.
14. 5th speed drive gear (632).
15. 5th speed and reverse shift shaft (629) (figure 13).
 - Install the shaft from the rear of the case.
 - Turn the shaft to engage it in the reverse lever.
 - Hook the lock spring to the front of the case.

16. 5th speed shift fork (618) and the synchronizer.
 - Engage the shift fork in the synchronizer.
 - Engage the 5th speed blocker ring into the synchronizer.
 - Install the synchronizer onto the countergear and the shift fork onto the shift shaft together.

17. New pin (619).
 - Align the holes in the 5th speed shift fork and the shift shaft.
 - Support the shift fork and install the pin (figure 7).

18. Front thrust race (611) and a new snap ring.
 - Coat the bearing with petroleum jelly.
 - The bearing race lip must be over the bearing.
 - Plastic funnel (615) into the bearing.

20. Extension housing (613) and the screws.
 - Turn the transmission on end and mount a dial indicator on the extension housing (figure 36).
Figure 36—Measuring Mainshaft End Play

Measure
- Mainshaft end play.
- Select a shim pack 0.03-0.13 mm (0.001-0.005-inch) LARGER than the end play measured, to preload the mainshaft bearings 0.03-0.13 mm (0.001-0.005-inch).

- Remove the bearing retainer.
- Install the correct shim pack (figure 10).
- Apply a 3 mm (1/8-inch) diameter bead of RTV #732, or equivalent, sealer to the case mating surface.
- Install the bearing retainer, aligning the marks (figure 9).

22. Shift cover (601).
- Remove the extension housing.
- Move the shift forks and the synchronizers to the neutral positions.
- Apply a 3 mm (1/8-inch) bead of RTV #732, or equivalent, sealer to the cover mating surface.
- Lower the cover onto the case, aligning the shift forks into the synchronizers.
- The offset lever to shift shaft pin hole must be up.

23. Shift cover screws.
- Install the two locating screws in the holes they were removed from first.

24. Speedometer drive gear (609) and the retaining clip.
- Do not lose the balls from the gear.

25. Extension housing (613).
- Apply a 3 mm (1/8-inch) diameter bead of RTV #732, or equivalent, sealer to the mating surface.
- Hold the extension housing so the shift shaft just enters the shift cover opening.

26. Offset lever (655), the detent ball and the spring (figure 5).
- Press the offset lever into place and seat the extension housing.
- Install the extension housing screws.

27. New pin (659) into the offset lever and shift shaft.

28. Control lever (653), the boot and the dust cover.
- Silicone sealer in the groove around the dust cover.

SPECIFICATIONS

FASTENER TORQUE

<table>
<thead>
<tr>
<th>Fastener Type</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive Gear Bearing Retainer Screws</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Shift Cover Screws</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>Rear Extension Screws</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>Reverse Pivot Bolt</td>
<td>27</td>
<td>20</td>
</tr>
</tbody>
</table>

LUBRICATION

- Capacity .. 2.0 L 2.0 qts.
- Type Recommended ... Dexron II Automatic Transmission Fluid
SPECIAL TOOLS

1. J-8001 Dial Indicator
2. J-33032 Rear Cluster Bearing Assembly Tool
3. J-29895 Countershaft Rear Bearing Installer
4. J-22912-01 Bearing and Gear Puller
5. J-23096 Front Housing Drive Gear Oil Seal Installer
6. J-21426 Extension Housing Oil Seal Installer
7. J-8092 Driver Handle
8. J-23062-14 Extension Housing Bushing Remover and Installer
NEW PROCESS 205 TRANSFER CASE

DESCRIPTION

A transfer case mounts behind the transmission and allows drive torque to be transmitted in a proportional split to both the front axle and the rear axle, resulting in four-wheel drive. The shift control lever for the transfer case is floor-mounted in the passenger compartment. Depending on the type of transfer case and the shift lever position, various combinations of rear wheel drive, four wheel drive, high traction (gear reduction) or direct drive may be selected.

The model 205 transfer case is a two-speed unit which can be used for either two-wheel or four-wheel drive. Direct drive (1:1 ratio) is available in two modes, 2H for two-wheel drive, or 4H for four-wheel drive. Gear reduction (1.96:1 ratio) is used in the 4L position. This unit uses constant mesh helical gears to connect the input shaft, idler gear and two output gears, thus allowing gear selection to match driving conditions. The front input shaft gear is in constant mesh with the idler gear and, through the idler gear, with the front output gears and the rear output gear. Sliding clutches allow for selective gear engagement resulting in High or Lo range, and two-wheel or four-wheel drive. Ball bearings support the input shaft, rear output shaft and front output shaft. Tapered roller bearings are used on the idler shaft. When driving in a four-wheel mode (4L or 4H) the hubs on the front wheels must be turned to the “Locked” position.

IDENTIFICATION

An identification tag is attached to the power take-off cover transfer case. This tag provides the transfer case model number, low range reduction ratio, and assembly number. The information on this tag is necessary for servicing information. If the tag is removed or becomes dislodged during service operations it should be reattached.
Clean

- The transfer case exterior using a solvent and a stiff brush.

Remove or Disconnect (Figures 1, 2, 3, and 4)

Tool Required:

J 23432 Snap Ring Pliers

1. Lock nut (1).
2. Washer (2 and 3).
3. Yoke (4).
4. Front bearing retainer bolts (6).
5. Retainer (8).
6. Front output shaft rear bearing retainer attaching bolts (6) and retainer (49).
7. Front output shaft (40), gear assembly, and rear bearing retainer (49) from the case (19).
 • Tap on the output shaft with a soft hammer.
8. Clutch hub (34) from the output high gear (33).
 • Output high gear, washer and bearing are still in the case.
9. Low gear retaining ring (46) from the shaft (40), using J 23432-1. Discard the ring.
10. Thrust washer (44) from the shaft.
11. Pin (45) from the shaft.
12. Low gear (43).
13. Roller bearings — 32 per row (41) — first row.
15. Roller bearings — 32 per row (41) — second row.
16. Front output shaft rear bearing (47).
 • Support the cover.
 • Press the bearing from the cover (figure 5).

SHIFT RAIL AND FORK ASSEMBLIES

Remove or Disconnect (Figures 3, 4, 6, and 7)

1. Two poppet screws (15) on top of the case (19).
2. Two poppet springs (17).
3. Poppet balls (18).
 • Use a magnet.
4. Cup plugs.
 • Drive the cup plugs into the case, using a 6.35 mm (1/4-inch) punch (figure 6).
5. Shift fork pins (36).
 • Position both shift rails into neutral.
 • Drive the shift fork pins through the shift rails and into the case.
6. Clevis spring clips (37) and clevis pins (38).
7. Shift rail link (13).
8. Upper shift rail (39) (figure 7).
10. Shift forks (77 and 35).
11. Sliding clutch hub (34).
12. Front output high gear (33).
14. Bearing (9).
15. Shift rail cup plugs and shift fork pins (36) from the case.
16. Snap ring (11) in front of the main drive gear bearing (12).
17. Main drive shaft (22).
 • Tap the shaft out the rear of the case.
18. Main drive gear bearing (12).
 • Tap the bearing out the front of the case.
19. Interlock pins (21).

IDLER GEAR

Remove or Disconnect (Figures 3, 4 and 8)

Tool Required:
Tool-A
1. Idler gear shaft nut (27) and washer (28).
2. Idler shaft rear cover bolts (58) and rear cover (56).
3. Idler gear shaft (54), using Tool A and a soft hammer (figure 8).
4. Idler gear (51).
 • Roll the gear to the front output shaft hole and remove it from the case.
5. Bearing cups (50), as required, from the idler gear (51).
6. Spacer (52).
7. Shims (53).

MISCELLANEOUS

Remove or Disconnect

1. Lock pins (37).
2. Clevis pins (38).
3. Shift rail cross link (13).
4. Drain plugs and filler plugs.
5. PTO cover bolts (30).
6. PTO cover (31).
7. PTO cover gasket (29).
| 1. | Yoke Nut |
| 2. | Washer |
| 3. | Washer (Rubber) |
| 4. | Yoke |
| 5. | Seal |
| 6. | Retainer Bolt |
| 7. | Washer, Toothed |
| 8. | Retainer |
| 9. | Front and Rear Output Shaft Bearing |
| 10. | Gasket |
| 11. | Bearing Retaining Snap Ring |
| 12. | Main Drive Gear Bearing |
| 13. | Shift Shaft Link |
| 14. | Shift Shaft Oil Seal |
| 15. | Poppet Plug (on Rear Output Shift Shaft) or Four Wheel Indicator Lamp Switch (on Front Output Shift Shaft) |
| 16. | Poppet Plug Gasket |
| 17. | Poppet Plug Spring |
| 18. | Poppet Ball |
| 19. | Transfer Case |
| 20. | Fill Plug |
| 21. | Shift Rail Interlink Plunger |
| 22. | Input Main Drive Gear |
| 23. | Pilot Roller Retainer Ring |
| 24. | Rear Output Shaft Roller Bearing Thrust Washer |
| 25. | Rear Output Shaft Pilot Bearing Roller |
| 26. | Rear Output Shaft |
| 27. | Idler Shaft Yoke Nut |
| 28. | Washer |
| 29. | Power Take-Off Cover Gasket |
| 30. | Bolt |
| 31. | Power Take-Off Cover |
| 32. | Front Output Shaft Bearing Thrust Washer |
| 33. | Front Output Shaft Front Gear |
| 34. | Front Output Gear Clutch Hub |
| 35. | Front Wheel Shift Fork |
| 36. | Lock Pin |
| 37. | Shift Link Clevis Spring Clip |
| 38. | Clevis Pin |
| 39. | Two/Four Wheel Shift Shaft |
| 40. | Front Output Shaft |
| 41. | Bearing Roller |
| 42. | Spacer |
| 43. | Front and Rear Output Shaft Low Gear |
| 44. | Thrust Bearing |
| 45. | Thrust Washer Retainer Pin |
| 46. | Snap Ring |
| 47. | Bearing |
| 48. | Gasket |
| 49. | Front Output Shaft Rear Bearing Retainer |
| 50. | Idler Gear Bearing |
| 51. | Transfer Case Idler Gear |
| 52. | Idler Gear Bearing Spacer |
| 53. | Idler Gear Shim |
| 54. | Idler Gear Shaft |
| 55. | Idler Shaft Cover Gasket |
| 56. | Idler Shaft Cover |
| 57. | Washer |
| 58. | Bolt |
| 59. | Hi-Lo Range Shift Shaft |
| 60. | Thrust Washer |
| 61. | Rear Output Shaft Retainer Bearing |
| 62. | Rear Output Shaft Bearing Retainer |
| 63. | Speedometer Gear |
| 64. | Retainer Oil Seal Gasket |
| 65. | Retainer |
| 66. | Bolt |
| 67. | Oil Seal |
| 68. | Yoke |
| 69. | Washer (Rubber) |
| 70. | Extension |
| 71. | Bushing |
| 72. | Seal |
| 73. | Input Drive Gear Seal |
| 74. | Gasket |
| 75. | Retainer |
| 76. | Bolt |
| 77. | Front Output Shift Fork |
| 78. | Fork Insert |
| 79. | Rear Output Shaft Nut |
| 80. | Rear Output Washer |
| 81. | Thrust Washer |
49. Front Output Shaft Rear Bearing Retainer

Figure 5—Removing the Front Output Shaft Bearing

36. Coiled Spring Pin

Figure 6—Removing the Shift Fork Roll Pin

39. Two/Four Wheel Shift Shaft
59. Hi/Lo Range Shift Shaft

Figure 7—Removing the Shift Rail

Figure 8—Removing the Idler Shaft
CLEANING AND INSPECTION

Clean
1. Bearings and rollers.
 • Remove all old lubricant and dirt.
2. Shafts and gears.
 • Remove all old lubricant and dirt.
3. Transfer case, cover and bearing cups.
 • Remove all old lubricant and dirt.
 • Remove all traces of gaskets.

Inspect
1. Bearings and thrust washers for wear, spalling, brinelling, or corrosion.
2. Rollers for wear, spalling or corrosion.
3. Shaft splines for excessive wear, chipped teeth, or cracks.
4. Gears for excessive wear, chipped teeth, spalling, cracks, or corrosion.
5. Housing, retainers and case for cracks, warpage or damage.
6. Shafts for wear, corrosion, cracks, and damage.
7. Bolts and threaded holes for wear, damage, stretched threads or corrosion.

ASSEMBLY

Install or Connect (Figures 3, 4, 9, 10, 11, 12, and 13)

Tools Required:
 J 8092 Driver Handle
 Tool-B
 Tool-A
1. Two bearing cups (50) in the idler gear (51) using Tool-B and J 8092 (figure 9).
2. Two bearing cones (50), spacer (52), shims (53), and idler gear (51) on J 23429 with the bore up.

Measure
 • End play. Limits are .025-.051 mm (0.001-0.002-inch) (figure 10).
3. Idler gear assembly with Tool-A into the case. Go through the front output bore, large end first (figure 11).
4. Idler shaft (54) from the large bore side.
7D1-8 TRANSFER CASE

Figure 12—Installing the Idler Shaft

- Drive the shaft through, using a soft hammer (figure 12).

5. Washer (28).
 - Check for end play and free rotation.

Tighten
- Nut to 202 N·m (150 ft. lbs.).

7. Idler shaft cover gasket (55).
8. Idler shaft cover (56) (figure 13).
 - The flat on the cover must be located adjacent to the front output shaft rear cover.

Tighten
- Bolts to 27 N·m (20 ft. lbs.).

Figure 13—Idler Shaft Cover Alignment

SHIFT RAIL AND FORK ASSEMBLIES

Install or Connect (Figures 3, 4, and 14)

1. Two rail seals (14) into the case (19).
 - Seals should be installed with the metal lip outward.
2. Interlink plungers (21) through the large bore or PTO opening.
3. Hi-Lo range shift rail (59).
 - Start the rail into the case from the back, slotted end first, with the poppet notches up.
4. Shift fork (35).
 - Install the shift fork (long end forward) into the front output drive shift rail (59).
 - Push the rail through to the neutral position.
5. Input shaft bearing (12) and shaft (22) into the case.
6. Range rail (39) into the case.
 - Start the range rail into the case from the front, with the poppet notches up.
7. Sliding clutch (34) and fork (77).
 - Install the sliding clutch onto the fork.
 - Place the assembly over the input shaft (40) in the case.
 - Position the assembly to receive the range rail (39).
 - Push the range rail through to the neutral position.
8. Lock pins (36).
 - Install the new lock pins through the holes at the top of the case.
 - Drive the lock pins into the forks (figure 14).
 - Tip the case onto the PTO opening when installing the range rail lock pin.

FRONT OUTPUT SHAFT ASSEMBLY

Install or Connect (Figures 3, 4 and 15)

Tools Required:
- J 23432 Snap Ring Pliers
- J 22836 Front Output Shaft Bearing Retainer
- Seal Installer
Figure 15—Installing the Front Output Bearing Retainer Seal

1. Roller bearings — 32 per row (41) in the front low gear (43).
 • Use grease to retain the roller bearings.
2. Spacer (42).
3. Roller bearings — 32 per row (41) in the front low gear (43).
4. Front low gear (43) on the front output shaft (40).
 • Place the front output shaft in a soft jawed vise, with the spline end down.
 • Install the front low gear on the shaft with the clutch gear facing down.
5. Thrust washer pin (45) in the shaft (40).
6. Thrust washer (44) on the shaft (40).
 • Position the snap ring so that the opening is opposite the pin.
8. Front output shaft front bearing (9) into the case (19).
10. Front output shaft front bearing retainer (8).
11. Retainer bolts (6).

Tighten
 • Bolts to 40 N·m (30 ft. lbs.).
13. Front output shaft high gear (33) in the case.
14. Shift fork (77) in the sliding clutch hub (34).
15. Shift fork (77) and rail (39) in the front wheel drive (4H) position with the clutch teeth in mesh with the front output high gear teeth.
16. Front output shaft and low gear assembly through the high gear assembly.
 • Line up the washer (32), high gear (33), and the clutch hub (34) with the bearing bore before installing the front output shaft (40).
17. Bearing (47) in the front output rear bearing retainer (49).
18. Front output rear bearing retainer (49) onto the case (19).
 • Use one gasket.

REAR OUTPUT SHAFT ASSEMBLY

Install or Connect (Figures 3, 4, 16, 17, and 18)

Tools Required:
- J 22875 Rear Output Shaft Rear Bearing Installer
- J 23432 Snap Ring Pliers
- J 23432-1 Snap Ring Picks
- Tool-C
- J 21359 Rear Output Shaft Bearing Retainer Seal Installer

1. First row of roller bearings (41) — 32 each, in the rear output shaft low gear (43).
 • Use grease to retain the rollers.
2. Spacer (42) in the rear output shaft low gear (43).
B. Clutch Gear
26. Rear Output Shaft
43. Rear Output Shaft Low Gear
62. Rear Output Shaft Bearing Retainer
63. Speedometer Gear

Figure 17—Installing the Speedometer Gear

3. Second row of roller bearings (41) — 32 each, in the rear output shaft low gear (43).
4. Thrust washer (60) onto the rear output shaft (26).
 - Install the washer with the tang down in the clutch gear groove.
5. Rear output shaft low gear (43) onto the rear output shaft (26).
 - Install the gear with the clutch teeth facing toward the clutch hub (34).
6. Thrust washer (60) over the gear (43).
 - Install the washer with the tab pointing up and away from the gear.
7. Washer pin (45).
8. Large thrust washer (44) over the shaft (26) and the pin (45).
 - Rotate the washer until the tab fits into the slot 90 degrees away from the pin.

Measure

- End play of .05-.56 mm (0.002-0.027-inch).
10. Grease in the pilot bore of the rear output shaft (26).
12. Thrust washer (24).
13. New snap ring (23) in the bore.
14. New bearing (61) in the retainer housing (62), using Tool-C (figure 16).
 - Grease the bearing before installing it.
15. Retainer housing (62) onto the output shaft assembly (26).
16. Retainer housing and output shaft to the case (19).
17. Retainer bolts (6).

Tighten

- Bolts to 40 N·m (30 ft. lbs.)
18. Speedometer gear (63) (figure 17).
19. Rear output shaft bearing (9) in the bearing retainer housing (62), using J 22875.
20. Rear bearing seal (67) in the seal retainer (65), using J 21359 (figure 18).
21. Seal retainer (65) on the retainer housing (62).
 - Use one or two seals, depending on the needed clearance.
22. Retainer bolts (66).

Tighten

- Bolts to 40 N·m (30 ft. lbs.)

MISCELLANEOUS

Install or Connect

1. PTO cover gasket (29).
2. PTO cover (31).
3. PTO cover bolts (30).

Tighten

- Bolts to 20 N·m (15 ft. lbs.)
4. Cup plugs at the rail pin holes.
 - Apply sealant to the plugs before installing.
5. Drain plugs and filler plugs.

Tighten

- Plugs to 55 N·m (40 ft. lbs.)
6. Shift rail cross link (13).
7. Clevis pins (38).
8. Lock pins (37).
SPECIFICATIONS

NEW PROCESS 205 TRANSFER CASE

<table>
<thead>
<tr>
<th>Description</th>
<th>MM</th>
<th>INCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idler Gear End Play</td>
<td>0.025-0.051</td>
<td>0.001-0.002</td>
</tr>
<tr>
<td>Rear Output Shaft End Play</td>
<td>0.05-0.56</td>
<td>0.002-0.027</td>
</tr>
<tr>
<td>Idler Gear Lock Nut</td>
<td>202</td>
<td>150</td>
</tr>
<tr>
<td>Idler Shaft Cover Bolts</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Front Output Shaft Front Bearing Retainer Bolts</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Front Output Rear Bearing Retainer Bolts</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Front Output Yoke Lock Nut</td>
<td>202</td>
<td>150</td>
</tr>
<tr>
<td>Retainer Housing Bolts</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Seal Retainer Bolts</td>
<td>40</td>
<td>30</td>
</tr>
</tbody>
</table>

Lubricant: Dexron® II ... 5.2 Pints

SPECIAL TOOLS

1. Driver Handle
2. Seal Installer
3. Seal Installer
4. Bearing Installer
5. Snap Ring Pliers
6. Snap Ring Picks
7. Tool A
8. Tool B
9. Tool C

- **A**
 - 4.50
 - 1.374

- **B**
 - 1.00
 - 2.680
 - 2.960

- **C**
 - 1.990
 - 2.345

- **FO-5689**
SECTION 7D2
NEW PROCESS 241 TRANSFER CASE

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Process 241 Transfer Case</td>
<td>7D2-1</td>
</tr>
<tr>
<td>Description</td>
<td>7D2-1</td>
</tr>
<tr>
<td>Disassembly of Transfer Case</td>
<td>7D2-4</td>
</tr>
<tr>
<td>External Components</td>
<td>7D2-4</td>
</tr>
<tr>
<td>Mainshaft Extension and Oil Pump Housing</td>
<td>7D2-4</td>
</tr>
<tr>
<td>Internal Components</td>
<td>7D2-4</td>
</tr>
<tr>
<td>Cleaning and Inspection</td>
<td>7D2-7</td>
</tr>
<tr>
<td>Assembly</td>
<td>7D2-8</td>
</tr>
<tr>
<td>Bearing and Seal Replacement</td>
<td>7D2-8</td>
</tr>
<tr>
<td>Internal Components</td>
<td>7D2-9</td>
</tr>
<tr>
<td>External Components</td>
<td>7D2-10</td>
</tr>
<tr>
<td>Specifications</td>
<td>7D2-14</td>
</tr>
<tr>
<td>Special Tools</td>
<td>7D2-14</td>
</tr>
</tbody>
</table>

NEW PROCESS 241 TRANSFER CASE

DESCRIPTION

The Model 241 transfer case is an aluminum case, chain drive, four position unit providing four-wheel drive high and low ranges, a two-wheel high range, and a neutral position. The model 241 is a part-time four-wheel drive unit. Torque input in four-wheel high and low ranges is undifferentiated. The range positions on the Model 241 are selected by a floor mounted gearshift lever.

The case is a two-piece aluminum case containing front and rear output shafts, two drive sprockets, a shift mechanism and a planetary gear assembly. The drive sprockets are connected and operated by the drive chain. The planetary assembly which consists of a six pinion carrier and an annulus gear provide the four-wheel drive low range when engaged. Reduction ratio is 2.72:1 in this range (figures 1 and 2).

IDENTIFICATION

An identification tag is attached to the rear half of the transfer case (figure 3). This tag provides the transfer case model number, low range reduction ratio, and assembly number. The information on this tag is necessary for servicing information. If the tag is removed or becomes dislodged during service operations, it should be reattached using an adhesive sealant such as Loctite 242, or equivalent.

POWER FLOW

In all drive range positions input torque is transmitted to the transfer case gear train through the transfer case input gear.

In 2H range, torque flows from the input gear to the range shift hub and main shaft. Torque flow continues through the slip yoke which is splined to the mainshaft, and finally to the rear propeller shaft and axle. In 2H range, the mode synchronizer remains in the neutral position and does not lock the drive sprocket to the mainshaft. As a result, torque is not transferred to the driven sprocket.

In 4H range, input torque from the input gear is transmitted to the mainshaft in exactly the same fashion as in 2H range. However, in 4H position, the mode synchronizer sleeve is shifted into engagement with the clutch teeth of the drive sprocket. This locks the drive sprocket to the mainshaft through the synchronizer. Torque is transmitted through the drive sprocket to the driven sprocket by the connecting drive chain. Since the front output shaft is splined to the driven sprocket, torque flows through the front output shaft to the front propeller shaft and axle resulting in high range four-wheel drive.

In 4L range, the path of torque through the transfer case is exactly the same as in 4H range but with one major difference. In 4L range the range shift hub is shifted into engagement with the planetary carrier. This causes the input gear to rotate the planetary pinions inside the annulus gear, causing the planetary carrier, range shift hub and mainshaft to rotate at a gear reduction ration of 2.72:1.
Figure 1—New Process 241 Transfer Case Components
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Oil Seal</td>
</tr>
<tr>
<td>2.</td>
<td>Bushing</td>
</tr>
<tr>
<td>3.</td>
<td>Rear Extension Housing Bolts/Case Bolts</td>
</tr>
<tr>
<td>4.</td>
<td>Rear Extension</td>
</tr>
<tr>
<td>5.</td>
<td>Retainer Snap Ring</td>
</tr>
<tr>
<td>6.</td>
<td>Front Output Bearing</td>
</tr>
<tr>
<td>7.</td>
<td>Pump Retainer Housing Bolts</td>
</tr>
<tr>
<td>8.</td>
<td>Pump Retainer Housing</td>
</tr>
<tr>
<td>9.</td>
<td>Speedometer Sensor</td>
</tr>
<tr>
<td>10.</td>
<td>Retainer (Snap Ring)</td>
</tr>
<tr>
<td>11.</td>
<td>Speedometer Tone Wheel</td>
</tr>
<tr>
<td>12.</td>
<td>Oil Pump</td>
</tr>
<tr>
<td>13.</td>
<td>Oil Pump Seal</td>
</tr>
<tr>
<td>14.</td>
<td>O-Ring</td>
</tr>
<tr>
<td>15.</td>
<td>Plug</td>
</tr>
<tr>
<td>16.</td>
<td>Bolt</td>
</tr>
<tr>
<td>17.</td>
<td>Rear Case Half</td>
</tr>
<tr>
<td>18.</td>
<td>Oil Pump Pick Up Tube</td>
</tr>
<tr>
<td>19.</td>
<td>Mainshaft</td>
</tr>
<tr>
<td>20.</td>
<td>Drive Sprocket</td>
</tr>
<tr>
<td>21.</td>
<td>Front Output Shaft</td>
</tr>
<tr>
<td>22.</td>
<td>Driven Sprocket</td>
</tr>
<tr>
<td>23.</td>
<td>Retainer (Snap Ring)</td>
</tr>
<tr>
<td>24.</td>
<td>Front Output Rear Bearing</td>
</tr>
<tr>
<td>25.</td>
<td>Magnet</td>
</tr>
<tr>
<td>26.</td>
<td>Oil Tube Connector</td>
</tr>
<tr>
<td>27.</td>
<td>Washer</td>
</tr>
<tr>
<td>28.</td>
<td>Main Drive Synchronizer Stop Ring</td>
</tr>
<tr>
<td>29.</td>
<td>Synchronizer Sleeve</td>
</tr>
<tr>
<td>30.</td>
<td>Strut</td>
</tr>
<tr>
<td>31.</td>
<td>Synchronizer Hub</td>
</tr>
<tr>
<td>32.</td>
<td>Spring Retainer</td>
</tr>
<tr>
<td>33.</td>
<td>Dowel</td>
</tr>
<tr>
<td>34.</td>
<td>Range Shift Hub</td>
</tr>
<tr>
<td>35.</td>
<td>Pump Pick Up Screen</td>
</tr>
<tr>
<td>36.</td>
<td>Planetary Carrier</td>
</tr>
<tr>
<td>37.</td>
<td>Thrust Washer</td>
</tr>
<tr>
<td>38.</td>
<td>Input Gear</td>
</tr>
<tr>
<td>39.</td>
<td>Retainer Snap Ring</td>
</tr>
<tr>
<td>40.</td>
<td>Input Bearing</td>
</tr>
<tr>
<td>41.</td>
<td>Retainer Snap Ring</td>
</tr>
<tr>
<td>42.</td>
<td>Input Bearing Retainer Seal</td>
</tr>
<tr>
<td>43.</td>
<td>Input Retainer Bolt</td>
</tr>
<tr>
<td>44.</td>
<td>Input Bearing Retainer</td>
</tr>
<tr>
<td>45.</td>
<td>Front Case Half</td>
</tr>
<tr>
<td>46.</td>
<td>Indicator Lamp Switch</td>
</tr>
<tr>
<td>47.</td>
<td>O-Ring Seal</td>
</tr>
<tr>
<td>48.</td>
<td>Shift Rail</td>
</tr>
<tr>
<td>49.</td>
<td>Pads</td>
</tr>
<tr>
<td>50.</td>
<td>Pads (Center)</td>
</tr>
<tr>
<td>51.</td>
<td>Range Shift Fork</td>
</tr>
<tr>
<td>52.</td>
<td>Fork Shift Spring</td>
</tr>
<tr>
<td>53.</td>
<td>Pin</td>
</tr>
<tr>
<td>54.</td>
<td>Mode Shift Fork</td>
</tr>
<tr>
<td>55.</td>
<td>Sector With Shaft</td>
</tr>
<tr>
<td>56.</td>
<td>Bushing</td>
</tr>
<tr>
<td>57.</td>
<td>Range Fork Pin</td>
</tr>
<tr>
<td>58.</td>
<td>Chain</td>
</tr>
<tr>
<td>59.</td>
<td>Retainer Snap Ring</td>
</tr>
<tr>
<td>60.</td>
<td>Retainer Snap Ring</td>
</tr>
<tr>
<td>61.</td>
<td>Front Output Bearing</td>
</tr>
<tr>
<td>62.</td>
<td>Annulus Gear</td>
</tr>
<tr>
<td>63.</td>
<td>Shift Lever Nut, Prev. Torque</td>
</tr>
<tr>
<td>64.</td>
<td>Washer</td>
</tr>
<tr>
<td>65.</td>
<td>Shift Lever</td>
</tr>
<tr>
<td>66.</td>
<td>Washer Plastic</td>
</tr>
<tr>
<td>67.</td>
<td>O-Ring Seal</td>
</tr>
<tr>
<td>68.</td>
<td>Poppet Screw</td>
</tr>
<tr>
<td>69.</td>
<td>O-Ring Seal</td>
</tr>
<tr>
<td>70.</td>
<td>Selection Plunger</td>
</tr>
<tr>
<td>71.</td>
<td>Poppet Spring</td>
</tr>
<tr>
<td>72.</td>
<td>Front Output Shaft Seal</td>
</tr>
<tr>
<td>73.</td>
<td>Deflector</td>
</tr>
<tr>
<td>74.</td>
<td>Front Output Flange</td>
</tr>
<tr>
<td>75.</td>
<td>Rubber Sealing Washer</td>
</tr>
<tr>
<td>76.</td>
<td>Washer</td>
</tr>
<tr>
<td>77.</td>
<td>Nut Front Output Flange</td>
</tr>
<tr>
<td>78.</td>
<td>Carrier Lock Ring</td>
</tr>
<tr>
<td>79.</td>
<td>Oil Pump Screw</td>
</tr>
<tr>
<td>80.</td>
<td>Identification Tag</td>
</tr>
<tr>
<td>81.</td>
<td>Synchronizer Assembly</td>
</tr>
<tr>
<td>82.</td>
<td>Drive Sprocket Bearing</td>
</tr>
<tr>
<td>83.</td>
<td>Mode Synchronizer Hub Snap Ring</td>
</tr>
<tr>
<td>84.</td>
<td>Mainshaft Pilot Bearing</td>
</tr>
</tbody>
</table>
DISASSEMBLY OF THE TRANSFER CASE

EXTERNAL COMPONENTS

Clean
- The transfer case exterior using a solvent and a stiff brush.

++ Remove or Disconnect (Figures 1, 2, 3 and 4)
1. Front output flange nut (77), washer (76), rubber sealing washer (75) and front output flange (74) from the front output shaft.
2. Indicator lamp switch (46) and O-ring seal (47).
3. Speedometer sensor (9) and seal.
4. Poppet screw (68), O-ring seal (69), poppet spring (71) and poppet plunger (70).
5. Pump retainer housing bolts are shouldered.
6. Pump retainer housing (8) from the rear case half (17).
7. Retainer (snap ring) (10), speedometer tone wheel (11) and retainer (snap ring) (10) from the mainshaft (19).
8. Case bolts (3) from the case halves.
9. Note two longer case bolts and washers go into doweled case holes (33).
10. Separate case halves. Insert screwdrivers into the slots cast in the case ends and pry apart. Do not attempt to wedge the case halves apart at any point on the mating surfaces.
11. Be careful not to damage the oil pump (12) (located in the rear case half) while removing the rear case half (17).

MAINSHAFT EXTENSION AND OIL PUMP HOUSING

++ Remove or Disconnect (Figures 1, 2, 3 and 4)
1. Rear extension housing bolts (3) and rear extension (4).
2. Bearing retainer (snap ring) (5) from the mainshaft (19).
3. Pump retainer housing bolts (7).

INTERNAL COMPONENTS

++ Remove or Disconnect (Figures 5, 6 and 7)
Tools Required:
J 2619-5 Slide Hammer
J 8092 Driver Handle
J 22912-1 Bearing Remover
J 29369-1 Needle Bearing Remover
J 29369-2 Needle Bearing Remover
1. Oil pump (12), pickup tube (18), O-ring (14) and pump pickup filter (35) from the rear case half (figure 7).
2. Fork shift spring (52).
3. Retainer (snap ring) (23) from the front output shaft (21).
4. Mainshaft (19), chain (58), and driven sprocket (22) from the front case half (45) as a unit. Mode shift fork (54) and shift rail (48) will be removed with the mainshaft.
5. Retainer (snap ring) (41) from the mainshaft (19).
6. Synchronizer assembly (81). Drive sprocket (20) from the mainshaft (19) (figure 5).
7. Range shift fork (51) and range shift hub (34) and sector with shaft (55) from the planetary carrier (36).
 - It is necessary to rotate the sector with shaft (55) to obtain clearance when removing the range fork (51) (figure 6).
8. Shift lever nut (63), washer (64), shift lever (65), plastic washer (66) and the O-ring seal (67) from the front case half (45).
9. Input bearing retainer bolts (43) and input bearing retainer (44) from the front case half (45).
11. Planetary carrier (36) and the input gear (38) from the annulus gear (62) using a soft faced hammer.
12. Retainer ring (snap ring) (41) from the input gear (38).
13. Input bearing (40) from the input gear (38) with J 22912-1 (Bearing Remover).
 - Carrier lock ring (78).
 - Thrust washer (37).
14. Drive sprocket bearing (82) from the drive sprocket (20) using J 29369-1 and J 2619-01.
15. Needle bearings (84) from the input gear (38) using J 29369-2, J 9276-21 and J 2619-01 (figure 8).
16. Front output bearing retainer ring (snap ring) (60).
17. Front output shaft seal (72) from the front case half (45).
18. Front output bearing (61) from the front case half (45) using J 33832 and J 8092.
19. Seal (1) from the mainshaft extension housing (4).
20. Seal (42) from the input bearing retainer (44).
21. Front output rear bearing (24) from the rear case half (17).
 • Insert J 29369-2 behind the needle bearings.
 • Using J 2619-5, hammer the bearing from the case (figure 9).
22. Mainshaft bearing (6) from the oil pump retainer (8).
23. Magnet (25) from the front case half (45).

Disassemble
• Scribe location of synchronizer hub and sleeve to aid in assembly.

CLEANING AND INSPECTION

Clean
1. Bearings.
 • Remove all old lubricant and dirt.
2. Shafts.
3. Sprockets.
4. Chain.
5. Oil feed ports and channels in each case half. Apply compressed air to each oil feed port and channel in order to remove any obstructions or cleaning solvent residue.
6. All mating and sealing surfaces.

Inspect
1. Bearings and thrust washers for wear, spalling, brinnelling, or corrosion.
2. Gear teeth for excessive wear or damage, spalling, cracks, or corrosion.
3. Gear splines for excessive wear, spalling, cracks, twist or corrosion.
4. Shaft splines for excessive wear, spalling, cracks, distortion or corrosion.
5. Retainer rings for excessive wear, distortion or damage.
6. Case halves for damaged or warped mating surfaces, cracks, porosity, or damaged threaded holes.
7. Synchronizer stop ring for cracks, chips, spalling, or excessive wear.
8. Synchronizer hub and sleeve for cracks, chips, spalling, or excessive wear.
9. Pads on the mode fork and the range fork for wear, distortion.
10. Oil pump gears and case halves for wear, spalling, cracks, and damage. Replace complete assembly if there is wear.
11. Input gear, planetary carrier and range shift hub tooth chamfers for excessive wear.
Installing the Needle Bearings to the Front Drive Sprocket

BEARING AND SEAL REPLACEMENT

Install or Connect)

Tools Required:
- J 8092 Driver Handle
- J 36370 Drive Gear Needle Bearing Installer
- J 36371 Front and Rear Output Shaft Bearing Installer
- J 36372 Input Gear Bearing Installer (Needle Bearing)
- J 36373 Input Gear Bearing Installer (Ball Bearing)

- Use ATF or equivalent where needed in assembly.

1. Needle bearings (82) to the drive sprocket (20) using J 36370 and J 8092 (figure 10).
 - Drive the bearings into the driven sprocket so that it is flush on the synchronizer side.
2. Needle bearing (24), to the rear case half (17) using J 36372 and J 8092.
 - Bearing must be flush with the boss on case housing.
3. Bearing (61) to the front case half (45) using J 37371.
4. Retainer (60) (figures 11 and 12).
5. Bearing (6) to the pump retainer housing (8) using J 36371 (figures 13 and 14).
6. Bearing (84) to the input gear (38) using J 36372 and J 8092.
7. Thrust washer (37).
8. Carrier lock ring (78).
9. Retainer (39).
10. Bearing (40) to the input gear (38) using J 36372.
11. Retainer ring (snap ring) (41) to the input gear (38).
12. Oil seal (1) to the rear extension (4).
13. Input bearing retainer seal (42) to the input bearing retainer (44).
14. Front output shaft seal (72) to the front case half (45).
15. Magnet (25) into front case half (45).
INTERNAL COMPONENTS

Assembly
1. Synchronizer hub (31) to the synchronizer sleeve (29) along with the three struts (30).
 - Align the previously made scribe marks.
2. Spring retainer (32) to the synchronizer sleeve (29).
3. Main drive synchronizer stop ring (28) to the synchronizer sleeve (29).
4. Drive sprocket (20) to the mainshaft (19).
5. Planetary input gear assembly (38) into the annulus gear (62) using a soft faced hammer.

Install or Connect
1. Bearing retainer (snap ring) (39) to the input bearing (40).
2. Input bearing retainer bolts (43) and input bearing retainer (44) to the front case half (45).
 - Apply RTV or equivalent on bearing retainer mating surfaces.
 - Apply Loctite 242 or equivalent on bearing retainer bolts.
3. Oil pump pick up tube (18), oil tube connector (26) and pump pick up screen (35) into the rear case half (17) (figure 17).

Tighten
1. Bolts (3) to 19 N-m (14 ft. lbs.).
2. Sector with shaft (55) into the front case half (45).
3. Shift lever O-ring (67), plastic washer (66), shift lever (65), washer (64), and nut (63) to the front case half (figure 15).
4. Nut (63) to 27 N-m (20 ft. lbs.).
5. Range shift hub (34) and the range shift fork into the front case half (45).
 - It is necessary to rotate the sector to align the range shift fork.
6. Synchronizer assembly, mode shift fork (54) and rail into the front case half (45) (figure 16).
7. Front output shaft (21) to the front case half (45).
8. Driven sprocket (22) into the chain (58).
9. Mainshaft (19), drive sprocket (20), driven sprocket (22) and chain (58) are installed as a unit.
10. Retainer (snap ring) (23) onto the front output.
11. Fork shift spring (52) onto the mode shift rail (48).
12. Oil pump (12) to the oil pump pick up tube (18).
 - Apply RTV sealer to the case mating surfaces.
13. Rear case (17) over mainshaft (19) and onto the front case half (45).
 - Be careful not to damage the oil pump (12) while installing the rear case half (figure 7).
14. Case bolts (3) into case halves.
 - Apply Loctite 242 or equivalent to case bolts.
 - The two longer case bolts and washers to into doweled case holes (33) (figure 17).

NOTICE: Do not damage the O-ring during assembly as this could result in pump failure.
45. Front Case Half
55. Sector with Shaft
63. Torque Nut
64. Washer
65. Shift Lever
66. Plastic Washer
67. O-Ring Seal

Figure 15—Sector with Shaft

Tighten
- Bolts to 31 N-m (23 ft. lbs.).

19. Pump retainer housing (8) and pump housing bolts (7) to the rear case half (17).
- Apply Loctite 242 or equivalent on pump housing bolt threads.
- Pump housing bolts are shouldered (7).

Tighten
- Bolts to 41 N-m (30 ft. lbs.).

20. Input bearing retainer (snap ring) (5) to the mainshaft (19).
21. Retainer (snap ring) (10), speedometer tone wheel (11) and retainer (snap ring) (10) to the mainshaft (19).
22. Rear extension housing (4) and extension housing bolts (3) to the pump retainer housing (8).
- Apply RTV sealer to the mating surfaces.
- Apply Loctite 242 or equivalent on the extension housing bolts.

EXTERNAL COMPONENTS

Install or Connect

1. Selection plunger (70), poppet spring (71), O-ring seal (69) and poppet screw (68) to the front case half (45).

Tighten
- Poppet screw to 31 N-m (23 ft. lbs.).

2. Speedometer sensor (9) and O-ring to the pump retainer housing (8).

Tighten
- Sensor to 31 N-m (23 ft. lbs.).

3. Indicator lamp switch (46) and O-ring (47) to the front case housing.

Tighten
- Switch to 24 N-m (17 ft. lbs.).

4. Front output flange (74), rubber sealing washer (75), washer (76) and flange nut (77).

Tighten
- Nut (26) to 149 N-m (110 ft. lbs.).
Figure 17—Oil Pump, Pickup, Screen, Dowelled Case Holes
Figure 18—NP 241 Transfer Case Cut Away
<table>
<thead>
<tr>
<th>New Process 241 Transfer Case 7D2-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Extension Housing Oil Seal</td>
</tr>
<tr>
<td>2. Bushing</td>
</tr>
<tr>
<td>3. Rear Extension Housing Bolts/Case Bolts</td>
</tr>
<tr>
<td>4. Rear Extension Housing</td>
</tr>
<tr>
<td>5. Retainer (Snap Ring)</td>
</tr>
<tr>
<td>6. Front Output Bearing</td>
</tr>
<tr>
<td>7. Pump Retainer Housing Bolts</td>
</tr>
<tr>
<td>8. Pump Retainer Housing</td>
</tr>
<tr>
<td>9. Retainer (Snap Ring)</td>
</tr>
<tr>
<td>10. Speedometer Tone Wheel</td>
</tr>
<tr>
<td>11. Oil Pump</td>
</tr>
<tr>
<td>12. Oil Pump Seal</td>
</tr>
<tr>
<td>13. Oil Pump Pick Up Tube</td>
</tr>
<tr>
<td>14. Mainshaft</td>
</tr>
<tr>
<td>15. Drive Sprocket</td>
</tr>
<tr>
<td>16. Front Output Shaft</td>
</tr>
<tr>
<td>17. Driven Sprocket</td>
</tr>
<tr>
<td>18. Retainer (Snap Ring)</td>
</tr>
<tr>
<td>19. Front Output Rear Bearing</td>
</tr>
<tr>
<td>20. Washer</td>
</tr>
<tr>
<td>21. Main Drive Synchronizer Stop Ring</td>
</tr>
<tr>
<td>22. Synchronizer Sleeve</td>
</tr>
<tr>
<td>23. Strut</td>
</tr>
<tr>
<td>24. Synchronizer Hub</td>
</tr>
<tr>
<td>25. Spring Retainer</td>
</tr>
<tr>
<td>26. Dowel</td>
</tr>
<tr>
<td>27. Range Shift Hub</td>
</tr>
<tr>
<td>28. Planetary Carrier</td>
</tr>
<tr>
<td>29. Thrust Washer</td>
</tr>
<tr>
<td>30. Input Gear</td>
</tr>
<tr>
<td>31. Retainer Snap Ring</td>
</tr>
<tr>
<td>32. Input Bearing</td>
</tr>
<tr>
<td>33. Retainer (Snap Ring)</td>
</tr>
<tr>
<td>34. Input Bearing Retainer Seal</td>
</tr>
<tr>
<td>35. Input Bearing Retainer Bolt</td>
</tr>
<tr>
<td>36. Input Bearing Retainer</td>
</tr>
<tr>
<td>37. Front Case Half</td>
</tr>
<tr>
<td>38. Chain</td>
</tr>
<tr>
<td>39. Retainer (Snap Ring)</td>
</tr>
<tr>
<td>40. Retainer (Snap Ring)</td>
</tr>
<tr>
<td>41. Input Bearing Retainer Seal</td>
</tr>
<tr>
<td>42. Input Bearing Retainer Bolt</td>
</tr>
<tr>
<td>43. Input Bearing Retainer</td>
</tr>
<tr>
<td>44. Front Case Half</td>
</tr>
<tr>
<td>45. Annulus Gear</td>
</tr>
<tr>
<td>46. Shift Lever Nut (Prev. Torque)</td>
</tr>
<tr>
<td>47. Washer</td>
</tr>
<tr>
<td>48. Shift Lever</td>
</tr>
<tr>
<td>49. Washer (Plastic)</td>
</tr>
<tr>
<td>50. O-Ring Seal</td>
</tr>
<tr>
<td>51. Front Output Shaft Seal</td>
</tr>
<tr>
<td>52. Deflector</td>
</tr>
<tr>
<td>53. Front Out Flange</td>
</tr>
<tr>
<td>54. Rubber Sealing Washer</td>
</tr>
<tr>
<td>55. Washer</td>
</tr>
<tr>
<td>56. Front Output Flange Nut</td>
</tr>
<tr>
<td>57. Carrier Lock Ring</td>
</tr>
<tr>
<td>58. Oil Pump Screw</td>
</tr>
<tr>
<td>59. Mode Synchronizer Hub Snap Ring</td>
</tr>
<tr>
<td>60. Mainshaft Pilot Bearing</td>
</tr>
</tbody>
</table>

Figure 19—NP 241 Transfer Case Cut Away
SPECIFICATIONS

NEW PROCESS 241 TRANSFER CASE

<table>
<thead>
<tr>
<th>Component</th>
<th>N·m</th>
<th>FT. LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Shaft Retainer Bolts</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>Shift Selector Lever Nut</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Shift Selector Light Switch</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Case Half Bolts</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Pump Housing Bolts</td>
<td>41</td>
<td>30</td>
</tr>
<tr>
<td>Mainshaft Extension Housing Bolts</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Speedometer Pick-up Switch</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Front Propeller Shaft Flange Bolts</td>
<td>149</td>
<td>110</td>
</tr>
<tr>
<td>Drain and Fill Plugs</td>
<td>47</td>
<td>35</td>
</tr>
<tr>
<td>Lubricant: Dexron® II</td>
<td></td>
<td>4.6 Pints</td>
</tr>
</tbody>
</table>

SPECIAL TOOLS

1. Slide Hammer
2. Slide Hammer
3. Driver Handle
4. Bearing Remover
5. Output Shaft Bearing Remover
6. Output Shaft Bearing Remover
7. Slide Hammer Adapter
8. Bearing Installer/Remover
9. Front and Rear Output Shaft Bearing Installer
10. Driver Sprocket Needle Bearing Installer
11. Input Gear Needle Bearing Installer
12. Input Gear Ball Bearing Installer

F-05437
SECTION 7D3

NEW PROCESS 231 TRANSFER CASE

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>7D5-1</td>
</tr>
<tr>
<td>Disassembly of Transfer Case</td>
<td>7D5-2</td>
</tr>
<tr>
<td>External Components</td>
<td>7D5-2</td>
</tr>
<tr>
<td>Mainshaft Extension and Oil Pump Housing</td>
<td>7D5-2</td>
</tr>
<tr>
<td>Internal Components</td>
<td>7D5-3</td>
</tr>
<tr>
<td>Cleaning and Inspection</td>
<td>7D5-7</td>
</tr>
<tr>
<td>Assembly of Transfer Case</td>
<td>7D5-7</td>
</tr>
<tr>
<td>Bearing and Seal Replacement</td>
<td>7D5-8</td>
</tr>
<tr>
<td>Internal Components</td>
<td>7D5-8</td>
</tr>
<tr>
<td>External Components</td>
<td>7D5-10</td>
</tr>
<tr>
<td>Specifications</td>
<td>7D5-10</td>
</tr>
<tr>
<td>Special Tools</td>
<td>7D5-11</td>
</tr>
</tbody>
</table>

DESCRIPTION

The Model 231 transfer case is an aluminum case, chain drive, four position unit providing four-wheel drive high and low ranges, a two-wheel high range, and a neutral position. This model is a part-time four-wheel drive unit. Torque input in four-wheel high and low ranges is undifferentiated. The range positions are selected by a floor mounted gear shift lever.

The case is a two-piece aluminum case containing front and rear output shafts, two drive sprockets, a shift mechanism and a planetary gear assembly. The drive sprockets are connected and operated by the drive chain. The planetary assembly which consists of a 3-pinion planetary (6-pinion planetary 231 HD) carrier and an annulus gear provide the four-wheel drive low range when engaged. Reduction ratio is 2.72:1 in this range.

IDENTIFICATION

An identification tag is attached to the rear half of the transfer case (figure 1). This tag provides the transfer case model number, low range reduction ratio, and assembly number. The information on this tag is necessary for servicing information. If the tag is removed or becomes dislodged during service operations, it should be reattached using an adhesive sealant such as Loctite 242 or equivalent.

POWER FLOW

In all drive range positions input torque is transmitted to the transfer case gear train through the transfer case input gear.

In 2H range, torque flows from the input gear to the range shift hub and main shaft. Torque flow continues through the slip yoke which is splined to the mainshaft, and finally to the rear propeller shaft and axle. In 2H range, the mode synchronizer remains in the neutral position and does not lock the drive sprocket to the mainshaft. As a result, torque is not transferred to the driven sprocket.

In 4H range, input torque from the input gear is transmitted to the mainshaft in exactly the same fashion as in 2H range. However, in 4H position, the mode synchronizer sleeve is shifted into engagement with the clutch teeth of the drive sprocket. This locks the drive sprocket to the mainshaft through the synchronizer. Torque is transmitted through the drive sprocket to the driven sprocket by the connecting drive chain. Since the front output shaft is splined to the driven sprocket, torque flows through the front output shaft to the front propeller shaft and axle resulting in high range four-wheel drive.

In 4L range, the path of torque through the transfer case is exactly the same as in 4H range but with one major difference. In 4L range the range shift hub is shifted into engagement with the planetary carrier. This causes the input gear to rotate the planetary pinions inside the annulus gear, causing the planetary carrier, range shift hub and mainshaft to rotate at a gear reduction ratio of 2.72:1.
EXTERNAL COMPONENTS

Clean
- The transfer case exterior using a solvent and a stiff brush.

Remove or Disconnect (Figure 2, 3, and 4)
1. Front output yoke nut (77), washer (76), rubber sealing washer (75) and front output flange (74) from the front output shaft.
2. Indicator lamp switch (46) and O-ring seal (47).
3. Poppet screw (68), O-ring seal (69), poppet spring (71) and poppet plunger (70).

MAINSHAFT EXTENSION AND OIL PUMP HOUSING

Remove or Disconnect (Figures 2, 3, and 4)
1. Rear extension housing bolts (3) and rear extension (4).
2. Bearing retainer (snap ring) (5) from the mainshaft (19).
3. Pump retainer housing bolts (7).
4. Pump retainer housing (8) from the rear case half (17).
5. Speedometer drive gear (11) from the mainshaft (19).
6. Case bolts (3) from the case halves.
 - Note two longer case bolts and washers go into doweled case holes (33).
 - Separate case halves. Insert screwdrivers into the slots cast in the case ends and pry apart. Do not attempt to wedge the case halves apart at any point on the mating surfaces.
 - Be careful not to damage the oil pump (12) (located in the rear case half) while removing the rear case half (17).

INTERNAL COMPONENTS

Remove or Disconnect (Figures 3, 4, and 5 through 9)

Tools Required:
- J 8092 Driver Handle
- J 36370 Bearing Installer/Remover
- J 29170 Bearing Remover
- J 29369-1 Bearing Remover
- J 9276-21 Adapter
- J 2619-01 Slide Hammer
- J 33790 Bearing Remover

1. Oil pump (12) pickup tube (18), O-ring (14) and pump pickup filter (35) from the rear case half (figure 5).
2. Fork shift spring (52).
3. Mainshaft (19), chain (58), and driven sprocket (22) from the front case half (45) as a unit. Mode shift fork (54) and shift rail (48) will be removed with the mainshaft.
4. Retainer (snap ring) (83) from the mainshaft (19).
5. Synchronizer assembly (81). Drive sprocket (20) from the mainshaft (19) (figure 6).
6. Range shift fork (51) and range shift hub (34) and sector with shaft (55) from the planetary carrier (36).
 - It is necessary to rotate the sector with shaft (55) to obtain clearance when removing the range fork (51) (figure 7).
7. Shift lever nut (63), washer (64), shift lever (65), plastic washer (66) and the O-ring seal (67) from the front case half (45).
8. Input bearing retainer bolts (43) and input bearing retainer (44) from the front case half (45).
10. Planetary carrier (36) and the input gear (38) from the annulus gear (62) using a soft faced hammer.
11. Input bearing (40) from the front case half (45) using J 36370 and J 8092.
12. Drive sprocket bearings (82) from the drive sprocket (20) using J 29170 and J 8092.
13. Needle bearings (84) from the input gear (38) using J 29369-1, J 9276-21 and J 2619-01 (figure 8).
14. Front output shaft seal (72) from the front case half (45).
15. Front output bearing retainer ring (snap ring) (60).
16. Front output bearing (61) from the front case half (45) using J 33790 and J 8092.
17. Seal (1) from the mainshaft extension housing (4).
18. Seal (42) from the input bearing retainer (44).
19. Front output rear bearing (24) from the rear case half (17) using J 2619-01 and J 29369-2 (figure 9).
20. Mainshaft bearing (6) from the oil pump retainer (8) using J 33790.
21. Magnets (25) from the front case half (45).

Disassemble

- Mark location of synchronizer hub and sleeve to aid in assembly.
1. Main drive synchronizer stop ring (28) from the synchronizer sleeve (29).
2. Spring retainer (32) from the synchronizer sleeve (29).
3. Synchronizer hub (31) from the synchronizer (29).
4. Oil pump screws (79) from the oil pump (12).
5. Inner gear.
Figure 3—New Process 231 Transfer Case Components
1. Oil Seal
2. Bushing
3. Rear Extension Housing bolts/Case Bolts
4. Rear Extension
5. Retainer Snap Ring
6. Front Output Bearing
7. Pump Retainer Housing Bolts
8. Pump Retainer Housing
9. Speedometer Drive Gear
10. Oil Pump
11. Oil Pump Seal
12. O-Ring
13. Plug
14. Bolt
15. Rear Case Half
16. Oil Pump Pick Up Tube
17. Mainshaft
18. Drive Sprocket
19. Front Output Shaft
20. Front Output Rear Bearing
21. Magnet
22. Oil Tube Connector
23. Washer
24. Main Drive Synchronizer Stop Ring
25. Synchronizer Sleeve
26. Strut
27. Synchronizer Hub
28. Spring Retainer
29. Dowel
30. Range Shift Hub
31. Pump Pick Up Screen
32. Planetary Carrier
33. Thrust Washer
34. Input Gear
35. Retainer Snap Ring
36. Input Bearing
37. Front Output Bearing
38. Input Bearing Retainer
39. Input Retainer Bolt
40. Input Bearing Retainer
41. Front Case Half
42. Indicator Lamp Switch
43. O-Ring Seal
44. Shift Rail
45. Pads
46. Pads (Center)
47. Range Shift Fork
48. Fork Shift Spring
49. Pin
50. Mode Shift Fork
51. Sector With Shaft
52. Bushing
53. Range Fork Pin
54. Chain
55. Retainer Snap Ring
56. Retainer Snap Ring
57. Front Output Bearing
58. Annulus Gear
59. Shift Lever Nut, Prev. Torque
60. Washer
61. Washer Plastic
62. O-Ring Seal
63. Poppet Screw
64. O-Ring Seal
65. Selection Plunger
66. Poppet Spring
67. Front Output Shaft Seal
68. Front Output Yoke
69. Deflector
70. Front Output Yoke
71. Rubber Sealing Washer
72. Washer
73. Nut Front Output Yoke
74. Carrier Lock Ring
75. Oil Pump Screw
76. Identification Tag
77. Synchronizer Assembly
78. Drive Sprocket Bearing
79. Mode Synchronizer Hub Snap Ring
80. Mainshaft Pilot Bearing

Figure 4—New Process 231 Transfer Case
12. Oil Pump
17. Rear Case Half
18. Oil Pump Pickup Tube
35. Oil Filter

Figure 5—Oil Pump, Pickup Tube and Screen

25. Magnet
45. Front Case Half
54. Mode Fork
55. Sector With Shaft
81. Synchronizer Assembly

Figure 6—Mode Fork and Shaft Assembly

48. Shift Rail
51. Range Fork
52. Mode Fork Spring
54. Mode Fork
55. Sector With Shaft
63. Shift Lever Nut
65. Lever

Figure 7—Shift Rail Assembly
Cleansing and Inspection

Clean
1. Bearings.
 - Remove all old lubricant and dirt.
2. Shafts.
3. Sprockets.
4. Chain.
5. Oil feed ports and channels in each case half. Apply compressed air to each oil feed port and channel in order to remove any obstructions or cleaning solvent residue.
6. All mating and sealing surfaces.

Inspect
1. Bearings and thrust washers for wear, spalling, brinelling, or corrosion.
2. Gear teeth for excessive wear or damage, spalling, cracks, or corrosion.
3. Gear splines for excessive wear, spalling, cracks, twist or corrosion.
4. Shaft splines for excessive wear, spalling, cracks, distortion or corrosion.
5. Retainer rings for excessive wear, distortion or damage.
6. Case halves for damaged or warped mating surfaces, cracks, porosity, or damaged threaded holes.
7. Synchronizer stop ring for cracks, chips, spalling, or excessive wear.
8. Synchronizer hub and sleeve for cracks, chips, spalling, or excessive wear.
9. Pads on the mode fork and the range fork for wear, distortion.
10. Oil pump gears and case halves for wear, spalling, cracks, and damage. Replace complete assembly if there is wear.
11. Input gear, planetary carrier and range shift hub tooth chamfers for excessive wear.

Assembly of Transfer Case

BEARING AND SEAL REPLACEMENT

Install or Connect (Figures 10, 11, and 12)
Tools Required:
- J 8092 Driver Handle
- J 36370 Bearing Installer
- J 33833 Bearing Installer
- J 36372 Bearing Installer
- J 33843 Seal Installer
- J 33831 Seal Installer
- Use ATF or equivalent where needed in assembly.

1. Needle bearings (82) to the drive sprocket (20) using J 36370 and J 8092 (figure 10).
2. Needle bearing (24), to the rear case half (17) using J 36372 and J 8092.
 - Bearing must be flush with the boss on case housing.
3. Bearing (61) to the front case half (45) using J 9092 and J 33833.
4. Retainer (60).
5. Bearing (6) to the pump retainer housing (8) using J 33833 and J 8092 (figure 11).
6. Bearing (84) to the input gear (38) using J 36372 and J 8092.
8. Pump Retainer Housing

Figure 11—Pump Retainer Housing Bearing Installation

8. Thrust washer (37).
9. Carrier lock ring (78).
10. Retainer (39).
11. Bearing (40) to the front case half (45) using J 36372.
12. Oil seal (1) to the rear extension (4) using J 33843.
13. Input bearing retainer seal (42) to the input bearing retainer (44) using J 33831.
14. Front output shaft seal (72) to the front case half (45) using J 33834 (figure 12).
15. Magnet (25) into front case half (45).

Figure 10—Installing the Needle Bearing to the Front Drive Sprocket

Assemble (Figures 13, 14, and 15)
1. Synchronizer hub (31) to the synchronizer sleeve (29) along with the three struts (30).
 - Align the previously made scribe marks.
2. Spring retainer (32) to the synchronizer sleeve (29).
3. Main drive synchronizer stop ring (28) to the synchronizer sleeve (29).

Install or Connect
1. Drive sprocket (20) to the mainshaft (19).
2. Planetary input gear assembly (38) into the annulus gear (62) using a soft faced hammer.
3. Bearing retainer (snap ring) (39) to the input bearing (40).
4. Input bearing (40) to the front case half (45).
5. Input bearing retainer bolts (43) and input bearing retainer (44) to the front case half (45).
 - Apply RTV or equivalent on bearing retainer mating surfaces.
 - Apply Loctite 242 or equivalent on bearing retainer bolts.

Tighten
- Bolts (43) to 19 N·m (14 ft. lbs.).
6. Sector with shaft (55) into the front case half (45).
7. Shift lever O-ring (67), plastic washer (66), shift lever (65), washer (64), and nut (63) to the front case half (figure 13).

Tighten
- Nut (63) to 27 N·m (20 ft. lbs.).
8. Range shift hub (34) and the range shift fork into the front case half (45).
 - It is necessary to rotate the sector to align the range shift fork.
9. Synchronizer assembly, mode shift fork (54) and rail into the front case half (45) (figure 14).
10. Front output shaft (21) to the chain (58).
11. Drive sprocket (20) and mainshaft (19) into the chain (58).
 • Mainshaft (19), drive sprocket (20), driven sprocket (22) and chain (58) are installed as a unit.
12. Fork shift spring (52) onto the mode shift rail (48).
13. Oil pump pick up tube (18), oil tube connector (26) and pump pick up screen (35) into the rear case half (17) (figure 15).
14. Oil tube O-ring (14) onto the oil pump pick up tube (18).

NOTICE: Do not damage the O-ring during assembly as this could result in pump failure.

15. Oil pump (12) to the oil pump pick up tube (18).
 • Apply RTV sealer to the case mating surfaces.
16. Rear case (17) over mainshaft (19) and onto the front case half (45).
 • Be careful not to damage the oil pump (12) while installing the rear case half.
17. Case bolts (3) into case halves.
 • Apply Loctite 242 or equivalent to case bolts.

18. Pump retainer housing (8) and pump housing bolts (7) to the rear case half (17).
 • Apply Loctite 242 or equivalent on pump housing bolt threads.

Tighten
- Bolts to 31 N·m (23 ft. lbs.).
19. Input bearing retainer (snap ring) (5) to the mainshaft (19).
20. Retainer (snap ring) (10), speedometer gear (11) and retainer (snap ring) (10) to the mainshaft (19).
21. Rear extension housing (4) and extension housing bolts (3) to the pump retainer housing (8).
 • Apply RTV sealer to the mating surfaces.
 • Apply Loctite 242 or equivalent on the extension housing bolts.

Tighten
- Bolts to 31 N·m (23 ft. lbs.).
EXTERNAL COMPONENTS

Install or Connect (Figures 1 and 2)

1. Selection plunger (70) poppet spring (71), O-ring seal (69) and poppet screw (68) to the front case half (45).

Tighten
- Poppet screw to 31 N·m (23 ft. lbs.).
- Indicator lamp switch (46) and O-ring (47) to the front case housing.

Tighten
- Switch to 24 N·m (17 ft. lbs.).
- Front output flange (74), rubber sealing washer (75), washer (76) and flange nut (77).

SPECIFICATIONS

NEW PROCESS 231 TRANSFER CASE

<table>
<thead>
<tr>
<th>Component</th>
<th>N·m</th>
<th>Ft. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Shaft Retainer Bolts</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>Shift Selector Lever Nut</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Shift Selector Light Switch</td>
<td>24</td>
<td>17</td>
</tr>
<tr>
<td>Case Half Bolts</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Pump Housing Bolts</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Mainshaft Extension Housing Bolts</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Fill and Drain Plugs</td>
<td>47</td>
<td>35</td>
</tr>
<tr>
<td>Front Propeller Shaft Flange Bolts</td>
<td>149</td>
<td>110</td>
</tr>
<tr>
<td>Lubricant: Dexron II</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Slide Hammer
2. Slide Hammer
3. Driver Handle
4. Bearing Remover
5. Bearing Remover
6. Output Shaft Bearing Remover
7. Adapter
8. Bearing Installer/Remover
9. Bearing Installer
10. Bearing Installer
11. Seal Installer
12. Extension Housing Seal Installer
13. Bearing Installer
14. Bearing Remover

Special Tools
BORG-WARNER 1370 TRANSFER CASE

SECTION 7D4

BORG-WARNER 1370 TRANSFER CASE

CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>7D4-2</td>
</tr>
<tr>
<td>Disassembly of Transfer Case</td>
<td>7D4-5</td>
</tr>
<tr>
<td>External Components</td>
<td>7D4-5</td>
</tr>
<tr>
<td>Internal Components</td>
<td>7D4-5</td>
</tr>
<tr>
<td>Synchronizer Assembly</td>
<td>7D4-7</td>
</tr>
<tr>
<td>Oil Pump Assembly</td>
<td>7D4-7</td>
</tr>
<tr>
<td>Cleaning and Inspection</td>
<td>7D4-12</td>
</tr>
<tr>
<td>Assembly of the Transfer Case</td>
<td>7D4-12</td>
</tr>
<tr>
<td>Oil Pump Assembly</td>
<td>7D4-12</td>
</tr>
<tr>
<td>Synchronizer Assembly</td>
<td>7D4-12</td>
</tr>
<tr>
<td>Internal Components</td>
<td>7D4-12</td>
</tr>
<tr>
<td>External Components</td>
<td>7D4-13</td>
</tr>
<tr>
<td>Specifications</td>
<td>7D4-17</td>
</tr>
<tr>
<td>Special Tools</td>
<td>7D4-18</td>
</tr>
</tbody>
</table>
DESCRIPTION

The Borg-Warner 1370 transfer case is a chain driven, four-position unit providing four-wheel drive high and low ranges, a two-wheel high range, and a neutral position. The BW1370 is a part-time four-wheel drive unit. Torque input in four-wheel drive is undifferentiated. The range positions are selected by a floor mounted gear shift lever. The unit has a gear reduction ratio of 2.69:1.

The BW1370 has a two-piece aluminum case with provisions for a power take off (PTO) and uses an electric synchronizer when shifting into four-wheel drive.

IDENTIFICATION (Figures 1 and 2)

The identification tag is an aluminum tag attached under the self-tapping extension housing bolts. This tag provides the transfer case model number, serial number and the build date. The information on this tag is necessary for servicing information. If the tag is removed or becomes dislodged during service operations, every attempt should be made to keep the identification tag with the unit.

POWER FLOW (Figure 3)

In all drive range positions input torque is transmitted to the transfer case gear train through the transfer case input gear.

In 2H range, torque flows from the input gear to the range shift hub and mainshaft. Torque flow continues through the slip/fixed yoke which is splined to the mainshaft, and finally to the rear propeller shaft and axle. In 2H range, the mode synchronizer remains in the neutral position. As a result, torque is not transferred to the driven sprocket.

In 4H range, input torque from the input gear is transmitted to the mainshaft in exactly the same fashion as in 2H range. However, in 4H position, the mode synchronizer sleeve is shifted into engagement with the clutch hub teeth.

1. Speedometer Speed Sensor
2. Clutch Coil Wire Connector
3. Rear Bearing Retainer
4. Identification Tag
5. Rear Output Yoke

48. Shift Lever
58. Front Output Flange
60. Four Wheel Drive Indicator Switch
78. Vent

Figure 1—BW1370 Rear Case Half

Figure 2—BW1370 Front Case Half
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Speedometer Tone Wheel</td>
</tr>
<tr>
<td>2.</td>
<td>Tone Wheel Snap Ring</td>
</tr>
<tr>
<td>3.</td>
<td>Rear Output Bearing Snap Ring</td>
</tr>
<tr>
<td>4.</td>
<td>Clutch Coil Wire Connector</td>
</tr>
<tr>
<td>5.</td>
<td>Clutch Coil Nuts</td>
</tr>
<tr>
<td>6.</td>
<td>Clutch Coil Assembly</td>
</tr>
<tr>
<td>7.</td>
<td>Shift Rail Spring</td>
</tr>
<tr>
<td>8.</td>
<td>Shift Rail</td>
</tr>
<tr>
<td>9.</td>
<td>Clutch Coil Housing Snap Ring</td>
</tr>
<tr>
<td>10.</td>
<td>Clutch Coil Housing</td>
</tr>
<tr>
<td>11.</td>
<td>Synchronizer Assembly</td>
</tr>
<tr>
<td>12.</td>
<td>Mode Shift Fork</td>
</tr>
<tr>
<td>13.</td>
<td>Front Output Shaft Snap Ring</td>
</tr>
<tr>
<td>14.</td>
<td>Front Output Shaft</td>
</tr>
<tr>
<td>15.</td>
<td>Flat Washer</td>
</tr>
<tr>
<td>16.</td>
<td>Drive Gear</td>
</tr>
<tr>
<td>17.</td>
<td>Driven Gear</td>
</tr>
<tr>
<td>18.</td>
<td>Drive Shaft</td>
</tr>
<tr>
<td>19.</td>
<td>Front Output Bearing</td>
</tr>
<tr>
<td>20.</td>
<td>Mainshaft</td>
</tr>
<tr>
<td>21.</td>
<td>Oil Pump Assembly</td>
</tr>
<tr>
<td>22.</td>
<td>Input Carrier Assembly</td>
</tr>
<tr>
<td>23.</td>
<td>Oil Pump Pick Up</td>
</tr>
<tr>
<td>24.</td>
<td>Range Fork</td>
</tr>
<tr>
<td>25.</td>
<td>Oil Pump Retainer</td>
</tr>
<tr>
<td>26.</td>
<td>Front Output Shaft Seal</td>
</tr>
<tr>
<td>27.</td>
<td>Oil Pump Hub</td>
</tr>
<tr>
<td>28.</td>
<td>Oil Pump Snap Ring</td>
</tr>
<tr>
<td>29.</td>
<td>Front Case</td>
</tr>
<tr>
<td>30.</td>
<td>Annulus Gear Snap Ring</td>
</tr>
<tr>
<td>31.</td>
<td>Rear Case</td>
</tr>
<tr>
<td>32.</td>
<td>Annulus Gear</td>
</tr>
<tr>
<td>33.</td>
<td>Mainshaft Front Oil Seal</td>
</tr>
<tr>
<td>34.</td>
<td>Carrier Assembly Snap Ring</td>
</tr>
<tr>
<td>35.</td>
<td>Power Take Off Drive Gear</td>
</tr>
<tr>
<td>36.</td>
<td>Retainer Clip</td>
</tr>
<tr>
<td>37.</td>
<td>Sector Shaft</td>
</tr>
<tr>
<td>38.</td>
<td>Sector</td>
</tr>
<tr>
<td>39.</td>
<td>Detent Shaft</td>
</tr>
<tr>
<td>40.</td>
<td>Front Output Bearing Snap Ring</td>
</tr>
<tr>
<td>41.</td>
<td>Front Output Shaft Seal</td>
</tr>
<tr>
<td>42.</td>
<td>Front Input Bearing Snap Ring</td>
</tr>
<tr>
<td>43.</td>
<td>Front Input Bearing</td>
</tr>
<tr>
<td>44.</td>
<td>Rear Output Bearing</td>
</tr>
<tr>
<td>45.</td>
<td>Rear Case</td>
</tr>
<tr>
<td>46.</td>
<td>Rear Output Shaft Seal</td>
</tr>
<tr>
<td>47.</td>
<td>Rear Case</td>
</tr>
<tr>
<td>48.</td>
<td>Shift Lever</td>
</tr>
<tr>
<td>49.</td>
<td>Detent Roller</td>
</tr>
<tr>
<td>50.</td>
<td>Rear Bearing Retainer</td>
</tr>
<tr>
<td>51.</td>
<td>Synchronizer Hub and Snap Ring</td>
</tr>
<tr>
<td>52.</td>
<td>Lockup Hub</td>
</tr>
<tr>
<td>53.</td>
<td>Compression Spring</td>
</tr>
<tr>
<td>54.</td>
<td>Lock Up Collar</td>
</tr>
<tr>
<td>55.</td>
<td>Synchronizer Hub</td>
</tr>
<tr>
<td>56.</td>
<td>Flat Washer</td>
</tr>
<tr>
<td>57.</td>
<td>Rubber Sealing Washer</td>
</tr>
<tr>
<td>58.</td>
<td>Front Output Flange</td>
</tr>
<tr>
<td>59.</td>
<td>Speedometer Pick-up Switch</td>
</tr>
<tr>
<td>60.</td>
<td>Four Wheel Indicator Switch</td>
</tr>
<tr>
<td>61.</td>
<td>Rear Bearing Retainer Bolts</td>
</tr>
<tr>
<td>62.</td>
<td>Case Screw</td>
</tr>
<tr>
<td>63.</td>
<td>Oil Pump Retainer Bolts</td>
</tr>
<tr>
<td>64.</td>
<td>Oil Pump Rear Cover</td>
</tr>
<tr>
<td>65.</td>
<td>Oil Pump Body</td>
</tr>
<tr>
<td>66.</td>
<td>Oil Pump Pins</td>
</tr>
<tr>
<td>67.</td>
<td>Oil Pump Spring</td>
</tr>
<tr>
<td>68.</td>
<td>Oil Pump Retainer</td>
</tr>
<tr>
<td>69.</td>
<td>Oil Pump Front Cover</td>
</tr>
<tr>
<td>70.</td>
<td>Pick-up Tube Retainer</td>
</tr>
<tr>
<td>71.</td>
<td>Pick-up Tube</td>
</tr>
<tr>
<td>72.</td>
<td>Oil Pump Front Cover Nut</td>
</tr>
<tr>
<td>73.</td>
<td>Identification Tag</td>
</tr>
<tr>
<td>74.</td>
<td>Vent</td>
</tr>
<tr>
<td>75.</td>
<td>Rear Output Yoke Nut</td>
</tr>
<tr>
<td>76.</td>
<td>Front Output Flange Nut</td>
</tr>
<tr>
<td>77.</td>
<td>Identification Tag</td>
</tr>
<tr>
<td>78.</td>
<td>Drain/Fill Plug</td>
</tr>
</tbody>
</table>
on the mainshaft. This locks the drive sprocket to the main shaft through the synchronizer assembly. Torque is transmitted through the drive sprocket by the connecting drive chain. Since the front output shaft is splined to the driven sprocket, torque flows through the front output shaft to the front propeller shaft and axle resulting in high range four-wheel drive.

In 4L range, the path of torque through the transfer case is exactly the same as in 4H range but with one major difference. In 4L range the range hub is shifted into engagement with the planetary carrier. This causes the input gear to rotate the planetary pinions inside annulus gear, causing the planetary carrier, range shift hub and mainshaft to rotate at a gear reduction of 2.69:1.

DISASSEMBLY OF THE TRANSFER CASE

EXTERNAL COMPONENTS

- **Clean**
 - The transfer case using a solvent and a stiff brush.

- **Remove or Disconnect (Figures 1, 2, 3, and 4)**
 1. Front output flange nut (76), flat washer (56), rubber sealing washer (57) and the front output flange (58) from the front output shaft.
 2. Rear output yoke nut (75), flat washer (56), rubber sealing washer (57) and rear output yoke (79) from the rear output shaft.
 3. Speedometer pickup switch (59) from the rear bearing retainer (50).
 4. Four-wheel drive indicator switch (60) from the front case half (31).
 5. Rear bearing retainer bolts (61) and rear bearing retainer (50) from the rear case half (46).

INTERNAL COMPONENTS

- **Remove or Disconnect (Figures 4 through 21)**

 Tools Required:
 - J 22912-01 Gear Puller
 - J 8433-4 Puller
 - J 8059 Snap Ring Pliers
 - J 8092 Driver Handle
 - J 29169 Bearing Remover/Installer
 - J 33832 Bearing Remover/Installer

 1. Speedometer tone wheel (1) from the mainshaft (23) using J 22912-01 and J 8433-4 or equivalent (figure 4).
 - Be careful not to install J 22912-01 under the speed sensor snap ring.
 2. Tone wheel snap ring (3) from the mainshaft (23).
 3. Rear output bearing snap ring (4) from the mainshaft (23) using J 8059 snap ring pliers (figure 5).
 4. Case screws (62) from the case halves. Note these are self tapping screws and aluminum shavings are common upon removal.
 5. Rear case half (46) from the front case half (31).
 - Using a suitable tool between the two pry bosses to separate the case halves.
 6. Clutch coil wire connector (5) from the clutch coil wire (figure 6).
 7. Clutch coil nuts (6) from the clutch coil assembly (7) (figure 6).
 8. Clutch coil (7) from the rear case half (46).
 9. Shift rail spring (8) from the shift rail (9).
 10. Clutch coil housing snap ring (10) and the clutch coil housing (11) from the mainshaft (2) using J 8095 snap ring pliers (figure 7).
 11. Synchronizer hub (55) from the synchronizer assembly (12).
7D4-6 BORG-WARNER 1370 TRANSFER CASE

Figure 5—Removing the Output Bearing Snap Ring

2. Mainshaft
4. Rear Output Bearing Snap Ring

Figure 6—Removing the Clutch Coil

5. Clutch Coil Wire Connector
6. Clutch Coil Nut

Figure 7—Removing the Clutch Coil Housing

8. Shift Rail Spring
10. Clutch Coil Housing Snap Ring
11. Clutch Coil Housing
23. Mainshaft

Figure 8—Removing the Shift Mode Fork and Synchronizer Assembly

9. Shift Rail
12. Synchronizer Assembly
13. Mode Shift Fork
19. Annulus gear (32) from the front case (31) (figure 14).
20. Mainshaft front oil seal (33) from the front case (31).
21. Carrier assembly snap ring (34) from the carrier assembly input shaft (25) (figure 15).
22. Input carrier assembly (25) and power take off drive gear (35) from the front case (31) (figure 16).
23. Retaining clip (36) from the sector shaft (37) (figure 17).
24. Sector shaft (37) from the front case (31).
25. Sector (38), detent spring (39) and detent roller (49) from the front case (31).
26. Front input bearing snap ring (43) from the front case (31) (figure 18).
27. Front input bearing (44) from the front case (31) using J 8092 and J 29169 (figure 19).
28. Rear output bearing (45) from the rear case half (46) using J 8092 and J 33832.
29. Front output shaft seal (42) from the front case (31).
30. Front output bearing snap ring (40) from the front case (31) (figure 20).
31. Front output bearing (22) from the front case (31) using J 8092 and J 33832 (figure 21).
32. Rear output shaft seal (47) from the rear bearing retainer (50).

SYNCHRONIZER HUB ASSEMBLY

Disassemble
1. Synchronizer hub snap ring (51) from the synchronizer hub assembly (12) (figure 22).
2. Lockup hub (52) compression spring (53) from the lockup collar (54).

OIL PUMP ASSEMBLY

Disassemble
1. Oil pump retainer bolts (63) and oil pump retainer (69) from the oil pump rear cover (64) (figure 23).
2. Oil pump body (66) and pick up tube assembly from the mainshaft (23).
3. Oil pump pins (67) and oil pump spring (68) from the mainshaft (23).
4. Oil pump front cover (70) from the mainshaft (23).
5. Clamp (71) from the pick up tube (72).
6. Pick up tube (72) and oil pump pickup (26) from the oil pump body (66).
7. Oil pump pickup (26) from the pick up tube (72).
16. Front Output Shaft
18. Drive Gear
19. Driven Gear
20. Drive Chain
22. Front Output Bearing

Figure 10—Removing the Drive Chain
23. Mainshaft
24. Oil Pump Assembly
25. Input Carrier Assembly
26. Oil Pump Pickup

Figure 11—Removing the Mainshaft and Oil Pump

30. Annulus Gear Snap Ring
31. Front Case
32. Annulus Gear

Figure 13—Removing the Annulus Gear Snap Ring

9. Shift Rail
28. Range Fork
29. Shift Hub

Figure 12—Removing the Shift Rail Range Fork and the Shift Hub

31. Front Case
32. Annulus Gear

Figure 14—Removing the Annulus Gear
25. Carrier Assembly Input Shaft
34. Input Carrier Snap Ring

Figure 15—Removing the Carrier Assembly Snap Ring

25. Input Carrier Assembly
35. Power Take Off Drive Gear

Figure 16—Input Carrier and PTO Gear

36. Retainer Clip
37. Sector Shaft
38. Sector Shaft
39. Detent Spring
48. Shift Lever
49. Detent Roller

Figure 17—Sector and Shaft Assembly

43. Front Input Bearing Snap Ring
44. Front Input Bearing

Figure 18—Front Input Bearing Snap Ring Removal
Figure 19—Removing the Front Input Bearing

Figure 20—Removing the Front Output Bearing

Figure 21—Removing the Front Output Bearing

Figure 22—Synchronizer Hub Assembly

Figure 23—Mainshaft and Oil Pump Assembly

Figure 24—Installing the Front Output Bearing
CLEANING AND INSPECTION

Clean
1. Bearings.
2. Shafts.
3. Sprockets.
4. Chain.
5. Oil feed ports and channels in each case half. Apply compressed air to each oil feed port and channel in order to remove any obstructions or cleaning solvent residue.
6. All mating surfaces.

Inspect
1. Bearings and thrust washers for wear, spalling, brinelling, or corrosion.
2. Gear teeth for excessive wear or damage, spalling, cracks, or corrosion.
3. Gear splines for excessive wear, spalling, cracks, twist or corrosion.
4. Shaft splines for excessive wear, spalling, cracks, distortion or corrosion.
5. Retainer rings for excessive wear, distortion or damage.
6. Case halves for damaged or warped mating surfaces, cracks, porosity, or damaged thread holes.
7. Synchronizer assembly for cracks, chips, spalling, or excessive wear.
8. Synchronizer hub and sleeve for cracks, chips, spalling, or excessive wear.
9. Pads on the mode fork and the range fork for wear or distortion.
10. Oil pump pins and housing, mainshaft pin pump bores for wear, spalling, cracks, and damage. Replace complete assembly if there is wear.
11. Input gear, planetary carrier and range shift hub tooth chamfers for excessive wear.

ASSEMBLY OF THE TRANSFER CASE

During assembly of the transfer case, lubricate all necessary parts with Dextron II automatic transmission fluid, or equivalent.

OIL PUMP ASSEMBLY

Assemble (Figure 23)
1. Oil pump pickup (26) to the pickup tube (72).
2. Pickup tube (72), oil pump pickup (26) and retainer (71) to the oil pump housing (66).
3. The oil pump front cover (70) with the word TOP facing the front of the front case.
4. Oil pump pins (67), flats facing upward, oil pump spring (68) between the two pins and place the assembly into the oil pump bore in the mainshaft (23).
5. Oil pump housing (66) to the mainshaft (23) making sure the oil pump pins (67) are riding against the inside of the pump housing.
 - Lubricate the assembly with automatic transmission fluid.
6. Oil pump rear cover (64) with the words TOP REAR facing the rear of the transfer case.
 - Note the word TOP on the front cover and the rear cover should be on the same side.
7. Oil pump retainer (69) with the tabs facing the front of the transfer case.
8. Oil pump retainer bolts (63) and rotate the mainshaft while tightening the bolts to prevent the pump from binding.

Tighten
- Bolts (63) to 6.2 N·m (55 in. lbs.).

Inspect
- Oil pump operation on the mainshaft. The mainshaft must turn freely within the oil pump. If binding occurs, loosen the four bolts and re-torque.

SYNCHRONIZER ASSEMBLY

Assemble (Figure 22)
1. Compression spring (53) to the lockup collar (54).
2. Lockup hub (52) compressing the compression spring (53).
3. Synchronizer hub snap ring (51).

INTERNAL COMPONENTS
(Figures 9 through 25)

Install or Connect
Tools Required:
- J 37668 Seal Installer
- J 80922 Driver Handle
- J 33832 Bearing Installer/Remover
- J 29169 Bearing Installer/Remover

1. Rear output shaft seal (47) to the rear bearing retainer (50) using J 37668.
2. Front output bearing (22) to the front case (31) using J 8092 and J 33832 (figure 24).
3. Front output bearing snap ring (40) to the front case (31).
4. Front output shaft seal (42) to the front case (31) using J 37668.
5. Rear output bearing (45) to the rear case (46) using J 8092 and J 33832.
6. Front input bearing (44) to the front case (31) using J 8092 and J 29169 (figure 25).
7. Front input bearing snap ring (43) to the front case (31).
8. Sector (38) detent spring (39) and detent roller (49) to the front case (31) (figure 17).
9. Sector shaft (37) through the case and align with spline on the sector (38).
10. Retainer clip (36) to the sector shaft (37).
11. Power take off drive gear (35) and the input carrier assembly (25) to the front case (31) (figure 16).
12. Input carrier snap ring (32) to the input carrier (25) (figure 15).
13. Mainshaft front oil seal (33) to the front case (31) using J 37668.
14. Annulus gear (32) to the front case (31) (figure 14).
15. Annulus gear snap ring (30) to the front case (31) (figure 13).
16. Range fork (28) and shaft hub (29) aligning the shift hub to the carrier assembly and the shift fork pin to the slot in the sector (38).
17. Shift rail (9) through the range fork (28) and into the boss in the front case.
18. Mainshaft (23) and oil pump assembly (24) into the carrier assembly (25) (figure 11).
19. Front output shaft (16) to the front output bearing (22).
20. Drive gear (18), driven gear (19), and drive chain (20) as an assembly to the mainshaft (23) and front output shaft (16).
21. Flat washer (17) to the front output shaft (16).
22. Front output shaft snap ring (15) to the front output shaft (16) (figure 9).
23. Synchronizer assembly (12) and mode shift fork (13) aligning the synchronizer assembly to the mainshaft drive gear (18) and the mode fork to the shift rail (9).
24. Synchronizer hub (55) to the synchronizer assembly (12).
25. Clutch coil housing (11) and clutch coil housing snap ring (10) to the mainshaft (23).
26. Shift rail spring (8) to the shift rail (9).
27. Clutch coil (7) to the rear case (46).
28. Clutch coil nuts (6) to the clutch coil (7).

![Diagram](image)

Figure 25—Installing the Front Input Bearing

Note: The speedometer tone wheel is important to the proper operation of the RWAL braking system, speedometer/odometer, cruise control and the ECM. Use care not to damage upon installation.

EXTERNAL COMPONENTS

1. **Install or Connect**
 - RTV sealer to the rear bearing retainer (50) sealing surfaces.
2. **Install or Connect**
 - Rear bearing retainer bolts (61) to the rear case (46).
3. **Install or Connect**
 - Four-wheel drive indicator switch (60) to the front case half (31).
4. **Install or Connect**
 - Switch to 41 N·m (30 ft. lbs.).
5. **Install or Connect**
 - Speedometer pickup switch (59) and bolt to the rear bearing retainer (50).
6. **Install or Connect**
 - Nut (75) to 170 N·m (125 ft. lbs.).
7. **Install or Connect**
 - Nut (76) to 224 N·m (165 ft. lbs.).
Figure 26—Installing the Rear Output Yoke

56. Flat Washer
57. Rubber Sealing Washer
75. Rear Output Yoke Nut
79. Rear Output Yoke

F6633
Figure 27—BW1370 Transfer Case
1. Speedometer Tone Wheel	36. Retainer Clip
2. Tone Wheel Snap Ring	37. Sector Shaft
3. Rear Output Bearing Snap Ring	38. Sector
5. Clutch Coil Nuts	40. Front Output Bearing Snap Ring
6. Clutch Coil Assembly	41. Front Output Shaft Seal
7. Shift Rail Spring	42. Front Input Bearing
8. Shift Rail	43. Front Input Bearing Snap Ring
9. Clutch Coil Housing Snap Ring	44. Rear Output Bearing
10. Clutch Coil Housing	45. Rear Case
11. Synchronizer Assembly	46. Rear Case
12. Mode Shift Fork	47. Rear Output Shaft Seal
13. Front Output Shaft Snap Ring	48. Shift Lever
14. Front Output Shaft	49. Detent Roller
15. Flat Washer	50. Rear Bearing Retainer
16. Drive Gear	51. Synchronizer Hub Snap Ring
17. Driven Gear	52. Synchronizer Hub
18. Drive Chain	53. Flat Washer
19. Front Output Bearing	54. Rubber Sealing Washer
20. Mainshaft	55. Front Output Flange
21. Oil Pump Assembly	56. Four Wheel Indicator Switch
22. Input Carrier Assembly	57. Rear Bearing Retainer Bolts
23. Range Fork	58. Case Screw
24. Shift Hub	59. Oil Pump Retainer Bolts
25. Annulus Gear Snap Ring	60. Rear Output Yoke Nut
26. Front Case	61. Front Output Flange Nut
27. Mainshaft Front Oil Seal	62. Rear Output Yoke
28. Carrier Assembly Snap Ring	
29. Power Take Off Drive Gear	
SPECIFICATIONS

BW1370 TRANSFER CASE

<table>
<thead>
<tr>
<th>Item</th>
<th>N*m</th>
<th>Ft. Lbs.</th>
<th>In. Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain/Fill Plugs</td>
<td>25</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Case and Rear Bearing Retainer Screws</td>
<td>31</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Four Wheel Drive Indicator Switch</td>
<td>41</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Vent</td>
<td>14</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Clutch Coil Nuts</td>
<td>10</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>P.T.O. Cover Bolts</td>
<td>27</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Flange Nut (Front Output)</td>
<td>224</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>Yoke Nut (Rear Output)</td>
<td>170</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Speedometer Pickup Switch</td>
<td>16</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Oil Pump Retainer Bolts</td>
<td>6.2</td>
<td></td>
<td>54.8</td>
</tr>
</tbody>
</table>

Lubricant: Dextron II 1.4 Liters (1.5 Quarts)
SPECIAL TOOLS

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Bearing and Gear Puller</td>
<td>J 22912-01</td>
</tr>
<tr>
<td>2.</td>
<td>Puller</td>
<td>J 8433-4</td>
</tr>
<tr>
<td>3.</td>
<td>Snap Ring Pliers</td>
<td>J 8059</td>
</tr>
<tr>
<td>4.</td>
<td>Bearing Remover/Installer</td>
<td>J 29169</td>
</tr>
<tr>
<td>5.</td>
<td>Bearing Remover/Installer</td>
<td>J 33832</td>
</tr>
<tr>
<td></td>
<td>Seal Installer</td>
<td>J 37668</td>
</tr>
<tr>
<td></td>
<td>Driver Handle</td>
<td>J 8092</td>
</tr>
<tr>
<td></td>
<td>Installer</td>
<td>J 5590</td>
</tr>
</tbody>
</table>